Merge branches 'pm-core', 'pm-clk', 'pm-domains' and 'pm-pci'
[cascardo/linux.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49
50 #include "usb.h"
51
52
53 /*-------------------------------------------------------------------------*/
54
55 /*
56  * USB Host Controller Driver framework
57  *
58  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59  * HCD-specific behaviors/bugs.
60  *
61  * This does error checks, tracks devices and urbs, and delegates to a
62  * "hc_driver" only for code (and data) that really needs to know about
63  * hardware differences.  That includes root hub registers, i/o queues,
64  * and so on ... but as little else as possible.
65  *
66  * Shared code includes most of the "root hub" code (these are emulated,
67  * though each HC's hardware works differently) and PCI glue, plus request
68  * tracking overhead.  The HCD code should only block on spinlocks or on
69  * hardware handshaking; blocking on software events (such as other kernel
70  * threads releasing resources, or completing actions) is all generic.
71  *
72  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74  * only by the hub driver ... and that neither should be seen or used by
75  * usb client device drivers.
76  *
77  * Contributors of ideas or unattributed patches include: David Brownell,
78  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79  *
80  * HISTORY:
81  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
82  *              associated cleanup.  "usb_hcd" still != "usb_bus".
83  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
84  */
85
86 /*-------------------------------------------------------------------------*/
87
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92 /* host controllers we manage */
93 DEFINE_IDR (usb_bus_idr);
94 EXPORT_SYMBOL_GPL (usb_bus_idr);
95
96 /* used when allocating bus numbers */
97 #define USB_MAXBUS              64
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117         return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123  * Sharable chunks of root hub code.
124  */
125
126 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130 /* usb 3.1 root hub device descriptor */
131 static const u8 usb31_rh_dev_descriptor[18] = {
132         0x12,       /*  __u8  bLength; */
133         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
134         0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
135
136         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
137         0x00,       /*  __u8  bDeviceSubClass; */
138         0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
139         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140
141         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
142         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144
145         0x03,       /*  __u8  iManufacturer; */
146         0x02,       /*  __u8  iProduct; */
147         0x01,       /*  __u8  iSerialNumber; */
148         0x01        /*  __u8  bNumConfigurations; */
149 };
150
151 /* usb 3.0 root hub device descriptor */
152 static const u8 usb3_rh_dev_descriptor[18] = {
153         0x12,       /*  __u8  bLength; */
154         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
155         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
160         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
163         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
173 static const u8 usb25_rh_dev_descriptor[18] = {
174         0x12,       /*  __u8  bLength; */
175         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
176         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
177
178         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
179         0x00,       /*  __u8  bDeviceSubClass; */
180         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
181         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
182
183         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
184         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
185         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
186
187         0x03,       /*  __u8  iManufacturer; */
188         0x02,       /*  __u8  iProduct; */
189         0x01,       /*  __u8  iSerialNumber; */
190         0x01        /*  __u8  bNumConfigurations; */
191 };
192
193 /* usb 2.0 root hub device descriptor */
194 static const u8 usb2_rh_dev_descriptor[18] = {
195         0x12,       /*  __u8  bLength; */
196         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
197         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
198
199         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
200         0x00,       /*  __u8  bDeviceSubClass; */
201         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
202         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
203
204         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
205         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
206         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
207
208         0x03,       /*  __u8  iManufacturer; */
209         0x02,       /*  __u8  iProduct; */
210         0x01,       /*  __u8  iSerialNumber; */
211         0x01        /*  __u8  bNumConfigurations; */
212 };
213
214 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
215
216 /* usb 1.1 root hub device descriptor */
217 static const u8 usb11_rh_dev_descriptor[18] = {
218         0x12,       /*  __u8  bLength; */
219         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
220         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
221
222         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
223         0x00,       /*  __u8  bDeviceSubClass; */
224         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
225         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
226
227         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
228         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
229         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
230
231         0x03,       /*  __u8  iManufacturer; */
232         0x02,       /*  __u8  iProduct; */
233         0x01,       /*  __u8  iSerialNumber; */
234         0x01        /*  __u8  bNumConfigurations; */
235 };
236
237
238 /*-------------------------------------------------------------------------*/
239
240 /* Configuration descriptors for our root hubs */
241
242 static const u8 fs_rh_config_descriptor[] = {
243
244         /* one configuration */
245         0x09,       /*  __u8  bLength; */
246         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
247         0x19, 0x00, /*  __le16 wTotalLength; */
248         0x01,       /*  __u8  bNumInterfaces; (1) */
249         0x01,       /*  __u8  bConfigurationValue; */
250         0x00,       /*  __u8  iConfiguration; */
251         0xc0,       /*  __u8  bmAttributes;
252                                  Bit 7: must be set,
253                                      6: Self-powered,
254                                      5: Remote wakeup,
255                                      4..0: resvd */
256         0x00,       /*  __u8  MaxPower; */
257
258         /* USB 1.1:
259          * USB 2.0, single TT organization (mandatory):
260          *      one interface, protocol 0
261          *
262          * USB 2.0, multiple TT organization (optional):
263          *      two interfaces, protocols 1 (like single TT)
264          *      and 2 (multiple TT mode) ... config is
265          *      sometimes settable
266          *      NOT IMPLEMENTED
267          */
268
269         /* one interface */
270         0x09,       /*  __u8  if_bLength; */
271         USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
272         0x00,       /*  __u8  if_bInterfaceNumber; */
273         0x00,       /*  __u8  if_bAlternateSetting; */
274         0x01,       /*  __u8  if_bNumEndpoints; */
275         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
276         0x00,       /*  __u8  if_bInterfaceSubClass; */
277         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
278         0x00,       /*  __u8  if_iInterface; */
279
280         /* one endpoint (status change endpoint) */
281         0x07,       /*  __u8  ep_bLength; */
282         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
283         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
284         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
285         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
286         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
287 };
288
289 static const u8 hs_rh_config_descriptor[] = {
290
291         /* one configuration */
292         0x09,       /*  __u8  bLength; */
293         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
294         0x19, 0x00, /*  __le16 wTotalLength; */
295         0x01,       /*  __u8  bNumInterfaces; (1) */
296         0x01,       /*  __u8  bConfigurationValue; */
297         0x00,       /*  __u8  iConfiguration; */
298         0xc0,       /*  __u8  bmAttributes;
299                                  Bit 7: must be set,
300                                      6: Self-powered,
301                                      5: Remote wakeup,
302                                      4..0: resvd */
303         0x00,       /*  __u8  MaxPower; */
304
305         /* USB 1.1:
306          * USB 2.0, single TT organization (mandatory):
307          *      one interface, protocol 0
308          *
309          * USB 2.0, multiple TT organization (optional):
310          *      two interfaces, protocols 1 (like single TT)
311          *      and 2 (multiple TT mode) ... config is
312          *      sometimes settable
313          *      NOT IMPLEMENTED
314          */
315
316         /* one interface */
317         0x09,       /*  __u8  if_bLength; */
318         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
319         0x00,       /*  __u8  if_bInterfaceNumber; */
320         0x00,       /*  __u8  if_bAlternateSetting; */
321         0x01,       /*  __u8  if_bNumEndpoints; */
322         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
323         0x00,       /*  __u8  if_bInterfaceSubClass; */
324         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
325         0x00,       /*  __u8  if_iInterface; */
326
327         /* one endpoint (status change endpoint) */
328         0x07,       /*  __u8  ep_bLength; */
329         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
330         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
331         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
332                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
333                      * see hub.c:hub_configure() for details. */
334         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
335         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
336 };
337
338 static const u8 ss_rh_config_descriptor[] = {
339         /* one configuration */
340         0x09,       /*  __u8  bLength; */
341         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
342         0x1f, 0x00, /*  __le16 wTotalLength; */
343         0x01,       /*  __u8  bNumInterfaces; (1) */
344         0x01,       /*  __u8  bConfigurationValue; */
345         0x00,       /*  __u8  iConfiguration; */
346         0xc0,       /*  __u8  bmAttributes;
347                                  Bit 7: must be set,
348                                      6: Self-powered,
349                                      5: Remote wakeup,
350                                      4..0: resvd */
351         0x00,       /*  __u8  MaxPower; */
352
353         /* one interface */
354         0x09,       /*  __u8  if_bLength; */
355         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
356         0x00,       /*  __u8  if_bInterfaceNumber; */
357         0x00,       /*  __u8  if_bAlternateSetting; */
358         0x01,       /*  __u8  if_bNumEndpoints; */
359         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
360         0x00,       /*  __u8  if_bInterfaceSubClass; */
361         0x00,       /*  __u8  if_bInterfaceProtocol; */
362         0x00,       /*  __u8  if_iInterface; */
363
364         /* one endpoint (status change endpoint) */
365         0x07,       /*  __u8  ep_bLength; */
366         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
367         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
368         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
369                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
370                      * see hub.c:hub_configure() for details. */
371         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
372         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
373
374         /* one SuperSpeed endpoint companion descriptor */
375         0x06,        /* __u8 ss_bLength */
376         USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
377                      /* Companion */
378         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
379         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
380         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
381 };
382
383 /* authorized_default behaviour:
384  * -1 is authorized for all devices except wireless (old behaviour)
385  * 0 is unauthorized for all devices
386  * 1 is authorized for all devices
387  */
388 static int authorized_default = -1;
389 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
390 MODULE_PARM_DESC(authorized_default,
391                 "Default USB device authorization: 0 is not authorized, 1 is "
392                 "authorized, -1 is authorized except for wireless USB (default, "
393                 "old behaviour");
394 /*-------------------------------------------------------------------------*/
395
396 /**
397  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
398  * @s: Null-terminated ASCII (actually ISO-8859-1) string
399  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
400  * @len: Length (in bytes; may be odd) of descriptor buffer.
401  *
402  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
403  * whichever is less.
404  *
405  * Note:
406  * USB String descriptors can contain at most 126 characters; input
407  * strings longer than that are truncated.
408  */
409 static unsigned
410 ascii2desc(char const *s, u8 *buf, unsigned len)
411 {
412         unsigned n, t = 2 + 2*strlen(s);
413
414         if (t > 254)
415                 t = 254;        /* Longest possible UTF string descriptor */
416         if (len > t)
417                 len = t;
418
419         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
420
421         n = len;
422         while (n--) {
423                 *buf++ = t;
424                 if (!n--)
425                         break;
426                 *buf++ = t >> 8;
427                 t = (unsigned char)*s++;
428         }
429         return len;
430 }
431
432 /**
433  * rh_string() - provides string descriptors for root hub
434  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
435  * @hcd: the host controller for this root hub
436  * @data: buffer for output packet
437  * @len: length of the provided buffer
438  *
439  * Produces either a manufacturer, product or serial number string for the
440  * virtual root hub device.
441  *
442  * Return: The number of bytes filled in: the length of the descriptor or
443  * of the provided buffer, whichever is less.
