Merge remote-tracking branches 'spi/topic/imx', 'spi/topic/init', 'spi/topic/mpc512x...
[cascardo/linux.git] / drivers / spi / spi-tegra114.c
1 /*
2  * SPI driver for NVIDIA's Tegra114 SPI Controller.
3  *
4  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/kthread.h>
30 #include <linux/module.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/reset.h>
36 #include <linux/spi/spi.h>
37
38 #define SPI_COMMAND1                            0x000
39 #define SPI_BIT_LENGTH(x)                       (((x) & 0x1f) << 0)
40 #define SPI_PACKED                              (1 << 5)
41 #define SPI_TX_EN                               (1 << 11)
42 #define SPI_RX_EN                               (1 << 12)
43 #define SPI_BOTH_EN_BYTE                        (1 << 13)
44 #define SPI_BOTH_EN_BIT                         (1 << 14)
45 #define SPI_LSBYTE_FE                           (1 << 15)
46 #define SPI_LSBIT_FE                            (1 << 16)
47 #define SPI_BIDIROE                             (1 << 17)
48 #define SPI_IDLE_SDA_DRIVE_LOW                  (0 << 18)
49 #define SPI_IDLE_SDA_DRIVE_HIGH                 (1 << 18)
50 #define SPI_IDLE_SDA_PULL_LOW                   (2 << 18)
51 #define SPI_IDLE_SDA_PULL_HIGH                  (3 << 18)
52 #define SPI_IDLE_SDA_MASK                       (3 << 18)
53 #define SPI_CS_SS_VAL                           (1 << 20)
54 #define SPI_CS_SW_HW                            (1 << 21)
55 /* SPI_CS_POL_INACTIVE bits are default high */
56                                                 /* n from 0 to 3 */
57 #define SPI_CS_POL_INACTIVE(n)                  (1 << (22 + (n)))
58 #define SPI_CS_POL_INACTIVE_MASK                (0xF << 22)
59
60 #define SPI_CS_SEL_0                            (0 << 26)
61 #define SPI_CS_SEL_1                            (1 << 26)
62 #define SPI_CS_SEL_2                            (2 << 26)
63 #define SPI_CS_SEL_3                            (3 << 26)
64 #define SPI_CS_SEL_MASK                         (3 << 26)
65 #define SPI_CS_SEL(x)                           (((x) & 0x3) << 26)
66 #define SPI_CONTROL_MODE_0                      (0 << 28)
67 #define SPI_CONTROL_MODE_1                      (1 << 28)
68 #define SPI_CONTROL_MODE_2                      (2 << 28)
69 #define SPI_CONTROL_MODE_3                      (3 << 28)
70 #define SPI_CONTROL_MODE_MASK                   (3 << 28)
71 #define SPI_MODE_SEL(x)                         (((x) & 0x3) << 28)
72 #define SPI_M_S                                 (1 << 30)
73 #define SPI_PIO                                 (1 << 31)
74
75 #define SPI_COMMAND2                            0x004
76 #define SPI_TX_TAP_DELAY(x)                     (((x) & 0x3F) << 6)
77 #define SPI_RX_TAP_DELAY(x)                     (((x) & 0x3F) << 0)
78
79 #define SPI_CS_TIMING1                          0x008
80 #define SPI_SETUP_HOLD(setup, hold)             (((setup) << 4) | (hold))
81 #define SPI_CS_SETUP_HOLD(reg, cs, val)                 \
82                 ((((val) & 0xFFu) << ((cs) * 8)) |      \
83                 ((reg) & ~(0xFFu << ((cs) * 8))))
84
85 #define SPI_CS_TIMING2                          0x00C
86 #define CYCLES_BETWEEN_PACKETS_0(x)             (((x) & 0x1F) << 0)
87 #define CS_ACTIVE_BETWEEN_PACKETS_0             (1 << 5)
88 #define CYCLES_BETWEEN_PACKETS_1(x)             (((x) & 0x1F) << 8)
89 #define CS_ACTIVE_BETWEEN_PACKETS_1             (1 << 13)
90 #define CYCLES_BETWEEN_PACKETS_2(x)             (((x) & 0x1F) << 16)
91 #define CS_ACTIVE_BETWEEN_PACKETS_2             (1 << 21)
92 #define CYCLES_BETWEEN_PACKETS_3(x)             (((x) & 0x1F) << 24)
93 #define CS_ACTIVE_BETWEEN_PACKETS_3             (1 << 29)
94 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)         \
95                 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) |      \
96                         ((reg) & ~(1 << ((cs) * 8 + 5))))
97 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)            \
98                 (reg = (((val) & 0xF) << ((cs) * 8)) |          \
99                         ((reg) & ~(0xF << ((cs) * 8))))
100
101 #define SPI_TRANS_STATUS                        0x010
102 #define SPI_BLK_CNT(val)                        (((val) >> 0) & 0xFFFF)
103 #define SPI_SLV_IDLE_COUNT(val)                 (((val) >> 16) & 0xFF)
104 #define SPI_RDY                                 (1 << 30)
105
106 #define SPI_FIFO_STATUS                         0x014
107 #define SPI_RX_FIFO_EMPTY                       (1 << 0)
108 #define SPI_RX_FIFO_FULL                        (1 << 1)
109 #define SPI_TX_FIFO_EMPTY                       (1 << 2)
110 #define SPI_TX_FIFO_FULL                        (1 << 3)
111 #define SPI_RX_FIFO_UNF                         (1 << 4)
112 #define SPI_RX_FIFO_OVF                         (1 << 5)
113 #define SPI_TX_FIFO_UNF                         (1 << 6)
114 #define SPI_TX_FIFO_OVF                         (1 << 7)
115 #define SPI_ERR                                 (1 << 8)
116 #define SPI_TX_FIFO_FLUSH                       (1 << 14)
117 #define SPI_RX_FIFO_FLUSH                       (1 << 15)
118 #define SPI_TX_FIFO_EMPTY_COUNT(val)            (((val) >> 16) & 0x7F)
119 #define SPI_RX_FIFO_FULL_COUNT(val)             (((val) >> 23) & 0x7F)
120 #define SPI_FRAME_END                           (1 << 30)
121 #define SPI_CS_INACTIVE                         (1 << 31)
122
123 #define SPI_FIFO_ERROR                          (SPI_RX_FIFO_UNF | \
124                         SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125 #define SPI_FIFO_EMPTY                  (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
126
127 #define SPI_TX_DATA                             0x018
128 #define SPI_RX_DATA                             0x01C
129
130 #define SPI_DMA_CTL                             0x020
131 #define SPI_TX_TRIG_1                           (0 << 15)
132 #define SPI_TX_TRIG_4                           (1 << 15)
133 #define SPI_TX_TRIG_8                           (2 << 15)
134 #define SPI_TX_TRIG_16                          (3 << 15)
135 #define SPI_TX_TRIG_MASK                        (3 << 15)
136 #define SPI_RX_TRIG_1                           (0 << 19)
137 #define SPI_RX_TRIG_4                           (1 << 19)
138 #define SPI_RX_TRIG_8                           (2 << 19)
