Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[cascardo/linux.git] / drivers / staging / unisys / visorbus / visorchipset.c
1 /* visorchipset_main.c
2  *
3  * Copyright (C) 2010 - 2015 UNISYS CORPORATION
4  * All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  * NON INFRINGEMENT.  See the GNU General Public License for more
14  * details.
15  */
16
17 #include <linux/acpi.h>
18 #include <linux/cdev.h>
19 #include <linux/ctype.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/nls.h>
23 #include <linux/netdevice.h>
24 #include <linux/platform_device.h>
25 #include <linux/uuid.h>
26 #include <linux/crash_dump.h>
27
28 #include "channel_guid.h"
29 #include "controlvmchannel.h"
30 #include "controlvmcompletionstatus.h"
31 #include "guestlinuxdebug.h"
32 #include "periodic_work.h"
33 #include "version.h"
34 #include "visorbus.h"
35 #include "visorbus_private.h"
36 #include "vmcallinterface.h"
37
38 #define CURRENT_FILE_PC VISOR_CHIPSET_PC_visorchipset_main_c
39
40 #define MAX_NAME_SIZE 128
41 #define MAX_IP_SIZE   50
42 #define MAXOUTSTANDINGCHANNELCOMMAND 256
43 #define POLLJIFFIES_CONTROLVMCHANNEL_FAST   1
44 #define POLLJIFFIES_CONTROLVMCHANNEL_SLOW 100
45
46 #define MAX_CONTROLVM_PAYLOAD_BYTES (1024*128)
47
48 #define VISORCHIPSET_MMAP_CONTROLCHANOFFSET     0x00000000
49
50
51 #define UNISYS_SPAR_LEAF_ID 0x40000000
52
53 /* The s-Par leaf ID returns "UnisysSpar64" encoded across ebx, ecx, edx */
54 #define UNISYS_SPAR_ID_EBX 0x73696e55
55 #define UNISYS_SPAR_ID_ECX 0x70537379
56 #define UNISYS_SPAR_ID_EDX 0x34367261
57
58 /*
59  * Module parameters
60  */
61 static int visorchipset_major;
62 static int visorchipset_visorbusregwait = 1;    /* default is on */
63 static int visorchipset_holdchipsetready;
64 static unsigned long controlvm_payload_bytes_buffered;
65
66 static int
67 visorchipset_open(struct inode *inode, struct file *file)
68 {
69         unsigned minor_number = iminor(inode);
70
71         if (minor_number)
72                 return -ENODEV;
73         file->private_data = NULL;
74         return 0;
75 }
76
77 static int
78 visorchipset_release(struct inode *inode, struct file *file)
79 {
80         return 0;
81 }
82
83 /* When the controlvm channel is idle for at least MIN_IDLE_SECONDS,
84 * we switch to slow polling mode.  As soon as we get a controlvm
85 * message, we switch back to fast polling mode.
86 */
87 #define MIN_IDLE_SECONDS 10
88 static unsigned long poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_FAST;
89 static unsigned long most_recent_message_jiffies;       /* when we got our last
90                                                  * controlvm message */
91 static int visorbusregistered;
92
93 #define MAX_CHIPSET_EVENTS 2
94 static u8 chipset_events[MAX_CHIPSET_EVENTS] = { 0, 0 };
95
96 struct parser_context {
97         unsigned long allocbytes;
98         unsigned long param_bytes;
99         u8 *curr;
100         unsigned long bytes_remaining;
101         bool byte_stream;
102         char data[0];
103 };
104
105 static struct delayed_work periodic_controlvm_work;
106 static struct workqueue_struct *periodic_controlvm_workqueue;
107 static DEFINE_SEMAPHORE(notifier_lock);
108
109 static struct cdev file_cdev;
110 static struct visorchannel **file_controlvm_channel;
111 static struct controlvm_message_header g_chipset_msg_hdr;
112 static struct controlvm_message_packet g_devicechangestate_packet;
113
114 static LIST_HEAD(bus_info_list);
115 static LIST_HEAD(dev_info_list);
116
117 static struct visorchannel *controlvm_channel;
118
119 /* Manages the request payload in the controlvm channel */
120 struct visor_controlvm_payload_info {
121         u8 *ptr;                /* pointer to base address of payload pool */
122         u64 offset;             /* offset from beginning of controlvm
123                                  * channel to beginning of payload * pool */
124         u32 bytes;              /* number of bytes in payload pool */
125 };
126
127 static struct visor_controlvm_payload_info controlvm_payload_info;
128
129 /* The following globals are used to handle the scenario where we are unable to
130  * offload the payload from a controlvm message due to memory requirements.  In
131  * this scenario, we simply stash the controlvm message, then attempt to
132  * process it again the next time controlvm_periodic_work() runs.
133  */
134 static struct controlvm_message controlvm_pending_msg;
135 static bool controlvm_pending_msg_valid;
136
137 /* This identifies a data buffer that has been received via a controlvm messages
138  * in a remote --> local CONTROLVM_TRANSMIT_FILE conversation.
139  */
140 struct putfile_buffer_entry {
141         struct list_head next;  /* putfile_buffer_entry list */
142         struct parser_context *parser_ctx; /* points to input data buffer */
143 };
144
145 /* List of struct putfile_request *, via next_putfile_request member.
146  * Each entry in this list identifies an outstanding TRANSMIT_FILE
147  * conversation.
148  */
149 static LIST_HEAD(putfile_request_list);
150
151 /* This describes a buffer and its current state of transfer (e.g., how many
152  * bytes have already been supplied as putfile data, and how many bytes are
153  * remaining) for a putfile_request.
154  */
155 struct putfile_active_buffer {
156         /* a payload from a controlvm message, containing a file data buffer */
157         struct parser_context *parser_ctx;
158         /* points within data area of parser_ctx to next byte of data */
159         u8 *pnext;
160         /* # bytes left from <pnext> to the end of this data buffer */
161         size_t bytes_remaining;
162 };
163
164 #define PUTFILE_REQUEST_SIG 0x0906101302281211
165 /* This identifies a single remote --> local CONTROLVM_TRANSMIT_FILE
166  * conversation.  Structs of this type are dynamically linked into
167  * <Putfile_request_list>.
168  */
169 struct putfile_request {
170         u64 sig;                /* PUTFILE_REQUEST_SIG */
171
172         /* header from original TransmitFile request */
173         struct controlvm_message_header controlvm_header;
174         u64 file_request_number;        /* from original TransmitFile request */
175
176         /* link to next struct putfile_request */
177         struct list_head next_putfile_request;
178
179         /* most-recent sequence number supplied via a controlvm message */
180         u64 data_sequence_number;
181
182         /* head of putfile_buffer_entry list, which describes the data to be
183          * supplied as putfile data;
184          * - this list is added to when controlvm messages come in that supply
185          * file data
186          * - this list is removed from via the hotplug program that is actually
187          * consuming these buffers to write as file data */
188         struct list_head input_buffer_list;
189         spinlock_t req_list_lock;       /* lock for input_buffer_list */
190
191         /* waiters for input_buffer_list to go non-empty */
192         wait_queue_head_t input_buffer_wq;
193
194         /* data not yet read within current putfile_buffer_entry */
195         struct putfile_active_buffer active_buf;
196
197         /* <0 = failed, 0 = in-progress, >0 = successful; */
198         /* note that this must be set with req_list_lock, and if you set <0, */
199         /* it is your responsibility to also free up all of the other objects */
200         /* in this struct (like input_buffer_list, active_buf.parser_ctx) */
201         /* before releasing the lock */
202         int completion_status;
203 };
204
205 struct parahotplug_request {
206         struct list_head list;
207         int id;
208         unsigned long expiration;
209         struct controlvm_message msg;
210 };
211
212 static LIST_HEAD(parahotplug_request_list);
213 static DEFINE_SPINLOCK(parahotplug_request_list_lock);  /* lock for above */
214 static void parahotplug_process_list(void);
215
216 /* Manages the info for a CONTROLVM_DUMP_CAPTURESTATE /
217  * CONTROLVM_REPORTEVENT.
218  */
219 static struct visorchipset_busdev_notifiers busdev_notifiers;
220
221 static void bus_create_response(struct visor_device *p, int response);
222 static void bus_destroy_response(struct visor_device *p, int response);
223 static void device_create_response(struct visor_device *p, int response);
224 static void device_destroy_response(struct visor_device *p, int response);
225 static void device_resume_response(struct visor_device *p, int response);
226
227 static void visorchipset_device_pause_response(struct visor_device *p,
228                                                int response);
229
230 static struct visorchipset_busdev_responders busdev_responders = {
231         .bus_create = bus_create_response,
232         .bus_destroy = bus_destroy_response,
233         .device_create = device_create_response,
234         .device_destroy = device_destroy_response,
235         .device_pause = visorchipset_device_pause_response,
236         .device_resume = device_resume_response,
237 };
238
239 /* info for /dev/visorchipset */
240 static dev_t major_dev = -1; /**< indicates major num for device */
241
242 /* prototypes for attributes */
243 static ssize_t toolaction_show(struct device *dev,
244                                struct device_attribute *attr, char *buf);
245 static ssize_t toolaction_store(struct device *dev,
246                                 struct device_attribute *attr,
247                                 const char *buf, size_t count);
248 static DEVICE_ATTR_RW(toolaction);
249
250 static ssize_t boottotool_show(struct device *dev,
251                                struct device_attribute *attr, char *buf);
252 static ssize_t boottotool_store(struct device *dev,
253                                 struct device_attribute *attr, const char *buf,
254                                 size_t count);
255 static DEVICE_ATTR_RW(boottotool);
256
257 static ssize_t error_show(struct device *dev, struct device_attribute *attr,
258                           char *buf);
259 static ssize_t error_store(struct device *dev, struct device_attribute *attr,
260                            const char *buf, size_t count);
261 static DEVICE_ATTR_RW(error);
262
263 static ssize_t textid_show(struct device *dev, struct device_attribute *attr,
264                            char *buf);
265 static ssize_t textid_store(struct device *dev, struct device_attribute *attr,
266                             const char *buf, size_t count);
267 static DEVICE_ATTR_RW(textid);
268
269 static ssize_t remaining_steps_show(struct device *dev,
270                                     struct device_attribute *attr, char *buf);
271 static ssize_t remaining_steps_store(struct device *dev,
272                                      struct device_attribute *attr,
273                                      const char *buf, size_t count);
274 static DEVICE_ATTR_RW(remaining_steps);
275
276 static ssize_t chipsetready_store(struct device *dev,
277                                   struct device_attribute *attr,
278                                   const char *buf, size_t count);
279 static DEVICE_ATTR_WO(chipsetready);
280
281 static ssize_t devicedisabled_store(struct device *dev,
282                                     struct device_attribute *attr,
283                                     const char *buf, size_t count);
284 static DEVICE_ATTR_WO(devicedisabled);
285
286 static ssize_t deviceenabled_store(struct device *dev,
287                                    struct device_attribute *attr,
288                                    const char *buf, size_t count);
289 static DEVICE_ATTR_WO(deviceenabled);
290
291 static struct attribute *visorchipset_install_attrs[] = {
292         &dev_attr_toolaction.attr,
293         &dev_attr_boottotool.attr,
294         &dev_attr_error.attr,
295         &dev_attr_textid.attr,
296         &dev_attr_remaining_steps.attr,
297         NULL
298 };
299
300 static struct attribute_group visorchipset_install_group = {
301         .name = "install",
302         .attrs = visorchipset_install_attrs
303 };
304
305 static struct attribute *visorchipset_guest_attrs[] = {
