macvlan: delay the header check for dodgy packets into lower device
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62                       u32 mask, u32 done, int usec)
63 {
64         u32     result;
65
66         do {
67                 result = readl(ptr);
68                 if (result == ~(u32)0)          /* card removed */
69                         return -ENODEV;
70                 result &= mask;
71                 if (result == done)
72                         return 0;
73                 udelay(1);
74                 usec--;
75         } while (usec > 0);
76         return -ETIMEDOUT;
77 }
78
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84         u32 halted;
85         u32 cmd;
86         u32 mask;
87
88         mask = ~(XHCI_IRQS);
89         halted = readl(&xhci->op_regs->status) & STS_HALT;
90         if (!halted)
91                 mask &= ~CMD_RUN;
92
93         cmd = readl(&xhci->op_regs->command);
94         cmd &= mask;
95         writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108         int ret;
109         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110         xhci_quiesce(xhci);
111
112         ret = xhci_handshake(xhci, &xhci->op_regs->status,
113                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114         if (!ret) {
115                 xhci->xhc_state |= XHCI_STATE_HALTED;
116                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117         } else
118                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119                                 XHCI_MAX_HALT_USEC);
120         return ret;
121 }
122
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128         u32 temp;
129         int ret;
130
131         temp = readl(&xhci->op_regs->command);
132         temp |= (CMD_RUN);
133         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134                         temp);
135         writel(temp, &xhci->op_regs->command);
136
137         /*
138          * Wait for the HCHalted Status bit to be 0 to indicate the host is
139          * running.
140          */
141         ret = xhci_handshake(xhci, &xhci->op_regs->status,
142                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
143         if (ret == -ETIMEDOUT)
144                 xhci_err(xhci, "Host took too long to start, "
145                                 "waited %u microseconds.\n",
146                                 XHCI_MAX_HALT_USEC);
147         if (!ret)
148                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
149         return ret;
150 }
151
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161         u32 command;
162         u32 state;
163         int ret, i;
164
165         state = readl(&xhci->op_regs->status);
166         if ((state & STS_HALT) == 0) {
167                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168                 return 0;
169         }
170
171         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172         command = readl(&xhci->op_regs->command);
173         command |= CMD_RESET;
174         writel(command, &xhci->op_regs->command);
175
176         ret = xhci_handshake(xhci, &xhci->op_regs->command,
177                         CMD_RESET, 0, 10 * 1000 * 1000);
178         if (ret)
179                 return ret;
180
181         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182                          "Wait for controller to be ready for doorbell rings");
183         /*
184          * xHCI cannot write to any doorbells or operational registers other
185          * than status until the "Controller Not Ready" flag is cleared.
186          */
187         ret = xhci_handshake(xhci, &xhci->op_regs->status,
188                         STS_CNR, 0, 10 * 1000 * 1000);
189
190         for (i = 0; i < 2; ++i) {
191                 xhci->bus_state[i].port_c_suspend = 0;
192                 xhci->bus_state[i].suspended_ports = 0;
193                 xhci->bus_state[i].resuming_ports = 0;
194         }
195
196         return ret;
197 }
198
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202         int i;
203
204         if (!xhci->msix_entries)
205                 return -EINVAL;
206
207         for (i = 0; i < xhci->msix_count; i++)
208                 if (xhci->msix_entries[i].vector)
209                         free_irq(xhci->msix_entries[i].vector,
210                                         xhci_to_hcd(xhci));
211         return 0;
212 }
213
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219         int ret;
220         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221
222         ret = pci_enable_msi(pdev);
223         if (ret) {
224                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225                                 "failed to allocate MSI entry");
226                 return ret;
227         }
228
229         ret = request_irq(pdev->irq, xhci_msi_irq,
230                                 0, "xhci_hcd", xhci_to_hcd(xhci));
231         if (ret) {
232                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233                                 "disable MSI interrupt");
234                 pci_disable_msi(pdev);
235         }
236
237         return ret;
238 }
239
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247         int ret;
248
249         /* return if using legacy interrupt */
250         if (xhci_to_hcd(xhci)->irq > 0)
251                 return;
252
253         ret = xhci_free_msi(xhci);
254         if (!ret)
255                 return;
256         if (pdev->irq > 0)
257                 free_irq(pdev->irq, xhci_to_hcd(xhci));
258
259         return;
260 }
261
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267         int i, ret = 0;
268         struct usb_hcd *hcd = xhci_to_hcd(xhci);
269         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270
271         /*
272          * calculate number of msi-x vectors supported.
273          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274          *   with max number of interrupters based on the xhci HCSPARAMS1.
275          * - num_online_cpus: maximum msi-x vectors per CPUs core.
276          *   Add additional 1 vector to ensure always available interrupt.
277          */
278         xhci->msix_count = min(num_online_cpus() + 1,
279                                 HCS_MAX_INTRS(xhci->hcs_params1));
280
281         xhci->msix_entries =
282                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283                                 GFP_KERNEL);
284         if (!xhci->msix_entries) {
285                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286                 return -ENOMEM;
287         }
288
289         for (i = 0; i < xhci->msix_count; i++) {
290                 xhci->msix_entries[i].entry = i;
291                 xhci->msix_entries[i].vector = 0;
292         }
293
294         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
295         if (ret) {
296                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297                                 "Failed to enable MSI-X");
298                 goto free_entries;
299         }
300
301         for (i = 0; i < xhci->msix_count; i++) {
302                 ret = request_irq(xhci->msix_entries[i].vector,
303                                 xhci_msi_irq,
304                                 0, "xhci_hcd", xhci_to_hcd(xhci));
305                 if (ret)
306                         goto disable_msix;
307         }
308
309         hcd->msix_enabled = 1;
310         return ret;
311
312 disable_msix:
313         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314         xhci_free_irq(xhci);
315         pci_disable_msix(pdev);
316 free_entries:
317         kfree(xhci->msix_entries);
318         xhci->msix_entries = NULL;
319         return ret;
320 }
321
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         if (xhci->quirks & XHCI_PLAT)
329                 return;
330
331         xhci_free_irq(xhci);
332
333         if (xhci->msix_entries) {
334                 pci_disable_msix(pdev);
335                 kfree(xhci->msix_entries);
336                 xhci->msix_entries = NULL;
337         } else {
338                 pci_disable_msi(pdev);
339         }
340
341         hcd->msix_enabled = 0;
342         return;
343 }
344
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347         int i;
348
349         if (xhci->msix_entries) {
350                 for (i = 0; i < xhci->msix_count; i++)
351                         synchronize_irq(xhci->msix_entries[i].vector);
352         }
353 }
354
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358         struct pci_dev  *pdev;
359         int ret;
360
361         /* The xhci platform device has set up IRQs through usb_add_hcd. */
362         if (xhci->quirks & XHCI_PLAT)
363                 return 0;
364
365         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366         /*
367          * Some Fresco Logic host controllers advertise MSI, but fail to
368          * generate interrupts.  Don't even try to enable MSI.
369          */
370         if (xhci->quirks & XHCI_BROKEN_MSI)
371                 goto legacy_irq;
372
373         /* unregister the legacy interrupt */
374         if (hcd->irq)
375                 free_irq(hcd->irq, hcd);
376         hcd->irq = 0;
377
378         ret = xhci_setup_msix(xhci);
379         if (ret)
380                 /* fall back to msi*/
381                 ret = xhci_setup_msi(xhci);
382
383         if (!ret)
384                 /* hcd->irq is 0, we have MSI */
385                 return 0;
386
387         if (!pdev->irq) {
388                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389                 return -EINVAL;
390         }
391
392  legacy_irq:
393         if (!strlen(hcd->irq_descr))
394                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395                          hcd->driver->description, hcd->self.busnum);
396
397         /* fall back to legacy interrupt*/
398         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399                         hcd->irq_descr, hcd);
400         if (ret) {
401                 xhci_err(xhci, "request interrupt %d failed\n",
402                                 pdev->irq);
403                 return ret;
404         }
405         hcd->irq = pdev->irq;
406         return 0;
407 }
408
409 #else
410
411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413         return 0;
414 }
415
416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
417 {
418 }
419
420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421 {
422 }
423
424 #endif
425
426 static void compliance_mode_recovery(unsigned long arg)
427 {
428         struct xhci_hcd *xhci;
429         struct usb_hcd *hcd;
430         u32 temp;
431         int i;
432
433         xhci = (struct xhci_hcd *)arg;
434
435         for (i = 0; i < xhci->num_usb3_ports; i++) {
436                 temp = readl(xhci->usb3_ports[i]);
437                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438                         /*
439                          * Compliance Mode Detected. Letting USB Core
440                          * handle the Warm Reset
441                          */
442                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443                                         "Compliance mode detected->port %d",
444                                         i + 1);
445                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446                                         "Attempting compliance mode recovery");
447                         hcd = xhci->shared_hcd;
448
449                         if (hcd->state == HC_STATE_SUSPENDED)
450                                 usb_hcd_resume_root_hub(hcd);
451
452                         usb_hcd_poll_rh_status(hcd);
453                 }
454         }
455
456         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457                 mod_timer(&xhci->comp_mode_recovery_timer,
458                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 }
460
461 /*
462  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463  * that causes ports behind that hardware to enter compliance mode sometimes.
464  * The quirk creates a timer that polls every 2 seconds the link state of
465  * each host controller's port and recovers it by issuing a Warm reset
466  * if Compliance mode is detected, otherwise the port will become "dead" (no
467  * device connections or disconnections will be detected anymore). Becasue no
468  * status event is generated when entering compliance mode (per xhci spec),
469  * this quirk is needed on systems that have the failing hardware installed.
470  */
471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472 {
473         xhci->port_status_u0 = 0;
474         init_timer(&xhci->comp_mode_recovery_timer);
475
476         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478         xhci->comp_mode_recovery_timer.expires = jiffies +
479                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480
481         set_timer_slack(&xhci->comp_mode_recovery_timer,
482                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483         add_timer(&xhci->comp_mode_recovery_timer);
484         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485                         "Compliance mode recovery timer initialized");
486 }
487
488 /*
489  * This function identifies the systems that have installed the SN65LVPE502CP
490  * USB3.0 re-driver and that need the Compliance Mode Quirk.
491  * Systems:
492  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493  */
494 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496         const char *dmi_product_name, *dmi_sys_vendor;
497
498         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500         if (!dmi_product_name || !dmi_sys_vendor)
501                 return false;
502
503         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504                 return false;
505
506         if (strstr(dmi_product_name, "Z420") ||
507                         strstr(dmi_product_name, "Z620") ||
508                         strstr(dmi_product_name, "Z820") ||
509                         strstr(dmi_product_name, "Z1 Workstation"))
510                 return true;
511
512         return false;
513 }
514
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519
520
521 /*
522  * Initialize memory for HCD and xHC (one-time init).
523  *
524  * Program the PAGESIZE register, initialize the device context array, create
525  * device contexts (?), set up a command ring segment (or two?), create event
526  * ring (one for now).
527  */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531         int retval = 0;
532
533         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534         spin_lock_init(&xhci->lock);
535         if (xhci->hci_version == 0x95 && link_quirk) {
536                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537                                 "QUIRK: Not clearing Link TRB chain bits.");
538                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539         } else {
540                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541                                 "xHCI doesn't need link TRB QUIRK");
542         }
543         retval = xhci_mem_init(xhci, GFP_KERNEL);
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545
546         /* Initializing Compliance Mode Recovery Data If Needed */
547         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549                 compliance_mode_recovery_timer_init(xhci);
550         }
551
552         return retval;
553 }
554
555 /*-------------------------------------------------------------------------*/
556
557
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560         if (xhci_start(xhci)) {
561                 xhci_halt(xhci);
562                 return -ENODEV;
563         }
564         xhci->shared_hcd->state = HC_STATE_RUNNING;
565         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566
567         if (xhci->quirks & XHCI_NEC_HOST)
568                 xhci_ring_cmd_db(xhci);
569
570         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571                         "Finished xhci_run for USB3 roothub");
572         return 0;
573 }
574
575 /*
576  * Start the HC after it was halted.
577  *
578  * This function is called by the USB core when the HC driver is added.
579  * Its opposite is xhci_stop().
580  *
581  * xhci_init() must be called once before this function can be called.
582  * Reset the HC, enable device slot contexts, program DCBAAP, and
583  * set command ring pointer and event ring pointer.
584  *
585  * Setup MSI-X vectors and enable interrupts.
586  */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589         u32 temp;
590         u64 temp_64;
591         int ret;
592         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593
594         /* Start the xHCI host controller running only after the USB 2.0 roothub
595          * is setup.
596          */
597
598         hcd->uses_new_polling = 1;
599         if (!usb_hcd_is_primary_hcd(hcd))
600                 return xhci_run_finished(xhci);
601
602         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603
604         ret = xhci_try_enable_msi(hcd);
605         if (ret)
606                 return ret;
607
608         xhci_dbg(xhci, "Command ring memory map follows:\n");
609         xhci_debug_ring(xhci, xhci->cmd_ring);
610         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611         xhci_dbg_cmd_ptrs(xhci);
612
613         xhci_dbg(xhci, "ERST memory map follows:\n");
614         xhci_dbg_erst(xhci, &xhci->erst);
615         xhci_dbg(xhci, "Event ring:\n");
616         xhci_debug_ring(xhci, xhci->event_ring);
617         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619         temp_64 &= ~ERST_PTR_MASK;
620         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622
623         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624                         "// Set the interrupt modulation register");
625         temp = readl(&xhci->ir_set->irq_control);
626         temp &= ~ER_IRQ_INTERVAL_MASK;
627         temp |= (u32) 160;
628         writel(temp, &xhci->ir_set->irq_control);
629
630         /* Set the HCD state before we enable the irqs */
631         temp = readl(&xhci->op_regs->command);
632         temp |= (CMD_EIE);
633         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634                         "// Enable interrupts, cmd = 0x%x.", temp);
635         writel(temp, &xhci->op_regs->command);
636
637         temp = readl(&xhci->ir_set->irq_pending);
638         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642         xhci_print_ir_set(xhci, 0);
643
644         if (xhci->quirks & XHCI_NEC_HOST) {
645                 struct xhci_command *command;
646                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
647                 if (!command)
648                         return -ENOMEM;
649                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
650                                 TRB_TYPE(TRB_NEC_GET_FW));
651         }
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653                         "Finished xhci_run for USB2 roothub");
654         return 0;
655 }
656 EXPORT_SYMBOL_GPL(xhci_run);
657
658 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
659 {
660         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
661
662         spin_lock_irq(&xhci->lock);
663         xhci_halt(xhci);
664
665         /* The shared_hcd is going to be deallocated shortly (the USB core only
666          * calls this function when allocation fails in usb_add_hcd(), or
667          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
668          */
669         xhci->shared_hcd = NULL;
670         spin_unlock_irq(&xhci->lock);
671 }
672
673 /*
674  * Stop xHCI driver.
675  *
676  * This function is called by the USB core when the HC driver is removed.
677  * Its opposite is xhci_run().
678  *
679  * Disable device contexts, disable IRQs, and quiesce the HC.
680  * Reset the HC, finish any completed transactions, and cleanup memory.
681  */
682 void xhci_stop(struct usb_hcd *hcd)
683 {
684         u32 temp;
685         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686
687         if (!usb_hcd_is_primary_hcd(hcd)) {
688                 xhci_only_stop_hcd(xhci->shared_hcd);
689                 return;
690         }
691
692         spin_lock_irq(&xhci->lock);
693         /* Make sure the xHC is halted for a USB3 roothub
694          * (xhci_stop() could be called as part of failed init).
695          */
696         xhci_halt(xhci);
697         xhci_reset(xhci);
698         spin_unlock_irq(&xhci->lock);
699
700         xhci_cleanup_msix(xhci);
701
702         /* Deleting Compliance Mode Recovery Timer */
703         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
704                         (!(xhci_all_ports_seen_u0(xhci)))) {
705                 del_timer_sync(&xhci->comp_mode_recovery_timer);
706                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
707                                 "%s: compliance mode recovery timer deleted",
708                                 __func__);
709         }
710
711         if (xhci->quirks & XHCI_AMD_PLL_FIX)
712                 usb_amd_dev_put();
713
714         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715                         "// Disabling event ring interrupts");
716         temp = readl(&xhci->op_regs->status);
717         writel(temp & ~STS_EINT, &xhci->op_regs->status);
718         temp = readl(&xhci->ir_set->irq_pending);
719         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
720         xhci_print_ir_set(xhci, 0);
721
722         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
723         xhci_mem_cleanup(xhci);
724         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
725                         "xhci_stop completed - status = %x",
726                         readl(&xhci->op_regs->status));
727 }
728
729 /*
730  * Shutdown HC (not bus-specific)
731  *
732  * This is called when the machine is rebooting or halting.  We assume that the
733  * machine will be powered off, and the HC's internal state will be reset.
734  * Don't bother to free memory.
735  *
736  * This will only ever be called with the main usb_hcd (the USB3 roothub).
737  */
738 void xhci_shutdown(struct usb_hcd *hcd)
739 {
740         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
741
742         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
743                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
744
745         spin_lock_irq(&xhci->lock);
746         xhci_halt(xhci);
747         /* Workaround for spurious wakeups at shutdown with HSW */
748         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
749                 xhci_reset(xhci);
750         spin_unlock_irq(&xhci->lock);
751
752         xhci_cleanup_msix(xhci);
753
754         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
755                         "xhci_shutdown completed - status = %x",
756                         readl(&xhci->op_regs->status));
757
758         /* Yet another workaround for spurious wakeups at shutdown with HSW */
759         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
760                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
761 }
762
763 #ifdef CONFIG_PM
764 static void xhci_save_registers(struct xhci_hcd *xhci)
765 {
766         xhci->s3.command = readl(&xhci->op_regs->command);
767         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
768         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
769         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
770         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
771         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
772         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
773         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
774         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
775 }
776
777 static void xhci_restore_registers(struct xhci_hcd *xhci)
778 {
779         writel(xhci->s3.command, &xhci->op_regs->command);
780         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
781         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
782         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
783         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
784         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
785         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
786         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
787         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
788 }
789
790 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
791 {
792         u64     val_64;
793
794         /* step 2: initialize command ring buffer */
795         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
796         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
797                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
798                                       xhci->cmd_ring->dequeue) &
799                  (u64) ~CMD_RING_RSVD_BITS) |
800                 xhci->cmd_ring->cycle_state;
801         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
802                         "// Setting command ring address to 0x%llx",
803                         (long unsigned long) val_64);
804         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
805 }
806
807 /*
808  * The whole command ring must be cleared to zero when we suspend the host.
809  *
810  * The host doesn't save the command ring pointer in the suspend well, so we
811  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
812  * aligned, because of the reserved bits in the command ring dequeue pointer
813  * register.  Therefore, we can't just set the dequeue pointer back in the
814  * middle of the ring (TRBs are 16-byte aligned).