139 #define SPI_RX_TRIG_16                          (3 << 19)
140 #define SPI_RX_TRIG_MASK                        (3 << 19)
141 #define SPI_IE_TX                               (1 << 28)
142 #define SPI_IE_RX                               (1 << 29)
143 #define SPI_CONT                                (1 << 30)
144 #define SPI_DMA                                 (1 << 31)
145 #define SPI_DMA_EN                              SPI_DMA
146
147 #define SPI_DMA_BLK                             0x024
148 #define SPI_DMA_BLK_SET(x)                      (((x) & 0xFFFF) << 0)
149
150 #define SPI_TX_FIFO                             0x108
151 #define SPI_RX_FIFO                             0x188
152 #define MAX_CHIP_SELECT                         4
153 #define SPI_FIFO_DEPTH                          64
154 #define DATA_DIR_TX                             (1 << 0)
155 #define DATA_DIR_RX                             (1 << 1)
156
157 #define SPI_DMA_TIMEOUT                         (msecs_to_jiffies(1000))
158 #define DEFAULT_SPI_DMA_BUF_LEN                 (16*1024)
159 #define TX_FIFO_EMPTY_COUNT_MAX                 SPI_TX_FIFO_EMPTY_COUNT(0x40)
160 #define RX_FIFO_FULL_COUNT_ZERO                 SPI_RX_FIFO_FULL_COUNT(0)
161 #define MAX_HOLD_CYCLES                         16
162 #define SPI_DEFAULT_SPEED                       25000000
163
164 struct tegra_spi_data {
165         struct device                           *dev;
166         struct spi_master                       *master;
167         spinlock_t                              lock;
168
169         struct clk                              *clk;
170         struct reset_control                    *rst;
171         void __iomem                            *base;
172         phys_addr_t                             phys;
173         unsigned                                irq;
174         u32                                     cur_speed;
175
176         struct spi_device                       *cur_spi;
177         struct spi_device                       *cs_control;
178         unsigned                                cur_pos;
179         unsigned                                words_per_32bit;
180         unsigned                                bytes_per_word;
181         unsigned                                curr_dma_words;
182         unsigned                                cur_direction;
183
184         unsigned                                cur_rx_pos;
185         unsigned                                cur_tx_pos;
186
187         unsigned                                dma_buf_size;
188         unsigned                                max_buf_size;
189         bool                                    is_curr_dma_xfer;
190
191         struct completion                       rx_dma_complete;
192         struct completion                       tx_dma_complete;
193
194         u32                                     tx_status;
195         u32                                     rx_status;
196         u32                                     status_reg;
197         bool                                    is_packed;
198
199         u32                                     command1_reg;
200         u32                                     dma_control_reg;
201         u32                                     def_command1_reg;
202
203         struct completion                       xfer_completion;
204         struct spi_transfer                     *curr_xfer;
205         struct dma_chan                         *rx_dma_chan;
206         u32                                     *rx_dma_buf;
207         dma_addr_t                              rx_dma_phys;
208         struct dma_async_tx_descriptor          *rx_dma_desc;
209
210         struct dma_chan                         *tx_dma_chan;
211         u32                                     *tx_dma_buf;
212         dma_addr_t                              tx_dma_phys;
213         struct dma_async_tx_descriptor          *tx_dma_desc;
214 };
215
216 static int tegra_spi_runtime_suspend(struct device *dev);
217 static int tegra_spi_runtime_resume(struct device *dev);
218
219 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
220                 unsigned long reg)
221 {
222         return readl(tspi->base + reg);
223 }
224
225 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
226                 u32 val, unsigned long reg)
227 {
228         writel(val, tspi->base + reg);
229
230         /* Read back register to make sure that register writes completed */
231         if (reg != SPI_TX_FIFO)
232                 readl(tspi->base + SPI_COMMAND1);
233 }
234
235 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
236 {
237         u32 val;
238
239         /* Write 1 to clear status register */
240         val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
241         tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
242
243         /* Clear fifo status error if any */
244         val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
245         if (val & SPI_ERR)
246                 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
247                                 SPI_FIFO_STATUS);
248 }
249
250 static unsigned tegra_spi_calculate_curr_xfer_param(
251         struct spi_device *spi, struct tegra_spi_data *tspi,
252         struct spi_transfer *t)
253 {
254         unsigned remain_len = t->len - tspi->cur_pos;
255         unsigned max_word;
256         unsigned bits_per_word = t->bits_per_word;
257         unsigned max_len;
258         unsigned total_fifo_words;
259
260         tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
261
262         if (bits_per_word == 8 || bits_per_word == 16) {
263                 tspi->is_packed = 1;
264                 tspi->words_per_32bit = 32/bits_per_word;
265         } else {
266                 tspi->is_packed = 0;
267                 tspi->words_per_32bit = 1;
268         }
269
270         if (tspi->is_packed) {
271                 max_len = min(remain_len, tspi->max_buf_size);
272                 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
273                 total_fifo_words = (max_len + 3) / 4;
274         } else {
275                 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
276                 max_word = min(max_word, tspi->max_buf_size/4);
