x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / spi / spi-sun6i.c
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 #include <linux/spi/spi.h>
25
26 #define SUN6I_FIFO_DEPTH                128
27
28 #define SUN6I_GBL_CTL_REG               0x04
29 #define SUN6I_GBL_CTL_BUS_ENABLE                BIT(0)
30 #define SUN6I_GBL_CTL_MASTER                    BIT(1)
31 #define SUN6I_GBL_CTL_TP                        BIT(7)
32 #define SUN6I_GBL_CTL_RST                       BIT(31)
33
34 #define SUN6I_TFR_CTL_REG               0x08
35 #define SUN6I_TFR_CTL_CPHA                      BIT(0)
36 #define SUN6I_TFR_CTL_CPOL                      BIT(1)
37 #define SUN6I_TFR_CTL_SPOL                      BIT(2)
38 #define SUN6I_TFR_CTL_CS_MASK                   0x30
39 #define SUN6I_TFR_CTL_CS(cs)                    (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
40 #define SUN6I_TFR_CTL_CS_MANUAL                 BIT(6)
41 #define SUN6I_TFR_CTL_CS_LEVEL                  BIT(7)
42 #define SUN6I_TFR_CTL_DHB                       BIT(8)
43 #define SUN6I_TFR_CTL_FBS                       BIT(12)
44 #define SUN6I_TFR_CTL_XCH                       BIT(31)
45
46 #define SUN6I_INT_CTL_REG               0x10
47 #define SUN6I_INT_CTL_RF_OVF                    BIT(8)
48 #define SUN6I_INT_CTL_TC                        BIT(12)
49
50 #define SUN6I_INT_STA_REG               0x14
51
52 #define SUN6I_FIFO_CTL_REG              0x18
53 #define SUN6I_FIFO_CTL_RF_RST                   BIT(15)
54 #define SUN6I_FIFO_CTL_TF_RST                   BIT(31)
55
56 #define SUN6I_FIFO_STA_REG              0x1c
57 #define SUN6I_FIFO_STA_RF_CNT_MASK              0x7f
58 #define SUN6I_FIFO_STA_RF_CNT_BITS              0
59 #define SUN6I_FIFO_STA_TF_CNT_MASK              0x7f
60 #define SUN6I_FIFO_STA_TF_CNT_BITS              16
61
62 #define SUN6I_CLK_CTL_REG               0x24
63 #define SUN6I_CLK_CTL_CDR2_MASK                 0xff
64 #define SUN6I_CLK_CTL_CDR2(div)                 (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
65 #define SUN6I_CLK_CTL_CDR1_MASK                 0xf
66 #define SUN6I_CLK_CTL_CDR1(div)                 (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
67 #define SUN6I_CLK_CTL_DRS                       BIT(12)
68
69 #define SUN6I_BURST_CNT_REG             0x30
70 #define SUN6I_BURST_CNT(cnt)                    ((cnt) & 0xffffff)
71
72 #define SUN6I_XMIT_CNT_REG              0x34
73 #define SUN6I_XMIT_CNT(cnt)                     ((cnt) & 0xffffff)
74
75 #define SUN6I_BURST_CTL_CNT_REG         0x38
76 #define SUN6I_BURST_CTL_CNT_STC(cnt)            ((cnt) & 0xffffff)
77
78 #define SUN6I_TXDATA_REG                0x200
79 #define SUN6I_RXDATA_REG                0x300
80
81 struct sun6i_spi {
82         struct spi_master       *master;
83         void __iomem            *base_addr;
84         struct clk              *hclk;
85         struct clk              *mclk;
86         struct reset_control    *rstc;
87
88         struct completion       done;
89
90         const u8                *tx_buf;
91         u8                      *rx_buf;
92         int                     len;
93 };
94
95 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
96 {
97         return readl(sspi->base_addr + reg);
98 }
99
100 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
101 {
102         writel(value, sspi->base_addr + reg);
103 }
104
105 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
106 {
107         u32 reg, cnt;
108         u8 byte;
109
110         /* See how much data is available */
111         reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
112         reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
113         cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
114
115         if (len > cnt)
116                 len = cnt;
117
118         while (len--) {
119                 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
120                 if (sspi->rx_buf)
121                         *sspi->rx_buf++ = byte;
122         }
123 }
124
125 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
126 {
127         u8 byte;
128
129         if (len > sspi->len)
130                 len = sspi->len;
131
132         while (len--) {
133                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
134                 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
135                 sspi->len--;
136         }
137 }
138
139 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
140 {
141         struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
142         u32 reg;
143
144         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
145         reg &= ~SUN6I_TFR_CTL_CS_MASK;
146         reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
147
148         if (enable)
149                 reg |= SUN6I_TFR_CTL_CS_LEVEL;
150         else
151                 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
152
153         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
154 }
155
156 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
157 {
158         return SUN6I_FIFO_DEPTH - 1;
159 }
160
161 static int sun6i_spi_transfer_one(struct spi_master *master,
162                                   struct spi_device *spi,
163                                   struct spi_transfer *tfr)
164 {
165         struct sun6i_spi *sspi = spi_master_get_devdata(master);
166         unsigned int mclk_rate, div, timeout;
167         unsigned int start, end, tx_time;
168         unsigned int tx_len = 0;
169         int ret = 0;
170         u32 reg;
171
172         /* We don't support transfer larger than the FIFO */
173         if (tfr->len > SUN6I_FIFO_DEPTH)
174                 return -EINVAL;
175
176         reinit_completion(&sspi->done);
177         sspi->tx_buf = tfr->tx_buf;
178         sspi->rx_buf = tfr->rx_buf;
179         sspi->len = tfr->len;
180
181         /* Clear pending interrupts */
182         sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
183
184         /* Reset FIFO */
185         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
186                         SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
187
188         /*
189          * Setup the transfer control register: Chip Select,
190          * polarities, etc.