444  */
445 static unsigned
446 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
447 {
448         char buf[100];
449         char const *s;
450         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
451
452         /* language ids */
453         switch (id) {
454         case 0:
455                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
456                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
457                 if (len > 4)
458                         len = 4;
459                 memcpy(data, langids, len);
460                 return len;
461         case 1:
462                 /* Serial number */
463                 s = hcd->self.bus_name;
464                 break;
465         case 2:
466                 /* Product name */
467                 s = hcd->product_desc;
468                 break;
469         case 3:
470                 /* Manufacturer */
471                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
472                         init_utsname()->release, hcd->driver->description);
473                 s = buf;
474                 break;
475         default:
476                 /* Can't happen; caller guarantees it */
477                 return 0;
478         }
479
480         return ascii2desc(s, data, len);
481 }
482
483
484 /* Root hub control transfers execute synchronously */
485 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
486 {
487         struct usb_ctrlrequest *cmd;
488         u16             typeReq, wValue, wIndex, wLength;
489         u8              *ubuf = urb->transfer_buffer;
490         unsigned        len = 0;
491         int             status;
492         u8              patch_wakeup = 0;
493         u8              patch_protocol = 0;
494         u16             tbuf_size;
495         u8              *tbuf = NULL;
496         const u8        *bufp;
497
498         might_sleep();
499
500         spin_lock_irq(&hcd_root_hub_lock);
501         status = usb_hcd_link_urb_to_ep(hcd, urb);
502         spin_unlock_irq(&hcd_root_hub_lock);
503         if (status)
504                 return status;
505         urb->hcpriv = hcd;      /* Indicate it's queued */
506
507         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
508         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
509         wValue   = le16_to_cpu (cmd->wValue);
510         wIndex   = le16_to_cpu (cmd->wIndex);
511         wLength  = le16_to_cpu (cmd->wLength);
512
513         if (wLength > urb->transfer_buffer_length)
514                 goto error;
515
516         /*
517          * tbuf should be at least as big as the
518          * USB hub descriptor.
519          */
520         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
521         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
522         if (!tbuf)
523                 return -ENOMEM;
524
525         bufp = tbuf;
526
527
528         urb->actual_length = 0;
529         switch (typeReq) {
530
531         /* DEVICE REQUESTS */
532
533         /* The root hub's remote wakeup enable bit is implemented using
534          * driver model wakeup flags.  If this system supports wakeup
535          * through USB, userspace may change the default "allow wakeup"
536          * policy through sysfs or these calls.
537          *
538          * Most root hubs support wakeup from downstream devices, for
539          * runtime power management (disabling USB clocks and reducing
540          * VBUS power usage).  However, not all of them do so; silicon,
541          * board, and BIOS bugs here are not uncommon, so these can't
542          * be treated quite like external hubs.
543          *
544          * Likewise, not all root hubs will pass wakeup events upstream,
545          * to wake up the whole system.  So don't assume root hub and
546          * controller capabilities are identical.
547          */
548
549         case DeviceRequest | USB_REQ_GET_STATUS:
550                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
551                                         << USB_DEVICE_REMOTE_WAKEUP)
552                                 | (1 << USB_DEVICE_SELF_POWERED);
553                 tbuf[1] = 0;
554                 len = 2;
555                 break;
556         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
557                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
558                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
559                 else
560                         goto error;
561                 break;
562         case DeviceOutRequest | USB_REQ_SET_FEATURE:
563                 if (device_can_wakeup(&hcd->self.root_hub->dev)
564                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
565                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
566                 else
567                         goto error;
568                 break;
569         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
570                 tbuf[0] = 1;
571                 len = 1;
572                         /* FALLTHROUGH */
573         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
574                 break;
575         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
576                 switch (wValue & 0xff00) {
577                 case USB_DT_DEVICE << 8:
578                         switch (hcd->speed) {
579                         case HCD_USB31:
580                                 bufp = usb31_rh_dev_descriptor;
581                                 break;
582                         case HCD_USB3:
583                                 bufp = usb3_rh_dev_descriptor;
584                                 break;
585                         case HCD_USB25:
586                                 bufp = usb25_rh_dev_descriptor;
587                                 break;
588                         case HCD_USB2:
589                                 bufp = usb2_rh_dev_descriptor;
590                                 break;
591                         case HCD_USB11:
592                                 bufp = usb11_rh_dev_descriptor;
593                                 break;
594                         default:
595                                 goto error;
596                         }
597                         len = 18;
598                         if (hcd->has_tt)
599                                 patch_protocol = 1;
600                         break;
601                 case USB_DT_CONFIG << 8:
602                         switch (hcd->speed) {
603                         case HCD_USB31:
604                         case HCD_USB3:
605                                 bufp = ss_rh_config_descriptor;
606                                 len = sizeof ss_rh_config_descriptor;
607                                 break;
608                         case HCD_USB25:
609                         case HCD_USB2:
610                                 bufp = hs_rh_config_descriptor;
611                                 len = sizeof hs_rh_config_descriptor;
612                                 break;
613                         case HCD_USB11:
614                                 bufp = fs_rh_config_descriptor;
615                                 len = sizeof fs_rh_config_descriptor;
616                                 break;
617                         default:
618                                 goto error;
619                         }
620                         if (device_can_wakeup(&hcd->self.root_hub->dev))
621                                 patch_wakeup = 1;
622                         break;
623                 case USB_DT_STRING << 8:
624                         if ((wValue & 0xff) < 4)
625                                 urb->actual_length = rh_string(wValue & 0xff,
626                                                 hcd, ubuf, wLength);
627                         else /* unsupported IDs --> "protocol stall" */
628                                 goto error;
629                         break;
630                 case USB_DT_BOS << 8:
631                         goto nongeneric;
632                 default:
633                         goto error;
634                 }
635                 break;
636         case DeviceRequest | USB_REQ_GET_INTERFACE:
637                 tbuf[0] = 0;
638                 len = 1;
639                         /* FALLTHROUGH */
640         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
641                 break;
642         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
643                 /* wValue == urb->dev->devaddr */
644                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
645                         wValue);
646                 break;
647
648         /* INTERFACE REQUESTS (no defined feature/status flags) */
649
650         /* ENDPOINT REQUESTS */
651
652         case EndpointRequest | USB_REQ_GET_STATUS:
653                 /* ENDPOINT_HALT flag */
654                 tbuf[0] = 0;
655                 tbuf[1] = 0;
656                 len = 2;
657                         /* FALLTHROUGH */
658         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
659         case EndpointOutRequest | USB_REQ_SET_FEATURE:
660                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
661                 break;
662
663         /* CLASS REQUESTS (and errors) */
664
665         default:
666 nongeneric:
667                 /* non-generic request */
668                 switch (typeReq) {
669                 case GetHubStatus:
670                         len = 4;
671                         break;
672                 case GetPortStatus:
673                         if (wValue == HUB_PORT_STATUS)
674                                 len = 4;
675                         else
676                                 /* other port status types return 8 bytes */
677                                 len = 8;
678                         break;
679                 case GetHubDescriptor:
680                         len = sizeof (struct usb_hub_descriptor);
681                         break;
682                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
683                         /* len is returned by hub_control */
684                         break;
685                 }
686                 status = hcd->driver->hub_control (hcd,
687                         typeReq, wValue, wIndex,
688                         tbuf, wLength);
689
690                 if (typeReq == GetHubDescriptor)
691                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
692                                 (struct usb_hub_descriptor *)tbuf);
693                 break;
694 error:
695                 /* "protocol stall" on error */
696                 status = -EPIPE;
697         }
698
699         if (status < 0) {
700                 len = 0;
701                 if (status != -EPIPE) {
702                         dev_dbg (hcd->self.controller,
703                                 "CTRL: TypeReq=0x%x val=0x%x "
704                                 "idx=0x%x len=%d ==> %d\n",
705                                 typeReq, wValue, wIndex,
706                                 wLength, status);
707                 }
708         } else if (status > 0) {
709                 /* hub_control may return the length of data copied. */
710                 len = status;
711                 status = 0;
712         }
713         if (len) {
714                 if (urb->transfer_buffer_length < len)
715                         len = urb->transfer_buffer_length;
716                 urb->actual_length = len;
717                 /* always USB_DIR_IN, toward host */
718                 memcpy (ubuf, bufp, len);
719
720                 /* report whether RH hardware supports remote wakeup */
721                 if (patch_wakeup &&
722                                 len > offsetof (struct usb_config_descriptor,
723                                                 bmAttributes))
724                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
725                                 |= USB_CONFIG_ATT_WAKEUP;
726
727                 /* report whether RH hardware has an integrated TT */
728                 if (patch_protocol &&
729                                 len > offsetof(struct usb_device_descriptor,
730                                                 bDeviceProtocol))
731                         ((struct usb_device_descriptor *) ubuf)->
732                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
733         }
734
735         kfree(tbuf);
736
737         /* any errors get returned through the urb completion */
738         spin_lock_irq(&hcd_root_hub_lock);
739         usb_hcd_unlink_urb_from_ep(hcd, urb);
740         usb_hcd_giveback_urb(hcd, urb, status);
741         spin_unlock_irq(&hcd_root_hub_lock);
742         return 0;
743 }
744
745 /*-------------------------------------------------------------------------*/
746
747 /*
748  * Root Hub interrupt transfers are polled using a timer if the
749  * driver requests it; otherwise the driver is responsible for
750  * calling usb_hcd_poll_rh_status() when an event occurs.
751  *
752  * Completions are called in_interrupt(), but they may or may not
753  * be in_irq().
754  */
755 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
756 {
757         struct urb      *urb;
758         int             length;
759         unsigned long   flags;
760         char            buffer[6];      /* Any root hubs with > 31 ports? */
761
762         if (unlikely(!hcd->rh_pollable))
763                 return;
764         if (!hcd->uses_new_polling && !hcd->status_urb)
765                 return;
766
767         length = hcd->driver->hub_status_data(hcd, buffer);
768         if (length > 0) {
769
770                 /* try to complete the status urb */
771                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
772                 urb = hcd->status_urb;
773                 if (urb) {
774                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
775                         hcd->status_urb = NULL;
776                         urb->actual_length = length;
777                         memcpy(urb->transfer_buffer, buffer, length);
778
779                         usb_hcd_unlink_urb_from_ep(hcd, urb);
780                         usb_hcd_giveback_urb(hcd, urb, 0);
781                 } else {
782                         length = 0;
783                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
784                 }
785                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
786         }
787
788         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
789          * exceed that limit if HZ is 100. The math is more clunky than
790          * maybe expected, this is to make sure that all timers for USB devices
791          * fire at the same time to give the CPU a break in between */
792         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
793                         (length == 0 && hcd->status_urb != NULL))
794                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
795 }
796 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
797
798 /* timer callback */
799 static void rh_timer_func (unsigned long _hcd)
800 {
801         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
802 }
803
804 /*-------------------------------------------------------------------------*/
805
806 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
807 {
808         int             retval;
809         unsigned long   flags;
810         unsigned        len = 1 + (urb->dev->maxchild / 8);
811
812         spin_lock_irqsave (&hcd_root_hub_lock, flags);
813         if (hcd->status_urb || urb->transfer_buffer_length < len) {
814                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
815                 retval = -EINVAL;
816                 goto done;
817         }
818
819         retval = usb_hcd_link_urb_to_ep(hcd, urb);
820         if (retval)
821                 goto done;
822
823         hcd->status_urb = urb;
824         urb->hcpriv = hcd;      /* indicate it's queued */
825         if (!hcd->uses_new_polling)
826                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
827
828         /* If a status change has already occurred, report it ASAP */
829         else if (HCD_POLL_PENDING(hcd))
830                 mod_timer(&hcd->rh_timer, jiffies);
831         retval = 0;
832  done:
833         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
834         return retval;
835 }
836
837 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
838 {
839         if (usb_endpoint_xfer_int(&urb->ep->desc))
840                 return rh_queue_status (hcd, urb);
841         if (usb_endpoint_xfer_control(&urb->ep->desc))
842                 return rh_call_control (hcd, urb);
843         return -EINVAL;
844 }
845
846 /*-------------------------------------------------------------------------*/
847
848 /* Unlinks of root-hub control URBs are legal, but they don't do anything
849  * since these URBs always execute synchronously.
