0130feb069aee02fbf5beeecacd9f674cde2e2ff
[cascardo/linux.git] / drivers / tty / serial / sh-sci.c
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Copyright (C) 2015 Glider bvba
6  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
7  *
8  * based off of the old drivers/char/sh-sci.c by:
9  *
10  *   Copyright (C) 1999, 2000  Niibe Yutaka
11  *   Copyright (C) 2000  Sugioka Toshinobu
12  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
13  *   Modified to support SecureEdge. David McCullough (2002)
14  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
15  *   Removed SH7300 support (Jul 2007).
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  */
21 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
22 #define SUPPORT_SYSRQ
23 #endif
24
25 #undef DEBUG
26
27 #include <linux/clk.h>
28 #include <linux/console.h>
29 #include <linux/ctype.h>
30 #include <linux/cpufreq.h>
31 #include <linux/delay.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/errno.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/ioport.h>
39 #include <linux/major.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59
60 #include "sh-sci.h"
61
62 /* Offsets into the sci_port->irqs array */
63 enum {
64         SCIx_ERI_IRQ,
65         SCIx_RXI_IRQ,
66         SCIx_TXI_IRQ,
67         SCIx_BRI_IRQ,
68         SCIx_NR_IRQS,
69
70         SCIx_MUX_IRQ = SCIx_NR_IRQS,    /* special case */
71 };
72
73 #define SCIx_IRQ_IS_MUXED(port)                 \
74         ((port)->irqs[SCIx_ERI_IRQ] ==  \
75          (port)->irqs[SCIx_RXI_IRQ]) || \
76         ((port)->irqs[SCIx_ERI_IRQ] &&  \
77          ((port)->irqs[SCIx_RXI_IRQ] < 0))
78
79 enum SCI_CLKS {
80         SCI_FCK,                /* Functional Clock */
81         SCI_SCK,                /* Optional External Clock */
82         SCI_BRG_INT,            /* Optional BRG Internal Clock Source */
83         SCI_SCIF_CLK,           /* Optional BRG External Clock Source */
84         SCI_NUM_CLKS
85 };
86
87 /* Bit x set means sampling rate x + 1 is supported */
88 #define SCI_SR(x)               BIT((x) - 1)
89 #define SCI_SR_RANGE(x, y)      GENMASK((y) - 1, (x) - 1)
90
91 #define SCI_SR_SCIFAB           SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92                                 SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93                                 SCI_SR(19) | SCI_SR(27)
94
95 #define min_sr(_port)           ffs((_port)->sampling_rate_mask)
96 #define max_sr(_port)           fls((_port)->sampling_rate_mask)
97
98 /* Iterate over all supported sampling rates, from high to low */
99 #define for_each_sr(_sr, _port)                                         \
100         for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)    \
101                 if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102
103 struct sci_port {
104         struct uart_port        port;
105
106         /* Platform configuration */
107         struct plat_sci_port    *cfg;
108         unsigned int            overrun_reg;
109         unsigned int            overrun_mask;
110         unsigned int            error_mask;
111         unsigned int            error_clear;
112         unsigned int            sampling_rate_mask;
113         resource_size_t         reg_size;
114
115         /* Break timer */
116         struct timer_list       break_timer;
117         int                     break_flag;
118
119         /* Clocks */
120         struct clk              *clks[SCI_NUM_CLKS];
121         unsigned long           clk_rates[SCI_NUM_CLKS];
122
123         int                     irqs[SCIx_NR_IRQS];
124         char                    *irqstr[SCIx_NR_IRQS];
125
126         struct dma_chan                 *chan_tx;
127         struct dma_chan                 *chan_rx;
128
129 #ifdef CONFIG_SERIAL_SH_SCI_DMA
130         dma_cookie_t                    cookie_tx;
131         dma_cookie_t                    cookie_rx[2];
132         dma_cookie_t                    active_rx;
133         dma_addr_t                      tx_dma_addr;
134         unsigned int                    tx_dma_len;
135         struct scatterlist              sg_rx[2];
136         void                            *rx_buf[2];
137         size_t                          buf_len_rx;
138         struct work_struct              work_tx;
139         struct timer_list               rx_timer;
140         unsigned int                    rx_timeout;
141 #endif
142 };
143
144 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
145
146 static struct sci_port sci_ports[SCI_NPORTS];
147 static struct uart_driver sci_uart_driver;
148
149 static inline struct sci_port *
150 to_sci_port(struct uart_port *uart)
151 {
152         return container_of(uart, struct sci_port, port);
153 }
154
155 struct plat_sci_reg {
156         u8 offset, size;
157 };
158
159 /* Helper for invalidating specific entries of an inherited map. */
160 #define sci_reg_invalid { .offset = 0, .size = 0 }
161
162 static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
163         [SCIx_PROBE_REGTYPE] = {
164                 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
165         },
166
167         /*
168          * Common SCI definitions, dependent on the port's regshift
169          * value.
170          */
171         [SCIx_SCI_REGTYPE] = {
172                 [SCSMR]         = { 0x00,  8 },
173                 [SCBRR]         = { 0x01,  8 },
174                 [SCSCR]         = { 0x02,  8 },
175                 [SCxTDR]        = { 0x03,  8 },
176                 [SCxSR]         = { 0x04,  8 },
177                 [SCxRDR]        = { 0x05,  8 },
178                 [SCFCR]         = sci_reg_invalid,
179                 [SCFDR]         = sci_reg_invalid,
180                 [SCTFDR]        = sci_reg_invalid,
181                 [SCRFDR]        = sci_reg_invalid,
182                 [SCSPTR]        = sci_reg_invalid,
183                 [SCLSR]         = sci_reg_invalid,
184                 [HSSRR]         = sci_reg_invalid,
185                 [SCPCR]         = sci_reg_invalid,
186                 [SCPDR]         = sci_reg_invalid,
187                 [SCDL]          = sci_reg_invalid,
188                 [SCCKS]         = sci_reg_invalid,
189         },
190
191         /*
192          * Common definitions for legacy IrDA ports, dependent on
193          * regshift value.
194          */
195         [SCIx_IRDA_REGTYPE] = {
196                 [SCSMR]         = { 0x00,  8 },
197                 [SCBRR]         = { 0x01,  8 },
198                 [SCSCR]         = { 0x02,  8 },
199                 [SCxTDR]        = { 0x03,  8 },
200                 [SCxSR]         = { 0x04,  8 },
201                 [SCxRDR]        = { 0x05,  8 },
202                 [SCFCR]         = { 0x06,  8 },
203                 [SCFDR]         = { 0x07, 16 },
204                 [SCTFDR]        = sci_reg_invalid,
205                 [SCRFDR]        = sci_reg_invalid,
206                 [SCSPTR]        = sci_reg_invalid,
207                 [SCLSR]         = sci_reg_invalid,
208                 [HSSRR]         = sci_reg_invalid,
209                 [SCPCR]         = sci_reg_invalid,
210                 [SCPDR]         = sci_reg_invalid,
211                 [SCDL]          = sci_reg_invalid,
212                 [SCCKS]         = sci_reg_invalid,
213         },
214
215         /*
216          * Common SCIFA definitions.
217          */
218         [SCIx_SCIFA_REGTYPE] = {
219                 [SCSMR]         = { 0x00, 16 },
220                 [SCBRR]         = { 0x04,  8 },
221                 [SCSCR]         = { 0x08, 16 },
222                 [SCxTDR]        = { 0x20,  8 },
223                 [SCxSR]         = { 0x14, 16 },
224                 [SCxRDR]        = { 0x24,  8 },
225                 [SCFCR]         = { 0x18, 16 },
226                 [SCFDR]         = { 0x1c, 16 },
227                 [SCTFDR]        = sci_reg_invalid,
228                 [SCRFDR]        = sci_reg_invalid,
229                 [SCSPTR]        = sci_reg_invalid,
230                 [SCLSR]         = sci_reg_invalid,
231                 [HSSRR]         = sci_reg_invalid,
232                 [SCPCR]         = { 0x30, 16 },
233                 [SCPDR]         = { 0x34, 16 },
234                 [SCDL]          = sci_reg_invalid,
235                 [SCCKS]         = sci_reg_invalid,
236         },
237
238         /*
239          * Common SCIFB definitions.
240          */
241         [SCIx_SCIFB_REGTYPE] = {
242                 [SCSMR]         = { 0x00, 16 },
243                 [SCBRR]         = { 0x04,  8 },
244                 [SCSCR]         = { 0x08, 16 },
245                 [SCxTDR]        = { 0x40,  8 },
246                 [SCxSR]         = { 0x14, 16 },
247                 [SCxRDR]        = { 0x60,  8 },
248                 [SCFCR]         = { 0x18, 16 },
249                 [SCFDR]         = sci_reg_invalid,
250                 [SCTFDR]        = { 0x38, 16 },
251                 [SCRFDR]        = { 0x3c, 16 },
252                 [SCSPTR]        = sci_reg_invalid,
253                 [SCLSR]         = sci_reg_invalid,
254                 [HSSRR]         = sci_reg_invalid,
255                 [SCPCR]         = { 0x30, 16 },
256                 [SCPDR]         = { 0x34, 16 },
257                 [SCDL]          = sci_reg_invalid,
258                 [SCCKS]         = sci_reg_invalid,
259         },
260
261         /*
262          * Common SH-2(A) SCIF definitions for ports with FIFO data
263          * count registers.
264          */
265         [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
266                 [SCSMR]         = { 0x00, 16 },
267                 [SCBRR]         = { 0x04,  8 },
268                 [SCSCR]         = { 0x08, 16 },
269                 [SCxTDR]        = { 0x0c,  8 },
270                 [SCxSR]         = { 0x10, 16 },
271                 [SCxRDR]        = { 0x14,  8 },
272                 [SCFCR]         = { 0x18, 16 },
273                 [SCFDR]         = { 0x1c, 16 },
274                 [SCTFDR]        = sci_reg_invalid,
275                 [SCRFDR]        = sci_reg_invalid,
276                 [SCSPTR]        = { 0x20, 16 },
277                 [SCLSR]         = { 0x24, 16 },
278                 [HSSRR]         = sci_reg_invalid,
279                 [SCPCR]         = sci_reg_invalid,
280                 [SCPDR]         = sci_reg_invalid,
281                 [SCDL]          = sci_reg_invalid,
282                 [SCCKS]         = sci_reg_invalid,
283         },
284
285         /*
286          * Common SH-3 SCIF definitions.
287          */
288         [SCIx_SH3_SCIF_REGTYPE] = {
289                 [SCSMR]         = { 0x00,  8 },
290                 [SCBRR]         = { 0x02,  8 },
291                 [SCSCR]         = { 0x04,  8 },
292                 [SCxTDR]        = { 0x06,  8 },
293                 [SCxSR]         = { 0x08, 16 },
294                 [SCxRDR]        = { 0x0a,  8 },
295                 [SCFCR]         = { 0x0c,  8 },
296                 [SCFDR]         = { 0x0e, 16 },
297                 [SCTFDR]        = sci_reg_invalid,
298                 [SCRFDR]        = sci_reg_invalid,
299                 [SCSPTR]        = sci_reg_invalid,
300                 [SCLSR]         = sci_reg_invalid,
301                 [HSSRR]         = sci_reg_invalid,
302                 [SCPCR]         = sci_reg_invalid,
303                 [SCPDR]         = sci_reg_invalid,
304                 [SCDL]          = sci_reg_invalid,
305                 [SCCKS]         = sci_reg_invalid,
306         },
307
308         /*
309          * Common SH-4(A) SCIF(B) definitions.
310          */
311         [SCIx_SH4_SCIF_REGTYPE] = {
312                 [SCSMR]         = { 0x00, 16 },
313                 [SCBRR]         = { 0x04,  8 },
314                 [SCSCR]         = { 0x08, 16 },
315                 [SCxTDR]        = { 0x0c,  8 },
316                 [SCxSR]         = { 0x10, 16 },
317                 [SCxRDR]        = { 0x14,  8 },
318                 [SCFCR]         = { 0x18, 16 },
319                 [SCFDR]         = { 0x1c, 16 },
320                 [SCTFDR]        = sci_reg_invalid,
321                 [SCRFDR]        = sci_reg_invalid,
322                 [SCSPTR]        = { 0x20, 16 },
323                 [SCLSR]         = { 0x24, 16 },
324                 [HSSRR]         = sci_reg_invalid,
325                 [SCPCR]         = sci_reg_invalid,
326                 [SCPDR]         = sci_reg_invalid,
327                 [SCDL]          = sci_reg_invalid,
328                 [SCCKS]         = sci_reg_invalid,
329         },
330
331         /*
332          * Common SCIF definitions for ports with a Baud Rate Generator for
333          * External Clock (BRG).