277                 tspi->curr_dma_words = max_word;
278                 total_fifo_words = max_word;
279         }
280         return total_fifo_words;
281 }
282
283 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
284         struct tegra_spi_data *tspi, struct spi_transfer *t)
285 {
286         unsigned nbytes;
287         unsigned tx_empty_count;
288         u32 fifo_status;
289         unsigned max_n_32bit;
290         unsigned i, count;
291         unsigned int written_words;
292         unsigned fifo_words_left;
293         u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
294
295         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
296         tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
297
298         if (tspi->is_packed) {
299                 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
300                 written_words = min(fifo_words_left, tspi->curr_dma_words);
301                 nbytes = written_words * tspi->bytes_per_word;
302                 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
303                 for (count = 0; count < max_n_32bit; count++) {
304                         u32 x = 0;
305                         for (i = 0; (i < 4) && nbytes; i++, nbytes--)
306                                 x |= (u32)(*tx_buf++) << (i * 8);
307                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
308                 }
309         } else {
310                 max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
311                 written_words = max_n_32bit;
312                 nbytes = written_words * tspi->bytes_per_word;
313                 for (count = 0; count < max_n_32bit; count++) {
314                         u32 x = 0;
315                         for (i = 0; nbytes && (i < tspi->bytes_per_word);
316                                                         i++, nbytes--)
317                                 x |= (u32)(*tx_buf++) << (i * 8);
318                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
319                 }
320         }
321         tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
322         return written_words;
323 }
324
325 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
326                 struct tegra_spi_data *tspi, struct spi_transfer *t)
327 {
328         unsigned rx_full_count;
329         u32 fifo_status;
330         unsigned i, count;
331         unsigned int read_words = 0;
332         unsigned len;
333         u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
334
335         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
336         rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
337         if (tspi->is_packed) {
338                 len = tspi->curr_dma_words * tspi->bytes_per_word;
339                 for (count = 0; count < rx_full_count; count++) {
340                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
341                         for (i = 0; len && (i < 4); i++, len--)
342                                 *rx_buf++ = (x >> i*8) & 0xFF;
343                 }
344                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
345                 read_words += tspi->curr_dma_words;
346         } else {
347                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
348                 for (count = 0; count < rx_full_count; count++) {
349                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
350                         for (i = 0; (i < tspi->bytes_per_word); i++)
351                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
352                 }
353                 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
354                 read_words += rx_full_count;
355         }
356         return read_words;
357 }
358
359 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
360                 struct tegra_spi_data *tspi, struct spi_transfer *t)
361 {
362         /* Make the dma buffer to read by cpu */
363         dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
364                                 tspi->dma_buf_size, DMA_TO_DEVICE);
365
366         if (tspi->is_packed) {
367                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
368                 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
369         } else {
370                 unsigned int i;
371                 unsigned int count;
372                 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
373                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
374
375                 for (count = 0; count < tspi->curr_dma_words; count++) {
376                         u32 x = 0;
377                         for (i = 0; consume && (i < tspi->bytes_per_word);
378                                                         i++, consume--)
379                                 x |= (u32)(*tx_buf++) << (i * 8);
380                         tspi->tx_dma_buf[count] = x;
381                 }
382         }
383         tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
384
385         /* Make the dma buffer to read by dma */
386         dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
387                                 tspi->dma_buf_size, DMA_TO_DEVICE);
388 }
389
390 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
391                 struct tegra_spi_data *tspi, struct spi_transfer *t)
392 {
393         /* Make the dma buffer to read by cpu */
394         dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
395                 tspi->dma_buf_size, DMA_FROM_DEVICE);
396
397         if (tspi->is_packed) {
398                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
399                 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
400         } else {
401                 unsigned int i;
402                 unsigned int count;
403                 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
404                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
405
406                 for (count = 0; count < tspi->curr_dma_words; count++) {
407                         u32 x = tspi->rx_dma_buf[count] & rx_mask;
408                         for (i = 0; (i < tspi->bytes_per_word); i++)
409                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