850  */
851 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
852 {
853         unsigned long   flags;
854         int             rc;
855
856         spin_lock_irqsave(&hcd_root_hub_lock, flags);
857         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
858         if (rc)
859                 goto done;
860
861         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
862                 ;       /* Do nothing */
863
864         } else {                                /* Status URB */
865                 if (!hcd->uses_new_polling)
866                         del_timer (&hcd->rh_timer);
867                 if (urb == hcd->status_urb) {
868                         hcd->status_urb = NULL;
869                         usb_hcd_unlink_urb_from_ep(hcd, urb);
870                         usb_hcd_giveback_urb(hcd, urb, status);
871                 }
872         }
873  done:
874         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
875         return rc;
876 }
877
878
879
880 /*
881  * Show & store the current value of authorized_default
882  */
883 static ssize_t authorized_default_show(struct device *dev,
884                                        struct device_attribute *attr, char *buf)
885 {
886         struct usb_device *rh_usb_dev = to_usb_device(dev);
887         struct usb_bus *usb_bus = rh_usb_dev->bus;
888         struct usb_hcd *hcd;
889
890         hcd = bus_to_hcd(usb_bus);
891         return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
892 }
893
894 static ssize_t authorized_default_store(struct device *dev,
895                                         struct device_attribute *attr,
896                                         const char *buf, size_t size)
897 {
898         ssize_t result;
899         unsigned val;
900         struct usb_device *rh_usb_dev = to_usb_device(dev);
901         struct usb_bus *usb_bus = rh_usb_dev->bus;
902         struct usb_hcd *hcd;
903
904         hcd = bus_to_hcd(usb_bus);
905         result = sscanf(buf, "%u\n", &val);
906         if (result == 1) {
907                 if (val)
908                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
909                 else
910                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
911
912                 result = size;
913         } else {
914                 result = -EINVAL;
915         }
916         return result;
917 }
918 static DEVICE_ATTR_RW(authorized_default);
919
920 /*
921  * interface_authorized_default_show - show default authorization status
922  * for USB interfaces
923  *
924  * note: interface_authorized_default is the default value
925  *       for initializing the authorized attribute of interfaces
926  */
927 static ssize_t interface_authorized_default_show(struct device *dev,
928                 struct device_attribute *attr, char *buf)
929 {
930         struct usb_device *usb_dev = to_usb_device(dev);
931         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
932
933         return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
934 }
935
936 /*
937  * interface_authorized_default_store - store default authorization status
938  * for USB interfaces
939  *
940  * note: interface_authorized_default is the default value
941  *       for initializing the authorized attribute of interfaces
942  */
943 static ssize_t interface_authorized_default_store(struct device *dev,
944                 struct device_attribute *attr, const char *buf, size_t count)
945 {
946         struct usb_device *usb_dev = to_usb_device(dev);
947         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
948         int rc = count;
949         bool val;
950
951         if (strtobool(buf, &val) != 0)
952                 return -EINVAL;
953
954         if (val)
955                 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
956         else
957                 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
958
959         return rc;
960 }
961 static DEVICE_ATTR_RW(interface_authorized_default);
962
963 /* Group all the USB bus attributes */
964 static struct attribute *usb_bus_attrs[] = {
965                 &dev_attr_authorized_default.attr,
966                 &dev_attr_interface_authorized_default.attr,
967                 NULL,
968 };
969
970 static struct attribute_group usb_bus_attr_group = {
971         .name = NULL,   /* we want them in the same directory */
972         .attrs = usb_bus_attrs,
973 };
974
975
976
977 /*-------------------------------------------------------------------------*/
978
979 /**
980  * usb_bus_init - shared initialization code
981  * @bus: the bus structure being initialized
982  *
983  * This code is used to initialize a usb_bus structure, memory for which is
984  * separately managed.
985  */
986 static void usb_bus_init (struct usb_bus *bus)
987 {
988         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
989
990         bus->devnum_next = 1;
991
992         bus->root_hub = NULL;
993         bus->busnum = -1;
994         bus->bandwidth_allocated = 0;
995         bus->bandwidth_int_reqs  = 0;
996         bus->bandwidth_isoc_reqs = 0;
997         mutex_init(&bus->devnum_next_mutex);
998 }
999
1000 /*-------------------------------------------------------------------------*/
1001
1002 /**
1003  * usb_register_bus - registers the USB host controller with the usb core
1004  * @bus: pointer to the bus to register
1005  * Context: !in_interrupt()
1006  *
1007  * Assigns a bus number, and links the controller into usbcore data
1008  * structures so that it can be seen by scanning the bus list.
1009  *
1010  * Return: 0 if successful. A negative error code otherwise.
1011  */
1012 static int usb_register_bus(struct usb_bus *bus)
1013 {
1014         int result = -E2BIG;
1015         int busnum;
1016
1017         mutex_lock(&usb_bus_idr_lock);
1018         busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1019         if (busnum < 0) {
1020                 pr_err("%s: failed to get bus number\n", usbcore_name);
1021                 goto error_find_busnum;
1022         }
1023         bus->busnum = busnum;
1024         mutex_unlock(&usb_bus_idr_lock);
1025
1026         usb_notify_add_bus(bus);
1027
1028         dev_info (bus->controller, "new USB bus registered, assigned bus "
1029                   "number %d\n", bus->busnum);
1030         return 0;
1031
1032 error_find_busnum:
1033         mutex_unlock(&usb_bus_idr_lock);
1034         return result;
1035 }
1036
1037 /**
1038  * usb_deregister_bus - deregisters the USB host controller
1039  * @bus: pointer to the bus to deregister
1040  * Context: !in_interrupt()
1041  *
1042  * Recycles the bus number, and unlinks the controller from usbcore data
1043  * structures so that it won't be seen by scanning the bus list.
1044  */
1045 static void usb_deregister_bus (struct usb_bus *bus)
1046 {
1047         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1048
1049         /*
1050          * NOTE: make sure that all the devices are removed by the
1051          * controller code, as well as having it call this when cleaning
1052          * itself up
1053          */
1054         mutex_lock(&usb_bus_idr_lock);
1055         idr_remove(&usb_bus_idr, bus->busnum);
1056         mutex_unlock(&usb_bus_idr_lock);
1057
1058         usb_notify_remove_bus(bus);
1059 }
1060
1061 /**
1062  * register_root_hub - called by usb_add_hcd() to register a root hub
1063  * @hcd: host controller for this root hub
1064  *
1065  * This function registers the root hub with the USB subsystem.  It sets up
1066  * the device properly in the device tree and then calls usb_new_device()
1067  * to register the usb device.  It also assigns the root hub's USB address
1068  * (always 1).
1069  *
1070  * Return: 0 if successful. A negative error code otherwise.
1071  */
1072 static int register_root_hub(struct usb_hcd *hcd)
1073 {
1074         struct device *parent_dev = hcd->self.controller;
1075         struct usb_device *usb_dev = hcd->self.root_hub;
1076         const int devnum = 1;
1077         int retval;
1078
1079         usb_dev->devnum = devnum;
1080         usb_dev->bus->devnum_next = devnum + 1;
1081         memset (&usb_dev->bus->devmap.devicemap, 0,
1082                         sizeof usb_dev->bus->devmap.devicemap);
1083         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1084         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1085
1086         mutex_lock(&usb_bus_idr_lock);
1087
1088         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1089         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1090         if (retval != sizeof usb_dev->descriptor) {
1091                 mutex_unlock(&usb_bus_idr_lock);
1092                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1093                                 dev_name(&usb_dev->dev), retval);
1094                 return (retval < 0) ? retval : -EMSGSIZE;
1095         }
1096
1097         if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1098                 retval = usb_get_bos_descriptor(usb_dev);
1099                 if (!retval) {
1100                         usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1101                 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1102                         mutex_unlock(&usb_bus_idr_lock);
1103                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1104                                         dev_name(&usb_dev->dev), retval);
1105                         return retval;
1106                 }
1107         }
1108
1109         retval = usb_new_device (usb_dev);
1110         if (retval) {
1111                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1112                                 dev_name(&usb_dev->dev), retval);
1113         } else {
1114                 spin_lock_irq (&hcd_root_hub_lock);
1115                 hcd->rh_registered = 1;
1116                 spin_unlock_irq (&hcd_root_hub_lock);
1117
1118                 /* Did the HC die before the root hub was registered? */
1119                 if (HCD_DEAD(hcd))
1120                         usb_hc_died (hcd);      /* This time clean up */
1121                 usb_dev->dev.of_node = parent_dev->of_node;
1122         }
1123         mutex_unlock(&usb_bus_idr_lock);
1124
1125         return retval;
1126 }
1127
1128 /*
1129  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1130  * @bus: the bus which the root hub belongs to
1131  * @portnum: the port which is being resumed
1132  *
1133  * HCDs should call this function when they know that a resume signal is
1134  * being sent to a root-hub port.  The root hub will be prevented from
1135  * going into autosuspend until usb_hcd_end_port_resume() is called.
1136  *
1137  * The bus's private lock must be held by the caller.
1138  */
1139 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1140 {
1141         unsigned bit = 1 << portnum;
1142
1143         if (!(bus->resuming_ports & bit)) {
1144                 bus->resuming_ports |= bit;
1145                 pm_runtime_get_noresume(&bus->root_hub->dev);
1146         }
1147 }
1148 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1149
1150 /*
1151  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1152  * @bus: the bus which the root hub belongs to
1153  * @portnum: the port which is being resumed
1154  *
1155  * HCDs should call this function when they know that a resume signal has
1156  * stopped being sent to a root-hub port.  The root hub will be allowed to
1157  * autosuspend again.
1158  *
1159  * The bus's private lock must be held by the caller.
1160  */
1161 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1162 {
1163         unsigned bit = 1 << portnum;
1164
1165         if (bus->resuming_ports & bit) {
1166                 bus->resuming_ports &= ~bit;
1167                 pm_runtime_put_noidle(&bus->root_hub->dev);
1168         }
1169 }
1170 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1171
1172 /*-------------------------------------------------------------------------*/
1173
1174 /**
1175  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1176  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1177  * @is_input: true iff the transaction sends data to the host
1178  * @isoc: true for isochronous transactions, false for interrupt ones
1179  * @bytecount: how many bytes in the transaction.
1180  *
1181  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1182  *
1183  * Note:
1184  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1185  * scheduled in software, this function is only used for such scheduling.
1186  */
1187 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1188 {
1189         unsigned long   tmp;
1190
1191         switch (speed) {
1192         case USB_SPEED_LOW:     /* INTR only */
1193                 if (is_input) {
1194                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1195                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1196                 } else {
1197                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1198                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1199                 }
1200         case USB_SPEED_FULL:    /* ISOC or INTR */
1201                 if (isoc) {
1202                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1203                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1204                 } else {
1205                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1206                         return 9107L + BW_HOST_DELAY + tmp;
1207                 }
1208         case USB_SPEED_HIGH:    /* ISOC or INTR */
1209                 /* FIXME adjust for input vs output */
1210                 if (isoc)
1211                         tmp = HS_NSECS_ISO (bytecount);
1212                 else
1213                         tmp = HS_NSECS (bytecount);
1214                 return tmp;
1215         default:
1216                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1217                 return -1;
1218         }
1219 }
1220 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1221
1222
1223 /*-------------------------------------------------------------------------*/
1224
1225 /*
1226  * Generic HC operations.
1227  */
1228
1229 /*-------------------------------------------------------------------------*/
1230
1231 /**
1232  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1233  * @hcd: host controller to which @urb was submitted
1234  * @urb: URB being submitted
1235  *
1236  * Host controller drivers should call this routine in their enqueue()
1237  * method.  The HCD's private spinlock must be held and interrupts must
1238  * be disabled.  The actions carried out here are required for URB
1239  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1240  *
1241  * Return: 0 for no error, otherwise a negative error code (in which case
1242  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1243  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1244  * the private spinlock and returning.
1245  */
1246 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1247 {
1248         int             rc = 0;
1249
1250         spin_lock(&hcd_urb_list_lock);
1251
1252         /* Check that the URB isn't being killed */
1253         if (unlikely(atomic_read(&urb->reject))) {
1254                 rc = -EPERM;
1255                 goto done;
1256         }
1257
1258         if (unlikely(!urb->ep->enabled)) {
1259                 rc = -ENOENT;
1260                 goto done;
1261         }
1262
1263         if (unlikely(!urb->dev->can_submit)) {
1264                 rc = -EHOSTUNREACH;
1265                 goto done;
1266         }
1267
1268         /*
1269          * Check the host controller's state and add the URB to the
1270          * endpoint's queue.