334          */
335         [SCIx_SH4_SCIF_BRG_REGTYPE] = {
336                 [SCSMR]         = { 0x00, 16 },
337                 [SCBRR]         = { 0x04,  8 },
338                 [SCSCR]         = { 0x08, 16 },
339                 [SCxTDR]        = { 0x0c,  8 },
340                 [SCxSR]         = { 0x10, 16 },
341                 [SCxRDR]        = { 0x14,  8 },
342                 [SCFCR]         = { 0x18, 16 },
343                 [SCFDR]         = { 0x1c, 16 },
344                 [SCTFDR]        = sci_reg_invalid,
345                 [SCRFDR]        = sci_reg_invalid,
346                 [SCSPTR]        = { 0x20, 16 },
347                 [SCLSR]         = { 0x24, 16 },
348                 [HSSRR]         = sci_reg_invalid,
349                 [SCPCR]         = sci_reg_invalid,
350                 [SCPDR]         = sci_reg_invalid,
351                 [SCDL]          = { 0x30, 16 },
352                 [SCCKS]         = { 0x34, 16 },
353         },
354
355         /*
356          * Common HSCIF definitions.
357          */
358         [SCIx_HSCIF_REGTYPE] = {
359                 [SCSMR]         = { 0x00, 16 },
360                 [SCBRR]         = { 0x04,  8 },
361                 [SCSCR]         = { 0x08, 16 },
362                 [SCxTDR]        = { 0x0c,  8 },
363                 [SCxSR]         = { 0x10, 16 },
364                 [SCxRDR]        = { 0x14,  8 },
365                 [SCFCR]         = { 0x18, 16 },
366                 [SCFDR]         = { 0x1c, 16 },
367                 [SCTFDR]        = sci_reg_invalid,
368                 [SCRFDR]        = sci_reg_invalid,
369                 [SCSPTR]        = { 0x20, 16 },
370                 [SCLSR]         = { 0x24, 16 },
371                 [HSSRR]         = { 0x40, 16 },
372                 [SCPCR]         = sci_reg_invalid,
373                 [SCPDR]         = sci_reg_invalid,
374                 [SCDL]          = { 0x30, 16 },
375                 [SCCKS]         = { 0x34, 16 },
376         },
377
378         /*
379          * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
380          * register.
381          */
382         [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
383                 [SCSMR]         = { 0x00, 16 },
384                 [SCBRR]         = { 0x04,  8 },
385                 [SCSCR]         = { 0x08, 16 },
386                 [SCxTDR]        = { 0x0c,  8 },
387                 [SCxSR]         = { 0x10, 16 },
388                 [SCxRDR]        = { 0x14,  8 },
389                 [SCFCR]         = { 0x18, 16 },
390                 [SCFDR]         = { 0x1c, 16 },
391                 [SCTFDR]        = sci_reg_invalid,
392                 [SCRFDR]        = sci_reg_invalid,
393                 [SCSPTR]        = sci_reg_invalid,
394                 [SCLSR]         = { 0x24, 16 },
395                 [HSSRR]         = sci_reg_invalid,
396                 [SCPCR]         = sci_reg_invalid,
397                 [SCPDR]         = sci_reg_invalid,
398                 [SCDL]          = sci_reg_invalid,
399                 [SCCKS]         = sci_reg_invalid,
400         },
401
402         /*
403          * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
404          * count registers.
405          */
406         [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
407                 [SCSMR]         = { 0x00, 16 },
408                 [SCBRR]         = { 0x04,  8 },
409                 [SCSCR]         = { 0x08, 16 },
410                 [SCxTDR]        = { 0x0c,  8 },
411                 [SCxSR]         = { 0x10, 16 },
412                 [SCxRDR]        = { 0x14,  8 },
413                 [SCFCR]         = { 0x18, 16 },
414                 [SCFDR]         = { 0x1c, 16 },
415                 [SCTFDR]        = { 0x1c, 16 }, /* aliased to SCFDR */
416                 [SCRFDR]        = { 0x20, 16 },
417                 [SCSPTR]        = { 0x24, 16 },
418                 [SCLSR]         = { 0x28, 16 },
419                 [HSSRR]         = sci_reg_invalid,
420                 [SCPCR]         = sci_reg_invalid,
421                 [SCPDR]         = sci_reg_invalid,
422                 [SCDL]          = sci_reg_invalid,
423                 [SCCKS]         = sci_reg_invalid,
424         },
425
426         /*
427          * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
428          * registers.
429          */
430         [SCIx_SH7705_SCIF_REGTYPE] = {
431                 [SCSMR]         = { 0x00, 16 },
432                 [SCBRR]         = { 0x04,  8 },
433                 [SCSCR]         = { 0x08, 16 },
434                 [SCxTDR]        = { 0x20,  8 },
435                 [SCxSR]         = { 0x14, 16 },
436                 [SCxRDR]        = { 0x24,  8 },
437                 [SCFCR]         = { 0x18, 16 },
438                 [SCFDR]         = { 0x1c, 16 },
439                 [SCTFDR]        = sci_reg_invalid,
440                 [SCRFDR]        = sci_reg_invalid,
441                 [SCSPTR]        = sci_reg_invalid,
442                 [SCLSR]         = sci_reg_invalid,
443                 [HSSRR]         = sci_reg_invalid,
444                 [SCPCR]         = sci_reg_invalid,
445                 [SCPDR]         = sci_reg_invalid,
446                 [SCDL]          = sci_reg_invalid,
447                 [SCCKS]         = sci_reg_invalid,
448         },
449 };
450
451 #define sci_getreg(up, offset)          (sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
452
453 /*
454  * The "offset" here is rather misleading, in that it refers to an enum
455  * value relative to the port mapping rather than the fixed offset
456  * itself, which needs to be manually retrieved from the platform's
457  * register map for the given port.
458  */
459 static unsigned int sci_serial_in(struct uart_port *p, int offset)
460 {
461         const struct plat_sci_reg *reg = sci_getreg(p, offset);
462
463         if (reg->size == 8)
464                 return ioread8(p->membase + (reg->offset << p->regshift));
465         else if (reg->size == 16)
466                 return ioread16(p->membase + (reg->offset << p->regshift));
467         else
468                 WARN(1, "Invalid register access\n");
469
470         return 0;
471 }
472
473 static void sci_serial_out(struct uart_port *p, int offset, int value)
474 {
475         const struct plat_sci_reg *reg = sci_getreg(p, offset);
476
477         if (reg->size == 8)
478                 iowrite8(value, p->membase + (reg->offset << p->regshift));
479         else if (reg->size == 16)
480                 iowrite16(value, p->membase + (reg->offset << p->regshift));
481         else
482                 WARN(1, "Invalid register access\n");
483 }
484
485 static int sci_probe_regmap(struct plat_sci_port *cfg)
486 {
487         switch (cfg->type) {
488         case PORT_SCI:
489                 cfg->regtype = SCIx_SCI_REGTYPE;
490                 break;
491         case PORT_IRDA:
492                 cfg->regtype = SCIx_IRDA_REGTYPE;
493                 break;
494         case PORT_SCIFA:
495                 cfg->regtype = SCIx_SCIFA_REGTYPE;
496                 break;
497         case PORT_SCIFB:
498                 cfg->regtype = SCIx_SCIFB_REGTYPE;
499                 break;
500         case PORT_SCIF:
501                 /*
502                  * The SH-4 is a bit of a misnomer here, although that's
503                  * where this particular port layout originated. This
504                  * configuration (or some slight variation thereof)
505                  * remains the dominant model for all SCIFs.
506                  */
507                 cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
508                 break;
509         case PORT_HSCIF:
510                 cfg->regtype = SCIx_HSCIF_REGTYPE;
511                 break;
512         default:
513                 pr_err("Can't probe register map for given port\n");
514                 return -EINVAL;
515         }
516
517         return 0;
518 }
519
520 static void sci_port_enable(struct sci_port *sci_port)
521 {
522         unsigned int i;
523
524         if (!sci_port->port.dev)
525                 return;
526
527         pm_runtime_get_sync(sci_port->port.dev);
528
529         for (i = 0; i < SCI_NUM_CLKS; i++) {
530                 clk_prepare_enable(sci_port->clks[i]);
531                 sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
532         }
533         sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
534 }
535
536 static void sci_port_disable(struct sci_port *sci_port)
537 {
538         unsigned int i;
539
540         if (!sci_port->port.dev)
541                 return;
542
543         /* Cancel the break timer to ensure that the timer handler will not try
544          * to access the hardware with clocks and power disabled. Reset the
545          * break flag to make the break debouncing state machine ready for the
546          * next break.
547          */
548         del_timer_sync(&sci_port->break_timer);
549         sci_port->break_flag = 0;
550
551         for (i = SCI_NUM_CLKS; i-- > 0; )
552                 clk_disable_unprepare(sci_port->clks[i]);
553
554         pm_runtime_put_sync(sci_port->port.dev);
555 }
556
557 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
558 {
559         /*
560          * Not all ports (such as SCIFA) will support REIE. Rather than
561          * special-casing the port type, we check the port initialization
562          * IRQ enable mask to see whether the IRQ is desired at all. If
563          * it's unset, it's logically inferred that there's no point in
564          * testing for it.
565          */
566         return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
567 }
568
569 static void sci_start_tx(struct uart_port *port)
570 {
571         struct sci_port *s = to_sci_port(port);
572         unsigned short ctrl;
573
574 #ifdef CONFIG_SERIAL_SH_SCI_DMA
575         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
576                 u16 new, scr = serial_port_in(port, SCSCR);
577                 if (s->chan_tx)
578                         new = scr | SCSCR_TDRQE;
579                 else
580                         new = scr & ~SCSCR_TDRQE;
581                 if (new != scr)
582                         serial_port_out(port, SCSCR, new);
583         }
584
585         if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
586             dma_submit_error(s->cookie_tx)) {
587                 s->cookie_tx = 0;
588                 schedule_work(&s->work_tx);
589         }
590 #endif
591
592         if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
593                 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
594                 ctrl = serial_port_in(port, SCSCR);
595                 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
596         }
597 }
598
599 static void sci_stop_tx(struct uart_port *port)
600 {
601         unsigned short ctrl;
602
603         /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
604         ctrl = serial_port_in(port, SCSCR);
605
606         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
607                 ctrl &= ~SCSCR_TDRQE;
608
609         ctrl &= ~SCSCR_TIE;
610
611         serial_port_out(port, SCSCR, ctrl);
612 }
613
614 static void sci_start_rx(struct uart_port *port)
615 {
616         unsigned short ctrl;
617
618         ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
619
620         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
621                 ctrl &= ~SCSCR_RDRQE;
622
623         serial_port_out(port, SCSCR, ctrl);
624 }
625
626 static void sci_stop_rx(struct uart_port *port)
627 {
628         unsigned short ctrl;
629
630         ctrl = serial_port_in(port, SCSCR);
631
632         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
633                 ctrl &= ~SCSCR_RDRQE;
634
635         ctrl &= ~port_rx_irq_mask(port);
636
637         serial_port_out(port, SCSCR, ctrl);
638 }
639
640 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
641 {
642         if (port->type == PORT_SCI) {
643                 /* Just store the mask */
644                 serial_port_out(port, SCxSR, mask);
645         } else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) {
646                 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
647                 /* Only clear the status bits we want to clear */
648                 serial_port_out(port, SCxSR,
649                                 serial_port_in(port, SCxSR) & mask);
650         } else {
651                 /* Store the mask, clear parity/framing errors */
652                 serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
653         }
654 }
655
656 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
657     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
658
659 #ifdef CONFIG_CONSOLE_POLL
660 static int sci_poll_get_char(struct uart_port *port)
661 {
662         unsigned short status;
663         int c;
664
665         do {
666                 status = serial_port_in(port, SCxSR);
667                 if (status & SCxSR_ERRORS(port)) {
668                         sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
669                         continue;
670                 }
671                 break;
672         } while (1);
673
674         if (!(status & SCxSR_RDxF(port)))
675                 return NO_POLL_CHAR;
676
677         c = serial_port_in(port, SCxRDR);
678
679         /* Dummy read */
680         serial_port_in(port, SCxSR);
681         sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
682
683         return c;
684 }
685 #endif
686
687 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
688 {
689         unsigned short status;
690
691         do {
692                 status = serial_port_in(port, SCxSR);
693         } while (!(status & SCxSR_TDxE(port)));
694
695         serial_port_out(port, SCxTDR, c);
696         sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
697 }
698 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
699           CONFIG_SERIAL_SH_SCI_EARLYCON */
700
701 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
702 {
703         struct sci_port *s = to_sci_port(port);
704         const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
705
706         /*
707          * Use port-specific handler if provided.
