iwlwifi: pcie: fix polling in various places
[cascardo/linux.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      free_tty_struct         -       free a disused tty
161  *      @tty: tty struct to free
162  *
163  *      Free the write buffers, tty queue and tty memory itself.
164  *
165  *      Locking: none. Must be called after tty is definitely unused
166  */
167
168 void free_tty_struct(struct tty_struct *tty)
169 {
170         if (!tty)
171                 return;
172         if (tty->dev)
173                 put_device(tty->dev);
174         kfree(tty->write_buf);
175         tty->magic = 0xDEADDEAD;
176         kfree(tty);
177 }
178
179 static inline struct tty_struct *file_tty(struct file *file)
180 {
181         return ((struct tty_file_private *)file->private_data)->tty;
182 }
183
184 int tty_alloc_file(struct file *file)
185 {
186         struct tty_file_private *priv;
187
188         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
189         if (!priv)
190                 return -ENOMEM;
191
192         file->private_data = priv;
193
194         return 0;
195 }
196
197 /* Associate a new file with the tty structure */
198 void tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200         struct tty_file_private *priv = file->private_data;
201
202         priv->tty = tty;
203         priv->file = file;
204
205         spin_lock(&tty_files_lock);
206         list_add(&priv->list, &tty->tty_files);
207         spin_unlock(&tty_files_lock);
208 }
209
210 /**
211  * tty_free_file - free file->private_data
212  *
213  * This shall be used only for fail path handling when tty_add_file was not
214  * called yet.
215  */
216 void tty_free_file(struct file *file)
217 {
218         struct tty_file_private *priv = file->private_data;
219
220         file->private_data = NULL;
221         kfree(priv);
222 }
223
224 /* Delete file from its tty */
225 static void tty_del_file(struct file *file)
226 {
227         struct tty_file_private *priv = file->private_data;
228
229         spin_lock(&tty_files_lock);
230         list_del(&priv->list);
231         spin_unlock(&tty_files_lock);
232         tty_free_file(file);
233 }
234
235
236 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
237
238 /**
239  *      tty_name        -       return tty naming
240  *      @tty: tty structure
241  *      @buf: buffer for output
242  *
243  *      Convert a tty structure into a name. The name reflects the kernel
244  *      naming policy and if udev is in use may not reflect user space
245  *
246  *      Locking: none
247  */
248
249 char *tty_name(struct tty_struct *tty, char *buf)
250 {
251         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
252                 strcpy(buf, "NULL tty");
253         else
254                 strcpy(buf, tty->name);
255         return buf;
256 }
257
258 EXPORT_SYMBOL(tty_name);
259
260 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261                               const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264         if (!tty) {
265                 printk(KERN_WARNING
266                         "null TTY for (%d:%d) in %s\n",
267                         imajor(inode), iminor(inode), routine);
268                 return 1;
269         }
270         if (tty->magic != TTY_MAGIC) {
271                 printk(KERN_WARNING
272                         "bad magic number for tty struct (%d:%d) in %s\n",
273                         imajor(inode), iminor(inode), routine);
274                 return 1;
275         }
276 #endif
277         return 0;
278 }
279
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283         struct list_head *p;
284         int count = 0;
285
286         spin_lock(&tty_files_lock);
287         list_for_each(p, &tty->tty_files) {
288                 count++;
289         }
290         spin_unlock(&tty_files_lock);
291         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292             tty->driver->subtype == PTY_TYPE_SLAVE &&
293             tty->link && tty->link->count)
294                 count++;
295         if (tty->count != count) {
296                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297                                     "!= #fd's(%d) in %s\n",
298                        tty->name, tty->count, count, routine);
299                 return count;
300         }
301 #endif
302         return 0;
303 }
304
305 /**
306  *      get_tty_driver          -       find device of a tty
307  *      @dev_t: device identifier
308  *      @index: returns the index of the tty
309  *
310  *      This routine returns a tty driver structure, given a device number
311  *      and also passes back the index number.
312  *
313  *      Locking: caller must hold tty_mutex
314  */
315
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318         struct tty_driver *p;
319
320         list_for_each_entry(p, &tty_drivers, tty_drivers) {
321                 dev_t base = MKDEV(p->major, p->minor_start);
322                 if (device < base || device >= base + p->num)
323                         continue;
324                 *index = device - base;
325                 return tty_driver_kref_get(p);
326         }
327         return NULL;
328 }
329
330 #ifdef CONFIG_CONSOLE_POLL
331
332 /**
333  *      tty_find_polling_driver -       find device of a polled tty
334  *      @name: name string to match
335  *      @line: pointer to resulting tty line nr
336  *
337  *      This routine returns a tty driver structure, given a name
338  *      and the condition that the tty driver is capable of polled
339  *      operation.
340  */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343         struct tty_driver *p, *res = NULL;
344         int tty_line = 0;
345         int len;
346         char *str, *stp;
347
348         for (str = name; *str; str++)
349                 if ((*str >= '0' && *str <= '9') || *str == ',')
350                         break;
351         if (!*str)
352                 return NULL;
353
354         len = str - name;
355         tty_line = simple_strtoul(str, &str, 10);
356
357         mutex_lock(&tty_mutex);
358         /* Search through the tty devices to look for a match */
359         list_for_each_entry(p, &tty_drivers, tty_drivers) {
360                 if (strncmp(name, p->name, len) != 0)
361                         continue;
362                 stp = str;
363                 if (*stp == ',')
364                         stp++;
365                 if (*stp == '\0')
366                         stp = NULL;
367
368                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
369                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370                         res = tty_driver_kref_get(p);
371                         *line = tty_line;
372                         break;
373                 }
374         }
375         mutex_unlock(&tty_mutex);
376
377         return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381
382 /**
383  *      tty_check_change        -       check for POSIX terminal changes
384  *      @tty: tty to check
385  *
386  *      If we try to write to, or set the state of, a terminal and we're
387  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
388  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
389  *
390  *      Locking: ctrl_lock
391  */
392
393 int tty_check_change(struct tty_struct *tty)
394 {
395         unsigned long flags;
396         int ret = 0;
397
398         if (current->signal->tty != tty)
399                 return 0;
400
401         spin_lock_irqsave(&tty->ctrl_lock, flags);
402
403         if (!tty->pgrp) {
404                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
405                 goto out_unlock;
406         }
407         if (task_pgrp(current) == tty->pgrp)
408                 goto out_unlock;
409         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
410         if (is_ignored(SIGTTOU))
411                 goto out;
412         if (is_current_pgrp_orphaned()) {
413                 ret = -EIO;
414                 goto out;
415         }
416         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
417         set_thread_flag(TIF_SIGPENDING);
418         ret = -ERESTARTSYS;
419 out:
420         return ret;
421 out_unlock:
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         return ret;
424 }
425
426 EXPORT_SYMBOL(tty_check_change);
427
428 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
429                                 size_t count, loff_t *ppos)
430 {
431         return 0;
432 }
433
434 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
435                                  size_t count, loff_t *ppos)
436 {
437         return -EIO;
438 }
439
440 /* No kernel lock held - none needed ;) */
441 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
442 {
443         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
444 }
445
446 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
447                 unsigned long arg)
448 {
449         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451
452 static long hung_up_tty_compat_ioctl(struct file *file,
453                                      unsigned int cmd, unsigned long arg)
454 {
455         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
456 }
457
458 static const struct file_operations tty_fops = {
459         .llseek         = no_llseek,
460         .read           = tty_read,
461         .write          = tty_write,
462         .poll           = tty_poll,
463         .unlocked_ioctl = tty_ioctl,
464         .compat_ioctl   = tty_compat_ioctl,
465         .open           = tty_open,
466         .release        = tty_release,
467         .fasync         = tty_fasync,
468 };
469
470 static const struct file_operations console_fops = {
471         .llseek         = no_llseek,
472         .read           = tty_read,
473         .write          = redirected_tty_write,
474         .poll           = tty_poll,
475         .unlocked_ioctl = tty_ioctl,
476         .compat_ioctl   = tty_compat_ioctl,
477         .open           = tty_open,
478         .release        = tty_release,
479         .fasync         = tty_fasync,
480 };
481
482 static const struct file_operations hung_up_tty_fops = {
483         .llseek         = no_llseek,
484         .read           = hung_up_tty_read,
485         .write          = hung_up_tty_write,
486         .poll           = hung_up_tty_poll,
487         .unlocked_ioctl = hung_up_tty_ioctl,
488         .compat_ioctl   = hung_up_tty_compat_ioctl,
489         .release        = tty_release,
490 };
491
492 static DEFINE_SPINLOCK(redirect_lock);
493 static struct file *redirect;
494
495 /**
496  *      tty_wakeup      -       request more data
497  *      @tty: terminal
498  *
499  *      Internal and external helper for wakeups of tty. This function
500  *      informs the line discipline if present that the driver is ready
501  *      to receive more output data.
502  */
503
504 void tty_wakeup(struct tty_struct *tty)
505 {
506         struct tty_ldisc *ld;
507
508         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
509                 ld = tty_ldisc_ref(tty);
510                 if (ld) {
511                         if (ld->ops->write_wakeup)
512                                 ld->ops->write_wakeup(tty);
513                         tty_ldisc_deref(ld);
514                 }
515         }
516         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
517 }
518
519 EXPORT_SYMBOL_GPL(tty_wakeup);
520
521 /**
522  *      tty_signal_session_leader       - sends SIGHUP to session leader
523  *      @tty            controlling tty
524  *      @exit_session   if non-zero, signal all foreground group processes
525  *
526  *      Send SIGHUP and SIGCONT to the session leader and its process group.
527  *      Optionally, signal all processes in the foreground process group.
528  *
529  *      Returns the number of processes in the session with this tty
530  *      as their controlling terminal. This value is used to drop
531  *      tty references for those processes.
532  */
533 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
534 {
535         struct task_struct *p;
536         int refs = 0;
537         struct pid *tty_pgrp = NULL;
538
539         read_lock(&tasklist_lock);
540         if (tty->session) {
541                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
542                         spin_lock_irq(&p->sighand->siglock);
543                         if (p->signal->tty == tty) {
544                                 p->signal->tty = NULL;
545                                 /* We defer the dereferences outside fo
546                                    the tasklist lock */
547                                 refs++;
548                         }
549                         if (!p->signal->leader) {
550                                 spin_unlock_irq(&p->sighand->siglock);
551                                 continue;
552                         }
553                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
554                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
555                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
556                         spin_lock(&tty->ctrl_lock);
557                         tty_pgrp = get_pid(tty->pgrp);
558                         if (tty->pgrp)
559                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
560                         spin_unlock(&tty->ctrl_lock);
561                         spin_unlock_irq(&p->sighand->siglock);
562                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
563         }
564         read_unlock(&tasklist_lock);
565
566         if (tty_pgrp) {
567                 if (exit_session)
568                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
569                 put_pid(tty_pgrp);
570         }
571
572         return refs;
573 }
574
575 /**
576  *      __tty_hangup            -       actual handler for hangup events
577  *      @work: tty device
578  *
579  *      This can be called by a "kworker" kernel thread.  That is process
580  *      synchronous but doesn't hold any locks, so we need to make sure we
581  *      have the appropriate locks for what we're doing.
582  *
583  *      The hangup event clears any pending redirections onto the hung up
584  *      device. It ensures future writes will error and it does the needed
585  *      line discipline hangup and signal delivery. The tty object itself
586  *      remains intact.
587  *
588  *      Locking:
589  *              BTM
590  *                redirect lock for undoing redirection
591  *                file list lock for manipulating list of ttys
592  *                tty_ldiscs_lock from called functions
593  *                termios_rwsem resetting termios data
594  *                tasklist_lock to walk task list for hangup event
595  *                  ->siglock to protect ->signal/->sighand
596  */
597 static void __tty_hangup(struct tty_struct *tty, int exit_session)
598 {
599         struct file *cons_filp = NULL;
600         struct file *filp, *f = NULL;
601         struct tty_file_private *priv;
602         int    closecount = 0, n;
603         int refs;
604
605         if (!tty)
606                 return;
607
608
609         spin_lock(&redirect_lock);
610         if (redirect && file_tty(redirect) == tty) {
611                 f = redirect;
612                 redirect = NULL;
613         }
614         spin_unlock(&redirect_lock);
615
616         tty_lock(tty);
617
618         if (test_bit(TTY_HUPPED, &tty->flags)) {
619                 tty_unlock(tty);
620                 return;
621         }
622
623         /* some functions below drop BTM, so we need this bit */
624         set_bit(TTY_HUPPING, &tty->flags);
625
626         /* inuse_filps is protected by the single tty lock,
627            this really needs to change if we want to flush the
628            workqueue with the lock held */
629         check_tty_count(tty, "tty_hangup");
630
631         spin_lock(&tty_files_lock);
632         /* This breaks for file handles being sent over AF_UNIX sockets ? */
633         list_for_each_entry(priv, &tty->tty_files, list) {
634                 filp = priv->file;
635                 if (filp->f_op->write == redirected_tty_write)
636                         cons_filp = filp;
637                 if (filp->f_op->write != tty_write)
638                         continue;
639                 closecount++;
640                 __tty_fasync(-1, filp, 0);      /* can't block */
641                 filp->f_op = &hung_up_tty_fops;
642         }
643         spin_unlock(&tty_files_lock);
644
645         refs = tty_signal_session_leader(tty, exit_session);
646         /* Account for the p->signal references we killed */
647         while (refs--)
648                 tty_kref_put(tty);
649
650         /*
651          * it drops BTM and thus races with reopen
652          * we protect the race by TTY_HUPPING
653          */
654         tty_ldisc_hangup(tty);
655
656         spin_lock_irq(&tty->ctrl_lock);
657         clear_bit(TTY_THROTTLED, &tty->flags);
658         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
659         put_pid(tty->session);
660         put_pid(tty->pgrp);
661         tty->session = NULL;
662         tty->pgrp = NULL;
663         tty->ctrl_status = 0;
664         spin_unlock_irq(&tty->ctrl_lock);
665
666         /*
667          * If one of the devices matches a console pointer, we
668          * cannot just call hangup() because that will cause
669          * tty->count and state->count to go out of sync.
