regulator: qcom_rpm: Don't update vreg->uV/mV if rpm_reg_write fails
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
64                       u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(xhci, &xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (!ret) {
117                 xhci->xhc_state |= XHCI_STATE_HALTED;
118                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119         } else
120                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121                                 XHCI_MAX_HALT_USEC);
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(xhci, &xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
151         return ret;
152 }
153
154 /*
155  * Reset a halted HC.
156  *
157  * This resets pipelines, timers, counters, state machines, etc.
158  * Transactions will be terminated immediately, and operational registers
159  * will be set to their defaults.
160  */
161 int xhci_reset(struct xhci_hcd *xhci)
162 {
163         u32 command;
164         u32 state;
165         int ret, i;
166
167         state = readl(&xhci->op_regs->status);
168         if ((state & STS_HALT) == 0) {
169                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170                 return 0;
171         }
172
173         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174         command = readl(&xhci->op_regs->command);
175         command |= CMD_RESET;
176         writel(command, &xhci->op_regs->command);
177
178         ret = xhci_handshake(xhci, &xhci->op_regs->command,
179                         CMD_RESET, 0, 10 * 1000 * 1000);
180         if (ret)
181                 return ret;
182
183         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
184                          "Wait for controller to be ready for doorbell rings");
185         /*
186          * xHCI cannot write to any doorbells or operational registers other
187          * than status until the "Controller Not Ready" flag is cleared.
188          */
189         ret = xhci_handshake(xhci, &xhci->op_regs->status,
190                         STS_CNR, 0, 10 * 1000 * 1000);
191
192         for (i = 0; i < 2; ++i) {
193                 xhci->bus_state[i].port_c_suspend = 0;
194                 xhci->bus_state[i].suspended_ports = 0;
195                 xhci->bus_state[i].resuming_ports = 0;
196         }
197
198         return ret;
199 }
200
201 #ifdef CONFIG_PCI
202 static int xhci_free_msi(struct xhci_hcd *xhci)
203 {
204         int i;
205
206         if (!xhci->msix_entries)
207                 return -EINVAL;
208
209         for (i = 0; i < xhci->msix_count; i++)
210                 if (xhci->msix_entries[i].vector)
211                         free_irq(xhci->msix_entries[i].vector,
212                                         xhci_to_hcd(xhci));
213         return 0;
214 }
215
216 /*
217  * Set up MSI
218  */
219 static int xhci_setup_msi(struct xhci_hcd *xhci)
220 {
221         int ret;
222         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
223
224         ret = pci_enable_msi(pdev);
225         if (ret) {
226                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
227                                 "failed to allocate MSI entry");
228                 return ret;
229         }
230
231         ret = request_irq(pdev->irq, xhci_msi_irq,
232                                 0, "xhci_hcd", xhci_to_hcd(xhci));
233         if (ret) {
234                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235                                 "disable MSI interrupt");
236                 pci_disable_msi(pdev);
237         }
238
239         return ret;
240 }
241
242 /*
243  * Free IRQs
244  * free all IRQs request
245  */
246 static void xhci_free_irq(struct xhci_hcd *xhci)
247 {
248         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
249         int ret;
250
251         /* return if using legacy interrupt */
252         if (xhci_to_hcd(xhci)->irq > 0)
253                 return;
254
255         ret = xhci_free_msi(xhci);
256         if (!ret)
257                 return;
258         if (pdev->irq > 0)
259                 free_irq(pdev->irq, xhci_to_hcd(xhci));
260
261         return;
262 }
263
264 /*
265  * Set up MSI-X
266  */
267 static int xhci_setup_msix(struct xhci_hcd *xhci)
268 {
269         int i, ret = 0;
270         struct usb_hcd *hcd = xhci_to_hcd(xhci);
271         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
272
273         /*
274          * calculate number of msi-x vectors supported.
275          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
276          *   with max number of interrupters based on the xhci HCSPARAMS1.
277          * - num_online_cpus: maximum msi-x vectors per CPUs core.
278          *   Add additional 1 vector to ensure always available interrupt.
279          */
280         xhci->msix_count = min(num_online_cpus() + 1,
281                                 HCS_MAX_INTRS(xhci->hcs_params1));
282
283         xhci->msix_entries =
284                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
285                                 GFP_KERNEL);
286         if (!xhci->msix_entries) {
287                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
288                 return -ENOMEM;
289         }
290
291         for (i = 0; i < xhci->msix_count; i++) {
292                 xhci->msix_entries[i].entry = i;
293                 xhci->msix_entries[i].vector = 0;
294         }
295
296         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
297         if (ret) {
298                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
299                                 "Failed to enable MSI-X");
300                 goto free_entries;
301         }
302
303         for (i = 0; i < xhci->msix_count; i++) {
304                 ret = request_irq(xhci->msix_entries[i].vector,
305                                 xhci_msi_irq,
306                                 0, "xhci_hcd", xhci_to_hcd(xhci));
307                 if (ret)
308                         goto disable_msix;
309         }
310
311         hcd->msix_enabled = 1;
312         return ret;
313
314 disable_msix:
315         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
316         xhci_free_irq(xhci);
317         pci_disable_msix(pdev);
318 free_entries:
319         kfree(xhci->msix_entries);
320         xhci->msix_entries = NULL;
321         return ret;
322 }
323
324 /* Free any IRQs and disable MSI-X */
325 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
326 {
327         struct usb_hcd *hcd = xhci_to_hcd(xhci);
328         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329
330         if (xhci->quirks & XHCI_PLAT)
331                 return;
332
333         xhci_free_irq(xhci);
334
335         if (xhci->msix_entries) {
336                 pci_disable_msix(pdev);
337                 kfree(xhci->msix_entries);
338                 xhci->msix_entries = NULL;
339         } else {
340                 pci_disable_msi(pdev);
341         }
342
343         hcd->msix_enabled = 0;
344         return;
345 }
346
347 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
348 {
349         int i;
350
351         if (xhci->msix_entries) {
352                 for (i = 0; i < xhci->msix_count; i++)
353                         synchronize_irq(xhci->msix_entries[i].vector);
354         }
355 }
356
357 static int xhci_try_enable_msi(struct usb_hcd *hcd)
358 {
359         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
360         struct pci_dev  *pdev;
361         int ret;
362
363         /* The xhci platform device has set up IRQs through usb_add_hcd. */
364         if (xhci->quirks & XHCI_PLAT)
365                 return 0;
366
367         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
368         /*
369          * Some Fresco Logic host controllers advertise MSI, but fail to
370          * generate interrupts.  Don't even try to enable MSI.
371          */
372         if (xhci->quirks & XHCI_BROKEN_MSI)
373                 goto legacy_irq;
374
375         /* unregister the legacy interrupt */
376         if (hcd->irq)
377                 free_irq(hcd->irq, hcd);
378         hcd->irq = 0;
379
380         ret = xhci_setup_msix(xhci);
381         if (ret)
382                 /* fall back to msi*/
383                 ret = xhci_setup_msi(xhci);
384
385         if (!ret)
386                 /* hcd->irq is 0, we have MSI */
387                 return 0;
388
389         if (!pdev->irq) {
390                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
391                 return -EINVAL;
392         }
393
394  legacy_irq:
395         if (!strlen(hcd->irq_descr))
396                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
397                          hcd->driver->description, hcd->self.busnum);
398
399         /* fall back to legacy interrupt*/
400         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
401                         hcd->irq_descr, hcd);
402         if (ret) {
403                 xhci_err(xhci, "request interrupt %d failed\n",
404                                 pdev->irq);
405                 return ret;
406         }
407         hcd->irq = pdev->irq;
408         return 0;
409 }
410
411 #else
412
413 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
414 {
415         return 0;
416 }
417
418 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
419 {
420 }
421
422 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
423 {
424 }
425
426 #endif
427
428 static void compliance_mode_recovery(unsigned long arg)
429 {
430         struct xhci_hcd *xhci;
431         struct usb_hcd *hcd;
432         u32 temp;
433         int i;
434
435         xhci = (struct xhci_hcd *)arg;
436
437         for (i = 0; i < xhci->num_usb3_ports; i++) {
438                 temp = readl(xhci->usb3_ports[i]);
439                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
440                         /*
441                          * Compliance Mode Detected. Letting USB Core
442                          * handle the Warm Reset
443                          */
444                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
445                                         "Compliance mode detected->port %d",
446                                         i + 1);
447                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
448                                         "Attempting compliance mode recovery");
449                         hcd = xhci->shared_hcd;
450
451                         if (hcd->state == HC_STATE_SUSPENDED)
452                                 usb_hcd_resume_root_hub(hcd);
453
454                         usb_hcd_poll_rh_status(hcd);
455                 }
456         }
457
458         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
459                 mod_timer(&xhci->comp_mode_recovery_timer,
460                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
461 }
462
463 /*
464  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
465  * that causes ports behind that hardware to enter compliance mode sometimes.
466  * The quirk creates a timer that polls every 2 seconds the link state of
467  * each host controller's port and recovers it by issuing a Warm reset
468  * if Compliance mode is detected, otherwise the port will become "dead" (no
469  * device connections or disconnections will be detected anymore). Becasue no
470  * status event is generated when entering compliance mode (per xhci spec),
471  * this quirk is needed on systems that have the failing hardware installed.
472  */
473 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
474 {
475         xhci->port_status_u0 = 0;
476         init_timer(&xhci->comp_mode_recovery_timer);
477
478         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
479         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
480         xhci->comp_mode_recovery_timer.expires = jiffies +
481                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
482
483         set_timer_slack(&xhci->comp_mode_recovery_timer,
484                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
485         add_timer(&xhci->comp_mode_recovery_timer);
486         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
487                         "Compliance mode recovery timer initialized");
488 }
489
490 /*
491  * This function identifies the systems that have installed the SN65LVPE502CP
492  * USB3.0 re-driver and that need the Compliance Mode Quirk.
493  * Systems:
494  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
495  */
496 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
497 {
498         const char *dmi_product_name, *dmi_sys_vendor;
499
500         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
501         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
502         if (!dmi_product_name || !dmi_sys_vendor)
503                 return false;
504
505         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
506                 return false;
507
508         if (strstr(dmi_product_name, "Z420") ||
509                         strstr(dmi_product_name, "Z620") ||
510                         strstr(dmi_product_name, "Z820") ||
511                         strstr(dmi_product_name, "Z1 Workstation"))
512                 return true;
513
514         return false;
515 }
516
517 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
518 {
519         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
520 }
521
522
523 /*
524  * Initialize memory for HCD and xHC (one-time init).
525  *
526  * Program the PAGESIZE register, initialize the device context array, create
527  * device contexts (?), set up a command ring segment (or two?), create event
528  * ring (one for now).
529  */
530 int xhci_init(struct usb_hcd *hcd)
531 {
532         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
533         int retval = 0;
534
535         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
536         spin_lock_init(&xhci->lock);
537         if (xhci->hci_version == 0x95 && link_quirk) {
538                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
539                                 "QUIRK: Not clearing Link TRB chain bits.");
540                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
541         } else {
542                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
543                                 "xHCI doesn't need link TRB QUIRK");
544         }
545         retval = xhci_mem_init(xhci, GFP_KERNEL);
546         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
547
548         /* Initializing Compliance Mode Recovery Data If Needed */
549         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
550                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
551                 compliance_mode_recovery_timer_init(xhci);
552         }
553
554         return retval;
555 }
556
557 /*-------------------------------------------------------------------------*/
558
559
560 static int xhci_run_finished(struct xhci_hcd *xhci)
561 {
562         if (xhci_start(xhci)) {
563                 xhci_halt(xhci);
564                 return -ENODEV;
565         }
566         xhci->shared_hcd->state = HC_STATE_RUNNING;
567         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
568
569         if (xhci->quirks & XHCI_NEC_HOST)
570                 xhci_ring_cmd_db(xhci);
571
572         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
573                         "Finished xhci_run for USB3 roothub");
574         return 0;
575 }
576
577 /*
578  * Start the HC after it was halted.
579  *
580  * This function is called by the USB core when the HC driver is added.
581  * Its opposite is xhci_stop().
582  *
583  * xhci_init() must be called once before this function can be called.
584  * Reset the HC, enable device slot contexts, program DCBAAP, and
585  * set command ring pointer and event ring pointer.
586  *
587  * Setup MSI-X vectors and enable interrupts.
588  */
589 int xhci_run(struct usb_hcd *hcd)
590 {
591         u32 temp;
592         u64 temp_64;
593         int ret;
594         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
595
596         /* Start the xHCI host controller running only after the USB 2.0 roothub
597          * is setup.
598          */
599
600         hcd->uses_new_polling = 1;
601         if (!usb_hcd_is_primary_hcd(hcd))
602                 return xhci_run_finished(xhci);
603
604         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
605
606         ret = xhci_try_enable_msi(hcd);
607         if (ret)
608                 return ret;
609
610         xhci_dbg(xhci, "Command ring memory map follows:\n");
611         xhci_debug_ring(xhci, xhci->cmd_ring);
612         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
613         xhci_dbg_cmd_ptrs(xhci);
614
615         xhci_dbg(xhci, "ERST memory map follows:\n");
616         xhci_dbg_erst(xhci, &xhci->erst);
617         xhci_dbg(xhci, "Event ring:\n");
618         xhci_debug_ring(xhci, xhci->event_ring);
619         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
620         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
621         temp_64 &= ~ERST_PTR_MASK;
622         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
624
625         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
626                         "// Set the interrupt modulation register");
627         temp = readl(&xhci->ir_set->irq_control);
628         temp &= ~ER_IRQ_INTERVAL_MASK;
629         temp |= (u32) 160;
630         writel(temp, &xhci->ir_set->irq_control);
631
632         /* Set the HCD state before we enable the irqs */
633         temp = readl(&xhci->op_regs->command);
634         temp |= (CMD_EIE);
635         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
636                         "// Enable interrupts, cmd = 0x%x.", temp);
637         writel(temp, &xhci->op_regs->command);
638
639         temp = readl(&xhci->ir_set->irq_pending);
640         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
641                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
642                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
643         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
644         xhci_print_ir_set(xhci, 0);
645
646         if (xhci->quirks & XHCI_NEC_HOST) {
647                 struct xhci_command *command;
648                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
649                 if (!command)
650                         return -ENOMEM;
651                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
652                                 TRB_TYPE(TRB_NEC_GET_FW));
653         }
654         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
655                         "Finished xhci_run for USB2 roothub");
656         return 0;
657 }
658 EXPORT_SYMBOL_GPL(xhci_run);
659
660 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
661 {
662         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
663
664         spin_lock_irq(&xhci->lock);
665         xhci_halt(xhci);
666
667         /* The shared_hcd is going to be deallocated shortly (the USB core only
668          * calls this function when allocation fails in usb_add_hcd(), or
669          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
670          */
671         xhci->shared_hcd = NULL;
672         spin_unlock_irq(&xhci->lock);
673 }
674
675 /*
676  * Stop xHCI driver.
677  *
678  * This function is called by the USB core when the HC driver is removed.
679  * Its opposite is xhci_run().
680  *
681  * Disable device contexts, disable IRQs, and quiesce the HC.
682  * Reset the HC, finish any completed transactions, and cleanup memory.
683  */
684 void xhci_stop(struct usb_hcd *hcd)
685 {
686         u32 temp;
687         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
688
689         if (!usb_hcd_is_primary_hcd(hcd)) {
690                 xhci_only_stop_hcd(xhci->shared_hcd);
691                 return;
692         }
693
694         spin_lock_irq(&xhci->lock);
695         /* Make sure the xHC is halted for a USB3 roothub
696          * (xhci_stop() could be called as part of failed init).
697          */
698         xhci_halt(xhci);
699         xhci_reset(xhci);
700         spin_unlock_irq(&xhci->lock);
701
702         xhci_cleanup_msix(xhci);
703
704         /* Deleting Compliance Mode Recovery Timer */
705         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706                         (!(xhci_all_ports_seen_u0(xhci)))) {
707                 del_timer_sync(&xhci->comp_mode_recovery_timer);
708                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709                                 "%s: compliance mode recovery timer deleted",
710                                 __func__);
711         }
712
713         if (xhci->quirks & XHCI_AMD_PLL_FIX)
714                 usb_amd_dev_put();
715
716         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717                         "// Disabling event ring interrupts");
718         temp = readl(&xhci->op_regs->status);
719         writel(temp & ~STS_EINT, &xhci->op_regs->status);
720         temp = readl(&xhci->ir_set->irq_pending);
721         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722         xhci_print_ir_set(xhci, 0);
723
724         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725         xhci_mem_cleanup(xhci);
726         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727                         "xhci_stop completed - status = %x",
728                         readl(&xhci->op_regs->status));
729 }
730
731 /*
732  * Shutdown HC (not bus-specific)
733  *
734  * This is called when the machine is rebooting or halting.  We assume that the
735  * machine will be powered off, and the HC's internal state will be reset.
736  * Don't bother to free memory.
737  *
738  * This will only ever be called with the main usb_hcd (the USB3 roothub).
739  */
740 void xhci_shutdown(struct usb_hcd *hcd)
741 {
742         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
743
744         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
745                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
746
747         spin_lock_irq(&xhci->lock);
748         xhci_halt(xhci);
749         /* Workaround for spurious wakeups at shutdown with HSW */
750         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
751                 xhci_reset(xhci);
752         spin_unlock_irq(&xhci->lock);
753
754         xhci_cleanup_msix(xhci);
755
756         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
757                         "xhci_shutdown completed - status = %x",
758                         readl(&xhci->op_regs->status));
759
760         /* Yet another workaround for spurious wakeups at shutdown with HSW */
761         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
762                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
763 }
764
765 #ifdef CONFIG_PM
766 static void xhci_save_registers(struct xhci_hcd *xhci)
767 {
768         xhci->s3.command = readl(&xhci->op_regs->command);
769         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
770         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
771         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
772         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
773         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
774         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
775         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
776         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
777 }
778
779 static void xhci_restore_registers(struct xhci_hcd *xhci)
780 {
781         writel(xhci->s3.command, &xhci->op_regs->command);
782         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
783         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
784         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
785         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
786         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
787         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
788         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
789         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
790 }
791
792 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
793 {
794         u64     val_64;
795
796         /* step 2: initialize command ring buffer */
797         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
798         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
799                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
800                                       xhci->cmd_ring->dequeue) &
801                  (u64) ~CMD_RING_RSVD_BITS) |
802                 xhci->cmd_ring->cycle_state;
803         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
804                         "// Setting command ring address to 0x%llx",
805                         (long unsigned long) val_64);
806         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
807 }
808
809 /*
810  * The whole command ring must be cleared to zero when we suspend the host.
