Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[cascardo/linux.git] / drivers / spi / spi-sh-msiof.c
1 /*
2  * SuperH MSIOF SPI Master Interface
3  *
4  * Copyright (c) 2009 Magnus Damm
5  * Copyright (C) 2014 Glider bvba
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  */
12
13 #include <linux/bitmap.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/gpio.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
30
31 #include <linux/spi/sh_msiof.h>
32 #include <linux/spi/spi.h>
33
34 #include <asm/unaligned.h>
35
36
37 struct sh_msiof_chipdata {
38         u16 tx_fifo_size;
39         u16 rx_fifo_size;
40         u16 master_flags;
41 };
42
43 struct sh_msiof_spi_priv {
44         struct spi_master *master;
45         void __iomem *mapbase;
46         struct clk *clk;
47         struct platform_device *pdev;
48         const struct sh_msiof_chipdata *chipdata;
49         struct sh_msiof_spi_info *info;
50         struct completion done;
51         int tx_fifo_size;
52         int rx_fifo_size;
53         void *tx_dma_page;
54         void *rx_dma_page;
55         dma_addr_t tx_dma_addr;
56         dma_addr_t rx_dma_addr;
57 };
58
59 #define TMDR1   0x00    /* Transmit Mode Register 1 */
60 #define TMDR2   0x04    /* Transmit Mode Register 2 */
61 #define TMDR3   0x08    /* Transmit Mode Register 3 */
62 #define RMDR1   0x10    /* Receive Mode Register 1 */
63 #define RMDR2   0x14    /* Receive Mode Register 2 */
64 #define RMDR3   0x18    /* Receive Mode Register 3 */
65 #define TSCR    0x20    /* Transmit Clock Select Register */
66 #define RSCR    0x22    /* Receive Clock Select Register (SH, A1, APE6) */
67 #define CTR     0x28    /* Control Register */
68 #define FCTR    0x30    /* FIFO Control Register */
69 #define STR     0x40    /* Status Register */
70 #define IER     0x44    /* Interrupt Enable Register */
71 #define TDR1    0x48    /* Transmit Control Data Register 1 (SH, A1) */
72 #define TDR2    0x4c    /* Transmit Control Data Register 2 (SH, A1) */
73 #define TFDR    0x50    /* Transmit FIFO Data Register */
74 #define RDR1    0x58    /* Receive Control Data Register 1 (SH, A1) */
75 #define RDR2    0x5c    /* Receive Control Data Register 2 (SH, A1) */
76 #define RFDR    0x60    /* Receive FIFO Data Register */
77
78 /* TMDR1 and RMDR1 */
79 #define MDR1_TRMD        0x80000000 /* Transfer Mode (1 = Master mode) */
80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81 #define MDR1_SYNCMD_SPI  0x20000000 /*   Level mode/SPI */
82 #define MDR1_SYNCMD_LR   0x30000000 /*   L/R mode */
83 #define MDR1_SYNCAC_SHIFT        25 /* Sync Polarity (1 = Active-low) */
84 #define MDR1_BITLSB_SHIFT        24 /* MSB/LSB First (1 = LSB first) */
85 #define MDR1_FLD_MASK    0x000000c0 /* Frame Sync Signal Interval (0-3) */
86 #define MDR1_FLD_SHIFT            2
87 #define MDR1_XXSTP       0x00000001 /* Transmission/Reception Stop on FIFO */
88 /* TMDR1 */
89 #define TMDR1_PCON       0x40000000 /* Transfer Signal Connection */
90
91 /* TMDR2 and RMDR2 */
92 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
93 #define MDR2_WDLEN1(i)  (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
94 #define MDR2_GRPMASK1   0x00000001 /* Group Output Mask 1 (SH, A1) */
95
96 #define MAX_WDLEN       256U
97
98 /* TSCR and RSCR */
99 #define SCR_BRPS_MASK       0x1f00 /* Prescaler Setting (1-32) */
100 #define SCR_BRPS(i)     (((i) - 1) << 8)
101 #define SCR_BRDV_MASK       0x0007 /* Baud Rate Generator's Division Ratio */
102 #define SCR_BRDV_DIV_2      0x0000
103 #define SCR_BRDV_DIV_4      0x0001
104 #define SCR_BRDV_DIV_8      0x0002
105 #define SCR_BRDV_DIV_16     0x0003
106 #define SCR_BRDV_DIV_32     0x0004
107 #define SCR_BRDV_DIV_1      0x0007
108
109 /* CTR */
110 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
111 #define CTR_TSCKIZ_SCK  0x80000000 /*   Disable SCK when TX disabled */
112 #define CTR_TSCKIZ_POL_SHIFT    30 /*   Transmit Clock Polarity */
113 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
114 #define CTR_RSCKIZ_SCK  0x20000000 /*   Must match CTR_TSCKIZ_SCK */
115 #define CTR_RSCKIZ_POL_SHIFT    28 /*   Receive Clock Polarity */
116 #define CTR_TEDG_SHIFT          27 /* Transmit Timing (1 = falling edge) */
117 #define CTR_REDG_SHIFT          26 /* Receive Timing (1 = falling edge) */
118 #define CTR_TXDIZ_MASK  0x00c00000 /* Pin Output When TX is Disabled */
119 #define CTR_TXDIZ_LOW   0x00000000 /*   0 */
120 #define CTR_TXDIZ_HIGH  0x00400000 /*   1 */
121 #define CTR_TXDIZ_HIZ   0x00800000 /*   High-impedance */
122 #define CTR_TSCKE       0x00008000 /* Transmit Serial Clock Output Enable */
123 #define CTR_TFSE        0x00004000 /* Transmit Frame Sync Signal Output Enable */
124 #define CTR_TXE         0x00000200 /* Transmit Enable */
125 #define CTR_RXE         0x00000100 /* Receive Enable */
126
127 /* FCTR */
128 #define FCTR_TFWM_MASK  0xe0000000 /* Transmit FIFO Watermark */
129 #define FCTR_TFWM_64    0x00000000 /*  Transfer Request when 64 empty stages */
130 #define FCTR_TFWM_32    0x20000000 /*  Transfer Request when 32 empty stages */
131 #define FCTR_TFWM_24    0x40000000 /*  Transfer Request when 24 empty stages */
132 #define FCTR_TFWM_16    0x60000000 /*  Transfer Request when 16 empty stages */
133 #define FCTR_TFWM_12    0x80000000 /*  Transfer Request when 12 empty stages */
134 #define FCTR_TFWM_8     0xa0000000 /*  Transfer Request when 8 empty stages */
135 #define FCTR_TFWM_4     0xc0000000 /*  Transfer Request when 4 empty stages */
136 #define FCTR_TFWM_1     0xe0000000 /*  Transfer Request when 1 empty stage */
137 #define FCTR_TFUA_MASK  0x07f00000 /* Transmit FIFO Usable Area */
138 #define FCTR_TFUA_SHIFT         20
139 #define FCTR_TFUA(i)    ((i) << FCTR_TFUA_SHIFT)
140 #define FCTR_RFWM_MASK  0x0000e000 /* Receive FIFO Watermark */
141 #define FCTR_RFWM_1     0x00000000 /*  Transfer Request when 1 valid stages */
142 #define FCTR_RFWM_4     0x00002000 /*  Transfer Request when 4 valid stages */
143 #define FCTR_RFWM_8     0x00004000 /*  Transfer Request when 8 valid stages */
144 #define FCTR_RFWM_16    0x00006000 /*  Transfer Request when 16 valid stages */