191          */
192         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
193
194         if (spi->mode & SPI_CPOL)
195                 reg |= SUN6I_TFR_CTL_CPOL;
196         else
197                 reg &= ~SUN6I_TFR_CTL_CPOL;
198
199         if (spi->mode & SPI_CPHA)
200                 reg |= SUN6I_TFR_CTL_CPHA;
201         else
202                 reg &= ~SUN6I_TFR_CTL_CPHA;
203
204         if (spi->mode & SPI_LSB_FIRST)
205                 reg |= SUN6I_TFR_CTL_FBS;
206         else
207                 reg &= ~SUN6I_TFR_CTL_FBS;
208
209         /*
210          * If it's a TX only transfer, we don't want to fill the RX
211          * FIFO with bogus data
212          */
213         if (sspi->rx_buf)
214                 reg &= ~SUN6I_TFR_CTL_DHB;
215         else
216                 reg |= SUN6I_TFR_CTL_DHB;
217
218         /* We want to control the chip select manually */
219         reg |= SUN6I_TFR_CTL_CS_MANUAL;
220
221         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
222
223         /* Ensure that we have a parent clock fast enough */
224         mclk_rate = clk_get_rate(sspi->mclk);
225         if (mclk_rate < (2 * tfr->speed_hz)) {
226                 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
227                 mclk_rate = clk_get_rate(sspi->mclk);
228         }
229
230         /*
231          * Setup clock divider.
232          *
233          * We have two choices there. Either we can use the clock
234          * divide rate 1, which is calculated thanks to this formula:
235          * SPI_CLK = MOD_CLK / (2 ^ cdr)
236          * Or we can use CDR2, which is calculated with the formula:
237          * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
238          * Wether we use the former or the latter is set through the
239          * DRS bit.
240          *
241          * First try CDR2, and if we can't reach the expected
242          * frequency, fall back to CDR1.
243          */
244         div = mclk_rate / (2 * tfr->speed_hz);
245         if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
246                 if (div > 0)
247                         div--;
248
249                 reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
250         } else {
251                 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
252                 reg = SUN6I_CLK_CTL_CDR1(div);
253         }
254
255         sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
256
257         /* Setup the transfer now... */
258         if (sspi->tx_buf)
259                 tx_len = tfr->len;
260
261         /* Setup the counters */
262         sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
263         sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
264         sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
265                         SUN6I_BURST_CTL_CNT_STC(tx_len));
266
267         /* Fill the TX FIFO */
268         sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
269
270         /* Enable the interrupts */
271         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
272
273         /* Start the transfer */
274         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
275         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
276
277         tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
278         start = jiffies;
279         timeout = wait_for_completion_timeout(&sspi->done,
280                                               msecs_to_jiffies(tx_time));
281         end = jiffies;
282         if (!timeout) {
283                 dev_warn(&master->dev,
284                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
285                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
286                          jiffies_to_msecs(end - start), tx_time);
287                 ret = -ETIMEDOUT;
288                 goto out;
289         }
290
291         sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
292
293 out:
294         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
295
296         return ret;
297 }
298
299 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
300 {
301         struct sun6i_spi *sspi = dev_id;
302         u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
303
304         /* Transfer complete */
305         if (status & SUN6I_INT_CTL_TC) {
306                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
307                 complete(&sspi->done);
308                 return IRQ_HANDLED;
309         }
310
311         return IRQ_NONE;
312 }
313
314 static int sun6i_spi_runtime_resume(struct device *dev)
315 {
316         struct spi_master *master = dev_get_drvdata(dev);
317         struct sun6i_spi *sspi = spi_master_get_devdata(master);
318         int ret;
319
320         ret = clk_prepare_enable(sspi->hclk);
321         if (ret) {
322                 dev_err(dev, "Couldn't enable AHB clock\n");
323                 goto out;
324         }
325
326         ret = clk_prepare_enable(sspi->mclk);
327         if (ret) {
328                 dev_err(dev, "Couldn't enable module clock\n");
329                 goto err;
330         }
331
332         ret = reset_control_deassert(sspi->rstc);
333         if (ret) {
334                 dev_err(dev, "Couldn't deassert the device from reset\n");
335                 goto err2;
336         }
337
338         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
339                         SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