811  *
812  * The host doesn't save the command ring pointer in the suspend well, so we
813  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
814  * aligned, because of the reserved bits in the command ring dequeue pointer
815  * register.  Therefore, we can't just set the dequeue pointer back in the
816  * middle of the ring (TRBs are 16-byte aligned).
817  */
818 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
819 {
820         struct xhci_ring *ring;
821         struct xhci_segment *seg;
822
823         ring = xhci->cmd_ring;
824         seg = ring->deq_seg;
825         do {
826                 memset(seg->trbs, 0,
827                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
828                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
829                         cpu_to_le32(~TRB_CYCLE);
830                 seg = seg->next;
831         } while (seg != ring->deq_seg);
832
833         /* Reset the software enqueue and dequeue pointers */
834         ring->deq_seg = ring->first_seg;
835         ring->dequeue = ring->first_seg->trbs;
836         ring->enq_seg = ring->deq_seg;
837         ring->enqueue = ring->dequeue;
838
839         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
840         /*
841          * Ring is now zeroed, so the HW should look for change of ownership
842          * when the cycle bit is set to 1.
843          */
844         ring->cycle_state = 1;
845
846         /*
847          * Reset the hardware dequeue pointer.
848          * Yes, this will need to be re-written after resume, but we're paranoid
849          * and want to make sure the hardware doesn't access bogus memory
850          * because, say, the BIOS or an SMI started the host without changing
851          * the command ring pointers.
852          */
853         xhci_set_cmd_ring_deq(xhci);
854 }
855
856 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
857 {
858         int port_index;
859         __le32 __iomem **port_array;
860         unsigned long flags;
861         u32 t1, t2;
862
863         spin_lock_irqsave(&xhci->lock, flags);
864
865         /* disble usb3 ports Wake bits*/
866         port_index = xhci->num_usb3_ports;
867         port_array = xhci->usb3_ports;
868         while (port_index--) {
869                 t1 = readl(port_array[port_index]);
870                 t1 = xhci_port_state_to_neutral(t1);
871                 t2 = t1 & ~PORT_WAKE_BITS;
872                 if (t1 != t2)
873                         writel(t2, port_array[port_index]);
874         }
875
876         /* disble usb2 ports Wake bits*/
877         port_index = xhci->num_usb2_ports;
878         port_array = xhci->usb2_ports;
879         while (port_index--) {
880                 t1 = readl(port_array[port_index]);
881                 t1 = xhci_port_state_to_neutral(t1);
882                 t2 = t1 & ~PORT_WAKE_BITS;
883                 if (t1 != t2)
884                         writel(t2, port_array[port_index]);
885         }
886
887         spin_unlock_irqrestore(&xhci->lock, flags);
888 }
889
890 /*
891  * Stop HC (not bus-specific)
892  *
893  * This is called when the machine transition into S3/S4 mode.
894  *
895  */
896 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
897 {
898         int                     rc = 0;
899         unsigned int            delay = XHCI_MAX_HALT_USEC;
900         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
901         u32                     command;
902
903         if (hcd->state != HC_STATE_SUSPENDED ||
904                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
905                 return -EINVAL;
906
907         /* Clear root port wake on bits if wakeup not allowed. */
908         if (!do_wakeup)
909                 xhci_disable_port_wake_on_bits(xhci);
910
911         /* Don't poll the roothubs on bus suspend. */
912         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
913         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
914         del_timer_sync(&hcd->rh_timer);
915         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
916         del_timer_sync(&xhci->shared_hcd->rh_timer);
917
918         spin_lock_irq(&xhci->lock);
919         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
920         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
921         /* step 1: stop endpoint */
922         /* skipped assuming that port suspend has done */
923
924         /* step 2: clear Run/Stop bit */
925         command = readl(&xhci->op_regs->command);
926         command &= ~CMD_RUN;
927         writel(command, &xhci->op_regs->command);
928
929         /* Some chips from Fresco Logic need an extraordinary delay */
930         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
931
932         if (xhci_handshake(xhci, &xhci->op_regs->status,
933                       STS_HALT, STS_HALT, delay)) {
934                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
935                 spin_unlock_irq(&xhci->lock);
936                 return -ETIMEDOUT;
937         }
938         xhci_clear_command_ring(xhci);
939
940         /* step 3: save registers */
941         xhci_save_registers(xhci);
942
943         /* step 4: set CSS flag */
944         command = readl(&xhci->op_regs->command);
945         command |= CMD_CSS;
946         writel(command, &xhci->op_regs->command);
947         if (xhci_handshake(xhci, &xhci->op_regs->status,
948                                 STS_SAVE, 0, 10 * 1000)) {
949                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
950                 spin_unlock_irq(&xhci->lock);
951                 return -ETIMEDOUT;
952         }
953         spin_unlock_irq(&xhci->lock);
954
955         /*
956          * Deleting Compliance Mode Recovery Timer because the xHCI Host
957          * is about to be suspended.
958          */
959         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
960                         (!(xhci_all_ports_seen_u0(xhci)))) {
961                 del_timer_sync(&xhci->comp_mode_recovery_timer);
962                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
963                                 "%s: compliance mode recovery timer deleted",
964                                 __func__);
965         }
966
967         /* step 5: remove core well power */
968         /* synchronize irq when using MSI-X */
969         xhci_msix_sync_irqs(xhci);
970
971         return rc;
972 }
973 EXPORT_SYMBOL_GPL(xhci_suspend);
974
975 /*
976  * start xHC (not bus-specific)
977  *
978  * This is called when the machine transition from S3/S4 mode.
979  *
980  */
981 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
982 {
983         u32                     command, temp = 0, status;
984         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
985         struct usb_hcd          *secondary_hcd;
986         int                     retval = 0;
987         bool                    comp_timer_running = false;
988
989         /* Wait a bit if either of the roothubs need to settle from the
990          * transition into bus suspend.
991          */
992         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
993                         time_before(jiffies,
994                                 xhci->bus_state[1].next_statechange))
995                 msleep(100);
996
997         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
998         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
999
1000         spin_lock_irq(&xhci->lock);
1001         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1002                 hibernated = true;
1003
1004         if (!hibernated) {
1005                 /* step 1: restore register */
1006                 xhci_restore_registers(xhci);
1007                 /* step 2: initialize command ring buffer */
1008                 xhci_set_cmd_ring_deq(xhci);
1009                 /* step 3: restore state and start state*/
1010                 /* step 3: set CRS flag */
1011                 command = readl(&xhci->op_regs->command);
1012                 command |= CMD_CRS;
1013                 writel(command, &xhci->op_regs->command);
1014                 if (xhci_handshake(xhci, &xhci->op_regs->status,
1015                               STS_RESTORE, 0, 10 * 1000)) {
1016                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1017                         spin_unlock_irq(&xhci->lock);
1018                         return -ETIMEDOUT;
1019                 }
1020                 temp = readl(&xhci->op_regs->status);
1021         }
1022
1023         /* If restore operation fails, re-initialize the HC during resume */
1024         if ((temp & STS_SRE) || hibernated) {
1025
1026                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1027                                 !(xhci_all_ports_seen_u0(xhci))) {
1028                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1029                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1030                                 "Compliance Mode Recovery Timer deleted!");
1031                 }
1032
1033                 /* Let the USB core know _both_ roothubs lost power. */
1034                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1035                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1036
1037                 xhci_dbg(xhci, "Stop HCD\n");
1038                 xhci_halt(xhci);
1039                 xhci_reset(xhci);
1040                 spin_unlock_irq(&xhci->lock);
1041                 xhci_cleanup_msix(xhci);
1042
1043                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1044                 temp = readl(&xhci->op_regs->status);
1045                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1046                 temp = readl(&xhci->ir_set->irq_pending);
1047                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1048                 xhci_print_ir_set(xhci, 0);
1049
1050                 xhci_dbg(xhci, "cleaning up memory\n");
1051                 xhci_mem_cleanup(xhci);
1052                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1053                             readl(&xhci->op_regs->status));
1054
1055                 /* USB core calls the PCI reinit and start functions twice:
1056                  * first with the primary HCD, and then with the secondary HCD.
1057                  * If we don't do the same, the host will never be started.
1058                  */
1059                 if (!usb_hcd_is_primary_hcd(hcd))
1060                         secondary_hcd = hcd;
1061                 else
1062                         secondary_hcd = xhci->shared_hcd;
1063
1064                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1065                 retval = xhci_init(hcd->primary_hcd);
1066                 if (retval)
1067                         return retval;
1068                 comp_timer_running = true;
1069
1070                 xhci_dbg(xhci, "Start the primary HCD\n");
1071                 retval = xhci_run(hcd->primary_hcd);
1072                 if (!retval) {
1073                         xhci_dbg(xhci, "Start the secondary HCD\n");
1074                         retval = xhci_run(secondary_hcd);
1075                 }
1076                 hcd->state = HC_STATE_SUSPENDED;
1077                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1078                 goto done;
1079         }
1080
1081         /* step 4: set Run/Stop bit */
1082         command = readl(&xhci->op_regs->command);
1083         command |= CMD_RUN;
1084         writel(command, &xhci->op_regs->command);
1085         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1086                   0, 250 * 1000);
1087
1088         /* step 5: walk topology and initialize portsc,
1089          * portpmsc and portli
1090          */
1091         /* this is done in bus_resume */
1092
1093         /* step 6: restart each of the previously
1094          * Running endpoints by ringing their doorbells
1095          */
1096
1097         spin_unlock_irq(&xhci->lock);
1098
1099  done:
1100         if (retval == 0) {
1101                 /* Resume root hubs only when have pending events. */
1102                 status = readl(&xhci->op_regs->status);
1103                 if (status & STS_EINT) {
1104                         usb_hcd_resume_root_hub(hcd);
1105                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1106                 }
1107         }
1108
1109         /*
1110          * If system is subject to the Quirk, Compliance Mode Timer needs to
1111          * be re-initialized Always after a system resume. Ports are subject
1112          * to suffer the Compliance Mode issue again. It doesn't matter if
1113          * ports have entered previously to U0 before system's suspension.
1114          */
1115         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1116                 compliance_mode_recovery_timer_init(xhci);
1117
1118         /* Re-enable port polling. */
1119         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1120         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1121         usb_hcd_poll_rh_status(hcd);
1122         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1123         usb_hcd_poll_rh_status(xhci->shared_hcd);
1124
1125         return retval;
1126 }
1127 EXPORT_SYMBOL_GPL(xhci_resume);
1128 #endif  /* CONFIG_PM */
1129
1130 /*-------------------------------------------------------------------------*/
1131
1132 /**
1133  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1134  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1135  * value to right shift 1 for the bitmask.
1136  *
1137  * Index  = (epnum * 2) + direction - 1,
1138  * where direction = 0 for OUT, 1 for IN.
1139  * For control endpoints, the IN index is used (OUT index is unused), so
1140  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1141  */
1142 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1143 {
1144         unsigned int index;
1145         if (usb_endpoint_xfer_control(desc))
1146                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1147         else
1148                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1149                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1150         return index;
1151 }
1152
1153 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1154  * address from the XHCI endpoint index.
1155  */
1156 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1157 {
1158         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1159         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1160         return direction | number;
1161 }
1162
1163 /* Find the flag for this endpoint (for use in the control context).  Use the
1164  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1165  * bit 1, etc.
1166  */
1167 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1168 {
1169         return 1 << (xhci_get_endpoint_index(desc) + 1);
1170 }
1171
1172 /* Find the flag for this endpoint (for use in the control context).  Use the
1173  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1174  * bit 1, etc.
1175  */
1176 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1177 {
1178         return 1 << (ep_index + 1);
1179 }
1180
1181 /* Compute the last valid endpoint context index.  Basically, this is the
1182  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1183  * we find the most significant bit set in the added contexts flags.
1184  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1185  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1186  */
1187 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1188 {
1189         return fls(added_ctxs) - 1;
1190 }
1191
1192 /* Returns 1 if the arguments are OK;
1193  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1194  */
1195 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1196                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1197                 const char *func) {
1198         struct xhci_hcd *xhci;
1199         struct xhci_virt_device *virt_dev;
1200
1201         if (!hcd || (check_ep && !ep) || !udev) {
1202                 pr_debug("xHCI %s called with invalid args\n", func);
1203                 return -EINVAL;
1204         }
1205         if (!udev->parent) {
1206                 pr_debug("xHCI %s called for root hub\n", func);
1207                 return 0;
1208         }
1209
1210         xhci = hcd_to_xhci(hcd);
1211         if (check_virt_dev) {
1212                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1213                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1214                                         func);
1215                         return -EINVAL;
1216                 }
1217
1218                 virt_dev = xhci->devs[udev->slot_id];
1219                 if (virt_dev->udev != udev) {
1220                         xhci_dbg(xhci, "xHCI %s called with udev and "
1221                                           "virt_dev does not match\n", func);
1222                         return -EINVAL;
1223                 }
1224         }
1225
1226         if (xhci->xhc_state & XHCI_STATE_HALTED)
1227                 return -ENODEV;
1228
1229         return 1;
1230 }
1231
1232 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1233                 struct usb_device *udev, struct xhci_command *command,
1234                 bool ctx_change, bool must_succeed);
1235
1236 /*
1237  * Full speed devices may have a max packet size greater than 8 bytes, but the
1238  * USB core doesn't know that until it reads the first 8 bytes of the
1239  * descriptor.  If the usb_device's max packet size changes after that point,
1240  * we need to issue an evaluate context command and wait on it.
1241  */
1242 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1243                 unsigned int ep_index, struct urb *urb)
1244 {
1245         struct xhci_container_ctx *out_ctx;
1246         struct xhci_input_control_ctx *ctrl_ctx;
1247         struct xhci_ep_ctx *ep_ctx;
1248         struct xhci_command *command;
1249         int max_packet_size;
1250         int hw_max_packet_size;
1251         int ret = 0;
1252
1253         out_ctx = xhci->devs[slot_id]->out_ctx;
1254         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1255         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1256         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1257         if (hw_max_packet_size != max_packet_size) {
1258                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1259                                 "Max Packet Size for ep 0 changed.");
1260                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1261                                 "Max packet size in usb_device = %d",
1262                                 max_packet_size);
1263                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1264                                 "Max packet size in xHCI HW = %d",
1265                                 hw_max_packet_size);
1266                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267                                 "Issuing evaluate context command.");
1268
1269                 /* Set up the input context flags for the command */
1270                 /* FIXME: This won't work if a non-default control endpoint
1271                  * changes max packet sizes.
1272                  */
1273
1274                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1275                 if (!command)
1276                         return -ENOMEM;
1277
1278                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1279                 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
1280                 if (!ctrl_ctx) {
1281                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1282                                         __func__);
1283                         ret = -ENOMEM;
1284                         goto command_cleanup;
1285                 }
1286                 /* Set up the modified control endpoint 0 */
1287                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1288                                 xhci->devs[slot_id]->out_ctx, ep_index);
1289
1290                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1291                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1292                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1293
1294                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1295                 ctrl_ctx->drop_flags = 0;
1296
1297                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1298                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1299                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1300                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1301
1302                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1303                                 true, false);
1304
1305                 /* Clean up the input context for later use by bandwidth
1306                  * functions.
1307                  */
1308                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1309 command_cleanup:
1310                 kfree(command->completion);
1311                 kfree(command);
1312         }
1313         return ret;
1314 }
1315
1316 /*
1317  * non-error returns are a promise to giveback() the urb later
1318  * we drop ownership so next owner (or urb unlink) can get it
1319  */
1320 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1321 {
1322         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1323         struct xhci_td *buffer;
1324         unsigned long flags;
1325         int ret = 0;
1326         unsigned int slot_id, ep_index;
1327         struct urb_priv *urb_priv;
1328         int size, i;
1329
1330         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1331                                         true, true, __func__) <= 0)
1332                 return -EINVAL;
1333
1334         slot_id = urb->dev->slot_id;
1335         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1336
1337         if (!HCD_HW_ACCESSIBLE(hcd)) {
1338                 if (!in_interrupt())
1339                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1340                 ret = -ESHUTDOWN;
1341                 goto exit;
1342         }
1343
1344         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1345                 size = urb->number_of_packets;
1346         else
1347                 size = 1;
1348
1349         urb_priv = kzalloc(sizeof(struct urb_priv) +
1350                                   size * sizeof(struct xhci_td *), mem_flags);
1351         if (!urb_priv)
1352                 return -ENOMEM;
1353
1354         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1355         if (!buffer) {
1356                 kfree(urb_priv);
1357                 return -ENOMEM;
1358         }
1359
1360         for (i = 0; i < size; i++) {
1361                 urb_priv->td[i] = buffer;
1362                 buffer++;
1363         }
1364
1365         urb_priv->length = size;
1366         urb_priv->td_cnt = 0;
1367         urb->hcpriv = urb_priv;
1368
1369         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1370                 /* Check to see if the max packet size for the default control
1371                  * endpoint changed during FS device enumeration
1372                  */
1373                 if (urb->dev->speed == USB_SPEED_FULL) {
1374                         ret = xhci_check_maxpacket(xhci, slot_id,
1375                                         ep_index, urb);
1376                         if (ret < 0) {
1377                                 xhci_urb_free_priv(xhci, urb_priv);
1378                                 urb->hcpriv = NULL;
1379                                 return ret;
1380                         }
1381                 }
1382
1383                 /* We have a spinlock and interrupts disabled, so we must pass
1384                  * atomic context to this function, which may allocate memory.
1385                  */
1386                 spin_lock_irqsave(&xhci->lock, flags);
1387                 if (xhci->xhc_state & XHCI_STATE_DYING)
1388                         goto dying;
1389                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1390                                 slot_id, ep_index);
1391                 if (ret)
1392                         goto free_priv;
1393                 spin_unlock_irqrestore(&xhci->lock, flags);
1394         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1395                 spin_lock_irqsave(&xhci->lock, flags);
1396                 if (xhci->xhc_state & XHCI_STATE_DYING)
1397                         goto dying;
1398                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1399                                 EP_GETTING_STREAMS) {
1400                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1401                                         "is transitioning to using streams.\n");
1402                         ret = -EINVAL;
1403                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1404                                 EP_GETTING_NO_STREAMS) {
1405                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1406                                         "is transitioning to "
1407                                         "not having streams.\n");
1408                         ret = -EINVAL;
1409                 } else {
1410                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1411                                         slot_id, ep_index);
1412                 }
1413                 if (ret)
1414                         goto free_priv;
1415                 spin_unlock_irqrestore(&xhci->lock, flags);
1416         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1417                 spin_lock_irqsave(&xhci->lock, flags);
1418                 if (xhci->xhc_state & XHCI_STATE_DYING)
1419                         goto dying;
1420                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1421                                 slot_id, ep_index);
1422                 if (ret)
1423                         goto free_priv;
1424                 spin_unlock_irqrestore(&xhci->lock, flags);
1425         } else {
1426                 spin_lock_irqsave(&xhci->lock, flags);
1427                 if (xhci->xhc_state & XHCI_STATE_DYING)
1428                         goto dying;
1429                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1430                                 slot_id, ep_index);
1431                 if (ret)
1432                         goto free_priv;
1433                 spin_unlock_irqrestore(&xhci->lock, flags);
1434         }
1435 exit:
1436         return ret;
1437 dying:
1438         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1439                         "non-responsive xHCI host.\n",
1440                         urb->ep->desc.bEndpointAddress, urb);
1441         ret = -ESHUTDOWN;
1442 free_priv:
1443         xhci_urb_free_priv(xhci, urb_priv);
1444         urb->hcpriv = NULL;
1445         spin_unlock_irqrestore(&xhci->lock, flags);
1446         return ret;
1447 }
1448
1449 /* Get the right ring for the given URB.