145 #define FCTR_RFWM_32    0x00008000 /*  Transfer Request when 32 valid stages */
146 #define FCTR_RFWM_64    0x0000a000 /*  Transfer Request when 64 valid stages */
147 #define FCTR_RFWM_128   0x0000c000 /*  Transfer Request when 128 valid stages */
148 #define FCTR_RFWM_256   0x0000e000 /*  Transfer Request when 256 valid stages */
149 #define FCTR_RFUA_MASK  0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
150 #define FCTR_RFUA_SHIFT          4
151 #define FCTR_RFUA(i)    ((i) << FCTR_RFUA_SHIFT)
152
153 /* STR */
154 #define STR_TFEMP       0x20000000 /* Transmit FIFO Empty */
155 #define STR_TDREQ       0x10000000 /* Transmit Data Transfer Request */
156 #define STR_TEOF        0x00800000 /* Frame Transmission End */
157 #define STR_TFSERR      0x00200000 /* Transmit Frame Synchronization Error */
158 #define STR_TFOVF       0x00100000 /* Transmit FIFO Overflow */
159 #define STR_TFUDF       0x00080000 /* Transmit FIFO Underflow */
160 #define STR_RFFUL       0x00002000 /* Receive FIFO Full */
161 #define STR_RDREQ       0x00001000 /* Receive Data Transfer Request */
162 #define STR_REOF        0x00000080 /* Frame Reception End */
163 #define STR_RFSERR      0x00000020 /* Receive Frame Synchronization Error */
164 #define STR_RFUDF       0x00000010 /* Receive FIFO Underflow */
165 #define STR_RFOVF       0x00000008 /* Receive FIFO Overflow */
166
167 /* IER */
168 #define IER_TDMAE       0x80000000 /* Transmit Data DMA Transfer Req. Enable */
169 #define IER_TFEMPE      0x20000000 /* Transmit FIFO Empty Enable */
170 #define IER_TDREQE      0x10000000 /* Transmit Data Transfer Request Enable */
171 #define IER_TEOFE       0x00800000 /* Frame Transmission End Enable */
172 #define IER_TFSERRE     0x00200000 /* Transmit Frame Sync Error Enable */
173 #define IER_TFOVFE      0x00100000 /* Transmit FIFO Overflow Enable */
174 #define IER_TFUDFE      0x00080000 /* Transmit FIFO Underflow Enable */
175 #define IER_RDMAE       0x00008000 /* Receive Data DMA Transfer Req. Enable */
176 #define IER_RFFULE      0x00002000 /* Receive FIFO Full Enable */
177 #define IER_RDREQE      0x00001000 /* Receive Data Transfer Request Enable */
178 #define IER_REOFE       0x00000080 /* Frame Reception End Enable */
179 #define IER_RFSERRE     0x00000020 /* Receive Frame Sync Error Enable */
180 #define IER_RFUDFE      0x00000010 /* Receive FIFO Underflow Enable */
181 #define IER_RFOVFE      0x00000008 /* Receive FIFO Overflow Enable */
182
183
184 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
185 {
186         switch (reg_offs) {
187         case TSCR:
188         case RSCR:
189                 return ioread16(p->mapbase + reg_offs);
190         default:
191                 return ioread32(p->mapbase + reg_offs);
192         }
193 }
194
195 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
196                            u32 value)
197 {
198         switch (reg_offs) {
199         case TSCR:
200         case RSCR:
201                 iowrite16(value, p->mapbase + reg_offs);
202                 break;
203         default:
204                 iowrite32(value, p->mapbase + reg_offs);
205                 break;
206         }
207 }
208
209 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
210                                     u32 clr, u32 set)
211 {
212         u32 mask = clr | set;
213         u32 data;
214         int k;
215
216         data = sh_msiof_read(p, CTR);
217         data &= ~clr;
218         data |= set;
219         sh_msiof_write(p, CTR, data);
220
221         for (k = 100; k > 0; k--) {
222                 if ((sh_msiof_read(p, CTR) & mask) == set)
223                         break;
224
225                 udelay(10);
226         }
227
228         return k > 0 ? 0 : -ETIMEDOUT;
229 }
230
231 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
232 {
233         struct sh_msiof_spi_priv *p = data;
234
235         /* just disable the interrupt and wake up */
236         sh_msiof_write(p, IER, 0);
237         complete(&p->done);
238
239         return IRQ_HANDLED;
240 }
241
242 static struct {
243         unsigned short div;
244         unsigned short scr;
245 } const sh_msiof_spi_clk_table[] = {
246         { 1,    SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
247         { 2,    SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
248         { 4,    SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
249         { 8,    SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
250         { 16,   SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
251         { 32,   SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
252         { 64,   SCR_BRPS(32) | SCR_BRDV_DIV_2 },
253         { 128,  SCR_BRPS(32) | SCR_BRDV_DIV_4 },
254         { 256,  SCR_BRPS(32) | SCR_BRDV_DIV_8 },
255         { 512,  SCR_BRPS(32) | SCR_BRDV_DIV_16 },
256         { 1024, SCR_BRPS(32) | SCR_BRDV_DIV_32 },
257 };
258
259 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
260                                       unsigned long parent_rate, u32 spi_hz)
261 {
262         unsigned long div = 1024;
263         size_t k;
264
265         if (!WARN_ON(!spi_hz || !parent_rate))
266                 div = DIV_ROUND_UP(parent_rate, spi_hz);
267
268         /* TODO: make more fine grained */
269
270         for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
271                 if (sh_msiof_spi_clk_table[k].div >= div)
272                         break;
273         }
274
275         k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
276
277         sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
278         if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
279                 sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
280 }
281
282 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
283                                       u32 cpol, u32 cpha,
284                                       u32 tx_hi_z, u32 lsb_first, u32 cs_high)
285 {
286         u32 tmp;
287         int edge;
288
289         /*
290          * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
291          *    0    0         10     10    1    1