708          */
709         if (s->cfg->ops && s->cfg->ops->init_pins) {
710                 s->cfg->ops->init_pins(port, cflag);
711                 return;
712         }
713
714         /*
715          * For the generic path SCSPTR is necessary. Bail out if that's
716          * unavailable, too.
717          */
718         if (!reg->size)
719                 return;
720
721         if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
722             ((!(cflag & CRTSCTS)))) {
723                 unsigned short status;
724
725                 status = serial_port_in(port, SCSPTR);
726                 status &= ~SCSPTR_CTSIO;
727                 status |= SCSPTR_RTSIO;
728                 serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
729         }
730 }
731
732 static int sci_txfill(struct uart_port *port)
733 {
734         const struct plat_sci_reg *reg;
735
736         reg = sci_getreg(port, SCTFDR);
737         if (reg->size)
738                 return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
739
740         reg = sci_getreg(port, SCFDR);
741         if (reg->size)
742                 return serial_port_in(port, SCFDR) >> 8;
743
744         return !(serial_port_in(port, SCxSR) & SCI_TDRE);
745 }
746
747 static int sci_txroom(struct uart_port *port)
748 {
749         return port->fifosize - sci_txfill(port);
750 }
751
752 static int sci_rxfill(struct uart_port *port)
753 {
754         const struct plat_sci_reg *reg;
755
756         reg = sci_getreg(port, SCRFDR);
757         if (reg->size)
758                 return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
759
760         reg = sci_getreg(port, SCFDR);
761         if (reg->size)
762                 return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
763
764         return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
765 }
766
767 /*
768  * SCI helper for checking the state of the muxed port/RXD pins.
769  */
770 static inline int sci_rxd_in(struct uart_port *port)
771 {
772         struct sci_port *s = to_sci_port(port);
773
774         if (s->cfg->port_reg <= 0)
775                 return 1;
776
777         /* Cast for ARM damage */
778         return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
779 }
780
781 /* ********************************************************************** *
782  *                   the interrupt related routines                       *
783  * ********************************************************************** */
784
785 static void sci_transmit_chars(struct uart_port *port)
786 {
787         struct circ_buf *xmit = &port->state->xmit;
788         unsigned int stopped = uart_tx_stopped(port);
789         unsigned short status;
790         unsigned short ctrl;
791         int count;
792
793         status = serial_port_in(port, SCxSR);
794         if (!(status & SCxSR_TDxE(port))) {
795                 ctrl = serial_port_in(port, SCSCR);
796                 if (uart_circ_empty(xmit))
797                         ctrl &= ~SCSCR_TIE;
798                 else
799                         ctrl |= SCSCR_TIE;
800                 serial_port_out(port, SCSCR, ctrl);
801                 return;
802         }
803
804         count = sci_txroom(port);
805
806         do {
807                 unsigned char c;
808
809                 if (port->x_char) {
810                         c = port->x_char;
811                         port->x_char = 0;
812                 } else if (!uart_circ_empty(xmit) && !stopped) {
813                         c = xmit->buf[xmit->tail];
814                         xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
815                 } else {
816                         break;
817                 }
818
819                 serial_port_out(port, SCxTDR, c);
820
821                 port->icount.tx++;
822         } while (--count > 0);
823
824         sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
825
826         if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
827                 uart_write_wakeup(port);
828         if (uart_circ_empty(xmit)) {
829                 sci_stop_tx(port);
830         } else {
831                 ctrl = serial_port_in(port, SCSCR);
832
833                 if (port->type != PORT_SCI) {
834                         serial_port_in(port, SCxSR); /* Dummy read */
835                         sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
836                 }
837
838                 ctrl |= SCSCR_TIE;
839                 serial_port_out(port, SCSCR, ctrl);
840         }
841 }
842
843 /* On SH3, SCIF may read end-of-break as a space->mark char */
844 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
845
846 static void sci_receive_chars(struct uart_port *port)
847 {
848         struct sci_port *sci_port = to_sci_port(port);
849         struct tty_port *tport = &port->state->port;
850         int i, count, copied = 0;
851         unsigned short status;
852         unsigned char flag;
853
854         status = serial_port_in(port, SCxSR);
855         if (!(status & SCxSR_RDxF(port)))
856                 return;
857
858         while (1) {
859                 /* Don't copy more bytes than there is room for in the buffer */
860                 count = tty_buffer_request_room(tport, sci_rxfill(port));
861
862                 /* If for any reason we can't copy more data, we're done! */
863                 if (count == 0)
864                         break;
865
866                 if (port->type == PORT_SCI) {
867                         char c = serial_port_in(port, SCxRDR);
868                         if (uart_handle_sysrq_char(port, c) ||
869                             sci_port->break_flag)
870                                 count = 0;
871                         else
872                                 tty_insert_flip_char(tport, c, TTY_NORMAL);
873                 } else {
874                         for (i = 0; i < count; i++) {
875                                 char c = serial_port_in(port, SCxRDR);
876
877                                 status = serial_port_in(port, SCxSR);
878 #if defined(CONFIG_CPU_SH3)
879                                 /* Skip "chars" during break */
880                                 if (sci_port->break_flag) {
881                                         if ((c == 0) &&
882                                             (status & SCxSR_FER(port))) {
883                                                 count--; i--;
884                                                 continue;
885                                         }
886
887                                         /* Nonzero => end-of-break */
888                                         dev_dbg(port->dev, "debounce<%02x>\n", c);
889                                         sci_port->break_flag = 0;
890
891                                         if (STEPFN(c)) {
892                                                 count--; i--;
893                                                 continue;
894                                         }
895                                 }
896 #endif /* CONFIG_CPU_SH3 */
897                                 if (uart_handle_sysrq_char(port, c)) {
898                                         count--; i--;
899                                         continue;
900                                 }
901
902                                 /* Store data and status */
903                                 if (status & SCxSR_FER(port)) {
904                                         flag = TTY_FRAME;
905                                         port->icount.frame++;
906                                         dev_notice(port->dev, "frame error\n");
907                                 } else if (status & SCxSR_PER(port)) {
908                                         flag = TTY_PARITY;
909                                         port->icount.parity++;
910                                         dev_notice(port->dev, "parity error\n");
911                                 } else
912                                         flag = TTY_NORMAL;
913
914                                 tty_insert_flip_char(tport, c, flag);
915                         }
916                 }
917
918                 serial_port_in(port, SCxSR); /* dummy read */
919                 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
920
921                 copied += count;
922                 port->icount.rx += count;
923         }
924
925         if (copied) {
926                 /* Tell the rest of the system the news. New characters! */
927                 tty_flip_buffer_push(tport);
928         } else {
929                 serial_port_in(port, SCxSR); /* dummy read */
930                 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
931         }
932 }
933
934 #define SCI_BREAK_JIFFIES (HZ/20)
935
936 /*
937  * The sci generates interrupts during the break,
938  * 1 per millisecond or so during the break period, for 9600 baud.
939  * So dont bother disabling interrupts.
940  * But dont want more than 1 break event.
941  * Use a kernel timer to periodically poll the rx line until
942  * the break is finished.
943  */
944 static inline void sci_schedule_break_timer(struct sci_port *port)
945 {
946         mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
947 }
948
949 /* Ensure that two consecutive samples find the break over. */
950 static void sci_break_timer(unsigned long data)
951 {
952         struct sci_port *port = (struct sci_port *)data;
953
954         if (sci_rxd_in(&port->port) == 0) {
955                 port->break_flag = 1;
956                 sci_schedule_break_timer(port);
957         } else if (port->break_flag == 1) {
958                 /* break is over. */
959                 port->break_flag = 2;
960                 sci_schedule_break_timer(port);
961         } else
962                 port->break_flag = 0;
963 }
964
965 static int sci_handle_errors(struct uart_port *port)
966 {
967         int copied = 0;
968         unsigned short status = serial_port_in(port, SCxSR);
969         struct tty_port *tport = &port->state->port;
970         struct sci_port *s = to_sci_port(port);
971
972         /* Handle overruns */
973         if (status & s->overrun_mask) {
974                 port->icount.overrun++;
975
976                 /* overrun error */
977                 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
978                         copied++;
979
980                 dev_notice(port->dev, "overrun error\n");
981         }
982
983         if (status & SCxSR_FER(port)) {
984                 if (sci_rxd_in(port) == 0) {
985                         /* Notify of BREAK */
986                         struct sci_port *sci_port = to_sci_port(port);
987
988                         if (!sci_port->break_flag) {
989                                 port->icount.brk++;
990
991                                 sci_port->break_flag = 1;
992                                 sci_schedule_break_timer(sci_port);
993
994                                 /* Do sysrq handling. */
995                                 if (uart_handle_break(port))
996                                         return 0;
997
998                                 dev_dbg(port->dev, "BREAK detected\n");
999
1000                                 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1001                                         copied++;
1002                         }
1003
1004                 } else {
1005                         /* frame error */
1006                         port->icount.frame++;
1007
1008                         if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1009                                 copied++;
1010
1011                         dev_notice(port->dev, "frame error\n");
1012                 }
1013         }
1014
1015         if (status & SCxSR_PER(port)) {
1016                 /* parity error */
1017                 port->icount.parity++;
1018
1019                 if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1020                         copied++;
1021
1022                 dev_notice(port->dev, "parity error\n");
1023         }
1024
1025         if (copied)
1026                 tty_flip_buffer_push(tport);
1027
1028         return copied;
1029 }
1030
1031 static int sci_handle_fifo_overrun(struct uart_port *port)
1032 {
1033         struct tty_port *tport = &port->state->port;
1034         struct sci_port *s = to_sci_port(port);
1035         const struct plat_sci_reg *reg;
1036         int copied = 0;
1037         u16 status;
1038
1039         reg = sci_getreg(port, s->overrun_reg);
1040         if (!reg->size)
1041                 return 0;
1042
1043         status = serial_port_in(port, s->overrun_reg);
1044         if (status & s->overrun_mask) {
1045                 status &= ~s->overrun_mask;
1046                 serial_port_out(port, s->overrun_reg, status);
1047
1048                 port->icount.overrun++;
1049
1050                 tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1051                 tty_flip_buffer_push(tport);
1052
1053                 dev_dbg(port->dev, "overrun error\n");
1054                 copied++;
1055         }
1056
1057         return copied;
1058 }
1059
1060 static int sci_handle_breaks(struct uart_port *port)
1061 {
1062         int copied = 0;
1063         unsigned short status = serial_port_in(port, SCxSR);
1064         struct tty_port *tport = &port->state->port;
1065         struct sci_port *s = to_sci_port(port);
1066
1067         if (uart_handle_break(port))
1068                 return 0;
1069
1070         if (!s->break_flag && status & SCxSR_BRK(port)) {
1071 #if defined(CONFIG_CPU_SH3)
1072                 /* Debounce break */
1073                 s->break_flag = 1;
1074 #endif
1075
1076                 port->icount.brk++;
1077
1078                 /* Notify of BREAK */
1079                 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1080                         copied++;
1081
1082                 dev_dbg(port->dev, "BREAK detected\n");
1083         }
1084
1085         if (copied)
1086                 tty_flip_buffer_push(tport);
1087
1088         copied += sci_handle_fifo_overrun(port);
1089
1090         return copied;
1091 }
1092
1093 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1094 static void sci_dma_tx_complete(void *arg)
1095 {
1096         struct sci_port *s = arg;
1097         struct uart_port *port = &s->port;
1098         struct circ_buf *xmit = &port->state->xmit;
1099         unsigned long flags;
1100
1101         dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1102
1103         spin_lock_irqsave(&port->lock, flags);
1104
1105         xmit->tail += s->tx_dma_len;
1106         xmit->tail &= UART_XMIT_SIZE - 1;
1107
1108         port->icount.tx += s->tx_dma_len;
1109
1110         if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1111                 uart_write_wakeup(port);
1112
1113         if (!uart_circ_empty(xmit)) {
1114                 s->cookie_tx = 0;
1115                 schedule_work(&s->work_tx);
1116         } else {
1117                 s->cookie_tx = -EINVAL;
1118                 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1119                         u16 ctrl = serial_port_in(port, SCSCR);
1120                         serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1121                 }
1122         }
1123
1124         spin_unlock_irqrestore(&port->lock, flags);
1125 }
1126
1127 /* Locking: called with port lock held */
1128 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1129 {
1130         struct uart_port *port = &s->port;
1131         struct tty_port *tport = &port->state->port;
1132         int copied;
1133
1134         copied = tty_insert_flip_string(tport, buf, count);
1135         if (copied < count) {
1136                 dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1137                          count - copied);
1138                 port->icount.buf_overrun++;
1139         }
1140
1141         port->icount.rx += copied;
1142
1143         return copied;
1144 }
1145
1146 static int sci_dma_rx_find_active(struct sci_port *s)
1147 {
1148         unsigned int i;
1149
1150         for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1151                 if (s->active_rx == s->cookie_rx[i])
1152                         return i;
1153
1154         dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__,
1155                 s->active_rx);
1156         return -1;
1157 }
1158
1159 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1160 {
1161         struct dma_chan *chan = s->chan_rx;