306         &dev_attr_chipsetready.attr,
307         NULL
308 };
309
310 static struct attribute_group visorchipset_guest_group = {
311         .name = "guest",
312         .attrs = visorchipset_guest_attrs
313 };
314
315 static struct attribute *visorchipset_parahotplug_attrs[] = {
316         &dev_attr_devicedisabled.attr,
317         &dev_attr_deviceenabled.attr,
318         NULL
319 };
320
321 static struct attribute_group visorchipset_parahotplug_group = {
322         .name = "parahotplug",
323         .attrs = visorchipset_parahotplug_attrs
324 };
325
326 static const struct attribute_group *visorchipset_dev_groups[] = {
327         &visorchipset_install_group,
328         &visorchipset_guest_group,
329         &visorchipset_parahotplug_group,
330         NULL
331 };
332
333 static void visorchipset_dev_release(struct device *dev)
334 {
335 }
336
337 /* /sys/devices/platform/visorchipset */
338 static struct platform_device visorchipset_platform_device = {
339         .name = "visorchipset",
340         .id = -1,
341         .dev.groups = visorchipset_dev_groups,
342         .dev.release = visorchipset_dev_release,
343 };
344
345 /* Function prototypes */
346 static void controlvm_respond(struct controlvm_message_header *msg_hdr,
347                               int response);
348 static void controlvm_respond_chipset_init(
349                 struct controlvm_message_header *msg_hdr, int response,
350                 enum ultra_chipset_feature features);
351 static void controlvm_respond_physdev_changestate(
352                 struct controlvm_message_header *msg_hdr, int response,
353                 struct spar_segment_state state);
354
355
356 static void parser_done(struct parser_context *ctx);
357
358 static struct parser_context *
359 parser_init_byte_stream(u64 addr, u32 bytes, bool local, bool *retry)
360 {
361         int allocbytes = sizeof(struct parser_context) + bytes;
362         struct parser_context *rc = NULL;
363         struct parser_context *ctx = NULL;
364
365         if (retry)
366                 *retry = false;
367
368         /*
369          * alloc an 0 extra byte to ensure payload is
370          * '\0'-terminated
371          */
372         allocbytes++;
373         if ((controlvm_payload_bytes_buffered + bytes)
374             > MAX_CONTROLVM_PAYLOAD_BYTES) {
375                 if (retry)
376                         *retry = true;
377                 rc = NULL;
378                 goto cleanup;
379         }
380         ctx = kzalloc(allocbytes, GFP_KERNEL|__GFP_NORETRY);
381         if (!ctx) {
382                 if (retry)
383                         *retry = true;
384                 rc = NULL;
385                 goto cleanup;
386         }
387
388         ctx->allocbytes = allocbytes;
389         ctx->param_bytes = bytes;
390         ctx->curr = NULL;
391         ctx->bytes_remaining = 0;
392         ctx->byte_stream = false;
393         if (local) {
394                 void *p;
395
396                 if (addr > virt_to_phys(high_memory - 1)) {
397                         rc = NULL;
398                         goto cleanup;
399                 }
400                 p = __va((unsigned long) (addr));
401                 memcpy(ctx->data, p, bytes);
402         } else {
403                 void *mapping;
404
405                 if (!request_mem_region(addr, bytes, "visorchipset")) {
406                         rc = NULL;
407                         goto cleanup;
408                 }
409
410                 mapping = memremap(addr, bytes, MEMREMAP_WB);
411                 if (!mapping) {
412                         release_mem_region(addr, bytes);
413                         rc = NULL;
414                         goto cleanup;
415                 }
416                 memcpy(ctx->data, mapping, bytes);
417                 release_mem_region(addr, bytes);
418                 memunmap(mapping);
419         }
420
421         ctx->byte_stream = true;
422         rc = ctx;
423 cleanup:
424         if (rc) {
425                 controlvm_payload_bytes_buffered += ctx->param_bytes;
426         } else {
427                 if (ctx) {
428                         parser_done(ctx);
429                         ctx = NULL;
430                 }
431         }
432         return rc;
433 }
434
435 static uuid_le
436 parser_id_get(struct parser_context *ctx)
437 {
438         struct spar_controlvm_parameters_header *phdr = NULL;
439
440         if (ctx == NULL)
441                 return NULL_UUID_LE;
442         phdr = (struct spar_controlvm_parameters_header *)(ctx->data);
443         return phdr->id;
444 }
445
446 /** Describes the state from the perspective of which controlvm messages have
447  *  been received for a bus or device.
448  */
449
450 enum PARSER_WHICH_STRING {
451         PARSERSTRING_INITIATOR,
452         PARSERSTRING_TARGET,
453         PARSERSTRING_CONNECTION,
454         PARSERSTRING_NAME, /* TODO: only PARSERSTRING_NAME is used ? */
455 };
456
457 static void
458 parser_param_start(struct parser_context *ctx,
459                    enum PARSER_WHICH_STRING which_string)
460 {
461         struct spar_controlvm_parameters_header *phdr = NULL;
462
463         if (ctx == NULL)
464                 goto Away;
465         phdr = (struct spar_controlvm_parameters_header *)(ctx->data);
466         switch (which_string) {
467         case PARSERSTRING_INITIATOR:
468                 ctx->curr = ctx->data + phdr->initiator_offset;
469                 ctx->bytes_remaining = phdr->initiator_length;
470                 break;
471         case PARSERSTRING_TARGET:
472                 ctx->curr = ctx->data + phdr->target_offset;
473                 ctx->bytes_remaining = phdr->target_length;
474                 break;
475         case PARSERSTRING_CONNECTION:
476                 ctx->curr = ctx->data + phdr->connection_offset;
477                 ctx->bytes_remaining = phdr->connection_length;
478                 break;
479         case PARSERSTRING_NAME:
480                 ctx->curr = ctx->data + phdr->name_offset;
481                 ctx->bytes_remaining = phdr->name_length;
482                 break;
483         default:
484                 break;
485         }
486
487 Away:
488         return;
489 }
490
491 static void parser_done(struct parser_context *ctx)
492 {
493         if (!ctx)
494                 return;
495         controlvm_payload_bytes_buffered -= ctx->param_bytes;
496         kfree(ctx);
497 }
498
499 static void *
500 parser_string_get(struct parser_context *ctx)
501 {
502         u8 *pscan;
503         unsigned long nscan;
504         int value_length = -1;
505         void *value = NULL;
506         int i;
507
508         if (!ctx)
509                 return NULL;
510         pscan = ctx->curr;
511         nscan = ctx->bytes_remaining;
512         if (nscan == 0)
513                 return NULL;
514         if (!pscan)
515                 return NULL;
516         for (i = 0, value_length = -1; i < nscan; i++)
517                 if (pscan[i] == '\0') {
518                         value_length = i;
519                         break;
520                 }
521         if (value_length < 0)   /* '\0' was not included in the length */
522                 value_length = nscan;
523         value = kmalloc(value_length + 1, GFP_KERNEL|__GFP_NORETRY);
524         if (value == NULL)
525                 return NULL;
526         if (value_length > 0)
527                 memcpy(value, pscan, value_length);
528         ((u8 *) (value))[value_length] = '\0';
529         return value;
530 }
531
532
533 static ssize_t toolaction_show(struct device *dev,
534                                struct device_attribute *attr,
535                                char *buf)
536 {
537         u8 tool_action;
538
539         visorchannel_read(controlvm_channel,
540                 offsetof(struct spar_controlvm_channel_protocol,
541                          tool_action), &tool_action, sizeof(u8));
542         return scnprintf(buf, PAGE_SIZE, "%u\n", tool_action);
543 }
544
545 static ssize_t toolaction_store(struct device *dev,
546                                 struct device_attribute *attr,
547                                 const char *buf, size_t count)
548 {
549         u8 tool_action;
550         int ret;
551
552         if (kstrtou8(buf, 10, &tool_action))
553                 return -EINVAL;
554
555         ret = visorchannel_write(controlvm_channel,
556                 offsetof(struct spar_controlvm_channel_protocol,
557                          tool_action),
558                 &tool_action, sizeof(u8));
559
560         if (ret)
561                 return ret;
562         return count;
563 }
564
565 static ssize_t boottotool_show(struct device *dev,
566                                struct device_attribute *attr,
567                                char *buf)
568 {
569         struct efi_spar_indication efi_spar_indication;
570
571         visorchannel_read(controlvm_channel,
572                           offsetof(struct spar_controlvm_channel_protocol,
573                                    efi_spar_ind), &efi_spar_indication,
574                           sizeof(struct efi_spar_indication));
575         return scnprintf(buf, PAGE_SIZE, "%u\n",
576                          efi_spar_indication.boot_to_tool);
577 }
578
579 static ssize_t boottotool_store(struct device *dev,
580                                 struct device_attribute *attr,
581                                 const char *buf, size_t count)
582 {
583         int val, ret;
584         struct efi_spar_indication efi_spar_indication;
585
586         if (kstrtoint(buf, 10, &val))
587                 return -EINVAL;
588
589         efi_spar_indication.boot_to_tool = val;
590         ret = visorchannel_write(controlvm_channel,
591                         offsetof(struct spar_controlvm_channel_protocol,
592                                  efi_spar_ind), &(efi_spar_indication),
593                                  sizeof(struct efi_spar_indication));
594
595         if (ret)
596                 return ret;
597         return count;
598 }
599
600 static ssize_t error_show(struct device *dev, struct device_attribute *attr,
601                           char *buf)
602 {
603         u32 error;
604
605         visorchannel_read(controlvm_channel,
606                           offsetof(struct spar_controlvm_channel_protocol,
607                                    installation_error),
608                           &error, sizeof(u32));
609         return scnprintf(buf, PAGE_SIZE, "%i\n", error);
610 }
611
612 static ssize_t error_store(struct device *dev, struct device_attribute *attr,
613                            const char *buf, size_t count)
614 {
615         u32 error;
616         int ret;
617
618         if (kstrtou32(buf, 10, &error))
619                 return -EINVAL;
620
621         ret = visorchannel_write(controlvm_channel,
622                 offsetof(struct spar_controlvm_channel_protocol,
623                          installation_error),
624                 &error, sizeof(u32));
625         if (ret)
626                 return ret;
627         return count;
628 }
629
630 static ssize_t textid_show(struct device *dev, struct device_attribute *attr,
631                            char *buf)
632 {
633         u32 text_id;
634
635         visorchannel_read(controlvm_channel,
636                           offsetof(struct spar_controlvm_channel_protocol,
637                                    installation_text_id),
638                           &text_id, sizeof(u32));
639         return scnprintf(buf, PAGE_SIZE, "%i\n", text_id);
640 }
641
642 static ssize_t textid_store(struct device *dev, struct device_attribute *attr,
643                             const char *buf, size_t count)
644 {
645         u32 text_id;
646         int ret;
647
648         if (kstrtou32(buf, 10, &text_id))
649                 return -EINVAL;
650
651         ret = visorchannel_write(controlvm_channel,
652                 offsetof(struct spar_controlvm_channel_protocol,
653                          installation_text_id),
654                 &text_id, sizeof(u32));
655         if (ret)
656                 return ret;