670          * So we just call close() the right number of times.
671          */
672         if (cons_filp) {
673                 if (tty->ops->close)
674                         for (n = 0; n < closecount; n++)
675                                 tty->ops->close(tty, cons_filp);
676         } else if (tty->ops->hangup)
677                 tty->ops->hangup(tty);
678         /*
679          * We don't want to have driver/ldisc interactions beyond
680          * the ones we did here. The driver layer expects no
681          * calls after ->hangup() from the ldisc side. However we
682          * can't yet guarantee all that.
683          */
684         set_bit(TTY_HUPPED, &tty->flags);
685         clear_bit(TTY_HUPPING, &tty->flags);
686
687         tty_unlock(tty);
688
689         if (f)
690                 fput(f);
691 }
692
693 static void do_tty_hangup(struct work_struct *work)
694 {
695         struct tty_struct *tty =
696                 container_of(work, struct tty_struct, hangup_work);
697
698         __tty_hangup(tty, 0);
699 }
700
701 /**
702  *      tty_hangup              -       trigger a hangup event
703  *      @tty: tty to hangup
704  *
705  *      A carrier loss (virtual or otherwise) has occurred on this like
706  *      schedule a hangup sequence to run after this event.
707  */
708
709 void tty_hangup(struct tty_struct *tty)
710 {
711 #ifdef TTY_DEBUG_HANGUP
712         char    buf[64];
713         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
714 #endif
715         schedule_work(&tty->hangup_work);
716 }
717
718 EXPORT_SYMBOL(tty_hangup);
719
720 /**
721  *      tty_vhangup             -       process vhangup
722  *      @tty: tty to hangup
723  *
724  *      The user has asked via system call for the terminal to be hung up.
725  *      We do this synchronously so that when the syscall returns the process
726  *      is complete. That guarantee is necessary for security reasons.
727  */
728
729 void tty_vhangup(struct tty_struct *tty)
730 {
731 #ifdef TTY_DEBUG_HANGUP
732         char    buf[64];
733
734         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
735 #endif
736         __tty_hangup(tty, 0);
737 }
738
739 EXPORT_SYMBOL(tty_vhangup);
740
741
742 /**
743  *      tty_vhangup_self        -       process vhangup for own ctty
744  *
745  *      Perform a vhangup on the current controlling tty
746  */
747
748 void tty_vhangup_self(void)
749 {
750         struct tty_struct *tty;
751
752         tty = get_current_tty();
753         if (tty) {
754                 tty_vhangup(tty);
755                 tty_kref_put(tty);
756         }
757 }
758
759 /**
760  *      tty_vhangup_session             -       hangup session leader exit
761  *      @tty: tty to hangup
762  *
763  *      The session leader is exiting and hanging up its controlling terminal.
764  *      Every process in the foreground process group is signalled SIGHUP.
765  *
766  *      We do this synchronously so that when the syscall returns the process
767  *      is complete. That guarantee is necessary for security reasons.
768  */
769
770 static void tty_vhangup_session(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773         char    buf[64];
774
775         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
776 #endif
777         __tty_hangup(tty, 1);
778 }
779
780 /**
781  *      tty_hung_up_p           -       was tty hung up
782  *      @filp: file pointer of tty
783  *
784  *      Return true if the tty has been subject to a vhangup or a carrier
785  *      loss
786  */
787
788 int tty_hung_up_p(struct file *filp)
789 {
790         return (filp->f_op == &hung_up_tty_fops);
791 }
792
793 EXPORT_SYMBOL(tty_hung_up_p);
794
795 static void session_clear_tty(struct pid *session)
796 {
797         struct task_struct *p;
798         do_each_pid_task(session, PIDTYPE_SID, p) {
799                 proc_clear_tty(p);
800         } while_each_pid_task(session, PIDTYPE_SID, p);
801 }
802
803 /**
804  *      disassociate_ctty       -       disconnect controlling tty
805  *      @on_exit: true if exiting so need to "hang up" the session
806  *
807  *      This function is typically called only by the session leader, when
808  *      it wants to disassociate itself from its controlling tty.
809  *
810  *      It performs the following functions:
811  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
812  *      (2)  Clears the tty from being controlling the session
813  *      (3)  Clears the controlling tty for all processes in the
814  *              session group.
815  *
816  *      The argument on_exit is set to 1 if called when a process is
817  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
818  *
819  *      Locking:
820  *              BTM is taken for hysterical raisins, and held when
821  *                called from no_tty().
822  *                tty_mutex is taken to protect tty
823  *                ->siglock is taken to protect ->signal/->sighand
824  *                tasklist_lock is taken to walk process list for sessions
825  *                  ->siglock is taken to protect ->signal/->sighand
826  */
827
828 void disassociate_ctty(int on_exit)
829 {
830         struct tty_struct *tty;
831
832         if (!current->signal->leader)
833                 return;
834
835         tty = get_current_tty();
836         if (tty) {
837                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
838                         tty_vhangup_session(tty);
839                 } else {
840                         struct pid *tty_pgrp = tty_get_pgrp(tty);
841                         if (tty_pgrp) {
842                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
843                                 if (!on_exit)
844                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
845                                 put_pid(tty_pgrp);
846                         }
847                 }
848                 tty_kref_put(tty);
849
850         } else if (on_exit) {
851                 struct pid *old_pgrp;
852                 spin_lock_irq(&current->sighand->siglock);
853                 old_pgrp = current->signal->tty_old_pgrp;
854                 current->signal->tty_old_pgrp = NULL;
855                 spin_unlock_irq(&current->sighand->siglock);
856                 if (old_pgrp) {
857                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
858                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
859                         put_pid(old_pgrp);
860                 }
861                 return;
862         }
863
864         spin_lock_irq(&current->sighand->siglock);
865         put_pid(current->signal->tty_old_pgrp);
866         current->signal->tty_old_pgrp = NULL;
867
868         tty = tty_kref_get(current->signal->tty);
869         if (tty) {
870                 unsigned long flags;
871                 spin_lock_irqsave(&tty->ctrl_lock, flags);
872                 put_pid(tty->session);
873                 put_pid(tty->pgrp);
874                 tty->session = NULL;
875                 tty->pgrp = NULL;
876                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
877                 tty_kref_put(tty);
878         } else {
879 #ifdef TTY_DEBUG_HANGUP
880                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
881                        " = NULL", tty);
882 #endif
883         }
884
885         spin_unlock_irq(&current->sighand->siglock);
886         /* Now clear signal->tty under the lock */
887         read_lock(&tasklist_lock);
888         session_clear_tty(task_session(current));
889         read_unlock(&tasklist_lock);
890 }
891
892 /**
893  *
894  *      no_tty  - Ensure the current process does not have a controlling tty
895  */
896 void no_tty(void)
897 {
898         /* FIXME: Review locking here. The tty_lock never covered any race
899            between a new association and proc_clear_tty but possible we need
900            to protect against this anyway */
901         struct task_struct *tsk = current;
902         disassociate_ctty(0);
903         proc_clear_tty(tsk);
904 }
905
906
907 /**
908  *      stop_tty        -       propagate flow control
909  *      @tty: tty to stop
910  *
911  *      Perform flow control to the driver. May be called
912  *      on an already stopped device and will not re-call the driver
913  *      method.
914  *
915  *      This functionality is used by both the line disciplines for
916  *      halting incoming flow and by the driver. It may therefore be
917  *      called from any context, may be under the tty atomic_write_lock
918  *      but not always.
919  *
920  *      Locking:
921  *              flow_lock
922  */
923
924 void __stop_tty(struct tty_struct *tty)
925 {
926         if (tty->stopped)
927                 return;
928         tty->stopped = 1;
929         if (tty->ops->stop)
930                 (tty->ops->stop)(tty);
931 }
932
933 void stop_tty(struct tty_struct *tty)
934 {
935         unsigned long flags;
936
937         spin_lock_irqsave(&tty->flow_lock, flags);
938         __stop_tty(tty);
939         spin_unlock_irqrestore(&tty->flow_lock, flags);
940 }
941 EXPORT_SYMBOL(stop_tty);
942
943 /**
944  *      start_tty       -       propagate flow control
945  *      @tty: tty to start
946  *
947  *      Start a tty that has been stopped if at all possible. If this
948  *      tty was previous stopped and is now being started, the driver
949  *      start method is invoked and the line discipline woken.
950  *
951  *      Locking:
952  *              flow_lock
953  */
954
955 void __start_tty(struct tty_struct *tty)
956 {
957         if (!tty->stopped || tty->flow_stopped)
958                 return;
959         tty->stopped = 0;
960         if (tty->ops->start)
961                 (tty->ops->start)(tty);
962         tty_wakeup(tty);
963 }
964
965 void start_tty(struct tty_struct *tty)
966 {
967         unsigned long flags;
968
969         spin_lock_irqsave(&tty->flow_lock, flags);
970         __start_tty(tty);
971         spin_unlock_irqrestore(&tty->flow_lock, flags);
972 }
973 EXPORT_SYMBOL(start_tty);
974
975 /* We limit tty time update visibility to every 8 seconds or so. */
976 static void tty_update_time(struct timespec *time)
977 {
978         unsigned long sec = get_seconds() & ~7;
979         if ((long)(sec - time->tv_sec) > 0)
980                 time->tv_sec = sec;
981 }
982
983 /**
984  *      tty_read        -       read method for tty device files
985  *      @file: pointer to tty file
986  *      @buf: user buffer
987  *      @count: size of user buffer
988  *      @ppos: unused
989  *
990  *      Perform the read system call function on this terminal device. Checks
991  *      for hung up devices before calling the line discipline method.
992  *
993  *      Locking:
994  *              Locks the line discipline internally while needed. Multiple
995  *      read calls may be outstanding in parallel.
996  */
997
998 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
999                         loff_t *ppos)
1000 {
1001         int i;
1002         struct inode *inode = file_inode(file);
1003         struct tty_struct *tty = file_tty(file);
1004         struct tty_ldisc *ld;
1005
1006         if (tty_paranoia_check(tty, inode, "tty_read"))
1007                 return -EIO;
1008         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1009                 return -EIO;
1010
1011         /* We want to wait for the line discipline to sort out in this
1012            situation */
1013         ld = tty_ldisc_ref_wait(tty);
1014         if (ld->ops->read)
1015                 i = (ld->ops->read)(tty, file, buf, count);
1016         else
1017                 i = -EIO;
1018         tty_ldisc_deref(ld);
1019
1020         if (i > 0)
1021                 tty_update_time(&inode->i_atime);
1022
1023         return i;
1024 }
1025
1026 static void tty_write_unlock(struct tty_struct *tty)
1027         __releases(&tty->atomic_write_lock)
1028 {
1029         mutex_unlock(&tty->atomic_write_lock);
1030         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1031 }
1032
1033 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1034         __acquires(&tty->atomic_write_lock)
1035 {
1036         if (!mutex_trylock(&tty->atomic_write_lock)) {
1037                 if (ndelay)
1038                         return -EAGAIN;
1039                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1040                         return -ERESTARTSYS;
1041         }
1042         return 0;
1043 }
1044
1045 /*
1046  * Split writes up in sane blocksizes to avoid
1047  * denial-of-service type attacks
1048  */
1049 static inline ssize_t do_tty_write(
1050         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1051         struct tty_struct *tty,
1052         struct file *file,
1053         const char __user *buf,
1054         size_t count)
1055 {
1056         ssize_t ret, written = 0;
1057         unsigned int chunk;
1058
1059         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1060         if (ret < 0)
1061                 return ret;
1062
1063         /*
1064          * We chunk up writes into a temporary buffer. This
1065          * simplifies low-level drivers immensely, since they
1066          * don't have locking issues and user mode accesses.
1067          *
1068          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1069          * big chunk-size..
1070          *
1071          * The default chunk-size is 2kB, because the NTTY
1072          * layer has problems with bigger chunks. It will
1073          * claim to be able to handle more characters than
1074          * it actually does.
1075          *
1076          * FIXME: This can probably go away now except that 64K chunks
1077          * are too likely to fail unless switched to vmalloc...