1162         struct uart_port *port = &s->port;
1163         unsigned long flags;
1164
1165         spin_lock_irqsave(&port->lock, flags);
1166         s->chan_rx = NULL;
1167         s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1168         spin_unlock_irqrestore(&port->lock, flags);
1169         dmaengine_terminate_all(chan);
1170         dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1171                           sg_dma_address(&s->sg_rx[0]));
1172         dma_release_channel(chan);
1173         if (enable_pio)
1174                 sci_start_rx(port);
1175 }
1176
1177 static void sci_dma_rx_complete(void *arg)
1178 {
1179         struct sci_port *s = arg;
1180         struct dma_chan *chan = s->chan_rx;
1181         struct uart_port *port = &s->port;
1182         struct dma_async_tx_descriptor *desc;
1183         unsigned long flags;
1184         int active, count = 0;
1185
1186         dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1187                 s->active_rx);
1188
1189         spin_lock_irqsave(&port->lock, flags);
1190
1191         active = sci_dma_rx_find_active(s);
1192         if (active >= 0)
1193                 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1194
1195         mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1196
1197         if (count)
1198                 tty_flip_buffer_push(&port->state->port);
1199
1200         desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1201                                        DMA_DEV_TO_MEM,
1202                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1203         if (!desc)
1204                 goto fail;
1205
1206         desc->callback = sci_dma_rx_complete;
1207         desc->callback_param = s;
1208         s->cookie_rx[active] = dmaengine_submit(desc);
1209         if (dma_submit_error(s->cookie_rx[active]))
1210                 goto fail;
1211
1212         s->active_rx = s->cookie_rx[!active];
1213
1214         dma_async_issue_pending(chan);
1215
1216         dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1217                 __func__, s->cookie_rx[active], active, s->active_rx);
1218         spin_unlock_irqrestore(&port->lock, flags);
1219         return;
1220
1221 fail:
1222         spin_unlock_irqrestore(&port->lock, flags);
1223         dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1224         sci_rx_dma_release(s, true);
1225 }
1226
1227 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1228 {
1229         struct dma_chan *chan = s->chan_tx;
1230         struct uart_port *port = &s->port;
1231         unsigned long flags;
1232
1233         spin_lock_irqsave(&port->lock, flags);
1234         s->chan_tx = NULL;
1235         s->cookie_tx = -EINVAL;
1236         spin_unlock_irqrestore(&port->lock, flags);
1237         dmaengine_terminate_all(chan);
1238         dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1239                          DMA_TO_DEVICE);
1240         dma_release_channel(chan);
1241         if (enable_pio)
1242                 sci_start_tx(port);
1243 }
1244
1245 static void sci_submit_rx(struct sci_port *s)
1246 {
1247         struct dma_chan *chan = s->chan_rx;
1248         int i;
1249
1250         for (i = 0; i < 2; i++) {
1251                 struct scatterlist *sg = &s->sg_rx[i];
1252                 struct dma_async_tx_descriptor *desc;
1253
1254                 desc = dmaengine_prep_slave_sg(chan,
1255                         sg, 1, DMA_DEV_TO_MEM,
1256                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1257                 if (!desc)
1258                         goto fail;
1259
1260                 desc->callback = sci_dma_rx_complete;
1261                 desc->callback_param = s;
1262                 s->cookie_rx[i] = dmaengine_submit(desc);
1263                 if (dma_submit_error(s->cookie_rx[i]))
1264                         goto fail;
1265
1266                 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1267                         s->cookie_rx[i], i);
1268         }
1269
1270         s->active_rx = s->cookie_rx[0];
1271
1272         dma_async_issue_pending(chan);
1273         return;
1274
1275 fail:
1276         if (i)
1277                 dmaengine_terminate_all(chan);
1278         for (i = 0; i < 2; i++)
1279                 s->cookie_rx[i] = -EINVAL;
1280         s->active_rx = -EINVAL;
1281         dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n");
1282         sci_rx_dma_release(s, true);
1283 }
1284
1285 static void work_fn_tx(struct work_struct *work)
1286 {
1287         struct sci_port *s = container_of(work, struct sci_port, work_tx);
1288         struct dma_async_tx_descriptor *desc;
1289         struct dma_chan *chan = s->chan_tx;
1290         struct uart_port *port = &s->port;
1291         struct circ_buf *xmit = &port->state->xmit;
1292         dma_addr_t buf;
1293
1294         /*
1295          * DMA is idle now.
1296          * Port xmit buffer is already mapped, and it is one page... Just adjust
1297          * offsets and lengths. Since it is a circular buffer, we have to
1298          * transmit till the end, and then the rest. Take the port lock to get a
1299          * consistent xmit buffer state.
1300          */
1301         spin_lock_irq(&port->lock);
1302         buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1303         s->tx_dma_len = min_t(unsigned int,
1304                 CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1305                 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1306         spin_unlock_irq(&port->lock);
1307
1308         desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1309                                            DMA_MEM_TO_DEV,
1310                                            DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1311         if (!desc) {
1312                 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1313                 /* switch to PIO */
1314                 sci_tx_dma_release(s, true);
1315                 return;
1316         }
1317
1318         dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1319                                    DMA_TO_DEVICE);
1320
1321         spin_lock_irq(&port->lock);
1322         desc->callback = sci_dma_tx_complete;
1323         desc->callback_param = s;
1324         spin_unlock_irq(&port->lock);
1325         s->cookie_tx = dmaengine_submit(desc);
1326         if (dma_submit_error(s->cookie_tx)) {
1327                 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1328                 /* switch to PIO */
1329                 sci_tx_dma_release(s, true);
1330                 return;
1331         }
1332
1333         dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1334                 __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1335
1336         dma_async_issue_pending(chan);
1337 }
1338
1339 static void rx_timer_fn(unsigned long arg)
1340 {
1341         struct sci_port *s = (struct sci_port *)arg;
1342         struct dma_chan *chan = s->chan_rx;
1343         struct uart_port *port = &s->port;
1344         struct dma_tx_state state;
1345         enum dma_status status;
1346         unsigned long flags;
1347         unsigned int read;
1348         int active, count;
1349         u16 scr;
1350
1351         spin_lock_irqsave(&port->lock, flags);
1352
1353         dev_dbg(port->dev, "DMA Rx timed out\n");
1354
1355         active = sci_dma_rx_find_active(s);
1356         if (active < 0) {
1357                 spin_unlock_irqrestore(&port->lock, flags);
1358                 return;
1359         }
1360
1361         status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1362         if (status == DMA_COMPLETE) {
1363                 dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1364                         s->active_rx, active);
1365                 spin_unlock_irqrestore(&port->lock, flags);
1366
1367                 /* Let packet complete handler take care of the packet */
1368                 return;
1369         }
1370
1371         dmaengine_pause(chan);
1372
1373         /*
1374          * sometimes DMA transfer doesn't stop even if it is stopped and
1375          * data keeps on coming until transaction is complete so check
1376          * for DMA_COMPLETE again
1377          * Let packet complete handler take care of the packet
1378          */
1379         status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1380         if (status == DMA_COMPLETE) {
1381                 spin_unlock_irqrestore(&port->lock, flags);
1382                 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1383                 return;
1384         }
1385
1386         /* Handle incomplete DMA receive */
1387         dmaengine_terminate_all(s->chan_rx);
1388         read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1389         dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read,
1390                 s->active_rx);
1391
1392         if (read) {
1393                 count = sci_dma_rx_push(s, s->rx_buf[active], read);
1394                 if (count)
1395                         tty_flip_buffer_push(&port->state->port);
1396         }
1397
1398         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1399                 sci_submit_rx(s);
1400
1401         /* Direct new serial port interrupts back to CPU */
1402         scr = serial_port_in(port, SCSCR);
1403         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1404                 scr &= ~SCSCR_RDRQE;
1405                 enable_irq(s->irqs[SCIx_RXI_IRQ]);
1406         }
1407         serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1408
1409         spin_unlock_irqrestore(&port->lock, flags);
1410 }
1411
1412 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1413                                              enum dma_transfer_direction dir,
1414                                              unsigned int id)
1415 {
1416         dma_cap_mask_t mask;
1417         struct dma_chan *chan;
1418         struct dma_slave_config cfg;
1419         int ret;
1420
1421         dma_cap_zero(mask);
1422         dma_cap_set(DMA_SLAVE, mask);
1423
1424         chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1425                                         (void *)(unsigned long)id, port->dev,
1426                                         dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1427         if (!chan) {
1428                 dev_warn(port->dev,
1429                          "dma_request_slave_channel_compat failed\n");
1430                 return NULL;
1431         }
1432
1433         memset(&cfg, 0, sizeof(cfg));
1434         cfg.direction = dir;
1435         if (dir == DMA_MEM_TO_DEV) {
1436                 cfg.dst_addr = port->mapbase +
1437                         (sci_getreg(port, SCxTDR)->offset << port->regshift);
1438                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1439         } else {
1440                 cfg.src_addr = port->mapbase +
1441                         (sci_getreg(port, SCxRDR)->offset << port->regshift);
1442                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1443         }
1444
1445         ret = dmaengine_slave_config(chan, &cfg);
1446         if (ret) {
1447                 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1448                 dma_release_channel(chan);
1449                 return NULL;
1450         }
1451
1452         return chan;
1453 }
1454
1455 static void sci_request_dma(struct uart_port *port)
1456 {
1457         struct sci_port *s = to_sci_port(port);
1458         struct dma_chan *chan;
1459
1460         dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1461
1462         if (!port->dev->of_node &&
1463             (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0))
1464                 return;
1465
1466         s->cookie_tx = -EINVAL;
1467         chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx);
1468         dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1469         if (chan) {
1470                 s->chan_tx = chan;
1471                 /* UART circular tx buffer is an aligned page. */
1472                 s->tx_dma_addr = dma_map_single(chan->device->dev,
1473                                                 port->state->xmit.buf,
1474                                                 UART_XMIT_SIZE,
1475                                                 DMA_TO_DEVICE);
1476                 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1477                         dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1478                         dma_release_channel(chan);
1479                         s->chan_tx = NULL;
1480                 } else {
1481                         dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1482                                 __func__, UART_XMIT_SIZE,
1483                                 port->state->xmit.buf, &s->tx_dma_addr);
1484                 }
1485
1486                 INIT_WORK(&s->work_tx, work_fn_tx);
1487         }
1488
1489         chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx);
1490         dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1491         if (chan) {
1492                 unsigned int i;
1493                 dma_addr_t dma;
1494                 void *buf;
1495
1496                 s->chan_rx = chan;
1497
1498                 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1499                 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1500                                          &dma, GFP_KERNEL);
1501                 if (!buf) {
1502                         dev_warn(port->dev,
1503                                  "Failed to allocate Rx dma buffer, using PIO\n");
1504                         dma_release_channel(chan);
1505                         s->chan_rx = NULL;
1506                         return;
1507                 }
1508
1509                 for (i = 0; i < 2; i++) {
1510                         struct scatterlist *sg = &s->sg_rx[i];
1511
1512                         sg_init_table(sg, 1);
1513                         s->rx_buf[i] = buf;
1514                         sg_dma_address(sg) = dma;
1515                         sg_dma_len(sg) = s->buf_len_rx;
1516
1517                         buf += s->buf_len_rx;
1518                         dma += s->buf_len_rx;
1519                 }
1520
1521                 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1522
1523                 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1524                         sci_submit_rx(s);
1525         }
1526 }
1527
1528 static void sci_free_dma(struct uart_port *port)
1529 {
1530         struct sci_port *s = to_sci_port(port);
1531
1532         if (s->chan_tx)
1533                 sci_tx_dma_release(s, false);
1534         if (s->chan_rx)
1535                 sci_rx_dma_release(s, false);
1536 }
1537 #else
1538 static inline void sci_request_dma(struct uart_port *port)
1539 {
1540 }
1541
1542 static inline void sci_free_dma(struct uart_port *port)
1543 {
1544 }
1545 #endif
1546
1547 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1548 {
1549 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1550         struct uart_port *port = ptr;
1551         struct sci_port *s = to_sci_port(port);
1552
1553         if (s->chan_rx) {
1554                 u16 scr = serial_port_in(port, SCSCR);
1555                 u16 ssr = serial_port_in(port, SCxSR);
1556
1557                 /* Disable future Rx interrupts */
1558                 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1559                         disable_irq_nosync(irq);
1560                         scr |= SCSCR_RDRQE;
1561                 } else {
1562                         scr &= ~SCSCR_RIE;
1563                         sci_submit_rx(s);
1564                 }
1565                 serial_port_out(port, SCSCR, scr);
1566                 /* Clear current interrupt */
1567                 serial_port_out(port, SCxSR,
1568                                 ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1569                 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1570                         jiffies, s->rx_timeout);
1571                 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1572
1573                 return IRQ_HANDLED;
1574         }
1575 #endif
1576
1577         /* I think sci_receive_chars has to be called irrespective
1578          * of whether the I_IXOFF is set, otherwise, how is the interrupt
1579          * to be disabled?