292          *    0    1         10     10    0    0
293          *    1    0         11     11    0    0
294          *    1    1         11     11    1    1
295          */
296         tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
297         tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
298         tmp |= lsb_first << MDR1_BITLSB_SHIFT;
299         sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
300         if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
301                 /* These bits are reserved if RX needs TX */
302                 tmp &= ~0x0000ffff;
303         }
304         sh_msiof_write(p, RMDR1, tmp);
305
306         tmp = 0;
307         tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
308         tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
309
310         edge = cpol ^ !cpha;
311
312         tmp |= edge << CTR_TEDG_SHIFT;
313         tmp |= edge << CTR_REDG_SHIFT;
314         tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
315         sh_msiof_write(p, CTR, tmp);
316 }
317
318 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
319                                        const void *tx_buf, void *rx_buf,
320                                        u32 bits, u32 words)
321 {
322         u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
323
324         if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
325                 sh_msiof_write(p, TMDR2, dr2);
326         else
327                 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
328
329         if (rx_buf)
330                 sh_msiof_write(p, RMDR2, dr2);
331 }
332
333 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
334 {
335         sh_msiof_write(p, STR, sh_msiof_read(p, STR));
336 }
337
338 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
339                                       const void *tx_buf, int words, int fs)
340 {
341         const u8 *buf_8 = tx_buf;
342         int k;
343
344         for (k = 0; k < words; k++)
345                 sh_msiof_write(p, TFDR, buf_8[k] << fs);
346 }
347
348 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
349                                        const void *tx_buf, int words, int fs)
350 {
351         const u16 *buf_16 = tx_buf;
352         int k;
353
354         for (k = 0; k < words; k++)
355                 sh_msiof_write(p, TFDR, buf_16[k] << fs);
356 }
357
358 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
359                                         const void *tx_buf, int words, int fs)
360 {
361         const u16 *buf_16 = tx_buf;
362         int k;
363
364         for (k = 0; k < words; k++)
365                 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
366 }
367
368 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
369                                        const void *tx_buf, int words, int fs)
370 {
371         const u32 *buf_32 = tx_buf;
372         int k;
373
374         for (k = 0; k < words; k++)
375                 sh_msiof_write(p, TFDR, buf_32[k] << fs);
376 }
377
378 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
379                                         const void *tx_buf, int words, int fs)
380 {
381         const u32 *buf_32 = tx_buf;
382         int k;
383
384         for (k = 0; k < words; k++)
385                 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
386 }
387
388 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
389                                         const void *tx_buf, int words, int fs)
390 {
391         const u32 *buf_32 = tx_buf;
392         int k;
393
394         for (k = 0; k < words; k++)
395                 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
396 }
397
398 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
399                                          const void *tx_buf, int words, int fs)
400 {
401         const u32 *buf_32 = tx_buf;
402         int k;
403
404         for (k = 0; k < words; k++)
405                 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
406 }
407
408 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
409                                      void *rx_buf, int words, int fs)
410 {
411         u8 *buf_8 = rx_buf;
412         int k;
413
414         for (k = 0; k < words; k++)
415                 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
416 }
417
418 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
419                                       void *rx_buf, int words, int fs)
420 {
421         u16 *buf_16 = rx_buf;
422         int k;
423
424         for (k = 0; k < words; k++)
425                 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
426 }
427
428 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
429                                        void *rx_buf, int words, int fs)
430 {
431         u16 *buf_16 = rx_buf;
432         int k;
433
434         for (k = 0; k < words; k++)
435                 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
436 }
437
438 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
439                                       void *rx_buf, int words, int fs)
440 {
441         u32 *buf_32 = rx_buf;
442         int k;
443
444         for (k = 0; k < words; k++)
445                 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
446 }
447
448 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
449                                        void *rx_buf, int words, int fs)
450 {
451         u32 *buf_32 = rx_buf;
452         int k;
453
454         for (k = 0; k < words; k++)
455                 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
456 }
457
458 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
459                                        void *rx_buf, int words, int fs)
460 {
461         u32 *buf_32 = rx_buf;
462         int k;
463
464         for (k = 0; k < words; k++)
465                 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
466 }
467
468 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
469                                        void *rx_buf, int words, int fs)
470 {
471         u32 *buf_32 = rx_buf;
472         int k;
473