410                 }
411         }
412         tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
413
414         /* Make the dma buffer to read by dma */
415         dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
416                 tspi->dma_buf_size, DMA_FROM_DEVICE);
417 }
418
419 static void tegra_spi_dma_complete(void *args)
420 {
421         struct completion *dma_complete = args;
422
423         complete(dma_complete);
424 }
425
426 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
427 {
428         reinit_completion(&tspi->tx_dma_complete);
429         tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
430                                 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
431                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
432         if (!tspi->tx_dma_desc) {
433                 dev_err(tspi->dev, "Not able to get desc for Tx\n");
434                 return -EIO;
435         }
436
437         tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
438         tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
439
440         dmaengine_submit(tspi->tx_dma_desc);
441         dma_async_issue_pending(tspi->tx_dma_chan);
442         return 0;
443 }
444
445 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
446 {
447         reinit_completion(&tspi->rx_dma_complete);
448         tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
449                                 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
450                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
451         if (!tspi->rx_dma_desc) {
452                 dev_err(tspi->dev, "Not able to get desc for Rx\n");
453                 return -EIO;
454         }
455
456         tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
457         tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
458
459         dmaengine_submit(tspi->rx_dma_desc);
460         dma_async_issue_pending(tspi->rx_dma_chan);
461         return 0;
462 }
463
464 static int tegra_spi_start_dma_based_transfer(
465                 struct tegra_spi_data *tspi, struct spi_transfer *t)
466 {
467         u32 val;
468         unsigned int len;
469         int ret = 0;
470         u32 status;
471
472         /* Make sure that Rx and Tx fifo are empty */
473         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
474         if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
475                 dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
476                         (unsigned)status);
477                 return -EIO;
478         }
479
480         val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
481         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
482
483         if (tspi->is_packed)
484                 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
485                                         4) * 4;
486         else
487                 len = tspi->curr_dma_words * 4;
488
489         /* Set attention level based on length of transfer */
490         if (len & 0xF)
491                 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
492         else if (((len) >> 4) & 0x1)
493                 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
494         else
495                 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
496
497         if (tspi->cur_direction & DATA_DIR_TX)
498                 val |= SPI_IE_TX;
499
500         if (tspi->cur_direction & DATA_DIR_RX)
501                 val |= SPI_IE_RX;
502
503         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
504         tspi->dma_control_reg = val;
505
506         if (tspi->cur_direction & DATA_DIR_TX) {
507                 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
508                 ret = tegra_spi_start_tx_dma(tspi, len);
509                 if (ret < 0) {
510                         dev_err(tspi->dev,
511                                 "Starting tx dma failed, err %d\n", ret);
512                         return ret;
513                 }
514         }
515
516         if (tspi->cur_direction & DATA_DIR_RX) {
517                 /* Make the dma buffer to read by dma */
518                 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
519                                 tspi->dma_buf_size, DMA_FROM_DEVICE);
520
521                 ret = tegra_spi_start_rx_dma(tspi, len);
522                 if (ret < 0) {
523                         dev_err(tspi->dev,
524                                 "Starting rx dma failed, err %d\n", ret);
525                         if (tspi->cur_direction & DATA_DIR_TX)
526                                 dmaengine_terminate_all(tspi->tx_dma_chan);
527                         return ret;
528                 }
529         }
530         tspi->is_curr_dma_xfer = true;
531         tspi->dma_control_reg = val;
532
533         val |= SPI_DMA_EN;
534         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
535         return ret;
536 }
537
538 static int tegra_spi_start_cpu_based_transfer(
539                 struct tegra_spi_data *tspi, struct spi_transfer *t)
540 {
541         u32 val;
542         unsigned cur_words;
543
544         if (tspi->cur_direction & DATA_DIR_TX)
545                 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
546         else
547                 cur_words = tspi->curr_dma_words;
548
549         val = SPI_DMA_BLK_SET(cur_words - 1);
550         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
551
552         val = 0;
553         if (tspi->cur_direction & DATA_DIR_TX)
554                 val |= SPI_IE_TX;
555
556         if (tspi->cur_direction & DATA_DIR_RX)
557                 val |= SPI_IE_RX;
558
559         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
560         tspi->dma_control_reg = val;
561
562         tspi->is_curr_dma_xfer = false;
563
564         val |= SPI_DMA_EN;
565         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
566         return 0;
567 }
568
569 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
570                         bool dma_to_memory)
571 {
572         struct dma_chan *dma_chan;
573         u32 *dma_buf;
574         dma_addr_t dma_phys;
575         int ret;
576         struct dma_slave_config dma_sconfig;