815  */
816 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
817 {
818         struct xhci_ring *ring;
819         struct xhci_segment *seg;
820
821         ring = xhci->cmd_ring;
822         seg = ring->deq_seg;
823         do {
824                 memset(seg->trbs, 0,
825                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
826                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
827                         cpu_to_le32(~TRB_CYCLE);
828                 seg = seg->next;
829         } while (seg != ring->deq_seg);
830
831         /* Reset the software enqueue and dequeue pointers */
832         ring->deq_seg = ring->first_seg;
833         ring->dequeue = ring->first_seg->trbs;
834         ring->enq_seg = ring->deq_seg;
835         ring->enqueue = ring->dequeue;
836
837         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
838         /*
839          * Ring is now zeroed, so the HW should look for change of ownership
840          * when the cycle bit is set to 1.
841          */
842         ring->cycle_state = 1;
843
844         /*
845          * Reset the hardware dequeue pointer.
846          * Yes, this will need to be re-written after resume, but we're paranoid
847          * and want to make sure the hardware doesn't access bogus memory
848          * because, say, the BIOS or an SMI started the host without changing
849          * the command ring pointers.
850          */
851         xhci_set_cmd_ring_deq(xhci);
852 }
853
854 /*
855  * Stop HC (not bus-specific)
856  *
857  * This is called when the machine transition into S3/S4 mode.
858  *
859  */
860 int xhci_suspend(struct xhci_hcd *xhci)
861 {
862         int                     rc = 0;
863         unsigned int            delay = XHCI_MAX_HALT_USEC;
864         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
865         u32                     command;
866
867         if (hcd->state != HC_STATE_SUSPENDED ||
868                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
869                 return -EINVAL;
870
871         /* Don't poll the roothubs on bus suspend. */
872         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
873         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
874         del_timer_sync(&hcd->rh_timer);
875         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
876         del_timer_sync(&xhci->shared_hcd->rh_timer);
877
878         spin_lock_irq(&xhci->lock);
879         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
880         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
881         /* step 1: stop endpoint */
882         /* skipped assuming that port suspend has done */
883
884         /* step 2: clear Run/Stop bit */
885         command = readl(&xhci->op_regs->command);
886         command &= ~CMD_RUN;
887         writel(command, &xhci->op_regs->command);
888
889         /* Some chips from Fresco Logic need an extraordinary delay */
890         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
891
892         if (xhci_handshake(xhci, &xhci->op_regs->status,
893                       STS_HALT, STS_HALT, delay)) {
894                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
895                 spin_unlock_irq(&xhci->lock);
896                 return -ETIMEDOUT;
897         }
898         xhci_clear_command_ring(xhci);
899
900         /* step 3: save registers */
901         xhci_save_registers(xhci);
902
903         /* step 4: set CSS flag */
904         command = readl(&xhci->op_regs->command);
905         command |= CMD_CSS;
906         writel(command, &xhci->op_regs->command);
907         if (xhci_handshake(xhci, &xhci->op_regs->status,
908                                 STS_SAVE, 0, 10 * 1000)) {
909                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
910                 spin_unlock_irq(&xhci->lock);
911                 return -ETIMEDOUT;
912         }
913         spin_unlock_irq(&xhci->lock);
914
915         /*
916          * Deleting Compliance Mode Recovery Timer because the xHCI Host
917          * is about to be suspended.
918          */
919         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
920                         (!(xhci_all_ports_seen_u0(xhci)))) {
921                 del_timer_sync(&xhci->comp_mode_recovery_timer);
922                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
923                                 "%s: compliance mode recovery timer deleted",
924                                 __func__);
925         }
926
927         /* step 5: remove core well power */
928         /* synchronize irq when using MSI-X */
929         xhci_msix_sync_irqs(xhci);
930
931         return rc;
932 }
933 EXPORT_SYMBOL_GPL(xhci_suspend);
934
935 /*
936  * start xHC (not bus-specific)
937  *
938  * This is called when the machine transition from S3/S4 mode.
939  *
940  */
941 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
942 {
943         u32                     command, temp = 0, status;
944         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
945         struct usb_hcd          *secondary_hcd;
946         int                     retval = 0;
947         bool                    comp_timer_running = false;
948
949         /* Wait a bit if either of the roothubs need to settle from the
950          * transition into bus suspend.
951          */
952         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
953                         time_before(jiffies,
954                                 xhci->bus_state[1].next_statechange))
955                 msleep(100);
956
957         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
958         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
959
960         spin_lock_irq(&xhci->lock);
961         if (xhci->quirks & XHCI_RESET_ON_RESUME)
962                 hibernated = true;
963
964         if (!hibernated) {
965                 /* step 1: restore register */
966                 xhci_restore_registers(xhci);
967                 /* step 2: initialize command ring buffer */
968                 xhci_set_cmd_ring_deq(xhci);
969                 /* step 3: restore state and start state*/
970                 /* step 3: set CRS flag */
971                 command = readl(&xhci->op_regs->command);
972                 command |= CMD_CRS;
973                 writel(command, &xhci->op_regs->command);
974                 if (xhci_handshake(xhci, &xhci->op_regs->status,
975                               STS_RESTORE, 0, 10 * 1000)) {
976                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
977                         spin_unlock_irq(&xhci->lock);
978                         return -ETIMEDOUT;
979                 }
980                 temp = readl(&xhci->op_regs->status);
981         }
982
983         /* If restore operation fails, re-initialize the HC during resume */
984         if ((temp & STS_SRE) || hibernated) {
985
986                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
987                                 !(xhci_all_ports_seen_u0(xhci))) {
988                         del_timer_sync(&xhci->comp_mode_recovery_timer);
989                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
990                                 "Compliance Mode Recovery Timer deleted!");
991                 }
992
993                 /* Let the USB core know _both_ roothubs lost power. */
994                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
995                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
996
997                 xhci_dbg(xhci, "Stop HCD\n");
998                 xhci_halt(xhci);
999                 xhci_reset(xhci);
1000                 spin_unlock_irq(&xhci->lock);
1001                 xhci_cleanup_msix(xhci);
1002
1003                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1004                 temp = readl(&xhci->op_regs->status);
1005                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1006                 temp = readl(&xhci->ir_set->irq_pending);
1007                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1008                 xhci_print_ir_set(xhci, 0);
1009
1010                 xhci_dbg(xhci, "cleaning up memory\n");
1011                 xhci_mem_cleanup(xhci);
1012                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1013                             readl(&xhci->op_regs->status));
1014
1015                 /* USB core calls the PCI reinit and start functions twice:
1016                  * first with the primary HCD, and then with the secondary HCD.
1017                  * If we don't do the same, the host will never be started.
1018                  */
1019                 if (!usb_hcd_is_primary_hcd(hcd))
1020                         secondary_hcd = hcd;
1021                 else
1022                         secondary_hcd = xhci->shared_hcd;
1023
1024                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1025                 retval = xhci_init(hcd->primary_hcd);
1026                 if (retval)
1027                         return retval;
1028                 comp_timer_running = true;
1029
1030                 xhci_dbg(xhci, "Start the primary HCD\n");
1031                 retval = xhci_run(hcd->primary_hcd);
1032                 if (!retval) {
1033                         xhci_dbg(xhci, "Start the secondary HCD\n");
1034                         retval = xhci_run(secondary_hcd);
1035                 }
1036                 hcd->state = HC_STATE_SUSPENDED;
1037                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1038                 goto done;
1039         }
1040
1041         /* step 4: set Run/Stop bit */
1042         command = readl(&xhci->op_regs->command);
1043         command |= CMD_RUN;
1044         writel(command, &xhci->op_regs->command);
1045         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1046                   0, 250 * 1000);
1047
1048         /* step 5: walk topology and initialize portsc,
1049          * portpmsc and portli
1050          */
1051         /* this is done in bus_resume */
1052
1053         /* step 6: restart each of the previously
1054          * Running endpoints by ringing their doorbells
1055          */
1056
1057         spin_unlock_irq(&xhci->lock);
1058
1059  done:
1060         if (retval == 0) {
1061                 /* Resume root hubs only when have pending events. */
1062                 status = readl(&xhci->op_regs->status);
1063                 if (status & STS_EINT) {
1064                         usb_hcd_resume_root_hub(hcd);
1065                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1066                 }
1067         }
1068
1069         /*
1070          * If system is subject to the Quirk, Compliance Mode Timer needs to
1071          * be re-initialized Always after a system resume. Ports are subject
1072          * to suffer the Compliance Mode issue again. It doesn't matter if
1073          * ports have entered previously to U0 before system's suspension.
1074          */
1075         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1076                 compliance_mode_recovery_timer_init(xhci);
1077
1078         /* Re-enable port polling. */
1079         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1080         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1081         usb_hcd_poll_rh_status(hcd);
1082         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1083         usb_hcd_poll_rh_status(xhci->shared_hcd);
1084
1085         return retval;
1086 }
1087 EXPORT_SYMBOL_GPL(xhci_resume);
1088 #endif  /* CONFIG_PM */
1089
1090 /*-------------------------------------------------------------------------*/
1091
1092 /**
1093  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1094  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1095  * value to right shift 1 for the bitmask.
1096  *
1097  * Index  = (epnum * 2) + direction - 1,
1098  * where direction = 0 for OUT, 1 for IN.
1099  * For control endpoints, the IN index is used (OUT index is unused), so
1100  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1101  */
1102 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1103 {
1104         unsigned int index;
1105         if (usb_endpoint_xfer_control(desc))
1106                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1107         else
1108                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1109                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1110         return index;
1111 }
1112
1113 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1114  * address from the XHCI endpoint index.
1115  */
1116 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1117 {
1118         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1119         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1120         return direction | number;
1121 }
1122
1123 /* Find the flag for this endpoint (for use in the control context).  Use the
1124  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1125  * bit 1, etc.
1126  */
1127 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1128 {
1129         return 1 << (xhci_get_endpoint_index(desc) + 1);
1130 }
1131
1132 /* Find the flag for this endpoint (for use in the control context).  Use the
1133  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1134  * bit 1, etc.
1135  */
1136 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1137 {
1138         return 1 << (ep_index + 1);
1139 }
1140
1141 /* Compute the last valid endpoint context index.  Basically, this is the
1142  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1143  * we find the most significant bit set in the added contexts flags.
1144  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1145  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1146  */
1147 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1148 {
1149         return fls(added_ctxs) - 1;
1150 }
1151
1152 /* Returns 1 if the arguments are OK;
1153  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1154  */
1155 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1156                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1157                 const char *func) {
1158         struct xhci_hcd *xhci;
1159         struct xhci_virt_device *virt_dev;
1160
1161         if (!hcd || (check_ep && !ep) || !udev) {
1162                 pr_debug("xHCI %s called with invalid args\n", func);
1163                 return -EINVAL;
1164         }
1165         if (!udev->parent) {
1166                 pr_debug("xHCI %s called for root hub\n", func);
1167                 return 0;
1168         }
1169
1170         xhci = hcd_to_xhci(hcd);
1171         if (check_virt_dev) {
1172                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1173                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1174                                         func);
1175                         return -EINVAL;
1176                 }
1177
1178                 virt_dev = xhci->devs[udev->slot_id];
1179                 if (virt_dev->udev != udev) {
1180                         xhci_dbg(xhci, "xHCI %s called with udev and "
1181                                           "virt_dev does not match\n", func);
1182                         return -EINVAL;
1183                 }
1184         }
1185
1186         if (xhci->xhc_state & XHCI_STATE_HALTED)
1187                 return -ENODEV;
1188
1189         return 1;
1190 }
1191
1192 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1193                 struct usb_device *udev, struct xhci_command *command,
1194                 bool ctx_change, bool must_succeed);
1195
1196 /*
1197  * Full speed devices may have a max packet size greater than 8 bytes, but the
1198  * USB core doesn't know that until it reads the first 8 bytes of the
1199  * descriptor.  If the usb_device's max packet size changes after that point,
1200  * we need to issue an evaluate context command and wait on it.
1201  */
1202 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1203                 unsigned int ep_index, struct urb *urb)
1204 {
1205         struct xhci_container_ctx *out_ctx;
1206         struct xhci_input_control_ctx *ctrl_ctx;
1207         struct xhci_ep_ctx *ep_ctx;
1208         struct xhci_command *command;
1209         int max_packet_size;
1210         int hw_max_packet_size;
1211         int ret = 0;
1212
1213         out_ctx = xhci->devs[slot_id]->out_ctx;
1214         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1215         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1216         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1217         if (hw_max_packet_size != max_packet_size) {
1218                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1219                                 "Max Packet Size for ep 0 changed.");
1220                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1221                                 "Max packet size in usb_device = %d",
1222                                 max_packet_size);
1223                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1224                                 "Max packet size in xHCI HW = %d",
1225                                 hw_max_packet_size);
1226                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1227                                 "Issuing evaluate context command.");
1228
1229                 /* Set up the input context flags for the command */
1230                 /* FIXME: This won't work if a non-default control endpoint
1231                  * changes max packet sizes.
1232                  */
1233
1234                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1235                 if (!command)
1236                         return -ENOMEM;
1237
1238                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1239                 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
1240                 if (!ctrl_ctx) {
1241                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1242                                         __func__);
1243                         ret = -ENOMEM;
1244                         goto command_cleanup;
1245                 }
1246                 /* Set up the modified control endpoint 0 */
1247                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1248                                 xhci->devs[slot_id]->out_ctx, ep_index);
1249
1250                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1251                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1252                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1253
1254                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1255                 ctrl_ctx->drop_flags = 0;
1256
1257                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1258                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1259                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1260                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1261
1262                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1263                                 true, false);
1264
1265                 /* Clean up the input context for later use by bandwidth
1266                  * functions.
1267                  */
1268                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1269 command_cleanup:
1270                 kfree(command->completion);
1271                 kfree(command);
1272         }
1273         return ret;
1274 }
1275
1276 /*
1277  * non-error returns are a promise to giveback() the urb later
1278  * we drop ownership so next owner (or urb unlink) can get it
1279  */
1280 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1281 {
1282         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1283         struct xhci_td *buffer;
1284         unsigned long flags;
1285         int ret = 0;
1286         unsigned int slot_id, ep_index;
1287         struct urb_priv *urb_priv;
1288         int size, i;
1289
1290         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1291                                         true, true, __func__) <= 0)
1292                 return -EINVAL;
1293
1294         slot_id = urb->dev->slot_id;
1295         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1296
1297         if (!HCD_HW_ACCESSIBLE(hcd)) {
1298                 if (!in_interrupt())
1299                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1300                 ret = -ESHUTDOWN;
1301                 goto exit;
1302         }
1303
1304         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1305                 size = urb->number_of_packets;
1306         else
1307                 size = 1;
1308
1309         urb_priv = kzalloc(sizeof(struct urb_priv) +
1310                                   size * sizeof(struct xhci_td *), mem_flags);
1311         if (!urb_priv)
1312                 return -ENOMEM;
1313
1314         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1315         if (!buffer) {
1316                 kfree(urb_priv);
1317                 return -ENOMEM;
1318         }
1319
1320         for (i = 0; i < size; i++) {
1321                 urb_priv->td[i] = buffer;
1322                 buffer++;
1323         }
1324
1325         urb_priv->length = size;
1326         urb_priv->td_cnt = 0;
1327         urb->hcpriv = urb_priv;
1328
1329         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1330                 /* Check to see if the max packet size for the default control
1331                  * endpoint changed during FS device enumeration
1332                  */
1333                 if (urb->dev->speed == USB_SPEED_FULL) {
1334                         ret = xhci_check_maxpacket(xhci, slot_id,
1335                                         ep_index, urb);
1336                         if (ret < 0) {
1337                                 xhci_urb_free_priv(xhci, urb_priv);
1338                                 urb->hcpriv = NULL;
1339                                 return ret;
1340                         }
1341                 }
1342
1343                 /* We have a spinlock and interrupts disabled, so we must pass
1344                  * atomic context to this function, which may allocate memory.
1345                  */
1346                 spin_lock_irqsave(&xhci->lock, flags);
1347                 if (xhci->xhc_state & XHCI_STATE_DYING)
1348                         goto dying;
1349                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1350                                 slot_id, ep_index);
1351                 if (ret)
1352                         goto free_priv;
1353                 spin_unlock_irqrestore(&xhci->lock, flags);
1354         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1355                 spin_lock_irqsave(&xhci->lock, flags);
1356                 if (xhci->xhc_state & XHCI_STATE_DYING)
1357                         goto dying;
1358                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1359                                 EP_GETTING_STREAMS) {
1360                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1361                                         "is transitioning to using streams.\n");
1362                         ret = -EINVAL;
1363                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1364                                 EP_GETTING_NO_STREAMS) {
1365                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1366                                         "is transitioning to "
1367                                         "not having streams.\n");
1368                         ret = -EINVAL;
1369                 } else {
1370                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1371                                         slot_id, ep_index);
1372                 }
1373                 if (ret)
1374                         goto free_priv;
1375                 spin_unlock_irqrestore(&xhci->lock, flags);
1376         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1377                 spin_lock_irqsave(&xhci->lock, flags);
1378                 if (xhci->xhc_state & XHCI_STATE_DYING)
1379                         goto dying;
1380                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1381                                 slot_id, ep_index);
1382                 if (ret)
1383                         goto free_priv;
1384                 spin_unlock_irqrestore(&xhci->lock, flags);
1385         } else {
1386                 spin_lock_irqsave(&xhci->lock, flags);
1387                 if (xhci->xhc_state & XHCI_STATE_DYING)
1388                         goto dying;
1389                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1390                                 slot_id, ep_index);
1391                 if (ret)
1392                         goto free_priv;
1393                 spin_unlock_irqrestore(&xhci->lock, flags);
1394         }
1395 exit:
1396         return ret;
1397 dying:
1398         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1399                         "non-responsive xHCI host.\n",
1400                         urb->ep->desc.bEndpointAddress, urb);
1401         ret = -ESHUTDOWN;
1402 free_priv:
1403         xhci_urb_free_priv(xhci, urb_priv);
1404         urb->hcpriv = NULL;
1405         spin_unlock_irqrestore(&xhci->lock, flags);
1406         return ret;
1407 }
1408
1409 /* Get the right ring for the given URB.
1410  * If the endpoint supports streams, boundary check the URB's stream ID.
1411  * If the endpoint doesn't support streams, return the singular endpoint ring.