1450  * If the endpoint supports streams, boundary check the URB's stream ID.
1451  * If the endpoint doesn't support streams, return the singular endpoint ring.
1452  */
1453 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1454                 struct urb *urb)
1455 {
1456         unsigned int slot_id;
1457         unsigned int ep_index;
1458         unsigned int stream_id;
1459         struct xhci_virt_ep *ep;
1460
1461         slot_id = urb->dev->slot_id;
1462         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1463         stream_id = urb->stream_id;
1464         ep = &xhci->devs[slot_id]->eps[ep_index];
1465         /* Common case: no streams */
1466         if (!(ep->ep_state & EP_HAS_STREAMS))
1467                 return ep->ring;
1468
1469         if (stream_id == 0) {
1470                 xhci_warn(xhci,
1471                                 "WARN: Slot ID %u, ep index %u has streams, "
1472                                 "but URB has no stream ID.\n",
1473                                 slot_id, ep_index);
1474                 return NULL;
1475         }
1476
1477         if (stream_id < ep->stream_info->num_streams)
1478                 return ep->stream_info->stream_rings[stream_id];
1479
1480         xhci_warn(xhci,
1481                         "WARN: Slot ID %u, ep index %u has "
1482                         "stream IDs 1 to %u allocated, "
1483                         "but stream ID %u is requested.\n",
1484                         slot_id, ep_index,
1485                         ep->stream_info->num_streams - 1,
1486                         stream_id);
1487         return NULL;
1488 }
1489
1490 /*
1491  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1492  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1493  * should pick up where it left off in the TD, unless a Set Transfer Ring
1494  * Dequeue Pointer is issued.
1495  *
1496  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1497  * the ring.  Since the ring is a contiguous structure, they can't be physically
1498  * removed.  Instead, there are two options:
1499  *
1500  *  1) If the HC is in the middle of processing the URB to be canceled, we
1501  *     simply move the ring's dequeue pointer past those TRBs using the Set
1502  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1503  *     when drivers timeout on the last submitted URB and attempt to cancel.
1504  *
1505  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1506  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1507  *     HC will need to invalidate the any TRBs it has cached after the stop
1508  *     endpoint command, as noted in the xHCI 0.95 errata.
1509  *
1510  *  3) The TD may have completed by the time the Stop Endpoint Command
1511  *     completes, so software needs to handle that case too.
1512  *
1513  * This function should protect against the TD enqueueing code ringing the
1514  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1515  * It also needs to account for multiple cancellations on happening at the same
1516  * time for the same endpoint.
1517  *
1518  * Note that this function can be called in any context, or so says
1519  * usb_hcd_unlink_urb()
1520  */
1521 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1522 {
1523         unsigned long flags;
1524         int ret, i;
1525         u32 temp;
1526         struct xhci_hcd *xhci;
1527         struct urb_priv *urb_priv;
1528         struct xhci_td *td;
1529         unsigned int ep_index;
1530         struct xhci_ring *ep_ring;
1531         struct xhci_virt_ep *ep;
1532         struct xhci_command *command;
1533
1534         xhci = hcd_to_xhci(hcd);
1535         spin_lock_irqsave(&xhci->lock, flags);
1536         /* Make sure the URB hasn't completed or been unlinked already */
1537         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1538         if (ret || !urb->hcpriv)
1539                 goto done;
1540         temp = readl(&xhci->op_regs->status);
1541         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1542                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1543                                 "HW died, freeing TD.");
1544                 urb_priv = urb->hcpriv;
1545                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1546                         td = urb_priv->td[i];
1547                         if (!list_empty(&td->td_list))
1548                                 list_del_init(&td->td_list);
1549                         if (!list_empty(&td->cancelled_td_list))
1550                                 list_del_init(&td->cancelled_td_list);
1551                 }
1552
1553                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1554                 spin_unlock_irqrestore(&xhci->lock, flags);
1555                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1556                 xhci_urb_free_priv(xhci, urb_priv);
1557                 return ret;
1558         }
1559         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1560                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1561                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1562                                 "Ep 0x%x: URB %p to be canceled on "
1563                                 "non-responsive xHCI host.",
1564                                 urb->ep->desc.bEndpointAddress, urb);
1565                 /* Let the stop endpoint command watchdog timer (which set this
1566                  * state) finish cleaning up the endpoint TD lists.  We must
1567                  * have caught it in the middle of dropping a lock and giving
1568                  * back an URB.
1569                  */
1570                 goto done;
1571         }
1572
1573         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1574         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1575         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1576         if (!ep_ring) {
1577                 ret = -EINVAL;
1578                 goto done;
1579         }
1580
1581         urb_priv = urb->hcpriv;
1582         i = urb_priv->td_cnt;
1583         if (i < urb_priv->length)
1584                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1585                                 "Cancel URB %p, dev %s, ep 0x%x, "
1586                                 "starting at offset 0x%llx",
1587                                 urb, urb->dev->devpath,
1588                                 urb->ep->desc.bEndpointAddress,
1589                                 (unsigned long long) xhci_trb_virt_to_dma(
1590                                         urb_priv->td[i]->start_seg,
1591                                         urb_priv->td[i]->first_trb));
1592
1593         for (; i < urb_priv->length; i++) {
1594                 td = urb_priv->td[i];
1595                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1596         }
1597
1598         /* Queue a stop endpoint command, but only if this is
1599          * the first cancellation to be handled.
1600          */
1601         if (!(ep->ep_state & EP_HALT_PENDING)) {
1602                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1603                 if (!command) {
1604                         ret = -ENOMEM;
1605                         goto done;
1606                 }
1607                 ep->ep_state |= EP_HALT_PENDING;
1608                 ep->stop_cmds_pending++;
1609                 ep->stop_cmd_timer.expires = jiffies +
1610                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1611                 add_timer(&ep->stop_cmd_timer);
1612                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1613                                          ep_index, 0);
1614                 xhci_ring_cmd_db(xhci);
1615         }
1616 done:
1617         spin_unlock_irqrestore(&xhci->lock, flags);
1618         return ret;
1619 }
1620
1621 /* Drop an endpoint from a new bandwidth configuration for this device.
1622  * Only one call to this function is allowed per endpoint before
1623  * check_bandwidth() or reset_bandwidth() must be called.
1624  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1625  * add the endpoint to the schedule with possibly new parameters denoted by a
1626  * different endpoint descriptor in usb_host_endpoint.
1627  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1628  * not allowed.
1629  *
1630  * The USB core will not allow URBs to be queued to an endpoint that is being
1631  * disabled, so there's no need for mutual exclusion to protect
1632  * the xhci->devs[slot_id] structure.
1633  */
1634 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1635                 struct usb_host_endpoint *ep)
1636 {
1637         struct xhci_hcd *xhci;
1638         struct xhci_container_ctx *in_ctx, *out_ctx;
1639         struct xhci_input_control_ctx *ctrl_ctx;
1640         unsigned int ep_index;
1641         struct xhci_ep_ctx *ep_ctx;
1642         u32 drop_flag;
1643         u32 new_add_flags, new_drop_flags;
1644         int ret;
1645
1646         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1647         if (ret <= 0)
1648                 return ret;
1649         xhci = hcd_to_xhci(hcd);
1650         if (xhci->xhc_state & XHCI_STATE_DYING)
1651                 return -ENODEV;
1652
1653         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1654         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1655         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1656                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1657                                 __func__, drop_flag);
1658                 return 0;
1659         }
1660
1661         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1662         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1663         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1664         if (!ctrl_ctx) {
1665                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1666                                 __func__);
1667                 return 0;
1668         }
1669
1670         ep_index = xhci_get_endpoint_index(&ep->desc);
1671         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1672         /* If the HC already knows the endpoint is disabled,
1673          * or the HCD has noted it is disabled, ignore this request
1674          */
1675         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1676              cpu_to_le32(EP_STATE_DISABLED)) ||
1677             le32_to_cpu(ctrl_ctx->drop_flags) &
1678             xhci_get_endpoint_flag(&ep->desc)) {
1679                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1680                                 __func__, ep);
1681                 return 0;
1682         }
1683
1684         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1685         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1686
1687         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1688         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1689
1690         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1691
1692         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1693                         (unsigned int) ep->desc.bEndpointAddress,
1694                         udev->slot_id,
1695                         (unsigned int) new_drop_flags,
1696                         (unsigned int) new_add_flags);
1697         return 0;
1698 }
1699
1700 /* Add an endpoint to a new possible bandwidth configuration for this device.
1701  * Only one call to this function is allowed per endpoint before
1702  * check_bandwidth() or reset_bandwidth() must be called.
1703  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1704  * add the endpoint to the schedule with possibly new parameters denoted by a
1705  * different endpoint descriptor in usb_host_endpoint.
1706  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1707  * not allowed.
1708  *
1709  * The USB core will not allow URBs to be queued to an endpoint until the
1710  * configuration or alt setting is installed in the device, so there's no need
1711  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1712  */
1713 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1714                 struct usb_host_endpoint *ep)
1715 {
1716         struct xhci_hcd *xhci;
1717         struct xhci_container_ctx *in_ctx, *out_ctx;
1718         unsigned int ep_index;
1719         struct xhci_input_control_ctx *ctrl_ctx;
1720         u32 added_ctxs;
1721         u32 new_add_flags, new_drop_flags;
1722         struct xhci_virt_device *virt_dev;
1723         int ret = 0;
1724
1725         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1726         if (ret <= 0) {
1727                 /* So we won't queue a reset ep command for a root hub */
1728                 ep->hcpriv = NULL;
1729                 return ret;
1730         }
1731         xhci = hcd_to_xhci(hcd);
1732         if (xhci->xhc_state & XHCI_STATE_DYING)
1733                 return -ENODEV;
1734
1735         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1736         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1737                 /* FIXME when we have to issue an evaluate endpoint command to
1738                  * deal with ep0 max packet size changing once we get the
1739                  * descriptors
1740                  */
1741                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1742                                 __func__, added_ctxs);
1743                 return 0;
1744         }
1745
1746         virt_dev = xhci->devs[udev->slot_id];
1747         in_ctx = virt_dev->in_ctx;
1748         out_ctx = virt_dev->out_ctx;
1749         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1750         if (!ctrl_ctx) {
1751                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1752                                 __func__);
1753                 return 0;
1754         }
1755
1756         ep_index = xhci_get_endpoint_index(&ep->desc);
1757         /* If this endpoint is already in use, and the upper layers are trying
1758          * to add it again without dropping it, reject the addition.
1759          */
1760         if (virt_dev->eps[ep_index].ring &&
1761                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1762                                 xhci_get_endpoint_flag(&ep->desc))) {
1763                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1764                                 "without dropping it.\n",
1765                                 (unsigned int) ep->desc.bEndpointAddress);
1766                 return -EINVAL;
1767         }
1768
1769         /* If the HCD has already noted the endpoint is enabled,
1770          * ignore this request.
1771          */
1772         if (le32_to_cpu(ctrl_ctx->add_flags) &
1773             xhci_get_endpoint_flag(&ep->desc)) {
1774                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1775                                 __func__, ep);
1776                 return 0;
1777         }
1778
1779         /*
1780          * Configuration and alternate setting changes must be done in
1781          * process context, not interrupt context (or so documenation
1782          * for usb_set_interface() and usb_set_configuration() claim).
1783          */
1784         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1785                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1786                                 __func__, ep->desc.bEndpointAddress);
1787                 return -ENOMEM;
1788         }
1789
1790         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1791         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1792
1793         /* If xhci_endpoint_disable() was called for this endpoint, but the
1794          * xHC hasn't been notified yet through the check_bandwidth() call,
1795          * this re-adds a new state for the endpoint from the new endpoint
1796          * descriptors.  We must drop and re-add this endpoint, so we leave the
1797          * drop flags alone.
1798          */
1799         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1800
1801         /* Store the usb_device pointer for later use */
1802         ep->hcpriv = udev;
1803
1804         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1805                         (unsigned int) ep->desc.bEndpointAddress,
1806                         udev->slot_id,
1807                         (unsigned int) new_drop_flags,
1808                         (unsigned int) new_add_flags);
1809         return 0;
1810 }
1811
1812 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1813 {
1814         struct xhci_input_control_ctx *ctrl_ctx;
1815         struct xhci_ep_ctx *ep_ctx;
1816         struct xhci_slot_ctx *slot_ctx;
1817         int i;
1818
1819         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1820         if (!ctrl_ctx) {
1821                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1822                                 __func__);
1823                 return;
1824         }
1825
1826         /* When a device's add flag and drop flag are zero, any subsequent
1827          * configure endpoint command will leave that endpoint's state
1828          * untouched.  Make sure we don't leave any old state in the input
1829          * endpoint contexts.
1830          */
1831         ctrl_ctx->drop_flags = 0;
1832         ctrl_ctx->add_flags = 0;
1833         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1834         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1835         /* Endpoint 0 is always valid */
1836         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1837         for (i = 1; i < 31; ++i) {
1838                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1839                 ep_ctx->ep_info = 0;
1840                 ep_ctx->ep_info2 = 0;
1841                 ep_ctx->deq = 0;
1842                 ep_ctx->tx_info = 0;
1843         }
1844 }
1845
1846 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1847                 struct usb_device *udev, u32 *cmd_status)
1848 {
1849         int ret;
1850
1851         switch (*cmd_status) {
1852         case COMP_CMD_ABORT:
1853         case COMP_CMD_STOP:
1854                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1855                 ret = -ETIME;
1856                 break;
1857         case COMP_ENOMEM:
1858                 dev_warn(&udev->dev,
1859                          "Not enough host controller resources for new device state.\n");
1860                 ret = -ENOMEM;
1861                 /* FIXME: can we allocate more resources for the HC? */
1862                 break;
1863         case COMP_BW_ERR:
1864         case COMP_2ND_BW_ERR:
1865                 dev_warn(&udev->dev,
1866                          "Not enough bandwidth for new device state.\n");
1867                 ret = -ENOSPC;
1868                 /* FIXME: can we go back to the old state? */
1869                 break;
1870         case COMP_TRB_ERR:
1871                 /* the HCD set up something wrong */
1872                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1873                                 "add flag = 1, "
1874                                 "and endpoint is not disabled.\n");
1875                 ret = -EINVAL;
1876                 break;
1877         case COMP_DEV_ERR:
1878                 dev_warn(&udev->dev,
1879                          "ERROR: Incompatible device for endpoint configure command.\n");
1880                 ret = -ENODEV;
1881                 break;
1882         case COMP_SUCCESS:
1883                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1884                                 "Successful Endpoint Configure command");
1885                 ret = 0;
1886                 break;
1887         default:
1888                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1889                                 *cmd_status);
1890                 ret = -EINVAL;
1891                 break;
1892         }
1893         return ret;
1894 }
1895
1896 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1897                 struct usb_device *udev, u32 *cmd_status)
1898 {
1899         int ret;
1900         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1901
1902         switch (*cmd_status) {
1903         case COMP_CMD_ABORT:
1904         case COMP_CMD_STOP:
1905                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1906                 ret = -ETIME;
1907                 break;
1908         case COMP_EINVAL:
1909                 dev_warn(&udev->dev,
1910                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1911                 ret = -EINVAL;
1912                 break;
1913         case COMP_EBADSLT:
1914                 dev_warn(&udev->dev,
1915                         "WARN: slot not enabled for evaluate context command.\n");
1916                 ret = -EINVAL;
1917                 break;
1918         case COMP_CTX_STATE:
1919                 dev_warn(&udev->dev,
1920                         "WARN: invalid context state for evaluate context command.\n");
1921                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1922                 ret = -EINVAL;
1923                 break;
1924         case COMP_DEV_ERR:
1925                 dev_warn(&udev->dev,
1926                         "ERROR: Incompatible device for evaluate context command.\n");
1927                 ret = -ENODEV;
1928                 break;
1929         case COMP_MEL_ERR:
1930                 /* Max Exit Latency too large error */
1931                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1932                 ret = -EINVAL;
1933                 break;
1934         case COMP_SUCCESS:
1935                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1936                                 "Successful evaluate context command");
1937                 ret = 0;
1938                 break;
1939         default:
1940                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1941                         *cmd_status);
1942                 ret = -EINVAL;
1943                 break;
1944         }
1945         return ret;
1946 }
1947
1948 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1949                 struct xhci_input_control_ctx *ctrl_ctx)
1950 {
1951         u32 valid_add_flags;
1952         u32 valid_drop_flags;
1953
1954         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1955          * (bit 1).  The default control endpoint is added during the Address
1956          * Device command and is never removed until the slot is disabled.
1957          */
1958         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1959         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1960
1961         /* Use hweight32 to count the number of ones in the add flags, or
1962          * number of endpoints added.  Don't count endpoints that are changed
1963          * (both added and dropped).
1964          */
1965         return hweight32(valid_add_flags) -
1966                 hweight32(valid_add_flags & valid_drop_flags);
1967 }
1968
1969 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1970                 struct xhci_input_control_ctx *ctrl_ctx)
1971 {
1972         u32 valid_add_flags;
1973         u32 valid_drop_flags;
1974
1975         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1976         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1977
1978         return hweight32(valid_drop_flags) -
1979                 hweight32(valid_add_flags & valid_drop_flags);
1980 }
1981
1982 /*
1983  * We need to reserve the new number of endpoints before the configure endpoint
1984  * command completes.  We can't subtract the dropped endpoints from the number
1985  * of active endpoints until the command completes because we can oversubscribe
1986  * the host in this case:
1987  *
1988  *  - the first configure endpoint command drops more endpoints than it adds
1989  *  - a second configure endpoint command that adds more endpoints is queued
1990  *  - the first configure endpoint command fails, so the config is unchanged
1991  *  - the second command may succeed, even though there isn't enough resources
1992  *
1993  * Must be called with xhci->lock held.