657         return count;
658 }
659
660 static ssize_t remaining_steps_show(struct device *dev,
661                                     struct device_attribute *attr, char *buf)
662 {
663         u16 remaining_steps;
664
665         visorchannel_read(controlvm_channel,
666                           offsetof(struct spar_controlvm_channel_protocol,
667                                    installation_remaining_steps),
668                           &remaining_steps, sizeof(u16));
669         return scnprintf(buf, PAGE_SIZE, "%hu\n", remaining_steps);
670 }
671
672 static ssize_t remaining_steps_store(struct device *dev,
673                                      struct device_attribute *attr,
674                                      const char *buf, size_t count)
675 {
676         u16 remaining_steps;
677         int ret;
678
679         if (kstrtou16(buf, 10, &remaining_steps))
680                 return -EINVAL;
681
682         ret = visorchannel_write(controlvm_channel,
683                 offsetof(struct spar_controlvm_channel_protocol,
684                          installation_remaining_steps),
685                 &remaining_steps, sizeof(u16));
686         if (ret)
687                 return ret;
688         return count;
689 }
690
691 struct visor_busdev {
692         u32 bus_no;
693         u32 dev_no;
694 };
695
696 static int match_visorbus_dev_by_id(struct device *dev, void *data)
697 {
698         struct visor_device *vdev = to_visor_device(dev);
699         struct visor_busdev *id = (struct visor_busdev *)data;
700         u32 bus_no = id->bus_no;
701         u32 dev_no = id->dev_no;
702
703         if ((vdev->chipset_bus_no == bus_no) &&
704             (vdev->chipset_dev_no == dev_no))
705                 return 1;
706
707         return 0;
708 }
709 struct visor_device *visorbus_get_device_by_id(u32 bus_no, u32 dev_no,
710                                                struct visor_device *from)
711 {
712         struct device *dev;
713         struct device *dev_start = NULL;
714         struct visor_device *vdev = NULL;
715         struct visor_busdev id = {
716                         .bus_no = bus_no,
717                         .dev_no = dev_no
718                 };
719
720         if (from)
721                 dev_start = &from->device;
722         dev = bus_find_device(&visorbus_type, dev_start, (void *)&id,
723                               match_visorbus_dev_by_id);
724         if (dev)
725                 vdev = to_visor_device(dev);
726         return vdev;
727 }
728 EXPORT_SYMBOL(visorbus_get_device_by_id);
729
730 static u8
731 check_chipset_events(void)
732 {
733         int i;
734         u8 send_msg = 1;
735         /* Check events to determine if response should be sent */
736         for (i = 0; i < MAX_CHIPSET_EVENTS; i++)
737                 send_msg &= chipset_events[i];
738         return send_msg;
739 }
740
741 static void
742 clear_chipset_events(void)
743 {
744         int i;
745         /* Clear chipset_events */
746         for (i = 0; i < MAX_CHIPSET_EVENTS; i++)
747                 chipset_events[i] = 0;
748 }
749
750 void
751 visorchipset_register_busdev(
752                         struct visorchipset_busdev_notifiers *notifiers,
753                         struct visorchipset_busdev_responders *responders,
754                         struct ultra_vbus_deviceinfo *driver_info)
755 {
756         down(&notifier_lock);
757         if (!notifiers) {
758                 memset(&busdev_notifiers, 0,
759                        sizeof(busdev_notifiers));
760                 visorbusregistered = 0; /* clear flag */
761         } else {
762                 busdev_notifiers = *notifiers;
763                 visorbusregistered = 1; /* set flag */
764         }
765         if (responders)
766                 *responders = busdev_responders;
767         if (driver_info)
768                 bus_device_info_init(driver_info, "chipset", "visorchipset",
769                                      VERSION, NULL);
770
771         up(&notifier_lock);
772 }
773 EXPORT_SYMBOL_GPL(visorchipset_register_busdev);
774
775 static void
776 chipset_init(struct controlvm_message *inmsg)
777 {
778         static int chipset_inited;
779         enum ultra_chipset_feature features = 0;
780         int rc = CONTROLVM_RESP_SUCCESS;
781
782         POSTCODE_LINUX_2(CHIPSET_INIT_ENTRY_PC, POSTCODE_SEVERITY_INFO);
783         if (chipset_inited) {
784                 rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
785                 goto cleanup;
786         }
787         chipset_inited = 1;
788         POSTCODE_LINUX_2(CHIPSET_INIT_EXIT_PC, POSTCODE_SEVERITY_INFO);
789
790         /* Set features to indicate we support parahotplug (if Command
791          * also supports it). */
792         features =
793             inmsg->cmd.init_chipset.
794             features & ULTRA_CHIPSET_FEATURE_PARA_HOTPLUG;
795
796         /* Set the "reply" bit so Command knows this is a
797          * features-aware driver. */
798         features |= ULTRA_CHIPSET_FEATURE_REPLY;
799
800 cleanup:
801         if (inmsg->hdr.flags.response_expected)
802                 controlvm_respond_chipset_init(&inmsg->hdr, rc, features);
803 }
804
805 static void
806 controlvm_init_response(struct controlvm_message *msg,
807                         struct controlvm_message_header *msg_hdr, int response)
808 {
809         memset(msg, 0, sizeof(struct controlvm_message));
810         memcpy(&msg->hdr, msg_hdr, sizeof(struct controlvm_message_header));
811         msg->hdr.payload_bytes = 0;
812         msg->hdr.payload_vm_offset = 0;
813         msg->hdr.payload_max_bytes = 0;
814         if (response < 0) {
815                 msg->hdr.flags.failed = 1;
816                 msg->hdr.completion_status = (u32) (-response);
817         }
818 }
819
820 static void
821 controlvm_respond(struct controlvm_message_header *msg_hdr, int response)
822 {
823         struct controlvm_message outmsg;
824
825         controlvm_init_response(&outmsg, msg_hdr, response);
826         if (outmsg.hdr.flags.test_message == 1)
827                 return;
828
829         if (!visorchannel_signalinsert(controlvm_channel,
830                                        CONTROLVM_QUEUE_REQUEST, &outmsg)) {
831                 return;
832         }
833 }
834
835 static void
836 controlvm_respond_chipset_init(struct controlvm_message_header *msg_hdr,
837                                int response,
838                                enum ultra_chipset_feature features)
839 {
840         struct controlvm_message outmsg;
841
842         controlvm_init_response(&outmsg, msg_hdr, response);
843         outmsg.cmd.init_chipset.features = features;
844         if (!visorchannel_signalinsert(controlvm_channel,
845                                        CONTROLVM_QUEUE_REQUEST, &outmsg)) {
846                 return;
847         }
848 }
849
850 static void controlvm_respond_physdev_changestate(
851                 struct controlvm_message_header *msg_hdr, int response,
852                 struct spar_segment_state state)
853 {
854         struct controlvm_message outmsg;
855
856         controlvm_init_response(&outmsg, msg_hdr, response);
857         outmsg.cmd.device_change_state.state = state;
858         outmsg.cmd.device_change_state.flags.phys_device = 1;
859         if (!visorchannel_signalinsert(controlvm_channel,
860                                        CONTROLVM_QUEUE_REQUEST, &outmsg)) {
861                 return;
862         }
863 }
864
865 enum crash_obj_type {
866         CRASH_DEV,
867         CRASH_BUS,
868 };
869
870 static void
871 bus_responder(enum controlvm_id cmd_id,
872               struct controlvm_message_header *pending_msg_hdr,
873               int response)
874 {
875         if (pending_msg_hdr == NULL)
876                 return;         /* no controlvm response needed */
877
878         if (pending_msg_hdr->id != (u32)cmd_id)
879                 return;
880
881         controlvm_respond(pending_msg_hdr, response);
882 }
883
884 static void
885 device_changestate_responder(enum controlvm_id cmd_id,
886                              struct visor_device *p, int response,
887                              struct spar_segment_state response_state)
888 {
889         struct controlvm_message outmsg;
890         u32 bus_no = p->chipset_bus_no;
891         u32 dev_no = p->chipset_dev_no;
892
893         if (p->pending_msg_hdr == NULL)
894                 return;         /* no controlvm response needed */
895         if (p->pending_msg_hdr->id != cmd_id)
896                 return;
897
898         controlvm_init_response(&outmsg, p->pending_msg_hdr, response);
899
900         outmsg.cmd.device_change_state.bus_no = bus_no;
901         outmsg.cmd.device_change_state.dev_no = dev_no;
902         outmsg.cmd.device_change_state.state = response_state;
903
904         if (!visorchannel_signalinsert(controlvm_channel,
905                                        CONTROLVM_QUEUE_REQUEST, &outmsg))
906                 return;
907 }
908
909 static void
910 device_responder(enum controlvm_id cmd_id,
911                  struct controlvm_message_header *pending_msg_hdr,
912                  int response)
913 {
914         if (pending_msg_hdr == NULL)
915                 return;         /* no controlvm response needed */
916
917         if (pending_msg_hdr->id != (u32)cmd_id)
918                 return;
919
920         controlvm_respond(pending_msg_hdr, response);
921 }
922
923 static void
924 bus_epilog(struct visor_device *bus_info,
925            u32 cmd, struct controlvm_message_header *msg_hdr,
926            int response, bool need_response)
927 {
928         bool notified = false;
929         struct controlvm_message_header *pmsg_hdr = NULL;
930
931         if (!bus_info) {
932                 /* relying on a valid passed in response code */
933                 /* be lazy and re-use msg_hdr for this failure, is this ok?? */
934                 pmsg_hdr = msg_hdr;
935                 goto away;
936         }
937
938         if (bus_info->pending_msg_hdr) {
939                 /* only non-NULL if dev is still waiting on a response */
940                 response = -CONTROLVM_RESP_ERROR_MESSAGE_ID_INVALID_FOR_CLIENT;
941                 pmsg_hdr = bus_info->pending_msg_hdr;
942                 goto away;
943         }
944
945         if (need_response) {
946                 pmsg_hdr = kzalloc(sizeof(*pmsg_hdr), GFP_KERNEL);
947                 if (!pmsg_hdr) {
948                         response = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
949                         goto away;
950                 }
951
952                 memcpy(pmsg_hdr, msg_hdr,
953                        sizeof(struct controlvm_message_header));
954                 bus_info->pending_msg_hdr = pmsg_hdr;
955         }
956
957         down(&notifier_lock);
958         if (response == CONTROLVM_RESP_SUCCESS) {
959                 switch (cmd) {
960                 case CONTROLVM_BUS_CREATE:
961                         if (busdev_notifiers.bus_create) {
962                                 (*busdev_notifiers.bus_create) (bus_info);
963                                 notified = true;
964                         }
965                         break;
966                 case CONTROLVM_BUS_DESTROY:
967                         if (busdev_notifiers.bus_destroy) {
968                                 (*busdev_notifiers.bus_destroy) (bus_info);
969                                 notified = true;
970                         }
971                         break;
972                 }
973         }
974 away:
975         if (notified)
976                 /* The callback function just called above is responsible
977                  * for calling the appropriate visorchipset_busdev_responders
978                  * function, which will call bus_responder()
979                  */
980                 ;
981         else
982                 /*
983                  * Do not kfree(pmsg_hdr) as this is the failure path.
984                  * The success path ('notified') will call the responder
985                  * directly and kfree() there.