474         for (k = 0; k < words; k++)
475                 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
476 }
477
478 static int sh_msiof_spi_setup(struct spi_device *spi)
479 {
480         struct device_node      *np = spi->master->dev.of_node;
481         struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
482
483         if (!np) {
484                 /*
485                  * Use spi->controller_data for CS (same strategy as spi_gpio),
486                  * if any. otherwise let HW control CS
487                  */
488                 spi->cs_gpio = (uintptr_t)spi->controller_data;
489         }
490
491         /* Configure pins before deasserting CS */
492         sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
493                                   !!(spi->mode & SPI_CPHA),
494                                   !!(spi->mode & SPI_3WIRE),
495                                   !!(spi->mode & SPI_LSB_FIRST),
496                                   !!(spi->mode & SPI_CS_HIGH));
497
498         if (spi->cs_gpio >= 0)
499                 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
500
501         return 0;
502 }
503
504 static int sh_msiof_prepare_message(struct spi_master *master,
505                                     struct spi_message *msg)
506 {
507         struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
508         const struct spi_device *spi = msg->spi;
509
510         /* Configure pins before asserting CS */
511         sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
512                                   !!(spi->mode & SPI_CPHA),
513                                   !!(spi->mode & SPI_3WIRE),
514                                   !!(spi->mode & SPI_LSB_FIRST),
515                                   !!(spi->mode & SPI_CS_HIGH));
516         return 0;
517 }
518
519 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
520 {
521         int ret;
522
523         /* setup clock and rx/tx signals */
524         ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
525         if (rx_buf && !ret)
526                 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
527         if (!ret)
528                 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
529
530         /* start by setting frame bit */
531         if (!ret)
532                 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
533
534         return ret;
535 }
536
537 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
538 {
539         int ret;
540
541         /* shut down frame, rx/tx and clock signals */
542         ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
543         if (!ret)
544                 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
545         if (rx_buf && !ret)
546                 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
547         if (!ret)
548                 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
549
550         return ret;
551 }
552
553 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
554                                   void (*tx_fifo)(struct sh_msiof_spi_priv *,
555                                                   const void *, int, int),
556                                   void (*rx_fifo)(struct sh_msiof_spi_priv *,
557                                                   void *, int, int),
558                                   const void *tx_buf, void *rx_buf,
559                                   int words, int bits)
560 {
561         int fifo_shift;
562         int ret;
563
564         /* limit maximum word transfer to rx/tx fifo size */
565         if (tx_buf)
566                 words = min_t(int, words, p->tx_fifo_size);
567         if (rx_buf)
568                 words = min_t(int, words, p->rx_fifo_size);
569
570         /* the fifo contents need shifting */
571         fifo_shift = 32 - bits;
572
573         /* default FIFO watermarks for PIO */
574         sh_msiof_write(p, FCTR, 0);
575
576         /* setup msiof transfer mode registers */
577         sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
578         sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
579
580         /* write tx fifo */
581         if (tx_buf)
582                 tx_fifo(p, tx_buf, words, fifo_shift);
583
584         reinit_completion(&p->done);
585
586         ret = sh_msiof_spi_start(p, rx_buf);
587         if (ret) {
588                 dev_err(&p->pdev->dev, "failed to start hardware\n");
589                 goto stop_ier;
590         }
591
592         /* wait for tx fifo to be emptied / rx fifo to be filled */
593         ret = wait_for_completion_timeout(&p->done, HZ);
594         if (!ret) {
595                 dev_err(&p->pdev->dev, "PIO timeout\n");
596                 ret = -ETIMEDOUT;
597                 goto stop_reset;
598         }
599
600         /* read rx fifo */
601         if (rx_buf)
602                 rx_fifo(p, rx_buf, words, fifo_shift);
603
604         /* clear status bits */
605         sh_msiof_reset_str(p);
606
607         ret = sh_msiof_spi_stop(p, rx_buf);
608         if (ret) {
609                 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
610                 return ret;
611         }
612
613         return words;
614
615 stop_reset:
616         sh_msiof_reset_str(p);
617         sh_msiof_spi_stop(p, rx_buf);
618 stop_ier:
619         sh_msiof_write(p, IER, 0);
620         return ret;
621 }
622
623 static void sh_msiof_dma_complete(void *arg)
624 {
625         struct sh_msiof_spi_priv *p = arg;
626
627         sh_msiof_write(p, IER, 0);
628         complete(&p->done);
629 }
630
631 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
632                              void *rx, unsigned int len)
633 {
634         u32 ier_bits = 0;
635         struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
636         dma_cookie_t cookie;
637         int ret;
638
639         /* First prepare and submit the DMA request(s), as this may fail */
640         if (rx) {
641                 ier_bits |= IER_RDREQE | IER_RDMAE;
642                 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