1078          */
1079         chunk = 2048;
1080         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1081                 chunk = 65536;
1082         if (count < chunk)
1083                 chunk = count;
1084
1085         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1086         if (tty->write_cnt < chunk) {
1087                 unsigned char *buf_chunk;
1088
1089                 if (chunk < 1024)
1090                         chunk = 1024;
1091
1092                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1093                 if (!buf_chunk) {
1094                         ret = -ENOMEM;
1095                         goto out;
1096                 }
1097                 kfree(tty->write_buf);
1098                 tty->write_cnt = chunk;
1099                 tty->write_buf = buf_chunk;
1100         }
1101
1102         /* Do the write .. */
1103         for (;;) {
1104                 size_t size = count;
1105                 if (size > chunk)
1106                         size = chunk;
1107                 ret = -EFAULT;
1108                 if (copy_from_user(tty->write_buf, buf, size))
1109                         break;
1110                 ret = write(tty, file, tty->write_buf, size);
1111                 if (ret <= 0)
1112                         break;
1113                 written += ret;
1114                 buf += ret;
1115                 count -= ret;
1116                 if (!count)
1117                         break;
1118                 ret = -ERESTARTSYS;
1119                 if (signal_pending(current))
1120                         break;
1121                 cond_resched();
1122         }
1123         if (written) {
1124                 tty_update_time(&file_inode(file)->i_mtime);
1125                 ret = written;
1126         }
1127 out:
1128         tty_write_unlock(tty);
1129         return ret;
1130 }
1131
1132 /**
1133  * tty_write_message - write a message to a certain tty, not just the console.
1134  * @tty: the destination tty_struct
1135  * @msg: the message to write
1136  *
1137  * This is used for messages that need to be redirected to a specific tty.
1138  * We don't put it into the syslog queue right now maybe in the future if
1139  * really needed.
1140  *
1141  * We must still hold the BTM and test the CLOSING flag for the moment.
1142  */
1143
1144 void tty_write_message(struct tty_struct *tty, char *msg)
1145 {
1146         if (tty) {
1147                 mutex_lock(&tty->atomic_write_lock);
1148                 tty_lock(tty);
1149                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1150                         tty_unlock(tty);
1151                         tty->ops->write(tty, msg, strlen(msg));
1152                 } else
1153                         tty_unlock(tty);
1154                 tty_write_unlock(tty);
1155         }
1156         return;
1157 }
1158
1159
1160 /**
1161  *      tty_write               -       write method for tty device file
1162  *      @file: tty file pointer
1163  *      @buf: user data to write
1164  *      @count: bytes to write
1165  *      @ppos: unused
1166  *
1167  *      Write data to a tty device via the line discipline.
1168  *
1169  *      Locking:
1170  *              Locks the line discipline as required
1171  *              Writes to the tty driver are serialized by the atomic_write_lock
1172  *      and are then processed in chunks to the device. The line discipline
1173  *      write method will not be invoked in parallel for each device.
1174  */
1175
1176 static ssize_t tty_write(struct file *file, const char __user *buf,
1177                                                 size_t count, loff_t *ppos)
1178 {
1179         struct tty_struct *tty = file_tty(file);
1180         struct tty_ldisc *ld;
1181         ssize_t ret;
1182
1183         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1184                 return -EIO;
1185         if (!tty || !tty->ops->write ||
1186                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1187                         return -EIO;
1188         /* Short term debug to catch buggy drivers */
1189         if (tty->ops->write_room == NULL)
1190                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1191                         tty->driver->name);
1192         ld = tty_ldisc_ref_wait(tty);
1193         if (!ld->ops->write)
1194                 ret = -EIO;
1195         else
1196                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1197         tty_ldisc_deref(ld);
1198         return ret;
1199 }
1200
1201 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1202                                                 size_t count, loff_t *ppos)
1203 {
1204         struct file *p = NULL;
1205
1206         spin_lock(&redirect_lock);
1207         if (redirect)
1208                 p = get_file(redirect);
1209         spin_unlock(&redirect_lock);
1210
1211         if (p) {
1212                 ssize_t res;
1213                 res = vfs_write(p, buf, count, &p->f_pos);
1214                 fput(p);
1215                 return res;
1216         }
1217         return tty_write(file, buf, count, ppos);
1218 }
1219
1220 /**
1221  *      tty_send_xchar  -       send priority character
1222  *
1223  *      Send a high priority character to the tty even if stopped
1224  *
1225  *      Locking: none for xchar method, write ordering for write method.
1226  */
1227
1228 int tty_send_xchar(struct tty_struct *tty, char ch)
1229 {
1230         int     was_stopped = tty->stopped;
1231
1232         if (tty->ops->send_xchar) {
1233                 tty->ops->send_xchar(tty, ch);
1234                 return 0;
1235         }
1236
1237         if (tty_write_lock(tty, 0) < 0)
1238                 return -ERESTARTSYS;
1239
1240         if (was_stopped)
1241                 start_tty(tty);
1242         tty->ops->write(tty, &ch, 1);
1243         if (was_stopped)
1244                 stop_tty(tty);
1245         tty_write_unlock(tty);
1246         return 0;
1247 }
1248
1249 static char ptychar[] = "pqrstuvwxyzabcde";
1250
1251 /**
1252  *      pty_line_name   -       generate name for a pty
1253  *      @driver: the tty driver in use
1254  *      @index: the minor number
1255  *      @p: output buffer of at least 6 bytes
1256  *
1257  *      Generate a name from a driver reference and write it to the output
1258  *      buffer.
1259  *
1260  *      Locking: None
1261  */
1262 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1263 {
1264         int i = index + driver->name_base;
1265         /* ->name is initialized to "ttyp", but "tty" is expected */
1266         sprintf(p, "%s%c%x",
1267                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1268                 ptychar[i >> 4 & 0xf], i & 0xf);
1269 }
1270
1271 /**
1272  *      tty_line_name   -       generate name for a tty
1273  *      @driver: the tty driver in use
1274  *      @index: the minor number
1275  *      @p: output buffer of at least 7 bytes
1276  *
1277  *      Generate a name from a driver reference and write it to the output
1278  *      buffer.
1279  *
1280  *      Locking: None
1281  */
1282 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1283 {
1284         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1285                 return sprintf(p, "%s", driver->name);
1286         else
1287                 return sprintf(p, "%s%d", driver->name,
1288                                index + driver->name_base);
1289 }
1290
1291 /**
1292  *      tty_driver_lookup_tty() - find an existing tty, if any
1293  *      @driver: the driver for the tty
1294  *      @idx:    the minor number
1295  *
1296  *      Return the tty, if found or ERR_PTR() otherwise.
1297  *
1298  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1299  *      be held until the 'fast-open' is also done. Will change once we
1300  *      have refcounting in the driver and per driver locking
1301  */
1302 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1303                 struct inode *inode, int idx)
1304 {
1305         if (driver->ops->lookup)
1306                 return driver->ops->lookup(driver, inode, idx);
1307
1308         return driver->ttys[idx];
1309 }
1310
1311 /**
1312  *      tty_init_termios        -  helper for termios setup
1313  *      @tty: the tty to set up
1314  *
1315  *      Initialise the termios structures for this tty. Thus runs under
1316  *      the tty_mutex currently so we can be relaxed about ordering.
1317  */
1318
1319 int tty_init_termios(struct tty_struct *tty)
1320 {
1321         struct ktermios *tp;
1322         int idx = tty->index;
1323
1324         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1325                 tty->termios = tty->driver->init_termios;
1326         else {
1327                 /* Check for lazy saved data */
1328                 tp = tty->driver->termios[idx];
1329                 if (tp != NULL)
1330                         tty->termios = *tp;
1331                 else
1332                         tty->termios = tty->driver->init_termios;
1333         }
1334         /* Compatibility until drivers always set this */
1335         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1336         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1337         return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(tty_init_termios);
1340
1341 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1342 {
1343         int ret = tty_init_termios(tty);
1344         if (ret)
1345                 return ret;
1346
1347         tty_driver_kref_get(driver);
1348         tty->count++;
1349         driver->ttys[tty->index] = tty;
1350         return 0;
1351 }
1352 EXPORT_SYMBOL_GPL(tty_standard_install);
1353
1354 /**
1355  *      tty_driver_install_tty() - install a tty entry in the driver
1356  *      @driver: the driver for the tty
1357  *      @tty: the tty
1358  *
1359  *      Install a tty object into the driver tables. The tty->index field
1360  *      will be set by the time this is called. This method is responsible
1361  *      for ensuring any need additional structures are allocated and
1362  *      configured.
1363  *
1364  *      Locking: tty_mutex for now
1365  */
1366 static int tty_driver_install_tty(struct tty_driver *driver,
1367                                                 struct tty_struct *tty)
1368 {
1369         return driver->ops->install ? driver->ops->install(driver, tty) :
1370                 tty_standard_install(driver, tty);
1371 }
1372
1373 /**
1374  *      tty_driver_remove_tty() - remove a tty from the driver tables
1375  *      @driver: the driver for the tty
1376  *      @idx:    the minor number
1377  *
1378  *      Remvoe a tty object from the driver tables. The tty->index field
1379  *      will be set by the time this is called.
1380  *
1381  *      Locking: tty_mutex for now
1382  */
1383 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1384 {
1385         if (driver->ops->remove)
1386                 driver->ops->remove(driver, tty);
1387         else
1388                 driver->ttys[tty->index] = NULL;
1389 }
1390
1391 /*
1392  *      tty_reopen()    - fast re-open of an open tty
1393  *      @tty    - the tty to open
1394  *
1395  *      Return 0 on success, -errno on error.
1396  *
1397  *      Locking: tty_mutex must be held from the time the tty was found
1398  *               till this open completes.
1399  */
1400 static int tty_reopen(struct tty_struct *tty)
1401 {
1402         struct tty_driver *driver = tty->driver;
1403
1404         if (test_bit(TTY_CLOSING, &tty->flags) ||
1405                         test_bit(TTY_HUPPING, &tty->flags))
1406                 return -EIO;
1407
1408         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1409             driver->subtype == PTY_TYPE_MASTER) {
1410                 /*
1411                  * special case for PTY masters: only one open permitted,
1412                  * and the slave side open count is incremented as well.
1413                  */
1414                 if (tty->count)
1415                         return -EIO;
1416
1417                 tty->link->count++;
1418         }
1419         tty->count++;
1420
1421         WARN_ON(!tty->ldisc);
1422
1423         return 0;
1424 }
1425
1426 /**
1427  *      tty_init_dev            -       initialise a tty device
1428  *      @driver: tty driver we are opening a device on
1429  *      @idx: device index
1430  *      @ret_tty: returned tty structure
1431  *
1432  *      Prepare a tty device. This may not be a "new" clean device but
1433  *      could also be an active device. The pty drivers require special
1434  *      handling because of this.
1435  *
1436  *      Locking:
1437  *              The function is called under the tty_mutex, which
1438  *      protects us from the tty struct or driver itself going away.
1439  *
1440  *      On exit the tty device has the line discipline attached and
1441  *      a reference count of 1. If a pair was created for pty/tty use
1442  *      and the other was a pty master then it too has a reference count of 1.
1443  *
1444  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1445  * failed open.  The new code protects the open with a mutex, so it's
1446  * really quite straightforward.  The mutex locking can probably be
1447  * relaxed for the (most common) case of reopening a tty.
1448  */
1449
1450 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1451 {
1452         struct tty_struct *tty;
1453         int retval;
1454
1455         /*
1456          * First time open is complex, especially for PTY devices.
1457          * This code guarantees that either everything succeeds and the
1458          * TTY is ready for operation, or else the table slots are vacated
1459          * and the allocated memory released.  (Except that the termios
1460          * and locked termios may be retained.)
1461          */
1462
1463         if (!try_module_get(driver->owner))
1464                 return ERR_PTR(-ENODEV);
1465
1466         tty = alloc_tty_struct(driver, idx);
1467         if (!tty) {
1468                 retval = -ENOMEM;
1469                 goto err_module_put;
1470         }
1471
1472         tty_lock(tty);
1473         retval = tty_driver_install_tty(driver, tty);
1474         if (retval < 0)
1475                 goto err_deinit_tty;
1476
1477         if (!tty->port)
1478                 tty->port = driver->ports[idx];
1479
1480         WARN_RATELIMIT(!tty->port,
1481                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1482                         __func__, tty->driver->name);
1483
1484         tty->port->itty = tty;
1485
1486         /*
1487          * Structures all installed ... call the ldisc open routines.
1488          * If we fail here just call release_tty to clean up.  No need
1489          * to decrement the use counts, as release_tty doesn't care.