1580          */
1581         sci_receive_chars(ptr);
1582
1583         return IRQ_HANDLED;
1584 }
1585
1586 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1587 {
1588         struct uart_port *port = ptr;
1589         unsigned long flags;
1590
1591         spin_lock_irqsave(&port->lock, flags);
1592         sci_transmit_chars(port);
1593         spin_unlock_irqrestore(&port->lock, flags);
1594
1595         return IRQ_HANDLED;
1596 }
1597
1598 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1599 {
1600         struct uart_port *port = ptr;
1601         struct sci_port *s = to_sci_port(port);
1602
1603         /* Handle errors */
1604         if (port->type == PORT_SCI) {
1605                 if (sci_handle_errors(port)) {
1606                         /* discard character in rx buffer */
1607                         serial_port_in(port, SCxSR);
1608                         sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1609                 }
1610         } else {
1611                 sci_handle_fifo_overrun(port);
1612                 if (!s->chan_rx)
1613                         sci_receive_chars(ptr);
1614         }
1615
1616         sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1617
1618         /* Kick the transmission */
1619         if (!s->chan_tx)
1620                 sci_tx_interrupt(irq, ptr);
1621
1622         return IRQ_HANDLED;
1623 }
1624
1625 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1626 {
1627         struct uart_port *port = ptr;
1628
1629         /* Handle BREAKs */
1630         sci_handle_breaks(port);
1631         sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1632
1633         return IRQ_HANDLED;
1634 }
1635
1636 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1637 {
1638         unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1639         struct uart_port *port = ptr;
1640         struct sci_port *s = to_sci_port(port);
1641         irqreturn_t ret = IRQ_NONE;
1642
1643         ssr_status = serial_port_in(port, SCxSR);
1644         scr_status = serial_port_in(port, SCSCR);
1645         if (s->overrun_reg == SCxSR)
1646                 orer_status = ssr_status;
1647         else {
1648                 if (sci_getreg(port, s->overrun_reg)->size)
1649                         orer_status = serial_port_in(port, s->overrun_reg);
1650         }
1651
1652         err_enabled = scr_status & port_rx_irq_mask(port);
1653
1654         /* Tx Interrupt */
1655         if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1656             !s->chan_tx)
1657                 ret = sci_tx_interrupt(irq, ptr);
1658
1659         /*
1660          * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1661          * DR flags
1662          */
1663         if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1664             (scr_status & SCSCR_RIE))
1665                 ret = sci_rx_interrupt(irq, ptr);
1666
1667         /* Error Interrupt */
1668         if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1669                 ret = sci_er_interrupt(irq, ptr);
1670
1671         /* Break Interrupt */
1672         if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1673                 ret = sci_br_interrupt(irq, ptr);
1674
1675         /* Overrun Interrupt */
1676         if (orer_status & s->overrun_mask) {
1677                 sci_handle_fifo_overrun(port);
1678                 ret = IRQ_HANDLED;
1679         }
1680
1681         return ret;
1682 }
1683
1684 static const struct sci_irq_desc {
1685         const char      *desc;
1686         irq_handler_t   handler;
1687 } sci_irq_desc[] = {
1688         /*
1689          * Split out handlers, the default case.
1690          */
1691         [SCIx_ERI_IRQ] = {
1692                 .desc = "rx err",
1693                 .handler = sci_er_interrupt,
1694         },
1695
1696         [SCIx_RXI_IRQ] = {
1697                 .desc = "rx full",
1698                 .handler = sci_rx_interrupt,
1699         },
1700
1701         [SCIx_TXI_IRQ] = {
1702                 .desc = "tx empty",
1703                 .handler = sci_tx_interrupt,
1704         },
1705
1706         [SCIx_BRI_IRQ] = {
1707                 .desc = "break",
1708                 .handler = sci_br_interrupt,
1709         },
1710
1711         /*
1712          * Special muxed handler.
1713          */
1714         [SCIx_MUX_IRQ] = {
1715                 .desc = "mux",
1716                 .handler = sci_mpxed_interrupt,
1717         },
1718 };
1719
1720 static int sci_request_irq(struct sci_port *port)
1721 {
1722         struct uart_port *up = &port->port;
1723         int i, j, ret = 0;
1724
1725         for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1726                 const struct sci_irq_desc *desc;
1727                 int irq;
1728
1729                 if (SCIx_IRQ_IS_MUXED(port)) {
1730                         i = SCIx_MUX_IRQ;
1731                         irq = up->irq;
1732                 } else {
1733                         irq = port->irqs[i];
1734
1735                         /*
1736                          * Certain port types won't support all of the
1737                          * available interrupt sources.
1738                          */
1739                         if (unlikely(irq < 0))
1740                                 continue;
1741                 }
1742
1743                 desc = sci_irq_desc + i;
1744                 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1745                                             dev_name(up->dev), desc->desc);
1746                 if (!port->irqstr[j])
1747                         goto out_nomem;
1748
1749                 ret = request_irq(irq, desc->handler, up->irqflags,
1750                                   port->irqstr[j], port);
1751                 if (unlikely(ret)) {
1752                         dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1753                         goto out_noirq;
1754                 }
1755         }
1756
1757         return 0;
1758
1759 out_noirq:
1760         while (--i >= 0)
1761                 free_irq(port->irqs[i], port);
1762
1763 out_nomem:
1764         while (--j >= 0)
1765                 kfree(port->irqstr[j]);
1766
1767         return ret;
1768 }
1769
1770 static void sci_free_irq(struct sci_port *port)
1771 {
1772         int i;
1773
1774         /*
1775          * Intentionally in reverse order so we iterate over the muxed
1776          * IRQ first.
1777          */
1778         for (i = 0; i < SCIx_NR_IRQS; i++) {
1779                 int irq = port->irqs[i];
1780
1781                 /*
1782                  * Certain port types won't support all of the available
1783                  * interrupt sources.
1784                  */
1785                 if (unlikely(irq < 0))
1786                         continue;
1787
1788                 free_irq(port->irqs[i], port);
1789                 kfree(port->irqstr[i]);
1790
1791                 if (SCIx_IRQ_IS_MUXED(port)) {
1792                         /* If there's only one IRQ, we're done. */
1793                         return;
1794                 }
1795         }
1796 }
1797
1798 static unsigned int sci_tx_empty(struct uart_port *port)
1799 {
1800         unsigned short status = serial_port_in(port, SCxSR);
1801         unsigned short in_tx_fifo = sci_txfill(port);
1802
1803         return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1804 }
1805
1806 /*
1807  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1808  * CTS/RTS is supported in hardware by at least one port and controlled
1809  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1810  * handled via the ->init_pins() op, which is a bit of a one-way street,
1811  * lacking any ability to defer pin control -- this will later be
1812  * converted over to the GPIO framework).
1813  *
1814  * Other modes (such as loopback) are supported generically on certain
1815  * port types, but not others. For these it's sufficient to test for the
1816  * existence of the support register and simply ignore the port type.
1817  */
1818 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1819 {
1820         if (mctrl & TIOCM_LOOP) {
1821                 const struct plat_sci_reg *reg;
1822
1823                 /*
1824                  * Standard loopback mode for SCFCR ports.
1825                  */
1826                 reg = sci_getreg(port, SCFCR);
1827                 if (reg->size)
1828                         serial_port_out(port, SCFCR,
1829                                         serial_port_in(port, SCFCR) |
1830                                         SCFCR_LOOP);
1831         }
1832 }
1833
1834 static unsigned int sci_get_mctrl(struct uart_port *port)
1835 {
1836         /*
1837          * CTS/RTS is handled in hardware when supported, while nothing
1838          * else is wired up. Keep it simple and simply assert DSR/CAR.
1839          */
1840         return TIOCM_DSR | TIOCM_CAR;
1841 }
1842
1843 static void sci_break_ctl(struct uart_port *port, int break_state)
1844 {
1845         struct sci_port *s = to_sci_port(port);
1846         const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1847         unsigned short scscr, scsptr;
1848
1849         /* check wheter the port has SCSPTR */
1850         if (!reg->size) {
1851                 /*
1852                  * Not supported by hardware. Most parts couple break and rx
1853                  * interrupts together, with break detection always enabled.
1854                  */
1855                 return;
1856         }
1857
1858         scsptr = serial_port_in(port, SCSPTR);
1859         scscr = serial_port_in(port, SCSCR);
1860
1861         if (break_state == -1) {
1862                 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1863                 scscr &= ~SCSCR_TE;
1864         } else {
1865                 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1866                 scscr |= SCSCR_TE;
1867         }
1868
1869         serial_port_out(port, SCSPTR, scsptr);
1870         serial_port_out(port, SCSCR, scscr);
1871 }
1872
1873 static int sci_startup(struct uart_port *port)
1874 {
1875         struct sci_port *s = to_sci_port(port);
1876         unsigned long flags;
1877         int ret;
1878
1879         dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1880
1881         ret = sci_request_irq(s);
1882         if (unlikely(ret < 0))
1883                 return ret;
1884
1885         sci_request_dma(port);
1886
1887         spin_lock_irqsave(&port->lock, flags);
1888         sci_start_tx(port);
1889         sci_start_rx(port);
1890         spin_unlock_irqrestore(&port->lock, flags);
1891
1892         return 0;
1893 }
1894
1895 static void sci_shutdown(struct uart_port *port)
1896 {
1897         struct sci_port *s = to_sci_port(port);
1898         unsigned long flags;
1899
1900         dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1901
1902         spin_lock_irqsave(&port->lock, flags);
1903         sci_stop_rx(port);
1904         sci_stop_tx(port);
1905         spin_unlock_irqrestore(&port->lock, flags);
1906
1907 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1908         if (s->chan_rx) {
1909                 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
1910                         port->line);
1911                 del_timer_sync(&s->rx_timer);
1912         }
1913 #endif
1914
1915         sci_free_dma(port);
1916         sci_free_irq(s);
1917 }
1918
1919 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
1920                         unsigned int *srr)
1921 {
1922         unsigned long freq = s->clk_rates[SCI_SCK];
1923         int err, min_err = INT_MAX;
1924         unsigned int sr;
1925
1926         if (s->port.type != PORT_HSCIF)
1927                 freq *= 2;
1928
1929         for_each_sr(sr, s) {
1930                 err = DIV_ROUND_CLOSEST(freq, sr) - bps;
1931                 if (abs(err) >= abs(min_err))
1932                         continue;
1933
1934                 min_err = err;
1935                 *srr = sr - 1;
1936
1937                 if (!err)
1938                         break;
1939         }
1940
1941         dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
1942                 *srr + 1);
1943         return min_err;
1944 }
1945
1946 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
1947                         unsigned long freq, unsigned int *dlr,
1948                         unsigned int *srr)
1949 {
1950         int err, min_err = INT_MAX;
1951         unsigned int sr, dl;
1952
1953         if (s->port.type != PORT_HSCIF)
1954                 freq *= 2;
1955
1956         for_each_sr(sr, s) {
1957                 dl = DIV_ROUND_CLOSEST(freq, sr * bps);
1958                 dl = clamp(dl, 1U, 65535U);
1959
1960                 err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
1961                 if (abs(err) >= abs(min_err))
1962                         continue;
1963
1964                 min_err = err;
1965                 *dlr = dl;
1966                 *srr = sr - 1;
1967
1968                 if (!err)
1969                         break;
1970         }
1971
1972         dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
1973                 min_err, *dlr, *srr + 1);
1974         return min_err;
1975 }
1976
1977 /* calculate sample rate, BRR, and clock select */
1978 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1979                           unsigned int *brr, unsigned int *srr,
1980                           unsigned int *cks)
1981 {
1982         unsigned long freq = s->clk_rates[SCI_FCK];
1983         unsigned int sr, br, prediv, scrate, c;
1984         int err, min_err = INT_MAX;
1985
1986         if (s->port.type != PORT_HSCIF)
1987                 freq *= 2;
1988
1989         /*
1990          * Find the combination of sample rate and clock select with the
1991          * smallest deviation from the desired baud rate.