577
578         dma_chan = dma_request_slave_channel_reason(tspi->dev,
579                                         dma_to_memory ? "rx" : "tx");
580         if (IS_ERR(dma_chan)) {
581                 ret = PTR_ERR(dma_chan);
582                 if (ret != -EPROBE_DEFER)
583                         dev_err(tspi->dev,
584                                 "Dma channel is not available: %d\n", ret);
585                 return ret;
586         }
587
588         dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
589                                 &dma_phys, GFP_KERNEL);
590         if (!dma_buf) {
591                 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
592                 dma_release_channel(dma_chan);
593                 return -ENOMEM;
594         }
595
596         if (dma_to_memory) {
597                 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
598                 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599                 dma_sconfig.src_maxburst = 0;
600         } else {
601                 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
602                 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
603                 dma_sconfig.dst_maxburst = 0;
604         }
605
606         ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
607         if (ret)
608                 goto scrub;
609         if (dma_to_memory) {
610                 tspi->rx_dma_chan = dma_chan;
611                 tspi->rx_dma_buf = dma_buf;
612                 tspi->rx_dma_phys = dma_phys;
613         } else {
614                 tspi->tx_dma_chan = dma_chan;
615                 tspi->tx_dma_buf = dma_buf;
616                 tspi->tx_dma_phys = dma_phys;
617         }
618         return 0;
619
620 scrub:
621         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
622         dma_release_channel(dma_chan);
623         return ret;
624 }
625
626 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
627         bool dma_to_memory)
628 {
629         u32 *dma_buf;
630         dma_addr_t dma_phys;
631         struct dma_chan *dma_chan;
632
633         if (dma_to_memory) {
634                 dma_buf = tspi->rx_dma_buf;
635                 dma_chan = tspi->rx_dma_chan;
636                 dma_phys = tspi->rx_dma_phys;
637                 tspi->rx_dma_chan = NULL;
638                 tspi->rx_dma_buf = NULL;
639         } else {
640                 dma_buf = tspi->tx_dma_buf;
641                 dma_chan = tspi->tx_dma_chan;
642                 dma_phys = tspi->tx_dma_phys;
643                 tspi->tx_dma_buf = NULL;
644                 tspi->tx_dma_chan = NULL;
645         }
646         if (!dma_chan)
647                 return;
648
649         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
650         dma_release_channel(dma_chan);
651 }
652
653 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
654                 struct spi_transfer *t, bool is_first_of_msg)
655 {
656         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
657         u32 speed = t->speed_hz;
658         u8 bits_per_word = t->bits_per_word;
659         u32 command1;
660         int req_mode;
661
662         if (speed != tspi->cur_speed) {
663                 clk_set_rate(tspi->clk, speed);
664                 tspi->cur_speed = speed;
665         }
666
667         tspi->cur_spi = spi;
668         tspi->cur_pos = 0;
669         tspi->cur_rx_pos = 0;
670         tspi->cur_tx_pos = 0;
671         tspi->curr_xfer = t;
672
673         if (is_first_of_msg) {
674                 tegra_spi_clear_status(tspi);
675
676                 command1 = tspi->def_command1_reg;
677                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
678
679                 command1 &= ~SPI_CONTROL_MODE_MASK;
680                 req_mode = spi->mode & 0x3;
681                 if (req_mode == SPI_MODE_0)
682                         command1 |= SPI_CONTROL_MODE_0;
683                 else if (req_mode == SPI_MODE_1)
684                         command1 |= SPI_CONTROL_MODE_1;
685                 else if (req_mode == SPI_MODE_2)
686                         command1 |= SPI_CONTROL_MODE_2;
687                 else if (req_mode == SPI_MODE_3)
688                         command1 |= SPI_CONTROL_MODE_3;
689
690                 if (tspi->cs_control) {
691                         if (tspi->cs_control != spi)
692                                 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
693                         tspi->cs_control = NULL;
694                 } else
695                         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
696
697                 command1 |= SPI_CS_SW_HW;
698                 if (spi->mode & SPI_CS_HIGH)
699                         command1 |= SPI_CS_SS_VAL;
700                 else
701                         command1 &= ~SPI_CS_SS_VAL;
702
703                 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
704         } else {
705                 command1 = tspi->command1_reg;
706                 command1 &= ~SPI_BIT_LENGTH(~0);
707                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
708         }
709
710         return command1;
711 }
712
713 static int tegra_spi_start_transfer_one(struct spi_device *spi,
714                 struct spi_transfer *t, u32 command1)
715 {
716         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
717         unsigned total_fifo_words;
718         int ret;
719
720         total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
721
722         if (tspi->is_packed)
723                 command1 |= SPI_PACKED;
724
725         command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
726         tspi->cur_direction = 0;
727         if (t->rx_buf) {
728                 command1 |= SPI_RX_EN;
729                 tspi->cur_direction |= DATA_DIR_RX;
730         }
731         if (t->tx_buf) {
732                 command1 |= SPI_TX_EN;
733                 tspi->cur_direction |= DATA_DIR_TX;
734         }
735         command1 |= SPI_CS_SEL(spi->chip_select);
736         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
737         tspi->command1_reg = command1;
738
739         dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
740                 tspi->def_command1_reg, (unsigned)command1);
