driver core: Make Kconfig text for DEBUG_TEST_DRIVER_REMOVE stronger
[cascardo/linux.git] / drivers / thermal / intel_powerclamp.c
1 /*
2  * intel_powerclamp.c - package c-state idle injection
3  *
4  * Copyright (c) 2012, Intel Corporation.
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *     Jacob Pan <jacob.jun.pan@linux.intel.com>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms and conditions of the GNU General Public License,
12  * version 2, as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc.,
21  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
22  *
23  *
24  *      TODO:
25  *           1. better handle wakeup from external interrupts, currently a fixed
26  *              compensation is added to clamping duration when excessive amount
27  *              of wakeups are observed during idle time. the reason is that in
28  *              case of external interrupts without need for ack, clamping down
29  *              cpu in non-irq context does not reduce irq. for majority of the
30  *              cases, clamping down cpu does help reduce irq as well, we should
31  *              be able to differenciate the two cases and give a quantitative
32  *              solution for the irqs that we can control. perhaps based on
33  *              get_cpu_iowait_time_us()
34  *
35  *           2. synchronization with other hw blocks
36  *
37  *
38  */
39
40 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
41
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
47 #include <linux/cpu.h>
48 #include <linux/thermal.h>
49 #include <linux/slab.h>
50 #include <linux/tick.h>
51 #include <linux/debugfs.h>
52 #include <linux/seq_file.h>
53 #include <linux/sched/rt.h>
54
55 #include <asm/nmi.h>
56 #include <asm/msr.h>
57 #include <asm/mwait.h>
58 #include <asm/cpu_device_id.h>
59 #include <asm/idle.h>
60 #include <asm/hardirq.h>
61
62 #define MAX_TARGET_RATIO (50U)
63 /* For each undisturbed clamping period (no extra wake ups during idle time),
64  * we increment the confidence counter for the given target ratio.
65  * CONFIDENCE_OK defines the level where runtime calibration results are
66  * valid.
67  */
68 #define CONFIDENCE_OK (3)
69 /* Default idle injection duration, driver adjust sleep time to meet target
70  * idle ratio. Similar to frequency modulation.
71  */
72 #define DEFAULT_DURATION_JIFFIES (6)
73
74 static unsigned int target_mwait;
75 static struct dentry *debug_dir;
76
77 /* user selected target */
78 static unsigned int set_target_ratio;
79 static unsigned int current_ratio;
80 static bool should_skip;
81 static bool reduce_irq;
82 static atomic_t idle_wakeup_counter;
83 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
84                                   * control parameters. default to BSP but BSP
85                                   * can be offlined.
86                                   */
87 static bool clamping;
88
89
90 static struct task_struct * __percpu *powerclamp_thread;
91 static struct thermal_cooling_device *cooling_dev;
92 static unsigned long *cpu_clamping_mask;  /* bit map for tracking per cpu
93                                            * clamping thread
94                                            */
95
96 static unsigned int duration;
97 static unsigned int pkg_cstate_ratio_cur;
98 static unsigned int window_size;
99
100 static int duration_set(const char *arg, const struct kernel_param *kp)
101 {
102         int ret = 0;
103         unsigned long new_duration;
104
105         ret = kstrtoul(arg, 10, &new_duration);
106         if (ret)
107                 goto exit;
108         if (new_duration > 25 || new_duration < 6) {
109                 pr_err("Out of recommended range %lu, between 6-25ms\n",
110                         new_duration);
111                 ret = -EINVAL;
112         }
113
114         duration = clamp(new_duration, 6ul, 25ul);
115         smp_mb();
116
117 exit:
118
119         return ret;
120 }
121
122 static const struct kernel_param_ops duration_ops = {
123         .set = duration_set,
124         .get = param_get_int,
125 };
126
127
128 module_param_cb(duration, &duration_ops, &duration, 0644);
129 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
130
131 struct powerclamp_calibration_data {
132         unsigned long confidence;  /* used for calibration, basically a counter
133                                     * gets incremented each time a clamping
134                                     * period is completed without extra wakeups
135                                     * once that counter is reached given level,
136                                     * compensation is deemed usable.