340
341         return 0;
342
343 err2:
344         clk_disable_unprepare(sspi->mclk);
345 err:
346         clk_disable_unprepare(sspi->hclk);
347 out:
348         return ret;
349 }
350
351 static int sun6i_spi_runtime_suspend(struct device *dev)
352 {
353         struct spi_master *master = dev_get_drvdata(dev);
354         struct sun6i_spi *sspi = spi_master_get_devdata(master);
355
356         reset_control_assert(sspi->rstc);
357         clk_disable_unprepare(sspi->mclk);
358         clk_disable_unprepare(sspi->hclk);
359
360         return 0;
361 }
362
363 static int sun6i_spi_probe(struct platform_device *pdev)
364 {
365         struct spi_master *master;
366         struct sun6i_spi *sspi;
367         struct resource *res;
368         int ret = 0, irq;
369
370         master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
371         if (!master) {
372                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
373                 return -ENOMEM;
374         }
375
376         platform_set_drvdata(pdev, master);
377         sspi = spi_master_get_devdata(master);
378
379         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
380         sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
381         if (IS_ERR(sspi->base_addr)) {
382                 ret = PTR_ERR(sspi->base_addr);
383                 goto err_free_master;
384         }
385
386         irq = platform_get_irq(pdev, 0);
387         if (irq < 0) {
388                 dev_err(&pdev->dev, "No spi IRQ specified\n");
389                 ret = -ENXIO;
390                 goto err_free_master;
391         }
392
393         ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
394                                0, "sun6i-spi", sspi);
395         if (ret) {
396                 dev_err(&pdev->dev, "Cannot request IRQ\n");
397                 goto err_free_master;
398         }
399
400         sspi->master = master;
401         master->max_speed_hz = 100 * 1000 * 1000;
402         master->min_speed_hz = 3 * 1000;
403         master->set_cs = sun6i_spi_set_cs;
404         master->transfer_one = sun6i_spi_transfer_one;
405         master->num_chipselect = 4;
406         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
407         master->bits_per_word_mask = SPI_BPW_MASK(8);
408         master->dev.of_node = pdev->dev.of_node;
409         master->auto_runtime_pm = true;
410         master->max_transfer_size = sun6i_spi_max_transfer_size;
411
412         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
413         if (IS_ERR(sspi->hclk)) {
414                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
415                 ret = PTR_ERR(sspi->hclk);
416                 goto err_free_master;
417         }
418
419         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
420         if (IS_ERR(sspi->mclk)) {
421                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
422                 ret = PTR_ERR(sspi->mclk);
423                 goto err_free_master;
424         }
425
426         init_completion(&sspi->done);
427
428         sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
429         if (IS_ERR(sspi->rstc)) {
430                 dev_err(&pdev->dev, "Couldn't get reset controller\n");
431                 ret = PTR_ERR(sspi->rstc);
432                 goto err_free_master;
433         }
434
435         /*
436          * This wake-up/shutdown pattern is to be able to have the
437          * device woken up, even if runtime_pm is disabled
438          */
439         ret = sun6i_spi_runtime_resume(&pdev->dev);
440         if (ret) {
441                 dev_err(&pdev->dev, "Couldn't resume the device\n");
442                 goto err_free_master;
443         }
444
445         pm_runtime_set_active(&pdev->dev);
446         pm_runtime_enable(&pdev->dev);
447         pm_runtime_idle(&pdev->dev);
448
449         ret = devm_spi_register_master(&pdev->dev, master);
450         if (ret) {
451                 dev_err(&pdev->dev, "cannot register SPI master\n");
452                 goto err_pm_disable;
453         }
454
455         return 0;
456
457 err_pm_disable:
458         pm_runtime_disable(&pdev->dev);
459         sun6i_spi_runtime_suspend(&pdev->dev);
460 err_free_master:
461         spi_master_put(master);
462         return ret;
463 }
464
465 static int sun6i_spi_remove(struct platform_device *pdev)
466 {
467         pm_runtime_disable(&pdev->dev);
468
469         return 0;
470 }
471
472 static const struct of_device_id sun6i_spi_match[] = {
473         { .compatible = "allwinner,sun6i-a31-spi", },
474         {}
475 };
476 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
477
478 static const struct dev_pm_ops sun6i_spi_pm_ops = {
479         .runtime_resume         = sun6i_spi_runtime_resume,
480         .runtime_suspend        = sun6i_spi_runtime_suspend,
481 };
482
483 static struct platform_driver sun6i_spi_driver = {
484         .probe  = sun6i_spi_probe,
485         .remove = sun6i_spi_remove,
486         .driver = {
487                 .name           = "sun6i-spi",
488                 .of_match_table = sun6i_spi_match,
489                 .pm             = &sun6i_spi_pm_ops,
490         },
491 };
492 module_platform_driver(sun6i_spi_driver);
493
494 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
495 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
496 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
497 MODULE_LICENSE("GPL");