1490          */
1491         retval = tty_ldisc_setup(tty, tty->link);
1492         if (retval)
1493                 goto err_release_tty;
1494         /* Return the tty locked so that it cannot vanish under the caller */
1495         return tty;
1496
1497 err_deinit_tty:
1498         tty_unlock(tty);
1499         deinitialize_tty_struct(tty);
1500         free_tty_struct(tty);
1501 err_module_put:
1502         module_put(driver->owner);
1503         return ERR_PTR(retval);
1504
1505         /* call the tty release_tty routine to clean out this slot */
1506 err_release_tty:
1507         tty_unlock(tty);
1508         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1509                                  "clearing slot %d\n", idx);
1510         release_tty(tty, idx);
1511         return ERR_PTR(retval);
1512 }
1513
1514 void tty_free_termios(struct tty_struct *tty)
1515 {
1516         struct ktermios *tp;
1517         int idx = tty->index;
1518
1519         /* If the port is going to reset then it has no termios to save */
1520         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1521                 return;
1522
1523         /* Stash the termios data */
1524         tp = tty->driver->termios[idx];
1525         if (tp == NULL) {
1526                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1527                 if (tp == NULL) {
1528                         pr_warn("tty: no memory to save termios state.\n");
1529                         return;
1530                 }
1531                 tty->driver->termios[idx] = tp;
1532         }
1533         *tp = tty->termios;
1534 }
1535 EXPORT_SYMBOL(tty_free_termios);
1536
1537 /**
1538  *      tty_flush_works         -       flush all works of a tty
1539  *      @tty: tty device to flush works for
1540  *
1541  *      Sync flush all works belonging to @tty.
1542  */
1543 static void tty_flush_works(struct tty_struct *tty)
1544 {
1545         flush_work(&tty->SAK_work);
1546         flush_work(&tty->hangup_work);
1547 }
1548
1549 /**
1550  *      release_one_tty         -       release tty structure memory
1551  *      @kref: kref of tty we are obliterating
1552  *
1553  *      Releases memory associated with a tty structure, and clears out the
1554  *      driver table slots. This function is called when a device is no longer
1555  *      in use. It also gets called when setup of a device fails.
1556  *
1557  *      Locking:
1558  *              takes the file list lock internally when working on the list
1559  *      of ttys that the driver keeps.
1560  *
1561  *      This method gets called from a work queue so that the driver private
1562  *      cleanup ops can sleep (needed for USB at least)
1563  */
1564 static void release_one_tty(struct work_struct *work)
1565 {
1566         struct tty_struct *tty =
1567                 container_of(work, struct tty_struct, hangup_work);
1568         struct tty_driver *driver = tty->driver;
1569         struct module *owner = driver->owner;
1570
1571         if (tty->ops->cleanup)
1572                 tty->ops->cleanup(tty);
1573
1574         tty->magic = 0;
1575         tty_driver_kref_put(driver);
1576         module_put(owner);
1577
1578         spin_lock(&tty_files_lock);
1579         list_del_init(&tty->tty_files);
1580         spin_unlock(&tty_files_lock);
1581
1582         put_pid(tty->pgrp);
1583         put_pid(tty->session);
1584         free_tty_struct(tty);
1585 }
1586
1587 static void queue_release_one_tty(struct kref *kref)
1588 {
1589         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1590
1591         /* The hangup queue is now free so we can reuse it rather than
1592            waste a chunk of memory for each port */
1593         INIT_WORK(&tty->hangup_work, release_one_tty);
1594         schedule_work(&tty->hangup_work);
1595 }
1596
1597 /**
1598  *      tty_kref_put            -       release a tty kref
1599  *      @tty: tty device
1600  *
1601  *      Release a reference to a tty device and if need be let the kref
1602  *      layer destruct the object for us
1603  */
1604
1605 void tty_kref_put(struct tty_struct *tty)
1606 {
1607         if (tty)
1608                 kref_put(&tty->kref, queue_release_one_tty);
1609 }
1610 EXPORT_SYMBOL(tty_kref_put);
1611
1612 /**
1613  *      release_tty             -       release tty structure memory
1614  *
1615  *      Release both @tty and a possible linked partner (think pty pair),
1616  *      and decrement the refcount of the backing module.
1617  *
1618  *      Locking:
1619  *              tty_mutex
1620  *              takes the file list lock internally when working on the list
1621  *      of ttys that the driver keeps.
1622  *
1623  */
1624 static void release_tty(struct tty_struct *tty, int idx)
1625 {
1626         /* This should always be true but check for the moment */
1627         WARN_ON(tty->index != idx);
1628         WARN_ON(!mutex_is_locked(&tty_mutex));
1629         if (tty->ops->shutdown)
1630                 tty->ops->shutdown(tty);
1631         tty_free_termios(tty);
1632         tty_driver_remove_tty(tty->driver, tty);
1633         tty->port->itty = NULL;
1634         if (tty->link)
1635                 tty->link->port->itty = NULL;
1636         cancel_work_sync(&tty->port->buf.work);
1637
1638         if (tty->link)
1639                 tty_kref_put(tty->link);
1640         tty_kref_put(tty);
1641 }
1642
1643 /**
1644  *      tty_release_checks - check a tty before real release
1645  *      @tty: tty to check
1646  *      @o_tty: link of @tty (if any)
1647  *      @idx: index of the tty
1648  *
1649  *      Performs some paranoid checking before true release of the @tty.
1650  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1651  */
1652 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1653                 int idx)
1654 {
1655 #ifdef TTY_PARANOIA_CHECK
1656         if (idx < 0 || idx >= tty->driver->num) {
1657                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1658                                 __func__, tty->name);
1659                 return -1;
1660         }
1661
1662         /* not much to check for devpts */
1663         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1664                 return 0;
1665
1666         if (tty != tty->driver->ttys[idx]) {
1667                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1668                                 __func__, idx, tty->name);
1669                 return -1;
1670         }
1671         if (tty->driver->other) {
1672                 if (o_tty != tty->driver->other->ttys[idx]) {
1673                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1674                                         __func__, idx, tty->name);
1675                         return -1;
1676                 }
1677                 if (o_tty->link != tty) {
1678                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1679                         return -1;
1680                 }
1681         }
1682 #endif
1683         return 0;
1684 }
1685
1686 /**
1687  *      tty_release             -       vfs callback for close
1688  *      @inode: inode of tty
1689  *      @filp: file pointer for handle to tty
1690  *
1691  *      Called the last time each file handle is closed that references
1692  *      this tty. There may however be several such references.
1693  *
1694  *      Locking:
1695  *              Takes bkl. See tty_release_dev
1696  *
1697  * Even releasing the tty structures is a tricky business.. We have
1698  * to be very careful that the structures are all released at the
1699  * same time, as interrupts might otherwise get the wrong pointers.
1700  *
1701  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1702  * lead to double frees or releasing memory still in use.
1703  */
1704
1705 int tty_release(struct inode *inode, struct file *filp)
1706 {
1707         struct tty_struct *tty = file_tty(filp);
1708         struct tty_struct *o_tty;
1709         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1710         int     idx;
1711         char    buf[64];
1712
1713         if (tty_paranoia_check(tty, inode, __func__))
1714                 return 0;
1715
1716         tty_lock(tty);
1717         check_tty_count(tty, __func__);
1718
1719         __tty_fasync(-1, filp, 0);
1720
1721         idx = tty->index;
1722         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1723                       tty->driver->subtype == PTY_TYPE_MASTER);
1724         /* Review: parallel close */
1725         o_tty = tty->link;
1726
1727         if (tty_release_checks(tty, o_tty, idx)) {
1728                 tty_unlock(tty);
1729                 return 0;
1730         }
1731
1732 #ifdef TTY_DEBUG_HANGUP
1733         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1734                         tty_name(tty, buf), tty->count);
1735 #endif
1736
1737         if (tty->ops->close)
1738                 tty->ops->close(tty, filp);
1739
1740         tty_unlock(tty);
1741         /*
1742          * Sanity check: if tty->count is going to zero, there shouldn't be
1743          * any waiters on tty->read_wait or tty->write_wait.  We test the
1744          * wait queues and kick everyone out _before_ actually starting to
1745          * close.  This ensures that we won't block while releasing the tty
1746          * structure.
1747          *
1748          * The test for the o_tty closing is necessary, since the master and
1749          * slave sides may close in any order.  If the slave side closes out
1750          * first, its count will be one, since the master side holds an open.
1751          * Thus this test wouldn't be triggered at the time the slave closes,
1752          * so we do it now.
1753          *
1754          * Note that it's possible for the tty to be opened again while we're
1755          * flushing out waiters.  By recalculating the closing flags before
1756          * each iteration we avoid any problems.
1757          */
1758         while (1) {
1759                 /* Guard against races with tty->count changes elsewhere and
1760                    opens on /dev/tty */
1761
1762                 mutex_lock(&tty_mutex);
1763                 tty_lock_pair(tty, o_tty);
1764                 tty_closing = tty->count <= 1;
1765                 o_tty_closing = o_tty &&
1766                         (o_tty->count <= (pty_master ? 1 : 0));
1767                 do_sleep = 0;
1768
1769                 if (tty_closing) {
1770                         if (waitqueue_active(&tty->read_wait)) {
1771                                 wake_up_poll(&tty->read_wait, POLLIN);
1772                                 do_sleep++;
1773                         }
1774                         if (waitqueue_active(&tty->write_wait)) {
1775                                 wake_up_poll(&tty->write_wait, POLLOUT);
1776                                 do_sleep++;
1777                         }
1778                 }
1779                 if (o_tty_closing) {
1780                         if (waitqueue_active(&o_tty->read_wait)) {
1781                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1782                                 do_sleep++;
1783                         }
1784                         if (waitqueue_active(&o_tty->write_wait)) {
1785                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1786                                 do_sleep++;
1787                         }
1788                 }
1789                 if (!do_sleep)
1790                         break;
1791
1792                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1793                                 __func__, tty_name(tty, buf));
1794                 tty_unlock_pair(tty, o_tty);
1795                 mutex_unlock(&tty_mutex);
1796                 schedule();
1797         }
1798
1799         /*
1800          * The closing flags are now consistent with the open counts on
1801          * both sides, and we've completed the last operation that could
1802          * block, so it's safe to proceed with closing.
1803          *
1804          * We must *not* drop the tty_mutex until we ensure that a further
1805          * entry into tty_open can not pick up this tty.
1806          */
1807         if (pty_master) {
1808                 if (--o_tty->count < 0) {
1809                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1810                                 __func__, o_tty->count, tty_name(o_tty, buf));
1811                         o_tty->count = 0;
1812                 }
1813         }
1814         if (--tty->count < 0) {
1815                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1816                                 __func__, tty->count, tty_name(tty, buf));
1817                 tty->count = 0;
1818         }
1819
1820         /*
1821          * We've decremented tty->count, so we need to remove this file
1822          * descriptor off the tty->tty_files list; this serves two
1823          * purposes:
1824          *  - check_tty_count sees the correct number of file descriptors
1825          *    associated with this tty.
1826          *  - do_tty_hangup no longer sees this file descriptor as
1827          *    something that needs to be handled for hangups.
1828          */
1829         tty_del_file(filp);
1830
1831         /*
1832          * Perform some housekeeping before deciding whether to return.
1833          *
1834          * Set the TTY_CLOSING flag if this was the last open.  In the
1835          * case of a pty we may have to wait around for the other side
1836          * to close, and TTY_CLOSING makes sure we can't be reopened.
1837          */
1838         if (tty_closing)
1839                 set_bit(TTY_CLOSING, &tty->flags);
1840         if (o_tty_closing)
1841                 set_bit(TTY_CLOSING, &o_tty->flags);
1842
1843         /*
1844          * If _either_ side is closing, make sure there aren't any
1845          * processes that still think tty or o_tty is their controlling
1846          * tty.
1847          */
1848         if (tty_closing || o_tty_closing) {
1849                 read_lock(&tasklist_lock);
1850                 session_clear_tty(tty->session);
1851                 if (o_tty)
1852                         session_clear_tty(o_tty->session);
1853                 read_unlock(&tasklist_lock);
1854         }
1855
1856         mutex_unlock(&tty_mutex);
1857         tty_unlock_pair(tty, o_tty);
1858         /* At this point the TTY_CLOSING flag should ensure a dead tty
1859            cannot be re-opened by a racing opener */
1860
1861         /* check whether both sides are closing ... */
1862         if (!tty_closing || (o_tty && !o_tty_closing))
1863                 return 0;
1864
1865 #ifdef TTY_DEBUG_HANGUP
1866         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1867 #endif
1868         /*
1869          * Ask the line discipline code to release its structures
1870          */
1871         tty_ldisc_release(tty, o_tty);
1872
1873         /* Wait for pending work before tty destruction commmences */
1874         tty_flush_works(tty);
1875         if (o_tty)
1876                 tty_flush_works(o_tty);
1877
1878 #ifdef TTY_DEBUG_HANGUP
1879         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1880 #endif
1881         /*
1882          * The release_tty function takes care of the details of clearing
1883          * the slots and preserving the termios structure. The tty_unlock_pair
1884          * should be safe as we keep a kref while the tty is locked (so the
1885          * unlock never unlocks a freed tty).
1886          */
1887         mutex_lock(&tty_mutex);
1888         release_tty(tty, idx);
1889         mutex_unlock(&tty_mutex);
1890
1891         return 0;
1892 }
1893
1894 /**
1895  *      tty_open_current_tty - get tty of current task for open
1896  *      @device: device number
1897  *      @filp: file pointer to tty
1898  *      @return: tty of the current task iff @device is /dev/tty
1899  *
1900  *      We cannot return driver and index like for the other nodes because
1901  *      devpts will not work then. It expects inodes to be from devpts FS.
1902  *
1903  *      We need to move to returning a refcounted object from all the lookup
1904  *      paths including this one.