137                                     */
138         unsigned long steady_comp; /* steady state compensation used when
139                                     * no extra wakeups occurred.
140                                     */
141         unsigned long dynamic_comp; /* compensate excessive wakeup from idle
142                                      * mostly from external interrupts.
143                                      */
144 };
145
146 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
147
148 static int window_size_set(const char *arg, const struct kernel_param *kp)
149 {
150         int ret = 0;
151         unsigned long new_window_size;
152
153         ret = kstrtoul(arg, 10, &new_window_size);
154         if (ret)
155                 goto exit_win;
156         if (new_window_size > 10 || new_window_size < 2) {
157                 pr_err("Out of recommended window size %lu, between 2-10\n",
158                         new_window_size);
159                 ret = -EINVAL;
160         }
161
162         window_size = clamp(new_window_size, 2ul, 10ul);
163         smp_mb();
164
165 exit_win:
166
167         return ret;
168 }
169
170 static const struct kernel_param_ops window_size_ops = {
171         .set = window_size_set,
172         .get = param_get_int,
173 };
174
175 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
176 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
177         "\tpowerclamp controls idle ratio within this window. larger\n"
178         "\twindow size results in slower response time but more smooth\n"
179         "\tclamping results. default to 2.");
180
181 static void find_target_mwait(void)
182 {
183         unsigned int eax, ebx, ecx, edx;
184         unsigned int highest_cstate = 0;
185         unsigned int highest_subcstate = 0;
186         int i;
187
188         if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
189                 return;
190
191         cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
192
193         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
194             !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
195                 return;
196
197         edx >>= MWAIT_SUBSTATE_SIZE;
198         for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
199                 if (edx & MWAIT_SUBSTATE_MASK) {
200                         highest_cstate = i;
201                         highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
202                 }
203         }
204         target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
205                 (highest_subcstate - 1);
206
207 }
208
209 struct pkg_cstate_info {
210         bool skip;
211         int msr_index;
212         int cstate_id;
213 };
214
215 #define PKG_CSTATE_INIT(id) {                           \
216                 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
217                 .cstate_id = id                         \
218                         }
219
220 static struct pkg_cstate_info pkg_cstates[] = {
221         PKG_CSTATE_INIT(2),
222         PKG_CSTATE_INIT(3),
223         PKG_CSTATE_INIT(6),
224         PKG_CSTATE_INIT(7),
225         PKG_CSTATE_INIT(8),
226         PKG_CSTATE_INIT(9),
227         PKG_CSTATE_INIT(10),
228         {NULL},
229 };
230
231 static bool has_pkg_state_counter(void)
232 {
233         u64 val;
234         struct pkg_cstate_info *info = pkg_cstates;
235
236         /* check if any one of the counter msrs exists */
237         while (info->msr_index) {
238                 if (!rdmsrl_safe(info->msr_index, &val))
239                         return true;
240                 info++;
241         }
242
243         return false;
244 }
245
246 static u64 pkg_state_counter(void)
247 {
248         u64 val;
249         u64 count = 0;
250         struct pkg_cstate_info *info = pkg_cstates;
251
252         while (info->msr_index) {
253                 if (!info->skip) {
254                         if (!rdmsrl_safe(info->msr_index, &val))
255                                 count += val;
256                         else
257                                 info->skip = true;
258                 }
259                 info++;
260         }
261
262         return count;
263 }
264
265 static void noop_timer(unsigned long foo)
266 {
267         /* empty... just the fact that we get the interrupt wakes us up */
268 }
269
270 static unsigned int get_compensation(int ratio)
271 {
272         unsigned int comp = 0;
273
274         /* we only use compensation if all adjacent ones are good */
275         if (ratio == 1 &&
276                 cal_data[ratio].confidence >= CONFIDENCE_OK &&
277                 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
278                 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
279                 comp = (cal_data[ratio].steady_comp +
280                         cal_data[ratio + 1].steady_comp +
281                         cal_data[ratio + 2].steady_comp) / 3;
282         } else if (ratio == MAX_TARGET_RATIO - 1 &&
283                 cal_data[ratio].confidence >= CONFIDENCE_OK &&
284                 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285                 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
286                 comp = (cal_data[ratio].steady_comp +
287                         cal_data[ratio - 1].steady_comp +
288                         cal_data[ratio - 2].steady_comp) / 3;
289         } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
290                 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
291                 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
292                 comp = (cal_data[ratio].steady_comp +
293                         cal_data[ratio - 1].steady_comp +
294                         cal_data[ratio + 1].steady_comp) / 3;
295         }
296
297         /* REVISIT: simple penalty of double idle injection */
298         if (reduce_irq)
299                 comp = ratio;
300         /* do not exceed limit */
301         if (comp + ratio >= MAX_TARGET_RATIO)
302                 comp = MAX_TARGET_RATIO - ratio - 1;
303
304         return comp;
305 }
306
307 static void adjust_compensation(int target_ratio, unsigned int win)
308 {
309         int delta;
310         struct powerclamp_calibration_data *d = &cal_data[target_ratio];
311
312         /*
313          * adjust compensations if confidence level has not been reached or
314          * there are too many wakeups during the last idle injection period, we
315          * cannot trust the data for compensation.