1994  */
1995 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1996                 struct xhci_input_control_ctx *ctrl_ctx)
1997 {
1998         u32 added_eps;
1999
2000         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2001         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2002                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2003                                 "Not enough ep ctxs: "
2004                                 "%u active, need to add %u, limit is %u.",
2005                                 xhci->num_active_eps, added_eps,
2006                                 xhci->limit_active_eps);
2007                 return -ENOMEM;
2008         }
2009         xhci->num_active_eps += added_eps;
2010         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2011                         "Adding %u ep ctxs, %u now active.", added_eps,
2012                         xhci->num_active_eps);
2013         return 0;
2014 }
2015
2016 /*
2017  * The configure endpoint was failed by the xHC for some other reason, so we
2018  * need to revert the resources that failed configuration would have used.
2019  *
2020  * Must be called with xhci->lock held.
2021  */
2022 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2023                 struct xhci_input_control_ctx *ctrl_ctx)
2024 {
2025         u32 num_failed_eps;
2026
2027         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2028         xhci->num_active_eps -= num_failed_eps;
2029         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2030                         "Removing %u failed ep ctxs, %u now active.",
2031                         num_failed_eps,
2032                         xhci->num_active_eps);
2033 }
2034
2035 /*
2036  * Now that the command has completed, clean up the active endpoint count by
2037  * subtracting out the endpoints that were dropped (but not changed).
2038  *
2039  * Must be called with xhci->lock held.
2040  */
2041 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2042                 struct xhci_input_control_ctx *ctrl_ctx)
2043 {
2044         u32 num_dropped_eps;
2045
2046         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2047         xhci->num_active_eps -= num_dropped_eps;
2048         if (num_dropped_eps)
2049                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2050                                 "Removing %u dropped ep ctxs, %u now active.",
2051                                 num_dropped_eps,
2052                                 xhci->num_active_eps);
2053 }
2054
2055 static unsigned int xhci_get_block_size(struct usb_device *udev)
2056 {
2057         switch (udev->speed) {
2058         case USB_SPEED_LOW:
2059         case USB_SPEED_FULL:
2060                 return FS_BLOCK;
2061         case USB_SPEED_HIGH:
2062                 return HS_BLOCK;
2063         case USB_SPEED_SUPER:
2064                 return SS_BLOCK;
2065         case USB_SPEED_UNKNOWN:
2066         case USB_SPEED_WIRELESS:
2067         default:
2068                 /* Should never happen */
2069                 return 1;
2070         }
2071 }
2072
2073 static unsigned int
2074 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2075 {
2076         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2077                 return LS_OVERHEAD;
2078         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2079                 return FS_OVERHEAD;
2080         return HS_OVERHEAD;
2081 }
2082
2083 /* If we are changing a LS/FS device under a HS hub,
2084  * make sure (if we are activating a new TT) that the HS bus has enough
2085  * bandwidth for this new TT.
2086  */
2087 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2088                 struct xhci_virt_device *virt_dev,
2089                 int old_active_eps)
2090 {
2091         struct xhci_interval_bw_table *bw_table;
2092         struct xhci_tt_bw_info *tt_info;
2093
2094         /* Find the bandwidth table for the root port this TT is attached to. */
2095         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2096         tt_info = virt_dev->tt_info;
2097         /* If this TT already had active endpoints, the bandwidth for this TT
2098          * has already been added.  Removing all periodic endpoints (and thus
2099          * making the TT enactive) will only decrease the bandwidth used.
2100          */
2101         if (old_active_eps)
2102                 return 0;
2103         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2104                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2105                         return -ENOMEM;
2106                 return 0;
2107         }
2108         /* Not sure why we would have no new active endpoints...
2109          *
2110          * Maybe because of an Evaluate Context change for a hub update or a
2111          * control endpoint 0 max packet size change?
2112          * FIXME: skip the bandwidth calculation in that case.
2113          */
2114         return 0;
2115 }
2116
2117 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2118                 struct xhci_virt_device *virt_dev)
2119 {
2120         unsigned int bw_reserved;
2121
2122         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2123         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2124                 return -ENOMEM;
2125
2126         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2127         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2128                 return -ENOMEM;
2129
2130         return 0;
2131 }
2132
2133 /*
2134  * This algorithm is a very conservative estimate of the worst-case scheduling
2135  * scenario for any one interval.  The hardware dynamically schedules the
2136  * packets, so we can't tell which microframe could be the limiting factor in
2137  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2138  *
2139  * Obviously, we can't solve an NP complete problem to find the minimum worst
2140  * case scenario.  Instead, we come up with an estimate that is no less than
2141  * the worst case bandwidth used for any one microframe, but may be an
2142  * over-estimate.
2143  *
2144  * We walk the requirements for each endpoint by interval, starting with the
2145  * smallest interval, and place packets in the schedule where there is only one
2146  * possible way to schedule packets for that interval.  In order to simplify
2147  * this algorithm, we record the largest max packet size for each interval, and
2148  * assume all packets will be that size.
2149  *
2150  * For interval 0, we obviously must schedule all packets for each interval.
2151  * The bandwidth for interval 0 is just the amount of data to be transmitted
2152  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2153  * the number of packets).
2154  *
2155  * For interval 1, we have two possible microframes to schedule those packets
2156  * in.  For this algorithm, if we can schedule the same number of packets for
2157  * each possible scheduling opportunity (each microframe), we will do so.  The
2158  * remaining number of packets will be saved to be transmitted in the gaps in
2159  * the next interval's scheduling sequence.
2160  *
2161  * As we move those remaining packets to be scheduled with interval 2 packets,
2162  * we have to double the number of remaining packets to transmit.  This is
2163  * because the intervals are actually powers of 2, and we would be transmitting
2164  * the previous interval's packets twice in this interval.  We also have to be
2165  * sure that when we look at the largest max packet size for this interval, we
2166  * also look at the largest max packet size for the remaining packets and take
2167  * the greater of the two.
2168  *
2169  * The algorithm continues to evenly distribute packets in each scheduling
2170  * opportunity, and push the remaining packets out, until we get to the last
2171  * interval.  Then those packets and their associated overhead are just added
2172  * to the bandwidth used.
2173  */
2174 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2175                 struct xhci_virt_device *virt_dev,
2176                 int old_active_eps)
2177 {
2178         unsigned int bw_reserved;
2179         unsigned int max_bandwidth;
2180         unsigned int bw_used;
2181         unsigned int block_size;
2182         struct xhci_interval_bw_table *bw_table;
2183         unsigned int packet_size = 0;
2184         unsigned int overhead = 0;
2185         unsigned int packets_transmitted = 0;
2186         unsigned int packets_remaining = 0;
2187         unsigned int i;
2188
2189         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2190                 return xhci_check_ss_bw(xhci, virt_dev);
2191
2192         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2193                 max_bandwidth = HS_BW_LIMIT;
2194                 /* Convert percent of bus BW reserved to blocks reserved */
2195                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2196         } else {
2197                 max_bandwidth = FS_BW_LIMIT;
2198                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2199         }
2200
2201         bw_table = virt_dev->bw_table;
2202         /* We need to translate the max packet size and max ESIT payloads into
2203          * the units the hardware uses.
2204          */
2205         block_size = xhci_get_block_size(virt_dev->udev);
2206
2207         /* If we are manipulating a LS/FS device under a HS hub, double check
2208          * that the HS bus has enough bandwidth if we are activing a new TT.
2209          */
2210         if (virt_dev->tt_info) {
2211                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2212                                 "Recalculating BW for rootport %u",
2213                                 virt_dev->real_port);
2214                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2215                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2216                                         "newly activated TT.\n");
2217                         return -ENOMEM;
2218                 }
2219                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2220                                 "Recalculating BW for TT slot %u port %u",
2221                                 virt_dev->tt_info->slot_id,
2222                                 virt_dev->tt_info->ttport);
2223         } else {
2224                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2225                                 "Recalculating BW for rootport %u",
2226                                 virt_dev->real_port);
2227         }
2228
2229         /* Add in how much bandwidth will be used for interval zero, or the
2230          * rounded max ESIT payload + number of packets * largest overhead.
2231          */
2232         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2233                 bw_table->interval_bw[0].num_packets *
2234                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2235
2236         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2237                 unsigned int bw_added;
2238                 unsigned int largest_mps;
2239                 unsigned int interval_overhead;
2240
2241                 /*
2242                  * How many packets could we transmit in this interval?
2243                  * If packets didn't fit in the previous interval, we will need
2244                  * to transmit that many packets twice within this interval.
2245                  */
2246                 packets_remaining = 2 * packets_remaining +
2247                         bw_table->interval_bw[i].num_packets;
2248
2249                 /* Find the largest max packet size of this or the previous
2250                  * interval.
2251                  */
2252                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2253                         largest_mps = 0;
2254                 else {
2255                         struct xhci_virt_ep *virt_ep;
2256                         struct list_head *ep_entry;
2257
2258                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2259                         virt_ep = list_entry(ep_entry,
2260                                         struct xhci_virt_ep, bw_endpoint_list);
2261                         /* Convert to blocks, rounding up */
2262                         largest_mps = DIV_ROUND_UP(
2263                                         virt_ep->bw_info.max_packet_size,
2264                                         block_size);
2265                 }
2266                 if (largest_mps > packet_size)
2267                         packet_size = largest_mps;
2268
2269                 /* Use the larger overhead of this or the previous interval. */
2270                 interval_overhead = xhci_get_largest_overhead(
2271                                 &bw_table->interval_bw[i]);
2272                 if (interval_overhead > overhead)
2273                         overhead = interval_overhead;
2274
2275                 /* How many packets can we evenly distribute across
2276                  * (1 << (i + 1)) possible scheduling opportunities?
2277                  */
2278                 packets_transmitted = packets_remaining >> (i + 1);
2279
2280                 /* Add in the bandwidth used for those scheduled packets */
2281                 bw_added = packets_transmitted * (overhead + packet_size);
2282
2283                 /* How many packets do we have remaining to transmit? */
2284                 packets_remaining = packets_remaining % (1 << (i + 1));
2285
2286                 /* What largest max packet size should those packets have? */
2287                 /* If we've transmitted all packets, don't carry over the
2288                  * largest packet size.
2289                  */
2290                 if (packets_remaining == 0) {
2291                         packet_size = 0;
2292                         overhead = 0;
2293                 } else if (packets_transmitted > 0) {
2294                         /* Otherwise if we do have remaining packets, and we've
2295                          * scheduled some packets in this interval, take the
2296                          * largest max packet size from endpoints with this
2297                          * interval.
2298                          */
2299                         packet_size = largest_mps;
2300                         overhead = interval_overhead;
2301                 }
2302                 /* Otherwise carry over packet_size and overhead from the last
2303                  * time we had a remainder.
2304                  */
2305                 bw_used += bw_added;
2306                 if (bw_used > max_bandwidth) {
2307                         xhci_warn(xhci, "Not enough bandwidth. "
2308                                         "Proposed: %u, Max: %u\n",
2309                                 bw_used, max_bandwidth);
2310                         return -ENOMEM;
2311                 }
2312         }
2313         /*
2314          * Ok, we know we have some packets left over after even-handedly
2315          * scheduling interval 15.  We don't know which microframes they will
2316          * fit into, so we over-schedule and say they will be scheduled every
2317          * microframe.
2318          */
2319         if (packets_remaining > 0)
2320                 bw_used += overhead + packet_size;
2321
2322         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2323                 unsigned int port_index = virt_dev->real_port - 1;
2324
2325                 /* OK, we're manipulating a HS device attached to a
2326                  * root port bandwidth domain.  Include the number of active TTs
2327                  * in the bandwidth used.
2328                  */
2329                 bw_used += TT_HS_OVERHEAD *
2330                         xhci->rh_bw[port_index].num_active_tts;
2331         }
2332
2333         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2334                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2335                 "Available: %u " "percent",
2336                 bw_used, max_bandwidth, bw_reserved,
2337                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2338                 max_bandwidth);
2339
2340         bw_used += bw_reserved;
2341         if (bw_used > max_bandwidth) {
2342                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2343                                 bw_used, max_bandwidth);
2344                 return -ENOMEM;
2345         }
2346
2347         bw_table->bw_used = bw_used;
2348         return 0;
2349 }
2350
2351 static bool xhci_is_async_ep(unsigned int ep_type)
2352 {
2353         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2354                                         ep_type != ISOC_IN_EP &&
2355                                         ep_type != INT_IN_EP);
2356 }
2357
2358 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2359 {
2360         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2361 }
2362
2363 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2364 {
2365         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2366
2367         if (ep_bw->ep_interval == 0)
2368                 return SS_OVERHEAD_BURST +
2369                         (ep_bw->mult * ep_bw->num_packets *
2370                                         (SS_OVERHEAD + mps));
2371         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2372                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2373                                 1 << ep_bw->ep_interval);
2374
2375 }
2376
2377 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2378                 struct xhci_bw_info *ep_bw,
2379                 struct xhci_interval_bw_table *bw_table,
2380                 struct usb_device *udev,
2381                 struct xhci_virt_ep *virt_ep,
2382                 struct xhci_tt_bw_info *tt_info)
2383 {
2384         struct xhci_interval_bw *interval_bw;
2385         int normalized_interval;
2386
2387         if (xhci_is_async_ep(ep_bw->type))
2388                 return;
2389
2390         if (udev->speed == USB_SPEED_SUPER) {
2391                 if (xhci_is_sync_in_ep(ep_bw->type))
2392                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2393                                 xhci_get_ss_bw_consumed(ep_bw);
2394                 else
2395                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2396                                 xhci_get_ss_bw_consumed(ep_bw);
2397                 return;
2398         }
2399
2400         /* SuperSpeed endpoints never get added to intervals in the table, so
2401          * this check is only valid for HS/FS/LS devices.
2402          */
2403         if (list_empty(&virt_ep->bw_endpoint_list))
2404                 return;
2405         /* For LS/FS devices, we need to translate the interval expressed in
2406          * microframes to frames.
2407          */
2408         if (udev->speed == USB_SPEED_HIGH)
2409                 normalized_interval = ep_bw->ep_interval;
2410         else
2411                 normalized_interval = ep_bw->ep_interval - 3;
2412
2413         if (normalized_interval == 0)
2414                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2415         interval_bw = &bw_table->interval_bw[normalized_interval];
2416         interval_bw->num_packets -= ep_bw->num_packets;
2417         switch (udev->speed) {
2418         case USB_SPEED_LOW:
2419                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2420                 break;
2421         case USB_SPEED_FULL:
2422                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2423                 break;
2424         case USB_SPEED_HIGH:
2425                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2426                 break;
2427         case USB_SPEED_SUPER:
2428         case USB_SPEED_UNKNOWN:
2429         case USB_SPEED_WIRELESS:
2430                 /* Should never happen because only LS/FS/HS endpoints will get
2431                  * added to the endpoint list.
2432                  */
2433                 return;
2434         }
2435         if (tt_info)
2436                 tt_info->active_eps -= 1;
2437         list_del_init(&virt_ep->bw_endpoint_list);
2438 }
2439
2440 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2441                 struct xhci_bw_info *ep_bw,
2442                 struct xhci_interval_bw_table *bw_table,
2443                 struct usb_device *udev,
2444                 struct xhci_virt_ep *virt_ep,
2445                 struct xhci_tt_bw_info *tt_info)
2446 {
2447         struct xhci_interval_bw *interval_bw;
2448         struct xhci_virt_ep *smaller_ep;
2449         int normalized_interval;
2450
2451         if (xhci_is_async_ep(ep_bw->type))
2452                 return;
2453
2454         if (udev->speed == USB_SPEED_SUPER) {
2455                 if (xhci_is_sync_in_ep(ep_bw->type))
2456                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2457                                 xhci_get_ss_bw_consumed(ep_bw);
2458                 else
2459                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2460                                 xhci_get_ss_bw_consumed(ep_bw);
2461                 return;
2462         }
2463
2464         /* For LS/FS devices, we need to translate the interval expressed in
2465          * microframes to frames.
2466          */
2467         if (udev->speed == USB_SPEED_HIGH)
2468                 normalized_interval = ep_bw->ep_interval;
2469         else
2470                 normalized_interval = ep_bw->ep_interval - 3;
2471
2472         if (normalized_interval == 0)
2473                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2474         interval_bw = &bw_table->interval_bw[normalized_interval];
2475         interval_bw->num_packets += ep_bw->num_packets;
2476         switch (udev->speed) {
2477         case USB_SPEED_LOW:
2478                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2479                 break;
2480         case USB_SPEED_FULL:
2481                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2482                 break;
2483         case USB_SPEED_HIGH:
2484                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2485                 break;
2486         case USB_SPEED_SUPER:
2487         case USB_SPEED_UNKNOWN:
2488         case USB_SPEED_WIRELESS:
2489                 /* Should never happen because only LS/FS/HS endpoints will get
2490                  * added to the endpoint list.
2491                  */
2492                 return;
2493         }
2494
2495         if (tt_info)
2496                 tt_info->active_eps += 1;
2497         /* Insert the endpoint into the list, largest max packet size first. */
2498         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2499                         bw_endpoint_list) {
2500                 if (ep_bw->max_packet_size >=
2501                                 smaller_ep->bw_info.max_packet_size) {
2502                         /* Add the new ep before the smaller endpoint */
2503                         list_add_tail(&virt_ep->bw_endpoint_list,
2504                                         &smaller_ep->bw_endpoint_list);
2505                         return;
2506                 }
2507         }
2508         /* Add the new endpoint at the end of the list. */
2509         list_add_tail(&virt_ep->bw_endpoint_list,
2510                         &interval_bw->endpoints);
2511 }
2512
2513 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2514                 struct xhci_virt_device *virt_dev,
2515                 int old_active_eps)
2516 {
2517         struct xhci_root_port_bw_info *rh_bw_info;
2518         if (!virt_dev->tt_info)
2519                 return;
2520
2521         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2522         if (old_active_eps == 0 &&
2523                                 virt_dev->tt_info->active_eps != 0) {
2524                 rh_bw_info->num_active_tts += 1;
2525                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2526         } else if (old_active_eps != 0 &&
2527                                 virt_dev->tt_info->active_eps == 0) {
2528                 rh_bw_info->num_active_tts -= 1;
2529                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2530         }
2531 }
2532
2533 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2534                 struct xhci_virt_device *virt_dev,
2535                 struct xhci_container_ctx *in_ctx)
2536 {
2537         struct xhci_bw_info ep_bw_info[31];
2538         int i;
2539         struct xhci_input_control_ctx *ctrl_ctx;
2540         int old_active_eps = 0;
2541
2542         if (virt_dev->tt_info)
2543                 old_active_eps = virt_dev->tt_info->active_eps;
2544
2545         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2546         if (!ctrl_ctx) {
2547                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2548                                 __func__);
2549                 return -ENOMEM;
2550         }
2551
2552         for (i = 0; i < 31; i++) {
2553                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2554                         continue;
2555
2556                 /* Make a copy of the BW info in case we need to revert this */
2557                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2558                                 sizeof(ep_bw_info[i]));
2559                 /* Drop the endpoint from the interval table if the endpoint is
2560                  * being dropped or changed.