986                  */
987                 bus_responder(cmd, pmsg_hdr, response);
988         up(&notifier_lock);
989 }
990
991 static void
992 device_epilog(struct visor_device *dev_info,
993               struct spar_segment_state state, u32 cmd,
994               struct controlvm_message_header *msg_hdr, int response,
995               bool need_response, bool for_visorbus)
996 {
997         struct visorchipset_busdev_notifiers *notifiers;
998         bool notified = false;
999         struct controlvm_message_header *pmsg_hdr = NULL;
1000
1001         notifiers = &busdev_notifiers;
1002
1003         if (!dev_info) {
1004                 /* relying on a valid passed in response code */
1005                 /* be lazy and re-use msg_hdr for this failure, is this ok?? */
1006                 pmsg_hdr = msg_hdr;
1007                 goto away;
1008         }
1009
1010         if (dev_info->pending_msg_hdr) {
1011                 /* only non-NULL if dev is still waiting on a response */
1012                 response = -CONTROLVM_RESP_ERROR_MESSAGE_ID_INVALID_FOR_CLIENT;
1013                 pmsg_hdr = dev_info->pending_msg_hdr;
1014                 goto away;
1015         }
1016
1017         if (need_response) {
1018                 pmsg_hdr = kzalloc(sizeof(*pmsg_hdr), GFP_KERNEL);
1019                 if (!pmsg_hdr) {
1020                         response = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
1021                         goto away;
1022                 }
1023
1024                 memcpy(pmsg_hdr, msg_hdr,
1025                        sizeof(struct controlvm_message_header));
1026                 dev_info->pending_msg_hdr = pmsg_hdr;
1027         }
1028
1029         down(&notifier_lock);
1030         if (response >= 0) {
1031                 switch (cmd) {
1032                 case CONTROLVM_DEVICE_CREATE:
1033                         if (notifiers->device_create) {
1034                                 (*notifiers->device_create) (dev_info);
1035                                 notified = true;
1036                         }
1037                         break;
1038                 case CONTROLVM_DEVICE_CHANGESTATE:
1039                         /* ServerReady / ServerRunning / SegmentStateRunning */
1040                         if (state.alive == segment_state_running.alive &&
1041                             state.operating ==
1042                                 segment_state_running.operating) {
1043                                 if (notifiers->device_resume) {
1044                                         (*notifiers->device_resume) (dev_info);
1045                                         notified = true;
1046                                 }
1047                         }
1048                         /* ServerNotReady / ServerLost / SegmentStateStandby */
1049                         else if (state.alive == segment_state_standby.alive &&
1050                                  state.operating ==
1051                                  segment_state_standby.operating) {
1052                                 /* technically this is standby case
1053                                  * where server is lost
1054                                  */
1055                                 if (notifiers->device_pause) {
1056                                         (*notifiers->device_pause) (dev_info);
1057                                         notified = true;
1058                                 }
1059                         }
1060                         break;
1061                 case CONTROLVM_DEVICE_DESTROY:
1062                         if (notifiers->device_destroy) {
1063                                 (*notifiers->device_destroy) (dev_info);
1064                                 notified = true;
1065                         }
1066                         break;
1067                 }
1068         }
1069 away:
1070         if (notified)
1071                 /* The callback function just called above is responsible
1072                  * for calling the appropriate visorchipset_busdev_responders
1073                  * function, which will call device_responder()
1074                  */
1075                 ;
1076         else
1077                 /*
1078                  * Do not kfree(pmsg_hdr) as this is the failure path.
1079                  * The success path ('notified') will call the responder
1080                  * directly and kfree() there.
1081                  */
1082                 device_responder(cmd, pmsg_hdr, response);
1083         up(&notifier_lock);
1084 }
1085
1086 static void
1087 bus_create(struct controlvm_message *inmsg)
1088 {
1089         struct controlvm_message_packet *cmd = &inmsg->cmd;
1090         u32 bus_no = cmd->create_bus.bus_no;
1091         int rc = CONTROLVM_RESP_SUCCESS;
1092         struct visor_device *bus_info;
1093         struct visorchannel *visorchannel;
1094
1095         bus_info = visorbus_get_device_by_id(bus_no, BUS_ROOT_DEVICE, NULL);
1096         if (bus_info && (bus_info->state.created == 1)) {
1097                 POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus_no,
1098                                  POSTCODE_SEVERITY_ERR);
1099                 rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
1100                 goto cleanup;
1101         }
1102         bus_info = kzalloc(sizeof(*bus_info), GFP_KERNEL);
1103         if (!bus_info) {
1104                 POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus_no,
1105                                  POSTCODE_SEVERITY_ERR);
1106                 rc = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
1107                 goto cleanup;
1108         }
1109
1110         INIT_LIST_HEAD(&bus_info->list_all);
1111         bus_info->chipset_bus_no = bus_no;
1112         bus_info->chipset_dev_no = BUS_ROOT_DEVICE;
1113
1114         POSTCODE_LINUX_3(BUS_CREATE_ENTRY_PC, bus_no, POSTCODE_SEVERITY_INFO);
1115
1116         visorchannel = visorchannel_create(cmd->create_bus.channel_addr,
1117                                            cmd->create_bus.channel_bytes,
1118                                            GFP_KERNEL,
1119                                            cmd->create_bus.bus_data_type_uuid);
1120
1121         if (!visorchannel) {
1122                 POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus_no,
1123                                  POSTCODE_SEVERITY_ERR);
1124                 rc = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
1125                 kfree(bus_info);
1126                 bus_info = NULL;
1127                 goto cleanup;
1128         }
1129         bus_info->visorchannel = visorchannel;
1130
1131         POSTCODE_LINUX_3(BUS_CREATE_EXIT_PC, bus_no, POSTCODE_SEVERITY_INFO);
1132
1133 cleanup:
1134         bus_epilog(bus_info, CONTROLVM_BUS_CREATE, &inmsg->hdr,
1135                    rc, inmsg->hdr.flags.response_expected == 1);
1136 }
1137
1138 static void
1139 bus_destroy(struct controlvm_message *inmsg)
1140 {
1141         struct controlvm_message_packet *cmd = &inmsg->cmd;
1142         u32 bus_no = cmd->destroy_bus.bus_no;
1143         struct visor_device *bus_info;
1144         int rc = CONTROLVM_RESP_SUCCESS;
1145
1146         bus_info = visorbus_get_device_by_id(bus_no, BUS_ROOT_DEVICE, NULL);
1147         if (!bus_info)
1148                 rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
1149         else if (bus_info->state.created == 0)
1150                 rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
1151
1152         bus_epilog(bus_info, CONTROLVM_BUS_DESTROY, &inmsg->hdr,
1153                    rc, inmsg->hdr.flags.response_expected == 1);
1154
1155         /* bus_info is freed as part of the busdevice_release function */
1156 }
1157
1158 static void
1159 bus_configure(struct controlvm_message *inmsg,
1160               struct parser_context *parser_ctx)
1161 {
1162         struct controlvm_message_packet *cmd = &inmsg->cmd;
1163         u32 bus_no;
1164         struct visor_device *bus_info;
1165         int rc = CONTROLVM_RESP_SUCCESS;
1166
1167         bus_no = cmd->configure_bus.bus_no;
1168         POSTCODE_LINUX_3(BUS_CONFIGURE_ENTRY_PC, bus_no,
1169                          POSTCODE_SEVERITY_INFO);
1170
1171         bus_info = visorbus_get_device_by_id(bus_no, BUS_ROOT_DEVICE, NULL);
1172         if (!bus_info) {
1173                 POSTCODE_LINUX_3(BUS_CONFIGURE_FAILURE_PC, bus_no,
1174                                  POSTCODE_SEVERITY_ERR);
1175                 rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
1176         } else if (bus_info->state.created == 0) {
1177                 POSTCODE_LINUX_3(BUS_CONFIGURE_FAILURE_PC, bus_no,
1178                                  POSTCODE_SEVERITY_ERR);
1179                 rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
1180         } else if (bus_info->pending_msg_hdr != NULL) {
1181                 POSTCODE_LINUX_3(BUS_CONFIGURE_FAILURE_PC, bus_no,
1182                                  POSTCODE_SEVERITY_ERR);
1183                 rc = -CONTROLVM_RESP_ERROR_MESSAGE_ID_INVALID_FOR_CLIENT;
1184         } else {
1185                 visorchannel_set_clientpartition(bus_info->visorchannel,
1186                                 cmd->configure_bus.guest_handle);
1187                 bus_info->partition_uuid = parser_id_get(parser_ctx);
1188                 parser_param_start(parser_ctx, PARSERSTRING_NAME);
1189                 bus_info->name = parser_string_get(parser_ctx);
1190
1191                 POSTCODE_LINUX_3(BUS_CONFIGURE_EXIT_PC, bus_no,
1192                                  POSTCODE_SEVERITY_INFO);
1193         }
1194         bus_epilog(bus_info, CONTROLVM_BUS_CONFIGURE, &inmsg->hdr,
1195                    rc, inmsg->hdr.flags.response_expected == 1);
1196 }
1197
1198 static void
1199 my_device_create(struct controlvm_message *inmsg)
1200 {
1201         struct controlvm_message_packet *cmd = &inmsg->cmd;
1202         u32 bus_no = cmd->create_device.bus_no;
1203         u32 dev_no = cmd->create_device.dev_no;
1204         struct visor_device *dev_info = NULL;
1205         struct visor_device *bus_info;
1206         struct visorchannel *visorchannel;
1207         int rc = CONTROLVM_RESP_SUCCESS;
1208
1209         bus_info = visorbus_get_device_by_id(bus_no, BUS_ROOT_DEVICE, NULL);
1210         if (!bus_info) {
1211                 POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
1212                                  POSTCODE_SEVERITY_ERR);
1213                 rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
1214                 goto cleanup;
1215         }
1216
1217         if (bus_info->state.created == 0) {
1218                 POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
1219                                  POSTCODE_SEVERITY_ERR);
1220                 rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
1221                 goto cleanup;
1222         }
1223
1224         dev_info = visorbus_get_device_by_id(bus_no, dev_no, NULL);
1225         if (dev_info && (dev_info->state.created == 1)) {
1226                 POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
1227                                  POSTCODE_SEVERITY_ERR);
1228                 rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
1229                 goto cleanup;
1230         }
1231
1232         dev_info = kzalloc(sizeof(*dev_info), GFP_KERNEL);
1233         if (!dev_info) {
1234                 POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
1235                                  POSTCODE_SEVERITY_ERR);
1236                 rc = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
1237                 goto cleanup;
1238         }
1239
1240         dev_info->chipset_bus_no = bus_no;
1241         dev_info->chipset_dev_no = dev_no;
1242         dev_info->inst = cmd->create_device.dev_inst_uuid;
1243
1244         /* not sure where the best place to set the 'parent' */
1245         dev_info->device.parent = &bus_info->device;
1246
1247         POSTCODE_LINUX_4(DEVICE_CREATE_ENTRY_PC, dev_no, bus_no,
1248                          POSTCODE_SEVERITY_INFO);
1249
1250         visorchannel =
1251                visorchannel_create_with_lock(cmd->create_device.channel_addr,
1252                                              cmd->create_device.channel_bytes,
1253                                              GFP_KERNEL,
1254                                              cmd->create_device.data_type_uuid);
1255
1256         if (!visorchannel) {
1257                 POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
1258                                  POSTCODE_SEVERITY_ERR);
1259                 rc = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
1260                 kfree(dev_info);
1261                 dev_info = NULL;
1262                 goto cleanup;
1263         }
1264         dev_info->visorchannel = visorchannel;
1265         dev_info->channel_type_guid = cmd->create_device.data_type_uuid;
1266         POSTCODE_LINUX_4(DEVICE_CREATE_EXIT_PC, dev_no, bus_no,
1267                          POSTCODE_SEVERITY_INFO);
1268 cleanup:
1269         device_epilog(dev_info, segment_state_running,
1270                       CONTROLVM_DEVICE_CREATE, &inmsg->hdr, rc,
1271                       inmsg->hdr.flags.response_expected == 1, 1);
1272 }
1273
1274 static void
1275 my_device_changestate(struct controlvm_message *inmsg)
1276 {
1277         struct controlvm_message_packet *cmd = &inmsg->cmd;
1278         u32 bus_no = cmd->device_change_state.bus_no;
1279         u32 dev_no = cmd->device_change_state.dev_no;
1280         struct spar_segment_state state = cmd->device_change_state.state;
1281         struct visor_device *dev_info;
1282         int rc = CONTROLVM_RESP_SUCCESS;
1283
1284         dev_info = visorbus_get_device_by_id(bus_no, dev_no, NULL);
1285         if (!dev_info) {
1286                 POSTCODE_LINUX_4(DEVICE_CHANGESTATE_FAILURE_PC, dev_no, bus_no,
1287                                  POSTCODE_SEVERITY_ERR);
1288                 rc = -CONTROLVM_RESP_ERROR_DEVICE_INVALID;
1289         } else if (dev_info->state.created == 0) {
1290                 POSTCODE_LINUX_4(DEVICE_CHANGESTATE_FAILURE_PC, dev_no, bus_no,
1291                                  POSTCODE_SEVERITY_ERR);
1292                 rc = -CONTROLVM_RESP_ERROR_DEVICE_INVALID;
1293         }
1294         if ((rc >= CONTROLVM_RESP_SUCCESS) && dev_info)
1295                 device_epilog(dev_info, state,
1296                               CONTROLVM_DEVICE_CHANGESTATE, &inmsg->hdr, rc,
1297                               inmsg->hdr.flags.response_expected == 1, 1);
1298 }
1299
1300 static void
1301 my_device_destroy(struct controlvm_message *inmsg)
1302 {
1303         struct controlvm_message_packet *cmd = &inmsg->cmd;
1304         u32 bus_no = cmd->destroy_device.bus_no;
1305         u32 dev_no = cmd->destroy_device.dev_no;
1306         struct visor_device *dev_info;
1307         int rc = CONTROLVM_RESP_SUCCESS;
1308
1309         dev_info = visorbus_get_device_by_id(bus_no, dev_no, NULL);
1310         if (!dev_info)
1311                 rc = -CONTROLVM_RESP_ERROR_DEVICE_INVALID;
1312         else if (dev_info->state.created == 0)
1313                 rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
1314
1315         if ((rc >= CONTROLVM_RESP_SUCCESS) && dev_info)
1316                 device_epilog(dev_info, segment_state_running,
1317                               CONTROLVM_DEVICE_DESTROY, &inmsg->hdr, rc,
1318                               inmsg->hdr.flags.response_expected == 1, 1);
1319 }
1320
1321 /* When provided with the physical address of the controlvm channel
1322  * (phys_addr), the offset to the payload area we need to manage
1323  * (offset), and the size of this payload area (bytes), fills in the
1324  * controlvm_payload_info struct.  Returns true for success or false
1325  * for failure.
