Merge remote-tracking branches 'spi/topic/sunxi', 'spi/topic/tegra114', 'spi/topic...
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62                       u32 mask, u32 done, int usec)
63 {
64         u32     result;
65
66         do {
67                 result = readl(ptr);
68                 if (result == ~(u32)0)          /* card removed */
69                         return -ENODEV;
70                 result &= mask;
71                 if (result == done)
72                         return 0;
73                 udelay(1);
74                 usec--;
75         } while (usec > 0);
76         return -ETIMEDOUT;
77 }
78
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84         u32 halted;
85         u32 cmd;
86         u32 mask;
87
88         mask = ~(XHCI_IRQS);
89         halted = readl(&xhci->op_regs->status) & STS_HALT;
90         if (!halted)
91                 mask &= ~CMD_RUN;
92
93         cmd = readl(&xhci->op_regs->command);
94         cmd &= mask;
95         writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108         int ret;
109         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110         xhci_quiesce(xhci);
111
112         ret = xhci_handshake(xhci, &xhci->op_regs->status,
113                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114         if (!ret) {
115                 xhci->xhc_state |= XHCI_STATE_HALTED;
116                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117         } else
118                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119                                 XHCI_MAX_HALT_USEC);
120         return ret;
121 }
122
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128         u32 temp;
129         int ret;
130
131         temp = readl(&xhci->op_regs->command);
132         temp |= (CMD_RUN);
133         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134                         temp);
135         writel(temp, &xhci->op_regs->command);
136
137         /*
138          * Wait for the HCHalted Status bit to be 0 to indicate the host is
139          * running.
140          */
141         ret = xhci_handshake(xhci, &xhci->op_regs->status,
142                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
143         if (ret == -ETIMEDOUT)
144                 xhci_err(xhci, "Host took too long to start, "
145                                 "waited %u microseconds.\n",
146                                 XHCI_MAX_HALT_USEC);
147         if (!ret)
148                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
149         return ret;
150 }
151
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161         u32 command;
162         u32 state;
163         int ret, i;
164
165         state = readl(&xhci->op_regs->status);
166         if ((state & STS_HALT) == 0) {
167                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168                 return 0;
169         }
170
171         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172         command = readl(&xhci->op_regs->command);
173         command |= CMD_RESET;
174         writel(command, &xhci->op_regs->command);
175
176         ret = xhci_handshake(xhci, &xhci->op_regs->command,
177                         CMD_RESET, 0, 10 * 1000 * 1000);
178         if (ret)
179                 return ret;
180
181         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182                          "Wait for controller to be ready for doorbell rings");
183         /*
184          * xHCI cannot write to any doorbells or operational registers other
185          * than status until the "Controller Not Ready" flag is cleared.
186          */
187         ret = xhci_handshake(xhci, &xhci->op_regs->status,
188                         STS_CNR, 0, 10 * 1000 * 1000);
189
190         for (i = 0; i < 2; ++i) {
191                 xhci->bus_state[i].port_c_suspend = 0;
192                 xhci->bus_state[i].suspended_ports = 0;
193                 xhci->bus_state[i].resuming_ports = 0;
194         }
195
196         return ret;
197 }
198
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202         int i;
203
204         if (!xhci->msix_entries)
205                 return -EINVAL;
206
207         for (i = 0; i < xhci->msix_count; i++)
208                 if (xhci->msix_entries[i].vector)
209                         free_irq(xhci->msix_entries[i].vector,
210                                         xhci_to_hcd(xhci));
211         return 0;
212 }
213
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219         int ret;
220         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221
222         ret = pci_enable_msi(pdev);
223         if (ret) {
224                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225                                 "failed to allocate MSI entry");
226                 return ret;
227         }
228
229         ret = request_irq(pdev->irq, xhci_msi_irq,
230                                 0, "xhci_hcd", xhci_to_hcd(xhci));
231         if (ret) {
232                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233                                 "disable MSI interrupt");
234                 pci_disable_msi(pdev);
235         }
236
237         return ret;
238 }
239
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247         int ret;
248
249         /* return if using legacy interrupt */
250         if (xhci_to_hcd(xhci)->irq > 0)
251                 return;
252
253         ret = xhci_free_msi(xhci);
254         if (!ret)
255                 return;
256         if (pdev->irq > 0)
257                 free_irq(pdev->irq, xhci_to_hcd(xhci));
258
259         return;
260 }
261
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267         int i, ret = 0;
268         struct usb_hcd *hcd = xhci_to_hcd(xhci);
269         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270
271         /*
272          * calculate number of msi-x vectors supported.
273          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274          *   with max number of interrupters based on the xhci HCSPARAMS1.
275          * - num_online_cpus: maximum msi-x vectors per CPUs core.
276          *   Add additional 1 vector to ensure always available interrupt.
277          */
278         xhci->msix_count = min(num_online_cpus() + 1,
279                                 HCS_MAX_INTRS(xhci->hcs_params1));
280
281         xhci->msix_entries =
282                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283                                 GFP_KERNEL);
284         if (!xhci->msix_entries) {
285                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286                 return -ENOMEM;
287         }
288
289         for (i = 0; i < xhci->msix_count; i++) {
290                 xhci->msix_entries[i].entry = i;
291                 xhci->msix_entries[i].vector = 0;
292         }
293
294         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
295         if (ret) {
296                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297                                 "Failed to enable MSI-X");
298                 goto free_entries;
299         }
300
301         for (i = 0; i < xhci->msix_count; i++) {
302                 ret = request_irq(xhci->msix_entries[i].vector,
303                                 xhci_msi_irq,
304                                 0, "xhci_hcd", xhci_to_hcd(xhci));
305                 if (ret)
306                         goto disable_msix;
307         }
308
309         hcd->msix_enabled = 1;
310         return ret;
311
312 disable_msix:
313         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314         xhci_free_irq(xhci);
315         pci_disable_msix(pdev);
316 free_entries:
317         kfree(xhci->msix_entries);
318         xhci->msix_entries = NULL;
319         return ret;
320 }
321
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         if (xhci->quirks & XHCI_PLAT)
329                 return;
330
331         xhci_free_irq(xhci);
332
333         if (xhci->msix_entries) {
334                 pci_disable_msix(pdev);
335                 kfree(xhci->msix_entries);
336                 xhci->msix_entries = NULL;
337         } else {
338                 pci_disable_msi(pdev);
339         }
340
341         hcd->msix_enabled = 0;
342         return;
343 }
344
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347         int i;
348
349         if (xhci->msix_entries) {
350                 for (i = 0; i < xhci->msix_count; i++)
351                         synchronize_irq(xhci->msix_entries[i].vector);
352         }
353 }
354
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358         struct pci_dev  *pdev;
359         int ret;
360
361         /* The xhci platform device has set up IRQs through usb_add_hcd. */
362         if (xhci->quirks & XHCI_PLAT)
363                 return 0;
364
365         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366         /*
367          * Some Fresco Logic host controllers advertise MSI, but fail to
368          * generate interrupts.  Don't even try to enable MSI.
369          */
370         if (xhci->quirks & XHCI_BROKEN_MSI)
371                 goto legacy_irq;
372
373         /* unregister the legacy interrupt */
374         if (hcd->irq)
375                 free_irq(hcd->irq, hcd);
376         hcd->irq = 0;
377
378         ret = xhci_setup_msix(xhci);
379         if (ret)
380                 /* fall back to msi*/
381                 ret = xhci_setup_msi(xhci);
382
383         if (!ret)
384                 /* hcd->irq is 0, we have MSI */
385                 return 0;
386
387         if (!pdev->irq) {
388                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389                 return -EINVAL;
390         }
391
392  legacy_irq:
393         /* fall back to legacy interrupt*/
394         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
395                         hcd->irq_descr, hcd);
396         if (ret) {
397                 xhci_err(xhci, "request interrupt %d failed\n",
398                                 pdev->irq);
399                 return ret;
400         }
401         hcd->irq = pdev->irq;
402         return 0;
403 }
404
405 #else
406
407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409         return 0;
410 }
411
412 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
413 {
414 }
415
416 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
417 {
418 }
419
420 #endif
421
422 static void compliance_mode_recovery(unsigned long arg)
423 {
424         struct xhci_hcd *xhci;
425         struct usb_hcd *hcd;
426         u32 temp;
427         int i;
428
429         xhci = (struct xhci_hcd *)arg;
430
431         for (i = 0; i < xhci->num_usb3_ports; i++) {
432                 temp = readl(xhci->usb3_ports[i]);
433                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
434                         /*
435                          * Compliance Mode Detected. Letting USB Core
436                          * handle the Warm Reset
437                          */
438                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
439                                         "Compliance mode detected->port %d",
440                                         i + 1);
441                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
442                                         "Attempting compliance mode recovery");
443                         hcd = xhci->shared_hcd;
444
445                         if (hcd->state == HC_STATE_SUSPENDED)
446                                 usb_hcd_resume_root_hub(hcd);
447
448                         usb_hcd_poll_rh_status(hcd);
449                 }
450         }
451
452         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
453                 mod_timer(&xhci->comp_mode_recovery_timer,
454                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
455 }
456
457 /*
458  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
459  * that causes ports behind that hardware to enter compliance mode sometimes.
460  * The quirk creates a timer that polls every 2 seconds the link state of
461  * each host controller's port and recovers it by issuing a Warm reset
462  * if Compliance mode is detected, otherwise the port will become "dead" (no
463  * device connections or disconnections will be detected anymore). Becasue no
464  * status event is generated when entering compliance mode (per xhci spec),
465  * this quirk is needed on systems that have the failing hardware installed.
466  */
467 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
468 {
469         xhci->port_status_u0 = 0;
470         init_timer(&xhci->comp_mode_recovery_timer);
471
472         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
473         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
474         xhci->comp_mode_recovery_timer.expires = jiffies +
475                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
476
477         set_timer_slack(&xhci->comp_mode_recovery_timer,
478                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
479         add_timer(&xhci->comp_mode_recovery_timer);
480         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
481                         "Compliance mode recovery timer initialized");
482 }
483
484 /*
485  * This function identifies the systems that have installed the SN65LVPE502CP
486  * USB3.0 re-driver and that need the Compliance Mode Quirk.
487  * Systems:
488  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
489  */
490 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
491 {
492         const char *dmi_product_name, *dmi_sys_vendor;
493
494         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
495         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
496         if (!dmi_product_name || !dmi_sys_vendor)
497                 return false;
498
499         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
500                 return false;
501
502         if (strstr(dmi_product_name, "Z420") ||
503                         strstr(dmi_product_name, "Z620") ||
504                         strstr(dmi_product_name, "Z820") ||
505                         strstr(dmi_product_name, "Z1 Workstation"))
506                 return true;
507
508         return false;
509 }
510
511 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
512 {
513         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
514 }
515
516
517 /*
518  * Initialize memory for HCD and xHC (one-time init).
519  *
520  * Program the PAGESIZE register, initialize the device context array, create
521  * device contexts (?), set up a command ring segment (or two?), create event
522  * ring (one for now).
523  */
524 int xhci_init(struct usb_hcd *hcd)
525 {
526         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
527         int retval = 0;
528
529         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
530         spin_lock_init(&xhci->lock);
531         if (xhci->hci_version == 0x95 && link_quirk) {
532                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533                                 "QUIRK: Not clearing Link TRB chain bits.");
534                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
535         } else {
536                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
537                                 "xHCI doesn't need link TRB QUIRK");
538         }
539         retval = xhci_mem_init(xhci, GFP_KERNEL);
540         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
541
542         /* Initializing Compliance Mode Recovery Data If Needed */
543         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
544                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
545                 compliance_mode_recovery_timer_init(xhci);
546         }
547
548         return retval;
549 }
550
551 /*-------------------------------------------------------------------------*/
552
553
554 static int xhci_run_finished(struct xhci_hcd *xhci)
555 {
556         if (xhci_start(xhci)) {
557                 xhci_halt(xhci);
558                 return -ENODEV;
559         }
560         xhci->shared_hcd->state = HC_STATE_RUNNING;
561         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
562
563         if (xhci->quirks & XHCI_NEC_HOST)
564                 xhci_ring_cmd_db(xhci);
565
566         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
567                         "Finished xhci_run for USB3 roothub");
568         return 0;
569 }
570
571 /*
572  * Start the HC after it was halted.
573  *
574  * This function is called by the USB core when the HC driver is added.
575  * Its opposite is xhci_stop().
576  *
577  * xhci_init() must be called once before this function can be called.
578  * Reset the HC, enable device slot contexts, program DCBAAP, and
579  * set command ring pointer and event ring pointer.
580  *
581  * Setup MSI-X vectors and enable interrupts.
582  */
583 int xhci_run(struct usb_hcd *hcd)
584 {
585         u32 temp;
586         u64 temp_64;
587         int ret;
588         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
589
590         /* Start the xHCI host controller running only after the USB 2.0 roothub
591          * is setup.
592          */
593
594         hcd->uses_new_polling = 1;
595         if (!usb_hcd_is_primary_hcd(hcd))
596                 return xhci_run_finished(xhci);
597
598         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
599
600         ret = xhci_try_enable_msi(hcd);
601         if (ret)
602                 return ret;
603
604         xhci_dbg(xhci, "Command ring memory map follows:\n");
605         xhci_debug_ring(xhci, xhci->cmd_ring);
606         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
607         xhci_dbg_cmd_ptrs(xhci);
608
609         xhci_dbg(xhci, "ERST memory map follows:\n");
610         xhci_dbg_erst(xhci, &xhci->erst);
611         xhci_dbg(xhci, "Event ring:\n");
612         xhci_debug_ring(xhci, xhci->event_ring);
613         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
614         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
615         temp_64 &= ~ERST_PTR_MASK;
616         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
617                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
618
619         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620                         "// Set the interrupt modulation register");
621         temp = readl(&xhci->ir_set->irq_control);
622         temp &= ~ER_IRQ_INTERVAL_MASK;
623         temp |= (u32) 160;
624         writel(temp, &xhci->ir_set->irq_control);
625
626         /* Set the HCD state before we enable the irqs */
627         temp = readl(&xhci->op_regs->command);
628         temp |= (CMD_EIE);
629         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
630                         "// Enable interrupts, cmd = 0x%x.", temp);
631         writel(temp, &xhci->op_regs->command);
632
633         temp = readl(&xhci->ir_set->irq_pending);
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
636                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
637         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
638         xhci_print_ir_set(xhci, 0);
639
640         if (xhci->quirks & XHCI_NEC_HOST)
641                 xhci_queue_vendor_command(xhci, 0, 0, 0,
642                                 TRB_TYPE(TRB_NEC_GET_FW));
643
644         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645                         "Finished xhci_run for USB2 roothub");
646         return 0;
647 }
648
649 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
650 {
651         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
652
653         spin_lock_irq(&xhci->lock);
654         xhci_halt(xhci);
655
656         /* The shared_hcd is going to be deallocated shortly (the USB core only
657          * calls this function when allocation fails in usb_add_hcd(), or
658          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
659          */
660         xhci->shared_hcd = NULL;
661         spin_unlock_irq(&xhci->lock);
662 }
663
664 /*
665  * Stop xHCI driver.
666  *
667  * This function is called by the USB core when the HC driver is removed.
668  * Its opposite is xhci_run().
669  *
670  * Disable device contexts, disable IRQs, and quiesce the HC.
671  * Reset the HC, finish any completed transactions, and cleanup memory.
672  */
673 void xhci_stop(struct usb_hcd *hcd)
674 {
675         u32 temp;
676         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
677
678         if (!usb_hcd_is_primary_hcd(hcd)) {
679                 xhci_only_stop_hcd(xhci->shared_hcd);
680                 return;
681         }
682
683         spin_lock_irq(&xhci->lock);
684         /* Make sure the xHC is halted for a USB3 roothub
685          * (xhci_stop() could be called as part of failed init).
686          */
687         xhci_halt(xhci);
688         xhci_reset(xhci);
689         spin_unlock_irq(&xhci->lock);
690
691         xhci_cleanup_msix(xhci);
692
693         /* Deleting Compliance Mode Recovery Timer */
694         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
695                         (!(xhci_all_ports_seen_u0(xhci)))) {
696                 del_timer_sync(&xhci->comp_mode_recovery_timer);
697                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
698                                 "%s: compliance mode recovery timer deleted",
699                                 __func__);
700         }
701
702         if (xhci->quirks & XHCI_AMD_PLL_FIX)
703                 usb_amd_dev_put();
704
705         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
706                         "// Disabling event ring interrupts");
707         temp = readl(&xhci->op_regs->status);
708         writel(temp & ~STS_EINT, &xhci->op_regs->status);
709         temp = readl(&xhci->ir_set->irq_pending);
710         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
711         xhci_print_ir_set(xhci, 0);
712
713         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
714         xhci_mem_cleanup(xhci);
715         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716                         "xhci_stop completed - status = %x",
717                         readl(&xhci->op_regs->status));
718 }
719
720 /*
721  * Shutdown HC (not bus-specific)
722  *
723  * This is called when the machine is rebooting or halting.  We assume that the
724  * machine will be powered off, and the HC's internal state will be reset.