2561                  */
2562                 if (EP_IS_DROPPED(ctrl_ctx, i))
2563                         xhci_drop_ep_from_interval_table(xhci,
2564                                         &virt_dev->eps[i].bw_info,
2565                                         virt_dev->bw_table,
2566                                         virt_dev->udev,
2567                                         &virt_dev->eps[i],
2568                                         virt_dev->tt_info);
2569         }
2570         /* Overwrite the information stored in the endpoints' bw_info */
2571         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2572         for (i = 0; i < 31; i++) {
2573                 /* Add any changed or added endpoints to the interval table */
2574                 if (EP_IS_ADDED(ctrl_ctx, i))
2575                         xhci_add_ep_to_interval_table(xhci,
2576                                         &virt_dev->eps[i].bw_info,
2577                                         virt_dev->bw_table,
2578                                         virt_dev->udev,
2579                                         &virt_dev->eps[i],
2580                                         virt_dev->tt_info);
2581         }
2582
2583         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2584                 /* Ok, this fits in the bandwidth we have.
2585                  * Update the number of active TTs.
2586                  */
2587                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2588                 return 0;
2589         }
2590
2591         /* We don't have enough bandwidth for this, revert the stored info. */
2592         for (i = 0; i < 31; i++) {
2593                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2594                         continue;
2595
2596                 /* Drop the new copies of any added or changed endpoints from
2597                  * the interval table.
2598                  */
2599                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2600                         xhci_drop_ep_from_interval_table(xhci,
2601                                         &virt_dev->eps[i].bw_info,
2602                                         virt_dev->bw_table,
2603                                         virt_dev->udev,
2604                                         &virt_dev->eps[i],
2605                                         virt_dev->tt_info);
2606                 }
2607                 /* Revert the endpoint back to its old information */
2608                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2609                                 sizeof(ep_bw_info[i]));
2610                 /* Add any changed or dropped endpoints back into the table */
2611                 if (EP_IS_DROPPED(ctrl_ctx, i))
2612                         xhci_add_ep_to_interval_table(xhci,
2613                                         &virt_dev->eps[i].bw_info,
2614                                         virt_dev->bw_table,
2615                                         virt_dev->udev,
2616                                         &virt_dev->eps[i],
2617                                         virt_dev->tt_info);
2618         }
2619         return -ENOMEM;
2620 }
2621
2622
2623 /* Issue a configure endpoint command or evaluate context command
2624  * and wait for it to finish.
2625  */
2626 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2627                 struct usb_device *udev,
2628                 struct xhci_command *command,
2629                 bool ctx_change, bool must_succeed)
2630 {
2631         int ret;
2632         unsigned long flags;
2633         struct xhci_input_control_ctx *ctrl_ctx;
2634         struct xhci_virt_device *virt_dev;
2635
2636         if (!command)
2637                 return -EINVAL;
2638
2639         spin_lock_irqsave(&xhci->lock, flags);
2640         virt_dev = xhci->devs[udev->slot_id];
2641
2642         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2643         if (!ctrl_ctx) {
2644                 spin_unlock_irqrestore(&xhci->lock, flags);
2645                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2646                                 __func__);
2647                 return -ENOMEM;
2648         }
2649
2650         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2651                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2652                 spin_unlock_irqrestore(&xhci->lock, flags);
2653                 xhci_warn(xhci, "Not enough host resources, "
2654                                 "active endpoint contexts = %u\n",
2655                                 xhci->num_active_eps);
2656                 return -ENOMEM;
2657         }
2658         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2659             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2660                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2661                         xhci_free_host_resources(xhci, ctrl_ctx);
2662                 spin_unlock_irqrestore(&xhci->lock, flags);
2663                 xhci_warn(xhci, "Not enough bandwidth\n");
2664                 return -ENOMEM;
2665         }
2666
2667         if (!ctx_change)
2668                 ret = xhci_queue_configure_endpoint(xhci, command,
2669                                 command->in_ctx->dma,
2670                                 udev->slot_id, must_succeed);
2671         else
2672                 ret = xhci_queue_evaluate_context(xhci, command,
2673                                 command->in_ctx->dma,
2674                                 udev->slot_id, must_succeed);
2675         if (ret < 0) {
2676                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2677                         xhci_free_host_resources(xhci, ctrl_ctx);
2678                 spin_unlock_irqrestore(&xhci->lock, flags);
2679                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2680                                 "FIXME allocate a new ring segment");
2681                 return -ENOMEM;
2682         }
2683         xhci_ring_cmd_db(xhci);
2684         spin_unlock_irqrestore(&xhci->lock, flags);
2685
2686         /* Wait for the configure endpoint command to complete */
2687         wait_for_completion(command->completion);
2688
2689         if (!ctx_change)
2690                 ret = xhci_configure_endpoint_result(xhci, udev,
2691                                                      &command->status);
2692         else
2693                 ret = xhci_evaluate_context_result(xhci, udev,
2694                                                    &command->status);
2695
2696         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2697                 spin_lock_irqsave(&xhci->lock, flags);
2698                 /* If the command failed, remove the reserved resources.
2699                  * Otherwise, clean up the estimate to include dropped eps.
2700                  */
2701                 if (ret)
2702                         xhci_free_host_resources(xhci, ctrl_ctx);
2703                 else
2704                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2705                 spin_unlock_irqrestore(&xhci->lock, flags);
2706         }
2707         return ret;
2708 }
2709
2710 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2711         struct xhci_virt_device *vdev, int i)
2712 {
2713         struct xhci_virt_ep *ep = &vdev->eps[i];
2714
2715         if (ep->ep_state & EP_HAS_STREAMS) {
2716                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2717                                 xhci_get_endpoint_address(i));
2718                 xhci_free_stream_info(xhci, ep->stream_info);
2719                 ep->stream_info = NULL;
2720                 ep->ep_state &= ~EP_HAS_STREAMS;
2721         }
2722 }
2723
2724 /* Called after one or more calls to xhci_add_endpoint() or
2725  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2726  * to call xhci_reset_bandwidth().
2727  *
2728  * Since we are in the middle of changing either configuration or
2729  * installing a new alt setting, the USB core won't allow URBs to be
2730  * enqueued for any endpoint on the old config or interface.  Nothing
2731  * else should be touching the xhci->devs[slot_id] structure, so we
2732  * don't need to take the xhci->lock for manipulating that.
2733  */
2734 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2735 {
2736         int i;
2737         int ret = 0;
2738         struct xhci_hcd *xhci;
2739         struct xhci_virt_device *virt_dev;
2740         struct xhci_input_control_ctx *ctrl_ctx;
2741         struct xhci_slot_ctx *slot_ctx;
2742         struct xhci_command *command;
2743
2744         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2745         if (ret <= 0)
2746                 return ret;
2747         xhci = hcd_to_xhci(hcd);
2748         if (xhci->xhc_state & XHCI_STATE_DYING)
2749                 return -ENODEV;
2750
2751         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2752         virt_dev = xhci->devs[udev->slot_id];
2753
2754         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2755         if (!command)
2756                 return -ENOMEM;
2757
2758         command->in_ctx = virt_dev->in_ctx;
2759
2760         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2761         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2762         if (!ctrl_ctx) {
2763                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2764                                 __func__);
2765                 ret = -ENOMEM;
2766                 goto command_cleanup;
2767         }
2768         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2769         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2770         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2771
2772         /* Don't issue the command if there's no endpoints to update. */
2773         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2774             ctrl_ctx->drop_flags == 0) {
2775                 ret = 0;
2776                 goto command_cleanup;
2777         }
2778         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2779         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2780         for (i = 31; i >= 1; i--) {
2781                 __le32 le32 = cpu_to_le32(BIT(i));
2782
2783                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2784                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2785                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2786                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2787                         break;
2788                 }
2789         }
2790         xhci_dbg(xhci, "New Input Control Context:\n");
2791         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2792                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2793
2794         ret = xhci_configure_endpoint(xhci, udev, command,
2795                         false, false);
2796         if (ret)
2797                 /* Callee should call reset_bandwidth() */
2798                 goto command_cleanup;
2799
2800         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2801         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2802                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2803
2804         /* Free any rings that were dropped, but not changed. */
2805         for (i = 1; i < 31; ++i) {
2806                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2807                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2808                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2809                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2810                 }
2811         }
2812         xhci_zero_in_ctx(xhci, virt_dev);
2813         /*
2814          * Install any rings for completely new endpoints or changed endpoints,
2815          * and free or cache any old rings from changed endpoints.
2816          */
2817         for (i = 1; i < 31; ++i) {
2818                 if (!virt_dev->eps[i].new_ring)
2819                         continue;
2820                 /* Only cache or free the old ring if it exists.
2821                  * It may not if this is the first add of an endpoint.
2822                  */
2823                 if (virt_dev->eps[i].ring) {
2824                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2825                 }
2826                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2827                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2828                 virt_dev->eps[i].new_ring = NULL;
2829         }
2830 command_cleanup:
2831         kfree(command->completion);
2832         kfree(command);
2833
2834         return ret;
2835 }
2836
2837 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2838 {
2839         struct xhci_hcd *xhci;
2840         struct xhci_virt_device *virt_dev;
2841         int i, ret;
2842
2843         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2844         if (ret <= 0)
2845                 return;
2846         xhci = hcd_to_xhci(hcd);
2847
2848         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2849         virt_dev = xhci->devs[udev->slot_id];
2850         /* Free any rings allocated for added endpoints */
2851         for (i = 0; i < 31; ++i) {
2852                 if (virt_dev->eps[i].new_ring) {
2853                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2854                         virt_dev->eps[i].new_ring = NULL;
2855                 }
2856         }
2857         xhci_zero_in_ctx(xhci, virt_dev);
2858 }
2859
2860 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2861                 struct xhci_container_ctx *in_ctx,
2862                 struct xhci_container_ctx *out_ctx,
2863                 struct xhci_input_control_ctx *ctrl_ctx,
2864                 u32 add_flags, u32 drop_flags)
2865 {
2866         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2867         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2868         xhci_slot_copy(xhci, in_ctx, out_ctx);
2869         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2870
2871         xhci_dbg(xhci, "Input Context:\n");
2872         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2873 }
2874
2875 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2876                 unsigned int slot_id, unsigned int ep_index,
2877                 struct xhci_dequeue_state *deq_state)
2878 {
2879         struct xhci_input_control_ctx *ctrl_ctx;
2880         struct xhci_container_ctx *in_ctx;
2881         struct xhci_ep_ctx *ep_ctx;
2882         u32 added_ctxs;
2883         dma_addr_t addr;
2884
2885         in_ctx = xhci->devs[slot_id]->in_ctx;
2886         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2887         if (!ctrl_ctx) {
2888                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2889                                 __func__);
2890                 return;
2891         }
2892
2893         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2894                         xhci->devs[slot_id]->out_ctx, ep_index);
2895         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2896         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2897                         deq_state->new_deq_ptr);
2898         if (addr == 0) {
2899                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2900                                 "reset ep command\n");
2901                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2902                                 deq_state->new_deq_seg,
2903                                 deq_state->new_deq_ptr);
2904                 return;
2905         }
2906         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2907
2908         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2909         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2910                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2911                         added_ctxs, added_ctxs);
2912 }
2913
2914 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2915                         unsigned int ep_index, struct xhci_td *td)
2916 {
2917         struct xhci_dequeue_state deq_state;
2918         struct xhci_virt_ep *ep;
2919         struct usb_device *udev = td->urb->dev;
2920
2921         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2922                         "Cleaning up stalled endpoint ring");
2923         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2924         /* We need to move the HW's dequeue pointer past this TD,
2925          * or it will attempt to resend it on the next doorbell ring.
2926          */
2927         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2928                         ep_index, ep->stopped_stream, td, &deq_state);
2929
2930         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2931                 return;
2932
2933         /* HW with the reset endpoint quirk will use the saved dequeue state to
2934          * issue a configure endpoint command later.
2935          */
2936         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2937                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2938                                 "Queueing new dequeue state");
2939                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2940                                 ep_index, ep->stopped_stream, &deq_state);
2941         } else {
2942                 /* Better hope no one uses the input context between now and the
2943                  * reset endpoint completion!
2944                  * XXX: No idea how this hardware will react when stream rings
2945                  * are enabled.
2946                  */
2947                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2948                                 "Setting up input context for "
2949                                 "configure endpoint command");
2950                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2951                                 ep_index, &deq_state);
2952         }
2953 }
2954
2955 /* Called when clearing halted device. The core should have sent the control
2956  * message to clear the device halt condition. The host side of the halt should
2957  * already be cleared with a reset endpoint command issued when the STALL tx
2958  * event was received.
2959  *
2960  * Context: in_interrupt
2961  */
2962
2963 void xhci_endpoint_reset(struct usb_hcd *hcd,
2964                 struct usb_host_endpoint *ep)
2965 {
2966         struct xhci_hcd *xhci;
2967
2968         xhci = hcd_to_xhci(hcd);
2969
2970         /*
2971          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2972          * The Reset Endpoint Command may only be issued to endpoints in the
2973          * Halted state. If software wishes reset the Data Toggle or Sequence
2974          * Number of an endpoint that isn't in the Halted state, then software
2975          * may issue a Configure Endpoint Command with the Drop and Add bits set
2976          * for the target endpoint. that is in the Stopped state.
2977          */
2978
2979         /* For now just print debug to follow the situation */
2980         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2981                  ep->desc.bEndpointAddress);
2982 }
2983
2984 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2985                 struct usb_device *udev, struct usb_host_endpoint *ep,
2986                 unsigned int slot_id)
2987 {
2988         int ret;
2989         unsigned int ep_index;
2990         unsigned int ep_state;
2991
2992         if (!ep)
2993                 return -EINVAL;
2994         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2995         if (ret <= 0)
2996                 return -EINVAL;
2997         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2998                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2999                                 " descriptor for ep 0x%x does not support streams\n",
3000                                 ep->desc.bEndpointAddress);
3001                 return -EINVAL;
3002         }
3003
3004         ep_index = xhci_get_endpoint_index(&ep->desc);
3005         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3006         if (ep_state & EP_HAS_STREAMS ||
3007                         ep_state & EP_GETTING_STREAMS) {
3008                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3009                                 "already has streams set up.\n",
3010                                 ep->desc.bEndpointAddress);
3011                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3012                                 "dynamic stream context array reallocation.\n");
3013                 return -EINVAL;
3014         }
3015         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3016                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3017                                 "endpoint 0x%x; URBs are pending.\n",
3018                                 ep->desc.bEndpointAddress);
3019                 return -EINVAL;
3020         }
3021         return 0;
3022 }
3023
3024 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3025                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3026 {
3027         unsigned int max_streams;
3028
3029         /* The stream context array size must be a power of two */
3030         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3031         /*
3032          * Find out how many primary stream array entries the host controller
3033          * supports.  Later we may use secondary stream arrays (similar to 2nd
3034          * level page entries), but that's an optional feature for xHCI host
3035          * controllers. xHCs must support at least 4 stream IDs.
3036          */
3037         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3038         if (*num_stream_ctxs > max_streams) {
3039                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3040                                 max_streams);
3041                 *num_stream_ctxs = max_streams;
3042                 *num_streams = max_streams;
3043         }
3044 }
3045
3046 /* Returns an error code if one of the endpoint already has streams.
3047  * This does not change any data structures, it only checks and gathers
3048  * information.
3049  */
3050 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3051                 struct usb_device *udev,
3052                 struct usb_host_endpoint **eps, unsigned int num_eps,
3053                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3054 {
3055         unsigned int max_streams;
3056         unsigned int endpoint_flag;
3057         int i;
3058         int ret;
3059
3060         for (i = 0; i < num_eps; i++) {
3061                 ret = xhci_check_streams_endpoint(xhci, udev,
3062                                 eps[i], udev->slot_id);
3063                 if (ret < 0)
3064                         return ret;
3065
3066                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3067                 if (max_streams < (*num_streams - 1)) {
3068                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3069                                         eps[i]->desc.bEndpointAddress,
3070                                         max_streams);
3071                         *num_streams = max_streams+1;
3072                 }
3073
3074                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3075                 if (*changed_ep_bitmask & endpoint_flag)
3076                         return -EINVAL;
3077                 *changed_ep_bitmask |= endpoint_flag;
3078         }
3079         return 0;
3080 }
3081
3082 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3083                 struct usb_device *udev,
3084                 struct usb_host_endpoint **eps, unsigned int num_eps)
3085 {
3086         u32 changed_ep_bitmask = 0;
3087         unsigned int slot_id;
3088         unsigned int ep_index;
3089         unsigned int ep_state;
3090         int i;
3091
3092         slot_id = udev->slot_id;
3093         if (!xhci->devs[slot_id])
3094                 return 0;
3095
3096         for (i = 0; i < num_eps; i++) {
3097                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3098                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3099                 /* Are streams already being freed for the endpoint? */
3100                 if (ep_state & EP_GETTING_NO_STREAMS) {
3101                         xhci_warn(xhci, "WARN Can't disable streams for "
3102                                         "endpoint 0x%x, "
3103                                         "streams are being disabled already\n",
3104                                         eps[i]->desc.bEndpointAddress);
3105                         return 0;
3106                 }
3107                 /* Are there actually any streams to free? */
3108                 if (!(ep_state & EP_HAS_STREAMS) &&
3109                                 !(ep_state & EP_GETTING_STREAMS)) {
3110                         xhci_warn(xhci, "WARN Can't disable streams for "
3111                                         "endpoint 0x%x, "
3112                                         "streams are already disabled!\n",
3113                                         eps[i]->desc.bEndpointAddress);
3114                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3115                                         "with non-streams endpoint\n");
3116                         return 0;
3117                 }
3118                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3119         }
3120         return changed_ep_bitmask;
3121 }
3122
3123 /*
3124  * The USB device drivers use this function (though the HCD interface in USB
3125  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3126  * coordinate mass storage command queueing across multiple endpoints (basically
3127  * a stream ID == a task ID).
3128  *
3129  * Setting up streams involves allocating the same size stream context array
3130  * for each endpoint and issuing a configure endpoint command for all endpoints.
3131  *
3132  * Don't allow the call to succeed if one endpoint only supports one stream
3133  * (which means it doesn't support streams at all).
3134  *
3135  * Drivers may get less stream IDs than they asked for, if the host controller
3136  * hardware or endpoints claim they can't support the number of requested
3137  * stream IDs.