1905  */
1906 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1907 {
1908         struct tty_struct *tty;
1909
1910         if (device != MKDEV(TTYAUX_MAJOR, 0))
1911                 return NULL;
1912
1913         tty = get_current_tty();
1914         if (!tty)
1915                 return ERR_PTR(-ENXIO);
1916
1917         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1918         /* noctty = 1; */
1919         tty_kref_put(tty);
1920         /* FIXME: we put a reference and return a TTY! */
1921         /* This is only safe because the caller holds tty_mutex */
1922         return tty;
1923 }
1924
1925 /**
1926  *      tty_lookup_driver - lookup a tty driver for a given device file
1927  *      @device: device number
1928  *      @filp: file pointer to tty
1929  *      @noctty: set if the device should not become a controlling tty
1930  *      @index: index for the device in the @return driver
1931  *      @return: driver for this inode (with increased refcount)
1932  *
1933  *      If @return is not erroneous, the caller is responsible to decrement the
1934  *      refcount by tty_driver_kref_put.
1935  *
1936  *      Locking: tty_mutex protects get_tty_driver
1937  */
1938 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1939                 int *noctty, int *index)
1940 {
1941         struct tty_driver *driver;
1942
1943         switch (device) {
1944 #ifdef CONFIG_VT
1945         case MKDEV(TTY_MAJOR, 0): {
1946                 extern struct tty_driver *console_driver;
1947                 driver = tty_driver_kref_get(console_driver);
1948                 *index = fg_console;
1949                 *noctty = 1;
1950                 break;
1951         }
1952 #endif
1953         case MKDEV(TTYAUX_MAJOR, 1): {
1954                 struct tty_driver *console_driver = console_device(index);
1955                 if (console_driver) {
1956                         driver = tty_driver_kref_get(console_driver);
1957                         if (driver) {
1958                                 /* Don't let /dev/console block */
1959                                 filp->f_flags |= O_NONBLOCK;
1960                                 *noctty = 1;
1961                                 break;
1962                         }
1963                 }
1964                 return ERR_PTR(-ENODEV);
1965         }
1966         default:
1967                 driver = get_tty_driver(device, index);
1968                 if (!driver)
1969                         return ERR_PTR(-ENODEV);
1970                 break;
1971         }
1972         return driver;
1973 }
1974
1975 /**
1976  *      tty_open                -       open a tty device
1977  *      @inode: inode of device file
1978  *      @filp: file pointer to tty
1979  *
1980  *      tty_open and tty_release keep up the tty count that contains the
1981  *      number of opens done on a tty. We cannot use the inode-count, as
1982  *      different inodes might point to the same tty.
1983  *
1984  *      Open-counting is needed for pty masters, as well as for keeping
1985  *      track of serial lines: DTR is dropped when the last close happens.
1986  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1987  *
1988  *      The termios state of a pty is reset on first open so that
1989  *      settings don't persist across reuse.
1990  *
1991  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1992  *               tty->count should protect the rest.
1993  *               ->siglock protects ->signal/->sighand
1994  *
1995  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1996  *      tty_mutex
1997  */
1998
1999 static int tty_open(struct inode *inode, struct file *filp)
2000 {
2001         struct tty_struct *tty;
2002         int noctty, retval;
2003         struct tty_driver *driver = NULL;
2004         int index;
2005         dev_t device = inode->i_rdev;
2006         unsigned saved_flags = filp->f_flags;
2007
2008         nonseekable_open(inode, filp);
2009
2010 retry_open:
2011         retval = tty_alloc_file(filp);
2012         if (retval)
2013                 return -ENOMEM;
2014
2015         noctty = filp->f_flags & O_NOCTTY;
2016         index  = -1;
2017         retval = 0;
2018
2019         mutex_lock(&tty_mutex);
2020         /* This is protected by the tty_mutex */
2021         tty = tty_open_current_tty(device, filp);
2022         if (IS_ERR(tty)) {
2023                 retval = PTR_ERR(tty);
2024                 goto err_unlock;
2025         } else if (!tty) {
2026                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2027                 if (IS_ERR(driver)) {
2028                         retval = PTR_ERR(driver);
2029                         goto err_unlock;
2030                 }
2031
2032                 /* check whether we're reopening an existing tty */
2033                 tty = tty_driver_lookup_tty(driver, inode, index);
2034                 if (IS_ERR(tty)) {
2035                         retval = PTR_ERR(tty);
2036                         goto err_unlock;
2037                 }
2038         }
2039
2040         if (tty) {
2041                 tty_lock(tty);
2042                 retval = tty_reopen(tty);
2043                 if (retval < 0) {
2044                         tty_unlock(tty);
2045                         tty = ERR_PTR(retval);
2046                 }
2047         } else  /* Returns with the tty_lock held for now */
2048                 tty = tty_init_dev(driver, index);
2049
2050         mutex_unlock(&tty_mutex);
2051         if (driver)
2052                 tty_driver_kref_put(driver);
2053         if (IS_ERR(tty)) {
2054                 retval = PTR_ERR(tty);
2055                 goto err_file;
2056         }
2057
2058         tty_add_file(tty, filp);
2059
2060         check_tty_count(tty, __func__);
2061         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2062             tty->driver->subtype == PTY_TYPE_MASTER)
2063                 noctty = 1;
2064 #ifdef TTY_DEBUG_HANGUP
2065         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2066 #endif
2067         if (tty->ops->open)
2068                 retval = tty->ops->open(tty, filp);
2069         else
2070                 retval = -ENODEV;
2071         filp->f_flags = saved_flags;
2072
2073         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2074                                                 !capable(CAP_SYS_ADMIN))
2075                 retval = -EBUSY;
2076
2077         if (retval) {
2078 #ifdef TTY_DEBUG_HANGUP
2079                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2080                                 retval, tty->name);
2081 #endif
2082                 tty_unlock(tty); /* need to call tty_release without BTM */
2083                 tty_release(inode, filp);
2084                 if (retval != -ERESTARTSYS)
2085                         return retval;
2086
2087                 if (signal_pending(current))
2088                         return retval;
2089
2090                 schedule();
2091                 /*
2092                  * Need to reset f_op in case a hangup happened.
2093                  */
2094                 if (filp->f_op == &hung_up_tty_fops)
2095                         filp->f_op = &tty_fops;
2096                 goto retry_open;
2097         }
2098         clear_bit(TTY_HUPPED, &tty->flags);
2099         tty_unlock(tty);
2100
2101
2102         mutex_lock(&tty_mutex);
2103         tty_lock(tty);
2104         spin_lock_irq(&current->sighand->siglock);
2105         if (!noctty &&
2106             current->signal->leader &&
2107             !current->signal->tty &&
2108             tty->session == NULL)
2109                 __proc_set_tty(current, tty);
2110         spin_unlock_irq(&current->sighand->siglock);
2111         tty_unlock(tty);
2112         mutex_unlock(&tty_mutex);
2113         return 0;
2114 err_unlock:
2115         mutex_unlock(&tty_mutex);
2116         /* after locks to avoid deadlock */
2117         if (!IS_ERR_OR_NULL(driver))
2118                 tty_driver_kref_put(driver);
2119 err_file:
2120         tty_free_file(filp);
2121         return retval;
2122 }
2123
2124
2125
2126 /**
2127  *      tty_poll        -       check tty status
2128  *      @filp: file being polled
2129  *      @wait: poll wait structures to update
2130  *
2131  *      Call the line discipline polling method to obtain the poll
2132  *      status of the device.
2133  *
2134  *      Locking: locks called line discipline but ldisc poll method
2135  *      may be re-entered freely by other callers.
2136  */
2137
2138 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2139 {
2140         struct tty_struct *tty = file_tty(filp);
2141         struct tty_ldisc *ld;
2142         int ret = 0;
2143
2144         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2145                 return 0;
2146
2147         ld = tty_ldisc_ref_wait(tty);
2148         if (ld->ops->poll)
2149                 ret = (ld->ops->poll)(tty, filp, wait);
2150         tty_ldisc_deref(ld);
2151         return ret;
2152 }
2153
2154 static int __tty_fasync(int fd, struct file *filp, int on)
2155 {
2156         struct tty_struct *tty = file_tty(filp);
2157         struct tty_ldisc *ldisc;
2158         unsigned long flags;
2159         int retval = 0;
2160
2161         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2162                 goto out;
2163
2164         retval = fasync_helper(fd, filp, on, &tty->fasync);
2165         if (retval <= 0)
2166                 goto out;
2167
2168         ldisc = tty_ldisc_ref(tty);
2169         if (ldisc) {
2170                 if (ldisc->ops->fasync)
2171                         ldisc->ops->fasync(tty, on);
2172                 tty_ldisc_deref(ldisc);
2173         }
2174
2175         if (on) {
2176                 enum pid_type type;
2177                 struct pid *pid;
2178
2179                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2180                 if (tty->pgrp) {
2181                         pid = tty->pgrp;
2182                         type = PIDTYPE_PGID;
2183                 } else {
2184                         pid = task_pid(current);
2185                         type = PIDTYPE_PID;
2186                 }
2187                 get_pid(pid);
2188                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2189                 retval = __f_setown(filp, pid, type, 0);
2190                 put_pid(pid);
2191         }
2192 out:
2193         return retval;
2194 }
2195
2196 static int tty_fasync(int fd, struct file *filp, int on)
2197 {
2198         struct tty_struct *tty = file_tty(filp);
2199         int retval;
2200
2201         tty_lock(tty);
2202         retval = __tty_fasync(fd, filp, on);
2203         tty_unlock(tty);
2204
2205         return retval;
2206 }
2207
2208 /**
2209  *      tiocsti                 -       fake input character
2210  *      @tty: tty to fake input into
2211  *      @p: pointer to character
2212  *
2213  *      Fake input to a tty device. Does the necessary locking and
2214  *      input management.
2215  *
2216  *      FIXME: does not honour flow control ??
2217  *
2218  *      Locking:
2219  *              Called functions take tty_ldiscs_lock
2220  *              current->signal->tty check is safe without locks
2221  *
2222  *      FIXME: may race normal receive processing
2223  */
2224
2225 static int tiocsti(struct tty_struct *tty, char __user *p)
2226 {
2227         char ch, mbz = 0;
2228         struct tty_ldisc *ld;
2229
2230         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2231                 return -EPERM;
2232         if (get_user(ch, p))
2233                 return -EFAULT;
2234         tty_audit_tiocsti(tty, ch);
2235         ld = tty_ldisc_ref_wait(tty);
2236         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2237         tty_ldisc_deref(ld);
2238         return 0;
2239 }
2240
2241 /**
2242  *      tiocgwinsz              -       implement window query ioctl
2243  *      @tty; tty
2244  *      @arg: user buffer for result
2245  *
2246  *      Copies the kernel idea of the window size into the user buffer.
2247  *
2248  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2249  *              is consistent.
2250  */
2251
2252 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2253 {
2254         int err;
2255
2256         mutex_lock(&tty->winsize_mutex);
2257         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2258         mutex_unlock(&tty->winsize_mutex);
2259
2260         return err ? -EFAULT: 0;
2261 }
2262
2263 /**
2264  *      tty_do_resize           -       resize event
2265  *      @tty: tty being resized
2266  *      @rows: rows (character)
2267  *      @cols: cols (character)
2268  *
2269  *      Update the termios variables and send the necessary signals to
2270  *      peform a terminal resize correctly
2271  */
2272
2273 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2274 {
2275         struct pid *pgrp;
2276         unsigned long flags;
2277
2278         /* Lock the tty */
2279         mutex_lock(&tty->winsize_mutex);
2280         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2281                 goto done;
2282         /* Get the PID values and reference them so we can
2283            avoid holding the tty ctrl lock while sending signals */
2284         spin_lock_irqsave(&tty->ctrl_lock, flags);
2285         pgrp = get_pid(tty->pgrp);
2286         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2287
2288         if (pgrp)
2289                 kill_pgrp(pgrp, SIGWINCH, 1);
2290         put_pid(pgrp);
2291
2292         tty->winsize = *ws;
2293 done:
2294         mutex_unlock(&tty->winsize_mutex);
2295         return 0;
2296 }
2297 EXPORT_SYMBOL(tty_do_resize);
2298
2299 /**
2300  *      tiocswinsz              -       implement window size set ioctl
2301  *      @tty; tty side of tty
2302  *      @arg: user buffer for result
2303  *
2304  *      Copies the user idea of the window size to the kernel. Traditionally
2305  *      this is just advisory information but for the Linux console it
2306  *      actually has driver level meaning and triggers a VC resize.
2307  *
2308  *      Locking:
2309  *              Driver dependent. The default do_resize method takes the
2310  *      tty termios mutex and ctrl_lock. The console takes its own lock
2311  *      then calls into the default method.