1271          */
1272         if (HCD_RH_RUNNING(hcd)) {
1273                 urb->unlinked = 0;
1274                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1275         } else {
1276                 rc = -ESHUTDOWN;
1277                 goto done;
1278         }
1279  done:
1280         spin_unlock(&hcd_urb_list_lock);
1281         return rc;
1282 }
1283 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1284
1285 /**
1286  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1287  * @hcd: host controller to which @urb was submitted
1288  * @urb: URB being checked for unlinkability
1289  * @status: error code to store in @urb if the unlink succeeds
1290  *
1291  * Host controller drivers should call this routine in their dequeue()
1292  * method.  The HCD's private spinlock must be held and interrupts must
1293  * be disabled.  The actions carried out here are required for making
1294  * sure than an unlink is valid.
1295  *
1296  * Return: 0 for no error, otherwise a negative error code (in which case
1297  * the dequeue() method must fail).  The possible error codes are:
1298  *
1299  *      -EIDRM: @urb was not submitted or has already completed.
1300  *              The completion function may not have been called yet.
1301  *
1302  *      -EBUSY: @urb has already been unlinked.
1303  */
1304 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1305                 int status)
1306 {
1307         struct list_head        *tmp;
1308
1309         /* insist the urb is still queued */
1310         list_for_each(tmp, &urb->ep->urb_list) {
1311                 if (tmp == &urb->urb_list)
1312                         break;
1313         }
1314         if (tmp != &urb->urb_list)
1315                 return -EIDRM;
1316
1317         /* Any status except -EINPROGRESS means something already started to
1318          * unlink this URB from the hardware.  So there's no more work to do.
1319          */
1320         if (urb->unlinked)
1321                 return -EBUSY;
1322         urb->unlinked = status;
1323         return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1326
1327 /**
1328  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1329  * @hcd: host controller to which @urb was submitted
1330  * @urb: URB being unlinked
1331  *
1332  * Host controller drivers should call this routine before calling
1333  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1334  * interrupts must be disabled.  The actions carried out here are required
1335  * for URB completion.
1336  */
1337 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1338 {
1339         /* clear all state linking urb to this dev (and hcd) */
1340         spin_lock(&hcd_urb_list_lock);
1341         list_del_init(&urb->urb_list);
1342         spin_unlock(&hcd_urb_list_lock);
1343 }
1344 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1345
1346 /*
1347  * Some usb host controllers can only perform dma using a small SRAM area.
1348  * The usb core itself is however optimized for host controllers that can dma
1349  * using regular system memory - like pci devices doing bus mastering.
1350  *
1351  * To support host controllers with limited dma capabilities we provide dma
1352  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1353  * For this to work properly the host controller code must first use the
1354  * function dma_declare_coherent_memory() to point out which memory area
1355  * that should be used for dma allocations.
1356  *
1357  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1358  * dma using dma_alloc_coherent() which in turn allocates from the memory
1359  * area pointed out with dma_declare_coherent_memory().
1360  *
1361  * So, to summarize...
1362  *
1363  * - We need "local" memory, canonical example being
1364  *   a small SRAM on a discrete controller being the
1365  *   only memory that the controller can read ...
1366  *   (a) "normal" kernel memory is no good, and
1367  *   (b) there's not enough to share
1368  *
1369  * - The only *portable* hook for such stuff in the
1370  *   DMA framework is dma_declare_coherent_memory()
1371  *
1372  * - So we use that, even though the primary requirement
1373  *   is that the memory be "local" (hence addressable
1374  *   by that device), not "coherent".
1375  *
1376  */
1377
1378 static int hcd_alloc_coherent(struct usb_bus *bus,
1379                               gfp_t mem_flags, dma_addr_t *dma_handle,
1380                               void **vaddr_handle, size_t size,
1381                               enum dma_data_direction dir)
1382 {
1383         unsigned char *vaddr;
1384
1385         if (*vaddr_handle == NULL) {
1386                 WARN_ON_ONCE(1);
1387                 return -EFAULT;
1388         }
1389
1390         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1391                                  mem_flags, dma_handle);
1392         if (!vaddr)
1393                 return -ENOMEM;
1394
1395         /*
1396          * Store the virtual address of the buffer at the end
1397          * of the allocated dma buffer. The size of the buffer
1398          * may be uneven so use unaligned functions instead
1399          * of just rounding up. It makes sense to optimize for
1400          * memory footprint over access speed since the amount
1401          * of memory available for dma may be limited.
1402          */
1403         put_unaligned((unsigned long)*vaddr_handle,
1404                       (unsigned long *)(vaddr + size));
1405
1406         if (dir == DMA_TO_DEVICE)
1407                 memcpy(vaddr, *vaddr_handle, size);
1408
1409         *vaddr_handle = vaddr;
1410         return 0;
1411 }
1412
1413 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1414                               void **vaddr_handle, size_t size,
1415                               enum dma_data_direction dir)
1416 {
1417         unsigned char *vaddr = *vaddr_handle;
1418
1419         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1420
1421         if (dir == DMA_FROM_DEVICE)
1422                 memcpy(vaddr, *vaddr_handle, size);
1423
1424         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1425
1426         *vaddr_handle = vaddr;
1427         *dma_handle = 0;
1428 }
1429
1430 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1431 {
1432         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1433             (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1434                 dma_unmap_single(hcd->self.controller,
1435                                 urb->setup_dma,
1436                                 sizeof(struct usb_ctrlrequest),
1437                                 DMA_TO_DEVICE);
1438         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1439                 hcd_free_coherent(urb->dev->bus,
1440                                 &urb->setup_dma,
1441                                 (void **) &urb->setup_packet,
1442                                 sizeof(struct usb_ctrlrequest),
1443                                 DMA_TO_DEVICE);
1444
1445         /* Make it safe to call this routine more than once */
1446         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1447 }
1448 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1449
1450 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1451 {
1452         if (hcd->driver->unmap_urb_for_dma)
1453                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1454         else
1455                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1456 }
1457
1458 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1459 {
1460         enum dma_data_direction dir;
1461
1462         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1463
1464         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1465         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1466             (urb->transfer_flags & URB_DMA_MAP_SG))
1467                 dma_unmap_sg(hcd->self.controller,
1468                                 urb->sg,
1469                                 urb->num_sgs,
1470                                 dir);
1471         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1472                  (urb->transfer_flags & URB_DMA_MAP_PAGE))
1473                 dma_unmap_page(hcd->self.controller,
1474                                 urb->transfer_dma,
1475                                 urb->transfer_buffer_length,
1476                                 dir);
1477         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1478                  (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1479                 dma_unmap_single(hcd->self.controller,
1480                                 urb->transfer_dma,
1481                                 urb->transfer_buffer_length,
1482                                 dir);
1483         else if (urb->transfer_flags & URB_MAP_LOCAL)
1484                 hcd_free_coherent(urb->dev->bus,
1485                                 &urb->transfer_dma,
1486                                 &urb->transfer_buffer,
1487                                 urb->transfer_buffer_length,
1488                                 dir);
1489
1490         /* Make it safe to call this routine more than once */
1491         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1492                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1493 }
1494 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1495
1496 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1497                            gfp_t mem_flags)
1498 {
1499         if (hcd->driver->map_urb_for_dma)
1500                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1501         else
1502                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1503 }
1504
1505 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1506                             gfp_t mem_flags)
1507 {
1508         enum dma_data_direction dir;
1509         int ret = 0;
1510
1511         /* Map the URB's buffers for DMA access.
1512          * Lower level HCD code should use *_dma exclusively,
1513          * unless it uses pio or talks to another transport,
1514          * or uses the provided scatter gather list for bulk.
1515          */
1516
1517         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1518                 if (hcd->self.uses_pio_for_control)
1519                         return ret;
1520                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1521                         urb->setup_dma = dma_map_single(
1522                                         hcd->self.controller,
1523                                         urb->setup_packet,
1524                                         sizeof(struct usb_ctrlrequest),
1525                                         DMA_TO_DEVICE);
1526                         if (dma_mapping_error(hcd->self.controller,
1527                                                 urb->setup_dma))
1528                                 return -EAGAIN;
1529                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1530                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1531                         ret = hcd_alloc_coherent(
1532                                         urb->dev->bus, mem_flags,
1533                                         &urb->setup_dma,
1534                                         (void **)&urb->setup_packet,
1535                                         sizeof(struct usb_ctrlrequest),
1536                                         DMA_TO_DEVICE);
1537                         if (ret)
1538                                 return ret;
1539                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1540                 }
1541         }
1542
1543         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1544         if (urb->transfer_buffer_length != 0
1545             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1546                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1547                         if (urb->num_sgs) {
1548                                 int n;
1549
1550                                 /* We don't support sg for isoc transfers ! */
1551                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1552                                         WARN_ON(1);
1553                                         return -EINVAL;
1554                                 }
1555
1556                                 n = dma_map_sg(
1557                                                 hcd->self.controller,
1558                                                 urb->sg,
1559                                                 urb->num_sgs,
1560                                                 dir);
1561                                 if (n <= 0)
1562                                         ret = -EAGAIN;
1563                                 else
1564                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1565                                 urb->num_mapped_sgs = n;
1566                                 if (n != urb->num_sgs)
1567                                         urb->transfer_flags |=
1568                                                         URB_DMA_SG_COMBINED;
1569                         } else if (urb->sg) {
1570                                 struct scatterlist *sg = urb->sg;
1571                                 urb->transfer_dma = dma_map_page(
1572                                                 hcd->self.controller,
1573                                                 sg_page(sg),
1574                                                 sg->offset,
1575                                                 urb->transfer_buffer_length,
1576                                                 dir);
1577                                 if (dma_mapping_error(hcd->self.controller,
1578                                                 urb->transfer_dma))
1579                                         ret = -EAGAIN;
1580                                 else
1581                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1582                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1583                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1584                                 ret = -EAGAIN;
1585                         } else {
1586                                 urb->transfer_dma = dma_map_single(
1587                                                 hcd->self.controller,
1588                                                 urb->transfer_buffer,
1589                                                 urb->transfer_buffer_length,
1590                                                 dir);
1591                                 if (dma_mapping_error(hcd->self.controller,
1592                                                 urb->transfer_dma))
1593                                         ret = -EAGAIN;
1594                                 else
1595                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1596                         }
1597                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1598                         ret = hcd_alloc_coherent(
1599                                         urb->dev->bus, mem_flags,
1600                                         &urb->transfer_dma,
1601                                         &urb->transfer_buffer,
1602                                         urb->transfer_buffer_length,
1603                                         dir);
1604                         if (ret == 0)
1605                                 urb->transfer_flags |= URB_MAP_LOCAL;
1606                 }
1607                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1608                                 URB_SETUP_MAP_LOCAL)))
1609                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1610         }
1611         return ret;
1612 }
1613 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1614
1615 /*-------------------------------------------------------------------------*/
1616
1617 /* may be called in any context with a valid urb->dev usecount
1618  * caller surrenders "ownership" of urb
1619  * expects usb_submit_urb() to have sanity checked and conditioned all
1620  * inputs in the urb
1621  */
1622 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1623 {
1624         int                     status;
1625         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1626
1627         /* increment urb's reference count as part of giving it to the HCD
1628          * (which will control it).  HCD guarantees that it either returns
1629          * an error or calls giveback(), but not both.
1630          */
1631         usb_get_urb(urb);
1632         atomic_inc(&urb->use_count);
1633         atomic_inc(&urb->dev->urbnum);
1634         usbmon_urb_submit(&hcd->self, urb);
1635
1636         /* NOTE requirements on root-hub callers (usbfs and the hub
1637          * driver, for now):  URBs' urb->transfer_buffer must be
1638          * valid and usb_buffer_{sync,unmap}() not be needed, since
1639          * they could clobber root hub response data.  Also, control
1640          * URBs must be submitted in process context with interrupts
1641          * enabled.