316          */
317         if (d->confidence >= CONFIDENCE_OK ||
318                 atomic_read(&idle_wakeup_counter) >
319                 win * num_online_cpus())
320                 return;
321
322         delta = set_target_ratio - current_ratio;
323         /* filter out bad data */
324         if (delta >= 0 && delta <= (1+target_ratio/10)) {
325                 if (d->steady_comp)
326                         d->steady_comp =
327                                 roundup(delta+d->steady_comp, 2)/2;
328                 else
329                         d->steady_comp = delta;
330                 d->confidence++;
331         }
332 }
333
334 static bool powerclamp_adjust_controls(unsigned int target_ratio,
335                                 unsigned int guard, unsigned int win)
336 {
337         static u64 msr_last, tsc_last;
338         u64 msr_now, tsc_now;
339         u64 val64;
340
341         /* check result for the last window */
342         msr_now = pkg_state_counter();
343         tsc_now = rdtsc();
344
345         /* calculate pkg cstate vs tsc ratio */
346         if (!msr_last || !tsc_last)
347                 current_ratio = 1;
348         else if (tsc_now-tsc_last) {
349                 val64 = 100*(msr_now-msr_last);
350                 do_div(val64, (tsc_now-tsc_last));
351                 current_ratio = val64;
352         }
353
354         /* update record */
355         msr_last = msr_now;
356         tsc_last = tsc_now;
357
358         adjust_compensation(target_ratio, win);
359         /*
360          * too many external interrupts, set flag such
361          * that we can take measure later.
362          */
363         reduce_irq = atomic_read(&idle_wakeup_counter) >=
364                 2 * win * num_online_cpus();
365
366         atomic_set(&idle_wakeup_counter, 0);
367         /* if we are above target+guard, skip */
368         return set_target_ratio + guard <= current_ratio;
369 }
370
371 static int clamp_thread(void *arg)
372 {
373         int cpunr = (unsigned long)arg;
374         DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
375         static const struct sched_param param = {
376                 .sched_priority = MAX_USER_RT_PRIO/2,
377         };
378         unsigned int count = 0;
379         unsigned int target_ratio;
380
381         set_bit(cpunr, cpu_clamping_mask);
382         set_freezable();
383         init_timer_on_stack(&wakeup_timer);
384         sched_setscheduler(current, SCHED_FIFO, &param);
385
386         while (true == clamping && !kthread_should_stop() &&
387                 cpu_online(cpunr)) {
388                 int sleeptime;
389                 unsigned long target_jiffies;
390                 unsigned int guard;
391                 unsigned int compensated_ratio;
392                 int interval; /* jiffies to sleep for each attempt */
393                 unsigned int duration_jiffies = msecs_to_jiffies(duration);
394                 unsigned int window_size_now;
395
396                 try_to_freeze();
397                 /*
398                  * make sure user selected ratio does not take effect until
399                  * the next round. adjust target_ratio if user has changed
400                  * target such that we can converge quickly.