1412  */
1413 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1414                 struct urb *urb)
1415 {
1416         unsigned int slot_id;
1417         unsigned int ep_index;
1418         unsigned int stream_id;
1419         struct xhci_virt_ep *ep;
1420
1421         slot_id = urb->dev->slot_id;
1422         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1423         stream_id = urb->stream_id;
1424         ep = &xhci->devs[slot_id]->eps[ep_index];
1425         /* Common case: no streams */
1426         if (!(ep->ep_state & EP_HAS_STREAMS))
1427                 return ep->ring;
1428
1429         if (stream_id == 0) {
1430                 xhci_warn(xhci,
1431                                 "WARN: Slot ID %u, ep index %u has streams, "
1432                                 "but URB has no stream ID.\n",
1433                                 slot_id, ep_index);
1434                 return NULL;
1435         }
1436
1437         if (stream_id < ep->stream_info->num_streams)
1438                 return ep->stream_info->stream_rings[stream_id];
1439
1440         xhci_warn(xhci,
1441                         "WARN: Slot ID %u, ep index %u has "
1442                         "stream IDs 1 to %u allocated, "
1443                         "but stream ID %u is requested.\n",
1444                         slot_id, ep_index,
1445                         ep->stream_info->num_streams - 1,
1446                         stream_id);
1447         return NULL;
1448 }
1449
1450 /*
1451  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1452  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1453  * should pick up where it left off in the TD, unless a Set Transfer Ring
1454  * Dequeue Pointer is issued.
1455  *
1456  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1457  * the ring.  Since the ring is a contiguous structure, they can't be physically
1458  * removed.  Instead, there are two options:
1459  *
1460  *  1) If the HC is in the middle of processing the URB to be canceled, we
1461  *     simply move the ring's dequeue pointer past those TRBs using the Set
1462  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1463  *     when drivers timeout on the last submitted URB and attempt to cancel.
1464  *
1465  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1466  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1467  *     HC will need to invalidate the any TRBs it has cached after the stop
1468  *     endpoint command, as noted in the xHCI 0.95 errata.
1469  *
1470  *  3) The TD may have completed by the time the Stop Endpoint Command
1471  *     completes, so software needs to handle that case too.
1472  *
1473  * This function should protect against the TD enqueueing code ringing the
1474  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1475  * It also needs to account for multiple cancellations on happening at the same
1476  * time for the same endpoint.
1477  *
1478  * Note that this function can be called in any context, or so says
1479  * usb_hcd_unlink_urb()
1480  */
1481 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1482 {
1483         unsigned long flags;
1484         int ret, i;
1485         u32 temp;
1486         struct xhci_hcd *xhci;
1487         struct urb_priv *urb_priv;
1488         struct xhci_td *td;
1489         unsigned int ep_index;
1490         struct xhci_ring *ep_ring;
1491         struct xhci_virt_ep *ep;
1492         struct xhci_command *command;
1493
1494         xhci = hcd_to_xhci(hcd);
1495         spin_lock_irqsave(&xhci->lock, flags);
1496         /* Make sure the URB hasn't completed or been unlinked already */
1497         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1498         if (ret || !urb->hcpriv)
1499                 goto done;
1500         temp = readl(&xhci->op_regs->status);
1501         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1502                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1503                                 "HW died, freeing TD.");
1504                 urb_priv = urb->hcpriv;
1505                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1506                         td = urb_priv->td[i];
1507                         if (!list_empty(&td->td_list))
1508                                 list_del_init(&td->td_list);
1509                         if (!list_empty(&td->cancelled_td_list))
1510                                 list_del_init(&td->cancelled_td_list);
1511                 }
1512
1513                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1514                 spin_unlock_irqrestore(&xhci->lock, flags);
1515                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1516                 xhci_urb_free_priv(xhci, urb_priv);
1517                 return ret;
1518         }
1519         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1520                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1521                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1522                                 "Ep 0x%x: URB %p to be canceled on "
1523                                 "non-responsive xHCI host.",
1524                                 urb->ep->desc.bEndpointAddress, urb);
1525                 /* Let the stop endpoint command watchdog timer (which set this
1526                  * state) finish cleaning up the endpoint TD lists.  We must
1527                  * have caught it in the middle of dropping a lock and giving
1528                  * back an URB.
1529                  */
1530                 goto done;
1531         }
1532
1533         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1534         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1535         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1536         if (!ep_ring) {
1537                 ret = -EINVAL;
1538                 goto done;
1539         }
1540
1541         urb_priv = urb->hcpriv;
1542         i = urb_priv->td_cnt;
1543         if (i < urb_priv->length)
1544                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1545                                 "Cancel URB %p, dev %s, ep 0x%x, "
1546                                 "starting at offset 0x%llx",
1547                                 urb, urb->dev->devpath,
1548                                 urb->ep->desc.bEndpointAddress,
1549                                 (unsigned long long) xhci_trb_virt_to_dma(
1550                                         urb_priv->td[i]->start_seg,
1551                                         urb_priv->td[i]->first_trb));
1552
1553         for (; i < urb_priv->length; i++) {
1554                 td = urb_priv->td[i];
1555                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1556         }
1557
1558         /* Queue a stop endpoint command, but only if this is
1559          * the first cancellation to be handled.
1560          */
1561         if (!(ep->ep_state & EP_HALT_PENDING)) {
1562                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1563                 if (!command) {
1564                         ret = -ENOMEM;
1565                         goto done;
1566                 }
1567                 ep->ep_state |= EP_HALT_PENDING;
1568                 ep->stop_cmds_pending++;
1569                 ep->stop_cmd_timer.expires = jiffies +
1570                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1571                 add_timer(&ep->stop_cmd_timer);
1572                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1573                                          ep_index, 0);
1574                 xhci_ring_cmd_db(xhci);
1575         }
1576 done:
1577         spin_unlock_irqrestore(&xhci->lock, flags);
1578         return ret;
1579 }
1580
1581 /* Drop an endpoint from a new bandwidth configuration for this device.
1582  * Only one call to this function is allowed per endpoint before
1583  * check_bandwidth() or reset_bandwidth() must be called.
1584  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1585  * add the endpoint to the schedule with possibly new parameters denoted by a
1586  * different endpoint descriptor in usb_host_endpoint.
1587  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1588  * not allowed.
1589  *
1590  * The USB core will not allow URBs to be queued to an endpoint that is being
1591  * disabled, so there's no need for mutual exclusion to protect
1592  * the xhci->devs[slot_id] structure.
1593  */
1594 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1595                 struct usb_host_endpoint *ep)
1596 {
1597         struct xhci_hcd *xhci;
1598         struct xhci_container_ctx *in_ctx, *out_ctx;
1599         struct xhci_input_control_ctx *ctrl_ctx;
1600         unsigned int ep_index;
1601         struct xhci_ep_ctx *ep_ctx;
1602         u32 drop_flag;
1603         u32 new_add_flags, new_drop_flags;
1604         int ret;
1605
1606         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1607         if (ret <= 0)
1608                 return ret;
1609         xhci = hcd_to_xhci(hcd);
1610         if (xhci->xhc_state & XHCI_STATE_DYING)
1611                 return -ENODEV;
1612
1613         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1614         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1615         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1616                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1617                                 __func__, drop_flag);
1618                 return 0;
1619         }
1620
1621         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1622         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1623         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1624         if (!ctrl_ctx) {
1625                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1626                                 __func__);
1627                 return 0;
1628         }
1629
1630         ep_index = xhci_get_endpoint_index(&ep->desc);
1631         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1632         /* If the HC already knows the endpoint is disabled,
1633          * or the HCD has noted it is disabled, ignore this request
1634          */
1635         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1636              cpu_to_le32(EP_STATE_DISABLED)) ||
1637             le32_to_cpu(ctrl_ctx->drop_flags) &
1638             xhci_get_endpoint_flag(&ep->desc)) {
1639                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1640                                 __func__, ep);
1641                 return 0;
1642         }
1643
1644         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1645         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1646
1647         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1648         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1649
1650         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1651
1652         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1653                         (unsigned int) ep->desc.bEndpointAddress,
1654                         udev->slot_id,
1655                         (unsigned int) new_drop_flags,
1656                         (unsigned int) new_add_flags);
1657         return 0;
1658 }
1659
1660 /* Add an endpoint to a new possible bandwidth configuration for this device.
1661  * Only one call to this function is allowed per endpoint before
1662  * check_bandwidth() or reset_bandwidth() must be called.
1663  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1664  * add the endpoint to the schedule with possibly new parameters denoted by a
1665  * different endpoint descriptor in usb_host_endpoint.
1666  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1667  * not allowed.
1668  *
1669  * The USB core will not allow URBs to be queued to an endpoint until the
1670  * configuration or alt setting is installed in the device, so there's no need
1671  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1672  */
1673 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1674                 struct usb_host_endpoint *ep)
1675 {
1676         struct xhci_hcd *xhci;
1677         struct xhci_container_ctx *in_ctx, *out_ctx;
1678         unsigned int ep_index;
1679         struct xhci_input_control_ctx *ctrl_ctx;
1680         u32 added_ctxs;
1681         u32 new_add_flags, new_drop_flags;
1682         struct xhci_virt_device *virt_dev;
1683         int ret = 0;
1684
1685         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1686         if (ret <= 0) {
1687                 /* So we won't queue a reset ep command for a root hub */
1688                 ep->hcpriv = NULL;
1689                 return ret;
1690         }
1691         xhci = hcd_to_xhci(hcd);
1692         if (xhci->xhc_state & XHCI_STATE_DYING)
1693                 return -ENODEV;
1694
1695         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1696         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1697                 /* FIXME when we have to issue an evaluate endpoint command to
1698                  * deal with ep0 max packet size changing once we get the
1699                  * descriptors
1700                  */
1701                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1702                                 __func__, added_ctxs);
1703                 return 0;
1704         }
1705
1706         virt_dev = xhci->devs[udev->slot_id];
1707         in_ctx = virt_dev->in_ctx;
1708         out_ctx = virt_dev->out_ctx;
1709         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1710         if (!ctrl_ctx) {
1711                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1712                                 __func__);
1713                 return 0;
1714         }
1715
1716         ep_index = xhci_get_endpoint_index(&ep->desc);
1717         /* If this endpoint is already in use, and the upper layers are trying
1718          * to add it again without dropping it, reject the addition.
1719          */
1720         if (virt_dev->eps[ep_index].ring &&
1721                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1722                                 xhci_get_endpoint_flag(&ep->desc))) {
1723                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1724                                 "without dropping it.\n",
1725                                 (unsigned int) ep->desc.bEndpointAddress);
1726                 return -EINVAL;
1727         }
1728
1729         /* If the HCD has already noted the endpoint is enabled,
1730          * ignore this request.
1731          */
1732         if (le32_to_cpu(ctrl_ctx->add_flags) &
1733             xhci_get_endpoint_flag(&ep->desc)) {
1734                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1735                                 __func__, ep);
1736                 return 0;
1737         }
1738
1739         /*
1740          * Configuration and alternate setting changes must be done in
1741          * process context, not interrupt context (or so documenation
1742          * for usb_set_interface() and usb_set_configuration() claim).
1743          */
1744         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1745                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1746                                 __func__, ep->desc.bEndpointAddress);
1747                 return -ENOMEM;
1748         }
1749
1750         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1751         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1752
1753         /* If xhci_endpoint_disable() was called for this endpoint, but the
1754          * xHC hasn't been notified yet through the check_bandwidth() call,
1755          * this re-adds a new state for the endpoint from the new endpoint
1756          * descriptors.  We must drop and re-add this endpoint, so we leave the
1757          * drop flags alone.
1758          */
1759         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1760
1761         /* Store the usb_device pointer for later use */
1762         ep->hcpriv = udev;
1763
1764         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1765                         (unsigned int) ep->desc.bEndpointAddress,
1766                         udev->slot_id,
1767                         (unsigned int) new_drop_flags,
1768                         (unsigned int) new_add_flags);
1769         return 0;
1770 }
1771
1772 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1773 {
1774         struct xhci_input_control_ctx *ctrl_ctx;
1775         struct xhci_ep_ctx *ep_ctx;
1776         struct xhci_slot_ctx *slot_ctx;
1777         int i;
1778
1779         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1780         if (!ctrl_ctx) {
1781                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1782                                 __func__);
1783                 return;
1784         }
1785
1786         /* When a device's add flag and drop flag are zero, any subsequent
1787          * configure endpoint command will leave that endpoint's state
1788          * untouched.  Make sure we don't leave any old state in the input
1789          * endpoint contexts.
1790          */
1791         ctrl_ctx->drop_flags = 0;
1792         ctrl_ctx->add_flags = 0;
1793         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1794         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1795         /* Endpoint 0 is always valid */
1796         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1797         for (i = 1; i < 31; ++i) {
1798                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1799                 ep_ctx->ep_info = 0;
1800                 ep_ctx->ep_info2 = 0;
1801                 ep_ctx->deq = 0;
1802                 ep_ctx->tx_info = 0;
1803         }
1804 }
1805
1806 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1807                 struct usb_device *udev, u32 *cmd_status)
1808 {
1809         int ret;
1810
1811         switch (*cmd_status) {
1812         case COMP_CMD_ABORT:
1813         case COMP_CMD_STOP:
1814                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1815                 ret = -ETIME;
1816                 break;
1817         case COMP_ENOMEM:
1818                 dev_warn(&udev->dev,
1819                          "Not enough host controller resources for new device state.\n");
1820                 ret = -ENOMEM;
1821                 /* FIXME: can we allocate more resources for the HC? */
1822                 break;
1823         case COMP_BW_ERR:
1824         case COMP_2ND_BW_ERR:
1825                 dev_warn(&udev->dev,
1826                          "Not enough bandwidth for new device state.\n");
1827                 ret = -ENOSPC;
1828                 /* FIXME: can we go back to the old state? */
1829                 break;
1830         case COMP_TRB_ERR:
1831                 /* the HCD set up something wrong */
1832                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1833                                 "add flag = 1, "
1834                                 "and endpoint is not disabled.\n");
1835                 ret = -EINVAL;
1836                 break;
1837         case COMP_DEV_ERR:
1838                 dev_warn(&udev->dev,
1839                          "ERROR: Incompatible device for endpoint configure command.\n");
1840                 ret = -ENODEV;
1841                 break;
1842         case COMP_SUCCESS:
1843                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1844                                 "Successful Endpoint Configure command");
1845                 ret = 0;
1846                 break;
1847         default:
1848                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1849                                 *cmd_status);
1850                 ret = -EINVAL;
1851                 break;
1852         }
1853         return ret;
1854 }
1855
1856 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1857                 struct usb_device *udev, u32 *cmd_status)
1858 {
1859         int ret;
1860         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1861
1862         switch (*cmd_status) {
1863         case COMP_CMD_ABORT:
1864         case COMP_CMD_STOP:
1865                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1866                 ret = -ETIME;
1867                 break;
1868         case COMP_EINVAL:
1869                 dev_warn(&udev->dev,
1870                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1871                 ret = -EINVAL;
1872                 break;
1873         case COMP_EBADSLT:
1874                 dev_warn(&udev->dev,
1875                         "WARN: slot not enabled for evaluate context command.\n");
1876                 ret = -EINVAL;
1877                 break;
1878         case COMP_CTX_STATE:
1879                 dev_warn(&udev->dev,
1880                         "WARN: invalid context state for evaluate context command.\n");
1881                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1882                 ret = -EINVAL;
1883                 break;
1884         case COMP_DEV_ERR:
1885                 dev_warn(&udev->dev,
1886                         "ERROR: Incompatible device for evaluate context command.\n");
1887                 ret = -ENODEV;
1888                 break;
1889         case COMP_MEL_ERR:
1890                 /* Max Exit Latency too large error */
1891                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1892                 ret = -EINVAL;
1893                 break;
1894         case COMP_SUCCESS:
1895                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1896                                 "Successful evaluate context command");
1897                 ret = 0;
1898                 break;
1899         default:
1900                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1901                         *cmd_status);
1902                 ret = -EINVAL;
1903                 break;
1904         }
1905         return ret;
1906 }
1907
1908 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1909                 struct xhci_input_control_ctx *ctrl_ctx)
1910 {
1911         u32 valid_add_flags;
1912         u32 valid_drop_flags;
1913
1914         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1915          * (bit 1).  The default control endpoint is added during the Address
1916          * Device command and is never removed until the slot is disabled.
1917          */
1918         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1919         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1920
1921         /* Use hweight32 to count the number of ones in the add flags, or
1922          * number of endpoints added.  Don't count endpoints that are changed
1923          * (both added and dropped).
1924          */
1925         return hweight32(valid_add_flags) -
1926                 hweight32(valid_add_flags & valid_drop_flags);
1927 }
1928
1929 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1930                 struct xhci_input_control_ctx *ctrl_ctx)
1931 {
1932         u32 valid_add_flags;
1933         u32 valid_drop_flags;
1934
1935         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1936         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1937
1938         return hweight32(valid_drop_flags) -
1939                 hweight32(valid_add_flags & valid_drop_flags);
1940 }
1941
1942 /*
1943  * We need to reserve the new number of endpoints before the configure endpoint
1944  * command completes.  We can't subtract the dropped endpoints from the number
1945  * of active endpoints until the command completes because we can oversubscribe
1946  * the host in this case:
1947  *
1948  *  - the first configure endpoint command drops more endpoints than it adds
1949  *  - a second configure endpoint command that adds more endpoints is queued
1950  *  - the first configure endpoint command fails, so the config is unchanged
1951  *  - the second command may succeed, even though there isn't enough resources
1952  *
1953  * Must be called with xhci->lock held.
1954  */
1955 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1956                 struct xhci_input_control_ctx *ctrl_ctx)
1957 {
1958         u32 added_eps;
1959
1960         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1961         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1962                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1963                                 "Not enough ep ctxs: "
1964                                 "%u active, need to add %u, limit is %u.",
1965                                 xhci->num_active_eps, added_eps,
1966                                 xhci->limit_active_eps);
1967                 return -ENOMEM;
1968         }
1969         xhci->num_active_eps += added_eps;
1970         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1971                         "Adding %u ep ctxs, %u now active.", added_eps,
1972                         xhci->num_active_eps);
1973         return 0;
1974 }
1975
1976 /*
1977  * The configure endpoint was failed by the xHC for some other reason, so we
1978  * need to revert the resources that failed configuration would have used.
1979  *
1980  * Must be called with xhci->lock held.
1981  */
1982 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1983                 struct xhci_input_control_ctx *ctrl_ctx)
1984 {
1985         u32 num_failed_eps;
1986
1987         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1988         xhci->num_active_eps -= num_failed_eps;
1989         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1990                         "Removing %u failed ep ctxs, %u now active.",
1991                         num_failed_eps,
1992                         xhci->num_active_eps);
1993 }
1994
1995 /*
1996  * Now that the command has completed, clean up the active endpoint count by
1997  * subtracting out the endpoints that were dropped (but not changed).
1998  *
1999  * Must be called with xhci->lock held.