1326  */
1327 static int
1328 initialize_controlvm_payload_info(u64 phys_addr, u64 offset, u32 bytes,
1329                                   struct visor_controlvm_payload_info *info)
1330 {
1331         u8 *payload = NULL;
1332         int rc = CONTROLVM_RESP_SUCCESS;
1333
1334         if (!info) {
1335                 rc = -CONTROLVM_RESP_ERROR_PAYLOAD_INVALID;
1336                 goto cleanup;
1337         }
1338         memset(info, 0, sizeof(struct visor_controlvm_payload_info));
1339         if ((offset == 0) || (bytes == 0)) {
1340                 rc = -CONTROLVM_RESP_ERROR_PAYLOAD_INVALID;
1341                 goto cleanup;
1342         }
1343         payload = memremap(phys_addr + offset, bytes, MEMREMAP_WB);
1344         if (!payload) {
1345                 rc = -CONTROLVM_RESP_ERROR_IOREMAP_FAILED;
1346                 goto cleanup;
1347         }
1348
1349         info->offset = offset;
1350         info->bytes = bytes;
1351         info->ptr = payload;
1352
1353 cleanup:
1354         if (rc < 0) {
1355                 if (payload) {
1356                         memunmap(payload);
1357                         payload = NULL;
1358                 }
1359         }
1360         return rc;
1361 }
1362
1363 static void
1364 destroy_controlvm_payload_info(struct visor_controlvm_payload_info *info)
1365 {
1366         if (info->ptr) {
1367                 memunmap(info->ptr);
1368                 info->ptr = NULL;
1369         }
1370         memset(info, 0, sizeof(struct visor_controlvm_payload_info));
1371 }
1372
1373 static void
1374 initialize_controlvm_payload(void)
1375 {
1376         u64 phys_addr = visorchannel_get_physaddr(controlvm_channel);
1377         u64 payload_offset = 0;
1378         u32 payload_bytes = 0;
1379
1380         if (visorchannel_read(controlvm_channel,
1381                               offsetof(struct spar_controlvm_channel_protocol,
1382                                        request_payload_offset),
1383                               &payload_offset, sizeof(payload_offset)) < 0) {
1384                 POSTCODE_LINUX_2(CONTROLVM_INIT_FAILURE_PC,
1385                                  POSTCODE_SEVERITY_ERR);
1386                 return;
1387         }
1388         if (visorchannel_read(controlvm_channel,
1389                               offsetof(struct spar_controlvm_channel_protocol,
1390                                        request_payload_bytes),
1391                               &payload_bytes, sizeof(payload_bytes)) < 0) {
1392                 POSTCODE_LINUX_2(CONTROLVM_INIT_FAILURE_PC,
1393                                  POSTCODE_SEVERITY_ERR);
1394                 return;
1395         }
1396         initialize_controlvm_payload_info(phys_addr,
1397                                           payload_offset, payload_bytes,
1398                                           &controlvm_payload_info);
1399 }
1400
1401 /*  Send ACTION=online for DEVPATH=/sys/devices/platform/visorchipset.
1402  *  Returns CONTROLVM_RESP_xxx code.
1403  */
1404 static int
1405 visorchipset_chipset_ready(void)
1406 {
1407         kobject_uevent(&visorchipset_platform_device.dev.kobj, KOBJ_ONLINE);
1408         return CONTROLVM_RESP_SUCCESS;
1409 }
1410
1411 static int
1412 visorchipset_chipset_selftest(void)
1413 {
1414         char env_selftest[20];
1415         char *envp[] = { env_selftest, NULL };
1416
1417         sprintf(env_selftest, "SPARSP_SELFTEST=%d", 1);
1418         kobject_uevent_env(&visorchipset_platform_device.dev.kobj, KOBJ_CHANGE,
1419                            envp);
1420         return CONTROLVM_RESP_SUCCESS;
1421 }
1422
1423 /*  Send ACTION=offline for DEVPATH=/sys/devices/platform/visorchipset.
1424  *  Returns CONTROLVM_RESP_xxx code.
1425  */
1426 static int
1427 visorchipset_chipset_notready(void)
1428 {
1429         kobject_uevent(&visorchipset_platform_device.dev.kobj, KOBJ_OFFLINE);
1430         return CONTROLVM_RESP_SUCCESS;
1431 }
1432
1433 static void
1434 chipset_ready(struct controlvm_message_header *msg_hdr)
1435 {
1436         int rc = visorchipset_chipset_ready();
1437
1438         if (rc != CONTROLVM_RESP_SUCCESS)
1439                 rc = -rc;
1440         if (msg_hdr->flags.response_expected && !visorchipset_holdchipsetready)
1441                 controlvm_respond(msg_hdr, rc);
1442         if (msg_hdr->flags.response_expected && visorchipset_holdchipsetready) {
1443                 /* Send CHIPSET_READY response when all modules have been loaded
1444                  * and disks mounted for the partition
1445                  */
1446                 g_chipset_msg_hdr = *msg_hdr;
1447         }
1448 }
1449
1450 static void
1451 chipset_selftest(struct controlvm_message_header *msg_hdr)
1452 {
1453         int rc = visorchipset_chipset_selftest();
1454
1455         if (rc != CONTROLVM_RESP_SUCCESS)
1456                 rc = -rc;
1457         if (msg_hdr->flags.response_expected)
1458                 controlvm_respond(msg_hdr, rc);
1459 }
1460
1461 static void
1462 chipset_notready(struct controlvm_message_header *msg_hdr)
1463 {
1464         int rc = visorchipset_chipset_notready();
1465
1466         if (rc != CONTROLVM_RESP_SUCCESS)
1467                 rc = -rc;
1468         if (msg_hdr->flags.response_expected)
1469                 controlvm_respond(msg_hdr, rc);
1470 }
1471
1472 /* This is your "one-stop" shop for grabbing the next message from the
1473  * CONTROLVM_QUEUE_EVENT queue in the controlvm channel.
1474  */
1475 static bool
1476 read_controlvm_event(struct controlvm_message *msg)
1477 {
1478         if (visorchannel_signalremove(controlvm_channel,
1479                                       CONTROLVM_QUEUE_EVENT, msg)) {
1480                 /* got a message */
1481                 if (msg->hdr.flags.test_message == 1)
1482                         return false;
1483                 return true;
1484         }
1485         return false;
1486 }
1487
1488 /*
1489  * The general parahotplug flow works as follows.  The visorchipset
1490  * driver receives a DEVICE_CHANGESTATE message from Command
1491  * specifying a physical device to enable or disable.  The CONTROLVM
1492  * message handler calls parahotplug_process_message, which then adds
1493  * the message to a global list and kicks off a udev event which
1494  * causes a user level script to enable or disable the specified
1495  * device.  The udev script then writes to
1496  * /proc/visorchipset/parahotplug, which causes parahotplug_proc_write
1497  * to get called, at which point the appropriate CONTROLVM message is
1498  * retrieved from the list and responded to.
1499  */
1500
1501 #define PARAHOTPLUG_TIMEOUT_MS 2000
1502
1503 /*
1504  * Generate unique int to match an outstanding CONTROLVM message with a
1505  * udev script /proc response
1506  */
1507 static int
1508 parahotplug_next_id(void)
1509 {
1510         static atomic_t id = ATOMIC_INIT(0);
1511
1512         return atomic_inc_return(&id);
1513 }
1514
1515 /*
1516  * Returns the time (in jiffies) when a CONTROLVM message on the list
1517  * should expire -- PARAHOTPLUG_TIMEOUT_MS in the future
1518  */
1519 static unsigned long
1520 parahotplug_next_expiration(void)
1521 {
1522         return jiffies + msecs_to_jiffies(PARAHOTPLUG_TIMEOUT_MS);
1523 }
1524
1525 /*
1526  * Create a parahotplug_request, which is basically a wrapper for a
1527  * CONTROLVM_MESSAGE that we can stick on a list
1528  */
1529 static struct parahotplug_request *
1530 parahotplug_request_create(struct controlvm_message *msg)
1531 {
1532         struct parahotplug_request *req;
1533
1534         req = kmalloc(sizeof(*req), GFP_KERNEL | __GFP_NORETRY);
1535         if (!req)
1536                 return NULL;
1537
1538         req->id = parahotplug_next_id();
1539         req->expiration = parahotplug_next_expiration();
1540         req->msg = *msg;
1541
1542         return req;
1543 }
1544
1545 /*
1546  * Free a parahotplug_request.