401                  */
402                 target_ratio = set_target_ratio;
403                 guard = 1 + target_ratio/20;
404                 window_size_now = window_size;
405                 count++;
406
407                 /*
408                  * systems may have different ability to enter package level
409                  * c-states, thus we need to compensate the injected idle ratio
410                  * to achieve the actual target reported by the HW.
411                  */
412                 compensated_ratio = target_ratio +
413                         get_compensation(target_ratio);
414                 if (compensated_ratio <= 0)
415                         compensated_ratio = 1;
416                 interval = duration_jiffies * 100 / compensated_ratio;
417
418                 /* align idle time */
419                 target_jiffies = roundup(jiffies, interval);
420                 sleeptime = target_jiffies - jiffies;
421                 if (sleeptime <= 0)
422                         sleeptime = 1;
423                 schedule_timeout_interruptible(sleeptime);
424                 /*
425                  * only elected controlling cpu can collect stats and update
426                  * control parameters.
427                  */
428                 if (cpunr == control_cpu && !(count%window_size_now)) {
429                         should_skip =
430                                 powerclamp_adjust_controls(target_ratio,
431                                                         guard, window_size_now);
432                         smp_mb();
433                 }
434
435                 if (should_skip)
436                         continue;
437
438                 target_jiffies = jiffies + duration_jiffies;
439                 mod_timer(&wakeup_timer, target_jiffies);
440                 if (unlikely(local_softirq_pending()))
441                         continue;
442                 /*
443                  * stop tick sched during idle time, interrupts are still
444                  * allowed. thus jiffies are updated properly.
445                  */
446                 preempt_disable();
447                 /* mwait until target jiffies is reached */
448                 while (time_before(jiffies, target_jiffies)) {
449                         unsigned long ecx = 1;
450                         unsigned long eax = target_mwait;
451
452                         /*
453                          * REVISIT: may call enter_idle() to notify drivers who
454                          * can save power during cpu idle. same for exit_idle()
455                          */
456                         local_touch_nmi();
457                         stop_critical_timings();
458                         mwait_idle_with_hints(eax, ecx);
459                         start_critical_timings();
460                         atomic_inc(&idle_wakeup_counter);
461                 }
462                 preempt_enable();
463         }
464         del_timer_sync(&wakeup_timer);
465         clear_bit(cpunr, cpu_clamping_mask);
466
467         return 0;
468 }
469
470 /*
471  * 1 HZ polling while clamping is active, useful for userspace
472  * to monitor actual idle ratio.
473  */
474 static void poll_pkg_cstate(struct work_struct *dummy);
475 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
476 static void poll_pkg_cstate(struct work_struct *dummy)
477 {
478         static u64 msr_last;
479         static u64 tsc_last;
480         static unsigned long jiffies_last;
481
482         u64 msr_now;
483         unsigned long jiffies_now;
484         u64 tsc_now;
485         u64 val64;
486
487         msr_now = pkg_state_counter();
488         tsc_now = rdtsc();
489         jiffies_now = jiffies;
490
491         /* calculate pkg cstate vs tsc ratio */
492         if (!msr_last || !tsc_last)
493                 pkg_cstate_ratio_cur = 1;
494         else {
495                 if (tsc_now - tsc_last) {
496                         val64 = 100 * (msr_now - msr_last);
497                         do_div(val64, (tsc_now - tsc_last));
498                         pkg_cstate_ratio_cur = val64;
499                 }
500         }
501
502         /* update record */
503         msr_last = msr_now;
504         jiffies_last = jiffies_now;
505         tsc_last = tsc_now;
506
507         if (true == clamping)
508                 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
509 }
510
511 static int start_power_clamp(void)
512 {
513         unsigned long cpu;
514         struct task_struct *thread;
515
516         set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
517         /* prevent cpu hotplug */
518         get_online_cpus();
519
520         /* prefer BSP */
521         control_cpu = 0;
522         if (!cpu_online(control_cpu))
523                 control_cpu = smp_processor_id();
524
525         clamping = true;
526         schedule_delayed_work(&poll_pkg_cstate_work, 0);
527
528         /* start one thread per online cpu */
529         for_each_online_cpu(cpu) {
530                 struct task_struct **p =
531                         per_cpu_ptr(powerclamp_thread, cpu);
532
533                 thread = kthread_create_on_node(clamp_thread,
534                                                 (void *) cpu,
535                                                 cpu_to_node(cpu),
536                                                 "kidle_inject/%ld", cpu);
537                 /* bind to cpu here */
538                 if (likely(!IS_ERR(thread))) {
539                         kthread_bind(thread, cpu);
540                         wake_up_process(thread);
541                         *p = thread;
542                 }
543
544         }
545         put_online_cpus();
546
547         return 0;
548 }
549
550 static void end_power_clamp(void)
551 {
552         int i;
553         struct task_struct *thread;
554
555         clamping = false;
556         /*
557          * make clamping visible to other cpus and give per cpu clamping threads
558          * sometime to exit, or gets killed later.