2000  */
2001 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2002                 struct xhci_input_control_ctx *ctrl_ctx)
2003 {
2004         u32 num_dropped_eps;
2005
2006         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2007         xhci->num_active_eps -= num_dropped_eps;
2008         if (num_dropped_eps)
2009                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2010                                 "Removing %u dropped ep ctxs, %u now active.",
2011                                 num_dropped_eps,
2012                                 xhci->num_active_eps);
2013 }
2014
2015 static unsigned int xhci_get_block_size(struct usb_device *udev)
2016 {
2017         switch (udev->speed) {
2018         case USB_SPEED_LOW:
2019         case USB_SPEED_FULL:
2020                 return FS_BLOCK;
2021         case USB_SPEED_HIGH:
2022                 return HS_BLOCK;
2023         case USB_SPEED_SUPER:
2024                 return SS_BLOCK;
2025         case USB_SPEED_UNKNOWN:
2026         case USB_SPEED_WIRELESS:
2027         default:
2028                 /* Should never happen */
2029                 return 1;
2030         }
2031 }
2032
2033 static unsigned int
2034 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2035 {
2036         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2037                 return LS_OVERHEAD;
2038         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2039                 return FS_OVERHEAD;
2040         return HS_OVERHEAD;
2041 }
2042
2043 /* If we are changing a LS/FS device under a HS hub,
2044  * make sure (if we are activating a new TT) that the HS bus has enough
2045  * bandwidth for this new TT.
2046  */
2047 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2048                 struct xhci_virt_device *virt_dev,
2049                 int old_active_eps)
2050 {
2051         struct xhci_interval_bw_table *bw_table;
2052         struct xhci_tt_bw_info *tt_info;
2053
2054         /* Find the bandwidth table for the root port this TT is attached to. */
2055         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2056         tt_info = virt_dev->tt_info;
2057         /* If this TT already had active endpoints, the bandwidth for this TT
2058          * has already been added.  Removing all periodic endpoints (and thus
2059          * making the TT enactive) will only decrease the bandwidth used.
2060          */
2061         if (old_active_eps)
2062                 return 0;
2063         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2064                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2065                         return -ENOMEM;
2066                 return 0;
2067         }
2068         /* Not sure why we would have no new active endpoints...
2069          *
2070          * Maybe because of an Evaluate Context change for a hub update or a
2071          * control endpoint 0 max packet size change?
2072          * FIXME: skip the bandwidth calculation in that case.
2073          */
2074         return 0;
2075 }
2076
2077 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2078                 struct xhci_virt_device *virt_dev)
2079 {
2080         unsigned int bw_reserved;
2081
2082         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2083         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2084                 return -ENOMEM;
2085
2086         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2087         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2088                 return -ENOMEM;
2089
2090         return 0;
2091 }
2092
2093 /*
2094  * This algorithm is a very conservative estimate of the worst-case scheduling
2095  * scenario for any one interval.  The hardware dynamically schedules the
2096  * packets, so we can't tell which microframe could be the limiting factor in
2097  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2098  *
2099  * Obviously, we can't solve an NP complete problem to find the minimum worst
2100  * case scenario.  Instead, we come up with an estimate that is no less than
2101  * the worst case bandwidth used for any one microframe, but may be an
2102  * over-estimate.
2103  *
2104  * We walk the requirements for each endpoint by interval, starting with the
2105  * smallest interval, and place packets in the schedule where there is only one
2106  * possible way to schedule packets for that interval.  In order to simplify
2107  * this algorithm, we record the largest max packet size for each interval, and
2108  * assume all packets will be that size.
2109  *
2110  * For interval 0, we obviously must schedule all packets for each interval.
2111  * The bandwidth for interval 0 is just the amount of data to be transmitted
2112  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2113  * the number of packets).
2114  *
2115  * For interval 1, we have two possible microframes to schedule those packets
2116  * in.  For this algorithm, if we can schedule the same number of packets for
2117  * each possible scheduling opportunity (each microframe), we will do so.  The
2118  * remaining number of packets will be saved to be transmitted in the gaps in
2119  * the next interval's scheduling sequence.
2120  *
2121  * As we move those remaining packets to be scheduled with interval 2 packets,
2122  * we have to double the number of remaining packets to transmit.  This is
2123  * because the intervals are actually powers of 2, and we would be transmitting
2124  * the previous interval's packets twice in this interval.  We also have to be
2125  * sure that when we look at the largest max packet size for this interval, we
2126  * also look at the largest max packet size for the remaining packets and take
2127  * the greater of the two.
2128  *
2129  * The algorithm continues to evenly distribute packets in each scheduling
2130  * opportunity, and push the remaining packets out, until we get to the last
2131  * interval.  Then those packets and their associated overhead are just added
2132  * to the bandwidth used.
2133  */
2134 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2135                 struct xhci_virt_device *virt_dev,
2136                 int old_active_eps)
2137 {
2138         unsigned int bw_reserved;
2139         unsigned int max_bandwidth;
2140         unsigned int bw_used;
2141         unsigned int block_size;
2142         struct xhci_interval_bw_table *bw_table;
2143         unsigned int packet_size = 0;
2144         unsigned int overhead = 0;
2145         unsigned int packets_transmitted = 0;
2146         unsigned int packets_remaining = 0;
2147         unsigned int i;
2148
2149         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2150                 return xhci_check_ss_bw(xhci, virt_dev);
2151
2152         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2153                 max_bandwidth = HS_BW_LIMIT;
2154                 /* Convert percent of bus BW reserved to blocks reserved */
2155                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2156         } else {
2157                 max_bandwidth = FS_BW_LIMIT;
2158                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2159         }
2160
2161         bw_table = virt_dev->bw_table;
2162         /* We need to translate the max packet size and max ESIT payloads into
2163          * the units the hardware uses.
2164          */
2165         block_size = xhci_get_block_size(virt_dev->udev);
2166
2167         /* If we are manipulating a LS/FS device under a HS hub, double check
2168          * that the HS bus has enough bandwidth if we are activing a new TT.
2169          */
2170         if (virt_dev->tt_info) {
2171                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2172                                 "Recalculating BW for rootport %u",
2173                                 virt_dev->real_port);
2174                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2175                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2176                                         "newly activated TT.\n");
2177                         return -ENOMEM;
2178                 }
2179                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2180                                 "Recalculating BW for TT slot %u port %u",
2181                                 virt_dev->tt_info->slot_id,
2182                                 virt_dev->tt_info->ttport);
2183         } else {
2184                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2185                                 "Recalculating BW for rootport %u",
2186                                 virt_dev->real_port);
2187         }
2188
2189         /* Add in how much bandwidth will be used for interval zero, or the
2190          * rounded max ESIT payload + number of packets * largest overhead.
2191          */
2192         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2193                 bw_table->interval_bw[0].num_packets *
2194                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2195
2196         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2197                 unsigned int bw_added;
2198                 unsigned int largest_mps;
2199                 unsigned int interval_overhead;
2200
2201                 /*
2202                  * How many packets could we transmit in this interval?
2203                  * If packets didn't fit in the previous interval, we will need
2204                  * to transmit that many packets twice within this interval.
2205                  */
2206                 packets_remaining = 2 * packets_remaining +
2207                         bw_table->interval_bw[i].num_packets;
2208
2209                 /* Find the largest max packet size of this or the previous
2210                  * interval.
2211                  */
2212                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2213                         largest_mps = 0;
2214                 else {
2215                         struct xhci_virt_ep *virt_ep;
2216                         struct list_head *ep_entry;
2217
2218                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2219                         virt_ep = list_entry(ep_entry,
2220                                         struct xhci_virt_ep, bw_endpoint_list);
2221                         /* Convert to blocks, rounding up */
2222                         largest_mps = DIV_ROUND_UP(
2223                                         virt_ep->bw_info.max_packet_size,
2224                                         block_size);
2225                 }
2226                 if (largest_mps > packet_size)
2227                         packet_size = largest_mps;
2228
2229                 /* Use the larger overhead of this or the previous interval. */
2230                 interval_overhead = xhci_get_largest_overhead(
2231                                 &bw_table->interval_bw[i]);
2232                 if (interval_overhead > overhead)
2233                         overhead = interval_overhead;
2234
2235                 /* How many packets can we evenly distribute across
2236                  * (1 << (i + 1)) possible scheduling opportunities?
2237                  */
2238                 packets_transmitted = packets_remaining >> (i + 1);
2239
2240                 /* Add in the bandwidth used for those scheduled packets */
2241                 bw_added = packets_transmitted * (overhead + packet_size);
2242
2243                 /* How many packets do we have remaining to transmit? */
2244                 packets_remaining = packets_remaining % (1 << (i + 1));
2245
2246                 /* What largest max packet size should those packets have? */
2247                 /* If we've transmitted all packets, don't carry over the
2248                  * largest packet size.
2249                  */
2250                 if (packets_remaining == 0) {
2251                         packet_size = 0;
2252                         overhead = 0;
2253                 } else if (packets_transmitted > 0) {
2254                         /* Otherwise if we do have remaining packets, and we've
2255                          * scheduled some packets in this interval, take the
2256                          * largest max packet size from endpoints with this
2257                          * interval.
2258                          */
2259                         packet_size = largest_mps;
2260                         overhead = interval_overhead;
2261                 }
2262                 /* Otherwise carry over packet_size and overhead from the last
2263                  * time we had a remainder.
2264                  */
2265                 bw_used += bw_added;
2266                 if (bw_used > max_bandwidth) {
2267                         xhci_warn(xhci, "Not enough bandwidth. "
2268                                         "Proposed: %u, Max: %u\n",
2269                                 bw_used, max_bandwidth);
2270                         return -ENOMEM;
2271                 }
2272         }
2273         /*
2274          * Ok, we know we have some packets left over after even-handedly
2275          * scheduling interval 15.  We don't know which microframes they will
2276          * fit into, so we over-schedule and say they will be scheduled every
2277          * microframe.
2278          */
2279         if (packets_remaining > 0)
2280                 bw_used += overhead + packet_size;
2281
2282         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2283                 unsigned int port_index = virt_dev->real_port - 1;
2284
2285                 /* OK, we're manipulating a HS device attached to a
2286                  * root port bandwidth domain.  Include the number of active TTs
2287                  * in the bandwidth used.
2288                  */
2289                 bw_used += TT_HS_OVERHEAD *
2290                         xhci->rh_bw[port_index].num_active_tts;
2291         }
2292
2293         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2295                 "Available: %u " "percent",
2296                 bw_used, max_bandwidth, bw_reserved,
2297                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2298                 max_bandwidth);
2299
2300         bw_used += bw_reserved;
2301         if (bw_used > max_bandwidth) {
2302                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2303                                 bw_used, max_bandwidth);
2304                 return -ENOMEM;
2305         }
2306
2307         bw_table->bw_used = bw_used;
2308         return 0;
2309 }
2310
2311 static bool xhci_is_async_ep(unsigned int ep_type)
2312 {
2313         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2314                                         ep_type != ISOC_IN_EP &&
2315                                         ep_type != INT_IN_EP);
2316 }
2317
2318 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2319 {
2320         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2321 }
2322
2323 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2324 {
2325         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2326
2327         if (ep_bw->ep_interval == 0)
2328                 return SS_OVERHEAD_BURST +
2329                         (ep_bw->mult * ep_bw->num_packets *
2330                                         (SS_OVERHEAD + mps));
2331         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2332                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2333                                 1 << ep_bw->ep_interval);
2334
2335 }
2336
2337 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2338                 struct xhci_bw_info *ep_bw,
2339                 struct xhci_interval_bw_table *bw_table,
2340                 struct usb_device *udev,
2341                 struct xhci_virt_ep *virt_ep,
2342                 struct xhci_tt_bw_info *tt_info)
2343 {
2344         struct xhci_interval_bw *interval_bw;
2345         int normalized_interval;
2346
2347         if (xhci_is_async_ep(ep_bw->type))
2348                 return;
2349
2350         if (udev->speed == USB_SPEED_SUPER) {
2351                 if (xhci_is_sync_in_ep(ep_bw->type))
2352                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2353                                 xhci_get_ss_bw_consumed(ep_bw);
2354                 else
2355                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2356                                 xhci_get_ss_bw_consumed(ep_bw);
2357                 return;
2358         }
2359
2360         /* SuperSpeed endpoints never get added to intervals in the table, so
2361          * this check is only valid for HS/FS/LS devices.
2362          */
2363         if (list_empty(&virt_ep->bw_endpoint_list))
2364                 return;
2365         /* For LS/FS devices, we need to translate the interval expressed in
2366          * microframes to frames.
2367          */
2368         if (udev->speed == USB_SPEED_HIGH)
2369                 normalized_interval = ep_bw->ep_interval;
2370         else
2371                 normalized_interval = ep_bw->ep_interval - 3;
2372
2373         if (normalized_interval == 0)
2374                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2375         interval_bw = &bw_table->interval_bw[normalized_interval];
2376         interval_bw->num_packets -= ep_bw->num_packets;
2377         switch (udev->speed) {
2378         case USB_SPEED_LOW:
2379                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2380                 break;
2381         case USB_SPEED_FULL:
2382                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2383                 break;
2384         case USB_SPEED_HIGH:
2385                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2386                 break;
2387         case USB_SPEED_SUPER:
2388         case USB_SPEED_UNKNOWN:
2389         case USB_SPEED_WIRELESS:
2390                 /* Should never happen because only LS/FS/HS endpoints will get
2391                  * added to the endpoint list.
2392                  */
2393                 return;
2394         }
2395         if (tt_info)
2396                 tt_info->active_eps -= 1;
2397         list_del_init(&virt_ep->bw_endpoint_list);
2398 }
2399
2400 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2401                 struct xhci_bw_info *ep_bw,
2402                 struct xhci_interval_bw_table *bw_table,
2403                 struct usb_device *udev,
2404                 struct xhci_virt_ep *virt_ep,
2405                 struct xhci_tt_bw_info *tt_info)
2406 {
2407         struct xhci_interval_bw *interval_bw;
2408         struct xhci_virt_ep *smaller_ep;
2409         int normalized_interval;
2410
2411         if (xhci_is_async_ep(ep_bw->type))
2412                 return;
2413
2414         if (udev->speed == USB_SPEED_SUPER) {
2415                 if (xhci_is_sync_in_ep(ep_bw->type))
2416                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2417                                 xhci_get_ss_bw_consumed(ep_bw);
2418                 else
2419                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2420                                 xhci_get_ss_bw_consumed(ep_bw);
2421                 return;
2422         }
2423
2424         /* For LS/FS devices, we need to translate the interval expressed in
2425          * microframes to frames.
2426          */
2427         if (udev->speed == USB_SPEED_HIGH)
2428                 normalized_interval = ep_bw->ep_interval;
2429         else
2430                 normalized_interval = ep_bw->ep_interval - 3;
2431
2432         if (normalized_interval == 0)
2433                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2434         interval_bw = &bw_table->interval_bw[normalized_interval];
2435         interval_bw->num_packets += ep_bw->num_packets;
2436         switch (udev->speed) {
2437         case USB_SPEED_LOW:
2438                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2439                 break;
2440         case USB_SPEED_FULL:
2441                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2442                 break;
2443         case USB_SPEED_HIGH:
2444                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2445                 break;
2446         case USB_SPEED_SUPER:
2447         case USB_SPEED_UNKNOWN:
2448         case USB_SPEED_WIRELESS:
2449                 /* Should never happen because only LS/FS/HS endpoints will get
2450                  * added to the endpoint list.
2451                  */
2452                 return;
2453         }
2454
2455         if (tt_info)
2456                 tt_info->active_eps += 1;
2457         /* Insert the endpoint into the list, largest max packet size first. */
2458         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2459                         bw_endpoint_list) {
2460                 if (ep_bw->max_packet_size >=
2461                                 smaller_ep->bw_info.max_packet_size) {
2462                         /* Add the new ep before the smaller endpoint */
2463                         list_add_tail(&virt_ep->bw_endpoint_list,
2464                                         &smaller_ep->bw_endpoint_list);
2465                         return;
2466                 }
2467         }
2468         /* Add the new endpoint at the end of the list. */
2469         list_add_tail(&virt_ep->bw_endpoint_list,
2470                         &interval_bw->endpoints);
2471 }
2472
2473 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2474                 struct xhci_virt_device *virt_dev,
2475                 int old_active_eps)
2476 {
2477         struct xhci_root_port_bw_info *rh_bw_info;
2478         if (!virt_dev->tt_info)
2479                 return;
2480
2481         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2482         if (old_active_eps == 0 &&
2483                                 virt_dev->tt_info->active_eps != 0) {
2484                 rh_bw_info->num_active_tts += 1;
2485                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2486         } else if (old_active_eps != 0 &&
2487                                 virt_dev->tt_info->active_eps == 0) {
2488                 rh_bw_info->num_active_tts -= 1;
2489                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2490         }
2491 }
2492
2493 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2494                 struct xhci_virt_device *virt_dev,
2495                 struct xhci_container_ctx *in_ctx)
2496 {
2497         struct xhci_bw_info ep_bw_info[31];
2498         int i;
2499         struct xhci_input_control_ctx *ctrl_ctx;
2500         int old_active_eps = 0;
2501
2502         if (virt_dev->tt_info)
2503                 old_active_eps = virt_dev->tt_info->active_eps;
2504
2505         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2506         if (!ctrl_ctx) {
2507                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2508                                 __func__);
2509                 return -ENOMEM;
2510         }
2511
2512         for (i = 0; i < 31; i++) {
2513                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2514                         continue;
2515
2516                 /* Make a copy of the BW info in case we need to revert this */
2517                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2518                                 sizeof(ep_bw_info[i]));
2519                 /* Drop the endpoint from the interval table if the endpoint is
2520                  * being dropped or changed.
2521                  */
2522                 if (EP_IS_DROPPED(ctrl_ctx, i))
2523                         xhci_drop_ep_from_interval_table(xhci,
2524                                         &virt_dev->eps[i].bw_info,
2525                                         virt_dev->bw_table,
2526                                         virt_dev->udev,
2527                                         &virt_dev->eps[i],
2528                                         virt_dev->tt_info);
2529         }
2530         /* Overwrite the information stored in the endpoints' bw_info */
2531         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2532         for (i = 0; i < 31; i++) {
2533                 /* Add any changed or added endpoints to the interval table */
2534                 if (EP_IS_ADDED(ctrl_ctx, i))
2535                         xhci_add_ep_to_interval_table(xhci,
2536                                         &virt_dev->eps[i].bw_info,
2537                                         virt_dev->bw_table,
2538                                         virt_dev->udev,
2539                                         &virt_dev->eps[i],
2540                                         virt_dev->tt_info);
2541         }
2542
2543         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2544                 /* Ok, this fits in the bandwidth we have.
2545                  * Update the number of active TTs.