725  * Don't bother to free memory.
726  *
727  * This will only ever be called with the main usb_hcd (the USB3 roothub).
728  */
729 void xhci_shutdown(struct usb_hcd *hcd)
730 {
731         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
732
733         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
734                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
735
736         spin_lock_irq(&xhci->lock);
737         xhci_halt(xhci);
738         /* Workaround for spurious wakeups at shutdown with HSW */
739         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
740                 xhci_reset(xhci);
741         spin_unlock_irq(&xhci->lock);
742
743         xhci_cleanup_msix(xhci);
744
745         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
746                         "xhci_shutdown completed - status = %x",
747                         readl(&xhci->op_regs->status));
748
749         /* Yet another workaround for spurious wakeups at shutdown with HSW */
750         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
751                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
752 }
753
754 #ifdef CONFIG_PM
755 static void xhci_save_registers(struct xhci_hcd *xhci)
756 {
757         xhci->s3.command = readl(&xhci->op_regs->command);
758         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
759         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
760         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
761         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
762         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
763         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
764         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
765         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
766 }
767
768 static void xhci_restore_registers(struct xhci_hcd *xhci)
769 {
770         writel(xhci->s3.command, &xhci->op_regs->command);
771         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
772         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
773         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
774         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
775         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
776         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
777         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
778         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
779 }
780
781 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
782 {
783         u64     val_64;
784
785         /* step 2: initialize command ring buffer */
786         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
787         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
788                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
789                                       xhci->cmd_ring->dequeue) &
790                  (u64) ~CMD_RING_RSVD_BITS) |
791                 xhci->cmd_ring->cycle_state;
792         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793                         "// Setting command ring address to 0x%llx",
794                         (long unsigned long) val_64);
795         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
796 }
797
798 /*
799  * The whole command ring must be cleared to zero when we suspend the host.
800  *
801  * The host doesn't save the command ring pointer in the suspend well, so we
802  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
803  * aligned, because of the reserved bits in the command ring dequeue pointer
804  * register.  Therefore, we can't just set the dequeue pointer back in the
805  * middle of the ring (TRBs are 16-byte aligned).
806  */
807 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
808 {
809         struct xhci_ring *ring;
810         struct xhci_segment *seg;
811
812         ring = xhci->cmd_ring;
813         seg = ring->deq_seg;
814         do {
815                 memset(seg->trbs, 0,
816                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
817                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
818                         cpu_to_le32(~TRB_CYCLE);
819                 seg = seg->next;
820         } while (seg != ring->deq_seg);
821
822         /* Reset the software enqueue and dequeue pointers */
823         ring->deq_seg = ring->first_seg;
824         ring->dequeue = ring->first_seg->trbs;
825         ring->enq_seg = ring->deq_seg;
826         ring->enqueue = ring->dequeue;
827
828         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
829         /*
830          * Ring is now zeroed, so the HW should look for change of ownership
831          * when the cycle bit is set to 1.
832          */
833         ring->cycle_state = 1;
834
835         /*
836          * Reset the hardware dequeue pointer.
837          * Yes, this will need to be re-written after resume, but we're paranoid
838          * and want to make sure the hardware doesn't access bogus memory
839          * because, say, the BIOS or an SMI started the host without changing
840          * the command ring pointers.
841          */
842         xhci_set_cmd_ring_deq(xhci);
843 }
844
845 /*
846  * Stop HC (not bus-specific)
847  *
848  * This is called when the machine transition into S3/S4 mode.
849  *
850  */
851 int xhci_suspend(struct xhci_hcd *xhci)
852 {
853         int                     rc = 0;
854         unsigned int            delay = XHCI_MAX_HALT_USEC;
855         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
856         u32                     command;
857
858         if (hcd->state != HC_STATE_SUSPENDED ||
859                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
860                 return -EINVAL;
861
862         /* Don't poll the roothubs on bus suspend. */
863         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
864         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
865         del_timer_sync(&hcd->rh_timer);
866
867         spin_lock_irq(&xhci->lock);
868         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
869         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
870         /* step 1: stop endpoint */
871         /* skipped assuming that port suspend has done */
872
873         /* step 2: clear Run/Stop bit */
874         command = readl(&xhci->op_regs->command);
875         command &= ~CMD_RUN;
876         writel(command, &xhci->op_regs->command);
877
878         /* Some chips from Fresco Logic need an extraordinary delay */
879         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
880
881         if (xhci_handshake(xhci, &xhci->op_regs->status,
882                       STS_HALT, STS_HALT, delay)) {
883                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
884                 spin_unlock_irq(&xhci->lock);
885                 return -ETIMEDOUT;
886         }
887         xhci_clear_command_ring(xhci);
888
889         /* step 3: save registers */
890         xhci_save_registers(xhci);
891
892         /* step 4: set CSS flag */
893         command = readl(&xhci->op_regs->command);
894         command |= CMD_CSS;
895         writel(command, &xhci->op_regs->command);
896         if (xhci_handshake(xhci, &xhci->op_regs->status,
897                                 STS_SAVE, 0, 10 * 1000)) {
898                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
899                 spin_unlock_irq(&xhci->lock);
900                 return -ETIMEDOUT;
901         }
902         spin_unlock_irq(&xhci->lock);
903
904         /*
905          * Deleting Compliance Mode Recovery Timer because the xHCI Host
906          * is about to be suspended.
907          */
908         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
909                         (!(xhci_all_ports_seen_u0(xhci)))) {
910                 del_timer_sync(&xhci->comp_mode_recovery_timer);
911                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
912                                 "%s: compliance mode recovery timer deleted",
913                                 __func__);
914         }
915
916         /* step 5: remove core well power */
917         /* synchronize irq when using MSI-X */
918         xhci_msix_sync_irqs(xhci);
919
920         return rc;
921 }
922
923 /*
924  * start xHC (not bus-specific)
925  *
926  * This is called when the machine transition from S3/S4 mode.
927  *
928  */
929 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
930 {
931         u32                     command, temp = 0;
932         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
933         struct usb_hcd          *secondary_hcd;
934         int                     retval = 0;
935         bool                    comp_timer_running = false;
936
937         /* Wait a bit if either of the roothubs need to settle from the
938          * transition into bus suspend.
939          */
940         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
941                         time_before(jiffies,
942                                 xhci->bus_state[1].next_statechange))
943                 msleep(100);
944
945         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
946         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
947
948         spin_lock_irq(&xhci->lock);
949         if (xhci->quirks & XHCI_RESET_ON_RESUME)
950                 hibernated = true;
951
952         if (!hibernated) {
953                 /* step 1: restore register */
954                 xhci_restore_registers(xhci);
955                 /* step 2: initialize command ring buffer */
956                 xhci_set_cmd_ring_deq(xhci);
957                 /* step 3: restore state and start state*/
958                 /* step 3: set CRS flag */
959                 command = readl(&xhci->op_regs->command);
960                 command |= CMD_CRS;
961                 writel(command, &xhci->op_regs->command);
962                 if (xhci_handshake(xhci, &xhci->op_regs->status,
963                               STS_RESTORE, 0, 10 * 1000)) {
964                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
965                         spin_unlock_irq(&xhci->lock);
966                         return -ETIMEDOUT;
967                 }
968                 temp = readl(&xhci->op_regs->status);
969         }
970
971         /* If restore operation fails, re-initialize the HC during resume */
972         if ((temp & STS_SRE) || hibernated) {
973
974                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
975                                 !(xhci_all_ports_seen_u0(xhci))) {
976                         del_timer_sync(&xhci->comp_mode_recovery_timer);
977                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
978                                 "Compliance Mode Recovery Timer deleted!");
979                 }
980
981                 /* Let the USB core know _both_ roothubs lost power. */
982                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
983                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
984
985                 xhci_dbg(xhci, "Stop HCD\n");
986                 xhci_halt(xhci);
987                 xhci_reset(xhci);
988                 spin_unlock_irq(&xhci->lock);
989                 xhci_cleanup_msix(xhci);
990
991                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
992                 temp = readl(&xhci->op_regs->status);
993                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
994                 temp = readl(&xhci->ir_set->irq_pending);
995                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
996                 xhci_print_ir_set(xhci, 0);
997
998                 xhci_dbg(xhci, "cleaning up memory\n");
999                 xhci_mem_cleanup(xhci);
1000                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1001                             readl(&xhci->op_regs->status));
1002
1003                 /* USB core calls the PCI reinit and start functions twice:
1004                  * first with the primary HCD, and then with the secondary HCD.
1005                  * If we don't do the same, the host will never be started.
1006                  */
1007                 if (!usb_hcd_is_primary_hcd(hcd))
1008                         secondary_hcd = hcd;
1009                 else
1010                         secondary_hcd = xhci->shared_hcd;
1011
1012                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1013                 retval = xhci_init(hcd->primary_hcd);
1014                 if (retval)
1015                         return retval;
1016                 comp_timer_running = true;
1017
1018                 xhci_dbg(xhci, "Start the primary HCD\n");
1019                 retval = xhci_run(hcd->primary_hcd);
1020                 if (!retval) {
1021                         xhci_dbg(xhci, "Start the secondary HCD\n");
1022                         retval = xhci_run(secondary_hcd);
1023                 }
1024                 hcd->state = HC_STATE_SUSPENDED;
1025                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1026                 goto done;
1027         }
1028
1029         /* step 4: set Run/Stop bit */
1030         command = readl(&xhci->op_regs->command);
1031         command |= CMD_RUN;
1032         writel(command, &xhci->op_regs->command);
1033         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1034                   0, 250 * 1000);
1035
1036         /* step 5: walk topology and initialize portsc,
1037          * portpmsc and portli
1038          */
1039         /* this is done in bus_resume */
1040
1041         /* step 6: restart each of the previously
1042          * Running endpoints by ringing their doorbells
1043          */
1044
1045         spin_unlock_irq(&xhci->lock);
1046
1047  done:
1048         if (retval == 0) {
1049                 usb_hcd_resume_root_hub(hcd);
1050                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1051         }
1052
1053         /*
1054          * If system is subject to the Quirk, Compliance Mode Timer needs to
1055          * be re-initialized Always after a system resume. Ports are subject
1056          * to suffer the Compliance Mode issue again. It doesn't matter if
1057          * ports have entered previously to U0 before system's suspension.
1058          */
1059         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1060                 compliance_mode_recovery_timer_init(xhci);
1061
1062         /* Re-enable port polling. */
1063         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1064         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1065         usb_hcd_poll_rh_status(hcd);
1066
1067         return retval;
1068 }
1069 #endif  /* CONFIG_PM */
1070
1071 /*-------------------------------------------------------------------------*/
1072
1073 /**
1074  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1075  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1076  * value to right shift 1 for the bitmask.
1077  *
1078  * Index  = (epnum * 2) + direction - 1,
1079  * where direction = 0 for OUT, 1 for IN.
1080  * For control endpoints, the IN index is used (OUT index is unused), so
1081  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1082  */
1083 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1084 {
1085         unsigned int index;
1086         if (usb_endpoint_xfer_control(desc))
1087                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1088         else
1089                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1090                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1091         return index;
1092 }
1093
1094 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1095  * address from the XHCI endpoint index.
1096  */
1097 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1098 {
1099         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1100         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1101         return direction | number;
1102 }
1103
1104 /* Find the flag for this endpoint (for use in the control context).  Use the
1105  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1106  * bit 1, etc.
1107  */
1108 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1109 {
1110         return 1 << (xhci_get_endpoint_index(desc) + 1);
1111 }
1112
1113 /* Find the flag for this endpoint (for use in the control context).  Use the
1114  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1115  * bit 1, etc.
1116  */
1117 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1118 {
1119         return 1 << (ep_index + 1);
1120 }
1121
1122 /* Compute the last valid endpoint context index.  Basically, this is the
1123  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1124  * we find the most significant bit set in the added contexts flags.
1125  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1126  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1127  */
1128 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1129 {
1130         return fls(added_ctxs) - 1;
1131 }
1132
1133 /* Returns 1 if the arguments are OK;
1134  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1135  */
1136 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1137                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1138                 const char *func) {
1139         struct xhci_hcd *xhci;
1140         struct xhci_virt_device *virt_dev;
1141
1142         if (!hcd || (check_ep && !ep) || !udev) {
1143                 pr_debug("xHCI %s called with invalid args\n", func);
1144                 return -EINVAL;
1145         }
1146         if (!udev->parent) {
1147                 pr_debug("xHCI %s called for root hub\n", func);
1148                 return 0;
1149         }
1150
1151         xhci = hcd_to_xhci(hcd);
1152         if (check_virt_dev) {
1153                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1154                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1155                                         func);
1156                         return -EINVAL;
1157                 }
1158
1159                 virt_dev = xhci->devs[udev->slot_id];
1160                 if (virt_dev->udev != udev) {
1161                         xhci_dbg(xhci, "xHCI %s called with udev and "
1162                                           "virt_dev does not match\n", func);
1163                         return -EINVAL;
1164                 }
1165         }
1166
1167         if (xhci->xhc_state & XHCI_STATE_HALTED)
1168                 return -ENODEV;
1169
1170         return 1;
1171 }
1172
1173 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1174                 struct usb_device *udev, struct xhci_command *command,
1175                 bool ctx_change, bool must_succeed);
1176
1177 /*
1178  * Full speed devices may have a max packet size greater than 8 bytes, but the
1179  * USB core doesn't know that until it reads the first 8 bytes of the
1180  * descriptor.  If the usb_device's max packet size changes after that point,
1181  * we need to issue an evaluate context command and wait on it.
1182  */
1183 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1184                 unsigned int ep_index, struct urb *urb)
1185 {
1186         struct xhci_container_ctx *in_ctx;
1187         struct xhci_container_ctx *out_ctx;
1188         struct xhci_input_control_ctx *ctrl_ctx;
1189         struct xhci_ep_ctx *ep_ctx;
1190         int max_packet_size;
1191         int hw_max_packet_size;
1192         int ret = 0;
1193
1194         out_ctx = xhci->devs[slot_id]->out_ctx;
1195         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1196         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1197         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1198         if (hw_max_packet_size != max_packet_size) {
1199                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1200                                 "Max Packet Size for ep 0 changed.");
1201                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1202                                 "Max packet size in usb_device = %d",
1203                                 max_packet_size);
1204                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1205                                 "Max packet size in xHCI HW = %d",
1206                                 hw_max_packet_size);
1207                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1208                                 "Issuing evaluate context command.");
1209
1210                 /* Set up the input context flags for the command */
1211                 /* FIXME: This won't work if a non-default control endpoint
1212                  * changes max packet sizes.
1213                  */
1214                 in_ctx = xhci->devs[slot_id]->in_ctx;
1215                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1216                 if (!ctrl_ctx) {
1217                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1218                                         __func__);
1219                         return -ENOMEM;
1220                 }
1221                 /* Set up the modified control endpoint 0 */
1222                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1223                                 xhci->devs[slot_id]->out_ctx, ep_index);
1224
1225                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1226                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1227                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1228
1229                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1230                 ctrl_ctx->drop_flags = 0;
1231
1232                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1233                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1234                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1235                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1236
1237                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1238                                 true, false);
1239
1240                 /* Clean up the input context for later use by bandwidth
1241                  * functions.