1992          * Prefer high sample rates to maximise the receive margin.
1993          *
1994          * M: Receive margin (%)
1995          * N: Ratio of bit rate to clock (N = sampling rate)
1996          * D: Clock duty (D = 0 to 1.0)
1997          * L: Frame length (L = 9 to 12)
1998          * F: Absolute value of clock frequency deviation
1999          *
2000          *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2001          *      (|D - 0.5| / N * (1 + F))|
2002          *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2003          */
2004         for_each_sr(sr, s) {
2005                 for (c = 0; c <= 3; c++) {
2006                         /* integerized formulas from HSCIF documentation */
2007                         prediv = sr * (1 << (2 * c + 1));
2008
2009                         /*
2010                          * We need to calculate:
2011                          *
2012                          *     br = freq / (prediv * bps) clamped to [1..256]
2013                          *     err = freq / (br * prediv) - bps
2014                          *
2015                          * Watch out for overflow when calculating the desired
2016                          * sampling clock rate!
2017                          */
2018                         if (bps > UINT_MAX / prediv)
2019                                 break;
2020
2021                         scrate = prediv * bps;
2022                         br = DIV_ROUND_CLOSEST(freq, scrate);
2023                         br = clamp(br, 1U, 256U);
2024
2025                         err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2026                         if (abs(err) >= abs(min_err))
2027                                 continue;
2028
2029                         min_err = err;
2030                         *brr = br - 1;
2031                         *srr = sr - 1;
2032                         *cks = c;
2033
2034                         if (!err)
2035                                 goto found;
2036                 }
2037         }
2038
2039 found:
2040         dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2041                 min_err, *brr, *srr + 1, *cks);
2042         return min_err;
2043 }
2044
2045 static void sci_reset(struct uart_port *port)
2046 {
2047         const struct plat_sci_reg *reg;
2048         unsigned int status;
2049
2050         do {
2051                 status = serial_port_in(port, SCxSR);
2052         } while (!(status & SCxSR_TEND(port)));
2053
2054         serial_port_out(port, SCSCR, 0x00);     /* TE=0, RE=0, CKE1=0 */
2055
2056         reg = sci_getreg(port, SCFCR);
2057         if (reg->size)
2058                 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2059 }
2060
2061 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2062                             struct ktermios *old)
2063 {
2064         unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i;
2065         unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2066         unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2067         struct sci_port *s = to_sci_port(port);
2068         const struct plat_sci_reg *reg;
2069         int min_err = INT_MAX, err;
2070         unsigned long max_freq = 0;
2071         int best_clk = -1;
2072
2073         if ((termios->c_cflag & CSIZE) == CS7)
2074                 smr_val |= SCSMR_CHR;
2075         if (termios->c_cflag & PARENB)
2076                 smr_val |= SCSMR_PE;
2077         if (termios->c_cflag & PARODD)
2078                 smr_val |= SCSMR_PE | SCSMR_ODD;
2079         if (termios->c_cflag & CSTOPB)
2080                 smr_val |= SCSMR_STOP;
2081
2082         /*
2083          * earlyprintk comes here early on with port->uartclk set to zero.
2084          * the clock framework is not up and running at this point so here
2085          * we assume that 115200 is the maximum baud rate. please note that
2086          * the baud rate is not programmed during earlyprintk - it is assumed
2087          * that the previous boot loader has enabled required clocks and
2088          * setup the baud rate generator hardware for us already.
2089          */
2090         if (!port->uartclk) {
2091                 baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2092                 goto done;
2093         }
2094
2095         for (i = 0; i < SCI_NUM_CLKS; i++)
2096                 max_freq = max(max_freq, s->clk_rates[i]);
2097
2098         baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2099         if (!baud)
2100                 goto done;
2101
2102         /*
2103          * There can be multiple sources for the sampling clock.  Find the one
2104          * that gives us the smallest deviation from the desired baud rate.
2105          */
2106
2107         /* Optional Undivided External Clock */
2108         if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2109             port->type != PORT_SCIFB) {
2110                 err = sci_sck_calc(s, baud, &srr1);
2111                 if (abs(err) < abs(min_err)) {
2112                         best_clk = SCI_SCK;
2113                         scr_val = SCSCR_CKE1;
2114                         sccks = SCCKS_CKS;
2115                         min_err = err;
2116                         srr = srr1;
2117                         if (!err)
2118                                 goto done;
2119                 }
2120         }
2121
2122         /* Optional BRG Frequency Divided External Clock */
2123         if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2124                 err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2125                                    &srr1);
2126                 if (abs(err) < abs(min_err)) {
2127                         best_clk = SCI_SCIF_CLK;
2128                         scr_val = SCSCR_CKE1;
2129                         sccks = 0;
2130                         min_err = err;
2131                         dl = dl1;
2132                         srr = srr1;
2133                         if (!err)
2134                                 goto done;
2135                 }
2136         }
2137
2138         /* Optional BRG Frequency Divided Internal Clock */
2139         if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2140                 err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2141                                    &srr1);
2142                 if (abs(err) < abs(min_err)) {
2143                         best_clk = SCI_BRG_INT;
2144                         scr_val = SCSCR_CKE1;
2145                         sccks = SCCKS_XIN;
2146                         min_err = err;
2147                         dl = dl1;
2148                         srr = srr1;
2149                         if (!min_err)
2150                                 goto done;
2151                 }
2152         }
2153
2154         /* Divided Functional Clock using standard Bit Rate Register */
2155         err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2156         if (abs(err) < abs(min_err)) {
2157                 best_clk = SCI_FCK;
2158                 scr_val = 0;
2159                 min_err = err;
2160                 brr = brr1;
2161                 srr = srr1;
2162                 cks = cks1;
2163         }
2164
2165 done:
2166         if (best_clk >= 0)
2167                 dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2168                         s->clks[best_clk], baud, min_err);
2169
2170         sci_port_enable(s);
2171
2172         /*
2173          * Program the optional External Baud Rate Generator (BRG) first.
2174          * It controls the mux to select (H)SCK or frequency divided clock.
2175          */
2176         if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2177                 serial_port_out(port, SCDL, dl);
2178                 serial_port_out(port, SCCKS, sccks);
2179         }
2180
2181         sci_reset(port);
2182
2183         uart_update_timeout(port, termios->c_cflag, baud);
2184
2185         if (best_clk >= 0) {
2186                 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2187                         switch (srr + 1) {
2188                         case 5:  smr_val |= SCSMR_SRC_5;  break;
2189                         case 7:  smr_val |= SCSMR_SRC_7;  break;
2190                         case 11: smr_val |= SCSMR_SRC_11; break;
2191                         case 13: smr_val |= SCSMR_SRC_13; break;
2192                         case 16: smr_val |= SCSMR_SRC_16; break;
2193                         case 17: smr_val |= SCSMR_SRC_17; break;
2194                         case 19: smr_val |= SCSMR_SRC_19; break;
2195                         case 27: smr_val |= SCSMR_SRC_27; break;
2196                         }
2197                 smr_val |= cks;
2198                 dev_dbg(port->dev,
2199                          "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n",
2200                          scr_val, smr_val, brr, sccks, dl, srr);
2201                 serial_port_out(port, SCSCR, scr_val);
2202                 serial_port_out(port, SCSMR, smr_val);
2203                 serial_port_out(port, SCBRR, brr);
2204                 if (sci_getreg(port, HSSRR)->size)
2205                         serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2206
2207                 /* Wait one bit interval */
2208                 udelay((1000000 + (baud - 1)) / baud);
2209         } else {
2210                 /* Don't touch the bit rate configuration */
2211                 scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2212                 smr_val |= serial_port_in(port, SCSMR) &
2213                            (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2214                 dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val);
2215                 serial_port_out(port, SCSCR, scr_val);
2216                 serial_port_out(port, SCSMR, smr_val);
2217         }
2218
2219         sci_init_pins(port, termios->c_cflag);
2220
2221         reg = sci_getreg(port, SCFCR);
2222         if (reg->size) {
2223                 unsigned short ctrl = serial_port_in(port, SCFCR);
2224
2225                 if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
2226                         if (termios->c_cflag & CRTSCTS)
2227                                 ctrl |= SCFCR_MCE;
2228                         else
2229                                 ctrl &= ~SCFCR_MCE;
2230                 }
2231
2232                 /*
2233                  * As we've done a sci_reset() above, ensure we don't
2234                  * interfere with the FIFOs while toggling MCE. As the
2235                  * reset values could still be set, simply mask them out.
2236                  */
2237                 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2238
2239                 serial_port_out(port, SCFCR, ctrl);
2240         }
2241
2242         scr_val |= s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0);
2243         dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val);
2244         serial_port_out(port, SCSCR, scr_val);
2245         if ((srr + 1 == 5) &&
2246             (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2247                 /*
2248                  * In asynchronous mode, when the sampling rate is 1/5, first
2249                  * received data may become invalid on some SCIFA and SCIFB.
2250                  * To avoid this problem wait more than 1 serial data time (1
2251                  * bit time x serial data number) after setting SCSCR.RE = 1.
2252                  */
2253                 udelay(DIV_ROUND_UP(10 * 1000000, baud));
2254         }
2255
2256 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2257         /*
2258          * Calculate delay for 2 DMA buffers (4 FIFO).
2259          * See serial_core.c::uart_update_timeout().
2260          * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2261          * function calculates 1 jiffie for the data plus 5 jiffies for the
2262          * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2263          * buffers (4 FIFO sizes), but when performing a faster transfer, the
2264          * value obtained by this formula is too small. Therefore, if the value
2265          * is smaller than 20ms, use 20ms as the timeout value for DMA.