1547  */
1548 static void
1549 parahotplug_request_destroy(struct parahotplug_request *req)
1550 {
1551         kfree(req);
1552 }
1553
1554 /*
1555  * Cause uevent to run the user level script to do the disable/enable
1556  * specified in (the CONTROLVM message in) the specified
1557  * parahotplug_request
1558  */
1559 static void
1560 parahotplug_request_kickoff(struct parahotplug_request *req)
1561 {
1562         struct controlvm_message_packet *cmd = &req->msg.cmd;
1563         char env_cmd[40], env_id[40], env_state[40], env_bus[40], env_dev[40],
1564             env_func[40];
1565         char *envp[] = {
1566                 env_cmd, env_id, env_state, env_bus, env_dev, env_func, NULL
1567         };
1568
1569         sprintf(env_cmd, "SPAR_PARAHOTPLUG=1");
1570         sprintf(env_id, "SPAR_PARAHOTPLUG_ID=%d", req->id);
1571         sprintf(env_state, "SPAR_PARAHOTPLUG_STATE=%d",
1572                 cmd->device_change_state.state.active);
1573         sprintf(env_bus, "SPAR_PARAHOTPLUG_BUS=%d",
1574                 cmd->device_change_state.bus_no);
1575         sprintf(env_dev, "SPAR_PARAHOTPLUG_DEVICE=%d",
1576                 cmd->device_change_state.dev_no >> 3);
1577         sprintf(env_func, "SPAR_PARAHOTPLUG_FUNCTION=%d",
1578                 cmd->device_change_state.dev_no & 0x7);
1579
1580         kobject_uevent_env(&visorchipset_platform_device.dev.kobj, KOBJ_CHANGE,
1581                            envp);
1582 }
1583
1584 /*
1585  * Remove any request from the list that's been on there too long and
1586  * respond with an error.
1587  */
1588 static void
1589 parahotplug_process_list(void)
1590 {
1591         struct list_head *pos;
1592         struct list_head *tmp;
1593
1594         spin_lock(&parahotplug_request_list_lock);
1595
1596         list_for_each_safe(pos, tmp, &parahotplug_request_list) {
1597                 struct parahotplug_request *req =
1598                     list_entry(pos, struct parahotplug_request, list);
1599
1600                 if (!time_after_eq(jiffies, req->expiration))
1601                         continue;
1602
1603                 list_del(pos);
1604                 if (req->msg.hdr.flags.response_expected)
1605                         controlvm_respond_physdev_changestate(
1606                                 &req->msg.hdr,
1607                                 CONTROLVM_RESP_ERROR_DEVICE_UDEV_TIMEOUT,
1608                                 req->msg.cmd.device_change_state.state);
1609                 parahotplug_request_destroy(req);
1610         }
1611
1612         spin_unlock(&parahotplug_request_list_lock);
1613 }
1614
1615 /*
1616  * Called from the /proc handler, which means the user script has
1617  * finished the enable/disable.  Find the matching identifier, and
1618  * respond to the CONTROLVM message with success.
1619  */
1620 static int
1621 parahotplug_request_complete(int id, u16 active)
1622 {
1623         struct list_head *pos;
1624         struct list_head *tmp;
1625
1626         spin_lock(&parahotplug_request_list_lock);
1627
1628         /* Look for a request matching "id". */
1629         list_for_each_safe(pos, tmp, &parahotplug_request_list) {
1630                 struct parahotplug_request *req =
1631                     list_entry(pos, struct parahotplug_request, list);
1632                 if (req->id == id) {
1633                         /* Found a match.  Remove it from the list and
1634                          * respond.
1635                          */
1636                         list_del(pos);
1637                         spin_unlock(&parahotplug_request_list_lock);
1638                         req->msg.cmd.device_change_state.state.active = active;
1639                         if (req->msg.hdr.flags.response_expected)
1640                                 controlvm_respond_physdev_changestate(
1641                                         &req->msg.hdr, CONTROLVM_RESP_SUCCESS,
1642                                         req->msg.cmd.device_change_state.state);
1643                         parahotplug_request_destroy(req);
1644                         return 0;
1645                 }
1646         }
1647
1648         spin_unlock(&parahotplug_request_list_lock);
1649         return -1;
1650 }
1651
1652 /*
1653  * Enables or disables a PCI device by kicking off a udev script
1654  */
1655 static void
1656 parahotplug_process_message(struct controlvm_message *inmsg)
1657 {
1658         struct parahotplug_request *req;
1659
1660         req = parahotplug_request_create(inmsg);
1661
1662         if (!req)
1663                 return;
1664
1665         if (inmsg->cmd.device_change_state.state.active) {
1666                 /* For enable messages, just respond with success
1667                 * right away.  This is a bit of a hack, but there are
1668                 * issues with the early enable messages we get (with
1669                 * either the udev script not detecting that the device
1670                 * is up, or not getting called at all).  Fortunately
1671                 * the messages that get lost don't matter anyway, as
1672                 * devices are automatically enabled at
1673                 * initialization.
1674                 */
1675                 parahotplug_request_kickoff(req);
1676                 controlvm_respond_physdev_changestate(&inmsg->hdr,
1677                         CONTROLVM_RESP_SUCCESS,
1678                         inmsg->cmd.device_change_state.state);
1679                 parahotplug_request_destroy(req);
1680         } else {
1681                 /* For disable messages, add the request to the
1682                 * request list before kicking off the udev script.  It
1683                 * won't get responded to until the script has
1684                 * indicated it's done.
1685                 */
1686                 spin_lock(&parahotplug_request_list_lock);
1687                 list_add_tail(&req->list, &parahotplug_request_list);
1688                 spin_unlock(&parahotplug_request_list_lock);
1689
1690                 parahotplug_request_kickoff(req);
1691         }
1692 }
1693
1694 /* Process a controlvm message.
1695  * Return result:
1696  *    false - this function will return false only in the case where the
1697  *            controlvm message was NOT processed, but processing must be
1698  *            retried before reading the next controlvm message; a
1699  *            scenario where this can occur is when we need to throttle
1700  *            the allocation of memory in which to copy out controlvm
1701  *            payload data
1702  *    true  - processing of the controlvm message completed,
1703  *            either successfully or with an error.
1704  */
1705 static bool
1706 handle_command(struct controlvm_message inmsg, u64 channel_addr)
1707 {
1708         struct controlvm_message_packet *cmd = &inmsg.cmd;
1709         u64 parm_addr;
1710         u32 parm_bytes;
1711         struct parser_context *parser_ctx = NULL;
1712         bool local_addr;
1713         struct controlvm_message ackmsg;
1714
1715         /* create parsing context if necessary */
1716         local_addr = (inmsg.hdr.flags.test_message == 1);
1717         if (channel_addr == 0)
1718                 return true;
1719         parm_addr = channel_addr + inmsg.hdr.payload_vm_offset;
1720         parm_bytes = inmsg.hdr.payload_bytes;
1721
1722         /* Parameter and channel addresses within test messages actually lie
1723          * within our OS-controlled memory.  We need to know that, because it
1724          * makes a difference in how we compute the virtual address.
1725          */
1726         if (parm_addr && parm_bytes) {
1727                 bool retry = false;
1728
1729                 parser_ctx =
1730                     parser_init_byte_stream(parm_addr, parm_bytes,
1731                                             local_addr, &retry);
1732                 if (!parser_ctx && retry)
1733                         return false;
1734         }
1735
1736         if (!local_addr) {
1737                 controlvm_init_response(&ackmsg, &inmsg.hdr,
1738                                         CONTROLVM_RESP_SUCCESS);
1739                 if (controlvm_channel)
1740                         visorchannel_signalinsert(controlvm_channel,
1741                                                   CONTROLVM_QUEUE_ACK,
1742                                                   &ackmsg);
1743         }
1744         switch (inmsg.hdr.id) {
1745         case CONTROLVM_CHIPSET_INIT:
1746                 chipset_init(&inmsg);
1747                 break;
1748         case CONTROLVM_BUS_CREATE:
1749                 bus_create(&inmsg);
1750                 break;
1751         case CONTROLVM_BUS_DESTROY:
1752                 bus_destroy(&inmsg);
1753                 break;
1754         case CONTROLVM_BUS_CONFIGURE:
1755                 bus_configure(&inmsg, parser_ctx);
1756                 break;
1757         case CONTROLVM_DEVICE_CREATE:
1758                 my_device_create(&inmsg);
1759                 break;
1760         case CONTROLVM_DEVICE_CHANGESTATE:
1761                 if (cmd->device_change_state.flags.phys_device) {
1762                         parahotplug_process_message(&inmsg);
1763                 } else {
1764                         /* save the hdr and cmd structures for later use */
1765                         /* when sending back the response to Command */
1766                         my_device_changestate(&inmsg);
1767                         g_devicechangestate_packet = inmsg.cmd;
1768                         break;
1769                 }
1770                 break;
1771         case CONTROLVM_DEVICE_DESTROY:
1772                 my_device_destroy(&inmsg);
1773                 break;
1774         case CONTROLVM_DEVICE_CONFIGURE:
1775                 /* no op for now, just send a respond that we passed */
1776                 if (inmsg.hdr.flags.response_expected)
1777                         controlvm_respond(&inmsg.hdr, CONTROLVM_RESP_SUCCESS);
1778                 break;
1779         case CONTROLVM_CHIPSET_READY:
1780                 chipset_ready(&inmsg.hdr);
1781                 break;
1782         case CONTROLVM_CHIPSET_SELFTEST:
1783                 chipset_selftest(&inmsg.hdr);
1784                 break;
1785         case CONTROLVM_CHIPSET_STOP:
1786                 chipset_notready(&inmsg.hdr);
1787                 break;
1788         default:
1789                 if (inmsg.hdr.flags.response_expected)
1790                         controlvm_respond(&inmsg.hdr,
1791                                 -CONTROLVM_RESP_ERROR_MESSAGE_ID_UNKNOWN);
1792                 break;
1793         }
1794
1795         if (parser_ctx) {
1796                 parser_done(parser_ctx);
1797                 parser_ctx = NULL;
1798         }
1799         return true;
1800 }
1801
1802 static inline unsigned int
1803 issue_vmcall_io_controlvm_addr(u64 *control_addr, u32 *control_bytes)
1804 {
1805         struct vmcall_io_controlvm_addr_params params;
1806         int result = VMCALL_SUCCESS;
1807         u64 physaddr;
1808
1809         physaddr = virt_to_phys(&params);
1810         ISSUE_IO_VMCALL(VMCALL_IO_CONTROLVM_ADDR, physaddr, result);
1811         if (VMCALL_SUCCESSFUL(result)) {
1812                 *control_addr = params.address;
1813                 *control_bytes = params.channel_bytes;
1814         }
1815         return result;
1816 }
1817
1818 static u64 controlvm_get_channel_address(void)
1819 {
1820         u64 addr = 0;
1821         u32 size = 0;
1822
1823         if (!VMCALL_SUCCESSFUL(issue_vmcall_io_controlvm_addr(&addr, &size)))
1824                 return 0;
1825
1826         return addr;
1827 }
1828
1829 static void
1830 controlvm_periodic_work(struct work_struct *work)
1831 {
1832         struct controlvm_message inmsg;
1833         bool got_command = false;
1834         bool handle_command_failed = false;
1835         static u64 poll_count;
1836