1642          */
1643
1644         if (is_root_hub(urb->dev)) {
1645                 status = rh_urb_enqueue(hcd, urb);
1646         } else {
1647                 status = map_urb_for_dma(hcd, urb, mem_flags);
1648                 if (likely(status == 0)) {
1649                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1650                         if (unlikely(status))
1651                                 unmap_urb_for_dma(hcd, urb);
1652                 }
1653         }
1654
1655         if (unlikely(status)) {
1656                 usbmon_urb_submit_error(&hcd->self, urb, status);
1657                 urb->hcpriv = NULL;
1658                 INIT_LIST_HEAD(&urb->urb_list);
1659                 atomic_dec(&urb->use_count);
1660                 atomic_dec(&urb->dev->urbnum);
1661                 if (atomic_read(&urb->reject))
1662                         wake_up(&usb_kill_urb_queue);
1663                 usb_put_urb(urb);
1664         }
1665         return status;
1666 }
1667
1668 /*-------------------------------------------------------------------------*/
1669
1670 /* this makes the hcd giveback() the urb more quickly, by kicking it
1671  * off hardware queues (which may take a while) and returning it as
1672  * soon as practical.  we've already set up the urb's return status,
1673  * but we can't know if the callback completed already.
1674  */
1675 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1676 {
1677         int             value;
1678
1679         if (is_root_hub(urb->dev))
1680                 value = usb_rh_urb_dequeue(hcd, urb, status);
1681         else {
1682
1683                 /* The only reason an HCD might fail this call is if
1684                  * it has not yet fully queued the urb to begin with.
1685                  * Such failures should be harmless. */
1686                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1687         }
1688         return value;
1689 }
1690
1691 /*
1692  * called in any context
1693  *
1694  * caller guarantees urb won't be recycled till both unlink()
1695  * and the urb's completion function return
1696  */
1697 int usb_hcd_unlink_urb (struct urb *urb, int status)
1698 {
1699         struct usb_hcd          *hcd;
1700         struct usb_device       *udev = urb->dev;
1701         int                     retval = -EIDRM;
1702         unsigned long           flags;
1703
1704         /* Prevent the device and bus from going away while
1705          * the unlink is carried out.  If they are already gone
1706          * then urb->use_count must be 0, since disconnected
1707          * devices can't have any active URBs.
1708          */
1709         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1710         if (atomic_read(&urb->use_count) > 0) {
1711                 retval = 0;
1712                 usb_get_dev(udev);
1713         }
1714         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1715         if (retval == 0) {
1716                 hcd = bus_to_hcd(urb->dev->bus);
1717                 retval = unlink1(hcd, urb, status);
1718                 if (retval == 0)
1719                         retval = -EINPROGRESS;
1720                 else if (retval != -EIDRM && retval != -EBUSY)
1721                         dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1722                                         urb, retval);
1723                 usb_put_dev(udev);
1724         }
1725         return retval;
1726 }
1727
1728 /*-------------------------------------------------------------------------*/
1729
1730 static void __usb_hcd_giveback_urb(struct urb *urb)
1731 {
1732         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1733         struct usb_anchor *anchor = urb->anchor;
1734         int status = urb->unlinked;
1735         unsigned long flags;
1736
1737         urb->hcpriv = NULL;
1738         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1739             urb->actual_length < urb->transfer_buffer_length &&
1740             !status))
1741                 status = -EREMOTEIO;
1742
1743         unmap_urb_for_dma(hcd, urb);
1744         usbmon_urb_complete(&hcd->self, urb, status);
1745         usb_anchor_suspend_wakeups(anchor);
1746         usb_unanchor_urb(urb);
1747         if (likely(status == 0))
1748                 usb_led_activity(USB_LED_EVENT_HOST);
1749
1750         /* pass ownership to the completion handler */
1751         urb->status = status;
1752
1753         /*
1754          * We disable local IRQs here avoid possible deadlock because
1755          * drivers may call spin_lock() to hold lock which might be
1756          * acquired in one hard interrupt handler.
1757          *
1758          * The local_irq_save()/local_irq_restore() around complete()
1759          * will be removed if current USB drivers have been cleaned up
1760          * and no one may trigger the above deadlock situation when
1761          * running complete() in tasklet.
1762          */
1763         local_irq_save(flags);
1764         urb->complete(urb);
1765         local_irq_restore(flags);
1766
1767         usb_anchor_resume_wakeups(anchor);
1768         atomic_dec(&urb->use_count);
1769         if (unlikely(atomic_read(&urb->reject)))
1770                 wake_up(&usb_kill_urb_queue);
1771         usb_put_urb(urb);
1772 }
1773
1774 static void usb_giveback_urb_bh(unsigned long param)
1775 {
1776         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1777         struct list_head local_list;
1778
1779         spin_lock_irq(&bh->lock);
1780         bh->running = true;
1781  restart:
1782         list_replace_init(&bh->head, &local_list);
1783         spin_unlock_irq(&bh->lock);
1784
1785         while (!list_empty(&local_list)) {
1786                 struct urb *urb;
1787
1788                 urb = list_entry(local_list.next, struct urb, urb_list);
1789                 list_del_init(&urb->urb_list);
1790                 bh->completing_ep = urb->ep;
1791                 __usb_hcd_giveback_urb(urb);
1792                 bh->completing_ep = NULL;
1793         }
1794
1795         /* check if there are new URBs to giveback */
1796         spin_lock_irq(&bh->lock);
1797         if (!list_empty(&bh->head))
1798                 goto restart;
1799         bh->running = false;
1800         spin_unlock_irq(&bh->lock);
1801 }
1802
1803 /**
1804  * usb_hcd_giveback_urb - return URB from HCD to device driver
1805  * @hcd: host controller returning the URB
1806  * @urb: urb being returned to the USB device driver.
1807  * @status: completion status code for the URB.
1808  * Context: in_interrupt()
1809  *
1810  * This hands the URB from HCD to its USB device driver, using its
1811  * completion function.  The HCD has freed all per-urb resources
1812  * (and is done using urb->hcpriv).  It also released all HCD locks;
1813  * the device driver won't cause problems if it frees, modifies,
1814  * or resubmits this URB.
1815  *
1816  * If @urb was unlinked, the value of @status will be overridden by
1817  * @urb->unlinked.  Erroneous short transfers are detected in case
1818  * the HCD hasn't checked for them.
1819  */
1820 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1821 {
1822         struct giveback_urb_bh *bh;
1823         bool running, high_prio_bh;
1824
1825         /* pass status to tasklet via unlinked */
1826         if (likely(!urb->unlinked))
1827                 urb->unlinked = status;
1828
1829         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1830                 __usb_hcd_giveback_urb(urb);
1831                 return;
1832         }
1833
1834         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1835                 bh = &hcd->high_prio_bh;
1836                 high_prio_bh = true;
1837         } else {
1838                 bh = &hcd->low_prio_bh;
1839                 high_prio_bh = false;
1840         }
1841
1842         spin_lock(&bh->lock);
1843         list_add_tail(&urb->urb_list, &bh->head);
1844         running = bh->running;
1845         spin_unlock(&bh->lock);
1846
1847         if (running)
1848                 ;
1849         else if (high_prio_bh)
1850                 tasklet_hi_schedule(&bh->bh);
1851         else
1852                 tasklet_schedule(&bh->bh);
1853 }
1854 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1855
1856 /*-------------------------------------------------------------------------*/
1857
1858 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1859  * queue to drain completely.  The caller must first insure that no more
1860  * URBs can be submitted for this endpoint.
1861  */
1862 void usb_hcd_flush_endpoint(struct usb_device *udev,
1863                 struct usb_host_endpoint *ep)
1864 {
1865         struct usb_hcd          *hcd;
1866         struct urb              *urb;
1867
1868         if (!ep)
1869                 return;
1870         might_sleep();
1871         hcd = bus_to_hcd(udev->bus);
1872
1873         /* No more submits can occur */
1874         spin_lock_irq(&hcd_urb_list_lock);
1875 rescan:
1876         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1877                 int     is_in;
1878
1879                 if (urb->unlinked)
1880                         continue;
1881                 usb_get_urb (urb);
1882                 is_in = usb_urb_dir_in(urb);
1883                 spin_unlock(&hcd_urb_list_lock);
1884
1885                 /* kick hcd */
1886                 unlink1(hcd, urb, -ESHUTDOWN);
1887                 dev_dbg (hcd->self.controller,
1888                         "shutdown urb %p ep%d%s%s\n",
1889                         urb, usb_endpoint_num(&ep->desc),
1890                         is_in ? "in" : "out",
1891                         ({      char *s;
1892
1893                                  switch (usb_endpoint_type(&ep->desc)) {
1894                                  case USB_ENDPOINT_XFER_CONTROL:
1895                                         s = ""; break;
1896                                  case USB_ENDPOINT_XFER_BULK:
1897                                         s = "-bulk"; break;
1898                                  case USB_ENDPOINT_XFER_INT:
1899                                         s = "-intr"; break;
1900                                  default:
1901                                         s = "-iso"; break;
1902                                 };
1903                                 s;
1904                         }));
1905                 usb_put_urb (urb);
1906
1907                 /* list contents may have changed */
1908                 spin_lock(&hcd_urb_list_lock);
1909                 goto rescan;
1910         }
1911         spin_unlock_irq(&hcd_urb_list_lock);
1912
1913         /* Wait until the endpoint queue is completely empty */
1914         while (!list_empty (&ep->urb_list)) {
1915                 spin_lock_irq(&hcd_urb_list_lock);
1916
1917                 /* The list may have changed while we acquired the spinlock */
1918                 urb = NULL;
1919                 if (!list_empty (&ep->urb_list)) {
1920                         urb = list_entry (ep->urb_list.prev, struct urb,
1921                                         urb_list);
1922                         usb_get_urb (urb);
1923                 }
1924                 spin_unlock_irq(&hcd_urb_list_lock);
1925
1926                 if (urb) {
1927                         usb_kill_urb (urb);
1928                         usb_put_urb (urb);
1929                 }
1930         }
1931 }
1932
1933 /**
1934  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1935  *                              the bus bandwidth
1936  * @udev: target &usb_device
1937  * @new_config: new configuration to install
1938  * @cur_alt: the current alternate interface setting
1939  * @new_alt: alternate interface setting that is being installed
1940  *
1941  * To change configurations, pass in the new configuration in new_config,
1942  * and pass NULL for cur_alt and new_alt.
1943  *
1944  * To reset a device's configuration (put the device in the ADDRESSED state),
1945  * pass in NULL for new_config, cur_alt, and new_alt.
1946  *
1947  * To change alternate interface settings, pass in NULL for new_config,
1948  * pass in the current alternate interface setting in cur_alt,
1949  * and pass in the new alternate interface setting in new_alt.
1950  *
1951  * Return: An error if the requested bandwidth change exceeds the
1952  * bus bandwidth or host controller internal resources.
1953  */
1954 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1955                 struct usb_host_config *new_config,
1956                 struct usb_host_interface *cur_alt,
1957                 struct usb_host_interface *new_alt)
1958 {
1959         int num_intfs, i, j;
1960         struct usb_host_interface *alt = NULL;
1961         int ret = 0;
1962         struct usb_hcd *hcd;
1963         struct usb_host_endpoint *ep;
1964
1965         hcd = bus_to_hcd(udev->bus);
1966         if (!hcd->driver->check_bandwidth)
1967                 return 0;
1968
1969         /* Configuration is being removed - set configuration 0 */
1970         if (!new_config && !cur_alt) {
1971                 for (i = 1; i < 16; ++i) {
1972                         ep = udev->ep_out[i];
1973                         if (ep)
1974                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1975                         ep = udev->ep_in[i];
1976                         if (ep)
1977                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1978                 }
1979                 hcd->driver->check_bandwidth(hcd, udev);
1980                 return 0;
1981         }
1982         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1983          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1984          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1985          * ok to exclude it.