559          */
560         smp_mb();
561         msleep(20);
562         if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
563                 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
564                         pr_debug("clamping thread for cpu %d alive, kill\n", i);
565                         thread = *per_cpu_ptr(powerclamp_thread, i);
566                         kthread_stop(thread);
567                 }
568         }
569 }
570
571 static int powerclamp_cpu_callback(struct notifier_block *nfb,
572                                 unsigned long action, void *hcpu)
573 {
574         unsigned long cpu = (unsigned long)hcpu;
575         struct task_struct *thread;
576         struct task_struct **percpu_thread =
577                 per_cpu_ptr(powerclamp_thread, cpu);
578
579         if (false == clamping)
580                 goto exit_ok;
581
582         switch (action) {
583         case CPU_ONLINE:
584                 thread = kthread_create_on_node(clamp_thread,
585                                                 (void *) cpu,
586                                                 cpu_to_node(cpu),
587                                                 "kidle_inject/%lu", cpu);
588                 if (likely(!IS_ERR(thread))) {
589                         kthread_bind(thread, cpu);
590                         wake_up_process(thread);
591                         *percpu_thread = thread;
592                 }
593                 /* prefer BSP as controlling CPU */
594                 if (cpu == 0) {
595                         control_cpu = 0;
596                         smp_mb();
597                 }
598                 break;
599         case CPU_DEAD:
600                 if (test_bit(cpu, cpu_clamping_mask)) {
601                         pr_err("cpu %lu dead but powerclamping thread is not\n",
602                                 cpu);
603                         kthread_stop(*percpu_thread);
604                 }
605                 if (cpu == control_cpu) {
606                         control_cpu = smp_processor_id();
607                         smp_mb();
608                 }
609         }
610
611 exit_ok:
612         return NOTIFY_OK;
613 }
614
615 static struct notifier_block powerclamp_cpu_notifier = {
616         .notifier_call = powerclamp_cpu_callback,
617 };
618
619 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
620                                  unsigned long *state)
621 {
622         *state = MAX_TARGET_RATIO;
623
624         return 0;
625 }
626
627 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
628                                  unsigned long *state)
629 {
630         if (true == clamping)
631                 *state = pkg_cstate_ratio_cur;
632         else
633                 /* to save power, do not poll idle ratio while not clamping */
634                 *state = -1; /* indicates invalid state */
635
636         return 0;
637 }
638
639 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
640                                  unsigned long new_target_ratio)
641 {
642         int ret = 0;
643
644         new_target_ratio = clamp(new_target_ratio, 0UL,
645                                 (unsigned long) (MAX_TARGET_RATIO-1));
646         if (set_target_ratio == 0 && new_target_ratio > 0) {
647                 pr_info("Start idle injection to reduce power\n");
648                 set_target_ratio = new_target_ratio;
649                 ret = start_power_clamp();
650                 goto exit_set;
651         } else  if (set_target_ratio > 0 && new_target_ratio == 0) {
652                 pr_info("Stop forced idle injection\n");
653                 end_power_clamp();
654                 set_target_ratio = 0;
655         } else  /* adjust currently running */ {
656                 set_target_ratio = new_target_ratio;
657                 /* make new set_target_ratio visible to other cpus */
658                 smp_mb();
659         }
660
661 exit_set:
662         return ret;
663 }
664
665 /* bind to generic thermal layer as cooling device*/
666 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
667         .get_max_state = powerclamp_get_max_state,
668         .get_cur_state = powerclamp_get_cur_state,
669         .set_cur_state = powerclamp_set_cur_state,
670 };
671
672 static const struct x86_cpu_id intel_powerclamp_ids[] __initconst = {
673         { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT },
674         { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_ARAT },
675         { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_NONSTOP_TSC },
676         { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_CONSTANT_TSC},