2266          */
2267         if (s->chan_rx) {
2268                 unsigned int bits;
2269
2270                 /* byte size and parity */
2271                 switch (termios->c_cflag & CSIZE) {
2272                 case CS5:
2273                         bits = 7;
2274                         break;
2275                 case CS6:
2276                         bits = 8;
2277                         break;
2278                 case CS7:
2279                         bits = 9;
2280                         break;
2281                 default:
2282                         bits = 10;
2283                         break;
2284                 }
2285
2286                 if (termios->c_cflag & CSTOPB)
2287                         bits++;
2288                 if (termios->c_cflag & PARENB)
2289                         bits++;
2290                 s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2291                                              (baud / 10), 10);
2292                 dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2293                         s->rx_timeout * 1000 / HZ, port->timeout);
2294                 if (s->rx_timeout < msecs_to_jiffies(20))
2295                         s->rx_timeout = msecs_to_jiffies(20);
2296         }
2297 #endif
2298
2299         if ((termios->c_cflag & CREAD) != 0)
2300                 sci_start_rx(port);
2301
2302         sci_port_disable(s);
2303 }
2304
2305 static void sci_pm(struct uart_port *port, unsigned int state,
2306                    unsigned int oldstate)
2307 {
2308         struct sci_port *sci_port = to_sci_port(port);
2309
2310         switch (state) {
2311         case UART_PM_STATE_OFF:
2312                 sci_port_disable(sci_port);
2313                 break;
2314         default:
2315                 sci_port_enable(sci_port);
2316                 break;
2317         }
2318 }
2319
2320 static const char *sci_type(struct uart_port *port)
2321 {
2322         switch (port->type) {
2323         case PORT_IRDA:
2324                 return "irda";
2325         case PORT_SCI:
2326                 return "sci";
2327         case PORT_SCIF:
2328                 return "scif";
2329         case PORT_SCIFA:
2330                 return "scifa";
2331         case PORT_SCIFB:
2332                 return "scifb";
2333         case PORT_HSCIF:
2334                 return "hscif";
2335         }
2336
2337         return NULL;
2338 }
2339
2340 static int sci_remap_port(struct uart_port *port)
2341 {
2342         struct sci_port *sport = to_sci_port(port);
2343
2344         /*
2345          * Nothing to do if there's already an established membase.
2346          */
2347         if (port->membase)
2348                 return 0;
2349
2350         if (port->flags & UPF_IOREMAP) {
2351                 port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2352                 if (unlikely(!port->membase)) {
2353                         dev_err(port->dev, "can't remap port#%d\n", port->line);
2354                         return -ENXIO;
2355                 }
2356         } else {
2357                 /*
2358                  * For the simple (and majority of) cases where we don't
2359                  * need to do any remapping, just cast the cookie
2360                  * directly.
2361                  */
2362                 port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2363         }
2364
2365         return 0;
2366 }
2367
2368 static void sci_release_port(struct uart_port *port)
2369 {
2370         struct sci_port *sport = to_sci_port(port);
2371
2372         if (port->flags & UPF_IOREMAP) {
2373                 iounmap(port->membase);
2374                 port->membase = NULL;
2375         }
2376
2377         release_mem_region(port->mapbase, sport->reg_size);
2378 }
2379
2380 static int sci_request_port(struct uart_port *port)
2381 {
2382         struct resource *res;
2383         struct sci_port *sport = to_sci_port(port);
2384         int ret;
2385
2386         res = request_mem_region(port->mapbase, sport->reg_size,
2387                                  dev_name(port->dev));
2388         if (unlikely(res == NULL)) {
2389                 dev_err(port->dev, "request_mem_region failed.");
2390                 return -EBUSY;
2391         }
2392
2393         ret = sci_remap_port(port);
2394         if (unlikely(ret != 0)) {
2395                 release_resource(res);
2396                 return ret;
2397         }
2398
2399         return 0;
2400 }
2401
2402 static void sci_config_port(struct uart_port *port, int flags)
2403 {
2404         if (flags & UART_CONFIG_TYPE) {
2405                 struct sci_port *sport = to_sci_port(port);
2406
2407                 port->type = sport->cfg->type;
2408                 sci_request_port(port);
2409         }
2410 }
2411
2412 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2413 {
2414         if (ser->baud_base < 2400)
2415                 /* No paper tape reader for Mitch.. */
2416                 return -EINVAL;
2417
2418         return 0;
2419 }
2420
2421 static struct uart_ops sci_uart_ops = {
2422         .tx_empty       = sci_tx_empty,
2423         .set_mctrl      = sci_set_mctrl,
2424         .get_mctrl      = sci_get_mctrl,
2425         .start_tx       = sci_start_tx,
2426         .stop_tx        = sci_stop_tx,
2427         .stop_rx        = sci_stop_rx,
2428         .break_ctl      = sci_break_ctl,
2429         .startup        = sci_startup,
2430         .shutdown       = sci_shutdown,
2431         .set_termios    = sci_set_termios,
2432         .pm             = sci_pm,
2433         .type           = sci_type,
2434         .release_port   = sci_release_port,
2435         .request_port   = sci_request_port,
2436         .config_port    = sci_config_port,
2437         .verify_port    = sci_verify_port,
2438 #ifdef CONFIG_CONSOLE_POLL
2439         .poll_get_char  = sci_poll_get_char,
2440         .poll_put_char  = sci_poll_put_char,
2441 #endif
2442 };
2443
2444 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2445 {
2446         const char *clk_names[] = {
2447                 [SCI_FCK] = "fck",
2448                 [SCI_SCK] = "sck",
2449                 [SCI_BRG_INT] = "brg_int",
2450                 [SCI_SCIF_CLK] = "scif_clk",
2451         };
2452         struct clk *clk;
2453         unsigned int i;
2454
2455         if (sci_port->cfg->type == PORT_HSCIF)
2456                 clk_names[SCI_SCK] = "hsck";
2457
2458         for (i = 0; i < SCI_NUM_CLKS; i++) {
2459                 clk = devm_clk_get(dev, clk_names[i]);
2460                 if (PTR_ERR(clk) == -EPROBE_DEFER)
2461                         return -EPROBE_DEFER;
2462
2463                 if (IS_ERR(clk) && i == SCI_FCK) {
2464                         /*
2465                          * "fck" used to be called "sci_ick", and we need to
2466                          * maintain DT backward compatibility.
2467                          */
2468                         clk = devm_clk_get(dev, "sci_ick");
2469                         if (PTR_ERR(clk) == -EPROBE_DEFER)
2470                                 return -EPROBE_DEFER;
2471
2472                         if (!IS_ERR(clk))
2473                                 goto found;
2474
2475                         /*
2476                          * Not all SH platforms declare a clock lookup entry
2477                          * for SCI devices, in which case we need to get the
2478                          * global "peripheral_clk" clock.
2479                          */
2480                         clk = devm_clk_get(dev, "peripheral_clk");
2481                         if (!IS_ERR(clk))
2482                                 goto found;
2483
2484                         dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2485                                 PTR_ERR(clk));
2486                         return PTR_ERR(clk);
2487                 }
2488
2489 found:
2490                 if (IS_ERR(clk))
2491                         dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2492                                 PTR_ERR(clk));
2493                 else
2494                         dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2495                                 clk, clk);
2496                 sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2497         }
2498         return 0;
2499 }
2500
2501 static int sci_init_single(struct platform_device *dev,
2502                            struct sci_port *sci_port, unsigned int index,
2503                            struct plat_sci_port *p, bool early)
2504 {
2505         struct uart_port *port = &sci_port->port;
2506         const struct resource *res;
2507         unsigned int i;
2508         int ret;
2509
2510         sci_port->cfg   = p;
2511
2512         port->ops       = &sci_uart_ops;
2513         port->iotype    = UPIO_MEM;
2514         port->line      = index;
2515
2516         res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2517         if (res == NULL)
2518                 return -ENOMEM;
2519
2520         port->mapbase = res->start;
2521         sci_port->reg_size = resource_size(res);
2522
2523         for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2524                 sci_port->irqs[i] = platform_get_irq(dev, i);
2525
2526         /* The SCI generates several interrupts. They can be muxed together or
2527          * connected to different interrupt lines. In the muxed case only one
2528          * interrupt resource is specified. In the non-muxed case three or four
2529          * interrupt resources are specified, as the BRI interrupt is optional.
2530          */
2531         if (sci_port->irqs[0] < 0)
2532                 return -ENXIO;
2533
2534         if (sci_port->irqs[1] < 0) {
2535                 sci_port->irqs[1] = sci_port->irqs[0];
2536                 sci_port->irqs[2] = sci_port->irqs[0];
2537                 sci_port->irqs[3] = sci_port->irqs[0];
2538         }
2539
2540         if (p->regtype == SCIx_PROBE_REGTYPE) {
2541                 ret = sci_probe_regmap(p);
2542                 if (unlikely(ret))
2543                         return ret;
2544         }
2545
2546         switch (p->type) {
2547         case PORT_SCIFB:
2548                 port->fifosize = 256;
2549                 sci_port->overrun_reg = SCxSR;
2550                 sci_port->overrun_mask = SCIFA_ORER;
2551                 sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2552                 break;
2553         case PORT_HSCIF:
2554                 port->fifosize = 128;
2555                 sci_port->overrun_reg = SCLSR;
2556                 sci_port->overrun_mask = SCLSR_ORER;
2557                 sci_port->sampling_rate_mask = SCI_SR_RANGE(8, 32);
2558                 break;
2559         case PORT_SCIFA:
2560                 port->fifosize = 64;
2561                 sci_port->overrun_reg = SCxSR;
2562                 sci_port->overrun_mask = SCIFA_ORER;
2563                 sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2564                 break;
2565         case PORT_SCIF:
2566                 port->fifosize = 16;
2567                 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2568                         sci_port->overrun_reg = SCxSR;
2569                         sci_port->overrun_mask = SCIFA_ORER;
2570                         sci_port->sampling_rate_mask = SCI_SR(16);
2571                 } else {
2572                         sci_port->overrun_reg = SCLSR;
2573                         sci_port->overrun_mask = SCLSR_ORER;
2574                         sci_port->sampling_rate_mask = SCI_SR(32);
2575                 }
2576                 break;
2577         default:
2578                 port->fifosize = 1;
2579                 sci_port->overrun_reg = SCxSR;
2580                 sci_port->overrun_mask = SCI_ORER;
2581                 sci_port->sampling_rate_mask = SCI_SR(32);
2582                 break;
2583         }
2584
2585         /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2586          * match the SoC datasheet, this should be investigated. Let platform
2587          * data override the sampling rate for now.
2588          */
2589         if (p->sampling_rate)
2590                 sci_port->sampling_rate_mask = SCI_SR(p->sampling_rate);
2591
2592         if (!early) {
2593                 ret = sci_init_clocks(sci_port, &dev->dev);
2594                 if (ret < 0)
2595                         return ret;
2596
2597                 port->dev = &dev->dev;
2598
2599                 pm_runtime_enable(&dev->dev);
2600         }
2601
2602         sci_port->break_timer.data = (unsigned long)sci_port;
2603         sci_port->break_timer.function = sci_break_timer;
2604         init_timer(&sci_port->break_timer);
2605
2606         /*
2607          * Establish some sensible defaults for the error detection.
2608          */
2609         if (p->type == PORT_SCI) {
2610                 sci_port->error_mask = SCI_DEFAULT_ERROR_MASK;
2611                 sci_port->error_clear = SCI_ERROR_CLEAR;
2612         } else {
2613                 sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK;
2614                 sci_port->error_clear = SCIF_ERROR_CLEAR;
2615         }
2616
2617         /*
2618          * Make the error mask inclusive of overrun detection, if
2619          * supported.
2620          */
2621         if (sci_port->overrun_reg == SCxSR) {
2622                 sci_port->error_mask |= sci_port->overrun_mask;
2623                 sci_port->error_clear &= ~sci_port->overrun_mask;
2624         }
2625
2626         port->type              = p->type;
2627         port->flags             = UPF_FIXED_PORT | p->flags;
2628         port->regshift          = p->regshift;
2629
2630         /*
2631          * The UART port needs an IRQ value, so we peg this to the RX IRQ
2632          * for the multi-IRQ ports, which is where we are primarily
2633          * concerned with the shutdown path synchronization.
2634          *
2635          * For the muxed case there's nothing more to do.
2636          */
2637         port->irq               = sci_port->irqs[SCIx_RXI_IRQ];
2638         port->irqflags          = 0;
2639
2640         port->serial_in         = sci_serial_in;
2641         port->serial_out        = sci_serial_out;
2642
2643         if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2644                 dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2645                         p->dma_slave_tx, p->dma_slave_rx);
2646
2647         return 0;
2648 }
2649
2650 static void sci_cleanup_single(struct sci_port *port)
2651 {
2652         pm_runtime_disable(port->port.dev);
2653 }
2654
2655 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2656     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2657 static void serial_console_putchar(struct uart_port *port, int ch)
2658 {
2659         sci_poll_put_char(port, ch);
2660 }
2661
2662 /*
2663  *      Print a string to the serial port trying not to disturb
2664  *      any possible real use of the port...