2312  */
2313
2314 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2315 {
2316         struct winsize tmp_ws;
2317         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2318                 return -EFAULT;
2319
2320         if (tty->ops->resize)
2321                 return tty->ops->resize(tty, &tmp_ws);
2322         else
2323                 return tty_do_resize(tty, &tmp_ws);
2324 }
2325
2326 /**
2327  *      tioccons        -       allow admin to move logical console
2328  *      @file: the file to become console
2329  *
2330  *      Allow the administrator to move the redirected console device
2331  *
2332  *      Locking: uses redirect_lock to guard the redirect information
2333  */
2334
2335 static int tioccons(struct file *file)
2336 {
2337         if (!capable(CAP_SYS_ADMIN))
2338                 return -EPERM;
2339         if (file->f_op->write == redirected_tty_write) {
2340                 struct file *f;
2341                 spin_lock(&redirect_lock);
2342                 f = redirect;
2343                 redirect = NULL;
2344                 spin_unlock(&redirect_lock);
2345                 if (f)
2346                         fput(f);
2347                 return 0;
2348         }
2349         spin_lock(&redirect_lock);
2350         if (redirect) {
2351                 spin_unlock(&redirect_lock);
2352                 return -EBUSY;
2353         }
2354         redirect = get_file(file);
2355         spin_unlock(&redirect_lock);
2356         return 0;
2357 }
2358
2359 /**
2360  *      fionbio         -       non blocking ioctl
2361  *      @file: file to set blocking value
2362  *      @p: user parameter
2363  *
2364  *      Historical tty interfaces had a blocking control ioctl before
2365  *      the generic functionality existed. This piece of history is preserved
2366  *      in the expected tty API of posix OS's.
2367  *
2368  *      Locking: none, the open file handle ensures it won't go away.
2369  */
2370
2371 static int fionbio(struct file *file, int __user *p)
2372 {
2373         int nonblock;
2374
2375         if (get_user(nonblock, p))
2376                 return -EFAULT;
2377
2378         spin_lock(&file->f_lock);
2379         if (nonblock)
2380                 file->f_flags |= O_NONBLOCK;
2381         else
2382                 file->f_flags &= ~O_NONBLOCK;
2383         spin_unlock(&file->f_lock);
2384         return 0;
2385 }
2386
2387 /**
2388  *      tiocsctty       -       set controlling tty
2389  *      @tty: tty structure
2390  *      @arg: user argument
2391  *
2392  *      This ioctl is used to manage job control. It permits a session
2393  *      leader to set this tty as the controlling tty for the session.
2394  *
2395  *      Locking:
2396  *              Takes tty_mutex() to protect tty instance
2397  *              Takes tasklist_lock internally to walk sessions
2398  *              Takes ->siglock() when updating signal->tty
2399  */
2400
2401 static int tiocsctty(struct tty_struct *tty, int arg)
2402 {
2403         int ret = 0;
2404         if (current->signal->leader && (task_session(current) == tty->session))
2405                 return ret;
2406
2407         mutex_lock(&tty_mutex);
2408         /*
2409          * The process must be a session leader and
2410          * not have a controlling tty already.
2411          */
2412         if (!current->signal->leader || current->signal->tty) {
2413                 ret = -EPERM;
2414                 goto unlock;
2415         }
2416
2417         if (tty->session) {
2418                 /*
2419                  * This tty is already the controlling
2420                  * tty for another session group!
2421                  */
2422                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2423                         /*
2424                          * Steal it away
2425                          */
2426                         read_lock(&tasklist_lock);
2427                         session_clear_tty(tty->session);
2428                         read_unlock(&tasklist_lock);
2429                 } else {
2430                         ret = -EPERM;
2431                         goto unlock;
2432                 }
2433         }
2434         proc_set_tty(current, tty);
2435 unlock:
2436         mutex_unlock(&tty_mutex);
2437         return ret;
2438 }
2439
2440 /**
2441  *      tty_get_pgrp    -       return a ref counted pgrp pid
2442  *      @tty: tty to read
2443  *
2444  *      Returns a refcounted instance of the pid struct for the process
2445  *      group controlling the tty.
2446  */
2447
2448 struct pid *tty_get_pgrp(struct tty_struct *tty)
2449 {
2450         unsigned long flags;
2451         struct pid *pgrp;
2452
2453         spin_lock_irqsave(&tty->ctrl_lock, flags);
2454         pgrp = get_pid(tty->pgrp);
2455         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2456
2457         return pgrp;
2458 }
2459 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2460
2461 /**
2462  *      tiocgpgrp               -       get process group
2463  *      @tty: tty passed by user
2464  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2465  *      @p: returned pid
2466  *
2467  *      Obtain the process group of the tty. If there is no process group
2468  *      return an error.
2469  *
2470  *      Locking: none. Reference to current->signal->tty is safe.
2471  */
2472
2473 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2474 {
2475         struct pid *pid;
2476         int ret;
2477         /*
2478          * (tty == real_tty) is a cheap way of
2479          * testing if the tty is NOT a master pty.
2480          */
2481         if (tty == real_tty && current->signal->tty != real_tty)
2482                 return -ENOTTY;
2483         pid = tty_get_pgrp(real_tty);
2484         ret =  put_user(pid_vnr(pid), p);
2485         put_pid(pid);
2486         return ret;
2487 }
2488
2489 /**
2490  *      tiocspgrp               -       attempt to set process group
2491  *      @tty: tty passed by user
2492  *      @real_tty: tty side device matching tty passed by user
2493  *      @p: pid pointer
2494  *
2495  *      Set the process group of the tty to the session passed. Only
2496  *      permitted where the tty session is our session.
2497  *
2498  *      Locking: RCU, ctrl lock
2499  */
2500
2501 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2502 {
2503         struct pid *pgrp;
2504         pid_t pgrp_nr;
2505         int retval = tty_check_change(real_tty);
2506         unsigned long flags;
2507
2508         if (retval == -EIO)
2509                 return -ENOTTY;
2510         if (retval)
2511                 return retval;
2512         if (!current->signal->tty ||
2513             (current->signal->tty != real_tty) ||
2514             (real_tty->session != task_session(current)))
2515                 return -ENOTTY;
2516         if (get_user(pgrp_nr, p))
2517                 return -EFAULT;
2518         if (pgrp_nr < 0)
2519                 return -EINVAL;
2520         rcu_read_lock();
2521         pgrp = find_vpid(pgrp_nr);
2522         retval = -ESRCH;
2523         if (!pgrp)
2524                 goto out_unlock;
2525         retval = -EPERM;
2526         if (session_of_pgrp(pgrp) != task_session(current))
2527                 goto out_unlock;
2528         retval = 0;
2529         spin_lock_irqsave(&tty->ctrl_lock, flags);
2530         put_pid(real_tty->pgrp);
2531         real_tty->pgrp = get_pid(pgrp);
2532         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2533 out_unlock:
2534         rcu_read_unlock();
2535         return retval;
2536 }
2537
2538 /**
2539  *      tiocgsid                -       get session id
2540  *      @tty: tty passed by user
2541  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2542  *      @p: pointer to returned session id
2543  *
2544  *      Obtain the session id of the tty. If there is no session
2545  *      return an error.
2546  *
2547  *      Locking: none. Reference to current->signal->tty is safe.
2548  */
2549
2550 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2551 {
2552         /*
2553          * (tty == real_tty) is a cheap way of
2554          * testing if the tty is NOT a master pty.
2555         */
2556         if (tty == real_tty && current->signal->tty != real_tty)
2557                 return -ENOTTY;
2558         if (!real_tty->session)
2559                 return -ENOTTY;
2560         return put_user(pid_vnr(real_tty->session), p);
2561 }
2562
2563 /**
2564  *      tiocsetd        -       set line discipline
2565  *      @tty: tty device
2566  *      @p: pointer to user data
2567  *
2568  *      Set the line discipline according to user request.
2569  *
2570  *      Locking: see tty_set_ldisc, this function is just a helper
2571  */
2572
2573 static int tiocsetd(struct tty_struct *tty, int __user *p)
2574 {
2575         int ldisc;
2576         int ret;
2577
2578         if (get_user(ldisc, p))
2579                 return -EFAULT;
2580
2581         ret = tty_set_ldisc(tty, ldisc);
2582
2583         return ret;
2584 }
2585
2586 /**
2587  *      send_break      -       performed time break
2588  *      @tty: device to break on
2589  *      @duration: timeout in mS
2590  *
2591  *      Perform a timed break on hardware that lacks its own driver level
2592  *      timed break functionality.
2593  *
2594  *      Locking:
2595  *              atomic_write_lock serializes
2596  *
2597  */
2598
2599 static int send_break(struct tty_struct *tty, unsigned int duration)
2600 {
2601         int retval;
2602
2603         if (tty->ops->break_ctl == NULL)
2604                 return 0;
2605
2606         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2607                 retval = tty->ops->break_ctl(tty, duration);
2608         else {
2609                 /* Do the work ourselves */
2610                 if (tty_write_lock(tty, 0) < 0)
2611                         return -EINTR;
2612                 retval = tty->ops->break_ctl(tty, -1);
2613                 if (retval)
2614                         goto out;
2615                 if (!signal_pending(current))
2616                         msleep_interruptible(duration);
2617                 retval = tty->ops->break_ctl(tty, 0);
2618 out:
2619                 tty_write_unlock(tty);
2620                 if (signal_pending(current))
2621                         retval = -EINTR;
2622         }
2623         return retval;
2624 }
2625
2626 /**
2627  *      tty_tiocmget            -       get modem status
2628  *      @tty: tty device
2629  *      @file: user file pointer
2630  *      @p: pointer to result
2631  *
2632  *      Obtain the modem status bits from the tty driver if the feature
2633  *      is supported. Return -EINVAL if it is not available.
2634  *
2635  *      Locking: none (up to the driver)
2636  */
2637
2638 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2639 {
2640         int retval = -EINVAL;
2641
2642         if (tty->ops->tiocmget) {
2643                 retval = tty->ops->tiocmget(tty);
2644
2645                 if (retval >= 0)
2646                         retval = put_user(retval, p);
2647         }
2648         return retval;
2649 }
2650
2651 /**
2652  *      tty_tiocmset            -       set modem status
2653  *      @tty: tty device
2654  *      @cmd: command - clear bits, set bits or set all
2655  *      @p: pointer to desired bits
2656  *
2657  *      Set the modem status bits from the tty driver if the feature
2658  *      is supported. Return -EINVAL if it is not available.
2659  *
2660  *      Locking: none (up to the driver)
2661  */
2662
2663 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2664              unsigned __user *p)
2665 {
2666         int retval;
2667         unsigned int set, clear, val;
2668
2669         if (tty->ops->tiocmset == NULL)
2670                 return -EINVAL;
2671
2672         retval = get_user(val, p);
2673         if (retval)
2674                 return retval;
2675         set = clear = 0;
2676         switch (cmd) {
2677         case TIOCMBIS:
2678                 set = val;
2679                 break;
2680         case TIOCMBIC:
2681                 clear = val;
2682                 break;
2683         case TIOCMSET:
2684                 set = val;
2685                 clear = ~val;
2686                 break;
2687         }
2688         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2689         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2690         return tty->ops->tiocmset(tty, set, clear);
2691 }
2692
2693 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2694 {
2695         int retval = -EINVAL;
2696         struct serial_icounter_struct icount;
2697         memset(&icount, 0, sizeof(icount));
2698         if (tty->ops->get_icount)
2699                 retval = tty->ops->get_icount(tty, &icount);
2700         if (retval != 0)
2701                 return retval;
2702         if (copy_to_user(arg, &icount, sizeof(icount)))
2703                 return -EFAULT;
2704         return 0;
2705 }
2706
2707 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2708 {
2709         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2710             tty->driver->subtype == PTY_TYPE_MASTER)
2711                 tty = tty->link;
2712         return tty;
2713 }
2714 EXPORT_SYMBOL(tty_pair_get_tty);
2715
2716 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2717 {
2718         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2719             tty->driver->subtype == PTY_TYPE_MASTER)
2720             return tty;
2721         return tty->link;
2722 }
2723 EXPORT_SYMBOL(tty_pair_get_pty);
2724
2725 /*
2726  * Split this up, as gcc can choke on it otherwise..
2727  */
2728 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2729 {
2730         struct tty_struct *tty = file_tty(file);
2731         struct tty_struct *real_tty;
2732         void __user *p = (void __user *)arg;
2733         int retval;
2734         struct tty_ldisc *ld;
2735
2736         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2737                 return -EINVAL;
2738
2739         real_tty = tty_pair_get_tty(tty);
2740
2741         /*
2742          * Factor out some common prep work
2743          */
2744         switch (cmd) {
2745         case TIOCSETD:
2746         case TIOCSBRK:
2747         case TIOCCBRK:
2748         case TCSBRK:
2749         case TCSBRKP:
2750                 retval = tty_check_change(tty);
2751                 if (retval)
2752                         return retval;
2753                 if (cmd != TIOCCBRK) {
2754                         tty_wait_until_sent(tty, 0);
2755                         if (signal_pending(current))
2756                                 return -EINTR;
2757                 }
2758                 break;
2759         }
2760
2761         /*
2762          *      Now do the stuff.