741
742         if (total_fifo_words > SPI_FIFO_DEPTH)
743                 ret = tegra_spi_start_dma_based_transfer(tspi, t);
744         else
745                 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
746         return ret;
747 }
748
749 static int tegra_spi_setup(struct spi_device *spi)
750 {
751         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
752         u32 val;
753         unsigned long flags;
754         int ret;
755
756         dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
757                 spi->bits_per_word,
758                 spi->mode & SPI_CPOL ? "" : "~",
759                 spi->mode & SPI_CPHA ? "" : "~",
760                 spi->max_speed_hz);
761
762         ret = pm_runtime_get_sync(tspi->dev);
763         if (ret < 0) {
764                 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
765                 return ret;
766         }
767
768         spin_lock_irqsave(&tspi->lock, flags);
769         val = tspi->def_command1_reg;
770         if (spi->mode & SPI_CS_HIGH)
771                 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
772         else
773                 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
774         tspi->def_command1_reg = val;
775         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
776         spin_unlock_irqrestore(&tspi->lock, flags);
777
778         pm_runtime_put(tspi->dev);
779         return 0;
780 }
781
782 static void tegra_spi_transfer_delay(int delay)
783 {
784         if (!delay)
785                 return;
786
787         if (delay >= 1000)
788                 mdelay(delay / 1000);
789
790         udelay(delay % 1000);
791 }
792
793 static int tegra_spi_transfer_one_message(struct spi_master *master,
794                         struct spi_message *msg)
795 {
796         bool is_first_msg = true;
797         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
798         struct spi_transfer *xfer;
799         struct spi_device *spi = msg->spi;
800         int ret;
801         bool skip = false;
802
803         msg->status = 0;
804         msg->actual_length = 0;
805
806         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
807                 u32 cmd1;
808
809                 reinit_completion(&tspi->xfer_completion);
810
811                 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
812
813                 if (!xfer->len) {
814                         ret = 0;
815                         skip = true;
816                         goto complete_xfer;
817                 }
818
819                 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
820                 if (ret < 0) {
821                         dev_err(tspi->dev,
822                                 "spi can not start transfer, err %d\n", ret);
823                         goto complete_xfer;
824                 }
825
826                 is_first_msg = false;
827                 ret = wait_for_completion_timeout(&tspi->xfer_completion,
828                                                 SPI_DMA_TIMEOUT);
829                 if (WARN_ON(ret == 0)) {
830                         dev_err(tspi->dev,
831                                 "spi trasfer timeout, err %d\n", ret);
832                         ret = -EIO;
833                         goto complete_xfer;
834                 }
835
836                 if (tspi->tx_status ||  tspi->rx_status) {
837                         dev_err(tspi->dev, "Error in Transfer\n");
838                         ret = -EIO;
839                         goto complete_xfer;
840                 }
841                 msg->actual_length += xfer->len;
842
843 complete_xfer:
844                 if (ret < 0 || skip) {
845                         tegra_spi_writel(tspi, tspi->def_command1_reg,
846                                         SPI_COMMAND1);
847                         tegra_spi_transfer_delay(xfer->delay_usecs);
848                         goto exit;
849                 } else if (msg->transfers.prev == &xfer->transfer_list) {
850                         /* This is the last transfer in message */
851                         if (xfer->cs_change)
852                                 tspi->cs_control = spi;
853                         else {
854                                 tegra_spi_writel(tspi, tspi->def_command1_reg,
855                                                 SPI_COMMAND1);
856                                 tegra_spi_transfer_delay(xfer->delay_usecs);
857                         }
858                 } else if (xfer->cs_change) {
859                         tegra_spi_writel(tspi, tspi->def_command1_reg,
860                                         SPI_COMMAND1);
861                         tegra_spi_transfer_delay(xfer->delay_usecs);
862                 }
863
864         }
865         ret = 0;
866 exit:
867         msg->status = ret;
868         spi_finalize_current_message(master);
869         return ret;
870 }
871
872 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
873 {
874         struct spi_transfer *t = tspi->curr_xfer;
875         unsigned long flags;
876
877         spin_lock_irqsave(&tspi->lock, flags);
878         if (tspi->tx_status ||  tspi->rx_status) {
879                 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
880                         tspi->status_reg);
881                 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
882                         tspi->command1_reg, tspi->dma_control_reg);
883                 reset_control_assert(tspi->rst);
884                 udelay(2);
885                 reset_control_deassert(tspi->rst);
886                 complete(&tspi->xfer_completion);
887                 goto exit;
888         }
889
890         if (tspi->cur_direction & DATA_DIR_RX)
891                 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
892
893         if (tspi->cur_direction & DATA_DIR_TX)
894                 tspi->cur_pos = tspi->cur_tx_pos;
895         else
896                 tspi->cur_pos = tspi->cur_rx_pos;
897
898         if (tspi->cur_pos == t->len) {
899                 complete(&tspi->xfer_completion);
900                 goto exit;
901         }
902
903         tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
904         tegra_spi_start_cpu_based_transfer(tspi, t);