1242                  */
1243                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1244         }
1245         return ret;
1246 }
1247
1248 /*
1249  * non-error returns are a promise to giveback() the urb later
1250  * we drop ownership so next owner (or urb unlink) can get it
1251  */
1252 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1253 {
1254         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1255         struct xhci_td *buffer;
1256         unsigned long flags;
1257         int ret = 0;
1258         unsigned int slot_id, ep_index;
1259         struct urb_priv *urb_priv;
1260         int size, i;
1261
1262         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1263                                         true, true, __func__) <= 0)
1264                 return -EINVAL;
1265
1266         slot_id = urb->dev->slot_id;
1267         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1268
1269         if (!HCD_HW_ACCESSIBLE(hcd)) {
1270                 if (!in_interrupt())
1271                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1272                 ret = -ESHUTDOWN;
1273                 goto exit;
1274         }
1275
1276         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1277                 size = urb->number_of_packets;
1278         else
1279                 size = 1;
1280
1281         urb_priv = kzalloc(sizeof(struct urb_priv) +
1282                                   size * sizeof(struct xhci_td *), mem_flags);
1283         if (!urb_priv)
1284                 return -ENOMEM;
1285
1286         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1287         if (!buffer) {
1288                 kfree(urb_priv);
1289                 return -ENOMEM;
1290         }
1291
1292         for (i = 0; i < size; i++) {
1293                 urb_priv->td[i] = buffer;
1294                 buffer++;
1295         }
1296
1297         urb_priv->length = size;
1298         urb_priv->td_cnt = 0;
1299         urb->hcpriv = urb_priv;
1300
1301         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1302                 /* Check to see if the max packet size for the default control
1303                  * endpoint changed during FS device enumeration
1304                  */
1305                 if (urb->dev->speed == USB_SPEED_FULL) {
1306                         ret = xhci_check_maxpacket(xhci, slot_id,
1307                                         ep_index, urb);
1308                         if (ret < 0) {
1309                                 xhci_urb_free_priv(xhci, urb_priv);
1310                                 urb->hcpriv = NULL;
1311                                 return ret;
1312                         }
1313                 }
1314
1315                 /* We have a spinlock and interrupts disabled, so we must pass
1316                  * atomic context to this function, which may allocate memory.
1317                  */
1318                 spin_lock_irqsave(&xhci->lock, flags);
1319                 if (xhci->xhc_state & XHCI_STATE_DYING)
1320                         goto dying;
1321                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1322                                 slot_id, ep_index);
1323                 if (ret)
1324                         goto free_priv;
1325                 spin_unlock_irqrestore(&xhci->lock, flags);
1326         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1327                 spin_lock_irqsave(&xhci->lock, flags);
1328                 if (xhci->xhc_state & XHCI_STATE_DYING)
1329                         goto dying;
1330                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1331                                 EP_GETTING_STREAMS) {
1332                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1333                                         "is transitioning to using streams.\n");
1334                         ret = -EINVAL;
1335                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1336                                 EP_GETTING_NO_STREAMS) {
1337                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1338                                         "is transitioning to "
1339                                         "not having streams.\n");
1340                         ret = -EINVAL;
1341                 } else {
1342                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1343                                         slot_id, ep_index);
1344                 }
1345                 if (ret)
1346                         goto free_priv;
1347                 spin_unlock_irqrestore(&xhci->lock, flags);
1348         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1349                 spin_lock_irqsave(&xhci->lock, flags);
1350                 if (xhci->xhc_state & XHCI_STATE_DYING)
1351                         goto dying;
1352                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1353                                 slot_id, ep_index);
1354                 if (ret)
1355                         goto free_priv;
1356                 spin_unlock_irqrestore(&xhci->lock, flags);
1357         } else {
1358                 spin_lock_irqsave(&xhci->lock, flags);
1359                 if (xhci->xhc_state & XHCI_STATE_DYING)
1360                         goto dying;
1361                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1362                                 slot_id, ep_index);
1363                 if (ret)
1364                         goto free_priv;
1365                 spin_unlock_irqrestore(&xhci->lock, flags);
1366         }
1367 exit:
1368         return ret;
1369 dying:
1370         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1371                         "non-responsive xHCI host.\n",
1372                         urb->ep->desc.bEndpointAddress, urb);
1373         ret = -ESHUTDOWN;
1374 free_priv:
1375         xhci_urb_free_priv(xhci, urb_priv);
1376         urb->hcpriv = NULL;
1377         spin_unlock_irqrestore(&xhci->lock, flags);
1378         return ret;
1379 }
1380
1381 /* Get the right ring for the given URB.
1382  * If the endpoint supports streams, boundary check the URB's stream ID.
1383  * If the endpoint doesn't support streams, return the singular endpoint ring.
1384  */
1385 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1386                 struct urb *urb)
1387 {
1388         unsigned int slot_id;
1389         unsigned int ep_index;
1390         unsigned int stream_id;
1391         struct xhci_virt_ep *ep;
1392
1393         slot_id = urb->dev->slot_id;
1394         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1395         stream_id = urb->stream_id;
1396         ep = &xhci->devs[slot_id]->eps[ep_index];
1397         /* Common case: no streams */
1398         if (!(ep->ep_state & EP_HAS_STREAMS))
1399                 return ep->ring;
1400
1401         if (stream_id == 0) {
1402                 xhci_warn(xhci,
1403                                 "WARN: Slot ID %u, ep index %u has streams, "
1404                                 "but URB has no stream ID.\n",
1405                                 slot_id, ep_index);
1406                 return NULL;
1407         }
1408
1409         if (stream_id < ep->stream_info->num_streams)
1410                 return ep->stream_info->stream_rings[stream_id];
1411
1412         xhci_warn(xhci,
1413                         "WARN: Slot ID %u, ep index %u has "
1414                         "stream IDs 1 to %u allocated, "
1415                         "but stream ID %u is requested.\n",
1416                         slot_id, ep_index,
1417                         ep->stream_info->num_streams - 1,
1418                         stream_id);
1419         return NULL;
1420 }
1421
1422 /*
1423  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1424  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1425  * should pick up where it left off in the TD, unless a Set Transfer Ring
1426  * Dequeue Pointer is issued.
1427  *
1428  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1429  * the ring.  Since the ring is a contiguous structure, they can't be physically
1430  * removed.  Instead, there are two options:
1431  *
1432  *  1) If the HC is in the middle of processing the URB to be canceled, we
1433  *     simply move the ring's dequeue pointer past those TRBs using the Set
1434  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1435  *     when drivers timeout on the last submitted URB and attempt to cancel.
1436  *
1437  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1438  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1439  *     HC will need to invalidate the any TRBs it has cached after the stop
1440  *     endpoint command, as noted in the xHCI 0.95 errata.
1441  *
1442  *  3) The TD may have completed by the time the Stop Endpoint Command
1443  *     completes, so software needs to handle that case too.
1444  *
1445  * This function should protect against the TD enqueueing code ringing the
1446  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1447  * It also needs to account for multiple cancellations on happening at the same
1448  * time for the same endpoint.
1449  *
1450  * Note that this function can be called in any context, or so says
1451  * usb_hcd_unlink_urb()
1452  */
1453 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1454 {
1455         unsigned long flags;
1456         int ret, i;
1457         u32 temp;
1458         struct xhci_hcd *xhci;
1459         struct urb_priv *urb_priv;
1460         struct xhci_td *td;
1461         unsigned int ep_index;
1462         struct xhci_ring *ep_ring;
1463         struct xhci_virt_ep *ep;
1464
1465         xhci = hcd_to_xhci(hcd);
1466         spin_lock_irqsave(&xhci->lock, flags);
1467         /* Make sure the URB hasn't completed or been unlinked already */
1468         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1469         if (ret || !urb->hcpriv)
1470                 goto done;
1471         temp = readl(&xhci->op_regs->status);
1472         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1473                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1474                                 "HW died, freeing TD.");
1475                 urb_priv = urb->hcpriv;
1476                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1477                         td = urb_priv->td[i];
1478                         if (!list_empty(&td->td_list))
1479                                 list_del_init(&td->td_list);
1480                         if (!list_empty(&td->cancelled_td_list))
1481                                 list_del_init(&td->cancelled_td_list);
1482                 }
1483
1484                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1485                 spin_unlock_irqrestore(&xhci->lock, flags);
1486                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1487                 xhci_urb_free_priv(xhci, urb_priv);
1488                 return ret;
1489         }
1490         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1491                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1492                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1493                                 "Ep 0x%x: URB %p to be canceled on "
1494                                 "non-responsive xHCI host.",
1495                                 urb->ep->desc.bEndpointAddress, urb);
1496                 /* Let the stop endpoint command watchdog timer (which set this
1497                  * state) finish cleaning up the endpoint TD lists.  We must
1498                  * have caught it in the middle of dropping a lock and giving
1499                  * back an URB.
1500                  */
1501                 goto done;
1502         }
1503
1504         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1505         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1506         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1507         if (!ep_ring) {
1508                 ret = -EINVAL;
1509                 goto done;
1510         }
1511
1512         urb_priv = urb->hcpriv;
1513         i = urb_priv->td_cnt;
1514         if (i < urb_priv->length)
1515                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1516                                 "Cancel URB %p, dev %s, ep 0x%x, "
1517                                 "starting at offset 0x%llx",
1518                                 urb, urb->dev->devpath,
1519                                 urb->ep->desc.bEndpointAddress,
1520                                 (unsigned long long) xhci_trb_virt_to_dma(
1521                                         urb_priv->td[i]->start_seg,
1522                                         urb_priv->td[i]->first_trb));
1523
1524         for (; i < urb_priv->length; i++) {
1525                 td = urb_priv->td[i];
1526                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1527         }
1528
1529         /* Queue a stop endpoint command, but only if this is
1530          * the first cancellation to be handled.
1531          */
1532         if (!(ep->ep_state & EP_HALT_PENDING)) {
1533                 ep->ep_state |= EP_HALT_PENDING;
1534                 ep->stop_cmds_pending++;
1535                 ep->stop_cmd_timer.expires = jiffies +
1536                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1537                 add_timer(&ep->stop_cmd_timer);
1538                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1539                 xhci_ring_cmd_db(xhci);
1540         }
1541 done:
1542         spin_unlock_irqrestore(&xhci->lock, flags);
1543         return ret;
1544 }
1545
1546 /* Drop an endpoint from a new bandwidth configuration for this device.
1547  * Only one call to this function is allowed per endpoint before
1548  * check_bandwidth() or reset_bandwidth() must be called.
1549  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1550  * add the endpoint to the schedule with possibly new parameters denoted by a
1551  * different endpoint descriptor in usb_host_endpoint.
1552  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1553  * not allowed.
1554  *
1555  * The USB core will not allow URBs to be queued to an endpoint that is being
1556  * disabled, so there's no need for mutual exclusion to protect
1557  * the xhci->devs[slot_id] structure.
1558  */
1559 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1560                 struct usb_host_endpoint *ep)
1561 {
1562         struct xhci_hcd *xhci;
1563         struct xhci_container_ctx *in_ctx, *out_ctx;
1564         struct xhci_input_control_ctx *ctrl_ctx;
1565         struct xhci_slot_ctx *slot_ctx;
1566         unsigned int last_ctx;
1567         unsigned int ep_index;
1568         struct xhci_ep_ctx *ep_ctx;
1569         u32 drop_flag;
1570         u32 new_add_flags, new_drop_flags, new_slot_info;
1571         int ret;
1572
1573         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1574         if (ret <= 0)
1575                 return ret;
1576         xhci = hcd_to_xhci(hcd);
1577         if (xhci->xhc_state & XHCI_STATE_DYING)
1578                 return -ENODEV;
1579
1580         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1581         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1582         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1583                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1584                                 __func__, drop_flag);
1585                 return 0;
1586         }
1587
1588         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1589         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1590         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1591         if (!ctrl_ctx) {
1592                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1593                                 __func__);
1594                 return 0;
1595         }
1596
1597         ep_index = xhci_get_endpoint_index(&ep->desc);
1598         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1599         /* If the HC already knows the endpoint is disabled,
1600          * or the HCD has noted it is disabled, ignore this request
1601          */
1602         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1603              cpu_to_le32(EP_STATE_DISABLED)) ||
1604             le32_to_cpu(ctrl_ctx->drop_flags) &
1605             xhci_get_endpoint_flag(&ep->desc)) {
1606                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1607                                 __func__, ep);
1608                 return 0;
1609         }
1610
1611         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1612         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1613
1614         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1615         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1616
1617         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1618         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1619         /* Update the last valid endpoint context, if we deleted the last one */
1620         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1621             LAST_CTX(last_ctx)) {
1622                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1623                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1624         }
1625         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1626
1627         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1628
1629         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1630                         (unsigned int) ep->desc.bEndpointAddress,
1631                         udev->slot_id,
1632                         (unsigned int) new_drop_flags,
1633                         (unsigned int) new_add_flags,
1634                         (unsigned int) new_slot_info);
1635         return 0;
1636 }
1637
1638 /* Add an endpoint to a new possible bandwidth configuration for this device.
1639  * Only one call to this function is allowed per endpoint before
1640  * check_bandwidth() or reset_bandwidth() must be called.
1641  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1642  * add the endpoint to the schedule with possibly new parameters denoted by a
1643  * different endpoint descriptor in usb_host_endpoint.
1644  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1645  * not allowed.
1646  *
1647  * The USB core will not allow URBs to be queued to an endpoint until the
1648  * configuration or alt setting is installed in the device, so there's no need
1649  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1650  */
1651 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1652                 struct usb_host_endpoint *ep)
1653 {
1654         struct xhci_hcd *xhci;
1655         struct xhci_container_ctx *in_ctx, *out_ctx;
1656         unsigned int ep_index;
1657         struct xhci_slot_ctx *slot_ctx;
1658         struct xhci_input_control_ctx *ctrl_ctx;
1659         u32 added_ctxs;
1660         unsigned int last_ctx;
1661         u32 new_add_flags, new_drop_flags, new_slot_info;
1662         struct xhci_virt_device *virt_dev;
1663         int ret = 0;
1664
1665         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1666         if (ret <= 0) {
1667                 /* So we won't queue a reset ep command for a root hub */
1668                 ep->hcpriv = NULL;
1669                 return ret;
1670         }
1671         xhci = hcd_to_xhci(hcd);
1672         if (xhci->xhc_state & XHCI_STATE_DYING)
1673                 return -ENODEV;
1674
1675         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1676         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1677         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1678                 /* FIXME when we have to issue an evaluate endpoint command to
1679                  * deal with ep0 max packet size changing once we get the
1680                  * descriptors
1681                  */
1682                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1683                                 __func__, added_ctxs);
1684                 return 0;
1685         }
1686
1687         virt_dev = xhci->devs[udev->slot_id];
1688         in_ctx = virt_dev->in_ctx;
1689         out_ctx = virt_dev->out_ctx;
1690         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1691         if (!ctrl_ctx) {
1692                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1693                                 __func__);
1694                 return 0;
1695         }
1696
1697         ep_index = xhci_get_endpoint_index(&ep->desc);
1698         /* If this endpoint is already in use, and the upper layers are trying
1699          * to add it again without dropping it, reject the addition.
1700          */
1701         if (virt_dev->eps[ep_index].ring &&
1702                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1703                                 xhci_get_endpoint_flag(&ep->desc))) {
1704                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1705                                 "without dropping it.\n",
1706                                 (unsigned int) ep->desc.bEndpointAddress);
1707                 return -EINVAL;
1708         }
1709
1710         /* If the HCD has already noted the endpoint is enabled,
1711          * ignore this request.
1712          */
1713         if (le32_to_cpu(ctrl_ctx->add_flags) &
1714             xhci_get_endpoint_flag(&ep->desc)) {
1715                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1716                                 __func__, ep);
1717                 return 0;
1718         }
1719
1720         /*
1721          * Configuration and alternate setting changes must be done in
1722          * process context, not interrupt context (or so documenation
1723          * for usb_set_interface() and usb_set_configuration() claim).
1724          */
1725         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1726                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1727                                 __func__, ep->desc.bEndpointAddress);
1728                 return -ENOMEM;
1729         }
1730
1731         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1732         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1733
1734         /* If xhci_endpoint_disable() was called for this endpoint, but the
1735          * xHC hasn't been notified yet through the check_bandwidth() call,
1736          * this re-adds a new state for the endpoint from the new endpoint
1737          * descriptors.  We must drop and re-add this endpoint, so we leave the
1738          * drop flags alone.
1739          */
1740         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1741
1742         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1743         /* Update the last valid endpoint context, if we just added one past */
1744         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1745             LAST_CTX(last_ctx)) {
1746                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1747                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1748         }
1749         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1750
1751         /* Store the usb_device pointer for later use */
1752         ep->hcpriv = udev;
1753
1754         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1755                         (unsigned int) ep->desc.bEndpointAddress,
1756                         udev->slot_id,
1757                         (unsigned int) new_drop_flags,
1758                         (unsigned int) new_add_flags,
1759                         (unsigned int) new_slot_info);
1760         return 0;
1761 }
1762
1763 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1764 {
1765         struct xhci_input_control_ctx *ctrl_ctx;
1766         struct xhci_ep_ctx *ep_ctx;
1767         struct xhci_slot_ctx *slot_ctx;
1768         int i;
1769
1770         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1771         if (!ctrl_ctx) {
1772                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1773                                 __func__);
1774                 return;
1775         }
1776
1777         /* When a device's add flag and drop flag are zero, any subsequent
1778          * configure endpoint command will leave that endpoint's state
1779          * untouched.  Make sure we don't leave any old state in the input
1780          * endpoint contexts.