643                                         p->rx_dma_addr, len, DMA_FROM_DEVICE,
644                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
645                 if (!desc_rx)
646                         return -EAGAIN;
647
648                 desc_rx->callback = sh_msiof_dma_complete;
649                 desc_rx->callback_param = p;
650                 cookie = dmaengine_submit(desc_rx);
651                 if (dma_submit_error(cookie))
652                         return cookie;
653         }
654
655         if (tx) {
656                 ier_bits |= IER_TDREQE | IER_TDMAE;
657                 dma_sync_single_for_device(p->master->dma_tx->device->dev,
658                                            p->tx_dma_addr, len, DMA_TO_DEVICE);
659                 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
660                                         p->tx_dma_addr, len, DMA_TO_DEVICE,
661                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
662                 if (!desc_tx) {
663                         ret = -EAGAIN;
664                         goto no_dma_tx;
665                 }
666
667                 if (rx) {
668                         /* No callback */
669                         desc_tx->callback = NULL;
670                 } else {
671                         desc_tx->callback = sh_msiof_dma_complete;
672                         desc_tx->callback_param = p;
673                 }
674                 cookie = dmaengine_submit(desc_tx);
675                 if (dma_submit_error(cookie)) {
676                         ret = cookie;
677                         goto no_dma_tx;
678                 }
679         }
680
681         /* 1 stage FIFO watermarks for DMA */
682         sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
683
684         /* setup msiof transfer mode registers (32-bit words) */
685         sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
686
687         sh_msiof_write(p, IER, ier_bits);
688
689         reinit_completion(&p->done);
690
691         /* Now start DMA */
692         if (rx)
693                 dma_async_issue_pending(p->master->dma_rx);
694         if (tx)
695                 dma_async_issue_pending(p->master->dma_tx);
696
697         ret = sh_msiof_spi_start(p, rx);
698         if (ret) {
699                 dev_err(&p->pdev->dev, "failed to start hardware\n");
700                 goto stop_dma;
701         }
702
703         /* wait for tx fifo to be emptied / rx fifo to be filled */
704         ret = wait_for_completion_timeout(&p->done, HZ);
705         if (!ret) {
706                 dev_err(&p->pdev->dev, "DMA timeout\n");
707                 ret = -ETIMEDOUT;
708                 goto stop_reset;
709         }
710
711         /* clear status bits */
712         sh_msiof_reset_str(p);
713
714         ret = sh_msiof_spi_stop(p, rx);
715         if (ret) {
716                 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
717                 return ret;
718         }
719
720         if (rx)
721                 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
722                                         p->rx_dma_addr, len,
723                                         DMA_FROM_DEVICE);
724
725         return 0;
726
727 stop_reset:
728         sh_msiof_reset_str(p);
729         sh_msiof_spi_stop(p, rx);
730 stop_dma:
731         if (tx)
732                 dmaengine_terminate_all(p->master->dma_tx);
733 no_dma_tx:
734         if (rx)
735                 dmaengine_terminate_all(p->master->dma_rx);
736         sh_msiof_write(p, IER, 0);
737         return ret;
738 }
739
740 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
741 {
742         /* src or dst can be unaligned, but not both */
743         if ((unsigned long)src & 3) {
744                 while (words--) {
745                         *dst++ = swab32(get_unaligned(src));
746                         src++;
747                 }
748         } else if ((unsigned long)dst & 3) {
749                 while (words--) {
750                         put_unaligned(swab32(*src++), dst);
751                         dst++;
752                 }
753         } else {
754                 while (words--)
755                         *dst++ = swab32(*src++);
756         }
757 }
758
759 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
760 {
761         /* src or dst can be unaligned, but not both */
762         if ((unsigned long)src & 3) {
763                 while (words--) {
764                         *dst++ = swahw32(get_unaligned(src));
765                         src++;
766                 }
767         } else if ((unsigned long)dst & 3) {
768                 while (words--) {
769                         put_unaligned(swahw32(*src++), dst);
770                         dst++;
771                 }
772         } else {
773                 while (words--)
774                         *dst++ = swahw32(*src++);
775         }
776 }
777
778 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
779 {
780         memcpy(dst, src, words * 4);
781 }
782
783 static int sh_msiof_transfer_one(struct spi_master *master,
784                                  struct spi_device *spi,
785                                  struct spi_transfer *t)
786 {
787         struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
788         void (*copy32)(u32 *, const u32 *, unsigned int);
789         void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
790         void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
791         const void *tx_buf = t->tx_buf;
792         void *rx_buf = t->rx_buf;
793         unsigned int len = t->len;
794         unsigned int bits = t->bits_per_word;
795         unsigned int bytes_per_word;
796         unsigned int words;
797         int n;
798         bool swab;
799         int ret;
800
801         /* setup clocks (clock already enabled in chipselect()) */
802         sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
803
804         while (master->dma_tx && len > 15) {
805                 /*
806                  *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
807                  *  words, with byte resp. word swapping.