3138  */
3139 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3140                 struct usb_host_endpoint **eps, unsigned int num_eps,
3141                 unsigned int num_streams, gfp_t mem_flags)
3142 {
3143         int i, ret;
3144         struct xhci_hcd *xhci;
3145         struct xhci_virt_device *vdev;
3146         struct xhci_command *config_cmd;
3147         struct xhci_input_control_ctx *ctrl_ctx;
3148         unsigned int ep_index;
3149         unsigned int num_stream_ctxs;
3150         unsigned long flags;
3151         u32 changed_ep_bitmask = 0;
3152
3153         if (!eps)
3154                 return -EINVAL;
3155
3156         /* Add one to the number of streams requested to account for
3157          * stream 0 that is reserved for xHCI usage.
3158          */
3159         num_streams += 1;
3160         xhci = hcd_to_xhci(hcd);
3161         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3162                         num_streams);
3163
3164         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3165         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3166                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3167                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3168                 return -ENOSYS;
3169         }
3170
3171         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3172         if (!config_cmd) {
3173                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3174                 return -ENOMEM;
3175         }
3176         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3177         if (!ctrl_ctx) {
3178                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3179                                 __func__);
3180                 xhci_free_command(xhci, config_cmd);
3181                 return -ENOMEM;
3182         }
3183
3184         /* Check to make sure all endpoints are not already configured for
3185          * streams.  While we're at it, find the maximum number of streams that
3186          * all the endpoints will support and check for duplicate endpoints.
3187          */
3188         spin_lock_irqsave(&xhci->lock, flags);
3189         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3190                         num_eps, &num_streams, &changed_ep_bitmask);
3191         if (ret < 0) {
3192                 xhci_free_command(xhci, config_cmd);
3193                 spin_unlock_irqrestore(&xhci->lock, flags);
3194                 return ret;
3195         }
3196         if (num_streams <= 1) {
3197                 xhci_warn(xhci, "WARN: endpoints can't handle "
3198                                 "more than one stream.\n");
3199                 xhci_free_command(xhci, config_cmd);
3200                 spin_unlock_irqrestore(&xhci->lock, flags);
3201                 return -EINVAL;
3202         }
3203         vdev = xhci->devs[udev->slot_id];
3204         /* Mark each endpoint as being in transition, so
3205          * xhci_urb_enqueue() will reject all URBs.
3206          */
3207         for (i = 0; i < num_eps; i++) {
3208                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3209                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3210         }
3211         spin_unlock_irqrestore(&xhci->lock, flags);
3212
3213         /* Setup internal data structures and allocate HW data structures for
3214          * streams (but don't install the HW structures in the input context
3215          * until we're sure all memory allocation succeeded).
3216          */
3217         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3218         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3219                         num_stream_ctxs, num_streams);
3220
3221         for (i = 0; i < num_eps; i++) {
3222                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3223                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3224                                 num_stream_ctxs,
3225                                 num_streams, mem_flags);
3226                 if (!vdev->eps[ep_index].stream_info)
3227                         goto cleanup;
3228                 /* Set maxPstreams in endpoint context and update deq ptr to
3229                  * point to stream context array. FIXME
3230                  */
3231         }
3232
3233         /* Set up the input context for a configure endpoint command. */
3234         for (i = 0; i < num_eps; i++) {
3235                 struct xhci_ep_ctx *ep_ctx;
3236
3237                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3238                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3239
3240                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3241                                 vdev->out_ctx, ep_index);
3242                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3243                                 vdev->eps[ep_index].stream_info);
3244         }
3245         /* Tell the HW to drop its old copy of the endpoint context info
3246          * and add the updated copy from the input context.
3247          */
3248         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3249                         vdev->out_ctx, ctrl_ctx,
3250                         changed_ep_bitmask, changed_ep_bitmask);
3251
3252         /* Issue and wait for the configure endpoint command */
3253         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3254                         false, false);
3255
3256         /* xHC rejected the configure endpoint command for some reason, so we
3257          * leave the old ring intact and free our internal streams data
3258          * structure.
3259          */
3260         if (ret < 0)
3261                 goto cleanup;
3262
3263         spin_lock_irqsave(&xhci->lock, flags);
3264         for (i = 0; i < num_eps; i++) {
3265                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3266                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3267                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3268                          udev->slot_id, ep_index);
3269                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3270         }
3271         xhci_free_command(xhci, config_cmd);
3272         spin_unlock_irqrestore(&xhci->lock, flags);
3273
3274         /* Subtract 1 for stream 0, which drivers can't use */
3275         return num_streams - 1;
3276
3277 cleanup:
3278         /* If it didn't work, free the streams! */
3279         for (i = 0; i < num_eps; i++) {
3280                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3281                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3282                 vdev->eps[ep_index].stream_info = NULL;
3283                 /* FIXME Unset maxPstreams in endpoint context and
3284                  * update deq ptr to point to normal string ring.
3285                  */
3286                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3287                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3288                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3289         }
3290         xhci_free_command(xhci, config_cmd);
3291         return -ENOMEM;
3292 }
3293
3294 /* Transition the endpoint from using streams to being a "normal" endpoint
3295  * without streams.
3296  *
3297  * Modify the endpoint context state, submit a configure endpoint command,
3298  * and free all endpoint rings for streams if that completes successfully.
3299  */
3300 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3301                 struct usb_host_endpoint **eps, unsigned int num_eps,
3302                 gfp_t mem_flags)
3303 {
3304         int i, ret;
3305         struct xhci_hcd *xhci;
3306         struct xhci_virt_device *vdev;
3307         struct xhci_command *command;
3308         struct xhci_input_control_ctx *ctrl_ctx;
3309         unsigned int ep_index;
3310         unsigned long flags;
3311         u32 changed_ep_bitmask;
3312
3313         xhci = hcd_to_xhci(hcd);
3314         vdev = xhci->devs[udev->slot_id];
3315
3316         /* Set up a configure endpoint command to remove the streams rings */
3317         spin_lock_irqsave(&xhci->lock, flags);
3318         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3319                         udev, eps, num_eps);
3320         if (changed_ep_bitmask == 0) {
3321                 spin_unlock_irqrestore(&xhci->lock, flags);
3322                 return -EINVAL;
3323         }
3324
3325         /* Use the xhci_command structure from the first endpoint.  We may have
3326          * allocated too many, but the driver may call xhci_free_streams() for
3327          * each endpoint it grouped into one call to xhci_alloc_streams().
3328          */
3329         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3330         command = vdev->eps[ep_index].stream_info->free_streams_command;
3331         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3332         if (!ctrl_ctx) {
3333                 spin_unlock_irqrestore(&xhci->lock, flags);
3334                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3335                                 __func__);
3336                 return -EINVAL;
3337         }
3338
3339         for (i = 0; i < num_eps; i++) {
3340                 struct xhci_ep_ctx *ep_ctx;
3341
3342                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3343                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3344                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3345                         EP_GETTING_NO_STREAMS;
3346
3347                 xhci_endpoint_copy(xhci, command->in_ctx,
3348                                 vdev->out_ctx, ep_index);
3349                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3350                                 &vdev->eps[ep_index]);
3351         }
3352         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3353                         vdev->out_ctx, ctrl_ctx,
3354                         changed_ep_bitmask, changed_ep_bitmask);
3355         spin_unlock_irqrestore(&xhci->lock, flags);
3356
3357         /* Issue and wait for the configure endpoint command,
3358          * which must succeed.
3359          */
3360         ret = xhci_configure_endpoint(xhci, udev, command,
3361                         false, true);
3362
3363         /* xHC rejected the configure endpoint command for some reason, so we
3364          * leave the streams rings intact.
3365          */
3366         if (ret < 0)
3367                 return ret;
3368
3369         spin_lock_irqsave(&xhci->lock, flags);
3370         for (i = 0; i < num_eps; i++) {
3371                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3372                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3373                 vdev->eps[ep_index].stream_info = NULL;
3374                 /* FIXME Unset maxPstreams in endpoint context and
3375                  * update deq ptr to point to normal string ring.
3376                  */
3377                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3378                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3379         }
3380         spin_unlock_irqrestore(&xhci->lock, flags);
3381
3382         return 0;
3383 }
3384
3385 /*
3386  * Deletes endpoint resources for endpoints that were active before a Reset
3387  * Device command, or a Disable Slot command.  The Reset Device command leaves
3388  * the control endpoint intact, whereas the Disable Slot command deletes it.
3389  *
3390  * Must be called with xhci->lock held.
3391  */
3392 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3393         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3394 {
3395         int i;
3396         unsigned int num_dropped_eps = 0;
3397         unsigned int drop_flags = 0;
3398
3399         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3400                 if (virt_dev->eps[i].ring) {
3401                         drop_flags |= 1 << i;
3402                         num_dropped_eps++;
3403                 }
3404         }
3405         xhci->num_active_eps -= num_dropped_eps;
3406         if (num_dropped_eps)
3407                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3408                                 "Dropped %u ep ctxs, flags = 0x%x, "
3409                                 "%u now active.",
3410                                 num_dropped_eps, drop_flags,
3411                                 xhci->num_active_eps);
3412 }
3413
3414 /*
3415  * This submits a Reset Device Command, which will set the device state to 0,
3416  * set the device address to 0, and disable all the endpoints except the default
3417  * control endpoint.  The USB core should come back and call
3418  * xhci_address_device(), and then re-set up the configuration.  If this is
3419  * called because of a usb_reset_and_verify_device(), then the old alternate
3420  * settings will be re-installed through the normal bandwidth allocation
3421  * functions.
3422  *
3423  * Wait for the Reset Device command to finish.  Remove all structures
3424  * associated with the endpoints that were disabled.  Clear the input device
3425  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3426  *
3427  * If the virt_dev to be reset does not exist or does not match the udev,
3428  * it means the device is lost, possibly due to the xHC restore error and
3429  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3430  * re-allocate the device.
3431  */
3432 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3433 {
3434         int ret, i;
3435         unsigned long flags;
3436         struct xhci_hcd *xhci;
3437         unsigned int slot_id;
3438         struct xhci_virt_device *virt_dev;
3439         struct xhci_command *reset_device_cmd;
3440         int last_freed_endpoint;
3441         struct xhci_slot_ctx *slot_ctx;
3442         int old_active_eps = 0;
3443
3444         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3445         if (ret <= 0)
3446                 return ret;
3447         xhci = hcd_to_xhci(hcd);
3448         slot_id = udev->slot_id;
3449         virt_dev = xhci->devs[slot_id];
3450         if (!virt_dev) {
3451                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3452                                 "not exist. Re-allocate the device\n", slot_id);
3453                 ret = xhci_alloc_dev(hcd, udev);
3454                 if (ret == 1)
3455                         return 0;
3456                 else
3457                         return -EINVAL;
3458         }
3459
3460         if (virt_dev->udev != udev) {
3461                 /* If the virt_dev and the udev does not match, this virt_dev
3462                  * may belong to another udev.
3463                  * Re-allocate the device.
3464                  */
3465                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3466                                 "not match the udev. Re-allocate the device\n",
3467                                 slot_id);
3468                 ret = xhci_alloc_dev(hcd, udev);
3469                 if (ret == 1)
3470                         return 0;
3471                 else
3472                         return -EINVAL;
3473         }
3474
3475         /* If device is not setup, there is no point in resetting it */
3476         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3477         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3478                                                 SLOT_STATE_DISABLED)
3479                 return 0;
3480
3481         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3482         /* Allocate the command structure that holds the struct completion.
3483          * Assume we're in process context, since the normal device reset
3484          * process has to wait for the device anyway.  Storage devices are
3485          * reset as part of error handling, so use GFP_NOIO instead of
3486          * GFP_KERNEL.
3487          */
3488         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3489         if (!reset_device_cmd) {
3490                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3491                 return -ENOMEM;
3492         }
3493
3494         /* Attempt to submit the Reset Device command to the command ring */
3495         spin_lock_irqsave(&xhci->lock, flags);
3496
3497         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3498         if (ret) {
3499                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3500                 spin_unlock_irqrestore(&xhci->lock, flags);
3501                 goto command_cleanup;
3502         }
3503         xhci_ring_cmd_db(xhci);
3504         spin_unlock_irqrestore(&xhci->lock, flags);
3505
3506         /* Wait for the Reset Device command to finish */
3507         wait_for_completion(reset_device_cmd->completion);
3508
3509         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3510          * unless we tried to reset a slot ID that wasn't enabled,
3511          * or the device wasn't in the addressed or configured state.
3512          */
3513         ret = reset_device_cmd->status;
3514         switch (ret) {
3515         case COMP_CMD_ABORT:
3516         case COMP_CMD_STOP:
3517                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3518                 ret = -ETIME;
3519                 goto command_cleanup;
3520         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3521         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3522                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3523                                 slot_id,
3524                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3525                 xhci_dbg(xhci, "Not freeing device rings.\n");
3526                 /* Don't treat this as an error.  May change my mind later. */
3527                 ret = 0;
3528                 goto command_cleanup;
3529         case COMP_SUCCESS:
3530                 xhci_dbg(xhci, "Successful reset device command.\n");
3531                 break;
3532         default:
3533                 if (xhci_is_vendor_info_code(xhci, ret))
3534                         break;
3535                 xhci_warn(xhci, "Unknown completion code %u for "
3536                                 "reset device command.\n", ret);
3537                 ret = -EINVAL;
3538                 goto command_cleanup;
3539         }
3540
3541         /* Free up host controller endpoint resources */
3542         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3543                 spin_lock_irqsave(&xhci->lock, flags);
3544                 /* Don't delete the default control endpoint resources */
3545                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3546                 spin_unlock_irqrestore(&xhci->lock, flags);
3547         }
3548
3549         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3550         last_freed_endpoint = 1;
3551         for (i = 1; i < 31; ++i) {
3552                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3553
3554                 if (ep->ep_state & EP_HAS_STREAMS) {
3555                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3556                                         xhci_get_endpoint_address(i));
3557                         xhci_free_stream_info(xhci, ep->stream_info);
3558                         ep->stream_info = NULL;
3559                         ep->ep_state &= ~EP_HAS_STREAMS;
3560                 }
3561
3562                 if (ep->ring) {
3563                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3564                         last_freed_endpoint = i;
3565                 }
3566                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3567                         xhci_drop_ep_from_interval_table(xhci,
3568                                         &virt_dev->eps[i].bw_info,
3569                                         virt_dev->bw_table,
3570                                         udev,
3571                                         &virt_dev->eps[i],
3572                                         virt_dev->tt_info);
3573                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3574         }
3575         /* If necessary, update the number of active TTs on this root port */
3576         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3577
3578         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3579         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3580         ret = 0;
3581
3582 command_cleanup:
3583         xhci_free_command(xhci, reset_device_cmd);
3584         return ret;
3585 }
3586
3587 /*
3588  * At this point, the struct usb_device is about to go away, the device has
3589  * disconnected, and all traffic has been stopped and the endpoints have been
3590  * disabled.  Free any HC data structures associated with that device.
3591  */
3592 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3593 {
3594         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3595         struct xhci_virt_device *virt_dev;
3596         unsigned long flags;
3597         u32 state;
3598         int i, ret;
3599         struct xhci_command *command;
3600
3601         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3602         if (!command)
3603                 return;
3604
3605 #ifndef CONFIG_USB_DEFAULT_PERSIST
3606         /*
3607          * We called pm_runtime_get_noresume when the device was attached.
3608          * Decrement the counter here to allow controller to runtime suspend
3609          * if no devices remain.
3610          */
3611         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3612                 pm_runtime_put_noidle(hcd->self.controller);
3613 #endif
3614
3615         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3616         /* If the host is halted due to driver unload, we still need to free the
3617          * device.
3618          */
3619         if (ret <= 0 && ret != -ENODEV) {
3620                 kfree(command);
3621                 return;
3622         }
3623
3624         virt_dev = xhci->devs[udev->slot_id];
3625
3626         /* Stop any wayward timer functions (which may grab the lock) */
3627         for (i = 0; i < 31; ++i) {
3628                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3629                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3630         }
3631
3632         spin_lock_irqsave(&xhci->lock, flags);
3633         /* Don't disable the slot if the host controller is dead. */
3634         state = readl(&xhci->op_regs->status);
3635         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3636                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3637                 xhci_free_virt_device(xhci, udev->slot_id);
3638                 spin_unlock_irqrestore(&xhci->lock, flags);
3639                 kfree(command);
3640                 return;
3641         }
3642
3643         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3644                                     udev->slot_id)) {
3645                 spin_unlock_irqrestore(&xhci->lock, flags);
3646                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3647                 return;
3648         }
3649         xhci_ring_cmd_db(xhci);
3650         spin_unlock_irqrestore(&xhci->lock, flags);
3651
3652         /*
3653          * Event command completion handler will free any data structures
3654          * associated with the slot.  XXX Can free sleep?
3655          */
3656 }
3657
3658 /*
3659  * Checks if we have enough host controller resources for the default control
3660  * endpoint.
3661  *
3662  * Must be called with xhci->lock held.
3663  */
3664 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3665 {
3666         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3667                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3668                                 "Not enough ep ctxs: "
3669                                 "%u active, need to add 1, limit is %u.",
3670                                 xhci->num_active_eps, xhci->limit_active_eps);
3671                 return -ENOMEM;
3672         }
3673         xhci->num_active_eps += 1;
3674         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3675                         "Adding 1 ep ctx, %u now active.",
3676                         xhci->num_active_eps);
3677         return 0;
3678 }
3679
3680
3681 /*
3682  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3683  * timed out, or allocating memory failed.  Returns 1 on success.
3684  */
3685 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3686 {
3687         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3688         unsigned long flags;
3689         int ret;
3690         struct xhci_command *command;
3691
3692         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3693         if (!command)
3694                 return 0;
3695
3696         spin_lock_irqsave(&xhci->lock, flags);
3697         command->completion = &xhci->addr_dev;
3698         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3699         if (ret) {
3700                 spin_unlock_irqrestore(&xhci->lock, flags);
3701                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3702                 kfree(command);
3703                 return 0;
3704         }
3705         xhci_ring_cmd_db(xhci);
3706         spin_unlock_irqrestore(&xhci->lock, flags);
3707
3708         wait_for_completion(command->completion);
3709
3710         if (!xhci->slot_id || command->status != COMP_SUCCESS) {
3711                 xhci_err(xhci, "Error while assigning device slot ID\n");
3712                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3713                                 HCS_MAX_SLOTS(
3714                                         readl(&xhci->cap_regs->hcs_params1)));
3715                 kfree(command);
3716                 return 0;
3717         }
3718
3719         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3720                 spin_lock_irqsave(&xhci->lock, flags);
3721                 ret = xhci_reserve_host_control_ep_resources(xhci);
3722                 if (ret) {
3723                         spin_unlock_irqrestore(&xhci->lock, flags);
3724                         xhci_warn(xhci, "Not enough host resources, "
3725                                         "active endpoint contexts = %u\n",
3726                                         xhci->num_active_eps);
3727                         goto disable_slot;
3728                 }
3729                 spin_unlock_irqrestore(&xhci->lock, flags);
3730         }
3731         /* Use GFP_NOIO, since this function can be called from
3732          * xhci_discover_or_reset_device(), which may be called as part of
3733          * mass storage driver error handling.