677         {}
678 };
679 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
680
681 static int __init powerclamp_probe(void)
682 {
683         if (!x86_match_cpu(intel_powerclamp_ids)) {
684                 pr_err("Intel powerclamp does not run on family %d model %d\n",
685                                 boot_cpu_data.x86, boot_cpu_data.x86_model);
686                 return -ENODEV;
687         }
688
689         /* The goal for idle time alignment is to achieve package cstate. */
690         if (!has_pkg_state_counter()) {
691                 pr_info("No package C-state available");
692                 return -ENODEV;
693         }
694
695         /* find the deepest mwait value */
696         find_target_mwait();
697
698         return 0;
699 }
700
701 static int powerclamp_debug_show(struct seq_file *m, void *unused)
702 {
703         int i = 0;
704
705         seq_printf(m, "controlling cpu: %d\n", control_cpu);
706         seq_printf(m, "pct confidence steady dynamic (compensation)\n");
707         for (i = 0; i < MAX_TARGET_RATIO; i++) {
708                 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
709                         i,
710                         cal_data[i].confidence,
711                         cal_data[i].steady_comp,
712                         cal_data[i].dynamic_comp);
713         }
714
715         return 0;
716 }
717
718 static int powerclamp_debug_open(struct inode *inode,
719                         struct file *file)
720 {
721         return single_open(file, powerclamp_debug_show, inode->i_private);
722 }
723
724 static const struct file_operations powerclamp_debug_fops = {
725         .open           = powerclamp_debug_open,
726         .read           = seq_read,
727         .llseek         = seq_lseek,
728         .release        = single_release,
729         .owner          = THIS_MODULE,
730 };
731
732 static inline void powerclamp_create_debug_files(void)
733 {
734         debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
735         if (!debug_dir)
736                 return;
737
738         if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
739                                         cal_data, &powerclamp_debug_fops))
740                 goto file_error;
741
742         return;
743
744 file_error:
745         debugfs_remove_recursive(debug_dir);
746 }
747
748 static int __init powerclamp_init(void)
749 {
750         int retval;
751         int bitmap_size;
752
753         bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
754         cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
755         if (!cpu_clamping_mask)
756                 return -ENOMEM;
757
758         /* probe cpu features and ids here */
759         retval = powerclamp_probe();
760         if (retval)
761                 goto exit_free;
762
763         /* set default limit, maybe adjusted during runtime based on feedback */
764         window_size = 2;
765         register_hotcpu_notifier(&powerclamp_cpu_notifier);
766
767         powerclamp_thread = alloc_percpu(struct task_struct *);
768         if (!powerclamp_thread) {
769                 retval = -ENOMEM;
770                 goto exit_unregister;
771         }
772
773         cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
774                                                 &powerclamp_cooling_ops);
775         if (IS_ERR(cooling_dev)) {
776                 retval = -ENODEV;
777                 goto exit_free_thread;
778         }
779
780         if (!duration)
781                 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
782
783         powerclamp_create_debug_files();
784
785         return 0;
786
787 exit_free_thread:
788         free_percpu(powerclamp_thread);
789 exit_unregister:
790         unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
791 exit_free:
792         kfree(cpu_clamping_mask);
793         return retval;
794 }
795 module_init(powerclamp_init);
796
797 static void __exit powerclamp_exit(void)
798 {
799         unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
800         end_power_clamp();
801         free_percpu(powerclamp_thread);
802         thermal_cooling_device_unregister(cooling_dev);
803         kfree(cpu_clamping_mask);
804
805         cancel_delayed_work_sync(&poll_pkg_cstate_work);
806         debugfs_remove_recursive(debug_dir);
807 }
808 module_exit(powerclamp_exit);
809
810 MODULE_LICENSE("GPL");
811 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
812 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
813 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");