808                  */
809                 unsigned int l = min(len, MAX_WDLEN * 4);
810
811                 if (bits <= 8) {
812                         if (l & 3)
813                                 break;
814                         copy32 = copy_bswap32;
815                 } else if (bits <= 16) {
816                         if (l & 1)
817                                 break;
818                         copy32 = copy_wswap32;
819                 } else {
820                         copy32 = copy_plain32;
821                 }
822
823                 if (tx_buf)
824                         copy32(p->tx_dma_page, tx_buf, l / 4);
825
826                 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
827                 if (ret == -EAGAIN) {
828                         pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
829                                      dev_driver_string(&p->pdev->dev),
830                                      dev_name(&p->pdev->dev));
831                         break;
832                 }
833                 if (ret)
834                         return ret;
835
836                 if (rx_buf) {
837                         copy32(rx_buf, p->rx_dma_page, l / 4);
838                         rx_buf += l;
839                 }
840                 if (tx_buf)
841                         tx_buf += l;
842
843                 len -= l;
844                 if (!len)
845                         return 0;
846         }
847
848         if (bits <= 8 && len > 15 && !(len & 3)) {
849                 bits = 32;
850                 swab = true;
851         } else {
852                 swab = false;
853         }
854
855         /* setup bytes per word and fifo read/write functions */
856         if (bits <= 8) {
857                 bytes_per_word = 1;
858                 tx_fifo = sh_msiof_spi_write_fifo_8;
859                 rx_fifo = sh_msiof_spi_read_fifo_8;
860         } else if (bits <= 16) {
861                 bytes_per_word = 2;
862                 if ((unsigned long)tx_buf & 0x01)
863                         tx_fifo = sh_msiof_spi_write_fifo_16u;
864                 else
865                         tx_fifo = sh_msiof_spi_write_fifo_16;
866
867                 if ((unsigned long)rx_buf & 0x01)
868                         rx_fifo = sh_msiof_spi_read_fifo_16u;
869                 else
870                         rx_fifo = sh_msiof_spi_read_fifo_16;
871         } else if (swab) {
872                 bytes_per_word = 4;
873                 if ((unsigned long)tx_buf & 0x03)
874                         tx_fifo = sh_msiof_spi_write_fifo_s32u;
875                 else
876                         tx_fifo = sh_msiof_spi_write_fifo_s32;
877
878                 if ((unsigned long)rx_buf & 0x03)
879                         rx_fifo = sh_msiof_spi_read_fifo_s32u;
880                 else
881                         rx_fifo = sh_msiof_spi_read_fifo_s32;
882         } else {
883                 bytes_per_word = 4;
884                 if ((unsigned long)tx_buf & 0x03)
885                         tx_fifo = sh_msiof_spi_write_fifo_32u;
886                 else
887                         tx_fifo = sh_msiof_spi_write_fifo_32;
888
889                 if ((unsigned long)rx_buf & 0x03)
890                         rx_fifo = sh_msiof_spi_read_fifo_32u;
891                 else
892                         rx_fifo = sh_msiof_spi_read_fifo_32;
893         }
894
895         /* transfer in fifo sized chunks */
896         words = len / bytes_per_word;
897
898         while (words > 0) {
899                 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
900                                            words, bits);
901                 if (n < 0)
902                         return n;
903
904                 if (tx_buf)
905                         tx_buf += n * bytes_per_word;
906                 if (rx_buf)
907                         rx_buf += n * bytes_per_word;
908                 words -= n;
909         }
910
911         return 0;
912 }
913
914 static const struct sh_msiof_chipdata sh_data = {
915         .tx_fifo_size = 64,
916         .rx_fifo_size = 64,
917         .master_flags = 0,
918 };
919
920 static const struct sh_msiof_chipdata r8a779x_data = {
921         .tx_fifo_size = 64,
922         .rx_fifo_size = 256,
923         .master_flags = SPI_MASTER_MUST_TX,
924 };
925
926 static const struct of_device_id sh_msiof_match[] = {
927         { .compatible = "renesas,sh-msiof",        .data = &sh_data },
928         { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
929         { .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
930         { .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
931         { .compatible = "renesas,msiof-r8a7792",   .data = &r8a779x_data },
932         { .compatible = "renesas,msiof-r8a7793",   .data = &r8a779x_data },
933         { .compatible = "renesas,msiof-r8a7794",   .data = &r8a779x_data },
934         {},
935 };
936 MODULE_DEVICE_TABLE(of, sh_msiof_match);
937
938 #ifdef CONFIG_OF
939 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
940 {
941         struct sh_msiof_spi_info *info;
942         struct device_node *np = dev->of_node;
943         u32 num_cs = 1;
944
945         info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
946         if (!info)
947                 return NULL;
948
949         /* Parse the MSIOF properties */
950         of_property_read_u32(np, "num-cs", &num_cs);
951         of_property_read_u32(np, "renesas,tx-fifo-size",
952                                         &info->tx_fifo_override);