3734          */
3735         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3736                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3737                 goto disable_slot;
3738         }
3739         udev->slot_id = xhci->slot_id;
3740
3741 #ifndef CONFIG_USB_DEFAULT_PERSIST
3742         /*
3743          * If resetting upon resume, we can't put the controller into runtime
3744          * suspend if there is a device attached.
3745          */
3746         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3747                 pm_runtime_get_noresume(hcd->self.controller);
3748 #endif
3749
3750
3751         kfree(command);
3752         /* Is this a LS or FS device under a HS hub? */
3753         /* Hub or peripherial? */
3754         return 1;
3755
3756 disable_slot:
3757         /* Disable slot, if we can do it without mem alloc */
3758         spin_lock_irqsave(&xhci->lock, flags);
3759         command->completion = NULL;
3760         command->status = 0;
3761         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3762                                      udev->slot_id))
3763                 xhci_ring_cmd_db(xhci);
3764         spin_unlock_irqrestore(&xhci->lock, flags);
3765         return 0;
3766 }
3767
3768 /*
3769  * Issue an Address Device command and optionally send a corresponding
3770  * SetAddress request to the device.
3771  * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init,
3772  * so we should only issue and wait on one address command at the same time.
3773  */
3774 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3775                              enum xhci_setup_dev setup)
3776 {
3777         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3778         unsigned long flags;
3779         struct xhci_virt_device *virt_dev;
3780         int ret = 0;
3781         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3782         struct xhci_slot_ctx *slot_ctx;
3783         struct xhci_input_control_ctx *ctrl_ctx;
3784         u64 temp_64;
3785         struct xhci_command *command;
3786
3787         if (!udev->slot_id) {
3788                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3789                                 "Bad Slot ID %d", udev->slot_id);
3790                 return -EINVAL;
3791         }
3792
3793         virt_dev = xhci->devs[udev->slot_id];
3794
3795         if (WARN_ON(!virt_dev)) {
3796                 /*
3797                  * In plug/unplug torture test with an NEC controller,
3798                  * a zero-dereference was observed once due to virt_dev = 0.
3799                  * Print useful debug rather than crash if it is observed again!
3800                  */
3801                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3802                         udev->slot_id);
3803                 return -EINVAL;
3804         }
3805
3806         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3807         if (!command)
3808                 return -ENOMEM;
3809
3810         command->in_ctx = virt_dev->in_ctx;
3811         command->completion = &xhci->addr_dev;
3812
3813         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3814         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3815         if (!ctrl_ctx) {
3816                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3817                                 __func__);
3818                 kfree(command);
3819                 return -EINVAL;
3820         }
3821         /*
3822          * If this is the first Set Address since device plug-in or
3823          * virt_device realloaction after a resume with an xHCI power loss,
3824          * then set up the slot context.
3825          */
3826         if (!slot_ctx->dev_info)
3827                 xhci_setup_addressable_virt_dev(xhci, udev);
3828         /* Otherwise, update the control endpoint ring enqueue pointer. */
3829         else
3830                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3831         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3832         ctrl_ctx->drop_flags = 0;
3833
3834         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3835         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3836         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3837                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3838
3839         spin_lock_irqsave(&xhci->lock, flags);
3840         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3841                                         udev->slot_id, setup);
3842         if (ret) {
3843                 spin_unlock_irqrestore(&xhci->lock, flags);
3844                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3845                                 "FIXME: allocate a command ring segment");
3846                 kfree(command);
3847                 return ret;
3848         }
3849         xhci_ring_cmd_db(xhci);
3850         spin_unlock_irqrestore(&xhci->lock, flags);
3851
3852         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3853         wait_for_completion(command->completion);
3854
3855         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3856          * the SetAddress() "recovery interval" required by USB and aborting the
3857          * command on a timeout.
3858          */
3859         switch (command->status) {
3860         case COMP_CMD_ABORT:
3861         case COMP_CMD_STOP:
3862                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3863                 ret = -ETIME;
3864                 break;
3865         case COMP_CTX_STATE:
3866         case COMP_EBADSLT:
3867                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3868                          act, udev->slot_id);
3869                 ret = -EINVAL;
3870                 break;
3871         case COMP_TX_ERR:
3872                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3873                 ret = -EPROTO;
3874                 break;
3875         case COMP_DEV_ERR:
3876                 dev_warn(&udev->dev,
3877                          "ERROR: Incompatible device for setup %s command\n", act);
3878                 ret = -ENODEV;
3879                 break;
3880         case COMP_SUCCESS:
3881                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3882                                "Successful setup %s command", act);
3883                 break;
3884         default:
3885                 xhci_err(xhci,
3886                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3887                          act, command->status);
3888                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3889                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3890                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3891                 ret = -EINVAL;
3892                 break;
3893         }
3894         if (ret) {
3895                 kfree(command);
3896                 return ret;
3897         }
3898         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3899         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3900                         "Op regs DCBAA ptr = %#016llx", temp_64);
3901         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3902                 "Slot ID %d dcbaa entry @%p = %#016llx",
3903                 udev->slot_id,
3904                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3905                 (unsigned long long)
3906                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3907         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3908                         "Output Context DMA address = %#08llx",
3909                         (unsigned long long)virt_dev->out_ctx->dma);
3910         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3911         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3912         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3913                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3914         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3915         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3916         /*
3917          * USB core uses address 1 for the roothubs, so we add one to the
3918          * address given back to us by the HC.
3919          */
3920         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3921         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3922                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3923         /* Zero the input context control for later use */
3924         ctrl_ctx->add_flags = 0;
3925         ctrl_ctx->drop_flags = 0;
3926
3927         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3928                        "Internal device address = %d",
3929                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3930         kfree(command);
3931         return 0;
3932 }
3933
3934 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3935 {
3936         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3937 }
3938
3939 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3940 {
3941         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3942 }
3943
3944 /*
3945  * Transfer the port index into real index in the HW port status
3946  * registers. Caculate offset between the port's PORTSC register
3947  * and port status base. Divide the number of per port register
3948  * to get the real index. The raw port number bases 1.
3949  */
3950 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3951 {
3952         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3953         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3954         __le32 __iomem *addr;
3955         int raw_port;
3956
3957         if (hcd->speed != HCD_USB3)
3958                 addr = xhci->usb2_ports[port1 - 1];
3959         else
3960                 addr = xhci->usb3_ports[port1 - 1];
3961
3962         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3963         return raw_port;
3964 }
3965
3966 /*
3967  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3968  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3969  */
3970 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3971                         struct usb_device *udev, u16 max_exit_latency)
3972 {
3973         struct xhci_virt_device *virt_dev;
3974         struct xhci_command *command;
3975         struct xhci_input_control_ctx *ctrl_ctx;
3976         struct xhci_slot_ctx *slot_ctx;
3977         unsigned long flags;
3978         int ret;
3979
3980         spin_lock_irqsave(&xhci->lock, flags);
3981
3982         virt_dev = xhci->devs[udev->slot_id];
3983
3984         /*
3985          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3986          * xHC was re-initialized. Exit latency will be set later after
3987          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3988          */
3989
3990         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3991                 spin_unlock_irqrestore(&xhci->lock, flags);
3992                 return 0;
3993         }
3994
3995         /* Attempt to issue an Evaluate Context command to change the MEL. */
3996         command = xhci->lpm_command;
3997         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3998         if (!ctrl_ctx) {
3999                 spin_unlock_irqrestore(&xhci->lock, flags);
4000                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4001                                 __func__);
4002                 return -ENOMEM;
4003         }
4004
4005         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4006         spin_unlock_irqrestore(&xhci->lock, flags);
4007
4008         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4009         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4010         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4011         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4012         slot_ctx->dev_state = 0;
4013
4014         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4015                         "Set up evaluate context for LPM MEL change.");
4016         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4017         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4018
4019         /* Issue and wait for the evaluate context command. */
4020         ret = xhci_configure_endpoint(xhci, udev, command,
4021                         true, true);
4022         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4023         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4024
4025         if (!ret) {
4026                 spin_lock_irqsave(&xhci->lock, flags);
4027                 virt_dev->current_mel = max_exit_latency;
4028                 spin_unlock_irqrestore(&xhci->lock, flags);
4029         }
4030         return ret;
4031 }
4032
4033 #ifdef CONFIG_PM
4034
4035 /* BESL to HIRD Encoding array for USB2 LPM */
4036 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4037         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4038
4039 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4040 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4041                                         struct usb_device *udev)
4042 {
4043         int u2del, besl, besl_host;
4044         int besl_device = 0;
4045         u32 field;
4046
4047         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4048         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4049
4050         if (field & USB_BESL_SUPPORT) {
4051                 for (besl_host = 0; besl_host < 16; besl_host++) {
4052                         if (xhci_besl_encoding[besl_host] >= u2del)
4053                                 break;
4054                 }
4055                 /* Use baseline BESL value as default */
4056                 if (field & USB_BESL_BASELINE_VALID)
4057                         besl_device = USB_GET_BESL_BASELINE(field);
4058                 else if (field & USB_BESL_DEEP_VALID)
4059                         besl_device = USB_GET_BESL_DEEP(field);
4060         } else {
4061                 if (u2del <= 50)
4062                         besl_host = 0;
4063                 else
4064                         besl_host = (u2del - 51) / 75 + 1;
4065         }
4066
4067         besl = besl_host + besl_device;
4068         if (besl > 15)
4069                 besl = 15;
4070
4071         return besl;
4072 }
4073
4074 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4075 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4076 {
4077         u32 field;
4078         int l1;
4079         int besld = 0;
4080         int hirdm = 0;
4081
4082         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4083
4084         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4085         l1 = udev->l1_params.timeout / 256;
4086
4087         /* device has preferred BESLD */
4088         if (field & USB_BESL_DEEP_VALID) {
4089                 besld = USB_GET_BESL_DEEP(field);
4090                 hirdm = 1;
4091         }
4092
4093         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4094 }
4095
4096 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4097                         struct usb_device *udev, int enable)
4098 {
4099         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4100         __le32 __iomem  **port_array;
4101         __le32 __iomem  *pm_addr, *hlpm_addr;
4102         u32             pm_val, hlpm_val, field;
4103         unsigned int    port_num;
4104         unsigned long   flags;
4105         int             hird, exit_latency;
4106         int             ret;
4107
4108         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4109                         !udev->lpm_capable)
4110                 return -EPERM;
4111
4112         if (!udev->parent || udev->parent->parent ||
4113                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4114                 return -EPERM;
4115
4116         if (udev->usb2_hw_lpm_capable != 1)
4117                 return -EPERM;
4118
4119         spin_lock_irqsave(&xhci->lock, flags);
4120
4121         port_array = xhci->usb2_ports;
4122         port_num = udev->portnum - 1;
4123         pm_addr = port_array[port_num] + PORTPMSC;
4124         pm_val = readl(pm_addr);
4125         hlpm_addr = port_array[port_num] + PORTHLPMC;
4126         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4127
4128         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4129                         enable ? "enable" : "disable", port_num + 1);
4130
4131         if (enable) {
4132                 /* Host supports BESL timeout instead of HIRD */
4133                 if (udev->usb2_hw_lpm_besl_capable) {
4134                         /* if device doesn't have a preferred BESL value use a
4135                          * default one which works with mixed HIRD and BESL
4136                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4137                          */
4138                         if ((field & USB_BESL_SUPPORT) &&
4139                             (field & USB_BESL_BASELINE_VALID))
4140                                 hird = USB_GET_BESL_BASELINE(field);
4141                         else
4142                                 hird = udev->l1_params.besl;
4143
4144                         exit_latency = xhci_besl_encoding[hird];
4145                         spin_unlock_irqrestore(&xhci->lock, flags);
4146
4147                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4148                          * input context for link powermanagement evaluate
4149                          * context commands. It is protected by hcd->bandwidth
4150                          * mutex and is shared by all devices. We need to set
4151                          * the max ext latency in USB 2 BESL LPM as well, so
4152                          * use the same mutex and xhci_change_max_exit_latency()
4153                          */
4154                         mutex_lock(hcd->bandwidth_mutex);
4155                         ret = xhci_change_max_exit_latency(xhci, udev,
4156                                                            exit_latency);
4157                         mutex_unlock(hcd->bandwidth_mutex);
4158
4159                         if (ret < 0)
4160                                 return ret;
4161                         spin_lock_irqsave(&xhci->lock, flags);
4162
4163                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4164                         writel(hlpm_val, hlpm_addr);
4165                         /* flush write */
4166                         readl(hlpm_addr);
4167                 } else {
4168                         hird = xhci_calculate_hird_besl(xhci, udev);
4169                 }
4170
4171                 pm_val &= ~PORT_HIRD_MASK;
4172                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4173                 writel(pm_val, pm_addr);
4174                 pm_val = readl(pm_addr);
4175                 pm_val |= PORT_HLE;
4176                 writel(pm_val, pm_addr);
4177                 /* flush write */
4178                 readl(pm_addr);
4179         } else {
4180                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4181                 writel(pm_val, pm_addr);
4182                 /* flush write */
4183                 readl(pm_addr);
4184                 if (udev->usb2_hw_lpm_besl_capable) {
4185                         spin_unlock_irqrestore(&xhci->lock, flags);
4186                         mutex_lock(hcd->bandwidth_mutex);
4187                         xhci_change_max_exit_latency(xhci, udev, 0);
4188                         mutex_unlock(hcd->bandwidth_mutex);
4189                         return 0;
4190                 }
4191         }
4192
4193         spin_unlock_irqrestore(&xhci->lock, flags);
4194         return 0;
4195 }
4196
4197 /* check if a usb2 port supports a given extened capability protocol
4198  * only USB2 ports extended protocol capability values are cached.
4199  * Return 1 if capability is supported
4200  */
4201 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4202                                            unsigned capability)
4203 {
4204         u32 port_offset, port_count;
4205         int i;
4206
4207         for (i = 0; i < xhci->num_ext_caps; i++) {
4208                 if (xhci->ext_caps[i] & capability) {
4209                         /* port offsets starts at 1 */
4210                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4211                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4212                         if (port >= port_offset &&
4213                             port < port_offset + port_count)
4214                                 return 1;
4215                 }
4216         }
4217         return 0;
4218 }
4219
4220 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4221 {
4222         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4223         int             portnum = udev->portnum - 1;
4224
4225         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4226                         !udev->lpm_capable)
4227                 return 0;
4228
4229         /* we only support lpm for non-hub device connected to root hub yet */
4230         if (!udev->parent || udev->parent->parent ||
4231                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4232                 return 0;
4233
4234         if (xhci->hw_lpm_support == 1 &&
4235                         xhci_check_usb2_port_capability(
4236                                 xhci, portnum, XHCI_HLC)) {
4237                 udev->usb2_hw_lpm_capable = 1;
4238                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4239                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4240                 if (xhci_check_usb2_port_capability(xhci, portnum,
4241                                         XHCI_BLC))
4242                         udev->usb2_hw_lpm_besl_capable = 1;
4243         }
4244
4245         return 0;
4246 }
4247
4248 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4249
4250 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4251 static unsigned long long xhci_service_interval_to_ns(
4252                 struct usb_endpoint_descriptor *desc)
4253 {
4254         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4255 }
4256
4257 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4258                 enum usb3_link_state state)
4259 {
4260         unsigned long long sel;
4261         unsigned long long pel;
4262         unsigned int max_sel_pel;
4263         char *state_name;
4264
4265         switch (state) {
4266         case USB3_LPM_U1:
4267                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4268                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4269                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4270                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4271                 state_name = "U1";
4272                 break;
4273         case USB3_LPM_U2:
4274                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4275                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4276                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4277                 state_name = "U2";
4278                 break;
4279         default:
4280                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4281                                 __func__);
4282                 return USB3_LPM_DISABLED;
4283         }
4284
4285         if (sel <= max_sel_pel && pel <= max_sel_pel)
4286                 return USB3_LPM_DEVICE_INITIATED;
4287
4288         if (sel > max_sel_pel)
4289                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4290                                 "due to long SEL %llu ms\n",
4291                                 state_name, sel);
4292         else
4293                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4294                                 "due to long PEL %llu ms\n",
4295                                 state_name, pel);
4296         return USB3_LPM_DISABLED;
4297 }
4298
4299 /* The U1 timeout should be the maximum of the following values:
4300  *  - For control endpoints, U1 system exit latency (SEL) * 3
4301  *  - For bulk endpoints, U1 SEL * 5
4302  *  - For interrupt endpoints:
4303  *    - Notification EPs, U1 SEL * 3
4304  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4305  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4306  */
4307 static unsigned long long xhci_calculate_intel_u1_timeout(
4308                 struct usb_device *udev,
4309                 struct usb_endpoint_descriptor *desc)
4310 {
4311         unsigned long long timeout_ns;
4312         int ep_type;
4313         int intr_type;
4314
4315         ep_type = usb_endpoint_type(desc);
4316         switch (ep_type) {
4317         case USB_ENDPOINT_XFER_CONTROL:
4318                 timeout_ns = udev->u1_params.sel * 3;
4319                 break;
4320         case USB_ENDPOINT_XFER_BULK:
4321                 timeout_ns = udev->u1_params.sel * 5;
4322                 break;
4323         case USB_ENDPOINT_XFER_INT:
4324                 intr_type = usb_endpoint_interrupt_type(desc);
4325                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4326                         timeout_ns = udev->u1_params.sel * 3;
4327                         break;
4328                 }
4329                 /* Otherwise the calculation is the same as isoc eps */
4330         case USB_ENDPOINT_XFER_ISOC:
4331                 timeout_ns = xhci_service_interval_to_ns(desc);
4332                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4333                 if (timeout_ns < udev->u1_params.sel * 2)
4334                         timeout_ns = udev->u1_params.sel * 2;
4335                 break;
4336         default:
4337                 return 0;
4338         }
4339
4340         return timeout_ns;
4341 }
4342
4343 /* Returns the hub-encoded U1 timeout value. */
4344 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4345                 struct usb_device *udev,
4346                 struct usb_endpoint_descriptor *desc)
4347 {
4348         unsigned long long timeout_ns;
4349
4350         if (xhci->quirks & XHCI_INTEL_HOST)
4351                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4352         else
4353                 timeout_ns = udev->u1_params.sel;
4354
4355         /* The U1 timeout is encoded in 1us intervals.
4356          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4357          */
4358         if (timeout_ns == USB3_LPM_DISABLED)
4359                 timeout_ns = 1;
4360         else
4361                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4362
4363         /* If the necessary timeout value is bigger than what we can set in the
4364          * USB 3.0 hub, we have to disable hub-initiated U1.