1837         /* make sure visorbus server is registered for controlvm callbacks */
1838         if (visorchipset_visorbusregwait && !visorbusregistered)
1839                 goto cleanup;
1840
1841         poll_count++;
1842         if (poll_count >= 250)
1843                 ;       /* keep going */
1844         else
1845                 goto cleanup;
1846
1847         /* Check events to determine if response to CHIPSET_READY
1848          * should be sent
1849          */
1850         if (visorchipset_holdchipsetready &&
1851             (g_chipset_msg_hdr.id != CONTROLVM_INVALID)) {
1852                 if (check_chipset_events() == 1) {
1853                         controlvm_respond(&g_chipset_msg_hdr, 0);
1854                         clear_chipset_events();
1855                         memset(&g_chipset_msg_hdr, 0,
1856                                sizeof(struct controlvm_message_header));
1857                 }
1858         }
1859
1860         while (visorchannel_signalremove(controlvm_channel,
1861                                          CONTROLVM_QUEUE_RESPONSE,
1862                                          &inmsg))
1863                 ;
1864         if (!got_command) {
1865                 if (controlvm_pending_msg_valid) {
1866                         /* we throttled processing of a prior
1867                         * msg, so try to process it again
1868                         * rather than reading a new one
1869                         */
1870                         inmsg = controlvm_pending_msg;
1871                         controlvm_pending_msg_valid = false;
1872                         got_command = true;
1873                 } else {
1874                         got_command = read_controlvm_event(&inmsg);
1875                 }
1876         }
1877
1878         handle_command_failed = false;
1879         while (got_command && (!handle_command_failed)) {
1880                 most_recent_message_jiffies = jiffies;
1881                 if (handle_command(inmsg,
1882                                    visorchannel_get_physaddr
1883                                    (controlvm_channel)))
1884                         got_command = read_controlvm_event(&inmsg);
1885                 else {
1886                         /* this is a scenario where throttling
1887                         * is required, but probably NOT an
1888                         * error...; we stash the current
1889                         * controlvm msg so we will attempt to
1890                         * reprocess it on our next loop
1891                         */
1892                         handle_command_failed = true;
1893                         controlvm_pending_msg = inmsg;
1894                         controlvm_pending_msg_valid = true;
1895                 }
1896         }
1897
1898         /* parahotplug_worker */
1899         parahotplug_process_list();
1900
1901 cleanup:
1902
1903         if (time_after(jiffies,
1904                        most_recent_message_jiffies + (HZ * MIN_IDLE_SECONDS))) {
1905                 /* it's been longer than MIN_IDLE_SECONDS since we
1906                 * processed our last controlvm message; slow down the
1907                 * polling
1908                 */
1909                 if (poll_jiffies != POLLJIFFIES_CONTROLVMCHANNEL_SLOW)
1910                         poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_SLOW;
1911         } else {
1912                 if (poll_jiffies != POLLJIFFIES_CONTROLVMCHANNEL_FAST)
1913                         poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_FAST;
1914         }
1915
1916         queue_delayed_work(periodic_controlvm_workqueue,
1917                            &periodic_controlvm_work, poll_jiffies);
1918 }
1919
1920 static void
1921 setup_crash_devices_work_queue(struct work_struct *work)
1922 {
1923         struct controlvm_message local_crash_bus_msg;
1924         struct controlvm_message local_crash_dev_msg;
1925         struct controlvm_message msg;
1926         u32 local_crash_msg_offset;
1927         u16 local_crash_msg_count;
1928
1929         /* make sure visorbus is registered for controlvm callbacks */
1930         if (visorchipset_visorbusregwait && !visorbusregistered)
1931                 goto cleanup;
1932
1933         POSTCODE_LINUX_2(CRASH_DEV_ENTRY_PC, POSTCODE_SEVERITY_INFO);
1934
1935         /* send init chipset msg */
1936         msg.hdr.id = CONTROLVM_CHIPSET_INIT;
1937         msg.cmd.init_chipset.bus_count = 23;
1938         msg.cmd.init_chipset.switch_count = 0;
1939
1940         chipset_init(&msg);
1941
1942         /* get saved message count */
1943         if (visorchannel_read(controlvm_channel,
1944                               offsetof(struct spar_controlvm_channel_protocol,
1945                                        saved_crash_message_count),
1946                               &local_crash_msg_count, sizeof(u16)) < 0) {
1947                 POSTCODE_LINUX_2(CRASH_DEV_CTRL_RD_FAILURE_PC,
1948                                  POSTCODE_SEVERITY_ERR);
1949                 return;
1950         }
1951
1952         if (local_crash_msg_count != CONTROLVM_CRASHMSG_MAX) {
1953                 POSTCODE_LINUX_3(CRASH_DEV_COUNT_FAILURE_PC,
1954                                  local_crash_msg_count,
1955                                  POSTCODE_SEVERITY_ERR);
1956                 return;
1957         }
1958
1959         /* get saved crash message offset */
1960         if (visorchannel_read(controlvm_channel,
1961                               offsetof(struct spar_controlvm_channel_protocol,
1962                                        saved_crash_message_offset),
1963                               &local_crash_msg_offset, sizeof(u32)) < 0) {
1964                 POSTCODE_LINUX_2(CRASH_DEV_CTRL_RD_FAILURE_PC,
1965                                  POSTCODE_SEVERITY_ERR);
1966                 return;
1967         }
1968
1969         /* read create device message for storage bus offset */
1970         if (visorchannel_read(controlvm_channel,
1971                               local_crash_msg_offset,
1972                               &local_crash_bus_msg,
1973                               sizeof(struct controlvm_message)) < 0) {
1974                 POSTCODE_LINUX_2(CRASH_DEV_RD_BUS_FAIULRE_PC,
1975                                  POSTCODE_SEVERITY_ERR);
1976                 return;
1977         }
1978
1979         /* read create device message for storage device */
1980         if (visorchannel_read(controlvm_channel,
1981                               local_crash_msg_offset +
1982                               sizeof(struct controlvm_message),
1983                               &local_crash_dev_msg,
1984                               sizeof(struct controlvm_message)) < 0) {
1985                 POSTCODE_LINUX_2(CRASH_DEV_RD_DEV_FAIULRE_PC,
1986                                  POSTCODE_SEVERITY_ERR);
1987                 return;
1988         }
1989
1990         /* reuse IOVM create bus message */
1991         if (local_crash_bus_msg.cmd.create_bus.channel_addr) {
1992                 bus_create(&local_crash_bus_msg);
1993         } else {
1994                 POSTCODE_LINUX_2(CRASH_DEV_BUS_NULL_FAILURE_PC,
1995                                  POSTCODE_SEVERITY_ERR);
1996                 return;
1997         }
1998
1999         /* reuse create device message for storage device */
2000         if (local_crash_dev_msg.cmd.create_device.channel_addr) {
2001                 my_device_create(&local_crash_dev_msg);
2002         } else {
2003                 POSTCODE_LINUX_2(CRASH_DEV_DEV_NULL_FAILURE_PC,
2004                                  POSTCODE_SEVERITY_ERR);
2005                 return;
2006         }
2007         POSTCODE_LINUX_2(CRASH_DEV_EXIT_PC, POSTCODE_SEVERITY_INFO);
2008         return;
2009
2010 cleanup:
2011
2012         poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_SLOW;
2013
2014         queue_delayed_work(periodic_controlvm_workqueue,
2015                            &periodic_controlvm_work, poll_jiffies);
2016 }
2017
2018 static void
2019 bus_create_response(struct visor_device *bus_info, int response)
2020 {
2021         if (response >= 0)
2022                 bus_info->state.created = 1;
2023
2024         bus_responder(CONTROLVM_BUS_CREATE, bus_info->pending_msg_hdr,
2025                       response);
2026
2027         kfree(bus_info->pending_msg_hdr);
2028         bus_info->pending_msg_hdr = NULL;
2029 }
2030
2031 static void
2032 bus_destroy_response(struct visor_device *bus_info, int response)
2033 {
2034         bus_responder(CONTROLVM_BUS_DESTROY, bus_info->pending_msg_hdr,
2035                       response);
2036
2037         kfree(bus_info->pending_msg_hdr);
2038         bus_info->pending_msg_hdr = NULL;
2039 }
2040
2041 static void
2042 device_create_response(struct visor_device *dev_info, int response)
2043 {
2044         if (response >= 0)
2045                 dev_info->state.created = 1;
2046
2047         device_responder(CONTROLVM_DEVICE_CREATE, dev_info->pending_msg_hdr,
2048                          response);
2049
2050         kfree(dev_info->pending_msg_hdr);
2051         dev_info->pending_msg_hdr = NULL;
2052 }
2053
2054 static void
2055 device_destroy_response(struct visor_device *dev_info, int response)
2056 {
2057         device_responder(CONTROLVM_DEVICE_DESTROY, dev_info->pending_msg_hdr,
2058                          response);
2059
2060         kfree(dev_info->pending_msg_hdr);
2061         dev_info->pending_msg_hdr = NULL;
2062 }
2063
2064 static void
2065 visorchipset_device_pause_response(struct visor_device *dev_info,
2066                                    int response)
2067 {
2068         device_changestate_responder(CONTROLVM_DEVICE_CHANGESTATE,
2069                                      dev_info, response,
2070                                      segment_state_standby);
2071
2072         kfree(dev_info->pending_msg_hdr);
2073         dev_info->pending_msg_hdr = NULL;
2074 }
2075
2076 static void
2077 device_resume_response(struct visor_device *dev_info, int response)
2078 {
2079         device_changestate_responder(CONTROLVM_DEVICE_CHANGESTATE,
2080                                      dev_info, response,
2081                                      segment_state_running);
2082
2083         kfree(dev_info->pending_msg_hdr);
2084         dev_info->pending_msg_hdr = NULL;
2085 }
2086
2087 static ssize_t chipsetready_store(struct device *dev,
2088                                   struct device_attribute *attr,
2089                                   const char *buf, size_t count)
2090 {
2091         char msgtype[64];
2092
2093         if (sscanf(buf, "%63s", msgtype) != 1)
2094                 return -EINVAL;
2095
2096         if (!strcmp(msgtype, "CALLHOMEDISK_MOUNTED")) {
2097                 chipset_events[0] = 1;
2098                 return count;
2099         } else if (!strcmp(msgtype, "MODULES_LOADED")) {
2100                 chipset_events[1] = 1;
2101                 return count;
2102         }
2103         return -EINVAL;
2104 }
2105
2106 /* The parahotplug/devicedisabled interface gets called by our support script
2107  * when an SR-IOV device has been shut down. The ID is passed to the script
2108  * and then passed back when the device has been removed.
2109  */
2110 static ssize_t devicedisabled_store(struct device *dev,
2111                                     struct device_attribute *attr,
2112                                     const char *buf, size_t count)
2113 {
2114         unsigned int id;
2115
2116         if (kstrtouint(buf, 10, &id))
2117                 return -EINVAL;
2118
2119         parahotplug_request_complete(id, 0);
2120         return count;
2121 }
2122
2123 /* The parahotplug/deviceenabled interface gets called by our support script
2124  * when an SR-IOV device has been recovered. The ID is passed to the script
2125  * and then passed back when the device has been brought back up.