953         of_property_read_u32(np, "renesas,rx-fifo-size",
954                                         &info->rx_fifo_override);
955
956         info->num_chipselect = num_cs;
957
958         return info;
959 }
960 #else
961 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
962 {
963         return NULL;
964 }
965 #endif
966
967 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
968         enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
969 {
970         dma_cap_mask_t mask;
971         struct dma_chan *chan;
972         struct dma_slave_config cfg;
973         int ret;
974
975         dma_cap_zero(mask);
976         dma_cap_set(DMA_SLAVE, mask);
977
978         chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
979                                 (void *)(unsigned long)id, dev,
980                                 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
981         if (!chan) {
982                 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
983                 return NULL;
984         }
985
986         memset(&cfg, 0, sizeof(cfg));
987         cfg.slave_id = id;
988         cfg.direction = dir;
989         if (dir == DMA_MEM_TO_DEV) {
990                 cfg.dst_addr = port_addr;
991                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
992         } else {
993                 cfg.src_addr = port_addr;
994                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
995         }
996
997         ret = dmaengine_slave_config(chan, &cfg);
998         if (ret) {
999                 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1000                 dma_release_channel(chan);
1001                 return NULL;
1002         }
1003
1004         return chan;
1005 }
1006
1007 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1008 {
1009         struct platform_device *pdev = p->pdev;
1010         struct device *dev = &pdev->dev;
1011         const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1012         unsigned int dma_tx_id, dma_rx_id;
1013         const struct resource *res;
1014         struct spi_master *master;
1015         struct device *tx_dev, *rx_dev;
1016
1017         if (dev->of_node) {
1018                 /* In the OF case we will get the slave IDs from the DT */
1019                 dma_tx_id = 0;
1020                 dma_rx_id = 0;
1021         } else if (info && info->dma_tx_id && info->dma_rx_id) {
1022                 dma_tx_id = info->dma_tx_id;
1023                 dma_rx_id = info->dma_rx_id;
1024         } else {
1025                 /* The driver assumes no error */
1026                 return 0;
1027         }
1028
1029         /* The DMA engine uses the second register set, if present */
1030         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1031         if (!res)
1032                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1033
1034         master = p->master;
1035         master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1036                                                    dma_tx_id,
1037                                                    res->start + TFDR);
1038         if (!master->dma_tx)
1039                 return -ENODEV;
1040
1041         master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1042                                                    dma_rx_id,
1043                                                    res->start + RFDR);
1044         if (!master->dma_rx)
1045                 goto free_tx_chan;
1046
1047         p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1048         if (!p->tx_dma_page)
1049                 goto free_rx_chan;
1050
1051         p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1052         if (!p->rx_dma_page)
1053                 goto free_tx_page;
1054
1055         tx_dev = master->dma_tx->device->dev;
1056         p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1057                                         DMA_TO_DEVICE);
1058         if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1059                 goto free_rx_page;
1060
1061         rx_dev = master->dma_rx->device->dev;
1062         p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1063                                         DMA_FROM_DEVICE);
1064         if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1065                 goto unmap_tx_page;
1066
1067         dev_info(dev, "DMA available");
1068         return 0;
1069
1070 unmap_tx_page:
1071         dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1072 free_rx_page:
1073         free_page((unsigned long)p->rx_dma_page);
1074 free_tx_page:
1075         free_page((unsigned long)p->tx_dma_page);
1076 free_rx_chan:
1077         dma_release_channel(master->dma_rx);
1078 free_tx_chan:
1079         dma_release_channel(master->dma_tx);
1080         master->dma_tx = NULL;
1081         return -ENODEV;
1082 }
1083
1084 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1085 {
1086         struct spi_master *master = p->master;
1087         struct device *dev;
1088
1089         if (!master->dma_tx)
1090                 return;
1091
1092         dev = &p->pdev->dev;
1093         dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1094                          PAGE_SIZE, DMA_FROM_DEVICE);
1095         dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1096                          PAGE_SIZE, DMA_TO_DEVICE);
1097         free_page((unsigned long)p->rx_dma_page);
1098         free_page((unsigned long)p->tx_dma_page);