4365          */
4366         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4367                 return timeout_ns;
4368         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4369                         "due to long timeout %llu ms\n", timeout_ns);
4370         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4371 }
4372
4373 /* The U2 timeout should be the maximum of:
4374  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4375  *  - largest bInterval of any active periodic endpoint (to avoid going
4376  *    into lower power link states between intervals).
4377  *  - the U2 Exit Latency of the device
4378  */
4379 static unsigned long long xhci_calculate_intel_u2_timeout(
4380                 struct usb_device *udev,
4381                 struct usb_endpoint_descriptor *desc)
4382 {
4383         unsigned long long timeout_ns;
4384         unsigned long long u2_del_ns;
4385
4386         timeout_ns = 10 * 1000 * 1000;
4387
4388         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4389                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4390                 timeout_ns = xhci_service_interval_to_ns(desc);
4391
4392         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4393         if (u2_del_ns > timeout_ns)
4394                 timeout_ns = u2_del_ns;
4395
4396         return timeout_ns;
4397 }
4398
4399 /* Returns the hub-encoded U2 timeout value. */
4400 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4401                 struct usb_device *udev,
4402                 struct usb_endpoint_descriptor *desc)
4403 {
4404         unsigned long long timeout_ns;
4405
4406         if (xhci->quirks & XHCI_INTEL_HOST)
4407                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4408         else
4409                 timeout_ns = udev->u2_params.sel;
4410
4411         /* The U2 timeout is encoded in 256us intervals */
4412         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4413         /* If the necessary timeout value is bigger than what we can set in the
4414          * USB 3.0 hub, we have to disable hub-initiated U2.
4415          */
4416         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4417                 return timeout_ns;
4418         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4419                         "due to long timeout %llu ms\n", timeout_ns);
4420         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4421 }
4422
4423 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4424                 struct usb_device *udev,
4425                 struct usb_endpoint_descriptor *desc,
4426                 enum usb3_link_state state,
4427                 u16 *timeout)
4428 {
4429         if (state == USB3_LPM_U1)
4430                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4431         else if (state == USB3_LPM_U2)
4432                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4433
4434         return USB3_LPM_DISABLED;
4435 }
4436
4437 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4438                 struct usb_device *udev,
4439                 struct usb_endpoint_descriptor *desc,
4440                 enum usb3_link_state state,
4441                 u16 *timeout)
4442 {
4443         u16 alt_timeout;
4444
4445         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4446                 desc, state, timeout);
4447
4448         /* If we found we can't enable hub-initiated LPM, or
4449          * the U1 or U2 exit latency was too high to allow
4450          * device-initiated LPM as well, just stop searching.
4451          */
4452         if (alt_timeout == USB3_LPM_DISABLED ||
4453                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4454                 *timeout = alt_timeout;
4455                 return -E2BIG;
4456         }
4457         if (alt_timeout > *timeout)
4458                 *timeout = alt_timeout;
4459         return 0;
4460 }
4461
4462 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4463                 struct usb_device *udev,
4464                 struct usb_host_interface *alt,
4465                 enum usb3_link_state state,
4466                 u16 *timeout)
4467 {
4468         int j;
4469
4470         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4471                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4472                                         &alt->endpoint[j].desc, state, timeout))
4473                         return -E2BIG;
4474                 continue;
4475         }
4476         return 0;
4477 }
4478
4479 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4480                 enum usb3_link_state state)
4481 {
4482         struct usb_device *parent;
4483         unsigned int num_hubs;
4484
4485         if (state == USB3_LPM_U2)
4486                 return 0;
4487
4488         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4489         for (parent = udev->parent, num_hubs = 0; parent->parent;
4490                         parent = parent->parent)
4491                 num_hubs++;
4492
4493         if (num_hubs < 2)
4494                 return 0;
4495
4496         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4497                         " below second-tier hub.\n");
4498         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4499                         "to decrease power consumption.\n");
4500         return -E2BIG;
4501 }
4502
4503 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4504                 struct usb_device *udev,
4505                 enum usb3_link_state state)
4506 {
4507         if (xhci->quirks & XHCI_INTEL_HOST)
4508                 return xhci_check_intel_tier_policy(udev, state);
4509         else
4510                 return 0;
4511 }
4512
4513 /* Returns the U1 or U2 timeout that should be enabled.
4514  * If the tier check or timeout setting functions return with a non-zero exit
4515  * code, that means the timeout value has been finalized and we shouldn't look
4516  * at any more endpoints.
4517  */
4518 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4519                         struct usb_device *udev, enum usb3_link_state state)
4520 {
4521         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4522         struct usb_host_config *config;
4523         char *state_name;
4524         int i;
4525         u16 timeout = USB3_LPM_DISABLED;
4526
4527         if (state == USB3_LPM_U1)
4528                 state_name = "U1";
4529         else if (state == USB3_LPM_U2)
4530                 state_name = "U2";
4531         else {
4532                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4533                                 state);
4534                 return timeout;
4535         }
4536
4537         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4538                 return timeout;
4539
4540         /* Gather some information about the currently installed configuration
4541          * and alternate interface settings.
4542          */
4543         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4544                         state, &timeout))
4545                 return timeout;
4546
4547         config = udev->actconfig;
4548         if (!config)
4549                 return timeout;
4550
4551         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4552                 struct usb_driver *driver;
4553                 struct usb_interface *intf = config->interface[i];
4554
4555                 if (!intf)
4556                         continue;
4557
4558                 /* Check if any currently bound drivers want hub-initiated LPM
4559                  * disabled.
4560                  */
4561                 if (intf->dev.driver) {
4562                         driver = to_usb_driver(intf->dev.driver);
4563                         if (driver && driver->disable_hub_initiated_lpm) {
4564                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4565                                                 "at request of driver %s\n",
4566                                                 state_name, driver->name);
4567                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4568                         }
4569                 }
4570
4571                 /* Not sure how this could happen... */
4572                 if (!intf->cur_altsetting)
4573                         continue;
4574
4575                 if (xhci_update_timeout_for_interface(xhci, udev,
4576                                         intf->cur_altsetting,
4577                                         state, &timeout))
4578                         return timeout;
4579         }
4580         return timeout;
4581 }
4582
4583 static int calculate_max_exit_latency(struct usb_device *udev,
4584                 enum usb3_link_state state_changed,
4585                 u16 hub_encoded_timeout)
4586 {
4587         unsigned long long u1_mel_us = 0;
4588         unsigned long long u2_mel_us = 0;
4589         unsigned long long mel_us = 0;
4590         bool disabling_u1;
4591         bool disabling_u2;
4592         bool enabling_u1;
4593         bool enabling_u2;
4594
4595         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4596                         hub_encoded_timeout == USB3_LPM_DISABLED);
4597         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4598                         hub_encoded_timeout == USB3_LPM_DISABLED);
4599
4600         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4601                         hub_encoded_timeout != USB3_LPM_DISABLED);
4602         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4603                         hub_encoded_timeout != USB3_LPM_DISABLED);
4604
4605         /* If U1 was already enabled and we're not disabling it,
4606          * or we're going to enable U1, account for the U1 max exit latency.
4607          */
4608         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4609                         enabling_u1)
4610                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4611         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4612                         enabling_u2)
4613                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4614
4615         if (u1_mel_us > u2_mel_us)
4616                 mel_us = u1_mel_us;
4617         else
4618                 mel_us = u2_mel_us;
4619         /* xHCI host controller max exit latency field is only 16 bits wide. */
4620         if (mel_us > MAX_EXIT) {
4621                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4622                                 "is too big.\n", mel_us);
4623                 return -E2BIG;
4624         }
4625         return mel_us;
4626 }
4627
4628 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4629 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4630                         struct usb_device *udev, enum usb3_link_state state)
4631 {
4632         struct xhci_hcd *xhci;
4633         u16 hub_encoded_timeout;
4634         int mel;
4635         int ret;
4636
4637         xhci = hcd_to_xhci(hcd);
4638         /* The LPM timeout values are pretty host-controller specific, so don't
4639          * enable hub-initiated timeouts unless the vendor has provided
4640          * information about their timeout algorithm.
4641          */
4642         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4643                         !xhci->devs[udev->slot_id])
4644                 return USB3_LPM_DISABLED;
4645
4646         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4647         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4648         if (mel < 0) {
4649                 /* Max Exit Latency is too big, disable LPM. */
4650                 hub_encoded_timeout = USB3_LPM_DISABLED;
4651                 mel = 0;
4652         }
4653
4654         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4655         if (ret)
4656                 return ret;
4657         return hub_encoded_timeout;
4658 }
4659
4660 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4661                         struct usb_device *udev, enum usb3_link_state state)
4662 {
4663         struct xhci_hcd *xhci;
4664         u16 mel;
4665         int ret;
4666
4667         xhci = hcd_to_xhci(hcd);
4668         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4669                         !xhci->devs[udev->slot_id])
4670                 return 0;
4671
4672         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4673         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4674         if (ret)
4675                 return ret;
4676         return 0;
4677 }
4678 #else /* CONFIG_PM */
4679
4680 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4681                                 struct usb_device *udev, int enable)
4682 {
4683         return 0;
4684 }
4685
4686 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4687 {
4688         return 0;
4689 }
4690
4691 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4692                         struct usb_device *udev, enum usb3_link_state state)
4693 {
4694         return USB3_LPM_DISABLED;
4695 }
4696
4697 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4698                         struct usb_device *udev, enum usb3_link_state state)
4699 {
4700         return 0;
4701 }
4702 #endif  /* CONFIG_PM */
4703
4704 /*-------------------------------------------------------------------------*/
4705
4706 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4707  * internal data structures for the device.
4708  */
4709 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4710                         struct usb_tt *tt, gfp_t mem_flags)
4711 {
4712         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4713         struct xhci_virt_device *vdev;
4714         struct xhci_command *config_cmd;
4715         struct xhci_input_control_ctx *ctrl_ctx;
4716         struct xhci_slot_ctx *slot_ctx;
4717         unsigned long flags;
4718         unsigned think_time;
4719         int ret;
4720
4721         /* Ignore root hubs */
4722         if (!hdev->parent)
4723                 return 0;
4724
4725         vdev = xhci->devs[hdev->slot_id];
4726         if (!vdev) {
4727                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4728                 return -EINVAL;
4729         }
4730         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4731         if (!config_cmd) {
4732                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4733                 return -ENOMEM;
4734         }
4735         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4736         if (!ctrl_ctx) {
4737                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4738                                 __func__);
4739                 xhci_free_command(xhci, config_cmd);
4740                 return -ENOMEM;
4741         }
4742
4743         spin_lock_irqsave(&xhci->lock, flags);
4744         if (hdev->speed == USB_SPEED_HIGH &&
4745                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4746                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4747                 xhci_free_command(xhci, config_cmd);
4748                 spin_unlock_irqrestore(&xhci->lock, flags);
4749                 return -ENOMEM;
4750         }
4751
4752         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4753         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4754         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4755         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4756         if (tt->multi)
4757                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4758         if (xhci->hci_version > 0x95) {
4759                 xhci_dbg(xhci, "xHCI version %x needs hub "
4760                                 "TT think time and number of ports\n",
4761                                 (unsigned int) xhci->hci_version);
4762                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4763                 /* Set TT think time - convert from ns to FS bit times.
4764                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4765                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4766                  *
4767                  * xHCI 1.0: this field shall be 0 if the device is not a
4768                  * High-spped hub.
4769                  */
4770                 think_time = tt->think_time;
4771                 if (think_time != 0)
4772                         think_time = (think_time / 666) - 1;
4773                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4774                         slot_ctx->tt_info |=
4775                                 cpu_to_le32(TT_THINK_TIME(think_time));
4776         } else {
4777                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4778                                 "TT think time or number of ports\n",
4779                                 (unsigned int) xhci->hci_version);
4780         }
4781         slot_ctx->dev_state = 0;
4782         spin_unlock_irqrestore(&xhci->lock, flags);
4783
4784         xhci_dbg(xhci, "Set up %s for hub device.\n",
4785                         (xhci->hci_version > 0x95) ?
4786                         "configure endpoint" : "evaluate context");
4787         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4788         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4789
4790         /* Issue and wait for the configure endpoint or
4791          * evaluate context command.
4792          */
4793         if (xhci->hci_version > 0x95)
4794                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4795                                 false, false);
4796         else
4797                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4798                                 true, false);
4799
4800         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4801         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4802
4803         xhci_free_command(xhci, config_cmd);
4804         return ret;
4805 }
4806
4807 int xhci_get_frame(struct usb_hcd *hcd)
4808 {
4809         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4810         /* EHCI mods by the periodic size.  Why? */
4811         return readl(&xhci->run_regs->microframe_index) >> 3;
4812 }
4813
4814 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4815 {
4816         struct xhci_hcd         *xhci;
4817         struct device           *dev = hcd->self.controller;
4818         int                     retval;
4819
4820         /* Accept arbitrarily long scatter-gather lists */
4821         hcd->self.sg_tablesize = ~0;
4822
4823         /* support to build packet from discontinuous buffers */
4824         hcd->self.no_sg_constraint = 1;
4825
4826         /* XHCI controllers don't stop the ep queue on short packets :| */
4827         hcd->self.no_stop_on_short = 1;
4828
4829         if (usb_hcd_is_primary_hcd(hcd)) {
4830                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4831                 if (!xhci)
4832                         return -ENOMEM;
4833                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4834                 xhci->main_hcd = hcd;
4835                 /* Mark the first roothub as being USB 2.0.
4836                  * The xHCI driver will register the USB 3.0 roothub.
4837                  */
4838                 hcd->speed = HCD_USB2;
4839                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4840                 /*
4841                  * USB 2.0 roothub under xHCI has an integrated TT,
4842                  * (rate matching hub) as opposed to having an OHCI/UHCI
4843                  * companion controller.
4844                  */
4845                 hcd->has_tt = 1;
4846         } else {
4847                 /* xHCI private pointer was set in xhci_pci_probe for the second
4848                  * registered roothub.
4849                  */
4850                 return 0;
4851         }
4852
4853         xhci->cap_regs = hcd->regs;
4854         xhci->op_regs = hcd->regs +
4855                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4856         xhci->run_regs = hcd->regs +
4857                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4858         /* Cache read-only capability registers */
4859         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4860         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4861         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4862         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4863         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4864         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4865         xhci_print_registers(xhci);
4866
4867         xhci->quirks = quirks;
4868
4869         get_quirks(dev, xhci);
4870
4871         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4872          * success event after a short transfer. This quirk will ignore such
4873          * spurious event.
4874          */
4875         if (xhci->hci_version > 0x96)
4876                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4877
4878         /* Make sure the HC is halted. */
4879         retval = xhci_halt(xhci);
4880         if (retval)
4881                 goto error;
4882
4883         xhci_dbg(xhci, "Resetting HCD\n");
4884         /* Reset the internal HC memory state and registers. */
4885         retval = xhci_reset(xhci);
4886         if (retval)
4887                 goto error;
4888         xhci_dbg(xhci, "Reset complete\n");
4889
4890         /* Set dma_mask and coherent_dma_mask to 64-bits,
4891          * if xHC supports 64-bit addressing */
4892         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4893                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4894                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4895                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4896         }
4897
4898         xhci_dbg(xhci, "Calling HCD init\n");
4899         /* Initialize HCD and host controller data structures. */
4900         retval = xhci_init(hcd);
4901         if (retval)
4902                 goto error;
4903         xhci_dbg(xhci, "Called HCD init\n");
4904         return 0;
4905 error:
4906         kfree(xhci);
4907         return retval;
4908 }
4909 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4910
4911 static const struct hc_driver xhci_hc_driver = {
4912         .description =          "xhci-hcd",
4913         .product_desc =         "xHCI Host Controller",
4914         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4915
4916         /*
4917          * generic hardware linkage
4918          */
4919         .irq =                  xhci_irq,
4920         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4921
4922         /*
4923          * basic lifecycle operations
4924          */
4925         .reset =                NULL, /* set in xhci_init_driver() */
4926         .start =                xhci_run,
4927         .stop =                 xhci_stop,
4928         .shutdown =             xhci_shutdown,
4929
4930         /*
4931          * managing i/o requests and associated device resources
4932          */
4933         .urb_enqueue =          xhci_urb_enqueue,
4934         .urb_dequeue =          xhci_urb_dequeue,
4935         .alloc_dev =            xhci_alloc_dev,
4936         .free_dev =             xhci_free_dev,
4937         .alloc_streams =        xhci_alloc_streams,
4938         .free_streams =         xhci_free_streams,
4939         .add_endpoint =         xhci_add_endpoint,
4940         .drop_endpoint =        xhci_drop_endpoint,
4941         .endpoint_reset =       xhci_endpoint_reset,
4942         .check_bandwidth =      xhci_check_bandwidth,
4943         .reset_bandwidth =      xhci_reset_bandwidth,
4944         .address_device =       xhci_address_device,
4945         .enable_device =        xhci_enable_device,
4946         .update_hub_device =    xhci_update_hub_device,
4947         .reset_device =         xhci_discover_or_reset_device,
4948
4949         /*
4950          * scheduling support
4951          */
4952         .get_frame_number =     xhci_get_frame,
4953
4954         /*
4955          * root hub support
4956          */
4957         .hub_control =          xhci_hub_control,
4958         .hub_status_data =      xhci_hub_status_data,
4959         .bus_suspend =          xhci_bus_suspend,
4960         .bus_resume =           xhci_bus_resume,
4961
4962         /*
4963          * call back when device connected and addressed
4964          */
4965         .update_device =        xhci_update_device,
4966         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4967         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4968         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4969         .find_raw_port_number = xhci_find_raw_port_number,
4970 };
4971
4972 void xhci_init_driver(struct hc_driver *drv, int (*setup_fn)(struct usb_hcd *))
4973 {
4974         BUG_ON(!setup_fn);
4975         *drv = xhci_hc_driver;
4976         drv->reset = setup_fn;
4977 }
4978 EXPORT_SYMBOL_GPL(xhci_init_driver);
4979
4980 MODULE_DESCRIPTION(DRIVER_DESC);
4981 MODULE_AUTHOR(DRIVER_AUTHOR);
4982 MODULE_LICENSE("GPL");
4983
4984 static int __init xhci_hcd_init(void)
4985 {
4986         /*
4987          * Check the compiler generated sizes of structures that must be laid
4988          * out in specific ways for hardware access.
4989          */
4990         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4991         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4992         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4993         /* xhci_device_control has eight fields, and also
4994          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4995          */
4996         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4997         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4998         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4999         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
5000         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5001         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5002         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5003         return 0;
5004 }
5005 module_init(xhci_hcd_init);