1781          */
1782         ctrl_ctx->drop_flags = 0;
1783         ctrl_ctx->add_flags = 0;
1784         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1785         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1786         /* Endpoint 0 is always valid */
1787         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1788         for (i = 1; i < 31; ++i) {
1789                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1790                 ep_ctx->ep_info = 0;
1791                 ep_ctx->ep_info2 = 0;
1792                 ep_ctx->deq = 0;
1793                 ep_ctx->tx_info = 0;
1794         }
1795 }
1796
1797 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1798                 struct usb_device *udev, u32 *cmd_status)
1799 {
1800         int ret;
1801
1802         switch (*cmd_status) {
1803         case COMP_ENOMEM:
1804                 dev_warn(&udev->dev, "Not enough host controller resources "
1805                                 "for new device state.\n");
1806                 ret = -ENOMEM;
1807                 /* FIXME: can we allocate more resources for the HC? */
1808                 break;
1809         case COMP_BW_ERR:
1810         case COMP_2ND_BW_ERR:
1811                 dev_warn(&udev->dev, "Not enough bandwidth "
1812                                 "for new device state.\n");
1813                 ret = -ENOSPC;
1814                 /* FIXME: can we go back to the old state? */
1815                 break;
1816         case COMP_TRB_ERR:
1817                 /* the HCD set up something wrong */
1818                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1819                                 "add flag = 1, "
1820                                 "and endpoint is not disabled.\n");
1821                 ret = -EINVAL;
1822                 break;
1823         case COMP_DEV_ERR:
1824                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1825                                 "configure command.\n");
1826                 ret = -ENODEV;
1827                 break;
1828         case COMP_SUCCESS:
1829                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1830                                 "Successful Endpoint Configure command");
1831                 ret = 0;
1832                 break;
1833         default:
1834                 xhci_err(xhci, "ERROR: unexpected command completion "
1835                                 "code 0x%x.\n", *cmd_status);
1836                 ret = -EINVAL;
1837                 break;
1838         }
1839         return ret;
1840 }
1841
1842 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1843                 struct usb_device *udev, u32 *cmd_status)
1844 {
1845         int ret;
1846         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1847
1848         switch (*cmd_status) {
1849         case COMP_EINVAL:
1850                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1851                                 "context command.\n");
1852                 ret = -EINVAL;
1853                 break;
1854         case COMP_EBADSLT:
1855                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1856                                 "evaluate context command.\n");
1857                 ret = -EINVAL;
1858                 break;
1859         case COMP_CTX_STATE:
1860                 dev_warn(&udev->dev, "WARN: invalid context state for "
1861                                 "evaluate context command.\n");
1862                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1863                 ret = -EINVAL;
1864                 break;
1865         case COMP_DEV_ERR:
1866                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1867                                 "context command.\n");
1868                 ret = -ENODEV;
1869                 break;
1870         case COMP_MEL_ERR:
1871                 /* Max Exit Latency too large error */
1872                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1873                 ret = -EINVAL;
1874                 break;
1875         case COMP_SUCCESS:
1876                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1877                                 "Successful evaluate context command");
1878                 ret = 0;
1879                 break;
1880         default:
1881                 xhci_err(xhci, "ERROR: unexpected command completion "
1882                                 "code 0x%x.\n", *cmd_status);
1883                 ret = -EINVAL;
1884                 break;
1885         }
1886         return ret;
1887 }
1888
1889 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1890                 struct xhci_input_control_ctx *ctrl_ctx)
1891 {
1892         u32 valid_add_flags;
1893         u32 valid_drop_flags;
1894
1895         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1896          * (bit 1).  The default control endpoint is added during the Address
1897          * Device command and is never removed until the slot is disabled.
1898          */
1899         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1900         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1901
1902         /* Use hweight32 to count the number of ones in the add flags, or
1903          * number of endpoints added.  Don't count endpoints that are changed
1904          * (both added and dropped).
1905          */
1906         return hweight32(valid_add_flags) -
1907                 hweight32(valid_add_flags & valid_drop_flags);
1908 }
1909
1910 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1911                 struct xhci_input_control_ctx *ctrl_ctx)
1912 {
1913         u32 valid_add_flags;
1914         u32 valid_drop_flags;
1915
1916         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1917         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1918
1919         return hweight32(valid_drop_flags) -
1920                 hweight32(valid_add_flags & valid_drop_flags);
1921 }
1922
1923 /*
1924  * We need to reserve the new number of endpoints before the configure endpoint
1925  * command completes.  We can't subtract the dropped endpoints from the number
1926  * of active endpoints until the command completes because we can oversubscribe
1927  * the host in this case:
1928  *
1929  *  - the first configure endpoint command drops more endpoints than it adds
1930  *  - a second configure endpoint command that adds more endpoints is queued
1931  *  - the first configure endpoint command fails, so the config is unchanged
1932  *  - the second command may succeed, even though there isn't enough resources
1933  *
1934  * Must be called with xhci->lock held.
1935  */
1936 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1937                 struct xhci_input_control_ctx *ctrl_ctx)
1938 {
1939         u32 added_eps;
1940
1941         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1942         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1943                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1944                                 "Not enough ep ctxs: "
1945                                 "%u active, need to add %u, limit is %u.",
1946                                 xhci->num_active_eps, added_eps,
1947                                 xhci->limit_active_eps);
1948                 return -ENOMEM;
1949         }
1950         xhci->num_active_eps += added_eps;
1951         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1952                         "Adding %u ep ctxs, %u now active.", added_eps,
1953                         xhci->num_active_eps);
1954         return 0;
1955 }
1956
1957 /*
1958  * The configure endpoint was failed by the xHC for some other reason, so we
1959  * need to revert the resources that failed configuration would have used.
1960  *
1961  * Must be called with xhci->lock held.
1962  */
1963 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1964                 struct xhci_input_control_ctx *ctrl_ctx)
1965 {
1966         u32 num_failed_eps;
1967
1968         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1969         xhci->num_active_eps -= num_failed_eps;
1970         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1971                         "Removing %u failed ep ctxs, %u now active.",
1972                         num_failed_eps,
1973                         xhci->num_active_eps);
1974 }
1975
1976 /*
1977  * Now that the command has completed, clean up the active endpoint count by
1978  * subtracting out the endpoints that were dropped (but not changed).
1979  *
1980  * Must be called with xhci->lock held.
1981  */
1982 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1983                 struct xhci_input_control_ctx *ctrl_ctx)
1984 {
1985         u32 num_dropped_eps;
1986
1987         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1988         xhci->num_active_eps -= num_dropped_eps;
1989         if (num_dropped_eps)
1990                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1991                                 "Removing %u dropped ep ctxs, %u now active.",
1992                                 num_dropped_eps,
1993                                 xhci->num_active_eps);
1994 }
1995
1996 static unsigned int xhci_get_block_size(struct usb_device *udev)
1997 {
1998         switch (udev->speed) {
1999         case USB_SPEED_LOW:
2000         case USB_SPEED_FULL:
2001                 return FS_BLOCK;
2002         case USB_SPEED_HIGH:
2003                 return HS_BLOCK;
2004         case USB_SPEED_SUPER:
2005                 return SS_BLOCK;
2006         case USB_SPEED_UNKNOWN:
2007         case USB_SPEED_WIRELESS:
2008         default:
2009                 /* Should never happen */
2010                 return 1;
2011         }
2012 }
2013
2014 static unsigned int
2015 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2016 {
2017         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2018                 return LS_OVERHEAD;
2019         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2020                 return FS_OVERHEAD;
2021         return HS_OVERHEAD;
2022 }
2023
2024 /* If we are changing a LS/FS device under a HS hub,
2025  * make sure (if we are activating a new TT) that the HS bus has enough
2026  * bandwidth for this new TT.
2027  */
2028 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2029                 struct xhci_virt_device *virt_dev,
2030                 int old_active_eps)
2031 {
2032         struct xhci_interval_bw_table *bw_table;
2033         struct xhci_tt_bw_info *tt_info;
2034
2035         /* Find the bandwidth table for the root port this TT is attached to. */
2036         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2037         tt_info = virt_dev->tt_info;
2038         /* If this TT already had active endpoints, the bandwidth for this TT
2039          * has already been added.  Removing all periodic endpoints (and thus
2040          * making the TT enactive) will only decrease the bandwidth used.
2041          */
2042         if (old_active_eps)
2043                 return 0;
2044         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2045                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2046                         return -ENOMEM;
2047                 return 0;
2048         }
2049         /* Not sure why we would have no new active endpoints...
2050          *
2051          * Maybe because of an Evaluate Context change for a hub update or a
2052          * control endpoint 0 max packet size change?
2053          * FIXME: skip the bandwidth calculation in that case.
2054          */
2055         return 0;
2056 }
2057
2058 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2059                 struct xhci_virt_device *virt_dev)
2060 {
2061         unsigned int bw_reserved;
2062
2063         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2064         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2065                 return -ENOMEM;
2066
2067         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2068         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2069                 return -ENOMEM;
2070
2071         return 0;
2072 }
2073
2074 /*
2075  * This algorithm is a very conservative estimate of the worst-case scheduling
2076  * scenario for any one interval.  The hardware dynamically schedules the
2077  * packets, so we can't tell which microframe could be the limiting factor in
2078  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2079  *
2080  * Obviously, we can't solve an NP complete problem to find the minimum worst
2081  * case scenario.  Instead, we come up with an estimate that is no less than
2082  * the worst case bandwidth used for any one microframe, but may be an
2083  * over-estimate.
2084  *
2085  * We walk the requirements for each endpoint by interval, starting with the
2086  * smallest interval, and place packets in the schedule where there is only one
2087  * possible way to schedule packets for that interval.  In order to simplify
2088  * this algorithm, we record the largest max packet size for each interval, and
2089  * assume all packets will be that size.
2090  *
2091  * For interval 0, we obviously must schedule all packets for each interval.
2092  * The bandwidth for interval 0 is just the amount of data to be transmitted
2093  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2094  * the number of packets).
2095  *
2096  * For interval 1, we have two possible microframes to schedule those packets
2097  * in.  For this algorithm, if we can schedule the same number of packets for
2098  * each possible scheduling opportunity (each microframe), we will do so.  The
2099  * remaining number of packets will be saved to be transmitted in the gaps in
2100  * the next interval's scheduling sequence.
2101  *
2102  * As we move those remaining packets to be scheduled with interval 2 packets,
2103  * we have to double the number of remaining packets to transmit.  This is
2104  * because the intervals are actually powers of 2, and we would be transmitting
2105  * the previous interval's packets twice in this interval.  We also have to be
2106  * sure that when we look at the largest max packet size for this interval, we
2107  * also look at the largest max packet size for the remaining packets and take
2108  * the greater of the two.
2109  *
2110  * The algorithm continues to evenly distribute packets in each scheduling
2111  * opportunity, and push the remaining packets out, until we get to the last
2112  * interval.  Then those packets and their associated overhead are just added
2113  * to the bandwidth used.
2114  */
2115 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2116                 struct xhci_virt_device *virt_dev,
2117                 int old_active_eps)
2118 {
2119         unsigned int bw_reserved;
2120         unsigned int max_bandwidth;
2121         unsigned int bw_used;
2122         unsigned int block_size;
2123         struct xhci_interval_bw_table *bw_table;
2124         unsigned int packet_size = 0;
2125         unsigned int overhead = 0;
2126         unsigned int packets_transmitted = 0;
2127         unsigned int packets_remaining = 0;
2128         unsigned int i;
2129
2130         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2131                 return xhci_check_ss_bw(xhci, virt_dev);
2132
2133         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2134                 max_bandwidth = HS_BW_LIMIT;
2135                 /* Convert percent of bus BW reserved to blocks reserved */
2136                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2137         } else {
2138                 max_bandwidth = FS_BW_LIMIT;
2139                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2140         }
2141
2142         bw_table = virt_dev->bw_table;
2143         /* We need to translate the max packet size and max ESIT payloads into
2144          * the units the hardware uses.
2145          */
2146         block_size = xhci_get_block_size(virt_dev->udev);
2147
2148         /* If we are manipulating a LS/FS device under a HS hub, double check
2149          * that the HS bus has enough bandwidth if we are activing a new TT.
2150          */
2151         if (virt_dev->tt_info) {
2152                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2153                                 "Recalculating BW for rootport %u",
2154                                 virt_dev->real_port);
2155                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2156                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2157                                         "newly activated TT.\n");
2158                         return -ENOMEM;
2159                 }
2160                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2161                                 "Recalculating BW for TT slot %u port %u",
2162                                 virt_dev->tt_info->slot_id,
2163                                 virt_dev->tt_info->ttport);
2164         } else {
2165                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2166                                 "Recalculating BW for rootport %u",
2167                                 virt_dev->real_port);
2168         }
2169
2170         /* Add in how much bandwidth will be used for interval zero, or the
2171          * rounded max ESIT payload + number of packets * largest overhead.
2172          */
2173         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2174                 bw_table->interval_bw[0].num_packets *
2175                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2176
2177         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2178                 unsigned int bw_added;
2179                 unsigned int largest_mps;
2180                 unsigned int interval_overhead;
2181
2182                 /*
2183                  * How many packets could we transmit in this interval?
2184                  * If packets didn't fit in the previous interval, we will need
2185                  * to transmit that many packets twice within this interval.
2186                  */
2187                 packets_remaining = 2 * packets_remaining +
2188                         bw_table->interval_bw[i].num_packets;
2189
2190                 /* Find the largest max packet size of this or the previous
2191                  * interval.
2192                  */
2193                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2194                         largest_mps = 0;
2195                 else {
2196                         struct xhci_virt_ep *virt_ep;
2197                         struct list_head *ep_entry;
2198
2199                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2200                         virt_ep = list_entry(ep_entry,
2201                                         struct xhci_virt_ep, bw_endpoint_list);
2202                         /* Convert to blocks, rounding up */
2203                         largest_mps = DIV_ROUND_UP(
2204                                         virt_ep->bw_info.max_packet_size,
2205                                         block_size);
2206                 }
2207                 if (largest_mps > packet_size)
2208                         packet_size = largest_mps;
2209
2210                 /* Use the larger overhead of this or the previous interval. */
2211                 interval_overhead = xhci_get_largest_overhead(
2212                                 &bw_table->interval_bw[i]);
2213                 if (interval_overhead > overhead)
2214                         overhead = interval_overhead;
2215
2216                 /* How many packets can we evenly distribute across
2217                  * (1 << (i + 1)) possible scheduling opportunities?
2218                  */
2219                 packets_transmitted = packets_remaining >> (i + 1);
2220
2221                 /* Add in the bandwidth used for those scheduled packets */
2222                 bw_added = packets_transmitted * (overhead + packet_size);
2223
2224                 /* How many packets do we have remaining to transmit? */
2225                 packets_remaining = packets_remaining % (1 << (i + 1));
2226
2227                 /* What largest max packet size should those packets have? */
2228                 /* If we've transmitted all packets, don't carry over the
2229                  * largest packet size.
2230                  */
2231                 if (packets_remaining == 0) {
2232                         packet_size = 0;
2233                         overhead = 0;
2234                 } else if (packets_transmitted > 0) {
2235                         /* Otherwise if we do have remaining packets, and we've
2236                          * scheduled some packets in this interval, take the
2237                          * largest max packet size from endpoints with this
2238                          * interval.
2239                          */
2240                         packet_size = largest_mps;
2241                         overhead = interval_overhead;
2242                 }
2243                 /* Otherwise carry over packet_size and overhead from the last
2244                  * time we had a remainder.
2245                  */
2246                 bw_used += bw_added;
2247                 if (bw_used > max_bandwidth) {
2248                         xhci_warn(xhci, "Not enough bandwidth. "
2249                                         "Proposed: %u, Max: %u\n",
2250                                 bw_used, max_bandwidth);
2251                         return -ENOMEM;
2252                 }
2253         }
2254         /*
2255          * Ok, we know we have some packets left over after even-handedly
2256          * scheduling interval 15.  We don't know which microframes they will
2257          * fit into, so we over-schedule and say they will be scheduled every
2258          * microframe.