1986          */
1987         if (new_config) {
1988                 num_intfs = new_config->desc.bNumInterfaces;
1989                 /* Remove endpoints (except endpoint 0, which is always on the
1990                  * schedule) from the old config from the schedule
1991                  */
1992                 for (i = 1; i < 16; ++i) {
1993                         ep = udev->ep_out[i];
1994                         if (ep) {
1995                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1996                                 if (ret < 0)
1997                                         goto reset;
1998                         }
1999                         ep = udev->ep_in[i];
2000                         if (ep) {
2001                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2002                                 if (ret < 0)
2003                                         goto reset;
2004                         }
2005                 }
2006                 for (i = 0; i < num_intfs; ++i) {
2007                         struct usb_host_interface *first_alt;
2008                         int iface_num;
2009
2010                         first_alt = &new_config->intf_cache[i]->altsetting[0];
2011                         iface_num = first_alt->desc.bInterfaceNumber;
2012                         /* Set up endpoints for alternate interface setting 0 */
2013                         alt = usb_find_alt_setting(new_config, iface_num, 0);
2014                         if (!alt)
2015                                 /* No alt setting 0? Pick the first setting. */
2016                                 alt = first_alt;
2017
2018                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2019                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2020                                 if (ret < 0)
2021                                         goto reset;
2022                         }
2023                 }
2024         }
2025         if (cur_alt && new_alt) {
2026                 struct usb_interface *iface = usb_ifnum_to_if(udev,
2027                                 cur_alt->desc.bInterfaceNumber);
2028
2029                 if (!iface)
2030                         return -EINVAL;
2031                 if (iface->resetting_device) {
2032                         /*
2033                          * The USB core just reset the device, so the xHCI host
2034                          * and the device will think alt setting 0 is installed.
2035                          * However, the USB core will pass in the alternate
2036                          * setting installed before the reset as cur_alt.  Dig
2037                          * out the alternate setting 0 structure, or the first
2038                          * alternate setting if a broken device doesn't have alt
2039                          * setting 0.
2040                          */
2041                         cur_alt = usb_altnum_to_altsetting(iface, 0);
2042                         if (!cur_alt)
2043                                 cur_alt = &iface->altsetting[0];
2044                 }
2045
2046                 /* Drop all the endpoints in the current alt setting */
2047                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2048                         ret = hcd->driver->drop_endpoint(hcd, udev,
2049                                         &cur_alt->endpoint[i]);
2050                         if (ret < 0)
2051                                 goto reset;
2052                 }
2053                 /* Add all the endpoints in the new alt setting */
2054                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2055                         ret = hcd->driver->add_endpoint(hcd, udev,
2056                                         &new_alt->endpoint[i]);
2057                         if (ret < 0)
2058                                 goto reset;
2059                 }
2060         }
2061         ret = hcd->driver->check_bandwidth(hcd, udev);
2062 reset:
2063         if (ret < 0)
2064                 hcd->driver->reset_bandwidth(hcd, udev);
2065         return ret;
2066 }
2067
2068 /* Disables the endpoint: synchronizes with the hcd to make sure all
2069  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2070  * have been called previously.  Use for set_configuration, set_interface,
2071  * driver removal, physical disconnect.
2072  *
2073  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2074  * type, maxpacket size, toggle, halt status, and scheduling.
2075  */
2076 void usb_hcd_disable_endpoint(struct usb_device *udev,
2077                 struct usb_host_endpoint *ep)
2078 {
2079         struct usb_hcd          *hcd;
2080
2081         might_sleep();
2082         hcd = bus_to_hcd(udev->bus);
2083         if (hcd->driver->endpoint_disable)
2084                 hcd->driver->endpoint_disable(hcd, ep);
2085 }
2086
2087 /**
2088  * usb_hcd_reset_endpoint - reset host endpoint state
2089  * @udev: USB device.
2090  * @ep:   the endpoint to reset.
2091  *
2092  * Resets any host endpoint state such as the toggle bit, sequence
2093  * number and current window.
2094  */
2095 void usb_hcd_reset_endpoint(struct usb_device *udev,
2096                             struct usb_host_endpoint *ep)
2097 {
2098         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2099
2100         if (hcd->driver->endpoint_reset)
2101                 hcd->driver->endpoint_reset(hcd, ep);
2102         else {
2103                 int epnum = usb_endpoint_num(&ep->desc);
2104                 int is_out = usb_endpoint_dir_out(&ep->desc);
2105                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2106
2107                 usb_settoggle(udev, epnum, is_out, 0);
2108                 if (is_control)
2109                         usb_settoggle(udev, epnum, !is_out, 0);
2110         }
2111 }
2112
2113 /**
2114  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2115  * @interface:          alternate setting that includes all endpoints.
2116  * @eps:                array of endpoints that need streams.
2117  * @num_eps:            number of endpoints in the array.
2118  * @num_streams:        number of streams to allocate.
2119  * @mem_flags:          flags hcd should use to allocate memory.
2120  *
2121  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2122  * Drivers may queue multiple transfers to different stream IDs, which may
2123  * complete in a different order than they were queued.
2124  *
2125  * Return: On success, the number of allocated streams. On failure, a negative
2126  * error code.
2127  */
2128 int usb_alloc_streams(struct usb_interface *interface,
2129                 struct usb_host_endpoint **eps, unsigned int num_eps,
2130                 unsigned int num_streams, gfp_t mem_flags)
2131 {
2132         struct usb_hcd *hcd;
2133         struct usb_device *dev;
2134         int i, ret;
2135
2136         dev = interface_to_usbdev(interface);
2137         hcd = bus_to_hcd(dev->bus);
2138         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2139                 return -EINVAL;
2140         if (dev->speed < USB_SPEED_SUPER)
2141                 return -EINVAL;
2142         if (dev->state < USB_STATE_CONFIGURED)
2143                 return -ENODEV;
2144
2145         for (i = 0; i < num_eps; i++) {
2146                 /* Streams only apply to bulk endpoints. */
2147                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2148                         return -EINVAL;
2149                 /* Re-alloc is not allowed */
2150                 if (eps[i]->streams)
2151                         return -EINVAL;
2152         }
2153
2154         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2155                         num_streams, mem_flags);
2156         if (ret < 0)
2157                 return ret;
2158
2159         for (i = 0; i < num_eps; i++)
2160                 eps[i]->streams = ret;
2161
2162         return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2165
2166 /**
2167  * usb_free_streams - free bulk endpoint stream IDs.
2168  * @interface:  alternate setting that includes all endpoints.
2169  * @eps:        array of endpoints to remove streams from.
2170  * @num_eps:    number of endpoints in the array.
2171  * @mem_flags:  flags hcd should use to allocate memory.
2172  *
2173  * Reverts a group of bulk endpoints back to not using stream IDs.
2174  * Can fail if we are given bad arguments, or HCD is broken.
2175  *
2176  * Return: 0 on success. On failure, a negative error code.
2177  */
2178 int usb_free_streams(struct usb_interface *interface,
2179                 struct usb_host_endpoint **eps, unsigned int num_eps,
2180                 gfp_t mem_flags)
2181 {
2182         struct usb_hcd *hcd;
2183         struct usb_device *dev;
2184         int i, ret;
2185
2186         dev = interface_to_usbdev(interface);
2187         hcd = bus_to_hcd(dev->bus);
2188         if (dev->speed < USB_SPEED_SUPER)
2189                 return -EINVAL;
2190
2191         /* Double-free is not allowed */
2192         for (i = 0; i < num_eps; i++)
2193                 if (!eps[i] || !eps[i]->streams)
2194                         return -EINVAL;
2195
2196         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2197         if (ret < 0)
2198                 return ret;
2199
2200         for (i = 0; i < num_eps; i++)
2201                 eps[i]->streams = 0;
2202
2203         return ret;
2204 }
2205 EXPORT_SYMBOL_GPL(usb_free_streams);
2206
2207 /* Protect against drivers that try to unlink URBs after the device
2208  * is gone, by waiting until all unlinks for @udev are finished.
2209  * Since we don't currently track URBs by device, simply wait until
2210  * nothing is running in the locked region of usb_hcd_unlink_urb().
2211  */
2212 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2213 {
2214         spin_lock_irq(&hcd_urb_unlink_lock);
2215         spin_unlock_irq(&hcd_urb_unlink_lock);
2216 }
2217
2218 /*-------------------------------------------------------------------------*/
2219
2220 /* called in any context */
2221 int usb_hcd_get_frame_number (struct usb_device *udev)
2222 {
2223         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2224
2225         if (!HCD_RH_RUNNING(hcd))
2226                 return -ESHUTDOWN;
2227         return hcd->driver->get_frame_number (hcd);
2228 }
2229
2230 /*-------------------------------------------------------------------------*/
2231
2232 #ifdef  CONFIG_PM
2233
2234 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2235 {
2236         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2237         int             status;
2238         int             old_state = hcd->state;
2239
2240         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2241                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2242                         rhdev->do_remote_wakeup);
2243         if (HCD_DEAD(hcd)) {
2244                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2245                 return 0;
2246         }
2247
2248         if (!hcd->driver->bus_suspend) {
2249                 status = -ENOENT;
2250         } else {
2251                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2252                 hcd->state = HC_STATE_QUIESCING;
2253                 status = hcd->driver->bus_suspend(hcd);
2254         }
2255         if (status == 0) {
2256                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2257                 hcd->state = HC_STATE_SUSPENDED;
2258
2259                 /* Did we race with a root-hub wakeup event? */
2260                 if (rhdev->do_remote_wakeup) {
2261                         char    buffer[6];
2262
2263                         status = hcd->driver->hub_status_data(hcd, buffer);
2264                         if (status != 0) {
2265                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2266                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2267                                 status = -EBUSY;
2268                         }
2269                 }
2270         } else {
2271                 spin_lock_irq(&hcd_root_hub_lock);
2272                 if (!HCD_DEAD(hcd)) {
2273                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2274                         hcd->state = old_state;
2275                 }
2276                 spin_unlock_irq(&hcd_root_hub_lock);
2277                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2278                                 "suspend", status);
2279         }
2280         return status;
2281 }
2282
2283 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2284 {
2285         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2286         int             status;
2287         int             old_state = hcd->state;
2288
2289         dev_dbg(&rhdev->dev, "usb %sresume\n",
2290                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2291         if (HCD_DEAD(hcd)) {
2292                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2293                 return 0;
2294         }
2295         if (!hcd->driver->bus_resume)
2296                 return -ENOENT;
2297         if (HCD_RH_RUNNING(hcd))
2298                 return 0;
2299
2300         hcd->state = HC_STATE_RESUMING;
2301         status = hcd->driver->bus_resume(hcd);
2302         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2303         if (status == 0) {
2304                 struct usb_device *udev;
2305                 int port1;
2306
2307                 spin_lock_irq(&hcd_root_hub_lock);
2308                 if (!HCD_DEAD(hcd)) {
2309                         usb_set_device_state(rhdev, rhdev->actconfig
2310                                         ? USB_STATE_CONFIGURED
2311                                         : USB_STATE_ADDRESS);
2312                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2313                         hcd->state = HC_STATE_RUNNING;
2314                 }
2315                 spin_unlock_irq(&hcd_root_hub_lock);
2316
2317                 /*
2318                  * Check whether any of the enabled ports on the root hub are
2319                  * unsuspended.  If they are then a TRSMRCY delay is needed
2320                  * (this is what the USB-2 spec calls a "global resume").
2321                  * Otherwise we can skip the delay.