2126  */
2127 static ssize_t deviceenabled_store(struct device *dev,
2128                                    struct device_attribute *attr,
2129                                    const char *buf, size_t count)
2130 {
2131         unsigned int id;
2132
2133         if (kstrtouint(buf, 10, &id))
2134                 return -EINVAL;
2135
2136         parahotplug_request_complete(id, 1);
2137         return count;
2138 }
2139
2140 static int
2141 visorchipset_mmap(struct file *file, struct vm_area_struct *vma)
2142 {
2143         unsigned long physaddr = 0;
2144         unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
2145         u64 addr = 0;
2146
2147         /* sv_enable_dfp(); */
2148         if (offset & (PAGE_SIZE - 1))
2149                 return -ENXIO;  /* need aligned offsets */
2150
2151         switch (offset) {
2152         case VISORCHIPSET_MMAP_CONTROLCHANOFFSET:
2153                 vma->vm_flags |= VM_IO;
2154                 if (!*file_controlvm_channel)
2155                         return -ENXIO;
2156
2157                 visorchannel_read(*file_controlvm_channel,
2158                         offsetof(struct spar_controlvm_channel_protocol,
2159                                  gp_control_channel),
2160                         &addr, sizeof(addr));
2161                 if (!addr)
2162                         return -ENXIO;
2163
2164                 physaddr = (unsigned long)addr;
2165                 if (remap_pfn_range(vma, vma->vm_start,
2166                                     physaddr >> PAGE_SHIFT,
2167                                     vma->vm_end - vma->vm_start,
2168                                     /*pgprot_noncached */
2169                                     (vma->vm_page_prot))) {
2170                         return -EAGAIN;
2171                 }
2172                 break;
2173         default:
2174                 return -ENXIO;
2175         }
2176         return 0;
2177 }
2178
2179 static inline s64 issue_vmcall_query_guest_virtual_time_offset(void)
2180 {
2181         u64 result = VMCALL_SUCCESS;
2182         u64 physaddr = 0;
2183
2184         ISSUE_IO_VMCALL(VMCALL_QUERY_GUEST_VIRTUAL_TIME_OFFSET, physaddr,
2185                         result);
2186         return result;
2187 }
2188
2189 static inline int issue_vmcall_update_physical_time(u64 adjustment)
2190 {
2191         int result = VMCALL_SUCCESS;
2192
2193         ISSUE_IO_VMCALL(VMCALL_UPDATE_PHYSICAL_TIME, adjustment, result);
2194         return result;
2195 }
2196
2197 static long visorchipset_ioctl(struct file *file, unsigned int cmd,
2198                                unsigned long arg)
2199 {
2200         s64 adjustment;
2201         s64 vrtc_offset;
2202
2203         switch (cmd) {
2204         case VMCALL_QUERY_GUEST_VIRTUAL_TIME_OFFSET:
2205                 /* get the physical rtc offset */
2206                 vrtc_offset = issue_vmcall_query_guest_virtual_time_offset();
2207                 if (copy_to_user((void __user *)arg, &vrtc_offset,
2208                                  sizeof(vrtc_offset))) {
2209                         return -EFAULT;
2210                 }
2211                 return 0;
2212         case VMCALL_UPDATE_PHYSICAL_TIME:
2213                 if (copy_from_user(&adjustment, (void __user *)arg,
2214                                    sizeof(adjustment))) {
2215                         return -EFAULT;
2216                 }
2217                 return issue_vmcall_update_physical_time(adjustment);
2218         default:
2219                 return -EFAULT;
2220         }
2221 }
2222
2223 static const struct file_operations visorchipset_fops = {
2224         .owner = THIS_MODULE,
2225         .open = visorchipset_open,
2226         .read = NULL,
2227         .write = NULL,
2228         .unlocked_ioctl = visorchipset_ioctl,
2229         .release = visorchipset_release,
2230         .mmap = visorchipset_mmap,
2231 };
2232
2233 static int
2234 visorchipset_file_init(dev_t major_dev, struct visorchannel **controlvm_channel)
2235 {
2236         int rc = 0;
2237
2238         file_controlvm_channel = controlvm_channel;
2239         cdev_init(&file_cdev, &visorchipset_fops);
2240         file_cdev.owner = THIS_MODULE;
2241         if (MAJOR(major_dev) == 0) {
2242                 rc = alloc_chrdev_region(&major_dev, 0, 1, "visorchipset");
2243                 /* dynamic major device number registration required */
2244                 if (rc < 0)
2245                         return rc;
2246         } else {
2247                 /* static major device number registration required */
2248                 rc = register_chrdev_region(major_dev, 1, "visorchipset");
2249                 if (rc < 0)
2250                         return rc;
2251         }
2252         rc = cdev_add(&file_cdev, MKDEV(MAJOR(major_dev), 0), 1);
2253         if (rc < 0) {
2254                 unregister_chrdev_region(major_dev, 1);
2255                 return rc;
2256         }
2257         return 0;
2258 }
2259
2260 static int
2261 visorchipset_init(struct acpi_device *acpi_device)
2262 {
2263         int rc = 0;
2264         u64 addr;
2265         int tmp_sz = sizeof(struct spar_controlvm_channel_protocol);
2266         uuid_le uuid = SPAR_CONTROLVM_CHANNEL_PROTOCOL_UUID;
2267
2268         addr = controlvm_get_channel_address();
2269         if (!addr)
2270                 return -ENODEV;
2271
2272         memset(&busdev_notifiers, 0, sizeof(busdev_notifiers));
2273         memset(&controlvm_payload_info, 0, sizeof(controlvm_payload_info));
2274
2275         controlvm_channel = visorchannel_create_with_lock(addr, tmp_sz,
2276                                                           GFP_KERNEL, uuid);
2277         if (SPAR_CONTROLVM_CHANNEL_OK_CLIENT(
2278                     visorchannel_get_header(controlvm_channel))) {
2279                 initialize_controlvm_payload();
2280         } else {
2281                 visorchannel_destroy(controlvm_channel);
2282                 controlvm_channel = NULL;
2283                 return -ENODEV;
2284         }
2285
2286         major_dev = MKDEV(visorchipset_major, 0);
2287         rc = visorchipset_file_init(major_dev, &controlvm_channel);
2288         if (rc < 0) {
2289                 POSTCODE_LINUX_2(CHIPSET_INIT_FAILURE_PC, DIAG_SEVERITY_ERR);
2290                 goto cleanup;
2291         }
2292
2293         memset(&g_chipset_msg_hdr, 0, sizeof(struct controlvm_message_header));
2294
2295         /* if booting in a crash kernel */
2296         if (is_kdump_kernel())
2297                 INIT_DELAYED_WORK(&periodic_controlvm_work,
2298                                   setup_crash_devices_work_queue);
2299         else
2300                 INIT_DELAYED_WORK(&periodic_controlvm_work,
2301                                   controlvm_periodic_work);
2302         periodic_controlvm_workqueue =
2303             create_singlethread_workqueue("visorchipset_controlvm");
2304
2305         if (!periodic_controlvm_workqueue) {
2306                 POSTCODE_LINUX_2(CREATE_WORKQUEUE_FAILED_PC,
2307                                  DIAG_SEVERITY_ERR);
2308                 rc = -ENOMEM;
2309                 goto cleanup;
2310         }
2311         most_recent_message_jiffies = jiffies;
2312         poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_FAST;
2313         rc = queue_delayed_work(periodic_controlvm_workqueue,
2314                                 &periodic_controlvm_work, poll_jiffies);
2315         if (rc < 0) {
2316                 POSTCODE_LINUX_2(QUEUE_DELAYED_WORK_PC,
2317                                  DIAG_SEVERITY_ERR);
2318                 goto cleanup;
2319         }
2320
2321         visorchipset_platform_device.dev.devt = major_dev;
2322         if (platform_device_register(&visorchipset_platform_device) < 0) {
2323                 POSTCODE_LINUX_2(DEVICE_REGISTER_FAILURE_PC, DIAG_SEVERITY_ERR);
2324                 rc = -1;
2325                 goto cleanup;
2326         }
2327         POSTCODE_LINUX_2(CHIPSET_INIT_SUCCESS_PC, POSTCODE_SEVERITY_INFO);
2328
2329         rc = visorbus_init();
2330 cleanup:
2331         if (rc) {
2332                 POSTCODE_LINUX_3(CHIPSET_INIT_FAILURE_PC, rc,
2333                                  POSTCODE_SEVERITY_ERR);
2334         }
2335         return rc;
2336 }
2337
2338 static void
2339 visorchipset_file_cleanup(dev_t major_dev)
2340 {
2341         if (file_cdev.ops)
2342                 cdev_del(&file_cdev);
2343         file_cdev.ops = NULL;
2344         unregister_chrdev_region(major_dev, 1);
2345 }
2346
2347 static int
2348 visorchipset_exit(struct acpi_device *acpi_device)
2349 {
2350         POSTCODE_LINUX_2(DRIVER_EXIT_PC, POSTCODE_SEVERITY_INFO);
2351
2352         visorbus_exit();
2353
2354         cancel_delayed_work(&periodic_controlvm_work);
2355         flush_workqueue(periodic_controlvm_workqueue);
2356         destroy_workqueue(periodic_controlvm_workqueue);
2357         periodic_controlvm_workqueue = NULL;
2358         destroy_controlvm_payload_info(&controlvm_payload_info);
2359
2360         memset(&g_chipset_msg_hdr, 0, sizeof(struct controlvm_message_header));
2361
2362         visorchannel_destroy(controlvm_channel);
2363
2364         visorchipset_file_cleanup(visorchipset_platform_device.dev.devt);
2365         platform_device_unregister(&visorchipset_platform_device);
2366         POSTCODE_LINUX_2(DRIVER_EXIT_PC, POSTCODE_SEVERITY_INFO);
2367
2368         return 0;
2369 }
2370
2371 static const struct acpi_device_id unisys_device_ids[] = {
2372         {"PNP0A07", 0},
2373         {"", 0},
2374 };
2375
2376 static struct acpi_driver unisys_acpi_driver = {
2377         .name = "unisys_acpi",
2378         .class = "unisys_acpi_class",
2379         .owner = THIS_MODULE,
2380         .ids = unisys_device_ids,
2381         .ops = {
2382                 .add = visorchipset_init,
2383                 .remove = visorchipset_exit,
2384                 },
2385 };
2386
2387 MODULE_DEVICE_TABLE(acpi, unisys_device_ids);
2388
2389 static __init uint32_t visorutil_spar_detect(void)
2390 {
2391         unsigned int eax, ebx, ecx, edx;
2392
2393         if (cpu_has_hypervisor) {
2394                 /* check the ID */
2395                 cpuid(UNISYS_SPAR_LEAF_ID, &eax, &ebx, &ecx, &edx);
2396                 return  (ebx == UNISYS_SPAR_ID_EBX) &&
2397                         (ecx == UNISYS_SPAR_ID_ECX) &&
2398                         (edx == UNISYS_SPAR_ID_EDX);
2399         } else {
2400                 return 0;
2401         }
2402 }
2403
2404 static int init_unisys(void)
2405 {
2406         int result;
2407
2408         if (!visorutil_spar_detect())
2409                 return -ENODEV;
2410
2411         result = acpi_bus_register_driver(&unisys_acpi_driver);
2412         if (result)
2413                 return -ENODEV;
2414
2415         pr_info("Unisys Visorchipset Driver Loaded.\n");
2416         return 0;
2417 };
2418
2419 static void exit_unisys(void)
2420 {
2421         acpi_bus_unregister_driver(&unisys_acpi_driver);
2422 }
2423
2424 module_param_named(major, visorchipset_major, int, S_IRUGO);
2425 MODULE_PARM_DESC(visorchipset_major,
2426                  "major device number to use for the device node");
2427 module_param_named(visorbusregwait, visorchipset_visorbusregwait, int, S_IRUGO);
2428 MODULE_PARM_DESC(visorchipset_visorbusreqwait,
2429                  "1 to have the module wait for the visor bus to register");
2430 module_param_named(holdchipsetready, visorchipset_holdchipsetready,
2431                    int, S_IRUGO);
2432 MODULE_PARM_DESC(visorchipset_holdchipsetready,
2433                  "1 to hold response to CHIPSET_READY");
2434
2435 module_init(init_unisys);
2436 module_exit(exit_unisys);
2437
2438 MODULE_AUTHOR("Unisys");
2439 MODULE_LICENSE("GPL");
2440 MODULE_DESCRIPTION("Supervisor chipset driver for service partition: ver "
2441                    VERSION);
2442 MODULE_VERSION(VERSION);