2259          */
2260         if (packets_remaining > 0)
2261                 bw_used += overhead + packet_size;
2262
2263         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2264                 unsigned int port_index = virt_dev->real_port - 1;
2265
2266                 /* OK, we're manipulating a HS device attached to a
2267                  * root port bandwidth domain.  Include the number of active TTs
2268                  * in the bandwidth used.
2269                  */
2270                 bw_used += TT_HS_OVERHEAD *
2271                         xhci->rh_bw[port_index].num_active_tts;
2272         }
2273
2274         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2275                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2276                 "Available: %u " "percent",
2277                 bw_used, max_bandwidth, bw_reserved,
2278                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2279                 max_bandwidth);
2280
2281         bw_used += bw_reserved;
2282         if (bw_used > max_bandwidth) {
2283                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2284                                 bw_used, max_bandwidth);
2285                 return -ENOMEM;
2286         }
2287
2288         bw_table->bw_used = bw_used;
2289         return 0;
2290 }
2291
2292 static bool xhci_is_async_ep(unsigned int ep_type)
2293 {
2294         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2295                                         ep_type != ISOC_IN_EP &&
2296                                         ep_type != INT_IN_EP);
2297 }
2298
2299 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2300 {
2301         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2302 }
2303
2304 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2305 {
2306         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2307
2308         if (ep_bw->ep_interval == 0)
2309                 return SS_OVERHEAD_BURST +
2310                         (ep_bw->mult * ep_bw->num_packets *
2311                                         (SS_OVERHEAD + mps));
2312         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2313                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2314                                 1 << ep_bw->ep_interval);
2315
2316 }
2317
2318 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2319                 struct xhci_bw_info *ep_bw,
2320                 struct xhci_interval_bw_table *bw_table,
2321                 struct usb_device *udev,
2322                 struct xhci_virt_ep *virt_ep,
2323                 struct xhci_tt_bw_info *tt_info)
2324 {
2325         struct xhci_interval_bw *interval_bw;
2326         int normalized_interval;
2327
2328         if (xhci_is_async_ep(ep_bw->type))
2329                 return;
2330
2331         if (udev->speed == USB_SPEED_SUPER) {
2332                 if (xhci_is_sync_in_ep(ep_bw->type))
2333                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2334                                 xhci_get_ss_bw_consumed(ep_bw);
2335                 else
2336                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2337                                 xhci_get_ss_bw_consumed(ep_bw);
2338                 return;
2339         }
2340
2341         /* SuperSpeed endpoints never get added to intervals in the table, so
2342          * this check is only valid for HS/FS/LS devices.
2343          */
2344         if (list_empty(&virt_ep->bw_endpoint_list))
2345                 return;
2346         /* For LS/FS devices, we need to translate the interval expressed in
2347          * microframes to frames.
2348          */
2349         if (udev->speed == USB_SPEED_HIGH)
2350                 normalized_interval = ep_bw->ep_interval;
2351         else
2352                 normalized_interval = ep_bw->ep_interval - 3;
2353
2354         if (normalized_interval == 0)
2355                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2356         interval_bw = &bw_table->interval_bw[normalized_interval];
2357         interval_bw->num_packets -= ep_bw->num_packets;
2358         switch (udev->speed) {
2359         case USB_SPEED_LOW:
2360                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2361                 break;
2362         case USB_SPEED_FULL:
2363                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2364                 break;
2365         case USB_SPEED_HIGH:
2366                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2367                 break;
2368         case USB_SPEED_SUPER:
2369         case USB_SPEED_UNKNOWN:
2370         case USB_SPEED_WIRELESS:
2371                 /* Should never happen because only LS/FS/HS endpoints will get
2372                  * added to the endpoint list.
2373                  */
2374                 return;
2375         }
2376         if (tt_info)
2377                 tt_info->active_eps -= 1;
2378         list_del_init(&virt_ep->bw_endpoint_list);
2379 }
2380
2381 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2382                 struct xhci_bw_info *ep_bw,
2383                 struct xhci_interval_bw_table *bw_table,
2384                 struct usb_device *udev,
2385                 struct xhci_virt_ep *virt_ep,
2386                 struct xhci_tt_bw_info *tt_info)
2387 {
2388         struct xhci_interval_bw *interval_bw;
2389         struct xhci_virt_ep *smaller_ep;
2390         int normalized_interval;
2391
2392         if (xhci_is_async_ep(ep_bw->type))
2393                 return;
2394
2395         if (udev->speed == USB_SPEED_SUPER) {
2396                 if (xhci_is_sync_in_ep(ep_bw->type))
2397                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2398                                 xhci_get_ss_bw_consumed(ep_bw);
2399                 else
2400                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2401                                 xhci_get_ss_bw_consumed(ep_bw);
2402                 return;
2403         }
2404
2405         /* For LS/FS devices, we need to translate the interval expressed in
2406          * microframes to frames.
2407          */
2408         if (udev->speed == USB_SPEED_HIGH)
2409                 normalized_interval = ep_bw->ep_interval;
2410         else
2411                 normalized_interval = ep_bw->ep_interval - 3;
2412
2413         if (normalized_interval == 0)
2414                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2415         interval_bw = &bw_table->interval_bw[normalized_interval];
2416         interval_bw->num_packets += ep_bw->num_packets;
2417         switch (udev->speed) {
2418         case USB_SPEED_LOW:
2419                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2420                 break;
2421         case USB_SPEED_FULL:
2422                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2423                 break;
2424         case USB_SPEED_HIGH:
2425                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2426                 break;
2427         case USB_SPEED_SUPER:
2428         case USB_SPEED_UNKNOWN:
2429         case USB_SPEED_WIRELESS:
2430                 /* Should never happen because only LS/FS/HS endpoints will get
2431                  * added to the endpoint list.
2432                  */
2433                 return;
2434         }
2435
2436         if (tt_info)
2437                 tt_info->active_eps += 1;
2438         /* Insert the endpoint into the list, largest max packet size first. */
2439         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2440                         bw_endpoint_list) {
2441                 if (ep_bw->max_packet_size >=
2442                                 smaller_ep->bw_info.max_packet_size) {
2443                         /* Add the new ep before the smaller endpoint */
2444                         list_add_tail(&virt_ep->bw_endpoint_list,
2445                                         &smaller_ep->bw_endpoint_list);
2446                         return;
2447                 }
2448         }
2449         /* Add the new endpoint at the end of the list. */
2450         list_add_tail(&virt_ep->bw_endpoint_list,
2451                         &interval_bw->endpoints);
2452 }
2453
2454 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2455                 struct xhci_virt_device *virt_dev,
2456                 int old_active_eps)
2457 {
2458         struct xhci_root_port_bw_info *rh_bw_info;
2459         if (!virt_dev->tt_info)
2460                 return;
2461
2462         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2463         if (old_active_eps == 0 &&
2464                                 virt_dev->tt_info->active_eps != 0) {
2465                 rh_bw_info->num_active_tts += 1;
2466                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2467         } else if (old_active_eps != 0 &&
2468                                 virt_dev->tt_info->active_eps == 0) {
2469                 rh_bw_info->num_active_tts -= 1;
2470                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2471         }
2472 }
2473
2474 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2475                 struct xhci_virt_device *virt_dev,
2476                 struct xhci_container_ctx *in_ctx)
2477 {
2478         struct xhci_bw_info ep_bw_info[31];
2479         int i;
2480         struct xhci_input_control_ctx *ctrl_ctx;
2481         int old_active_eps = 0;
2482
2483         if (virt_dev->tt_info)
2484                 old_active_eps = virt_dev->tt_info->active_eps;
2485
2486         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2487         if (!ctrl_ctx) {
2488                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2489                                 __func__);
2490                 return -ENOMEM;
2491         }
2492
2493         for (i = 0; i < 31; i++) {
2494                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2495                         continue;
2496
2497                 /* Make a copy of the BW info in case we need to revert this */
2498                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2499                                 sizeof(ep_bw_info[i]));
2500                 /* Drop the endpoint from the interval table if the endpoint is
2501                  * being dropped or changed.
2502                  */
2503                 if (EP_IS_DROPPED(ctrl_ctx, i))
2504                         xhci_drop_ep_from_interval_table(xhci,
2505                                         &virt_dev->eps[i].bw_info,
2506                                         virt_dev->bw_table,
2507                                         virt_dev->udev,
2508                                         &virt_dev->eps[i],
2509                                         virt_dev->tt_info);
2510         }
2511         /* Overwrite the information stored in the endpoints' bw_info */
2512         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2513         for (i = 0; i < 31; i++) {
2514                 /* Add any changed or added endpoints to the interval table */
2515                 if (EP_IS_ADDED(ctrl_ctx, i))
2516                         xhci_add_ep_to_interval_table(xhci,
2517                                         &virt_dev->eps[i].bw_info,
2518                                         virt_dev->bw_table,
2519                                         virt_dev->udev,
2520                                         &virt_dev->eps[i],
2521                                         virt_dev->tt_info);
2522         }
2523
2524         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2525                 /* Ok, this fits in the bandwidth we have.
2526                  * Update the number of active TTs.
2527                  */
2528                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2529                 return 0;
2530         }
2531
2532         /* We don't have enough bandwidth for this, revert the stored info. */
2533         for (i = 0; i < 31; i++) {
2534                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2535                         continue;
2536
2537                 /* Drop the new copies of any added or changed endpoints from
2538                  * the interval table.
2539                  */
2540                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2541                         xhci_drop_ep_from_interval_table(xhci,
2542                                         &virt_dev->eps[i].bw_info,
2543                                         virt_dev->bw_table,
2544                                         virt_dev->udev,
2545                                         &virt_dev->eps[i],
2546                                         virt_dev->tt_info);
2547                 }
2548                 /* Revert the endpoint back to its old information */
2549                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2550                                 sizeof(ep_bw_info[i]));
2551                 /* Add any changed or dropped endpoints back into the table */
2552                 if (EP_IS_DROPPED(ctrl_ctx, i))
2553                         xhci_add_ep_to_interval_table(xhci,
2554                                         &virt_dev->eps[i].bw_info,
2555                                         virt_dev->bw_table,
2556                                         virt_dev->udev,
2557                                         &virt_dev->eps[i],
2558                                         virt_dev->tt_info);
2559         }
2560         return -ENOMEM;
2561 }
2562
2563
2564 /* Issue a configure endpoint command or evaluate context command
2565  * and wait for it to finish.
2566  */
2567 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2568                 struct usb_device *udev,
2569                 struct xhci_command *command,
2570                 bool ctx_change, bool must_succeed)
2571 {
2572         int ret;
2573         int timeleft;
2574         unsigned long flags;
2575         struct xhci_container_ctx *in_ctx;
2576         struct xhci_input_control_ctx *ctrl_ctx;
2577         struct completion *cmd_completion;
2578         u32 *cmd_status;
2579         struct xhci_virt_device *virt_dev;
2580         union xhci_trb *cmd_trb;
2581
2582         spin_lock_irqsave(&xhci->lock, flags);
2583         virt_dev = xhci->devs[udev->slot_id];
2584
2585         if (command)
2586                 in_ctx = command->in_ctx;
2587         else
2588                 in_ctx = virt_dev->in_ctx;
2589         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2590         if (!ctrl_ctx) {
2591                 spin_unlock_irqrestore(&xhci->lock, flags);
2592                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2593                                 __func__);
2594                 return -ENOMEM;
2595         }
2596
2597         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2598                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2599                 spin_unlock_irqrestore(&xhci->lock, flags);
2600                 xhci_warn(xhci, "Not enough host resources, "
2601                                 "active endpoint contexts = %u\n",
2602                                 xhci->num_active_eps);
2603                 return -ENOMEM;
2604         }
2605         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2606                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2607                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2608                         xhci_free_host_resources(xhci, ctrl_ctx);
2609                 spin_unlock_irqrestore(&xhci->lock, flags);
2610                 xhci_warn(xhci, "Not enough bandwidth\n");
2611                 return -ENOMEM;
2612         }
2613
2614         if (command) {
2615                 cmd_completion = command->completion;
2616                 cmd_status = &command->status;
2617                 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2618                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2619         } else {
2620                 cmd_completion = &virt_dev->cmd_completion;
2621                 cmd_status = &virt_dev->cmd_status;
2622         }
2623         init_completion(cmd_completion);
2624
2625         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2626         if (!ctx_change)
2627                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2628                                 udev->slot_id, must_succeed);
2629         else
2630                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2631                                 udev->slot_id, must_succeed);
2632         if (ret < 0) {
2633                 if (command)
2634                         list_del(&command->cmd_list);
2635                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2636                         xhci_free_host_resources(xhci, ctrl_ctx);
2637                 spin_unlock_irqrestore(&xhci->lock, flags);
2638                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2639                                 "FIXME allocate a new ring segment");
2640                 return -ENOMEM;
2641         }
2642         xhci_ring_cmd_db(xhci);
2643         spin_unlock_irqrestore(&xhci->lock, flags);
2644
2645         /* Wait for the configure endpoint command to complete */
2646         timeleft = wait_for_completion_interruptible_timeout(
2647                         cmd_completion,
2648                         XHCI_CMD_DEFAULT_TIMEOUT);
2649         if (timeleft <= 0) {
2650                 xhci_warn(xhci, "%s while waiting for %s command\n",
2651                                 timeleft == 0 ? "Timeout" : "Signal",
2652                                 ctx_change == 0 ?
2653                                         "configure endpoint" :
2654                                         "evaluate context");
2655                 /* cancel the configure endpoint command */
2656                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2657                 if (ret < 0)
2658                         return ret;
2659                 return -ETIME;
2660         }
2661
2662         if (!ctx_change)
2663                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2664         else
2665                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2666
2667         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2668                 spin_lock_irqsave(&xhci->lock, flags);
2669                 /* If the command failed, remove the reserved resources.
2670                  * Otherwise, clean up the estimate to include dropped eps.
2671                  */
2672                 if (ret)
2673                         xhci_free_host_resources(xhci, ctrl_ctx);
2674                 else
2675                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2676                 spin_unlock_irqrestore(&xhci->lock, flags);
2677         }
2678         return ret;
2679 }
2680
2681 /* Called after one or more calls to xhci_add_endpoint() or
2682  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2683  * to call xhci_reset_bandwidth().
2684  *
2685  * Since we are in the middle of changing either configuration or
2686  * installing a new alt setting, the USB core won't allow URBs to be
2687  * enqueued for any endpoint on the old config or interface.  Nothing
2688  * else should be touching the xhci->devs[slot_id] structure, so we
2689  * don't need to take the xhci->lock for manipulating that.
2690  */
2691 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2692 {
2693         int i;
2694         int ret = 0;
2695         struct xhci_hcd *xhci;
2696         struct xhci_virt_device *virt_dev;
2697         struct xhci_input_control_ctx *ctrl_ctx;
2698         struct xhci_slot_ctx *slot_ctx;
2699
2700         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2701         if (ret <= 0)
2702                 return ret;
2703         xhci = hcd_to_xhci(hcd);
2704         if (xhci->xhc_state & XHCI_STATE_DYING)
2705                 return -ENODEV;
2706
2707         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2708         virt_dev = xhci->devs[udev->slot_id];
2709
2710         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2711         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2712         if (!ctrl_ctx) {
2713                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2714                                 __func__);
2715                 return -ENOMEM;
2716         }
2717         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2718         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2719         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2720
2721         /* Don't issue the command if there's no endpoints to update. */
2722         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2723                         ctrl_ctx->drop_flags == 0)
2724                 return 0;
2725
2726         xhci_dbg(xhci, "New Input Control Context:\n");
2727         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2728         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2729                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2730
2731         ret = xhci_configure_endpoint(xhci, udev, NULL,
2732                         false, false);
2733         if (ret) {
2734                 /* Callee should call reset_bandwidth() */
2735                 return ret;
2736         }
2737
2738         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2739         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2740                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2741
2742         /* Free any rings that were dropped, but not changed. */
2743         for (i = 1; i < 31; ++i) {
2744                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2745                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2746                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2747         }
2748         xhci_zero_in_ctx(xhci, virt_dev);
2749         /*
2750          * Install any rings for completely new endpoints or changed endpoints,
2751          * and free or cache any old rings from changed endpoints.
2752          */
2753         for (i = 1; i < 31; ++i) {
2754                 if (!virt_dev->eps[i].new_ring)
2755                         continue;
2756                 /* Only cache or free the old ring if it exists.
2757                  * It may not if this is the first add of an endpoint.