2322                  */
2323                 usb_hub_for_each_child(rhdev, port1, udev) {
2324                         if (udev->state != USB_STATE_NOTATTACHED &&
2325                                         !udev->port_is_suspended) {
2326                                 usleep_range(10000, 11000);     /* TRSMRCY */
2327                                 break;
2328                         }
2329                 }
2330         } else {
2331                 hcd->state = old_state;
2332                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2333                                 "resume", status);
2334                 if (status != -ESHUTDOWN)
2335                         usb_hc_died(hcd);
2336         }
2337         return status;
2338 }
2339
2340 /* Workqueue routine for root-hub remote wakeup */
2341 static void hcd_resume_work(struct work_struct *work)
2342 {
2343         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2344         struct usb_device *udev = hcd->self.root_hub;
2345
2346         usb_remote_wakeup(udev);
2347 }
2348
2349 /**
2350  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2351  * @hcd: host controller for this root hub
2352  *
2353  * The USB host controller calls this function when its root hub is
2354  * suspended (with the remote wakeup feature enabled) and a remote
2355  * wakeup request is received.  The routine submits a workqueue request
2356  * to resume the root hub (that is, manage its downstream ports again).
2357  */
2358 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2359 {
2360         unsigned long flags;
2361
2362         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2363         if (hcd->rh_registered) {
2364                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2365                 queue_work(pm_wq, &hcd->wakeup_work);
2366         }
2367         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2368 }
2369 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2370
2371 #endif  /* CONFIG_PM */
2372
2373 /*-------------------------------------------------------------------------*/
2374
2375 #ifdef  CONFIG_USB_OTG
2376
2377 /**
2378  * usb_bus_start_enum - start immediate enumeration (for OTG)
2379  * @bus: the bus (must use hcd framework)
2380  * @port_num: 1-based number of port; usually bus->otg_port
2381  * Context: in_interrupt()
2382  *
2383  * Starts enumeration, with an immediate reset followed later by
2384  * hub_wq identifying and possibly configuring the device.
2385  * This is needed by OTG controller drivers, where it helps meet
2386  * HNP protocol timing requirements for starting a port reset.
2387  *
2388  * Return: 0 if successful.
2389  */
2390 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2391 {
2392         struct usb_hcd          *hcd;
2393         int                     status = -EOPNOTSUPP;
2394
2395         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2396          * boards with root hubs hooked up to internal devices (instead of
2397          * just the OTG port) may need more attention to resetting...
2398          */
2399         hcd = bus_to_hcd(bus);
2400         if (port_num && hcd->driver->start_port_reset)
2401                 status = hcd->driver->start_port_reset(hcd, port_num);
2402
2403         /* allocate hub_wq shortly after (first) root port reset finishes;
2404          * it may issue others, until at least 50 msecs have passed.
2405          */
2406         if (status == 0)
2407                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2408         return status;
2409 }
2410 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2411
2412 #endif
2413
2414 /*-------------------------------------------------------------------------*/
2415
2416 /**
2417  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2418  * @irq: the IRQ being raised
2419  * @__hcd: pointer to the HCD whose IRQ is being signaled
2420  *
2421  * If the controller isn't HALTed, calls the driver's irq handler.
2422  * Checks whether the controller is now dead.
2423  *
2424  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2425  */
2426 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2427 {
2428         struct usb_hcd          *hcd = __hcd;
2429         irqreturn_t             rc;
2430
2431         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2432                 rc = IRQ_NONE;
2433         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2434                 rc = IRQ_NONE;
2435         else
2436                 rc = IRQ_HANDLED;
2437
2438         return rc;
2439 }
2440 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2441
2442 /*-------------------------------------------------------------------------*/
2443
2444 /**
2445  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2446  * @hcd: pointer to the HCD representing the controller
2447  *
2448  * This is called by bus glue to report a USB host controller that died
2449  * while operations may still have been pending.  It's called automatically
2450  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2451  *
2452  * Only call this function with the primary HCD.
2453  */
2454 void usb_hc_died (struct usb_hcd *hcd)
2455 {
2456         unsigned long flags;
2457
2458         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2459
2460         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2461         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2462         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2463         if (hcd->rh_registered) {
2464                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2465
2466                 /* make hub_wq clean up old urbs and devices */
2467                 usb_set_device_state (hcd->self.root_hub,
2468                                 USB_STATE_NOTATTACHED);
2469                 usb_kick_hub_wq(hcd->self.root_hub);
2470         }
2471         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2472                 hcd = hcd->shared_hcd;
2473                 if (hcd->rh_registered) {
2474                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2475
2476                         /* make hub_wq clean up old urbs and devices */
2477                         usb_set_device_state(hcd->self.root_hub,
2478                                         USB_STATE_NOTATTACHED);
2479                         usb_kick_hub_wq(hcd->self.root_hub);
2480                 }
2481         }
2482         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2483         /* Make sure that the other roothub is also deallocated. */
2484 }
2485 EXPORT_SYMBOL_GPL (usb_hc_died);
2486
2487 /*-------------------------------------------------------------------------*/
2488
2489 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2490 {
2491
2492         spin_lock_init(&bh->lock);
2493         INIT_LIST_HEAD(&bh->head);
2494         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2495 }
2496
2497 /**
2498  * usb_create_shared_hcd - create and initialize an HCD structure
2499  * @driver: HC driver that will use this hcd
2500  * @dev: device for this HC, stored in hcd->self.controller
2501  * @bus_name: value to store in hcd->self.bus_name
2502  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2503  *              PCI device.  Only allocate certain resources for the primary HCD
2504  * Context: !in_interrupt()
2505  *
2506  * Allocate a struct usb_hcd, with extra space at the end for the
2507  * HC driver's private data.  Initialize the generic members of the
2508  * hcd structure.
2509  *
2510  * Return: On success, a pointer to the created and initialized HCD structure.
2511  * On failure (e.g. if memory is unavailable), %NULL.
2512  */
2513 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2514                 struct device *dev, const char *bus_name,
2515                 struct usb_hcd *primary_hcd)
2516 {
2517         struct usb_hcd *hcd;
2518
2519         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2520         if (!hcd) {
2521                 dev_dbg (dev, "hcd alloc failed\n");
2522                 return NULL;
2523         }
2524         if (primary_hcd == NULL) {
2525                 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2526                                 GFP_KERNEL);
2527                 if (!hcd->address0_mutex) {
2528                         kfree(hcd);
2529                         dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2530                         return NULL;
2531                 }
2532                 mutex_init(hcd->address0_mutex);
2533                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2534                                 GFP_KERNEL);
2535                 if (!hcd->bandwidth_mutex) {
2536                         kfree(hcd);
2537                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2538                         return NULL;
2539                 }
2540                 mutex_init(hcd->bandwidth_mutex);
2541                 dev_set_drvdata(dev, hcd);
2542         } else {
2543                 mutex_lock(&usb_port_peer_mutex);
2544                 hcd->address0_mutex = primary_hcd->address0_mutex;
2545                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2546                 hcd->primary_hcd = primary_hcd;
2547                 primary_hcd->primary_hcd = primary_hcd;
2548                 hcd->shared_hcd = primary_hcd;
2549                 primary_hcd->shared_hcd = hcd;
2550                 mutex_unlock(&usb_port_peer_mutex);
2551         }
2552
2553         kref_init(&hcd->kref);
2554
2555         usb_bus_init(&hcd->self);
2556         hcd->self.controller = dev;
2557         hcd->self.bus_name = bus_name;
2558         hcd->self.uses_dma = (dev->dma_mask != NULL);
2559
2560         init_timer(&hcd->rh_timer);
2561         hcd->rh_timer.function = rh_timer_func;
2562         hcd->rh_timer.data = (unsigned long) hcd;
2563 #ifdef CONFIG_PM
2564         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2565 #endif
2566
2567         hcd->driver = driver;
2568         hcd->speed = driver->flags & HCD_MASK;
2569         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2570                         "USB Host Controller";
2571         return hcd;
2572 }
2573 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2574
2575 /**
2576  * usb_create_hcd - create and initialize an HCD structure
2577  * @driver: HC driver that will use this hcd
2578  * @dev: device for this HC, stored in hcd->self.controller
2579  * @bus_name: value to store in hcd->self.bus_name
2580  * Context: !in_interrupt()
2581  *
2582  * Allocate a struct usb_hcd, with extra space at the end for the
2583  * HC driver's private data.  Initialize the generic members of the
2584  * hcd structure.
2585  *
2586  * Return: On success, a pointer to the created and initialized HCD
2587  * structure. On failure (e.g. if memory is unavailable), %NULL.
2588  */
2589 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2590                 struct device *dev, const char *bus_name)
2591 {
2592         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2593 }
2594 EXPORT_SYMBOL_GPL(usb_create_hcd);
2595
2596 /*
2597  * Roothubs that share one PCI device must also share the bandwidth mutex.
2598  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2599  * deallocated.
2600  *
2601  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2602  * freed.  When hcd_release() is called for either hcd in a peer set,
2603  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2604  */
2605 static void hcd_release(struct kref *kref)
2606 {
2607         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2608
2609         mutex_lock(&usb_port_peer_mutex);
2610         if (hcd->shared_hcd) {
2611                 struct usb_hcd *peer = hcd->shared_hcd;
2612
2613                 peer->shared_hcd = NULL;
2614                 peer->primary_hcd = NULL;
2615         } else {
2616                 kfree(hcd->address0_mutex);
2617                 kfree(hcd->bandwidth_mutex);
2618         }
2619         mutex_unlock(&usb_port_peer_mutex);
2620         kfree(hcd);
2621 }
2622
2623 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2624 {
2625         if (hcd)
2626                 kref_get (&hcd->kref);
2627         return hcd;
2628 }
2629 EXPORT_SYMBOL_GPL(usb_get_hcd);
2630
2631 void usb_put_hcd (struct usb_hcd *hcd)
2632 {
2633         if (hcd)
2634                 kref_put (&hcd->kref, hcd_release);
2635 }
2636 EXPORT_SYMBOL_GPL(usb_put_hcd);
2637
2638 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2639 {
2640         if (!hcd->primary_hcd)
2641                 return 1;
2642         return hcd == hcd->primary_hcd;
2643 }
2644 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2645
2646 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2647 {
2648         if (!hcd->driver->find_raw_port_number)
2649                 return port1;
2650
2651         return hcd->driver->find_raw_port_number(hcd, port1);
2652 }
2653
2654 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2655                 unsigned int irqnum, unsigned long irqflags)
2656 {
2657         int retval;
2658
2659         if (hcd->driver->irq) {
2660
2661                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2662                                 hcd->driver->description, hcd->self.busnum);
2663                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2664                                 hcd->irq_descr, hcd);
2665                 if (retval != 0) {
2666                         dev_err(hcd->self.controller,
2667                                         "request interrupt %d failed\n",
2668                                         irqnum);
2669                         return retval;
2670                 }
2671                 hcd->irq = irqnum;
2672                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2673                                 (hcd->driver->flags & HCD_MEMORY) ?
2674                                         "io mem" : "io base",
2675                                         (unsigned long long)hcd->rsrc_start);
2676         } else {
2677                 hcd->irq = 0;
2678                 if (hcd->rsrc_start)
2679                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2680                                         (hcd->driver->flags & HCD_MEMORY) ?
2681                                         "io mem" : "io base",
2682                                         (unsigned long long)hcd->rsrc_start);
2683         }
2684         return 0;
2685 }
2686
2687 /*
2688  * Before we free this root hub, flush in-flight peering attempts
2689  * and disable peer lookups
2690  */
2691 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2692 {
2693         struct usb_device *rhdev;
2694
2695         mutex_lock(&usb_port_peer_mutex);
2696         rhdev = hcd->self.root_hub;
2697         hcd->self.root_hub = NULL;
2698         mutex_unlock(&usb_port_peer_mutex);
2699         usb_put_dev(rhdev);
2700 }
2701
2702 /**
2703  * usb_add_hcd - finish generic HCD structure initialization and register
2704  * @hcd: the usb_hcd structure to initialize
2705  * @irqnum: Interrupt line to allocate
2706  * @irqflags: Interrupt type flags
2707  *
2708  * Finish the remaining parts of generic HCD initialization: allocate the
2709  * buffers of consistent memory, register the bus, request the IRQ line,
2710  * and call the driver's reset() and start() routines.