1099         dma_release_channel(master->dma_rx);
1100         dma_release_channel(master->dma_tx);
1101 }
1102
1103 static int sh_msiof_spi_probe(struct platform_device *pdev)
1104 {
1105         struct resource *r;
1106         struct spi_master *master;
1107         const struct of_device_id *of_id;
1108         struct sh_msiof_spi_priv *p;
1109         int i;
1110         int ret;
1111
1112         master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1113         if (master == NULL) {
1114                 dev_err(&pdev->dev, "failed to allocate spi master\n");
1115                 return -ENOMEM;
1116         }
1117
1118         p = spi_master_get_devdata(master);
1119
1120         platform_set_drvdata(pdev, p);
1121         p->master = master;
1122
1123         of_id = of_match_device(sh_msiof_match, &pdev->dev);
1124         if (of_id) {
1125                 p->chipdata = of_id->data;
1126                 p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1127         } else {
1128                 p->chipdata = (const void *)pdev->id_entry->driver_data;
1129                 p->info = dev_get_platdata(&pdev->dev);
1130         }
1131
1132         if (!p->info) {
1133                 dev_err(&pdev->dev, "failed to obtain device info\n");
1134                 ret = -ENXIO;
1135                 goto err1;
1136         }
1137
1138         init_completion(&p->done);
1139
1140         p->clk = devm_clk_get(&pdev->dev, NULL);
1141         if (IS_ERR(p->clk)) {
1142                 dev_err(&pdev->dev, "cannot get clock\n");
1143                 ret = PTR_ERR(p->clk);
1144                 goto err1;
1145         }
1146
1147         i = platform_get_irq(pdev, 0);
1148         if (i < 0) {
1149                 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1150                 ret = -ENOENT;
1151                 goto err1;
1152         }
1153
1154         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1155         p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1156         if (IS_ERR(p->mapbase)) {
1157                 ret = PTR_ERR(p->mapbase);
1158                 goto err1;
1159         }
1160
1161         ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1162                                dev_name(&pdev->dev), p);
1163         if (ret) {
1164                 dev_err(&pdev->dev, "unable to request irq\n");
1165                 goto err1;
1166         }
1167
1168         p->pdev = pdev;
1169         pm_runtime_enable(&pdev->dev);
1170
1171         /* Platform data may override FIFO sizes */
1172         p->tx_fifo_size = p->chipdata->tx_fifo_size;
1173         p->rx_fifo_size = p->chipdata->rx_fifo_size;
1174         if (p->info->tx_fifo_override)
1175                 p->tx_fifo_size = p->info->tx_fifo_override;
1176         if (p->info->rx_fifo_override)
1177                 p->rx_fifo_size = p->info->rx_fifo_override;
1178
1179         /* init master code */
1180         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1181         master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1182         master->flags = p->chipdata->master_flags;
1183         master->bus_num = pdev->id;
1184         master->dev.of_node = pdev->dev.of_node;
1185         master->num_chipselect = p->info->num_chipselect;
1186         master->setup = sh_msiof_spi_setup;
1187         master->prepare_message = sh_msiof_prepare_message;
1188         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1189         master->auto_runtime_pm = true;
1190         master->transfer_one = sh_msiof_transfer_one;
1191
1192         ret = sh_msiof_request_dma(p);
1193         if (ret < 0)
1194                 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1195
1196         ret = devm_spi_register_master(&pdev->dev, master);
1197         if (ret < 0) {
1198                 dev_err(&pdev->dev, "spi_register_master error.\n");
1199                 goto err2;
1200         }
1201
1202         return 0;
1203
1204  err2:
1205         sh_msiof_release_dma(p);
1206         pm_runtime_disable(&pdev->dev);
1207  err1:
1208         spi_master_put(master);
1209         return ret;
1210 }
1211
1212 static int sh_msiof_spi_remove(struct platform_device *pdev)
1213 {
1214         struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1215
1216         sh_msiof_release_dma(p);
1217         pm_runtime_disable(&pdev->dev);
1218         return 0;
1219 }
1220
1221 static struct platform_device_id spi_driver_ids[] = {
1222         { "spi_sh_msiof",       (kernel_ulong_t)&sh_data },
1223         { "spi_r8a7790_msiof",  (kernel_ulong_t)&r8a779x_data },
1224         { "spi_r8a7791_msiof",  (kernel_ulong_t)&r8a779x_data },
1225         { "spi_r8a7792_msiof",  (kernel_ulong_t)&r8a779x_data },
1226         { "spi_r8a7793_msiof",  (kernel_ulong_t)&r8a779x_data },
1227         { "spi_r8a7794_msiof",  (kernel_ulong_t)&r8a779x_data },
1228         {},
1229 };
1230 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1231
1232 static struct platform_driver sh_msiof_spi_drv = {
1233         .probe          = sh_msiof_spi_probe,
1234         .remove         = sh_msiof_spi_remove,
1235         .id_table       = spi_driver_ids,
1236         .driver         = {
1237                 .name           = "spi_sh_msiof",
1238                 .of_match_table = of_match_ptr(sh_msiof_match),
1239         },
1240 };
1241 module_platform_driver(sh_msiof_spi_drv);
1242
1243 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1244 MODULE_AUTHOR("Magnus Damm");
1245 MODULE_LICENSE("GPL v2");
1246 MODULE_ALIAS("platform:spi_sh_msiof");