2758                  */
2759                 if (virt_dev->eps[i].ring) {
2760                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2761                 }
2762                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2763                 virt_dev->eps[i].new_ring = NULL;
2764         }
2765
2766         return ret;
2767 }
2768
2769 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2770 {
2771         struct xhci_hcd *xhci;
2772         struct xhci_virt_device *virt_dev;
2773         int i, ret;
2774
2775         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2776         if (ret <= 0)
2777                 return;
2778         xhci = hcd_to_xhci(hcd);
2779
2780         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2781         virt_dev = xhci->devs[udev->slot_id];
2782         /* Free any rings allocated for added endpoints */
2783         for (i = 0; i < 31; ++i) {
2784                 if (virt_dev->eps[i].new_ring) {
2785                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2786                         virt_dev->eps[i].new_ring = NULL;
2787                 }
2788         }
2789         xhci_zero_in_ctx(xhci, virt_dev);
2790 }
2791
2792 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2793                 struct xhci_container_ctx *in_ctx,
2794                 struct xhci_container_ctx *out_ctx,
2795                 struct xhci_input_control_ctx *ctrl_ctx,
2796                 u32 add_flags, u32 drop_flags)
2797 {
2798         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2799         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2800         xhci_slot_copy(xhci, in_ctx, out_ctx);
2801         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2802
2803         xhci_dbg(xhci, "Input Context:\n");
2804         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2805 }
2806
2807 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2808                 unsigned int slot_id, unsigned int ep_index,
2809                 struct xhci_dequeue_state *deq_state)
2810 {
2811         struct xhci_input_control_ctx *ctrl_ctx;
2812         struct xhci_container_ctx *in_ctx;
2813         struct xhci_ep_ctx *ep_ctx;
2814         u32 added_ctxs;
2815         dma_addr_t addr;
2816
2817         in_ctx = xhci->devs[slot_id]->in_ctx;
2818         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2819         if (!ctrl_ctx) {
2820                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2821                                 __func__);
2822                 return;
2823         }
2824
2825         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2826                         xhci->devs[slot_id]->out_ctx, ep_index);
2827         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2828         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2829                         deq_state->new_deq_ptr);
2830         if (addr == 0) {
2831                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2832                                 "reset ep command\n");
2833                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2834                                 deq_state->new_deq_seg,
2835                                 deq_state->new_deq_ptr);
2836                 return;
2837         }
2838         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2839
2840         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2841         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2842                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2843                         added_ctxs, added_ctxs);
2844 }
2845
2846 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2847                 struct usb_device *udev, unsigned int ep_index)
2848 {
2849         struct xhci_dequeue_state deq_state;
2850         struct xhci_virt_ep *ep;
2851
2852         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2853                         "Cleaning up stalled endpoint ring");
2854         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2855         /* We need to move the HW's dequeue pointer past this TD,
2856          * or it will attempt to resend it on the next doorbell ring.
2857          */
2858         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2859                         ep_index, ep->stopped_stream, ep->stopped_td,
2860                         &deq_state);
2861
2862         /* HW with the reset endpoint quirk will use the saved dequeue state to
2863          * issue a configure endpoint command later.
2864          */
2865         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2866                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2867                                 "Queueing new dequeue state");
2868                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2869                                 ep_index, ep->stopped_stream, &deq_state);
2870         } else {
2871                 /* Better hope no one uses the input context between now and the
2872                  * reset endpoint completion!
2873                  * XXX: No idea how this hardware will react when stream rings
2874                  * are enabled.
2875                  */
2876                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2877                                 "Setting up input context for "
2878                                 "configure endpoint command");
2879                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2880                                 ep_index, &deq_state);
2881         }
2882 }
2883
2884 /* Deal with stalled endpoints.  The core should have sent the control message
2885  * to clear the halt condition.  However, we need to make the xHCI hardware
2886  * reset its sequence number, since a device will expect a sequence number of
2887  * zero after the halt condition is cleared.
2888  * Context: in_interrupt
2889  */
2890 void xhci_endpoint_reset(struct usb_hcd *hcd,
2891                 struct usb_host_endpoint *ep)
2892 {
2893         struct xhci_hcd *xhci;
2894         struct usb_device *udev;
2895         unsigned int ep_index;
2896         unsigned long flags;
2897         int ret;
2898         struct xhci_virt_ep *virt_ep;
2899
2900         xhci = hcd_to_xhci(hcd);
2901         udev = (struct usb_device *) ep->hcpriv;
2902         /* Called with a root hub endpoint (or an endpoint that wasn't added
2903          * with xhci_add_endpoint()
2904          */
2905         if (!ep->hcpriv)
2906                 return;
2907         ep_index = xhci_get_endpoint_index(&ep->desc);
2908         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2909         if (!virt_ep->stopped_td) {
2910                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2911                         "Endpoint 0x%x not halted, refusing to reset.",
2912                         ep->desc.bEndpointAddress);
2913                 return;
2914         }
2915         if (usb_endpoint_xfer_control(&ep->desc)) {
2916                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2917                                 "Control endpoint stall already handled.");
2918                 return;
2919         }
2920
2921         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2922                         "Queueing reset endpoint command");
2923         spin_lock_irqsave(&xhci->lock, flags);
2924         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2925         /*
2926          * Can't change the ring dequeue pointer until it's transitioned to the
2927          * stopped state, which is only upon a successful reset endpoint
2928          * command.  Better hope that last command worked!
2929          */
2930         if (!ret) {
2931                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2932                 kfree(virt_ep->stopped_td);
2933                 xhci_ring_cmd_db(xhci);
2934         }
2935         virt_ep->stopped_td = NULL;
2936         virt_ep->stopped_trb = NULL;
2937         virt_ep->stopped_stream = 0;
2938         spin_unlock_irqrestore(&xhci->lock, flags);
2939
2940         if (ret)
2941                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2942 }
2943
2944 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2945                 struct usb_device *udev, struct usb_host_endpoint *ep,
2946                 unsigned int slot_id)
2947 {
2948         int ret;
2949         unsigned int ep_index;
2950         unsigned int ep_state;
2951
2952         if (!ep)
2953                 return -EINVAL;
2954         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2955         if (ret <= 0)
2956                 return -EINVAL;
2957         if (ep->ss_ep_comp.bmAttributes == 0) {
2958                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2959                                 " descriptor for ep 0x%x does not support streams\n",
2960                                 ep->desc.bEndpointAddress);
2961                 return -EINVAL;
2962         }
2963
2964         ep_index = xhci_get_endpoint_index(&ep->desc);
2965         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2966         if (ep_state & EP_HAS_STREAMS ||
2967                         ep_state & EP_GETTING_STREAMS) {
2968                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2969                                 "already has streams set up.\n",
2970                                 ep->desc.bEndpointAddress);
2971                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2972                                 "dynamic stream context array reallocation.\n");
2973                 return -EINVAL;
2974         }
2975         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2976                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2977                                 "endpoint 0x%x; URBs are pending.\n",
2978                                 ep->desc.bEndpointAddress);
2979                 return -EINVAL;
2980         }
2981         return 0;
2982 }
2983
2984 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2985                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2986 {
2987         unsigned int max_streams;
2988
2989         /* The stream context array size must be a power of two */
2990         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2991         /*
2992          * Find out how many primary stream array entries the host controller
2993          * supports.  Later we may use secondary stream arrays (similar to 2nd
2994          * level page entries), but that's an optional feature for xHCI host
2995          * controllers. xHCs must support at least 4 stream IDs.
2996          */
2997         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2998         if (*num_stream_ctxs > max_streams) {
2999                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3000                                 max_streams);
3001                 *num_stream_ctxs = max_streams;
3002                 *num_streams = max_streams;
3003         }
3004 }
3005
3006 /* Returns an error code if one of the endpoint already has streams.
3007  * This does not change any data structures, it only checks and gathers
3008  * information.
3009  */
3010 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3011                 struct usb_device *udev,
3012                 struct usb_host_endpoint **eps, unsigned int num_eps,
3013                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3014 {
3015         unsigned int max_streams;
3016         unsigned int endpoint_flag;
3017         int i;
3018         int ret;
3019
3020         for (i = 0; i < num_eps; i++) {
3021                 ret = xhci_check_streams_endpoint(xhci, udev,
3022                                 eps[i], udev->slot_id);
3023                 if (ret < 0)
3024                         return ret;
3025
3026                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3027                 if (max_streams < (*num_streams - 1)) {
3028                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3029                                         eps[i]->desc.bEndpointAddress,
3030                                         max_streams);
3031                         *num_streams = max_streams+1;
3032                 }
3033
3034                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3035                 if (*changed_ep_bitmask & endpoint_flag)
3036                         return -EINVAL;
3037                 *changed_ep_bitmask |= endpoint_flag;
3038         }
3039         return 0;
3040 }
3041
3042 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3043                 struct usb_device *udev,
3044                 struct usb_host_endpoint **eps, unsigned int num_eps)
3045 {
3046         u32 changed_ep_bitmask = 0;
3047         unsigned int slot_id;
3048         unsigned int ep_index;
3049         unsigned int ep_state;
3050         int i;
3051
3052         slot_id = udev->slot_id;
3053         if (!xhci->devs[slot_id])
3054                 return 0;
3055
3056         for (i = 0; i < num_eps; i++) {
3057                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3058                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3059                 /* Are streams already being freed for the endpoint? */
3060                 if (ep_state & EP_GETTING_NO_STREAMS) {
3061                         xhci_warn(xhci, "WARN Can't disable streams for "
3062                                         "endpoint 0x%x, "
3063                                         "streams are being disabled already\n",
3064                                         eps[i]->desc.bEndpointAddress);
3065                         return 0;
3066                 }
3067                 /* Are there actually any streams to free? */
3068                 if (!(ep_state & EP_HAS_STREAMS) &&
3069                                 !(ep_state & EP_GETTING_STREAMS)) {
3070                         xhci_warn(xhci, "WARN Can't disable streams for "
3071                                         "endpoint 0x%x, "
3072                                         "streams are already disabled!\n",
3073                                         eps[i]->desc.bEndpointAddress);
3074                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3075                                         "with non-streams endpoint\n");
3076                         return 0;
3077                 }
3078                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3079         }
3080         return changed_ep_bitmask;
3081 }
3082
3083 /*
3084  * The USB device drivers use this function (though the HCD interface in USB
3085  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3086  * coordinate mass storage command queueing across multiple endpoints (basically
3087  * a stream ID == a task ID).
3088  *
3089  * Setting up streams involves allocating the same size stream context array
3090  * for each endpoint and issuing a configure endpoint command for all endpoints.
3091  *
3092  * Don't allow the call to succeed if one endpoint only supports one stream
3093  * (which means it doesn't support streams at all).
3094  *
3095  * Drivers may get less stream IDs than they asked for, if the host controller
3096  * hardware or endpoints claim they can't support the number of requested
3097  * stream IDs.
3098  */
3099 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3100                 struct usb_host_endpoint **eps, unsigned int num_eps,
3101                 unsigned int num_streams, gfp_t mem_flags)
3102 {
3103         int i, ret;
3104         struct xhci_hcd *xhci;
3105         struct xhci_virt_device *vdev;
3106         struct xhci_command *config_cmd;
3107         struct xhci_input_control_ctx *ctrl_ctx;
3108         unsigned int ep_index;
3109         unsigned int num_stream_ctxs;
3110         unsigned long flags;
3111         u32 changed_ep_bitmask = 0;
3112
3113         if (!eps)
3114                 return -EINVAL;
3115
3116         /* Add one to the number of streams requested to account for
3117          * stream 0 that is reserved for xHCI usage.
3118          */
3119         num_streams += 1;
3120         xhci = hcd_to_xhci(hcd);
3121         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3122                         num_streams);
3123
3124         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3125         if (!config_cmd) {
3126                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3127                 return -ENOMEM;
3128         }
3129         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3130         if (!ctrl_ctx) {
3131                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3132                                 __func__);
3133                 xhci_free_command(xhci, config_cmd);
3134                 return -ENOMEM;
3135         }
3136
3137         /* Check to make sure all endpoints are not already configured for
3138          * streams.  While we're at it, find the maximum number of streams that
3139          * all the endpoints will support and check for duplicate endpoints.
3140          */
3141         spin_lock_irqsave(&xhci->lock, flags);
3142         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3143                         num_eps, &num_streams, &changed_ep_bitmask);
3144         if (ret < 0) {
3145                 xhci_free_command(xhci, config_cmd);
3146                 spin_unlock_irqrestore(&xhci->lock, flags);
3147                 return ret;
3148         }
3149         if (num_streams <= 1) {
3150                 xhci_warn(xhci, "WARN: endpoints can't handle "
3151                                 "more than one stream.\n");
3152                 xhci_free_command(xhci, config_cmd);
3153                 spin_unlock_irqrestore(&xhci->lock, flags);
3154                 return -EINVAL;
3155         }
3156         vdev = xhci->devs[udev->slot_id];
3157         /* Mark each endpoint as being in transition, so
3158          * xhci_urb_enqueue() will reject all URBs.
3159          */
3160         for (i = 0; i < num_eps; i++) {
3161                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3162                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3163         }
3164         spin_unlock_irqrestore(&xhci->lock, flags);
3165
3166         /* Setup internal data structures and allocate HW data structures for
3167          * streams (but don't install the HW structures in the input context
3168          * until we're sure all memory allocation succeeded).
3169          */
3170         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3171         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3172                         num_stream_ctxs, num_streams);
3173
3174         for (i = 0; i < num_eps; i++) {
3175                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3176                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3177                                 num_stream_ctxs,
3178                                 num_streams, mem_flags);
3179                 if (!vdev->eps[ep_index].stream_info)
3180                         goto cleanup;
3181                 /* Set maxPstreams in endpoint context and update deq ptr to
3182                  * point to stream context array. FIXME
3183                  */
3184         }
3185
3186         /* Set up the input context for a configure endpoint command. */
3187         for (i = 0; i < num_eps; i++) {
3188                 struct xhci_ep_ctx *ep_ctx;
3189
3190                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3191                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3192
3193                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3194                                 vdev->out_ctx, ep_index);
3195                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3196                                 vdev->eps[ep_index].stream_info);
3197         }
3198         /* Tell the HW to drop its old copy of the endpoint context info
3199          * and add the updated copy from the input context.
3200          */
3201         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3202                         vdev->out_ctx, ctrl_ctx,
3203                         changed_ep_bitmask, changed_ep_bitmask);
3204
3205         /* Issue and wait for the configure endpoint command */
3206         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3207                         false, false);
3208
3209         /* xHC rejected the configure endpoint command for some reason, so we
3210          * leave the old ring intact and free our internal streams data
3211          * structure.
3212          */
3213         if (ret < 0)
3214                 goto cleanup;
3215
3216         spin_lock_irqsave(&xhci->lock, flags);
3217         for (i = 0; i < num_eps; i++) {
3218                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3219                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3220                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3221                          udev->slot_id, ep_index);
3222                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3223         }
3224         xhci_free_command(xhci, config_cmd);
3225         spin_unlock_irqrestore(&xhci->lock, flags);
3226
3227         /* Subtract 1 for stream 0, which drivers can't use */
3228         return num_streams - 1;
3229
3230 cleanup:
3231         /* If it didn't work, free the streams! */
3232         for (i = 0; i < num_eps; i++) {
3233                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3234                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3235                 vdev->eps[ep_index].stream_info = NULL;
3236                 /* FIXME Unset maxPstreams in endpoint context and
3237                  * update deq ptr to point to normal string ring.
3238                  */
3239                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3240                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3241                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3242         }
3243         xhci_free_command(xhci, config_cmd);
3244         return -ENOMEM;
3245 }
3246
3247 /* Transition the endpoint from using streams to being a "normal" endpoint
3248  * without streams.
3249  *
3250  * Modify the endpoint context state, submit a configure endpoint command,
3251  * and free all endpoint rings for streams if that completes successfully.
3252  */
3253 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3254                 struct usb_host_endpoint **eps, unsigned int num_eps,
3255                 gfp_t mem_flags)
3256 {
3257         int i, ret;
3258         struct xhci_hcd *xhci;
3259         struct xhci_virt_device *vdev;
3260         struct xhci_command *command;
3261         struct xhci_input_control_ctx *ctrl_ctx;
3262         unsigned int ep_index;
3263         unsigned long flags;
3264         u32 changed_ep_bitmask;
3265
3266         xhci = hcd_to_xhci(hcd);
3267         vdev = xhci->devs[udev->slot_id];
3268
3269         /* Set up a configure endpoint command to remove the streams rings */
3270         spin_lock_irqsave(&xhci->lock, flags);
3271         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3272                         udev, eps, num_eps);
3273         if (changed_ep_bitmask == 0) {
3274                 spin_unlock_irqrestore(&xhci->lock, flags);
3275                 return -EINVAL;
3276         }
3277
3278         /* Use the xhci_command structure from the first endpoint.  We may have
3279          * allocated too many, but the driver may call xhci_free_streams() for
3280          * each endpoint it grouped into one call to xhci_alloc_streams().
3281          */
3282         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3283         command = vdev->eps[ep_index].stream_info->free_streams_command;
3284         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3285         if (!ctrl_ctx) {
3286                 spin_unlock_irqrestore(&xhci->lock, flags);
3287                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3288                                 __func__);
3289                 return -EINVAL;
3290         }
3291
3292         for (i = 0; i < num_eps; i++) {
3293                 struct xhci_ep_ctx *ep_ctx;
3294
3295                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3296                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3297                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3298                         EP_GETTING_NO_STREAMS;
3299
3300                 xhci_endpoint_copy(xhci, command->in_ctx,
3301                                 vdev->out_ctx, ep_index);
3302                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3303                                 &vdev->eps[ep_index]);
3304         }
3305         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3306                         vdev->out_ctx, ctrl_ctx,
3307                         changed_ep_bitmask, changed_ep_bitmask);
3308         spin_unlock_irqrestore(&xhci->lock, flags);
3309
3310         /* Issue and wait for the configure endpoint command,
3311          * which must succeed.
3312          */
3313         ret = xhci_configure_endpoint(xhci, udev, command,
3314                         false, true);
3315
3316         /* xHC rejected the configure endpoint command for some reason, so we
3317          * leave the streams rings intact.
3318          */
3319         if (ret < 0)
3320                 return ret;
3321
3322         spin_lock_irqsave(&xhci->lock, flags);
3323         for (i = 0; i < num_eps; i++) {
3324                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3325                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3326                 vdev->eps[ep_index].stream_info = NULL;
3327                 /* FIXME Unset maxPstreams in endpoint context and
3328                  * update deq ptr to point to normal string ring.
3329                  */
3330                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3331                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3332         }
3333         spin_unlock_irqrestore(&xhci->lock, flags);
3334
3335         return 0;
3336 }
3337
3338 /*
3339  * Deletes endpoint resources for endpoints that were active before a Reset
3340  * Device command, or a Disable Slot command.  The Reset Device command leaves
3341  * the control endpoint intact, whereas the Disable Slot command deletes it.
3342  *
3343  * Must be called with xhci->lock held.
3344  */
3345 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3346         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3347 {
3348         int i;
3349         unsigned int num_dropped_eps = 0;
3350         unsigned int drop_flags = 0;
3351
3352         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3353                 if (virt_dev->eps[i].ring) {
3354                         drop_flags |= 1 << i;
3355                         num_dropped_eps++;
3356                 }
3357         }
3358         xhci->num_active_eps -= num_dropped_eps;
3359         if (num_dropped_eps)
3360                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3361                                 "Dropped %u ep ctxs, flags = 0x%x, "
3362                                 "%u now active.",
3363                                 num_dropped_eps, drop_flags,
3364                                 xhci->num_active_eps);
3365 }
3366
3367 /*
3368  * This submits a Reset Device Command, which will set the device state to 0,
3369  * set the device address to 0, and disable all the endpoints except the default
3370  * control endpoint.  The USB core should come back and call
3371  * xhci_address_device(), and then re-set up the configuration.  If this is
3372  * called because of a usb_reset_and_verify_device(), then the old alternate
3373  * settings will be re-installed through the normal bandwidth allocation
3374  * functions.
3375  *
3376  * Wait for the Reset Device command to finish.  Remove all structures
3377  * associated with the endpoints that were disabled.  Clear the input device
3378  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3379  *
3380  * If the virt_dev to be reset does not exist or does not match the udev,
3381  * it means the device is lost, possibly due to the xHC restore error and
3382  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3383  * re-allocate the device.
3384  */
3385 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3386 {
3387         int ret, i;
3388         unsigned long flags;
3389         struct xhci_hcd *xhci;
3390         unsigned int slot_id;
3391         struct xhci_virt_device *virt_dev;
3392         struct xhci_command *reset_device_cmd;
3393         int timeleft;
3394         int last_freed_endpoint;
3395         struct xhci_slot_ctx *slot_ctx;
3396         int old_active_eps = 0;
3397
3398         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3399         if (ret <= 0)
3400                 return ret;
3401         xhci = hcd_to_xhci(hcd);
3402         slot_id = udev->slot_id;
3403         virt_dev = xhci->devs[slot_id];
3404         if (!virt_dev) {
3405                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3406                                 "not exist. Re-allocate the device\n", slot_id);
3407                 ret = xhci_alloc_dev(hcd, udev);
3408                 if (ret == 1)
3409                         return 0;
3410                 else
3411                         return -EINVAL;
3412         }
3413
3414         if (virt_dev->udev != udev) {
3415                 /* If the virt_dev and the udev does not match, this virt_dev
3416                  * may belong to another udev.
3417                  * Re-allocate the device.
3418                  */
3419                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3420                                 "not match the udev. Re-allocate the device\n",
3421                                 slot_id);
3422                 ret = xhci_alloc_dev(hcd, udev);
3423                 if (ret == 1)
3424                         return 0;
3425                 else
3426                         return -EINVAL;
3427         }
3428
3429         /* If device is not setup, there is no point in resetting it */
3430         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3431         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3432                                                 SLOT_STATE_DISABLED)
3433                 return 0;
3434
3435         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3436         /* Allocate the command structure that holds the struct completion.
3437          * Assume we're in process context, since the normal device reset
3438          * process has to wait for the device anyway.  Storage devices are
3439          * reset as part of error handling, so use GFP_NOIO instead of
3440          * GFP_KERNEL.
3441          */
3442         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3443         if (!reset_device_cmd) {
3444                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3445                 return -ENOMEM;
3446         }
3447
3448         /* Attempt to submit the Reset Device command to the command ring */
3449         spin_lock_irqsave(&xhci->lock, flags);
3450         reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3451
3452         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3453         ret = xhci_queue_reset_device(xhci, slot_id);
3454         if (ret) {
3455                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3456                 list_del(&reset_device_cmd->cmd_list);
3457                 spin_unlock_irqrestore(&xhci->lock, flags);
3458                 goto command_cleanup;
3459         }
3460         xhci_ring_cmd_db(xhci);
3461         spin_unlock_irqrestore(&xhci->lock, flags);
3462
3463         /* Wait for the Reset Device command to finish */
3464         timeleft = wait_for_completion_interruptible_timeout(
3465                         reset_device_cmd->completion,
3466                         XHCI_CMD_DEFAULT_TIMEOUT);
3467         if (timeleft <= 0) {
3468                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3469                                 timeleft == 0 ? "Timeout" : "Signal");
3470                 spin_lock_irqsave(&xhci->lock, flags);
3471                 /* The timeout might have raced with the event ring handler, so
3472                  * only delete from the list if the item isn't poisoned.
3473                  */
3474                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3475                         list_del(&reset_device_cmd->cmd_list);
3476                 spin_unlock_irqrestore(&xhci->lock, flags);
3477                 ret = -ETIME;
3478                 goto command_cleanup;
3479         }
3480
3481         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3482          * unless we tried to reset a slot ID that wasn't enabled,
3483          * or the device wasn't in the addressed or configured state.
3484          */
3485         ret = reset_device_cmd->status;
3486         switch (ret) {
3487         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3488         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3489                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3490                                 slot_id,
3491                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3492                 xhci_dbg(xhci, "Not freeing device rings.\n");
3493                 /* Don't treat this as an error.  May change my mind later. */
3494                 ret = 0;
3495                 goto command_cleanup;
3496         case COMP_SUCCESS:
3497                 xhci_dbg(xhci, "Successful reset device command.\n");
3498                 break;
3499         default:
3500                 if (xhci_is_vendor_info_code(xhci, ret))
3501                         break;
3502                 xhci_warn(xhci, "Unknown completion code %u for "
3503                                 "reset device command.\n", ret);
3504                 ret = -EINVAL;
3505                 goto command_cleanup;
3506         }
3507
3508         /* Free up host controller endpoint resources */
3509         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3510                 spin_lock_irqsave(&xhci->lock, flags);
3511                 /* Don't delete the default control endpoint resources */
3512                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3513                 spin_unlock_irqrestore(&xhci->lock, flags);
3514         }
3515
3516         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3517         last_freed_endpoint = 1;
3518         for (i = 1; i < 31; ++i) {
3519                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3520
3521                 if (ep->ep_state & EP_HAS_STREAMS) {
3522                         xhci_free_stream_info(xhci, ep->stream_info);
3523                         ep->stream_info = NULL;
3524                         ep->ep_state &= ~EP_HAS_STREAMS;
3525                 }
3526
3527                 if (ep->ring) {
3528                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3529                         last_freed_endpoint = i;
3530                 }
3531                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3532                         xhci_drop_ep_from_interval_table(xhci,
3533                                         &virt_dev->eps[i].bw_info,
3534                                         virt_dev->bw_table,
3535                                         udev,
3536                                         &virt_dev->eps[i],
3537                                         virt_dev->tt_info);
3538                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3539         }
3540         /* If necessary, update the number of active TTs on this root port */
3541         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3542
3543         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3544         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3545         ret = 0;
3546
3547 command_cleanup:
3548         xhci_free_command(xhci, reset_device_cmd);
3549         return ret;
3550 }
3551
3552 /*
3553  * At this point, the struct usb_device is about to go away, the device has
3554  * disconnected, and all traffic has been stopped and the endpoints have been
3555  * disabled.  Free any HC data structures associated with that device.
3556  */
3557 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3558 {
3559         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3560         struct xhci_virt_device *virt_dev;
3561         unsigned long flags;
3562         u32 state;
3563         int i, ret;
3564
3565 #ifndef CONFIG_USB_DEFAULT_PERSIST
3566         /*
3567          * We called pm_runtime_get_noresume when the device was attached.
3568          * Decrement the counter here to allow controller to runtime suspend
3569          * if no devices remain.
3570          */
3571         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3572                 pm_runtime_put_noidle(hcd->self.controller);
3573 #endif
3574
3575         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3576         /* If the host is halted due to driver unload, we still need to free the
3577          * device.
3578          */
3579         if (ret <= 0 && ret != -ENODEV)
3580                 return;
3581
3582         virt_dev = xhci->devs[udev->slot_id];
3583
3584         /* Stop any wayward timer functions (which may grab the lock) */
3585         for (i = 0; i < 31; ++i) {
3586                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3587                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3588         }
3589
3590         spin_lock_irqsave(&xhci->lock, flags);
3591         /* Don't disable the slot if the host controller is dead. */
3592         state = readl(&xhci->op_regs->status);
3593         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3594                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3595                 xhci_free_virt_device(xhci, udev->slot_id);
3596                 spin_unlock_irqrestore(&xhci->lock, flags);
3597                 return;
3598         }
3599
3600         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3601                 spin_unlock_irqrestore(&xhci->lock, flags);
3602                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3603                 return;
3604         }
3605         xhci_ring_cmd_db(xhci);
3606         spin_unlock_irqrestore(&xhci->lock, flags);
3607         /*
3608          * Event command completion handler will free any data structures
3609          * associated with the slot.  XXX Can free sleep?
3610          */
3611 }
3612
3613 /*
3614  * Checks if we have enough host controller resources for the default control
3615  * endpoint.
3616  *
3617  * Must be called with xhci->lock held.
3618  */
3619 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3620 {
3621         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3622                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3623                                 "Not enough ep ctxs: "
3624                                 "%u active, need to add 1, limit is %u.",
3625                                 xhci->num_active_eps, xhci->limit_active_eps);
3626                 return -ENOMEM;
3627         }
3628         xhci->num_active_eps += 1;
3629         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3630                         "Adding 1 ep ctx, %u now active.",
3631                         xhci->num_active_eps);
3632         return 0;
3633 }
3634
3635
3636 /*
3637  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3638  * timed out, or allocating memory failed.  Returns 1 on success.
3639  */
3640 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3641 {
3642         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3643         unsigned long flags;
3644         int timeleft;
3645         int ret;
3646         union xhci_trb *cmd_trb;
3647
3648         spin_lock_irqsave(&xhci->lock, flags);
3649         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3650         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3651         if (ret) {
3652                 spin_unlock_irqrestore(&xhci->lock, flags);
3653                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3654                 return 0;
3655         }
3656         xhci_ring_cmd_db(xhci);
3657         spin_unlock_irqrestore(&xhci->lock, flags);
3658
3659         /* XXX: how much time for xHC slot assignment? */
3660         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3661                         XHCI_CMD_DEFAULT_TIMEOUT);
3662         if (timeleft <= 0) {
3663                 xhci_warn(xhci, "%s while waiting for a slot\n",
3664                                 timeleft == 0 ? "Timeout" : "Signal");
3665                 /* cancel the enable slot request */
3666                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3667         }
3668
3669         if (!xhci->slot_id) {
3670                 xhci_err(xhci, "Error while assigning device slot ID\n");
3671                 return 0;
3672         }
3673
3674         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3675                 spin_lock_irqsave(&xhci->lock, flags);
3676                 ret = xhci_reserve_host_control_ep_resources(xhci);
3677                 if (ret) {
3678                         spin_unlock_irqrestore(&xhci->lock, flags);
3679                         xhci_warn(xhci, "Not enough host resources, "
3680                                         "active endpoint contexts = %u\n",
3681                                         xhci->num_active_eps);
3682                         goto disable_slot;
3683                 }
3684                 spin_unlock_irqrestore(&xhci->lock, flags);
3685         }
3686         /* Use GFP_NOIO, since this function can be called from
3687          * xhci_discover_or_reset_device(), which may be called as part of
3688          * mass storage driver error handling.
3689          */
3690         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3691                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3692                 goto disable_slot;
3693         }
3694         udev->slot_id = xhci->slot_id;
3695
3696 #ifndef CONFIG_USB_DEFAULT_PERSIST
3697         /*
3698          * If resetting upon resume, we can't put the controller into runtime
3699          * suspend if there is a device attached.
3700          */
3701         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3702                 pm_runtime_get_noresume(hcd->self.controller);
3703 #endif
3704
3705         /* Is this a LS or FS device under a HS hub? */
3706         /* Hub or peripherial? */
3707         return 1;
3708
3709 disable_slot:
3710         /* Disable slot, if we can do it without mem alloc */
3711         spin_lock_irqsave(&xhci->lock, flags);
3712         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3713                 xhci_ring_cmd_db(xhci);
3714         spin_unlock_irqrestore(&xhci->lock, flags);
3715         return 0;
3716 }
3717
3718 /*
3719  * Issue an Address Device command and optionally send a corresponding
3720  * SetAddress request to the device.
3721  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3722  * we should only issue and wait on one address command at the same time.
3723  */
3724 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3725                              enum xhci_setup_dev setup)
3726 {
3727         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3728         unsigned long flags;
3729         int timeleft;
3730         struct xhci_virt_device *virt_dev;
3731         int ret = 0;
3732         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3733         struct xhci_slot_ctx *slot_ctx;
3734         struct xhci_input_control_ctx *ctrl_ctx;
3735         u64 temp_64;
3736         union xhci_trb *cmd_trb;
3737
3738         if (!udev->slot_id) {
3739                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3740                                 "Bad Slot ID %d", udev->slot_id);
3741                 return -EINVAL;
3742         }
3743
3744         virt_dev = xhci->devs[udev->slot_id];
3745
3746         if (WARN_ON(!virt_dev)) {
3747                 /*
3748                  * In plug/unplug torture test with an NEC controller,
3749                  * a zero-dereference was observed once due to virt_dev = 0.
3750                  * Print useful debug rather than crash if it is observed again!
3751                  */
3752                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3753                         udev->slot_id);
3754                 return -EINVAL;
3755         }
3756
3757         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3758         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3759         if (!ctrl_ctx) {
3760                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3761                                 __func__);
3762                 return -EINVAL;
3763         }
3764         /*
3765          * If this is the first Set Address since device plug-in or
3766          * virt_device realloaction after a resume with an xHCI power loss,
3767          * then set up the slot context.