2763          */
2764         switch (cmd) {
2765         case TIOCSTI:
2766                 return tiocsti(tty, p);
2767         case TIOCGWINSZ:
2768                 return tiocgwinsz(real_tty, p);
2769         case TIOCSWINSZ:
2770                 return tiocswinsz(real_tty, p);
2771         case TIOCCONS:
2772                 return real_tty != tty ? -EINVAL : tioccons(file);
2773         case FIONBIO:
2774                 return fionbio(file, p);
2775         case TIOCEXCL:
2776                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2777                 return 0;
2778         case TIOCNXCL:
2779                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2780                 return 0;
2781         case TIOCGEXCL:
2782         {
2783                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2784                 return put_user(excl, (int __user *)p);
2785         }
2786         case TIOCNOTTY:
2787                 if (current->signal->tty != tty)
2788                         return -ENOTTY;
2789                 no_tty();
2790                 return 0;
2791         case TIOCSCTTY:
2792                 return tiocsctty(tty, arg);
2793         case TIOCGPGRP:
2794                 return tiocgpgrp(tty, real_tty, p);
2795         case TIOCSPGRP:
2796                 return tiocspgrp(tty, real_tty, p);
2797         case TIOCGSID:
2798                 return tiocgsid(tty, real_tty, p);
2799         case TIOCGETD:
2800                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2801         case TIOCSETD:
2802                 return tiocsetd(tty, p);
2803         case TIOCVHANGUP:
2804                 if (!capable(CAP_SYS_ADMIN))
2805                         return -EPERM;
2806                 tty_vhangup(tty);
2807                 return 0;
2808         case TIOCGDEV:
2809         {
2810                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2811                 return put_user(ret, (unsigned int __user *)p);
2812         }
2813         /*
2814          * Break handling
2815          */
2816         case TIOCSBRK:  /* Turn break on, unconditionally */
2817                 if (tty->ops->break_ctl)
2818                         return tty->ops->break_ctl(tty, -1);
2819                 return 0;
2820         case TIOCCBRK:  /* Turn break off, unconditionally */
2821                 if (tty->ops->break_ctl)
2822                         return tty->ops->break_ctl(tty, 0);
2823                 return 0;
2824         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2825                 /* non-zero arg means wait for all output data
2826                  * to be sent (performed above) but don't send break.
2827                  * This is used by the tcdrain() termios function.
2828                  */
2829                 if (!arg)
2830                         return send_break(tty, 250);
2831                 return 0;
2832         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2833                 return send_break(tty, arg ? arg*100 : 250);
2834
2835         case TIOCMGET:
2836                 return tty_tiocmget(tty, p);
2837         case TIOCMSET:
2838         case TIOCMBIC:
2839         case TIOCMBIS:
2840                 return tty_tiocmset(tty, cmd, p);
2841         case TIOCGICOUNT:
2842                 retval = tty_tiocgicount(tty, p);
2843                 /* For the moment allow fall through to the old method */
2844                 if (retval != -EINVAL)
2845                         return retval;
2846                 break;
2847         case TCFLSH:
2848                 switch (arg) {
2849                 case TCIFLUSH:
2850                 case TCIOFLUSH:
2851                 /* flush tty buffer and allow ldisc to process ioctl */
2852                         tty_buffer_flush(tty);
2853                         break;
2854                 }
2855                 break;
2856         }
2857         if (tty->ops->ioctl) {
2858                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2859                 if (retval != -ENOIOCTLCMD)
2860                         return retval;
2861         }
2862         ld = tty_ldisc_ref_wait(tty);
2863         retval = -EINVAL;
2864         if (ld->ops->ioctl) {
2865                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2866                 if (retval == -ENOIOCTLCMD)
2867                         retval = -ENOTTY;
2868         }
2869         tty_ldisc_deref(ld);
2870         return retval;
2871 }
2872
2873 #ifdef CONFIG_COMPAT
2874 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2875                                 unsigned long arg)
2876 {
2877         struct tty_struct *tty = file_tty(file);
2878         struct tty_ldisc *ld;
2879         int retval = -ENOIOCTLCMD;
2880
2881         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2882                 return -EINVAL;
2883
2884         if (tty->ops->compat_ioctl) {
2885                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2886                 if (retval != -ENOIOCTLCMD)
2887                         return retval;
2888         }
2889
2890         ld = tty_ldisc_ref_wait(tty);
2891         if (ld->ops->compat_ioctl)
2892                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2893         else
2894                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2895         tty_ldisc_deref(ld);
2896
2897         return retval;
2898 }
2899 #endif
2900
2901 static int this_tty(const void *t, struct file *file, unsigned fd)
2902 {
2903         if (likely(file->f_op->read != tty_read))
2904                 return 0;
2905         return file_tty(file) != t ? 0 : fd + 1;
2906 }
2907         
2908 /*
2909  * This implements the "Secure Attention Key" ---  the idea is to
2910  * prevent trojan horses by killing all processes associated with this
2911  * tty when the user hits the "Secure Attention Key".  Required for
2912  * super-paranoid applications --- see the Orange Book for more details.
2913  *
2914  * This code could be nicer; ideally it should send a HUP, wait a few
2915  * seconds, then send a INT, and then a KILL signal.  But you then
2916  * have to coordinate with the init process, since all processes associated
2917  * with the current tty must be dead before the new getty is allowed
2918  * to spawn.
2919  *
2920  * Now, if it would be correct ;-/ The current code has a nasty hole -
2921  * it doesn't catch files in flight. We may send the descriptor to ourselves
2922  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2923  *
2924  * Nasty bug: do_SAK is being called in interrupt context.  This can
2925  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2926  */
2927 void __do_SAK(struct tty_struct *tty)
2928 {
2929 #ifdef TTY_SOFT_SAK
2930         tty_hangup(tty);
2931 #else
2932         struct task_struct *g, *p;
2933         struct pid *session;
2934         int             i;
2935
2936         if (!tty)
2937                 return;
2938         session = tty->session;
2939
2940         tty_ldisc_flush(tty);
2941
2942         tty_driver_flush_buffer(tty);
2943
2944         read_lock(&tasklist_lock);
2945         /* Kill the entire session */
2946         do_each_pid_task(session, PIDTYPE_SID, p) {
2947                 printk(KERN_NOTICE "SAK: killed process %d"
2948                         " (%s): task_session(p)==tty->session\n",
2949                         task_pid_nr(p), p->comm);
2950                 send_sig(SIGKILL, p, 1);
2951         } while_each_pid_task(session, PIDTYPE_SID, p);
2952         /* Now kill any processes that happen to have the
2953          * tty open.
2954          */
2955         do_each_thread(g, p) {
2956                 if (p->signal->tty == tty) {
2957                         printk(KERN_NOTICE "SAK: killed process %d"
2958                             " (%s): task_session(p)==tty->session\n",
2959                             task_pid_nr(p), p->comm);
2960                         send_sig(SIGKILL, p, 1);
2961                         continue;
2962                 }
2963                 task_lock(p);
2964                 i = iterate_fd(p->files, 0, this_tty, tty);
2965                 if (i != 0) {
2966                         printk(KERN_NOTICE "SAK: killed process %d"
2967                             " (%s): fd#%d opened to the tty\n",
2968                                     task_pid_nr(p), p->comm, i - 1);
2969                         force_sig(SIGKILL, p);
2970                 }
2971                 task_unlock(p);
2972         } while_each_thread(g, p);
2973         read_unlock(&tasklist_lock);
2974 #endif
2975 }
2976
2977 static void do_SAK_work(struct work_struct *work)
2978 {
2979         struct tty_struct *tty =
2980                 container_of(work, struct tty_struct, SAK_work);
2981         __do_SAK(tty);
2982 }
2983
2984 /*
2985  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2986  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2987  * the values which we write to it will be identical to the values which it
2988  * already has. --akpm
2989  */
2990 void do_SAK(struct tty_struct *tty)
2991 {
2992         if (!tty)
2993                 return;
2994         schedule_work(&tty->SAK_work);
2995 }
2996
2997 EXPORT_SYMBOL(do_SAK);
2998
2999 static int dev_match_devt(struct device *dev, const void *data)
3000 {
3001         const dev_t *devt = data;
3002         return dev->devt == *devt;
3003 }
3004
3005 /* Must put_device() after it's unused! */
3006 static struct device *tty_get_device(struct tty_struct *tty)
3007 {
3008         dev_t devt = tty_devnum(tty);
3009         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3010 }
3011
3012
3013 /**
3014  *      alloc_tty_struct
3015  *
3016  *      This subroutine allocates and initializes a tty structure.
3017  *
3018  *      Locking: none - tty in question is not exposed at this point
3019  */
3020
3021 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3022 {
3023         struct tty_struct *tty;
3024
3025         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3026         if (!tty)
3027                 return NULL;
3028
3029         kref_init(&tty->kref);
3030         tty->magic = TTY_MAGIC;
3031         tty_ldisc_init(tty);
3032         tty->session = NULL;
3033         tty->pgrp = NULL;
3034         mutex_init(&tty->legacy_mutex);
3035         mutex_init(&tty->throttle_mutex);
3036         init_rwsem(&tty->termios_rwsem);
3037         mutex_init(&tty->winsize_mutex);
3038         init_ldsem(&tty->ldisc_sem);
3039         init_waitqueue_head(&tty->write_wait);
3040         init_waitqueue_head(&tty->read_wait);
3041         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3042         mutex_init(&tty->atomic_write_lock);
3043         spin_lock_init(&tty->ctrl_lock);
3044         spin_lock_init(&tty->flow_lock);
3045         INIT_LIST_HEAD(&tty->tty_files);
3046         INIT_WORK(&tty->SAK_work, do_SAK_work);
3047
3048         tty->driver = driver;
3049         tty->ops = driver->ops;
3050         tty->index = idx;
3051         tty_line_name(driver, idx, tty->name);
3052         tty->dev = tty_get_device(tty);
3053
3054         return tty;
3055 }
3056
3057 /**
3058  *      deinitialize_tty_struct
3059  *      @tty: tty to deinitialize
3060  *
3061  *      This subroutine deinitializes a tty structure that has been newly
3062  *      allocated but tty_release cannot be called on that yet.
3063  *
3064  *      Locking: none - tty in question must not be exposed at this point
3065  */
3066 void deinitialize_tty_struct(struct tty_struct *tty)
3067 {
3068         tty_ldisc_deinit(tty);
3069 }
3070
3071 /**
3072  *      tty_put_char    -       write one character to a tty
3073  *      @tty: tty
3074  *      @ch: character
3075  *
3076  *      Write one byte to the tty using the provided put_char method
3077  *      if present. Returns the number of characters successfully output.
3078  *
3079  *      Note: the specific put_char operation in the driver layer may go
3080  *      away soon. Don't call it directly, use this method
3081  */
3082
3083 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3084 {
3085         if (tty->ops->put_char)
3086                 return tty->ops->put_char(tty, ch);
3087         return tty->ops->write(tty, &ch, 1);
3088 }
3089 EXPORT_SYMBOL_GPL(tty_put_char);
3090
3091 struct class *tty_class;
3092
3093 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3094                 unsigned int index, unsigned int count)
3095 {
3096         /* init here, since reused cdevs cause crashes */
3097         cdev_init(&driver->cdevs[index], &tty_fops);
3098         driver->cdevs[index].owner = driver->owner;
3099         return cdev_add(&driver->cdevs[index], dev, count);
3100 }
3101
3102 /**
3103  *      tty_register_device - register a tty device
3104  *      @driver: the tty driver that describes the tty device
3105  *      @index: the index in the tty driver for this tty device
3106  *      @device: a struct device that is associated with this tty device.
3107  *              This field is optional, if there is no known struct device
3108  *              for this tty device it can be set to NULL safely.
3109  *
3110  *      Returns a pointer to the struct device for this tty device
3111  *      (or ERR_PTR(-EFOO) on error).
3112  *
3113  *      This call is required to be made to register an individual tty device
3114  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3115  *      that bit is not set, this function should not be called by a tty
3116  *      driver.
3117  *
3118  *      Locking: ??
3119  */
3120
3121 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3122                                    struct device *device)
3123 {
3124         return tty_register_device_attr(driver, index, device, NULL, NULL);
3125 }
3126 EXPORT_SYMBOL(tty_register_device);
3127
3128 static void tty_device_create_release(struct device *dev)
3129 {
3130         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3131         kfree(dev);
3132 }
3133
3134 /**
3135  *      tty_register_device_attr - register a tty device
3136  *      @driver: the tty driver that describes the tty device
3137  *      @index: the index in the tty driver for this tty device
3138  *      @device: a struct device that is associated with this tty device.
3139  *              This field is optional, if there is no known struct device
3140  *              for this tty device it can be set to NULL safely.
3141  *      @drvdata: Driver data to be set to device.
3142  *      @attr_grp: Attribute group to be set on device.
3143  *
3144  *      Returns a pointer to the struct device for this tty device
3145  *      (or ERR_PTR(-EFOO) on error).
3146  *
3147  *      This call is required to be made to register an individual tty device
3148  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3149  *      that bit is not set, this function should not be called by a tty
3150  *      driver.
3151  *
3152  *      Locking: ??