905 exit:
906         spin_unlock_irqrestore(&tspi->lock, flags);
907         return IRQ_HANDLED;
908 }
909
910 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
911 {
912         struct spi_transfer *t = tspi->curr_xfer;
913         long wait_status;
914         int err = 0;
915         unsigned total_fifo_words;
916         unsigned long flags;
917
918         /* Abort dmas if any error */
919         if (tspi->cur_direction & DATA_DIR_TX) {
920                 if (tspi->tx_status) {
921                         dmaengine_terminate_all(tspi->tx_dma_chan);
922                         err += 1;
923                 } else {
924                         wait_status = wait_for_completion_interruptible_timeout(
925                                 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
926                         if (wait_status <= 0) {
927                                 dmaengine_terminate_all(tspi->tx_dma_chan);
928                                 dev_err(tspi->dev, "TxDma Xfer failed\n");
929                                 err += 1;
930                         }
931                 }
932         }
933
934         if (tspi->cur_direction & DATA_DIR_RX) {
935                 if (tspi->rx_status) {
936                         dmaengine_terminate_all(tspi->rx_dma_chan);
937                         err += 2;
938                 } else {
939                         wait_status = wait_for_completion_interruptible_timeout(
940                                 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
941                         if (wait_status <= 0) {
942                                 dmaengine_terminate_all(tspi->rx_dma_chan);
943                                 dev_err(tspi->dev, "RxDma Xfer failed\n");
944                                 err += 2;
945                         }
946                 }
947         }
948
949         spin_lock_irqsave(&tspi->lock, flags);
950         if (err) {
951                 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
952                         tspi->status_reg);
953                 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
954                         tspi->command1_reg, tspi->dma_control_reg);
955                 reset_control_assert(tspi->rst);
956                 udelay(2);
957                 reset_control_deassert(tspi->rst);
958                 complete(&tspi->xfer_completion);
959                 spin_unlock_irqrestore(&tspi->lock, flags);
960                 return IRQ_HANDLED;
961         }
962
963         if (tspi->cur_direction & DATA_DIR_RX)
964                 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
965
966         if (tspi->cur_direction & DATA_DIR_TX)
967                 tspi->cur_pos = tspi->cur_tx_pos;
968         else
969                 tspi->cur_pos = tspi->cur_rx_pos;
970
971         if (tspi->cur_pos == t->len) {
972                 complete(&tspi->xfer_completion);
973                 goto exit;
974         }
975
976         /* Continue transfer in current message */
977         total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
978                                                         tspi, t);
979         if (total_fifo_words > SPI_FIFO_DEPTH)
980                 err = tegra_spi_start_dma_based_transfer(tspi, t);
981         else
982                 err = tegra_spi_start_cpu_based_transfer(tspi, t);
983
984 exit:
985         spin_unlock_irqrestore(&tspi->lock, flags);
986         return IRQ_HANDLED;
987 }
988
989 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
990 {
991         struct tegra_spi_data *tspi = context_data;
992
993         if (!tspi->is_curr_dma_xfer)
994                 return handle_cpu_based_xfer(tspi);
995         return handle_dma_based_xfer(tspi);
996 }
997
998 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
999 {
1000         struct tegra_spi_data *tspi = context_data;
1001
1002         tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1003         if (tspi->cur_direction & DATA_DIR_TX)
1004                 tspi->tx_status = tspi->status_reg &
1005                                         (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1006
1007         if (tspi->cur_direction & DATA_DIR_RX)
1008                 tspi->rx_status = tspi->status_reg &
1009                                         (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1010         tegra_spi_clear_status(tspi);
1011
1012         return IRQ_WAKE_THREAD;
1013 }
1014
1015 static struct of_device_id tegra_spi_of_match[] = {
1016         { .compatible = "nvidia,tegra114-spi", },
1017         {}
1018 };
1019 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1020
1021 static int tegra_spi_probe(struct platform_device *pdev)
1022 {
1023         struct spi_master       *master;
1024         struct tegra_spi_data   *tspi;
1025         struct resource         *r;
1026         int ret, spi_irq;
1027
1028         master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1029         if (!master) {
1030                 dev_err(&pdev->dev, "master allocation failed\n");
1031                 return -ENOMEM;
1032         }
1033         platform_set_drvdata(pdev, master);
1034         tspi = spi_master_get_devdata(master);
1035
1036         if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1037                                  &master->max_speed_hz))
1038                 master->max_speed_hz = 25000000; /* 25MHz */
1039
1040         /* the spi->mode bits understood by this driver: */
1041         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1042         master->setup = tegra_spi_setup;
1043         master->transfer_one_message = tegra_spi_transfer_one_message;
1044         master->num_chipselect = MAX_CHIP_SELECT;
1045         master->auto_runtime_pm = true;
1046
1047         tspi->master = master;
1048         tspi->dev = &pdev->dev;
1049         spin_lock_init(&tspi->lock);
1050
1051         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1052         tspi->base = devm_ioremap_resource(&pdev->dev, r);
1053         if (IS_ERR(tspi->base)) {
1054                 ret = PTR_ERR(tspi->base);
1055                 goto exit_free_master;
1056         }
1057         tspi->phys = r->start;
1058
1059         spi_irq = platform_get_irq(pdev, 0);
1060         tspi->irq = spi_irq;
1061         ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1062                         tegra_spi_isr_thread, IRQF_ONESHOT,
1063                         dev_name(&pdev->dev), tspi);
1064         if (ret < 0) {
1065                 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1066                                         tspi->irq);
1067                 goto exit_free_master;
1068         }
1069
1070         tspi->clk = devm_clk_get(&pdev->dev, "spi");
1071         if (IS_ERR(tspi->clk)) {
1072                 dev_err(&pdev->dev, "can not get clock\n");
1073                 ret = PTR_ERR(tspi->clk);
1074                 goto exit_free_irq;
1075         }
1076
1077         tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1078         if (IS_ERR(tspi->rst)) {
1079                 dev_err(&pdev->dev, "can not get reset\n");
1080                 ret = PTR_ERR(tspi->rst);
1081                 goto exit_free_irq;
1082         }
1083
1084         tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1085         tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1086
1087         ret = tegra_spi_init_dma_param(tspi, true);
1088         if (ret < 0)
1089                 goto exit_free_irq;
1090         ret = tegra_spi_init_dma_param(tspi, false);
1091         if (ret < 0)
1092                 goto exit_rx_dma_free;
1093         tspi->max_buf_size = tspi->dma_buf_size;
1094         init_completion(&tspi->tx_dma_complete);
1095         init_completion(&tspi->rx_dma_complete);
1096
1097         init_completion(&tspi->xfer_completion);
1098
1099         pm_runtime_enable(&pdev->dev);
1100         if (!pm_runtime_enabled(&pdev->dev)) {
1101                 ret = tegra_spi_runtime_resume(&pdev->dev);
1102                 if (ret)
1103                         goto exit_pm_disable;
1104         }
1105
1106         ret = pm_runtime_get_sync(&pdev->dev);
1107         if (ret < 0) {
1108                 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1109                 goto exit_pm_disable;
1110         }
1111         tspi->def_command1_reg  = SPI_M_S;
1112         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1113         pm_runtime_put(&pdev->dev);
1114
1115         master->dev.of_node = pdev->dev.of_node;
1116         ret = devm_spi_register_master(&pdev->dev, master);
1117         if (ret < 0) {
1118                 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1119                 goto exit_pm_disable;
1120         }
1121         return ret;
1122
1123 exit_pm_disable:
1124         pm_runtime_disable(&pdev->dev);
1125         if (!pm_runtime_status_suspended(&pdev->dev))
1126                 tegra_spi_runtime_suspend(&pdev->dev);
1127         tegra_spi_deinit_dma_param(tspi, false);
1128 exit_rx_dma_free:
1129         tegra_spi_deinit_dma_param(tspi, true);
1130 exit_free_irq:
1131         free_irq(spi_irq, tspi);
1132 exit_free_master:
1133         spi_master_put(master);
1134         return ret;
1135 }
1136
1137 static int tegra_spi_remove(struct platform_device *pdev)
1138 {
1139         struct spi_master *master = platform_get_drvdata(pdev);
1140         struct tegra_spi_data   *tspi = spi_master_get_devdata(master);
1141
1142         free_irq(tspi->irq, tspi);
1143
1144         if (tspi->tx_dma_chan)
1145                 tegra_spi_deinit_dma_param(tspi, false);
1146
1147         if (tspi->rx_dma_chan)
1148                 tegra_spi_deinit_dma_param(tspi, true);
1149
1150         pm_runtime_disable(&pdev->dev);
1151         if (!pm_runtime_status_suspended(&pdev->dev))
1152                 tegra_spi_runtime_suspend(&pdev->dev);
1153
1154         return 0;
1155 }
1156
1157 #ifdef CONFIG_PM_SLEEP
1158 static int tegra_spi_suspend(struct device *dev)
1159 {
1160         struct spi_master *master = dev_get_drvdata(dev);
1161
1162         return spi_master_suspend(master);
1163 }
1164
1165 static int tegra_spi_resume(struct device *dev)
1166 {
1167         struct spi_master *master = dev_get_drvdata(dev);
1168         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1169         int ret;
1170
1171         ret = pm_runtime_get_sync(dev);
1172         if (ret < 0) {
1173                 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1174                 return ret;
1175         }
1176         tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1177         pm_runtime_put(dev);
1178
1179         return spi_master_resume(master);
1180 }
1181 #endif
1182
1183 static int tegra_spi_runtime_suspend(struct device *dev)
1184 {
1185         struct spi_master *master = dev_get_drvdata(dev);
1186         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1187
1188         /* Flush all write which are in PPSB queue by reading back */
1189         tegra_spi_readl(tspi, SPI_COMMAND1);
1190
1191         clk_disable_unprepare(tspi->clk);
1192         return 0;
1193 }
1194
1195 static int tegra_spi_runtime_resume(struct device *dev)
1196 {
1197         struct spi_master *master = dev_get_drvdata(dev);
1198         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1199         int ret;
1200
1201         ret = clk_prepare_enable(tspi->clk);
1202         if (ret < 0) {
1203                 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1204                 return ret;
1205         }
1206         return 0;
1207 }
1208
1209 static const struct dev_pm_ops tegra_spi_pm_ops = {
1210         SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1211                 tegra_spi_runtime_resume, NULL)
1212         SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1213 };
1214 static struct platform_driver tegra_spi_driver = {
1215         .driver = {
1216                 .name           = "spi-tegra114",
1217                 .owner          = THIS_MODULE,
1218                 .pm             = &tegra_spi_pm_ops,
1219                 .of_match_table = tegra_spi_of_match,
1220         },
1221         .probe =        tegra_spi_probe,
1222         .remove =       tegra_spi_remove,
1223 };
1224 module_platform_driver(tegra_spi_driver);
1225
1226 MODULE_ALIAS("platform:spi-tegra114");
1227 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1228 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1229 MODULE_LICENSE("GPL v2");