2665  */
2666 static void serial_console_write(struct console *co, const char *s,
2667                                  unsigned count)
2668 {
2669         struct sci_port *sci_port = &sci_ports[co->index];
2670         struct uart_port *port = &sci_port->port;
2671         unsigned short bits, ctrl, ctrl_temp;
2672         unsigned long flags;
2673         int locked = 1;
2674
2675         local_irq_save(flags);
2676 #if defined(SUPPORT_SYSRQ)
2677         if (port->sysrq)
2678                 locked = 0;
2679         else
2680 #endif
2681         if (oops_in_progress)
2682                 locked = spin_trylock(&port->lock);
2683         else
2684                 spin_lock(&port->lock);
2685
2686         /* first save SCSCR then disable interrupts, keep clock source */
2687         ctrl = serial_port_in(port, SCSCR);
2688         ctrl_temp = (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2689                     (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2690         serial_port_out(port, SCSCR, ctrl_temp);
2691
2692         uart_console_write(port, s, count, serial_console_putchar);
2693
2694         /* wait until fifo is empty and last bit has been transmitted */
2695         bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2696         while ((serial_port_in(port, SCxSR) & bits) != bits)
2697                 cpu_relax();
2698
2699         /* restore the SCSCR */
2700         serial_port_out(port, SCSCR, ctrl);
2701
2702         if (locked)
2703                 spin_unlock(&port->lock);
2704         local_irq_restore(flags);
2705 }
2706
2707 static int serial_console_setup(struct console *co, char *options)
2708 {
2709         struct sci_port *sci_port;
2710         struct uart_port *port;
2711         int baud = 115200;
2712         int bits = 8;
2713         int parity = 'n';
2714         int flow = 'n';
2715         int ret;
2716
2717         /*
2718          * Refuse to handle any bogus ports.
2719          */
2720         if (co->index < 0 || co->index >= SCI_NPORTS)
2721                 return -ENODEV;
2722
2723         sci_port = &sci_ports[co->index];
2724         port = &sci_port->port;
2725
2726         /*
2727          * Refuse to handle uninitialized ports.
2728          */
2729         if (!port->ops)
2730                 return -ENODEV;
2731
2732         ret = sci_remap_port(port);
2733         if (unlikely(ret != 0))
2734                 return ret;
2735
2736         if (options)
2737                 uart_parse_options(options, &baud, &parity, &bits, &flow);
2738
2739         return uart_set_options(port, co, baud, parity, bits, flow);
2740 }
2741
2742 static struct console serial_console = {
2743         .name           = "ttySC",
2744         .device         = uart_console_device,
2745         .write          = serial_console_write,
2746         .setup          = serial_console_setup,
2747         .flags          = CON_PRINTBUFFER,
2748         .index          = -1,
2749         .data           = &sci_uart_driver,
2750 };
2751
2752 static struct console early_serial_console = {
2753         .name           = "early_ttySC",
2754         .write          = serial_console_write,
2755         .flags          = CON_PRINTBUFFER,
2756         .index          = -1,
2757 };
2758
2759 static char early_serial_buf[32];
2760
2761 static int sci_probe_earlyprintk(struct platform_device *pdev)
2762 {
2763         struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2764
2765         if (early_serial_console.data)
2766                 return -EEXIST;
2767
2768         early_serial_console.index = pdev->id;
2769
2770         sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2771
2772         serial_console_setup(&early_serial_console, early_serial_buf);
2773
2774         if (!strstr(early_serial_buf, "keep"))
2775                 early_serial_console.flags |= CON_BOOT;
2776
2777         register_console(&early_serial_console);
2778         return 0;
2779 }
2780
2781 #define SCI_CONSOLE     (&serial_console)
2782
2783 #else
2784 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2785 {
2786         return -EINVAL;
2787 }
2788
2789 #define SCI_CONSOLE     NULL
2790
2791 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2792
2793 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2794
2795 static struct uart_driver sci_uart_driver = {
2796         .owner          = THIS_MODULE,
2797         .driver_name    = "sci",
2798         .dev_name       = "ttySC",
2799         .major          = SCI_MAJOR,
2800         .minor          = SCI_MINOR_START,
2801         .nr             = SCI_NPORTS,
2802         .cons           = SCI_CONSOLE,
2803 };
2804
2805 static int sci_remove(struct platform_device *dev)
2806 {
2807         struct sci_port *port = platform_get_drvdata(dev);
2808
2809         uart_remove_one_port(&sci_uart_driver, &port->port);
2810
2811         sci_cleanup_single(port);
2812
2813         return 0;
2814 }
2815
2816
2817 #define SCI_OF_DATA(type, regtype)      (void *)((type) << 16 | (regtype))
2818 #define SCI_OF_TYPE(data)               ((unsigned long)(data) >> 16)
2819 #define SCI_OF_REGTYPE(data)            ((unsigned long)(data) & 0xffff)
2820
2821 static const struct of_device_id of_sci_match[] = {
2822         /* SoC-specific types */
2823         {
2824                 .compatible = "renesas,scif-r7s72100",
2825                 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
2826         },
2827         /* Family-specific types */
2828         {
2829                 .compatible = "renesas,rcar-gen1-scif",
2830                 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2831         }, {
2832                 .compatible = "renesas,rcar-gen2-scif",
2833                 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2834         }, {
2835                 .compatible = "renesas,rcar-gen3-scif",
2836                 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2837         },
2838         /* Generic types */
2839         {
2840                 .compatible = "renesas,scif",
2841                 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
2842         }, {
2843                 .compatible = "renesas,scifa",
2844                 .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
2845         }, {
2846                 .compatible = "renesas,scifb",
2847                 .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
2848         }, {
2849                 .compatible = "renesas,hscif",
2850                 .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
2851         }, {
2852                 .compatible = "renesas,sci",
2853                 .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
2854         }, {
2855                 /* Terminator */
2856         },
2857 };
2858 MODULE_DEVICE_TABLE(of, of_sci_match);
2859
2860 static struct plat_sci_port *
2861 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2862 {
2863         struct device_node *np = pdev->dev.of_node;
2864         const struct of_device_id *match;
2865         struct plat_sci_port *p;
2866         int id;
2867
2868         if (!IS_ENABLED(CONFIG_OF) || !np)
2869                 return NULL;
2870
2871         match = of_match_node(of_sci_match, np);
2872         if (!match)
2873                 return NULL;
2874
2875         p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2876         if (!p)
2877                 return NULL;
2878
2879         /* Get the line number from the aliases node. */
2880         id = of_alias_get_id(np, "serial");
2881         if (id < 0) {
2882                 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2883                 return NULL;
2884         }
2885
2886         *dev_id = id;
2887
2888         p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2889         p->type = SCI_OF_TYPE(match->data);
2890         p->regtype = SCI_OF_REGTYPE(match->data);
2891         p->scscr = SCSCR_RE | SCSCR_TE;
2892
2893         return p;
2894 }
2895
2896 static int sci_probe_single(struct platform_device *dev,
2897                                       unsigned int index,
2898                                       struct plat_sci_port *p,
2899                                       struct sci_port *sciport)
2900 {
2901         int ret;
2902
2903         /* Sanity check */
2904         if (unlikely(index >= SCI_NPORTS)) {
2905                 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2906                            index+1, SCI_NPORTS);
2907                 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2908                 return -EINVAL;
2909         }
2910
2911         ret = sci_init_single(dev, sciport, index, p, false);
2912         if (ret)
2913                 return ret;
2914
2915         ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2916         if (ret) {
2917                 sci_cleanup_single(sciport);
2918                 return ret;
2919         }
2920
2921         return 0;
2922 }
2923
2924 static int sci_probe(struct platform_device *dev)
2925 {
2926         struct plat_sci_port *p;
2927         struct sci_port *sp;
2928         unsigned int dev_id;
2929         int ret;
2930
2931         /*
2932          * If we've come here via earlyprintk initialization, head off to
2933          * the special early probe. We don't have sufficient device state
2934          * to make it beyond this yet.
2935          */
2936         if (is_early_platform_device(dev))
2937                 return sci_probe_earlyprintk(dev);
2938
2939         if (dev->dev.of_node) {
2940                 p = sci_parse_dt(dev, &dev_id);
2941                 if (p == NULL)
2942                         return -EINVAL;
2943         } else {
2944                 p = dev->dev.platform_data;
2945                 if (p == NULL) {
2946                         dev_err(&dev->dev, "no platform data supplied\n");
2947                         return -EINVAL;
2948                 }
2949
2950                 dev_id = dev->id;
2951         }
2952
2953         sp = &sci_ports[dev_id];
2954         platform_set_drvdata(dev, sp);
2955
2956         ret = sci_probe_single(dev, dev_id, p, sp);
2957         if (ret)
2958                 return ret;
2959
2960 #ifdef CONFIG_SH_STANDARD_BIOS
2961         sh_bios_gdb_detach();
2962 #endif
2963
2964         return 0;
2965 }
2966
2967 static __maybe_unused int sci_suspend(struct device *dev)
2968 {
2969         struct sci_port *sport = dev_get_drvdata(dev);
2970
2971         if (sport)
2972                 uart_suspend_port(&sci_uart_driver, &sport->port);
2973
2974         return 0;
2975 }
2976
2977 static __maybe_unused int sci_resume(struct device *dev)
2978 {
2979         struct sci_port *sport = dev_get_drvdata(dev);
2980
2981         if (sport)
2982                 uart_resume_port(&sci_uart_driver, &sport->port);
2983
2984         return 0;
2985 }
2986
2987 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
2988
2989 static struct platform_driver sci_driver = {
2990         .probe          = sci_probe,
2991         .remove         = sci_remove,
2992         .driver         = {
2993                 .name   = "sh-sci",
2994                 .pm     = &sci_dev_pm_ops,
2995                 .of_match_table = of_match_ptr(of_sci_match),
2996         },
2997 };
2998
2999 static int __init sci_init(void)
3000 {
3001         int ret;
3002
3003         pr_info("%s\n", banner);
3004
3005         ret = uart_register_driver(&sci_uart_driver);
3006         if (likely(ret == 0)) {
3007                 ret = platform_driver_register(&sci_driver);
3008                 if (unlikely(ret))
3009                         uart_unregister_driver(&sci_uart_driver);
3010         }
3011
3012         return ret;
3013 }
3014
3015 static void __exit sci_exit(void)
3016 {
3017         platform_driver_unregister(&sci_driver);
3018         uart_unregister_driver(&sci_uart_driver);
3019 }
3020
3021 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3022 early_platform_init_buffer("earlyprintk", &sci_driver,
3023                            early_serial_buf, ARRAY_SIZE(early_serial_buf));
3024 #endif
3025 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3026 static struct __init plat_sci_port port_cfg;
3027
3028 static int __init early_console_setup(struct earlycon_device *device,
3029                                       int type)
3030 {
3031         if (!device->port.membase)
3032                 return -ENODEV;
3033
3034         device->port.serial_in = sci_serial_in;
3035         device->port.serial_out = sci_serial_out;
3036         device->port.type = type;
3037         memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3038         sci_ports[0].cfg = &port_cfg;
3039         sci_ports[0].cfg->type = type;
3040         sci_probe_regmap(sci_ports[0].cfg);
3041         port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR) |
3042                          SCSCR_RE | SCSCR_TE;
3043         sci_serial_out(&sci_ports[0].port, SCSCR, port_cfg.scscr);
3044
3045         device->con->write = serial_console_write;
3046         return 0;
3047 }
3048 static int __init sci_early_console_setup(struct earlycon_device *device,
3049                                           const char *opt)
3050 {
3051         return early_console_setup(device, PORT_SCI);
3052 }
3053 static int __init scif_early_console_setup(struct earlycon_device *device,
3054                                           const char *opt)
3055 {
3056         return early_console_setup(device, PORT_SCIF);
3057 }
3058 static int __init scifa_early_console_setup(struct earlycon_device *device,
3059                                           const char *opt)
3060 {
3061         return early_console_setup(device, PORT_SCIFA);
3062 }
3063 static int __init scifb_early_console_setup(struct earlycon_device *device,
3064                                           const char *opt)
3065 {
3066         return early_console_setup(device, PORT_SCIFB);
3067 }
3068 static int __init hscif_early_console_setup(struct earlycon_device *device,
3069                                           const char *opt)
3070 {
3071         return early_console_setup(device, PORT_HSCIF);
3072 }
3073
3074 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3075 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3076 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3077 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3078 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3079 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3080
3081 module_init(sci_init);
3082 module_exit(sci_exit);
3083
3084 MODULE_LICENSE("GPL");
3085 MODULE_ALIAS("platform:sh-sci");
3086 MODULE_AUTHOR("Paul Mundt");
3087 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");