3153  */
3154 struct device *tty_register_device_attr(struct tty_driver *driver,
3155                                    unsigned index, struct device *device,
3156                                    void *drvdata,
3157                                    const struct attribute_group **attr_grp)
3158 {
3159         char name[64];
3160         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3161         struct device *dev = NULL;
3162         int retval = -ENODEV;
3163         bool cdev = false;
3164
3165         if (index >= driver->num) {
3166                 printk(KERN_ERR "Attempt to register invalid tty line number "
3167                        " (%d).\n", index);
3168                 return ERR_PTR(-EINVAL);
3169         }
3170
3171         if (driver->type == TTY_DRIVER_TYPE_PTY)
3172                 pty_line_name(driver, index, name);
3173         else
3174                 tty_line_name(driver, index, name);
3175
3176         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3177                 retval = tty_cdev_add(driver, devt, index, 1);
3178                 if (retval)
3179                         goto error;
3180                 cdev = true;
3181         }
3182
3183         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3184         if (!dev) {
3185                 retval = -ENOMEM;
3186                 goto error;
3187         }
3188
3189         dev->devt = devt;
3190         dev->class = tty_class;
3191         dev->parent = device;
3192         dev->release = tty_device_create_release;
3193         dev_set_name(dev, "%s", name);
3194         dev->groups = attr_grp;
3195         dev_set_drvdata(dev, drvdata);
3196
3197         retval = device_register(dev);
3198         if (retval)
3199                 goto error;
3200
3201         return dev;
3202
3203 error:
3204         put_device(dev);
3205         if (cdev)
3206                 cdev_del(&driver->cdevs[index]);
3207         return ERR_PTR(retval);
3208 }
3209 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3210
3211 /**
3212  *      tty_unregister_device - unregister a tty device
3213  *      @driver: the tty driver that describes the tty device
3214  *      @index: the index in the tty driver for this tty device
3215  *
3216  *      If a tty device is registered with a call to tty_register_device() then
3217  *      this function must be called when the tty device is gone.
3218  *
3219  *      Locking: ??
3220  */
3221
3222 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3223 {
3224         device_destroy(tty_class,
3225                 MKDEV(driver->major, driver->minor_start) + index);
3226         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3227                 cdev_del(&driver->cdevs[index]);
3228 }
3229 EXPORT_SYMBOL(tty_unregister_device);
3230
3231 /**
3232  * __tty_alloc_driver -- allocate tty driver
3233  * @lines: count of lines this driver can handle at most
3234  * @owner: module which is repsonsible for this driver
3235  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3236  *
3237  * This should not be called directly, some of the provided macros should be
3238  * used instead. Use IS_ERR and friends on @retval.
3239  */
3240 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3241                 unsigned long flags)
3242 {
3243         struct tty_driver *driver;
3244         unsigned int cdevs = 1;
3245         int err;
3246
3247         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3248                 return ERR_PTR(-EINVAL);
3249
3250         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3251         if (!driver)
3252                 return ERR_PTR(-ENOMEM);
3253
3254         kref_init(&driver->kref);
3255         driver->magic = TTY_DRIVER_MAGIC;
3256         driver->num = lines;
3257         driver->owner = owner;
3258         driver->flags = flags;
3259
3260         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3261                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3262                                 GFP_KERNEL);
3263                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3264                                 GFP_KERNEL);
3265                 if (!driver->ttys || !driver->termios) {
3266                         err = -ENOMEM;
3267                         goto err_free_all;
3268                 }
3269         }
3270
3271         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3272                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3273                                 GFP_KERNEL);
3274                 if (!driver->ports) {
3275                         err = -ENOMEM;
3276                         goto err_free_all;
3277                 }
3278                 cdevs = lines;
3279         }
3280
3281         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3282         if (!driver->cdevs) {
3283                 err = -ENOMEM;
3284                 goto err_free_all;
3285         }
3286
3287         return driver;
3288 err_free_all:
3289         kfree(driver->ports);
3290         kfree(driver->ttys);
3291         kfree(driver->termios);
3292         kfree(driver);
3293         return ERR_PTR(err);
3294 }
3295 EXPORT_SYMBOL(__tty_alloc_driver);
3296
3297 static void destruct_tty_driver(struct kref *kref)
3298 {
3299         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3300         int i;
3301         struct ktermios *tp;
3302
3303         if (driver->flags & TTY_DRIVER_INSTALLED) {
3304                 /*
3305                  * Free the termios and termios_locked structures because
3306                  * we don't want to get memory leaks when modular tty
3307                  * drivers are removed from the kernel.
3308                  */
3309                 for (i = 0; i < driver->num; i++) {
3310                         tp = driver->termios[i];
3311                         if (tp) {
3312                                 driver->termios[i] = NULL;
3313                                 kfree(tp);
3314                         }
3315                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3316                                 tty_unregister_device(driver, i);
3317                 }
3318                 proc_tty_unregister_driver(driver);
3319                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3320                         cdev_del(&driver->cdevs[0]);
3321         }
3322         kfree(driver->cdevs);
3323         kfree(driver->ports);
3324         kfree(driver->termios);
3325         kfree(driver->ttys);
3326         kfree(driver);
3327 }
3328
3329 void tty_driver_kref_put(struct tty_driver *driver)
3330 {
3331         kref_put(&driver->kref, destruct_tty_driver);
3332 }
3333 EXPORT_SYMBOL(tty_driver_kref_put);
3334
3335 void tty_set_operations(struct tty_driver *driver,
3336                         const struct tty_operations *op)
3337 {
3338         driver->ops = op;
3339 };
3340 EXPORT_SYMBOL(tty_set_operations);
3341
3342 void put_tty_driver(struct tty_driver *d)
3343 {
3344         tty_driver_kref_put(d);
3345 }
3346 EXPORT_SYMBOL(put_tty_driver);
3347
3348 /*
3349  * Called by a tty driver to register itself.
3350  */
3351 int tty_register_driver(struct tty_driver *driver)
3352 {
3353         int error;
3354         int i;
3355         dev_t dev;
3356         struct device *d;
3357
3358         if (!driver->major) {
3359                 error = alloc_chrdev_region(&dev, driver->minor_start,
3360                                                 driver->num, driver->name);
3361                 if (!error) {
3362                         driver->major = MAJOR(dev);
3363                         driver->minor_start = MINOR(dev);
3364                 }
3365         } else {
3366                 dev = MKDEV(driver->major, driver->minor_start);
3367                 error = register_chrdev_region(dev, driver->num, driver->name);
3368         }
3369         if (error < 0)
3370                 goto err;
3371
3372         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3373                 error = tty_cdev_add(driver, dev, 0, driver->num);
3374                 if (error)
3375                         goto err_unreg_char;
3376         }
3377
3378         mutex_lock(&tty_mutex);
3379         list_add(&driver->tty_drivers, &tty_drivers);
3380         mutex_unlock(&tty_mutex);
3381
3382         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3383                 for (i = 0; i < driver->num; i++) {
3384                         d = tty_register_device(driver, i, NULL);
3385                         if (IS_ERR(d)) {
3386                                 error = PTR_ERR(d);
3387                                 goto err_unreg_devs;
3388                         }
3389                 }
3390         }
3391         proc_tty_register_driver(driver);
3392         driver->flags |= TTY_DRIVER_INSTALLED;
3393         return 0;
3394
3395 err_unreg_devs:
3396         for (i--; i >= 0; i--)
3397                 tty_unregister_device(driver, i);
3398
3399         mutex_lock(&tty_mutex);
3400         list_del(&driver->tty_drivers);
3401         mutex_unlock(&tty_mutex);
3402
3403 err_unreg_char:
3404         unregister_chrdev_region(dev, driver->num);
3405 err:
3406         return error;
3407 }
3408 EXPORT_SYMBOL(tty_register_driver);
3409
3410 /*
3411  * Called by a tty driver to unregister itself.
3412  */
3413 int tty_unregister_driver(struct tty_driver *driver)
3414 {
3415 #if 0
3416         /* FIXME */
3417         if (driver->refcount)
3418                 return -EBUSY;
3419 #endif
3420         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3421                                 driver->num);
3422         mutex_lock(&tty_mutex);
3423         list_del(&driver->tty_drivers);
3424         mutex_unlock(&tty_mutex);
3425         return 0;
3426 }
3427
3428 EXPORT_SYMBOL(tty_unregister_driver);
3429
3430 dev_t tty_devnum(struct tty_struct *tty)
3431 {
3432         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3433 }
3434 EXPORT_SYMBOL(tty_devnum);
3435
3436 void proc_clear_tty(struct task_struct *p)
3437 {
3438         unsigned long flags;
3439         struct tty_struct *tty;
3440         spin_lock_irqsave(&p->sighand->siglock, flags);
3441         tty = p->signal->tty;
3442         p->signal->tty = NULL;
3443         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3444         tty_kref_put(tty);
3445 }
3446
3447 /* Called under the sighand lock */
3448
3449 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3450 {
3451         if (tty) {
3452                 unsigned long flags;
3453                 /* We should not have a session or pgrp to put here but.... */
3454                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3455                 put_pid(tty->session);
3456                 put_pid(tty->pgrp);
3457                 tty->pgrp = get_pid(task_pgrp(tsk));
3458                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3459                 tty->session = get_pid(task_session(tsk));
3460                 if (tsk->signal->tty) {
3461                         printk(KERN_DEBUG "tty not NULL!!\n");
3462                         tty_kref_put(tsk->signal->tty);
3463                 }
3464         }
3465         put_pid(tsk->signal->tty_old_pgrp);
3466         tsk->signal->tty = tty_kref_get(tty);
3467         tsk->signal->tty_old_pgrp = NULL;
3468 }
3469
3470 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3471 {
3472         spin_lock_irq(&tsk->sighand->siglock);
3473         __proc_set_tty(tsk, tty);
3474         spin_unlock_irq(&tsk->sighand->siglock);
3475 }
3476
3477 struct tty_struct *get_current_tty(void)
3478 {
3479         struct tty_struct *tty;
3480         unsigned long flags;
3481
3482         spin_lock_irqsave(&current->sighand->siglock, flags);
3483         tty = tty_kref_get(current->signal->tty);
3484         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3485         return tty;
3486 }
3487 EXPORT_SYMBOL_GPL(get_current_tty);
3488
3489 void tty_default_fops(struct file_operations *fops)
3490 {
3491         *fops = tty_fops;
3492 }
3493
3494 /*
3495  * Initialize the console device. This is called *early*, so
3496  * we can't necessarily depend on lots of kernel help here.
3497  * Just do some early initializations, and do the complex setup
3498  * later.
3499  */
3500 void __init console_init(void)
3501 {
3502         initcall_t *call;
3503
3504         /* Setup the default TTY line discipline. */
3505         tty_ldisc_begin();
3506
3507         /*
3508          * set up the console device so that later boot sequences can
3509          * inform about problems etc..
3510          */
3511         call = __con_initcall_start;
3512         while (call < __con_initcall_end) {
3513                 (*call)();
3514                 call++;
3515         }
3516 }
3517
3518 static char *tty_devnode(struct device *dev, umode_t *mode)
3519 {
3520         if (!mode)
3521                 return NULL;
3522         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3523             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3524                 *mode = 0666;
3525         return NULL;
3526 }
3527
3528 static int __init tty_class_init(void)
3529 {
3530         tty_class = class_create(THIS_MODULE, "tty");
3531         if (IS_ERR(tty_class))
3532                 return PTR_ERR(tty_class);
3533         tty_class->devnode = tty_devnode;
3534         return 0;
3535 }
3536
3537 postcore_initcall(tty_class_init);
3538
3539 /* 3/2004 jmc: why do these devices exist? */
3540 static struct cdev tty_cdev, console_cdev;
3541
3542 static ssize_t show_cons_active(struct device *dev,
3543                                 struct device_attribute *attr, char *buf)
3544 {
3545         struct console *cs[16];
3546         int i = 0;
3547         struct console *c;
3548         ssize_t count = 0;
3549
3550         console_lock();
3551         for_each_console(c) {
3552                 if (!c->device)
3553                         continue;
3554                 if (!c->write)
3555                         continue;
3556                 if ((c->flags & CON_ENABLED) == 0)
3557                         continue;
3558                 cs[i++] = c;
3559                 if (i >= ARRAY_SIZE(cs))
3560                         break;
3561         }
3562         while (i--) {
3563                 int index = cs[i]->index;
3564                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3565
3566                 /* don't resolve tty0 as some programs depend on it */
3567                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3568                         count += tty_line_name(drv, index, buf + count);
3569                 else
3570                         count += sprintf(buf + count, "%s%d",
3571                                          cs[i]->name, cs[i]->index);
3572
3573                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3574         }
3575         console_unlock();
3576
3577         return count;
3578 }
3579 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3580
3581 static struct device *consdev;
3582
3583 void console_sysfs_notify(void)
3584 {
3585         if (consdev)
3586                 sysfs_notify(&consdev->kobj, NULL, "active");
3587 }
3588
3589 /*
3590  * Ok, now we can initialize the rest of the tty devices and can count
3591  * on memory allocations, interrupts etc..
3592  */
3593 int __init tty_init(void)
3594 {
3595         cdev_init(&tty_cdev, &tty_fops);
3596         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3597             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3598                 panic("Couldn't register /dev/tty driver\n");
3599         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3600
3601         cdev_init(&console_cdev, &console_fops);
3602         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3603             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3604                 panic("Couldn't register /dev/console driver\n");
3605         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3606                               "console");
3607         if (IS_ERR(consdev))
3608                 consdev = NULL;
3609         else
3610                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3611
3612 #ifdef CONFIG_VT
3613         vty_init(&console_fops);
3614 #endif
3615         return 0;
3616 }
3617