2546                  */
2547                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2548                 return 0;
2549         }
2550
2551         /* We don't have enough bandwidth for this, revert the stored info. */
2552         for (i = 0; i < 31; i++) {
2553                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2554                         continue;
2555
2556                 /* Drop the new copies of any added or changed endpoints from
2557                  * the interval table.
2558                  */
2559                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2560                         xhci_drop_ep_from_interval_table(xhci,
2561                                         &virt_dev->eps[i].bw_info,
2562                                         virt_dev->bw_table,
2563                                         virt_dev->udev,
2564                                         &virt_dev->eps[i],
2565                                         virt_dev->tt_info);
2566                 }
2567                 /* Revert the endpoint back to its old information */
2568                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2569                                 sizeof(ep_bw_info[i]));
2570                 /* Add any changed or dropped endpoints back into the table */
2571                 if (EP_IS_DROPPED(ctrl_ctx, i))
2572                         xhci_add_ep_to_interval_table(xhci,
2573                                         &virt_dev->eps[i].bw_info,
2574                                         virt_dev->bw_table,
2575                                         virt_dev->udev,
2576                                         &virt_dev->eps[i],
2577                                         virt_dev->tt_info);
2578         }
2579         return -ENOMEM;
2580 }
2581
2582
2583 /* Issue a configure endpoint command or evaluate context command
2584  * and wait for it to finish.
2585  */
2586 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2587                 struct usb_device *udev,
2588                 struct xhci_command *command,
2589                 bool ctx_change, bool must_succeed)
2590 {
2591         int ret;
2592         unsigned long flags;
2593         struct xhci_input_control_ctx *ctrl_ctx;
2594         struct xhci_virt_device *virt_dev;
2595
2596         if (!command)
2597                 return -EINVAL;
2598
2599         spin_lock_irqsave(&xhci->lock, flags);
2600         virt_dev = xhci->devs[udev->slot_id];
2601
2602         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2603         if (!ctrl_ctx) {
2604                 spin_unlock_irqrestore(&xhci->lock, flags);
2605                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2606                                 __func__);
2607                 return -ENOMEM;
2608         }
2609
2610         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2611                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2612                 spin_unlock_irqrestore(&xhci->lock, flags);
2613                 xhci_warn(xhci, "Not enough host resources, "
2614                                 "active endpoint contexts = %u\n",
2615                                 xhci->num_active_eps);
2616                 return -ENOMEM;
2617         }
2618         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2619             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2620                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2621                         xhci_free_host_resources(xhci, ctrl_ctx);
2622                 spin_unlock_irqrestore(&xhci->lock, flags);
2623                 xhci_warn(xhci, "Not enough bandwidth\n");
2624                 return -ENOMEM;
2625         }
2626
2627         if (!ctx_change)
2628                 ret = xhci_queue_configure_endpoint(xhci, command,
2629                                 command->in_ctx->dma,
2630                                 udev->slot_id, must_succeed);
2631         else
2632                 ret = xhci_queue_evaluate_context(xhci, command,
2633                                 command->in_ctx->dma,
2634                                 udev->slot_id, must_succeed);
2635         if (ret < 0) {
2636                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2637                         xhci_free_host_resources(xhci, ctrl_ctx);
2638                 spin_unlock_irqrestore(&xhci->lock, flags);
2639                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2640                                 "FIXME allocate a new ring segment");
2641                 return -ENOMEM;
2642         }
2643         xhci_ring_cmd_db(xhci);
2644         spin_unlock_irqrestore(&xhci->lock, flags);
2645
2646         /* Wait for the configure endpoint command to complete */
2647         wait_for_completion(command->completion);
2648
2649         if (!ctx_change)
2650                 ret = xhci_configure_endpoint_result(xhci, udev,
2651                                                      &command->status);
2652         else
2653                 ret = xhci_evaluate_context_result(xhci, udev,
2654                                                    &command->status);
2655
2656         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2657                 spin_lock_irqsave(&xhci->lock, flags);
2658                 /* If the command failed, remove the reserved resources.
2659                  * Otherwise, clean up the estimate to include dropped eps.
2660                  */
2661                 if (ret)
2662                         xhci_free_host_resources(xhci, ctrl_ctx);
2663                 else
2664                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2665                 spin_unlock_irqrestore(&xhci->lock, flags);
2666         }
2667         return ret;
2668 }
2669
2670 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2671         struct xhci_virt_device *vdev, int i)
2672 {
2673         struct xhci_virt_ep *ep = &vdev->eps[i];
2674
2675         if (ep->ep_state & EP_HAS_STREAMS) {
2676                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2677                                 xhci_get_endpoint_address(i));
2678                 xhci_free_stream_info(xhci, ep->stream_info);
2679                 ep->stream_info = NULL;
2680                 ep->ep_state &= ~EP_HAS_STREAMS;
2681         }
2682 }
2683
2684 /* Called after one or more calls to xhci_add_endpoint() or
2685  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2686  * to call xhci_reset_bandwidth().
2687  *
2688  * Since we are in the middle of changing either configuration or
2689  * installing a new alt setting, the USB core won't allow URBs to be
2690  * enqueued for any endpoint on the old config or interface.  Nothing
2691  * else should be touching the xhci->devs[slot_id] structure, so we
2692  * don't need to take the xhci->lock for manipulating that.
2693  */
2694 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2695 {
2696         int i;
2697         int ret = 0;
2698         struct xhci_hcd *xhci;
2699         struct xhci_virt_device *virt_dev;
2700         struct xhci_input_control_ctx *ctrl_ctx;
2701         struct xhci_slot_ctx *slot_ctx;
2702         struct xhci_command *command;
2703
2704         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2705         if (ret <= 0)
2706                 return ret;
2707         xhci = hcd_to_xhci(hcd);
2708         if (xhci->xhc_state & XHCI_STATE_DYING)
2709                 return -ENODEV;
2710
2711         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2712         virt_dev = xhci->devs[udev->slot_id];
2713
2714         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2715         if (!command)
2716                 return -ENOMEM;
2717
2718         command->in_ctx = virt_dev->in_ctx;
2719
2720         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2721         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2722         if (!ctrl_ctx) {
2723                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2724                                 __func__);
2725                 ret = -ENOMEM;
2726                 goto command_cleanup;
2727         }
2728         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2729         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2730         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2731
2732         /* Don't issue the command if there's no endpoints to update. */
2733         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2734             ctrl_ctx->drop_flags == 0) {
2735                 ret = 0;
2736                 goto command_cleanup;
2737         }
2738         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2739         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2740         for (i = 31; i >= 1; i--) {
2741                 __le32 le32 = cpu_to_le32(BIT(i));
2742
2743                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2744                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2745                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2746                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2747                         break;
2748                 }
2749         }
2750         xhci_dbg(xhci, "New Input Control Context:\n");
2751         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2752                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2753
2754         ret = xhci_configure_endpoint(xhci, udev, command,
2755                         false, false);
2756         if (ret)
2757                 /* Callee should call reset_bandwidth() */
2758                 goto command_cleanup;
2759
2760         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2761         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2762                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2763
2764         /* Free any rings that were dropped, but not changed. */
2765         for (i = 1; i < 31; ++i) {
2766                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2767                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2768                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2769                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2770                 }
2771         }
2772         xhci_zero_in_ctx(xhci, virt_dev);
2773         /*
2774          * Install any rings for completely new endpoints or changed endpoints,
2775          * and free or cache any old rings from changed endpoints.
2776          */
2777         for (i = 1; i < 31; ++i) {
2778                 if (!virt_dev->eps[i].new_ring)
2779                         continue;
2780                 /* Only cache or free the old ring if it exists.
2781                  * It may not if this is the first add of an endpoint.
2782                  */
2783                 if (virt_dev->eps[i].ring) {
2784                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2785                 }
2786                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2787                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2788                 virt_dev->eps[i].new_ring = NULL;
2789         }
2790 command_cleanup:
2791         kfree(command->completion);
2792         kfree(command);
2793
2794         return ret;
2795 }
2796
2797 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2798 {
2799         struct xhci_hcd *xhci;
2800         struct xhci_virt_device *virt_dev;
2801         int i, ret;
2802
2803         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2804         if (ret <= 0)
2805                 return;
2806         xhci = hcd_to_xhci(hcd);
2807
2808         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2809         virt_dev = xhci->devs[udev->slot_id];
2810         /* Free any rings allocated for added endpoints */
2811         for (i = 0; i < 31; ++i) {
2812                 if (virt_dev->eps[i].new_ring) {
2813                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2814                         virt_dev->eps[i].new_ring = NULL;
2815                 }
2816         }
2817         xhci_zero_in_ctx(xhci, virt_dev);
2818 }
2819
2820 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2821                 struct xhci_container_ctx *in_ctx,
2822                 struct xhci_container_ctx *out_ctx,
2823                 struct xhci_input_control_ctx *ctrl_ctx,
2824                 u32 add_flags, u32 drop_flags)
2825 {
2826         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2827         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2828         xhci_slot_copy(xhci, in_ctx, out_ctx);
2829         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2830
2831         xhci_dbg(xhci, "Input Context:\n");
2832         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2833 }
2834
2835 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2836                 unsigned int slot_id, unsigned int ep_index,
2837                 struct xhci_dequeue_state *deq_state)
2838 {
2839         struct xhci_input_control_ctx *ctrl_ctx;
2840         struct xhci_container_ctx *in_ctx;
2841         struct xhci_ep_ctx *ep_ctx;
2842         u32 added_ctxs;
2843         dma_addr_t addr;
2844
2845         in_ctx = xhci->devs[slot_id]->in_ctx;
2846         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2847         if (!ctrl_ctx) {
2848                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2849                                 __func__);
2850                 return;
2851         }
2852
2853         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2854                         xhci->devs[slot_id]->out_ctx, ep_index);
2855         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2856         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2857                         deq_state->new_deq_ptr);
2858         if (addr == 0) {
2859                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2860                                 "reset ep command\n");
2861                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2862                                 deq_state->new_deq_seg,
2863                                 deq_state->new_deq_ptr);
2864                 return;
2865         }
2866         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2867
2868         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2869         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2870                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2871                         added_ctxs, added_ctxs);
2872 }
2873
2874 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2875                 struct usb_device *udev, unsigned int ep_index)
2876 {
2877         struct xhci_dequeue_state deq_state;
2878         struct xhci_virt_ep *ep;
2879
2880         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2881                         "Cleaning up stalled endpoint ring");
2882         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2883         /* We need to move the HW's dequeue pointer past this TD,
2884          * or it will attempt to resend it on the next doorbell ring.
2885          */
2886         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2887                         ep_index, ep->stopped_stream, ep->stopped_td,
2888                         &deq_state);
2889
2890         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2891                 return;
2892
2893         /* HW with the reset endpoint quirk will use the saved dequeue state to
2894          * issue a configure endpoint command later.
2895          */
2896         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2897                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2898                                 "Queueing new dequeue state");
2899                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2900                                 ep_index, ep->stopped_stream, &deq_state);
2901         } else {
2902                 /* Better hope no one uses the input context between now and the
2903                  * reset endpoint completion!
2904                  * XXX: No idea how this hardware will react when stream rings
2905                  * are enabled.
2906                  */
2907                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2908                                 "Setting up input context for "
2909                                 "configure endpoint command");
2910                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2911                                 ep_index, &deq_state);
2912         }
2913 }
2914
2915 /* Deal with stalled endpoints.  The core should have sent the control message
2916  * to clear the halt condition.  However, we need to make the xHCI hardware
2917  * reset its sequence number, since a device will expect a sequence number of
2918  * zero after the halt condition is cleared.
2919  * Context: in_interrupt
2920  */
2921 void xhci_endpoint_reset(struct usb_hcd *hcd,
2922                 struct usb_host_endpoint *ep)
2923 {
2924         struct xhci_hcd *xhci;
2925         struct usb_device *udev;
2926         unsigned int ep_index;
2927         unsigned long flags;
2928         int ret;
2929         struct xhci_virt_ep *virt_ep;
2930         struct xhci_command *command;
2931
2932         xhci = hcd_to_xhci(hcd);
2933         udev = (struct usb_device *) ep->hcpriv;
2934         /* Called with a root hub endpoint (or an endpoint that wasn't added
2935          * with xhci_add_endpoint()
2936          */
2937         if (!ep->hcpriv)
2938                 return;
2939         ep_index = xhci_get_endpoint_index(&ep->desc);
2940         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2941         if (!virt_ep->stopped_td) {
2942                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2943                         "Endpoint 0x%x not halted, refusing to reset.",
2944                         ep->desc.bEndpointAddress);
2945                 return;
2946         }
2947         if (usb_endpoint_xfer_control(&ep->desc)) {
2948                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2949                                 "Control endpoint stall already handled.");
2950                 return;
2951         }
2952
2953         command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2954         if (!command)
2955                 return;
2956
2957         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2958                         "Queueing reset endpoint command");
2959         spin_lock_irqsave(&xhci->lock, flags);
2960         ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index);
2961         /*
2962          * Can't change the ring dequeue pointer until it's transitioned to the
2963          * stopped state, which is only upon a successful reset endpoint
2964          * command.  Better hope that last command worked!
2965          */
2966         if (!ret) {
2967                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2968                 kfree(virt_ep->stopped_td);
2969                 xhci_ring_cmd_db(xhci);
2970         }
2971         virt_ep->stopped_td = NULL;
2972         virt_ep->stopped_stream = 0;
2973         spin_unlock_irqrestore(&xhci->lock, flags);
2974
2975         if (ret)
2976                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2977 }
2978
2979 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2980                 struct usb_device *udev, struct usb_host_endpoint *ep,
2981                 unsigned int slot_id)
2982 {
2983         int ret;
2984         unsigned int ep_index;
2985         unsigned int ep_state;
2986
2987         if (!ep)
2988                 return -EINVAL;
2989         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2990         if (ret <= 0)
2991                 return -EINVAL;
2992         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2993                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2994                                 " descriptor for ep 0x%x does not support streams\n",
2995                                 ep->desc.bEndpointAddress);
2996                 return -EINVAL;
2997         }
2998
2999         ep_index = xhci_get_endpoint_index(&ep->desc);
3000         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3001         if (ep_state & EP_HAS_STREAMS ||
3002                         ep_state & EP_GETTING_STREAMS) {
3003                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3004                                 "already has streams set up.\n",
3005                                 ep->desc.bEndpointAddress);
3006                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3007                                 "dynamic stream context array reallocation.\n");
3008                 return -EINVAL;
3009         }
3010         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3011                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3012                                 "endpoint 0x%x; URBs are pending.\n",
3013                                 ep->desc.bEndpointAddress);
3014                 return -EINVAL;
3015         }
3016         return 0;
3017 }
3018
3019 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3020                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3021 {
3022         unsigned int max_streams;
3023
3024         /* The stream context array size must be a power of two */
3025         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3026         /*
3027          * Find out how many primary stream array entries the host controller
3028          * supports.  Later we may use secondary stream arrays (similar to 2nd
3029          * level page entries), but that's an optional feature for xHCI host
3030          * controllers. xHCs must support at least 4 stream IDs.
3031          */
3032         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3033         if (*num_stream_ctxs > max_streams) {
3034                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3035                                 max_streams);
3036                 *num_stream_ctxs = max_streams;
3037                 *num_streams = max_streams;
3038         }
3039 }
3040
3041 /* Returns an error code if one of the endpoint already has streams.
3042  * This does not change any data structures, it only checks and gathers
3043  * information.
3044  */
3045 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3046                 struct usb_device *udev,
3047                 struct usb_host_endpoint **eps, unsigned int num_eps,
3048                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3049 {
3050         unsigned int max_streams;
3051         unsigned int endpoint_flag;
3052         int i;
3053         int ret;
3054
3055         for (i = 0; i < num_eps; i++) {
3056                 ret = xhci_check_streams_endpoint(xhci, udev,
3057                                 eps[i], udev->slot_id);
3058                 if (ret < 0)
3059                         return ret;
3060
3061                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3062                 if (max_streams < (*num_streams - 1)) {
3063                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3064                                         eps[i]->desc.bEndpointAddress,
3065                                         max_streams);
3066                         *num_streams = max_streams+1;
3067                 }
3068
3069                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3070                 if (*changed_ep_bitmask & endpoint_flag)
3071                         return -EINVAL;
3072                 *changed_ep_bitmask |= endpoint_flag;
3073         }
3074         return 0;
3075 }
3076
3077 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3078                 struct usb_device *udev,
3079                 struct usb_host_endpoint **eps, unsigned int num_eps)
3080 {
3081         u32 changed_ep_bitmask = 0;
3082         unsigned int slot_id;
3083         unsigned int ep_index;
3084         unsigned int ep_state;
3085         int i;
3086
3087         slot_id = udev->slot_id;
3088         if (!xhci->devs[slot_id])
3089                 return 0;
3090
3091         for (i = 0; i < num_eps; i++) {
3092                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3093                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3094                 /* Are streams already being freed for the endpoint? */
3095                 if (ep_state & EP_GETTING_NO_STREAMS) {
3096                         xhci_warn(xhci, "WARN Can't disable streams for "
3097                                         "endpoint 0x%x, "
3098                                         "streams are being disabled already\n",
3099                                         eps[i]->desc.bEndpointAddress);
3100                         return 0;
3101                 }
3102                 /* Are there actually any streams to free? */
3103                 if (!(ep_state & EP_HAS_STREAMS) &&
3104                                 !(ep_state & EP_GETTING_STREAMS)) {
3105                         xhci_warn(xhci, "WARN Can't disable streams for "
3106                                         "endpoint 0x%x, "
3107                                         "streams are already disabled!\n",
3108                                         eps[i]->desc.bEndpointAddress);
3109                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3110                                         "with non-streams endpoint\n");
3111                         return 0;
3112                 }
3113                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3114         }
3115         return changed_ep_bitmask;
3116 }
3117
3118 /*
3119  * The USB device drivers use this function (though the HCD interface in USB
3120  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3121  * coordinate mass storage command queueing across multiple endpoints (basically
3122  * a stream ID == a task ID).
3123  *
3124  * Setting up streams involves allocating the same size stream context array
3125  * for each endpoint and issuing a configure endpoint command for all endpoints.
3126  *
3127  * Don't allow the call to succeed if one endpoint only supports one stream
3128  * (which means it doesn't support streams at all).
3129  *
3130  * Drivers may get less stream IDs than they asked for, if the host controller
3131  * hardware or endpoints claim they can't support the number of requested
3132  * stream IDs.
3133  */
3134 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3135                 struct usb_host_endpoint **eps, unsigned int num_eps,
3136                 unsigned int num_streams, gfp_t mem_flags)
3137 {
3138         int i, ret;
3139         struct xhci_hcd *xhci;
3140         struct xhci_virt_device *vdev;
3141         struct xhci_command *config_cmd;
3142         struct xhci_input_control_ctx *ctrl_ctx;
3143         unsigned int ep_index;
3144         unsigned int num_stream_ctxs;
3145         unsigned long flags;
3146         u32 changed_ep_bitmask = 0;
3147
3148         if (!eps)
3149                 return -EINVAL;
3150
3151         /* Add one to the number of streams requested to account for
3152          * stream 0 that is reserved for xHCI usage.
3153          */
3154         num_streams += 1;
3155         xhci = hcd_to_xhci(hcd);
3156         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3157                         num_streams);
3158
3159         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3160         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3161                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3162                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3163                 return -ENOSYS;
3164         }
3165
3166         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3167         if (!config_cmd) {
3168                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3169                 return -ENOMEM;
3170         }
3171         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3172         if (!ctrl_ctx) {
3173                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3174                                 __func__);
3175                 xhci_free_command(xhci, config_cmd);
3176                 return -ENOMEM;
3177         }
3178
3179         /* Check to make sure all endpoints are not already configured for
3180          * streams.  While we're at it, find the maximum number of streams that
3181          * all the endpoints will support and check for duplicate endpoints.
3182          */
3183         spin_lock_irqsave(&xhci->lock, flags);
3184         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3185                         num_eps, &num_streams, &changed_ep_bitmask);
3186         if (ret < 0) {
3187                 xhci_free_command(xhci, config_cmd);
3188                 spin_unlock_irqrestore(&xhci->lock, flags);
3189                 return ret;
3190         }
3191         if (num_streams <= 1) {
3192                 xhci_warn(xhci, "WARN: endpoints can't handle "
3193                                 "more than one stream.\n");
3194                 xhci_free_command(xhci, config_cmd);
3195                 spin_unlock_irqrestore(&xhci->lock, flags);
3196                 return -EINVAL;
3197         }
3198         vdev = xhci->devs[udev->slot_id];
3199         /* Mark each endpoint as being in transition, so
3200          * xhci_urb_enqueue() will reject all URBs.
3201          */
3202         for (i = 0; i < num_eps; i++) {
3203                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3204                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3205         }
3206         spin_unlock_irqrestore(&xhci->lock, flags);
3207
3208         /* Setup internal data structures and allocate HW data structures for
3209          * streams (but don't install the HW structures in the input context
3210          * until we're sure all memory allocation succeeded).
3211          */
3212         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3213         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3214                         num_stream_ctxs, num_streams);
3215
3216         for (i = 0; i < num_eps; i++) {
3217                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3219                                 num_stream_ctxs,
3220                                 num_streams, mem_flags);
3221                 if (!vdev->eps[ep_index].stream_info)
3222                         goto cleanup;
3223                 /* Set maxPstreams in endpoint context and update deq ptr to
3224                  * point to stream context array. FIXME
3225                  */
3226         }
3227
3228         /* Set up the input context for a configure endpoint command. */
3229         for (i = 0; i < num_eps; i++) {
3230                 struct xhci_ep_ctx *ep_ctx;
3231
3232                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3233                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3234
3235                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3236                                 vdev->out_ctx, ep_index);
3237                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3238                                 vdev->eps[ep_index].stream_info);
3239         }
3240         /* Tell the HW to drop its old copy of the endpoint context info
3241          * and add the updated copy from the input context.
3242          */
3243         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3244                         vdev->out_ctx, ctrl_ctx,
3245                         changed_ep_bitmask, changed_ep_bitmask);
3246
3247         /* Issue and wait for the configure endpoint command */
3248         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3249                         false, false);
3250
3251         /* xHC rejected the configure endpoint command for some reason, so we
3252          * leave the old ring intact and free our internal streams data
3253          * structure.
3254          */
3255         if (ret < 0)
3256                 goto cleanup;
3257
3258         spin_lock_irqsave(&xhci->lock, flags);
3259         for (i = 0; i < num_eps; i++) {
3260                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3261                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3262                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3263                          udev->slot_id, ep_index);
3264                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3265         }
3266         xhci_free_command(xhci, config_cmd);
3267         spin_unlock_irqrestore(&xhci->lock, flags);
3268
3269         /* Subtract 1 for stream 0, which drivers can't use */
3270         return num_streams - 1;
3271
3272 cleanup:
3273         /* If it didn't work, free the streams! */
3274         for (i = 0; i < num_eps; i++) {
3275                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3276                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3277                 vdev->eps[ep_index].stream_info = NULL;
3278                 /* FIXME Unset maxPstreams in endpoint context and
3279                  * update deq ptr to point to normal string ring.
3280                  */
3281                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3282                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3283                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3284         }
3285         xhci_free_command(xhci, config_cmd);
3286         return -ENOMEM;
3287 }
3288
3289 /* Transition the endpoint from using streams to being a "normal" endpoint
3290  * without streams.
3291  *
3292  * Modify the endpoint context state, submit a configure endpoint command,
3293  * and free all endpoint rings for streams if that completes successfully.
3294  */
3295 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3296                 struct usb_host_endpoint **eps, unsigned int num_eps,
3297                 gfp_t mem_flags)
3298 {
3299         int i, ret;
3300         struct xhci_hcd *xhci;
3301         struct xhci_virt_device *vdev;
3302         struct xhci_command *command;
3303         struct xhci_input_control_ctx *ctrl_ctx;
3304         unsigned int ep_index;
3305         unsigned long flags;
3306         u32 changed_ep_bitmask;
3307
3308         xhci = hcd_to_xhci(hcd);
3309         vdev = xhci->devs[udev->slot_id];
3310
3311         /* Set up a configure endpoint command to remove the streams rings */
3312         spin_lock_irqsave(&xhci->lock, flags);
3313         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3314                         udev, eps, num_eps);
3315         if (changed_ep_bitmask == 0) {
3316                 spin_unlock_irqrestore(&xhci->lock, flags);
3317                 return -EINVAL;
3318         }
3319
3320         /* Use the xhci_command structure from the first endpoint.  We may have
3321          * allocated too many, but the driver may call xhci_free_streams() for
3322          * each endpoint it grouped into one call to xhci_alloc_streams().
3323          */
3324         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3325         command = vdev->eps[ep_index].stream_info->free_streams_command;
3326         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3327         if (!ctrl_ctx) {
3328                 spin_unlock_irqrestore(&xhci->lock, flags);
3329                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3330                                 __func__);
3331                 return -EINVAL;
3332         }
3333
3334         for (i = 0; i < num_eps; i++) {
3335                 struct xhci_ep_ctx *ep_ctx;
3336
3337                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3338                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3339                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3340                         EP_GETTING_NO_STREAMS;
3341
3342                 xhci_endpoint_copy(xhci, command->in_ctx,
3343                                 vdev->out_ctx, ep_index);
3344                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3345                                 &vdev->eps[ep_index]);
3346         }
3347         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3348                         vdev->out_ctx, ctrl_ctx,
3349                         changed_ep_bitmask, changed_ep_bitmask);
3350         spin_unlock_irqrestore(&xhci->lock, flags);
3351
3352         /* Issue and wait for the configure endpoint command,
3353          * which must succeed.
3354          */
3355         ret = xhci_configure_endpoint(xhci, udev, command,
3356                         false, true);
3357
3358         /* xHC rejected the configure endpoint command for some reason, so we
3359          * leave the streams rings intact.
3360          */
3361         if (ret < 0)
3362                 return ret;
3363
3364         spin_lock_irqsave(&xhci->lock, flags);
3365         for (i = 0; i < num_eps; i++) {
3366                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3367                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3368                 vdev->eps[ep_index].stream_info = NULL;
3369                 /* FIXME Unset maxPstreams in endpoint context and
3370                  * update deq ptr to point to normal string ring.
3371                  */
3372                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3373                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3374         }
3375         spin_unlock_irqrestore(&xhci->lock, flags);
3376
3377         return 0;
3378 }
3379
3380 /*
3381  * Deletes endpoint resources for endpoints that were active before a Reset
3382  * Device command, or a Disable Slot command.  The Reset Device command leaves
3383  * the control endpoint intact, whereas the Disable Slot command deletes it.
3384  *
3385  * Must be called with xhci->lock held.
3386  */
3387 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3388         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3389 {
3390         int i;
3391         unsigned int num_dropped_eps = 0;
3392         unsigned int drop_flags = 0;
3393
3394         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3395                 if (virt_dev->eps[i].ring) {
3396                         drop_flags |= 1 << i;
3397                         num_dropped_eps++;
3398                 }
3399         }
3400         xhci->num_active_eps -= num_dropped_eps;
3401         if (num_dropped_eps)
3402                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3403                                 "Dropped %u ep ctxs, flags = 0x%x, "
3404                                 "%u now active.",
3405                                 num_dropped_eps, drop_flags,
3406                                 xhci->num_active_eps);
3407 }
3408
3409 /*
3410  * This submits a Reset Device Command, which will set the device state to 0,
3411  * set the device address to 0, and disable all the endpoints except the default
3412  * control endpoint.  The USB core should come back and call
3413  * xhci_address_device(), and then re-set up the configuration.  If this is
3414  * called because of a usb_reset_and_verify_device(), then the old alternate
3415  * settings will be re-installed through the normal bandwidth allocation
3416  * functions.
3417  *
3418  * Wait for the Reset Device command to finish.  Remove all structures
3419  * associated with the endpoints that were disabled.  Clear the input device
3420  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3421  *
3422  * If the virt_dev to be reset does not exist or does not match the udev,
3423  * it means the device is lost, possibly due to the xHC restore error and
3424  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3425  * re-allocate the device.
3426  */
3427 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3428 {
3429         int ret, i;
3430         unsigned long flags;
3431         struct xhci_hcd *xhci;
3432         unsigned int slot_id;
3433         struct xhci_virt_device *virt_dev;
3434         struct xhci_command *reset_device_cmd;
3435         int last_freed_endpoint;
3436         struct xhci_slot_ctx *slot_ctx;
3437         int old_active_eps = 0;
3438
3439         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3440         if (ret <= 0)
3441                 return ret;
3442         xhci = hcd_to_xhci(hcd);
3443         slot_id = udev->slot_id;
3444         virt_dev = xhci->devs[slot_id];
3445         if (!virt_dev) {
3446                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3447                                 "not exist. Re-allocate the device\n", slot_id);
3448                 ret = xhci_alloc_dev(hcd, udev);
3449                 if (ret == 1)
3450                         return 0;
3451                 else
3452                         return -EINVAL;
3453         }
3454
3455         if (virt_dev->udev != udev) {
3456                 /* If the virt_dev and the udev does not match, this virt_dev
3457                  * may belong to another udev.
3458                  * Re-allocate the device.
3459                  */
3460                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3461                                 "not match the udev. Re-allocate the device\n",
3462                                 slot_id);
3463                 ret = xhci_alloc_dev(hcd, udev);
3464                 if (ret == 1)
3465                         return 0;
3466                 else
3467                         return -EINVAL;
3468         }
3469
3470         /* If device is not setup, there is no point in resetting it */
3471         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3472         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3473                                                 SLOT_STATE_DISABLED)
3474                 return 0;
3475
3476         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3477         /* Allocate the command structure that holds the struct completion.
3478          * Assume we're in process context, since the normal device reset
3479          * process has to wait for the device anyway.  Storage devices are
3480          * reset as part of error handling, so use GFP_NOIO instead of
3481          * GFP_KERNEL.
3482          */
3483         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3484         if (!reset_device_cmd) {
3485                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3486                 return -ENOMEM;
3487         }
3488
3489         /* Attempt to submit the Reset Device command to the command ring */
3490         spin_lock_irqsave(&xhci->lock, flags);
3491
3492         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3493         if (ret) {
3494                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3495                 spin_unlock_irqrestore(&xhci->lock, flags);
3496                 goto command_cleanup;
3497         }
3498         xhci_ring_cmd_db(xhci);
3499         spin_unlock_irqrestore(&xhci->lock, flags);
3500
3501         /* Wait for the Reset Device command to finish */
3502         wait_for_completion(reset_device_cmd->completion);
3503
3504         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3505          * unless we tried to reset a slot ID that wasn't enabled,
3506          * or the device wasn't in the addressed or configured state.
3507          */
3508         ret = reset_device_cmd->status;
3509         switch (ret) {
3510         case COMP_CMD_ABORT:
3511         case COMP_CMD_STOP:
3512                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3513                 ret = -ETIME;
3514                 goto command_cleanup;
3515         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3516         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3517                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3518                                 slot_id,
3519                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3520                 xhci_dbg(xhci, "Not freeing device rings.\n");
3521                 /* Don't treat this as an error.  May change my mind later. */
3522                 ret = 0;
3523                 goto command_cleanup;
3524         case COMP_SUCCESS:
3525                 xhci_dbg(xhci, "Successful reset device command.\n");
3526                 break;
3527         default:
3528                 if (xhci_is_vendor_info_code(xhci, ret))
3529                         break;
3530                 xhci_warn(xhci, "Unknown completion code %u for "
3531                                 "reset device command.\n", ret);
3532                 ret = -EINVAL;
3533                 goto command_cleanup;
3534         }
3535
3536         /* Free up host controller endpoint resources */
3537         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3538                 spin_lock_irqsave(&xhci->lock, flags);
3539                 /* Don't delete the default control endpoint resources */
3540                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3541                 spin_unlock_irqrestore(&xhci->lock, flags);
3542         }
3543
3544         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3545         last_freed_endpoint = 1;
3546         for (i = 1; i < 31; ++i) {
3547                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3548
3549                 if (ep->ep_state & EP_HAS_STREAMS) {
3550                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3551                                         xhci_get_endpoint_address(i));
3552                         xhci_free_stream_info(xhci, ep->stream_info);
3553                         ep->stream_info = NULL;
3554                         ep->ep_state &= ~EP_HAS_STREAMS;
3555                 }
3556
3557                 if (ep->ring) {
3558                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3559                         last_freed_endpoint = i;
3560                 }
3561                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3562                         xhci_drop_ep_from_interval_table(xhci,
3563                                         &virt_dev->eps[i].bw_info,
3564                                         virt_dev->bw_table,
3565                                         udev,
3566                                         &virt_dev->eps[i],
3567                                         virt_dev->tt_info);
3568                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3569         }
3570         /* If necessary, update the number of active TTs on this root port */
3571         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3572
3573         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3574         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3575         ret = 0;
3576
3577 command_cleanup:
3578         xhci_free_command(xhci, reset_device_cmd);
3579         return ret;
3580 }
3581
3582 /*
3583  * At this point, the struct usb_device is about to go away, the device has
3584  * disconnected, and all traffic has been stopped and the endpoints have been
3585  * disabled.  Free any HC data structures associated with that device.
3586  */
3587 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3588 {
3589         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3590         struct xhci_virt_device *virt_dev;
3591         unsigned long flags;
3592         u32 state;
3593         int i, ret;
3594         struct xhci_command *command;
3595
3596         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3597         if (!command)
3598                 return;
3599
3600 #ifndef CONFIG_USB_DEFAULT_PERSIST
3601         /*
3602          * We called pm_runtime_get_noresume when the device was attached.
3603          * Decrement the counter here to allow controller to runtime suspend
3604          * if no devices remain.
3605          */
3606         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3607                 pm_runtime_put_noidle(hcd->self.controller);
3608 #endif
3609
3610         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3611         /* If the host is halted due to driver unload, we still need to free the
3612          * device.
3613          */
3614         if (ret <= 0 && ret != -ENODEV) {
3615                 kfree(command);
3616                 return;
3617         }
3618
3619         virt_dev = xhci->devs[udev->slot_id];
3620
3621         /* Stop any wayward timer functions (which may grab the lock) */
3622         for (i = 0; i < 31; ++i) {
3623                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3624                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3625         }
3626
3627         spin_lock_irqsave(&xhci->lock, flags);
3628         /* Don't disable the slot if the host controller is dead. */
3629         state = readl(&xhci->op_regs->status);
3630         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3631                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3632                 xhci_free_virt_device(xhci, udev->slot_id);
3633                 spin_unlock_irqrestore(&xhci->lock, flags);
3634                 kfree(command);
3635                 return;
3636         }
3637
3638         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3639                                     udev->slot_id)) {
3640                 spin_unlock_irqrestore(&xhci->lock, flags);
3641                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3642                 return;
3643         }
3644         xhci_ring_cmd_db(xhci);
3645         spin_unlock_irqrestore(&xhci->lock, flags);
3646
3647         /*
3648          * Event command completion handler will free any data structures
3649          * associated with the slot.  XXX Can free sleep?
3650          */
3651 }
3652
3653 /*
3654  * Checks if we have enough host controller resources for the default control
3655  * endpoint.
3656  *
3657  * Must be called with xhci->lock held.
3658  */
3659 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3660 {
3661         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3662                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3663                                 "Not enough ep ctxs: "
3664                                 "%u active, need to add 1, limit is %u.",
3665                                 xhci->num_active_eps, xhci->limit_active_eps);
3666                 return -ENOMEM;
3667         }
3668         xhci->num_active_eps += 1;
3669         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3670                         "Adding 1 ep ctx, %u now active.",
3671                         xhci->num_active_eps);
3672         return 0;
3673 }
3674
3675
3676 /*
3677  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3678  * timed out, or allocating memory failed.  Returns 1 on success.
3679  */
3680 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3681 {
3682         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3683         unsigned long flags;
3684         int ret;
3685         struct xhci_command *command;
3686
3687         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3688         if (!command)
3689                 return 0;
3690
3691         spin_lock_irqsave(&xhci->lock, flags);
3692         command->completion = &xhci->addr_dev;
3693         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3694         if (ret) {
3695                 spin_unlock_irqrestore(&xhci->lock, flags);
3696                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3697                 kfree(command);
3698                 return 0;
3699         }
3700         xhci_ring_cmd_db(xhci);
3701         spin_unlock_irqrestore(&xhci->lock, flags);
3702
3703         wait_for_completion(command->completion);
3704
3705         if (!xhci->slot_id || command->status != COMP_SUCCESS) {
3706                 xhci_err(xhci, "Error while assigning device slot ID\n");
3707                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3708                                 HCS_MAX_SLOTS(
3709                                         readl(&xhci->cap_regs->hcs_params1)));
3710                 kfree(command);
3711                 return 0;
3712         }
3713
3714         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3715                 spin_lock_irqsave(&xhci->lock, flags);
3716                 ret = xhci_reserve_host_control_ep_resources(xhci);
3717                 if (ret) {
3718                         spin_unlock_irqrestore(&xhci->lock, flags);
3719                         xhci_warn(xhci, "Not enough host resources, "
3720                                         "active endpoint contexts = %u\n",
3721                                         xhci->num_active_eps);
3722                         goto disable_slot;
3723                 }
3724                 spin_unlock_irqrestore(&xhci->lock, flags);
3725         }
3726         /* Use GFP_NOIO, since this function can be called from
3727          * xhci_discover_or_reset_device(), which may be called as part of
3728          * mass storage driver error handling.
3729          */
3730         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3731                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3732                 goto disable_slot;
3733         }
3734         udev->slot_id = xhci->slot_id;
3735
3736 #ifndef CONFIG_USB_DEFAULT_PERSIST
3737         /*
3738          * If resetting upon resume, we can't put the controller into runtime
3739          * suspend if there is a device attached.
3740          */
3741         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3742                 pm_runtime_get_noresume(hcd->self.controller);
3743 #endif
3744
3745
3746         kfree(command);
3747         /* Is this a LS or FS device under a HS hub? */
3748         /* Hub or peripherial? */
3749         return 1;
3750
3751 disable_slot:
3752         /* Disable slot, if we can do it without mem alloc */
3753         spin_lock_irqsave(&xhci->lock, flags);
3754         command->completion = NULL;
3755         command->status = 0;
3756         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3757                                      udev->slot_id))
3758                 xhci_ring_cmd_db(xhci);
3759         spin_unlock_irqrestore(&xhci->lock, flags);
3760         return 0;
3761 }
3762
3763 /*
3764  * Issue an Address Device command and optionally send a corresponding
3765  * SetAddress request to the device.
3766  * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init,
3767  * so we should only issue and wait on one address command at the same time.
3768  */
3769 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3770                              enum xhci_setup_dev setup)
3771 {
3772         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3773         unsigned long flags;
3774         struct xhci_virt_device *virt_dev;
3775         int ret = 0;
3776         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3777         struct xhci_slot_ctx *slot_ctx;
3778         struct xhci_input_control_ctx *ctrl_ctx;
3779         u64 temp_64;
3780         struct xhci_command *command;
3781
3782         if (!udev->slot_id) {
3783                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3784                                 "Bad Slot ID %d", udev->slot_id);
3785                 return -EINVAL;
3786         }
3787
3788         virt_dev = xhci->devs[udev->slot_id];
3789
3790         if (WARN_ON(!virt_dev)) {
3791                 /*
3792                  * In plug/unplug torture test with an NEC controller,
3793                  * a zero-dereference was observed once due to virt_dev = 0.
3794                  * Print useful debug rather than crash if it is observed again!
3795                  */
3796                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3797                         udev->slot_id);
3798                 return -EINVAL;
3799         }
3800
3801         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3802         if (!command)
3803                 return -ENOMEM;
3804
3805         command->in_ctx = virt_dev->in_ctx;
3806         command->completion = &xhci->addr_dev;
3807
3808         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3809         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3810         if (!ctrl_ctx) {
3811                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3812                                 __func__);
3813                 kfree(command);
3814                 return -EINVAL;
3815         }
3816         /*
3817          * If this is the first Set Address since device plug-in or
3818          * virt_device realloaction after a resume with an xHCI power loss,
3819          * then set up the slot context.
3820          */
3821         if (!slot_ctx->dev_info)
3822                 xhci_setup_addressable_virt_dev(xhci, udev);
3823         /* Otherwise, update the control endpoint ring enqueue pointer. */
3824         else
3825                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3826         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3827         ctrl_ctx->drop_flags = 0;
3828
3829         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3830         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3831         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3832                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3833
3834         spin_lock_irqsave(&xhci->lock, flags);
3835         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3836                                         udev->slot_id, setup);
3837         if (ret) {
3838                 spin_unlock_irqrestore(&xhci->lock, flags);
3839                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3840                                 "FIXME: allocate a command ring segment");
3841                 kfree(command);
3842                 return ret;
3843         }
3844         xhci_ring_cmd_db(xhci);
3845         spin_unlock_irqrestore(&xhci->lock, flags);
3846
3847         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3848         wait_for_completion(command->completion);
3849
3850         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3851          * the SetAddress() "recovery interval" required by USB and aborting the
3852          * command on a timeout.
3853          */
3854         switch (command->status) {
3855         case COMP_CMD_ABORT:
3856         case COMP_CMD_STOP:
3857                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3858                 ret = -ETIME;
3859                 break;
3860         case COMP_CTX_STATE:
3861         case COMP_EBADSLT:
3862                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3863                          act, udev->slot_id);
3864                 ret = -EINVAL;
3865                 break;
3866         case COMP_TX_ERR:
3867                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3868                 ret = -EPROTO;
3869                 break;
3870         case COMP_DEV_ERR:
3871                 dev_warn(&udev->dev,
3872                          "ERROR: Incompatible device for setup %s command\n", act);
3873                 ret = -ENODEV;
3874                 break;
3875         case COMP_SUCCESS:
3876                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3877                                "Successful setup %s command", act);
3878                 break;
3879         default:
3880                 xhci_err(xhci,
3881                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3882                          act, command->status);
3883                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3884                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3885                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3886                 ret = -EINVAL;
3887                 break;
3888         }
3889         if (ret) {
3890                 kfree(command);
3891                 return ret;
3892         }
3893         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3894         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3895                         "Op regs DCBAA ptr = %#016llx", temp_64);
3896         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3897                 "Slot ID %d dcbaa entry @%p = %#016llx",
3898                 udev->slot_id,
3899                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3900                 (unsigned long long)
3901                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3902         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3903                         "Output Context DMA address = %#08llx",
3904                         (unsigned long long)virt_dev->out_ctx->dma);
3905         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3906         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3907         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3908                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3909         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3910         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3911         /*
3912          * USB core uses address 1 for the roothubs, so we add one to the
3913          * address given back to us by the HC.
3914          */
3915         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3916         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3917                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3918         /* Zero the input context control for later use */
3919         ctrl_ctx->add_flags = 0;
3920         ctrl_ctx->drop_flags = 0;
3921
3922         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3923                        "Internal device address = %d",
3924                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3925         kfree(command);
3926         return 0;
3927 }
3928
3929 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3930 {
3931         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3932 }
3933
3934 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3935 {
3936         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3937 }
3938
3939 /*
3940  * Transfer the port index into real index in the HW port status
3941  * registers. Caculate offset between the port's PORTSC register
3942  * and port status base. Divide the number of per port register
3943  * to get the real index. The raw port number bases 1.
3944  */
3945 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3946 {
3947         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3948         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3949         __le32 __iomem *addr;
3950         int raw_port;
3951
3952         if (hcd->speed != HCD_USB3)
3953                 addr = xhci->usb2_ports[port1 - 1];
3954         else
3955                 addr = xhci->usb3_ports[port1 - 1];
3956
3957         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3958         return raw_port;
3959 }
3960
3961 /*
3962  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3963  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3964  */
3965 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3966                         struct usb_device *udev, u16 max_exit_latency)
3967 {
3968         struct xhci_virt_device *virt_dev;
3969         struct xhci_command *command;
3970         struct xhci_input_control_ctx *ctrl_ctx;
3971         struct xhci_slot_ctx *slot_ctx;
3972         unsigned long flags;
3973         int ret;
3974
3975         spin_lock_irqsave(&xhci->lock, flags);
3976
3977         virt_dev = xhci->devs[udev->slot_id];
3978
3979         /*
3980          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3981          * xHC was re-initialized. Exit latency will be set later after
3982          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3983          */
3984
3985         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3986                 spin_unlock_irqrestore(&xhci->lock, flags);
3987                 return 0;
3988         }
3989
3990         /* Attempt to issue an Evaluate Context command to change the MEL. */
3991         command = xhci->lpm_command;
3992         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3993         if (!ctrl_ctx) {
3994                 spin_unlock_irqrestore(&xhci->lock, flags);
3995                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3996                                 __func__);
3997                 return -ENOMEM;
3998         }
3999
4000         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4001         spin_unlock_irqrestore(&xhci->lock, flags);
4002
4003         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4004         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4005         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4006         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4007
4008         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4009                         "Set up evaluate context for LPM MEL change.");
4010         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4011         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4012
4013         /* Issue and wait for the evaluate context command. */
4014         ret = xhci_configure_endpoint(xhci, udev, command,
4015                         true, true);
4016         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4017         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4018
4019         if (!ret) {
4020                 spin_lock_irqsave(&xhci->lock, flags);
4021                 virt_dev->current_mel = max_exit_latency;
4022                 spin_unlock_irqrestore(&xhci->lock, flags);
4023         }
4024         return ret;
4025 }
4026
4027 #ifdef CONFIG_PM_RUNTIME
4028
4029 /* BESL to HIRD Encoding array for USB2 LPM */
4030 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4031         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4032
4033 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4034 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4035                                         struct usb_device *udev)
4036 {
4037         int u2del, besl, besl_host;
4038         int besl_device = 0;
4039         u32 field;
4040
4041         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4042         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4043
4044         if (field & USB_BESL_SUPPORT) {
4045                 for (besl_host = 0; besl_host < 16; besl_host++) {
4046                         if (xhci_besl_encoding[besl_host] >= u2del)
4047                                 break;
4048                 }
4049                 /* Use baseline BESL value as default */
4050                 if (field & USB_BESL_BASELINE_VALID)
4051                         besl_device = USB_GET_BESL_BASELINE(field);
4052                 else if (field & USB_BESL_DEEP_VALID)
4053                         besl_device = USB_GET_BESL_DEEP(field);
4054         } else {
4055                 if (u2del <= 50)
4056                         besl_host = 0;
4057                 else
4058                         besl_host = (u2del - 51) / 75 + 1;
4059         }
4060
4061         besl = besl_host + besl_device;
4062         if (besl > 15)
4063                 besl = 15;
4064
4065         return besl;
4066 }
4067
4068 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4069 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4070 {
4071         u32 field;
4072         int l1;
4073         int besld = 0;
4074         int hirdm = 0;
4075
4076         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4077
4078         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4079         l1 = udev->l1_params.timeout / 256;
4080
4081         /* device has preferred BESLD */
4082         if (field & USB_BESL_DEEP_VALID) {
4083                 besld = USB_GET_BESL_DEEP(field);
4084                 hirdm = 1;
4085         }
4086
4087         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4088 }
4089
4090 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4091                         struct usb_device *udev, int enable)
4092 {
4093         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4094         __le32 __iomem  **port_array;
4095         __le32 __iomem  *pm_addr, *hlpm_addr;
4096         u32             pm_val, hlpm_val, field;
4097         unsigned int    port_num;
4098         unsigned long   flags;
4099         int             hird, exit_latency;
4100         int             ret;
4101
4102         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4103                         !udev->lpm_capable)
4104                 return -EPERM;
4105
4106         if (!udev->parent || udev->parent->parent ||
4107                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4108                 return -EPERM;
4109
4110         if (udev->usb2_hw_lpm_capable != 1)
4111                 return -EPERM;
4112
4113         spin_lock_irqsave(&xhci->lock, flags);
4114
4115         port_array = xhci->usb2_ports;
4116         port_num = udev->portnum - 1;
4117         pm_addr = port_array[port_num] + PORTPMSC;
4118         pm_val = readl(pm_addr);
4119         hlpm_addr = port_array[port_num] + PORTHLPMC;
4120         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4121
4122         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4123                         enable ? "enable" : "disable", port_num + 1);
4124
4125         if (enable) {
4126                 /* Host supports BESL timeout instead of HIRD */
4127                 if (udev->usb2_hw_lpm_besl_capable) {
4128                         /* if device doesn't have a preferred BESL value use a
4129                          * default one which works with mixed HIRD and BESL
4130                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4131                          */
4132                         if ((field & USB_BESL_SUPPORT) &&
4133                             (field & USB_BESL_BASELINE_VALID))
4134                                 hird = USB_GET_BESL_BASELINE(field);
4135                         else
4136                                 hird = udev->l1_params.besl;
4137
4138                         exit_latency = xhci_besl_encoding[hird];
4139                         spin_unlock_irqrestore(&xhci->lock, flags);
4140
4141                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4142                          * input context for link powermanagement evaluate
4143                          * context commands. It is protected by hcd->bandwidth
4144                          * mutex and is shared by all devices. We need to set
4145                          * the max ext latency in USB 2 BESL LPM as well, so
4146                          * use the same mutex and xhci_change_max_exit_latency()
4147                          */
4148                         mutex_lock(hcd->bandwidth_mutex);
4149                         ret = xhci_change_max_exit_latency(xhci, udev,
4150                                                            exit_latency);
4151                         mutex_unlock(hcd->bandwidth_mutex);
4152
4153                         if (ret < 0)
4154                                 return ret;
4155                         spin_lock_irqsave(&xhci->lock, flags);
4156
4157                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4158                         writel(hlpm_val, hlpm_addr);
4159                         /* flush write */
4160                         readl(hlpm_addr);
4161                 } else {
4162                         hird = xhci_calculate_hird_besl(xhci, udev);
4163                 }
4164
4165                 pm_val &= ~PORT_HIRD_MASK;
4166                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4167                 writel(pm_val, pm_addr);
4168                 pm_val = readl(pm_addr);
4169                 pm_val |= PORT_HLE;
4170                 writel(pm_val, pm_addr);
4171                 /* flush write */
4172                 readl(pm_addr);
4173         } else {
4174                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4175                 writel(pm_val, pm_addr);
4176                 /* flush write */
4177                 readl(pm_addr);
4178                 if (udev->usb2_hw_lpm_besl_capable) {
4179                         spin_unlock_irqrestore(&xhci->lock, flags);
4180                         mutex_lock(hcd->bandwidth_mutex);
4181                         xhci_change_max_exit_latency(xhci, udev, 0);
4182                         mutex_unlock(hcd->bandwidth_mutex);
4183                         return 0;
4184                 }
4185         }
4186
4187         spin_unlock_irqrestore(&xhci->lock, flags);
4188         return 0;
4189 }
4190
4191 /* check if a usb2 port supports a given extened capability protocol
4192  * only USB2 ports extended protocol capability values are cached.
4193  * Return 1 if capability is supported
4194  */
4195 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4196                                            unsigned capability)
4197 {
4198         u32 port_offset, port_count;
4199         int i;
4200
4201         for (i = 0; i < xhci->num_ext_caps; i++) {
4202                 if (xhci->ext_caps[i] & capability) {
4203                         /* port offsets starts at 1 */
4204                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4205                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4206                         if (port >= port_offset &&
4207                             port < port_offset + port_count)
4208                                 return 1;
4209                 }
4210         }
4211         return 0;
4212 }
4213
4214 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4215 {
4216         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4217         int             portnum = udev->portnum - 1;
4218
4219         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4220                         !udev->lpm_capable)
4221                 return 0;
4222
4223         /* we only support lpm for non-hub device connected to root hub yet */
4224         if (!udev->parent || udev->parent->parent ||
4225                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4226                 return 0;
4227
4228         if (xhci->hw_lpm_support == 1 &&
4229                         xhci_check_usb2_port_capability(
4230                                 xhci, portnum, XHCI_HLC)) {
4231                 udev->usb2_hw_lpm_capable = 1;
4232                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4233                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4234                 if (xhci_check_usb2_port_capability(xhci, portnum,
4235                                         XHCI_BLC))
4236                         udev->usb2_hw_lpm_besl_capable = 1;
4237         }
4238
4239         return 0;
4240 }
4241
4242 #else
4243
4244 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4245                                 struct usb_device *udev, int enable)
4246 {
4247         return 0;
4248 }
4249
4250 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4251 {
4252         return 0;
4253 }
4254
4255 #endif /* CONFIG_PM_RUNTIME */
4256
4257 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4258
4259 #ifdef CONFIG_PM
4260 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4261 static unsigned long long xhci_service_interval_to_ns(
4262                 struct usb_endpoint_descriptor *desc)
4263 {
4264         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4265 }
4266
4267 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4268                 enum usb3_link_state state)
4269 {
4270         unsigned long long sel;
4271         unsigned long long pel;
4272         unsigned int max_sel_pel;
4273         char *state_name;
4274
4275         switch (state) {
4276         case USB3_LPM_U1:
4277                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4278                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4279                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4280                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4281                 state_name = "U1";
4282                 break;
4283         case USB3_LPM_U2:
4284                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4285                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4286                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4287                 state_name = "U2";
4288                 break;
4289         default:
4290                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4291                                 __func__);
4292                 return USB3_LPM_DISABLED;
4293         }
4294
4295         if (sel <= max_sel_pel && pel <= max_sel_pel)
4296                 return USB3_LPM_DEVICE_INITIATED;
4297
4298         if (sel > max_sel_pel)
4299                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4300                                 "due to long SEL %llu ms\n",
4301                                 state_name, sel);
4302         else
4303                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4304                                 "due to long PEL %llu ms\n",
4305                                 state_name, pel);
4306         return USB3_LPM_DISABLED;
4307 }
4308
4309 /* The U1 timeout should be the maximum of the following values:
4310  *  - For control endpoints, U1 system exit latency (SEL) * 3
4311  *  - For bulk endpoints, U1 SEL * 5
4312  *  - For interrupt endpoints:
4313  *    - Notification EPs, U1 SEL * 3
4314  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4315  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4316  */
4317 static unsigned long long xhci_calculate_intel_u1_timeout(
4318                 struct usb_device *udev,
4319                 struct usb_endpoint_descriptor *desc)
4320 {
4321         unsigned long long timeout_ns;
4322         int ep_type;
4323         int intr_type;
4324
4325         ep_type = usb_endpoint_type(desc);
4326         switch (ep_type) {
4327         case USB_ENDPOINT_XFER_CONTROL:
4328                 timeout_ns = udev->u1_params.sel * 3;
4329                 break;
4330         case USB_ENDPOINT_XFER_BULK:
4331                 timeout_ns = udev->u1_params.sel * 5;
4332                 break;
4333         case USB_ENDPOINT_XFER_INT:
4334                 intr_type = usb_endpoint_interrupt_type(desc);
4335                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4336                         timeout_ns = udev->u1_params.sel * 3;
4337                         break;
4338                 }
4339                 /* Otherwise the calculation is the same as isoc eps */
4340         case USB_ENDPOINT_XFER_ISOC:
4341                 timeout_ns = xhci_service_interval_to_ns(desc);
4342                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4343                 if (timeout_ns < udev->u1_params.sel * 2)
4344                         timeout_ns = udev->u1_params.sel * 2;
4345                 break;
4346         default:
4347                 return 0;
4348         }
4349
4350         return timeout_ns;
4351 }
4352
4353 /* Returns the hub-encoded U1 timeout value. */
4354 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4355                 struct usb_device *udev,
4356                 struct usb_endpoint_descriptor *desc)
4357 {
4358         unsigned long long timeout_ns;
4359
4360         if (xhci->quirks & XHCI_INTEL_HOST)
4361                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4362         else
4363                 timeout_ns = udev->u1_params.sel;
4364
4365         /* The U1 timeout is encoded in 1us intervals.
4366          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4367          */
4368         if (timeout_ns == USB3_LPM_DISABLED)
4369                 timeout_ns = 1;
4370         else
4371                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4372
4373         /* If the necessary timeout value is bigger than what we can set in the
4374          * USB 3.0 hub, we have to disable hub-initiated U1.
4375          */
4376         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4377                 return timeout_ns;
4378         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4379                         "due to long timeout %llu ms\n", timeout_ns);
4380         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4381 }
4382
4383 /* The U2 timeout should be the maximum of:
4384  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4385  *  - largest bInterval of any active periodic endpoint (to avoid going
4386  *    into lower power link states between intervals).
4387  *  - the U2 Exit Latency of the device
4388  */
4389 static unsigned long long xhci_calculate_intel_u2_timeout(
4390                 struct usb_device *udev,
4391                 struct usb_endpoint_descriptor *desc)
4392 {
4393         unsigned long long timeout_ns;
4394         unsigned long long u2_del_ns;
4395
4396         timeout_ns = 10 * 1000 * 1000;
4397
4398         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4399                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4400                 timeout_ns = xhci_service_interval_to_ns(desc);
4401
4402         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4403         if (u2_del_ns > timeout_ns)
4404                 timeout_ns = u2_del_ns;
4405
4406         return timeout_ns;
4407 }
4408
4409 /* Returns the hub-encoded U2 timeout value. */
4410 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4411                 struct usb_device *udev,
4412                 struct usb_endpoint_descriptor *desc)
4413 {
4414         unsigned long long timeout_ns;
4415
4416         if (xhci->quirks & XHCI_INTEL_HOST)
4417                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4418         else
4419                 timeout_ns = udev->u2_params.sel;
4420
4421         /* The U2 timeout is encoded in 256us intervals */
4422         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4423         /* If the necessary timeout value is bigger than what we can set in the
4424          * USB 3.0 hub, we have to disable hub-initiated U2.
4425          */
4426         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4427                 return timeout_ns;
4428         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4429                         "due to long timeout %llu ms\n", timeout_ns);
4430         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4431 }
4432
4433 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4434                 struct usb_device *udev,
4435                 struct usb_endpoint_descriptor *desc,
4436                 enum usb3_link_state state,
4437                 u16 *timeout)
4438 {
4439         if (state == USB3_LPM_U1)
4440                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4441         else if (state == USB3_LPM_U2)
4442                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4443
4444         return USB3_LPM_DISABLED;
4445 }
4446
4447 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4448                 struct usb_device *udev,
4449                 struct usb_endpoint_descriptor *desc,
4450                 enum usb3_link_state state,
4451                 u16 *timeout)
4452 {
4453         u16 alt_timeout;
4454
4455         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4456                 desc, state, timeout);
4457
4458         /* If we found we can't enable hub-initiated LPM, or
4459          * the U1 or U2 exit latency was too high to allow
4460          * device-initiated LPM as well, just stop searching.
4461          */
4462         if (alt_timeout == USB3_LPM_DISABLED ||
4463                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4464                 *timeout = alt_timeout;
4465                 return -E2BIG;
4466         }
4467         if (alt_timeout > *timeout)
4468                 *timeout = alt_timeout;
4469         return 0;
4470 }
4471
4472 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4473                 struct usb_device *udev,
4474                 struct usb_host_interface *alt,
4475                 enum usb3_link_state state,
4476                 u16 *timeout)
4477 {
4478         int j;
4479
4480         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4481                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4482                                         &alt->endpoint[j].desc, state, timeout))
4483                         return -E2BIG;
4484                 continue;
4485         }
4486         return 0;
4487 }
4488
4489 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4490                 enum usb3_link_state state)
4491 {
4492         struct usb_device *parent;
4493         unsigned int num_hubs;
4494
4495         if (state == USB3_LPM_U2)
4496                 return 0;
4497
4498         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4499         for (parent = udev->parent, num_hubs = 0; parent->parent;
4500                         parent = parent->parent)
4501                 num_hubs++;
4502
4503         if (num_hubs < 2)
4504                 return 0;
4505
4506         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4507                         " below second-tier hub.\n");
4508         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4509                         "to decrease power consumption.\n");
4510         return -E2BIG;
4511 }
4512
4513 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4514                 struct usb_device *udev,
4515                 enum usb3_link_state state)
4516 {
4517         if (xhci->quirks & XHCI_INTEL_HOST)
4518                 return xhci_check_intel_tier_policy(udev, state);
4519         else
4520                 return 0;
4521 }
4522
4523 /* Returns the U1 or U2 timeout that should be enabled.
4524  * If the tier check or timeout setting functions return with a non-zero exit
4525  * code, that means the timeout value has been finalized and we shouldn't look
4526  * at any more endpoints.
4527  */
4528 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4529                         struct usb_device *udev, enum usb3_link_state state)
4530 {
4531         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4532         struct usb_host_config *config;
4533         char *state_name;
4534         int i;
4535         u16 timeout = USB3_LPM_DISABLED;
4536
4537         if (state == USB3_LPM_U1)
4538                 state_name = "U1";
4539         else if (state == USB3_LPM_U2)
4540                 state_name = "U2";
4541         else {
4542                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4543                                 state);
4544                 return timeout;
4545         }
4546
4547         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4548                 return timeout;
4549
4550         /* Gather some information about the currently installed configuration
4551          * and alternate interface settings.
4552          */
4553         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4554                         state, &timeout))
4555                 return timeout;
4556
4557         config = udev->actconfig;
4558         if (!config)
4559                 return timeout;
4560
4561         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4562                 struct usb_driver *driver;
4563                 struct usb_interface *intf = config->interface[i];
4564
4565                 if (!intf)
4566                         continue;
4567
4568                 /* Check if any currently bound drivers want hub-initiated LPM
4569                  * disabled.
4570                  */
4571                 if (intf->dev.driver) {
4572                         driver = to_usb_driver(intf->dev.driver);
4573                         if (driver && driver->disable_hub_initiated_lpm) {
4574                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4575                                                 "at request of driver %s\n",
4576                                                 state_name, driver->name);
4577                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4578                         }
4579                 }
4580
4581                 /* Not sure how this could happen... */
4582                 if (!intf->cur_altsetting)
4583                         continue;
4584
4585                 if (xhci_update_timeout_for_interface(xhci, udev,
4586                                         intf->cur_altsetting,
4587                                         state, &timeout))
4588                         return timeout;
4589         }
4590         return timeout;
4591 }
4592
4593 static int calculate_max_exit_latency(struct usb_device *udev,
4594                 enum usb3_link_state state_changed,
4595                 u16 hub_encoded_timeout)
4596 {
4597         unsigned long long u1_mel_us = 0;
4598         unsigned long long u2_mel_us = 0;
4599         unsigned long long mel_us = 0;
4600         bool disabling_u1;
4601         bool disabling_u2;
4602         bool enabling_u1;
4603         bool enabling_u2;
4604
4605         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4606                         hub_encoded_timeout == USB3_LPM_DISABLED);
4607         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4608                         hub_encoded_timeout == USB3_LPM_DISABLED);
4609
4610         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4611                         hub_encoded_timeout != USB3_LPM_DISABLED);
4612         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4613                         hub_encoded_timeout != USB3_LPM_DISABLED);
4614
4615         /* If U1 was already enabled and we're not disabling it,
4616          * or we're going to enable U1, account for the U1 max exit latency.
4617          */
4618         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4619                         enabling_u1)
4620                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4621         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4622                         enabling_u2)
4623                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4624
4625         if (u1_mel_us > u2_mel_us)
4626                 mel_us = u1_mel_us;
4627         else
4628                 mel_us = u2_mel_us;
4629         /* xHCI host controller max exit latency field is only 16 bits wide. */
4630         if (mel_us > MAX_EXIT) {
4631                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4632                                 "is too big.\n", mel_us);
4633                 return -E2BIG;
4634         }
4635         return mel_us;
4636 }
4637
4638 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4639 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4640                         struct usb_device *udev, enum usb3_link_state state)
4641 {
4642         struct xhci_hcd *xhci;
4643         u16 hub_encoded_timeout;
4644         int mel;
4645         int ret;
4646
4647         xhci = hcd_to_xhci(hcd);
4648         /* The LPM timeout values are pretty host-controller specific, so don't
4649          * enable hub-initiated timeouts unless the vendor has provided
4650          * information about their timeout algorithm.
4651          */
4652         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4653                         !xhci->devs[udev->slot_id])
4654                 return USB3_LPM_DISABLED;
4655
4656         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4657         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4658         if (mel < 0) {
4659                 /* Max Exit Latency is too big, disable LPM. */
4660                 hub_encoded_timeout = USB3_LPM_DISABLED;
4661                 mel = 0;
4662         }
4663
4664         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4665         if (ret)
4666                 return ret;
4667         return hub_encoded_timeout;
4668 }
4669
4670 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4671                         struct usb_device *udev, enum usb3_link_state state)
4672 {
4673         struct xhci_hcd *xhci;
4674         u16 mel;
4675         int ret;
4676
4677         xhci = hcd_to_xhci(hcd);
4678         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4679                         !xhci->devs[udev->slot_id])
4680                 return 0;
4681
4682         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4683         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4684         if (ret)
4685                 return ret;
4686         return 0;
4687 }
4688 #else /* CONFIG_PM */
4689
4690 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4691                         struct usb_device *udev, enum usb3_link_state state)
4692 {
4693         return USB3_LPM_DISABLED;
4694 }
4695
4696 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4697                         struct usb_device *udev, enum usb3_link_state state)
4698 {
4699         return 0;
4700 }
4701 #endif  /* CONFIG_PM */
4702
4703 /*-------------------------------------------------------------------------*/
4704
4705 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4706  * internal data structures for the device.
4707  */
4708 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4709                         struct usb_tt *tt, gfp_t mem_flags)
4710 {
4711         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4712         struct xhci_virt_device *vdev;
4713         struct xhci_command *config_cmd;
4714         struct xhci_input_control_ctx *ctrl_ctx;
4715         struct xhci_slot_ctx *slot_ctx;
4716         unsigned long flags;
4717         unsigned think_time;
4718         int ret;
4719
4720         /* Ignore root hubs */
4721         if (!hdev->parent)
4722                 return 0;
4723
4724         vdev = xhci->devs[hdev->slot_id];
4725         if (!vdev) {
4726                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4727                 return -EINVAL;
4728         }
4729         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4730         if (!config_cmd) {
4731                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4732                 return -ENOMEM;
4733         }
4734         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4735         if (!ctrl_ctx) {
4736                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4737                                 __func__);
4738                 xhci_free_command(xhci, config_cmd);
4739                 return -ENOMEM;
4740         }
4741
4742         spin_lock_irqsave(&xhci->lock, flags);
4743         if (hdev->speed == USB_SPEED_HIGH &&
4744                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4745                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4746                 xhci_free_command(xhci, config_cmd);
4747                 spin_unlock_irqrestore(&xhci->lock, flags);
4748                 return -ENOMEM;
4749         }
4750
4751         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4752         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4753         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4754         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4755         if (tt->multi)
4756                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4757         if (xhci->hci_version > 0x95) {
4758                 xhci_dbg(xhci, "xHCI version %x needs hub "
4759                                 "TT think time and number of ports\n",
4760                                 (unsigned int) xhci->hci_version);
4761                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4762                 /* Set TT think time - convert from ns to FS bit times.
4763                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4764                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4765                  *
4766                  * xHCI 1.0: this field shall be 0 if the device is not a
4767                  * High-spped hub.
4768                  */
4769                 think_time = tt->think_time;
4770                 if (think_time != 0)
4771                         think_time = (think_time / 666) - 1;
4772                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4773                         slot_ctx->tt_info |=
4774                                 cpu_to_le32(TT_THINK_TIME(think_time));
4775         } else {
4776                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4777                                 "TT think time or number of ports\n",
4778                                 (unsigned int) xhci->hci_version);
4779         }
4780         slot_ctx->dev_state = 0;
4781         spin_unlock_irqrestore(&xhci->lock, flags);
4782
4783         xhci_dbg(xhci, "Set up %s for hub device.\n",
4784                         (xhci->hci_version > 0x95) ?
4785                         "configure endpoint" : "evaluate context");
4786         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4787         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4788
4789         /* Issue and wait for the configure endpoint or
4790          * evaluate context command.
4791          */
4792         if (xhci->hci_version > 0x95)
4793                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4794                                 false, false);
4795         else
4796                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4797                                 true, false);
4798
4799         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4800         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4801
4802         xhci_free_command(xhci, config_cmd);
4803         return ret;
4804 }
4805
4806 int xhci_get_frame(struct usb_hcd *hcd)
4807 {
4808         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4809         /* EHCI mods by the periodic size.  Why? */
4810         return readl(&xhci->run_regs->microframe_index) >> 3;
4811 }
4812
4813 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4814 {
4815         struct xhci_hcd         *xhci;
4816         struct device           *dev = hcd->self.controller;
4817         int                     retval;
4818
4819         /* Accept arbitrarily long scatter-gather lists */
4820         hcd->self.sg_tablesize = ~0;
4821
4822         /* support to build packet from discontinuous buffers */
4823         hcd->self.no_sg_constraint = 1;
4824
4825         /* XHCI controllers don't stop the ep queue on short packets :| */
4826         hcd->self.no_stop_on_short = 1;
4827
4828         if (usb_hcd_is_primary_hcd(hcd)) {
4829                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4830                 if (!xhci)
4831                         return -ENOMEM;
4832                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4833                 xhci->main_hcd = hcd;
4834                 /* Mark the first roothub as being USB 2.0.
4835                  * The xHCI driver will register the USB 3.0 roothub.
4836                  */
4837                 hcd->speed = HCD_USB2;
4838                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4839                 /*
4840                  * USB 2.0 roothub under xHCI has an integrated TT,
4841                  * (rate matching hub) as opposed to having an OHCI/UHCI
4842                  * companion controller.
4843                  */
4844                 hcd->has_tt = 1;
4845         } else {
4846                 /* xHCI private pointer was set in xhci_pci_probe for the second
4847                  * registered roothub.
4848                  */
4849                 return 0;
4850         }
4851
4852         xhci->cap_regs = hcd->regs;
4853         xhci->op_regs = hcd->regs +
4854                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4855         xhci->run_regs = hcd->regs +
4856                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4857         /* Cache read-only capability registers */
4858         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4859         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4860         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4861         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4862         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4863         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4864         xhci_print_registers(xhci);
4865
4866         xhci->quirks = quirks;
4867
4868         get_quirks(dev, xhci);
4869
4870         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4871          * success event after a short transfer. This quirk will ignore such
4872          * spurious event.
4873          */
4874         if (xhci->hci_version > 0x96)
4875                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4876
4877         /* Make sure the HC is halted. */
4878         retval = xhci_halt(xhci);
4879         if (retval)
4880                 goto error;
4881
4882         xhci_dbg(xhci, "Resetting HCD\n");
4883         /* Reset the internal HC memory state and registers. */
4884         retval = xhci_reset(xhci);
4885         if (retval)
4886                 goto error;
4887         xhci_dbg(xhci, "Reset complete\n");
4888
4889         /* Set dma_mask and coherent_dma_mask to 64-bits,
4890          * if xHC supports 64-bit addressing */
4891         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4892                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4893                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4894                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4895         }
4896
4897         xhci_dbg(xhci, "Calling HCD init\n");
4898         /* Initialize HCD and host controller data structures. */
4899         retval = xhci_init(hcd);
4900         if (retval)
4901                 goto error;
4902         xhci_dbg(xhci, "Called HCD init\n");
4903         return 0;
4904 error:
4905         kfree(xhci);
4906         return retval;
4907 }
4908 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4909
4910 static const struct hc_driver xhci_hc_driver = {
4911         .description =          "xhci-hcd",
4912         .product_desc =         "xHCI Host Controller",
4913         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4914
4915         /*
4916          * generic hardware linkage
4917          */
4918         .irq =                  xhci_irq,
4919         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4920
4921         /*
4922          * basic lifecycle operations
4923          */
4924         .reset =                NULL, /* set in xhci_init_driver() */
4925         .start =                xhci_run,
4926         .stop =                 xhci_stop,
4927         .shutdown =             xhci_shutdown,
4928
4929         /*
4930          * managing i/o requests and associated device resources
4931          */
4932         .urb_enqueue =          xhci_urb_enqueue,
4933         .urb_dequeue =          xhci_urb_dequeue,
4934         .alloc_dev =            xhci_alloc_dev,
4935         .free_dev =             xhci_free_dev,
4936         .alloc_streams =        xhci_alloc_streams,
4937         .free_streams =         xhci_free_streams,
4938         .add_endpoint =         xhci_add_endpoint,
4939         .drop_endpoint =        xhci_drop_endpoint,
4940         .endpoint_reset =       xhci_endpoint_reset,
4941         .check_bandwidth =      xhci_check_bandwidth,
4942         .reset_bandwidth =      xhci_reset_bandwidth,
4943         .address_device =       xhci_address_device,
4944         .enable_device =        xhci_enable_device,
4945         .update_hub_device =    xhci_update_hub_device,
4946         .reset_device =         xhci_discover_or_reset_device,
4947
4948         /*
4949          * scheduling support
4950          */
4951         .get_frame_number =     xhci_get_frame,
4952
4953         /*
4954          * root hub support
4955          */
4956         .hub_control =          xhci_hub_control,
4957         .hub_status_data =      xhci_hub_status_data,
4958         .bus_suspend =          xhci_bus_suspend,
4959         .bus_resume =           xhci_bus_resume,
4960
4961         /*
4962          * call back when device connected and addressed
4963          */
4964         .update_device =        xhci_update_device,
4965         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4966         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4967         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4968         .find_raw_port_number = xhci_find_raw_port_number,
4969 };
4970
4971 void xhci_init_driver(struct hc_driver *drv, int (*setup_fn)(struct usb_hcd *))
4972 {
4973         BUG_ON(!setup_fn);
4974         *drv = xhci_hc_driver;
4975         drv->reset = setup_fn;
4976 }
4977 EXPORT_SYMBOL_GPL(xhci_init_driver);
4978
4979 MODULE_DESCRIPTION(DRIVER_DESC);
4980 MODULE_AUTHOR(DRIVER_AUTHOR);
4981 MODULE_LICENSE("GPL");
4982
4983 static int __init xhci_hcd_init(void)
4984 {
4985         /*
4986          * Check the compiler generated sizes of structures that must be laid
4987          * out in specific ways for hardware access.
4988          */
4989         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4990         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4991         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4992         /* xhci_device_control has eight fields, and also
4993          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4994          */
4995         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4996         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4997         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4998         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4999         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5000         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5001         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5002         return 0;
5003 }
5004 module_init(xhci_hcd_init);