2711  */
2712 int usb_add_hcd(struct usb_hcd *hcd,
2713                 unsigned int irqnum, unsigned long irqflags)
2714 {
2715         int retval;
2716         struct usb_device *rhdev;
2717
2718         if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2719                 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2720
2721                 if (IS_ERR(phy)) {
2722                         retval = PTR_ERR(phy);
2723                         if (retval == -EPROBE_DEFER)
2724                                 return retval;
2725                 } else {
2726                         retval = usb_phy_init(phy);
2727                         if (retval) {
2728                                 usb_put_phy(phy);
2729                                 return retval;
2730                         }
2731                         hcd->usb_phy = phy;
2732                         hcd->remove_phy = 1;
2733                 }
2734         }
2735
2736         if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2737                 struct phy *phy = phy_get(hcd->self.controller, "usb");
2738
2739                 if (IS_ERR(phy)) {
2740                         retval = PTR_ERR(phy);
2741                         if (retval == -EPROBE_DEFER)
2742                                 goto err_phy;
2743                 } else {
2744                         retval = phy_init(phy);
2745                         if (retval) {
2746                                 phy_put(phy);
2747                                 goto err_phy;
2748                         }
2749                         retval = phy_power_on(phy);
2750                         if (retval) {
2751                                 phy_exit(phy);
2752                                 phy_put(phy);
2753                                 goto err_phy;
2754                         }
2755                         hcd->phy = phy;
2756                         hcd->remove_phy = 1;
2757                 }
2758         }
2759
2760         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2761
2762         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2763         if (authorized_default < 0 || authorized_default > 1) {
2764                 if (hcd->wireless)
2765                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2766                 else
2767                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2768         } else {
2769                 if (authorized_default)
2770                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2771                 else
2772                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2773         }
2774         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2775
2776         /* per default all interfaces are authorized */
2777         set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2778
2779         /* HC is in reset state, but accessible.  Now do the one-time init,
2780          * bottom up so that hcds can customize the root hubs before hub_wq
2781          * starts talking to them.  (Note, bus id is assigned early too.)
2782          */
2783         retval = hcd_buffer_create(hcd);
2784         if (retval != 0) {
2785                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2786                 goto err_create_buf;
2787         }
2788
2789         retval = usb_register_bus(&hcd->self);
2790         if (retval < 0)
2791                 goto err_register_bus;
2792
2793         rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2794         if (rhdev == NULL) {
2795                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2796                 retval = -ENOMEM;
2797                 goto err_allocate_root_hub;
2798         }
2799         mutex_lock(&usb_port_peer_mutex);
2800         hcd->self.root_hub = rhdev;
2801         mutex_unlock(&usb_port_peer_mutex);
2802
2803         switch (hcd->speed) {
2804         case HCD_USB11:
2805                 rhdev->speed = USB_SPEED_FULL;
2806                 break;
2807         case HCD_USB2:
2808                 rhdev->speed = USB_SPEED_HIGH;
2809                 break;
2810         case HCD_USB25:
2811                 rhdev->speed = USB_SPEED_WIRELESS;
2812                 break;
2813         case HCD_USB3:
2814                 rhdev->speed = USB_SPEED_SUPER;
2815                 break;
2816         case HCD_USB31:
2817                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2818                 break;
2819         default:
2820                 retval = -EINVAL;
2821                 goto err_set_rh_speed;
2822         }
2823
2824         /* wakeup flag init defaults to "everything works" for root hubs,
2825          * but drivers can override it in reset() if needed, along with
2826          * recording the overall controller's system wakeup capability.
2827          */
2828         device_set_wakeup_capable(&rhdev->dev, 1);
2829
2830         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2831          * registered.  But since the controller can die at any time,
2832          * let's initialize the flag before touching the hardware.
2833          */
2834         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2835
2836         /* "reset" is misnamed; its role is now one-time init. the controller
2837          * should already have been reset (and boot firmware kicked off etc).
2838          */
2839         if (hcd->driver->reset) {
2840                 retval = hcd->driver->reset(hcd);
2841                 if (retval < 0) {
2842                         dev_err(hcd->self.controller, "can't setup: %d\n",
2843                                         retval);
2844                         goto err_hcd_driver_setup;
2845                 }
2846         }
2847         hcd->rh_pollable = 1;
2848
2849         /* NOTE: root hub and controller capabilities may not be the same */
2850         if (device_can_wakeup(hcd->self.controller)
2851                         && device_can_wakeup(&hcd->self.root_hub->dev))
2852                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2853
2854         /* initialize tasklets */
2855         init_giveback_urb_bh(&hcd->high_prio_bh);
2856         init_giveback_urb_bh(&hcd->low_prio_bh);
2857
2858         /* enable irqs just before we start the controller,
2859          * if the BIOS provides legacy PCI irqs.
2860          */
2861         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2862                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2863                 if (retval)
2864                         goto err_request_irq;
2865         }
2866
2867         hcd->state = HC_STATE_RUNNING;
2868         retval = hcd->driver->start(hcd);
2869         if (retval < 0) {
2870                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2871                 goto err_hcd_driver_start;
2872         }
2873
2874         /* starting here, usbcore will pay attention to this root hub */
2875         retval = register_root_hub(hcd);
2876         if (retval != 0)
2877                 goto err_register_root_hub;
2878
2879         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2880         if (retval < 0) {
2881                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2882                        retval);
2883                 goto error_create_attr_group;
2884         }
2885         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2886                 usb_hcd_poll_rh_status(hcd);
2887
2888         return retval;
2889
2890 error_create_attr_group:
2891         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2892         if (HC_IS_RUNNING(hcd->state))
2893                 hcd->state = HC_STATE_QUIESCING;
2894         spin_lock_irq(&hcd_root_hub_lock);
2895         hcd->rh_registered = 0;
2896         spin_unlock_irq(&hcd_root_hub_lock);
2897
2898 #ifdef CONFIG_PM
2899         cancel_work_sync(&hcd->wakeup_work);
2900 #endif
2901         mutex_lock(&usb_bus_idr_lock);
2902         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2903         mutex_unlock(&usb_bus_idr_lock);
2904 err_register_root_hub:
2905         hcd->rh_pollable = 0;
2906         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2907         del_timer_sync(&hcd->rh_timer);
2908         hcd->driver->stop(hcd);
2909         hcd->state = HC_STATE_HALT;
2910         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2911         del_timer_sync(&hcd->rh_timer);
2912 err_hcd_driver_start:
2913         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2914                 free_irq(irqnum, hcd);
2915 err_request_irq:
2916 err_hcd_driver_setup:
2917 err_set_rh_speed:
2918         usb_put_invalidate_rhdev(hcd);
2919 err_allocate_root_hub:
2920         usb_deregister_bus(&hcd->self);
2921 err_register_bus:
2922         hcd_buffer_destroy(hcd);
2923 err_create_buf:
2924         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2925                 phy_power_off(hcd->phy);
2926                 phy_exit(hcd->phy);
2927                 phy_put(hcd->phy);
2928                 hcd->phy = NULL;
2929         }
2930 err_phy:
2931         if (hcd->remove_phy && hcd->usb_phy) {
2932                 usb_phy_shutdown(hcd->usb_phy);
2933                 usb_put_phy(hcd->usb_phy);
2934                 hcd->usb_phy = NULL;
2935         }
2936         return retval;
2937 }
2938 EXPORT_SYMBOL_GPL(usb_add_hcd);
2939
2940 /**
2941  * usb_remove_hcd - shutdown processing for generic HCDs
2942  * @hcd: the usb_hcd structure to remove
2943  * Context: !in_interrupt()
2944  *
2945  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2946  * invoking the HCD's stop() method.
2947  */
2948 void usb_remove_hcd(struct usb_hcd *hcd)
2949 {
2950         struct usb_device *rhdev = hcd->self.root_hub;
2951
2952         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2953
2954         usb_get_dev(rhdev);
2955         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2956
2957         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2958         if (HC_IS_RUNNING (hcd->state))
2959                 hcd->state = HC_STATE_QUIESCING;
2960
2961         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2962         spin_lock_irq (&hcd_root_hub_lock);
2963         hcd->rh_registered = 0;
2964         spin_unlock_irq (&hcd_root_hub_lock);
2965
2966 #ifdef CONFIG_PM
2967         cancel_work_sync(&hcd->wakeup_work);
2968 #endif
2969
2970         mutex_lock(&usb_bus_idr_lock);
2971         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2972         mutex_unlock(&usb_bus_idr_lock);
2973
2974         /*
2975          * tasklet_kill() isn't needed here because:
2976          * - driver's disconnect() called from usb_disconnect() should
2977          *   make sure its URBs are completed during the disconnect()
2978          *   callback
2979          *
2980          * - it is too late to run complete() here since driver may have
2981          *   been removed already now
2982          */
2983
2984         /* Prevent any more root-hub status calls from the timer.
2985          * The HCD might still restart the timer (if a port status change
2986          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2987          * the hub_status_data() callback.
2988          */
2989         hcd->rh_pollable = 0;
2990         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2991         del_timer_sync(&hcd->rh_timer);
2992
2993         hcd->driver->stop(hcd);
2994         hcd->state = HC_STATE_HALT;
2995
2996         /* In case the HCD restarted the timer, stop it again. */
2997         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2998         del_timer_sync(&hcd->rh_timer);
2999
3000         if (usb_hcd_is_primary_hcd(hcd)) {
3001                 if (hcd->irq > 0)
3002                         free_irq(hcd->irq, hcd);
3003         }
3004
3005         usb_deregister_bus(&hcd->self);
3006         hcd_buffer_destroy(hcd);
3007
3008         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3009                 phy_power_off(hcd->phy);
3010                 phy_exit(hcd->phy);
3011                 phy_put(hcd->phy);
3012                 hcd->phy = NULL;
3013         }
3014         if (hcd->remove_phy && hcd->usb_phy) {
3015                 usb_phy_shutdown(hcd->usb_phy);
3016                 usb_put_phy(hcd->usb_phy);
3017                 hcd->usb_phy = NULL;
3018         }
3019
3020         usb_put_invalidate_rhdev(hcd);
3021 }
3022 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3023
3024 void
3025 usb_hcd_platform_shutdown(struct platform_device *dev)
3026 {
3027         struct usb_hcd *hcd = platform_get_drvdata(dev);
3028
3029         if (hcd->driver->shutdown)
3030                 hcd->driver->shutdown(hcd);
3031 }
3032 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3033
3034 /*-------------------------------------------------------------------------*/
3035
3036 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3037
3038 const struct usb_mon_operations *mon_ops;
3039
3040 /*
3041  * The registration is unlocked.
3042  * We do it this way because we do not want to lock in hot paths.
3043  *
3044  * Notice that the code is minimally error-proof. Because usbmon needs
3045  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3046  */
3047
3048 int usb_mon_register(const struct usb_mon_operations *ops)
3049 {
3050
3051         if (mon_ops)
3052                 return -EBUSY;
3053
3054         mon_ops = ops;
3055         mb();
3056         return 0;
3057 }
3058 EXPORT_SYMBOL_GPL (usb_mon_register);
3059
3060 void usb_mon_deregister (void)
3061 {
3062
3063         if (mon_ops == NULL) {
3064                 printk(KERN_ERR "USB: monitor was not registered\n");
3065                 return;
3066         }
3067         mon_ops = NULL;
3068         mb();
3069 }
3070 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3071
3072 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */