Merge tag 'driver-core-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / staging / lustre / lustre / llite / rw26.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/lustre/llite/rw26.c
37  *
38  * Lustre Lite I/O page cache routines for the 2.5/2.6 kernel version
39  */
40
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/string.h>
44 #include <linux/stat.h>
45 #include <linux/errno.h>
46 #include <linux/unistd.h>
47 #include <linux/uaccess.h>
48
49 #include <linux/migrate.h>
50 #include <linux/fs.h>
51 #include <linux/buffer_head.h>
52 #include <linux/mpage.h>
53 #include <linux/writeback.h>
54 #include <linux/pagemap.h>
55
56 #define DEBUG_SUBSYSTEM S_LLITE
57
58 #include "../include/lustre_lite.h"
59 #include "llite_internal.h"
60 #include "../include/linux/lustre_compat25.h"
61
62 /**
63  * Implements Linux VM address_space::invalidatepage() method. This method is
64  * called when the page is truncate from a file, either as a result of
65  * explicit truncate, or when inode is removed from memory (as a result of
66  * final iput(), umount, or memory pressure induced icache shrinking).
67  *
68  * [0, offset] bytes of the page remain valid (this is for a case of not-page
69  * aligned truncate). Lustre leaves partially truncated page in the cache,
70  * relying on struct inode::i_size to limit further accesses.
71  */
72 static void ll_invalidatepage(struct page *vmpage, unsigned int offset,
73                               unsigned int length)
74 {
75         struct inode     *inode;
76         struct lu_env    *env;
77         struct cl_page   *page;
78         struct cl_object *obj;
79
80         int refcheck;
81
82         LASSERT(PageLocked(vmpage));
83         LASSERT(!PageWriteback(vmpage));
84
85         /*
86          * It is safe to not check anything in invalidatepage/releasepage
87          * below because they are run with page locked and all our io is
88          * happening with locked page too
89          */
90         if (offset == 0 && length == PAGE_SIZE) {
91                 env = cl_env_get(&refcheck);
92                 if (!IS_ERR(env)) {
93                         inode = vmpage->mapping->host;
94                         obj = ll_i2info(inode)->lli_clob;
95                         if (obj) {
96                                 page = cl_vmpage_page(vmpage, obj);
97                                 if (page) {
98                                         lu_ref_add(&page->cp_reference,
99                                                    "delete", vmpage);
100                                         cl_page_delete(env, page);
101                                         lu_ref_del(&page->cp_reference,
102                                                    "delete", vmpage);
103                                         cl_page_put(env, page);
104                                 }
105                         } else
106                                 LASSERT(vmpage->private == 0);
107                         cl_env_put(env, &refcheck);
108                 }
109         }
110 }
111
112 static int ll_releasepage(struct page *vmpage, gfp_t gfp_mask)
113 {
114         struct cl_env_nest nest;
115         struct lu_env     *env;
116         struct cl_object  *obj;
117         struct cl_page    *page;
118         struct address_space *mapping;
119         int result;
120
121         LASSERT(PageLocked(vmpage));
122         if (PageWriteback(vmpage) || PageDirty(vmpage))
123                 return 0;
124
125         mapping = vmpage->mapping;
126         if (!mapping)
127                 return 1;
128
129         obj = ll_i2info(mapping->host)->lli_clob;
130         if (!obj)
131                 return 1;
132
133         /* 1 for page allocator, 1 for cl_page and 1 for page cache */
134         if (page_count(vmpage) > 3)
135                 return 0;
136
137         /* TODO: determine what gfp should be used by @gfp_mask. */
138         env = cl_env_nested_get(&nest);
139         if (IS_ERR(env))
140                 /* If we can't allocate an env we won't call cl_page_put()
141                  * later on which further means it's impossible to drop
142                  * page refcount by cl_page, so ask kernel to not free
143                  * this page.
144                  */
145                 return 0;
146
147         page = cl_vmpage_page(vmpage, obj);
148         result = !page;
149         if (page) {
150                 if (!cl_page_in_use(page)) {
151                         result = 1;
152                         cl_page_delete(env, page);
153                 }
154                 cl_page_put(env, page);
155         }
156         cl_env_nested_put(&nest, env);
157         return result;
158 }
159
160 static int ll_set_page_dirty(struct page *vmpage)
161 {
162 #if 0
163         struct cl_page    *page = vvp_vmpage_page_transient(vmpage);
164         struct vvp_object *obj  = cl_inode2vvp(vmpage->mapping->host);
165         struct vvp_page   *cpg;
166
167         /*
168          * XXX should page method be called here?
169          */
170         LASSERT(&obj->co_cl == page->cp_obj);
171         cpg = cl2vvp_page(cl_page_at(page, &vvp_device_type));
172         /*
173          * XXX cannot do much here, because page is possibly not locked:
174          * sys_munmap()->...
175          *     ->unmap_page_range()->zap_pte_range()->set_page_dirty().
176          */
177         vvp_write_pending(obj, cpg);
178 #endif
179         return __set_page_dirty_nobuffers(vmpage);
180 }
181
182 #define MAX_DIRECTIO_SIZE (2*1024*1024*1024UL)
183
184 static inline int ll_get_user_pages(int rw, unsigned long user_addr,
185                                     size_t size, struct page ***pages,
186                                     int *max_pages)
187 {
188         int result = -ENOMEM;
189
190         /* set an arbitrary limit to prevent arithmetic overflow */
191         if (size > MAX_DIRECTIO_SIZE) {
192                 *pages = NULL;
193                 return -EFBIG;
194         }
195
196         *max_pages = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
197         *max_pages -= user_addr >> PAGE_SHIFT;
198
199         *pages = libcfs_kvzalloc(*max_pages * sizeof(**pages), GFP_NOFS);
200         if (*pages) {
201                 result = get_user_pages_fast(user_addr, *max_pages,
202                                              (rw == READ), *pages);
203                 if (unlikely(result <= 0))
204                         kvfree(*pages);
205         }
206
207         return result;
208 }
209
210 /*  ll_free_user_pages - tear down page struct array
211  *  @pages: array of page struct pointers underlying target buffer
212  */
213 static void ll_free_user_pages(struct page **pages, int npages, int do_dirty)
214 {
215         int i;
216
217         for (i = 0; i < npages; i++) {
218                 if (do_dirty)
219                         set_page_dirty_lock(pages[i]);
220                 put_page(pages[i]);
221         }
222         kvfree(pages);
223 }
224
225 ssize_t ll_direct_rw_pages(const struct lu_env *env, struct cl_io *io,
226                            int rw, struct inode *inode,
227                            struct ll_dio_pages *pv)
228 {
229         struct cl_page    *clp;
230         struct cl_2queue  *queue;
231         struct cl_object  *obj = io->ci_obj;
232         int i;
233         ssize_t rc = 0;
234         loff_t file_offset  = pv->ldp_start_offset;
235         long size          = pv->ldp_size;
236         int page_count      = pv->ldp_nr;
237         struct page **pages = pv->ldp_pages;
238         long page_size      = cl_page_size(obj);
239         bool do_io;
240         int  io_pages       = 0;
241
242         queue = &io->ci_queue;
243         cl_2queue_init(queue);
244         for (i = 0; i < page_count; i++) {
245                 if (pv->ldp_offsets)
246                         file_offset = pv->ldp_offsets[i];
247
248                 LASSERT(!(file_offset & (page_size - 1)));
249                 clp = cl_page_find(env, obj, cl_index(obj, file_offset),
250                                    pv->ldp_pages[i], CPT_TRANSIENT);
251                 if (IS_ERR(clp)) {
252                         rc = PTR_ERR(clp);
253                         break;
254                 }
255
256                 rc = cl_page_own(env, io, clp);
257                 if (rc) {
258                         LASSERT(clp->cp_state == CPS_FREEING);
259                         cl_page_put(env, clp);
260                         break;
261                 }
262
263                 do_io = true;
264
265                 /* check the page type: if the page is a host page, then do
266                  * write directly
267                  */
268                 if (clp->cp_type == CPT_CACHEABLE) {
269                         struct page *vmpage = cl_page_vmpage(env, clp);
270                         struct page *src_page;
271                         struct page *dst_page;
272                         void       *src;
273                         void       *dst;
274
275                         src_page = (rw == WRITE) ? pages[i] : vmpage;
276                         dst_page = (rw == WRITE) ? vmpage : pages[i];
277
278                         src = kmap_atomic(src_page);
279                         dst = kmap_atomic(dst_page);
280                         memcpy(dst, src, min(page_size, size));
281                         kunmap_atomic(dst);
282                         kunmap_atomic(src);
283
284                         /* make sure page will be added to the transfer by
285                          * cl_io_submit()->...->vvp_page_prep_write().
286                          */
287                         if (rw == WRITE)
288                                 set_page_dirty(vmpage);
289
290                         if (rw == READ) {
291                                 /* do not issue the page for read, since it
292                                  * may reread a ra page which has NOT uptodate
293                                  * bit set.
294                                  */
295                                 cl_page_disown(env, io, clp);
296                                 do_io = false;
297                         }
298                 }
299
300                 if (likely(do_io)) {
301                         /*
302                          * Add a page to the incoming page list of 2-queue.
303                          */
304                         cl_page_list_add(&queue->c2_qin, clp);
305
306                         /*
307                          * Set page clip to tell transfer formation engine
308                          * that page has to be sent even if it is beyond KMS.
309                          */
310                         cl_page_clip(env, clp, 0, min(size, page_size));
311
312                         ++io_pages;
313                 }
314
315                 /* drop the reference count for cl_page_find */
316                 cl_page_put(env, clp);
317                 size -= page_size;
318                 file_offset += page_size;
319         }
320
321         if (rc == 0 && io_pages) {
322                 rc = cl_io_submit_sync(env, io,
323                                        rw == READ ? CRT_READ : CRT_WRITE,
324                                        queue, 0);
325         }
326         if (rc == 0)
327                 rc = pv->ldp_size;
328
329         cl_2queue_discard(env, io, queue);
330         cl_2queue_disown(env, io, queue);
331         cl_2queue_fini(env, queue);
332         return rc;
333 }
334 EXPORT_SYMBOL(ll_direct_rw_pages);
335
336 static ssize_t ll_direct_IO_26_seg(const struct lu_env *env, struct cl_io *io,
337                                    int rw, struct inode *inode,
338                                    struct address_space *mapping,
339                                    size_t size, loff_t file_offset,
340                                    struct page **pages, int page_count)
341 {
342         struct ll_dio_pages pvec = {
343                 .ldp_pages      = pages,
344                 .ldp_nr         = page_count,
345                 .ldp_size       = size,
346                 .ldp_offsets    = NULL,
347                 .ldp_start_offset = file_offset
348         };
349
350         return ll_direct_rw_pages(env, io, rw, inode, &pvec);
351 }
352
353 /* This is the maximum size of a single O_DIRECT request, based on the
354  * kmalloc limit.  We need to fit all of the brw_page structs, each one
355  * representing PAGE_SIZE worth of user data, into a single buffer, and
356  * then truncate this to be a full-sized RPC.  For 4kB PAGE_SIZE this is
357  * up to 22MB for 128kB kmalloc and up to 682MB for 4MB kmalloc.
358  */
359 #define MAX_DIO_SIZE ((KMALLOC_MAX_SIZE / sizeof(struct brw_page) *       \
360                        PAGE_SIZE) & ~(DT_MAX_BRW_SIZE - 1))
361 static ssize_t ll_direct_IO_26(struct kiocb *iocb, struct iov_iter *iter)
362 {
363         struct lu_env *env;
364         struct cl_io *io;
365         struct file *file = iocb->ki_filp;
366         struct inode *inode = file->f_mapping->host;
367         struct ccc_object *obj = cl_inode2ccc(inode);
368         loff_t file_offset = iocb->ki_pos;
369         ssize_t count = iov_iter_count(iter);
370         ssize_t tot_bytes = 0, result = 0;
371         struct ll_inode_info *lli = ll_i2info(inode);
372         long size = MAX_DIO_SIZE;
373         int refcheck;
374
375         if (!lli->lli_has_smd)
376                 return -EBADF;
377
378         /* FIXME: io smaller than PAGE_SIZE is broken on ia64 ??? */
379         if ((file_offset & ~CFS_PAGE_MASK) || (count & ~CFS_PAGE_MASK))
380                 return -EINVAL;
381
382         CDEBUG(D_VFSTRACE,
383                "VFS Op:inode=%lu/%u(%p), size=%zd (max %lu), offset=%lld=%llx, pages %zd (max %lu)\n",
384                inode->i_ino, inode->i_generation, inode, count, MAX_DIO_SIZE,
385                file_offset, file_offset, count >> PAGE_SHIFT,
386                MAX_DIO_SIZE >> PAGE_SHIFT);
387
388         /* Check that all user buffers are aligned as well */
389         if (iov_iter_alignment(iter) & ~CFS_PAGE_MASK)
390                 return -EINVAL;
391
392         env = cl_env_get(&refcheck);
393         LASSERT(!IS_ERR(env));
394         io = ccc_env_io(env)->cui_cl.cis_io;
395         LASSERT(io);
396
397         /* 0. Need locking between buffered and direct access. and race with
398          *    size changing by concurrent truncates and writes.
399          * 1. Need inode mutex to operate transient pages.
400          */
401         if (iov_iter_rw(iter) == READ)
402                 inode_lock(inode);
403
404         LASSERT(obj->cob_transient_pages == 0);
405         while (iov_iter_count(iter)) {
406                 struct page **pages;
407                 size_t offs;
408
409                 count = min_t(size_t, iov_iter_count(iter), size);
410                 if (iov_iter_rw(iter) == READ) {
411                         if (file_offset >= i_size_read(inode))
412                                 break;
413                         if (file_offset + count > i_size_read(inode))
414                                 count = i_size_read(inode) - file_offset;
415                 }
416
417                 result = iov_iter_get_pages_alloc(iter, &pages, count, &offs);
418                 if (likely(result > 0)) {
419                         int n = DIV_ROUND_UP(result + offs, PAGE_SIZE);
420
421                         result = ll_direct_IO_26_seg(env, io, iov_iter_rw(iter),
422                                                      inode, file->f_mapping,
423                                                      result, file_offset, pages,
424                                                      n);
425                         ll_free_user_pages(pages, n, iov_iter_rw(iter) == READ);
426                 }
427                 if (unlikely(result <= 0)) {
428                         /* If we can't allocate a large enough buffer
429                          * for the request, shrink it to a smaller
430                          * PAGE_SIZE multiple and try again.
431                          * We should always be able to kmalloc for a
432                          * page worth of page pointers = 4MB on i386.
433                          */
434                         if (result == -ENOMEM &&
435                             size > (PAGE_SIZE / sizeof(*pages)) *
436                             PAGE_SIZE) {
437                                 size = ((((size / 2) - 1) |
438                                          ~CFS_PAGE_MASK) + 1) &
439                                         CFS_PAGE_MASK;
440                                 CDEBUG(D_VFSTRACE, "DIO size now %lu\n",
441                                        size);
442                                 continue;
443                         }
444
445                         goto out;
446                 }
447                 iov_iter_advance(iter, result);
448                 tot_bytes += result;
449                 file_offset += result;
450         }
451 out:
452         LASSERT(obj->cob_transient_pages == 0);
453         if (iov_iter_rw(iter) == READ)
454                 inode_unlock(inode);
455
456         if (tot_bytes > 0) {
457                 if (iov_iter_rw(iter) == WRITE) {
458                         struct lov_stripe_md *lsm;
459
460                         lsm = ccc_inode_lsm_get(inode);
461                         LASSERT(lsm);
462                         lov_stripe_lock(lsm);
463                         obd_adjust_kms(ll_i2dtexp(inode), lsm, file_offset, 0);
464                         lov_stripe_unlock(lsm);
465                         ccc_inode_lsm_put(inode, lsm);
466                 }
467         }
468
469         cl_env_put(env, &refcheck);
470         return tot_bytes ? : result;
471 }
472
473 static int ll_write_begin(struct file *file, struct address_space *mapping,
474                           loff_t pos, unsigned len, unsigned flags,
475                           struct page **pagep, void **fsdata)
476 {
477         pgoff_t index = pos >> PAGE_SHIFT;
478         struct page *page;
479         int rc;
480         unsigned from = pos & (PAGE_SIZE - 1);
481
482         page = grab_cache_page_write_begin(mapping, index, flags);
483         if (!page)
484                 return -ENOMEM;
485
486         *pagep = page;
487
488         rc = ll_prepare_write(file, page, from, from + len);
489         if (rc) {
490                 unlock_page(page);
491                 put_page(page);
492         }
493         return rc;
494 }
495
496 static int ll_write_end(struct file *file, struct address_space *mapping,
497                         loff_t pos, unsigned len, unsigned copied,
498                         struct page *page, void *fsdata)
499 {
500         unsigned from = pos & (PAGE_SIZE - 1);
501         int rc;
502
503         rc = ll_commit_write(file, page, from, from + copied);
504         unlock_page(page);
505         put_page(page);
506
507         return rc ?: copied;
508 }
509
510 #ifdef CONFIG_MIGRATION
511 static int ll_migratepage(struct address_space *mapping,
512                           struct page *newpage, struct page *page,
513                           enum migrate_mode mode
514                 )
515 {
516         /* Always fail page migration until we have a proper implementation */
517         return -EIO;
518 }
519 #endif
520
521 const struct address_space_operations ll_aops = {
522         .readpage       = ll_readpage,
523         .direct_IO      = ll_direct_IO_26,
524         .writepage      = ll_writepage,
525         .writepages     = ll_writepages,
526         .set_page_dirty = ll_set_page_dirty,
527         .write_begin    = ll_write_begin,
528         .write_end      = ll_write_end,
529         .invalidatepage = ll_invalidatepage,
530         .releasepage    = (void *)ll_releasepage,
531 #ifdef CONFIG_MIGRATION
532         .migratepage    = ll_migratepage,
533 #endif
534 };