3768          */
3769         if (!slot_ctx->dev_info)
3770                 xhci_setup_addressable_virt_dev(xhci, udev);
3771         /* Otherwise, update the control endpoint ring enqueue pointer. */
3772         else
3773                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3774         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3775         ctrl_ctx->drop_flags = 0;
3776
3777         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3778         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3779         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3780                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3781
3782         spin_lock_irqsave(&xhci->lock, flags);
3783         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3784         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3785                                         udev->slot_id, setup);
3786         if (ret) {
3787                 spin_unlock_irqrestore(&xhci->lock, flags);
3788                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3789                                 "FIXME: allocate a command ring segment");
3790                 return ret;
3791         }
3792         xhci_ring_cmd_db(xhci);
3793         spin_unlock_irqrestore(&xhci->lock, flags);
3794
3795         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3796         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3797                         XHCI_CMD_DEFAULT_TIMEOUT);
3798         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3799          * the SetAddress() "recovery interval" required by USB and aborting the
3800          * command on a timeout.
3801          */
3802         if (timeleft <= 0) {
3803                 xhci_warn(xhci, "%s while waiting for setup %s command\n",
3804                           timeleft == 0 ? "Timeout" : "Signal", act);
3805                 /* cancel the address device command */
3806                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3807                 if (ret < 0)
3808                         return ret;
3809                 return -ETIME;
3810         }
3811
3812         switch (virt_dev->cmd_status) {
3813         case COMP_CTX_STATE:
3814         case COMP_EBADSLT:
3815                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3816                          act, udev->slot_id);
3817                 ret = -EINVAL;
3818                 break;
3819         case COMP_TX_ERR:
3820                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3821                 ret = -EPROTO;
3822                 break;
3823         case COMP_DEV_ERR:
3824                 dev_warn(&udev->dev,
3825                          "ERROR: Incompatible device for setup %s command\n", act);
3826                 ret = -ENODEV;
3827                 break;
3828         case COMP_SUCCESS:
3829                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3830                                "Successful setup %s command", act);
3831                 break;
3832         default:
3833                 xhci_err(xhci,
3834                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3835                          act, virt_dev->cmd_status);
3836                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3837                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3838                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3839                 ret = -EINVAL;
3840                 break;
3841         }
3842         if (ret) {
3843                 return ret;
3844         }
3845         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3846         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3847                         "Op regs DCBAA ptr = %#016llx", temp_64);
3848         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3849                 "Slot ID %d dcbaa entry @%p = %#016llx",
3850                 udev->slot_id,
3851                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3852                 (unsigned long long)
3853                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3854         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3855                         "Output Context DMA address = %#08llx",
3856                         (unsigned long long)virt_dev->out_ctx->dma);
3857         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3858         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3859         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3860                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3861         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3862         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3863         /*
3864          * USB core uses address 1 for the roothubs, so we add one to the
3865          * address given back to us by the HC.
3866          */
3867         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3868         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3869                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3870         /* Zero the input context control for later use */
3871         ctrl_ctx->add_flags = 0;
3872         ctrl_ctx->drop_flags = 0;
3873
3874         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875                        "Internal device address = %d",
3876                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3877
3878         return 0;
3879 }
3880
3881 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3882 {
3883         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3884 }
3885
3886 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3887 {
3888         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3889 }
3890
3891 /*
3892  * Transfer the port index into real index in the HW port status
3893  * registers. Caculate offset between the port's PORTSC register
3894  * and port status base. Divide the number of per port register
3895  * to get the real index. The raw port number bases 1.
3896  */
3897 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3898 {
3899         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3900         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3901         __le32 __iomem *addr;
3902         int raw_port;
3903
3904         if (hcd->speed != HCD_USB3)
3905                 addr = xhci->usb2_ports[port1 - 1];
3906         else
3907                 addr = xhci->usb3_ports[port1 - 1];
3908
3909         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3910         return raw_port;
3911 }
3912
3913 /*
3914  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3915  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3916  */
3917 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3918                         struct usb_device *udev, u16 max_exit_latency)
3919 {
3920         struct xhci_virt_device *virt_dev;
3921         struct xhci_command *command;
3922         struct xhci_input_control_ctx *ctrl_ctx;
3923         struct xhci_slot_ctx *slot_ctx;
3924         unsigned long flags;
3925         int ret;
3926
3927         spin_lock_irqsave(&xhci->lock, flags);
3928         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3929                 spin_unlock_irqrestore(&xhci->lock, flags);
3930                 return 0;
3931         }
3932
3933         /* Attempt to issue an Evaluate Context command to change the MEL. */
3934         virt_dev = xhci->devs[udev->slot_id];
3935         command = xhci->lpm_command;
3936         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3937         if (!ctrl_ctx) {
3938                 spin_unlock_irqrestore(&xhci->lock, flags);
3939                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3940                                 __func__);
3941                 return -ENOMEM;
3942         }
3943
3944         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3945         spin_unlock_irqrestore(&xhci->lock, flags);
3946
3947         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3948         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3949         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3950         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3951
3952         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3953                         "Set up evaluate context for LPM MEL change.");
3954         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3955         xhci_dbg_ctx(xhci, command->in_ctx, 0);
3956
3957         /* Issue and wait for the evaluate context command. */
3958         ret = xhci_configure_endpoint(xhci, udev, command,
3959                         true, true);
3960         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3961         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3962
3963         if (!ret) {
3964                 spin_lock_irqsave(&xhci->lock, flags);
3965                 virt_dev->current_mel = max_exit_latency;
3966                 spin_unlock_irqrestore(&xhci->lock, flags);
3967         }
3968         return ret;
3969 }
3970
3971 #ifdef CONFIG_PM_RUNTIME
3972
3973 /* BESL to HIRD Encoding array for USB2 LPM */
3974 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3975         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3976
3977 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3978 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3979                                         struct usb_device *udev)
3980 {
3981         int u2del, besl, besl_host;
3982         int besl_device = 0;
3983         u32 field;
3984
3985         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3986         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3987
3988         if (field & USB_BESL_SUPPORT) {
3989                 for (besl_host = 0; besl_host < 16; besl_host++) {
3990                         if (xhci_besl_encoding[besl_host] >= u2del)
3991                                 break;
3992                 }
3993                 /* Use baseline BESL value as default */
3994                 if (field & USB_BESL_BASELINE_VALID)
3995                         besl_device = USB_GET_BESL_BASELINE(field);
3996                 else if (field & USB_BESL_DEEP_VALID)
3997                         besl_device = USB_GET_BESL_DEEP(field);
3998         } else {
3999                 if (u2del <= 50)
4000                         besl_host = 0;
4001                 else
4002                         besl_host = (u2del - 51) / 75 + 1;
4003         }
4004
4005         besl = besl_host + besl_device;
4006         if (besl > 15)
4007                 besl = 15;
4008
4009         return besl;
4010 }
4011
4012 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4013 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4014 {
4015         u32 field;
4016         int l1;
4017         int besld = 0;
4018         int hirdm = 0;
4019
4020         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4021
4022         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4023         l1 = udev->l1_params.timeout / 256;
4024
4025         /* device has preferred BESLD */
4026         if (field & USB_BESL_DEEP_VALID) {
4027                 besld = USB_GET_BESL_DEEP(field);
4028                 hirdm = 1;
4029         }
4030
4031         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4032 }
4033
4034 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4035                         struct usb_device *udev, int enable)
4036 {
4037         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4038         __le32 __iomem  **port_array;
4039         __le32 __iomem  *pm_addr, *hlpm_addr;
4040         u32             pm_val, hlpm_val, field;
4041         unsigned int    port_num;
4042         unsigned long   flags;
4043         int             hird, exit_latency;
4044         int             ret;
4045
4046         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4047                         !udev->lpm_capable)
4048                 return -EPERM;
4049
4050         if (!udev->parent || udev->parent->parent ||
4051                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4052                 return -EPERM;
4053
4054         if (udev->usb2_hw_lpm_capable != 1)
4055                 return -EPERM;
4056
4057         spin_lock_irqsave(&xhci->lock, flags);
4058
4059         port_array = xhci->usb2_ports;
4060         port_num = udev->portnum - 1;
4061         pm_addr = port_array[port_num] + PORTPMSC;
4062         pm_val = readl(pm_addr);
4063         hlpm_addr = port_array[port_num] + PORTHLPMC;
4064         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4065
4066         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4067                         enable ? "enable" : "disable", port_num);
4068
4069         if (enable) {
4070                 /* Host supports BESL timeout instead of HIRD */
4071                 if (udev->usb2_hw_lpm_besl_capable) {
4072                         /* if device doesn't have a preferred BESL value use a
4073                          * default one which works with mixed HIRD and BESL
4074                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4075                          */
4076                         if ((field & USB_BESL_SUPPORT) &&
4077                             (field & USB_BESL_BASELINE_VALID))
4078                                 hird = USB_GET_BESL_BASELINE(field);
4079                         else
4080                                 hird = udev->l1_params.besl;
4081
4082                         exit_latency = xhci_besl_encoding[hird];
4083                         spin_unlock_irqrestore(&xhci->lock, flags);
4084
4085                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4086                          * input context for link powermanagement evaluate
4087                          * context commands. It is protected by hcd->bandwidth
4088                          * mutex and is shared by all devices. We need to set
4089                          * the max ext latency in USB 2 BESL LPM as well, so
4090                          * use the same mutex and xhci_change_max_exit_latency()
4091                          */
4092                         mutex_lock(hcd->bandwidth_mutex);
4093                         ret = xhci_change_max_exit_latency(xhci, udev,
4094                                                            exit_latency);
4095                         mutex_unlock(hcd->bandwidth_mutex);
4096
4097                         if (ret < 0)
4098                                 return ret;
4099                         spin_lock_irqsave(&xhci->lock, flags);
4100
4101                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4102                         writel(hlpm_val, hlpm_addr);
4103                         /* flush write */
4104                         readl(hlpm_addr);
4105                 } else {
4106                         hird = xhci_calculate_hird_besl(xhci, udev);
4107                 }
4108
4109                 pm_val &= ~PORT_HIRD_MASK;
4110                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4111                 writel(pm_val, pm_addr);
4112                 pm_val = readl(pm_addr);
4113                 pm_val |= PORT_HLE;
4114                 writel(pm_val, pm_addr);
4115                 /* flush write */
4116                 readl(pm_addr);
4117         } else {
4118                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4119                 writel(pm_val, pm_addr);
4120                 /* flush write */
4121                 readl(pm_addr);
4122                 if (udev->usb2_hw_lpm_besl_capable) {
4123                         spin_unlock_irqrestore(&xhci->lock, flags);
4124                         mutex_lock(hcd->bandwidth_mutex);
4125                         xhci_change_max_exit_latency(xhci, udev, 0);
4126                         mutex_unlock(hcd->bandwidth_mutex);
4127                         return 0;
4128                 }
4129         }
4130
4131         spin_unlock_irqrestore(&xhci->lock, flags);
4132         return 0;
4133 }
4134
4135 /* check if a usb2 port supports a given extened capability protocol
4136  * only USB2 ports extended protocol capability values are cached.
4137  * Return 1 if capability is supported
4138  */
4139 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4140                                            unsigned capability)
4141 {
4142         u32 port_offset, port_count;
4143         int i;
4144
4145         for (i = 0; i < xhci->num_ext_caps; i++) {
4146                 if (xhci->ext_caps[i] & capability) {
4147                         /* port offsets starts at 1 */
4148                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4149                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4150                         if (port >= port_offset &&
4151                             port < port_offset + port_count)
4152                                 return 1;
4153                 }
4154         }
4155         return 0;
4156 }
4157
4158 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4159 {
4160         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4161         int             portnum = udev->portnum - 1;
4162
4163         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4164                         !udev->lpm_capable)
4165                 return 0;
4166
4167         /* we only support lpm for non-hub device connected to root hub yet */
4168         if (!udev->parent || udev->parent->parent ||
4169                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4170                 return 0;
4171
4172         if (xhci->hw_lpm_support == 1 &&
4173                         xhci_check_usb2_port_capability(
4174                                 xhci, portnum, XHCI_HLC)) {
4175                 udev->usb2_hw_lpm_capable = 1;
4176                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4177                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4178                 if (xhci_check_usb2_port_capability(xhci, portnum,
4179                                         XHCI_BLC))
4180                         udev->usb2_hw_lpm_besl_capable = 1;
4181         }
4182
4183         return 0;
4184 }
4185
4186 #else
4187
4188 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4189                                 struct usb_device *udev, int enable)
4190 {
4191         return 0;
4192 }
4193
4194 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4195 {
4196         return 0;
4197 }
4198
4199 #endif /* CONFIG_PM_RUNTIME */
4200
4201 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4202
4203 #ifdef CONFIG_PM
4204 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4205 static unsigned long long xhci_service_interval_to_ns(
4206                 struct usb_endpoint_descriptor *desc)
4207 {
4208         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4209 }
4210
4211 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4212                 enum usb3_link_state state)
4213 {
4214         unsigned long long sel;
4215         unsigned long long pel;
4216         unsigned int max_sel_pel;
4217         char *state_name;
4218
4219         switch (state) {
4220         case USB3_LPM_U1:
4221                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4222                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4223                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4224                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4225                 state_name = "U1";
4226                 break;
4227         case USB3_LPM_U2:
4228                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4229                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4230                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4231                 state_name = "U2";
4232                 break;
4233         default:
4234                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4235                                 __func__);
4236                 return USB3_LPM_DISABLED;
4237         }
4238
4239         if (sel <= max_sel_pel && pel <= max_sel_pel)
4240                 return USB3_LPM_DEVICE_INITIATED;
4241
4242         if (sel > max_sel_pel)
4243                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4244                                 "due to long SEL %llu ms\n",
4245                                 state_name, sel);
4246         else
4247                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4248                                 "due to long PEL %llu ms\n",
4249                                 state_name, pel);
4250         return USB3_LPM_DISABLED;
4251 }
4252
4253 /* Returns the hub-encoded U1 timeout value.
4254  * The U1 timeout should be the maximum of the following values:
4255  *  - For control endpoints, U1 system exit latency (SEL) * 3
4256  *  - For bulk endpoints, U1 SEL * 5
4257  *  - For interrupt endpoints:
4258  *    - Notification EPs, U1 SEL * 3
4259  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4260  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4261  */
4262 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4263                 struct usb_endpoint_descriptor *desc)
4264 {
4265         unsigned long long timeout_ns;
4266         int ep_type;
4267         int intr_type;
4268
4269         ep_type = usb_endpoint_type(desc);
4270         switch (ep_type) {
4271         case USB_ENDPOINT_XFER_CONTROL:
4272                 timeout_ns = udev->u1_params.sel * 3;
4273                 break;
4274         case USB_ENDPOINT_XFER_BULK:
4275                 timeout_ns = udev->u1_params.sel * 5;
4276                 break;
4277         case USB_ENDPOINT_XFER_INT:
4278                 intr_type = usb_endpoint_interrupt_type(desc);
4279                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4280                         timeout_ns = udev->u1_params.sel * 3;
4281                         break;
4282                 }
4283                 /* Otherwise the calculation is the same as isoc eps */
4284         case USB_ENDPOINT_XFER_ISOC:
4285                 timeout_ns = xhci_service_interval_to_ns(desc);
4286                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4287                 if (timeout_ns < udev->u1_params.sel * 2)
4288                         timeout_ns = udev->u1_params.sel * 2;
4289                 break;
4290         default:
4291                 return 0;
4292         }
4293
4294         /* The U1 timeout is encoded in 1us intervals. */
4295         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4296         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4297         if (timeout_ns == USB3_LPM_DISABLED)
4298                 timeout_ns++;
4299
4300         /* If the necessary timeout value is bigger than what we can set in the
4301          * USB 3.0 hub, we have to disable hub-initiated U1.
4302          */
4303         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4304                 return timeout_ns;
4305         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4306                         "due to long timeout %llu ms\n", timeout_ns);
4307         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4308 }
4309
4310 /* Returns the hub-encoded U2 timeout value.
4311  * The U2 timeout should be the maximum of:
4312  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4313  *  - largest bInterval of any active periodic endpoint (to avoid going
4314  *    into lower power link states between intervals).
4315  *  - the U2 Exit Latency of the device
4316  */
4317 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4318                 struct usb_endpoint_descriptor *desc)
4319 {
4320         unsigned long long timeout_ns;
4321         unsigned long long u2_del_ns;
4322
4323         timeout_ns = 10 * 1000 * 1000;
4324
4325         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4326                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4327                 timeout_ns = xhci_service_interval_to_ns(desc);
4328
4329         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4330         if (u2_del_ns > timeout_ns)
4331                 timeout_ns = u2_del_ns;
4332
4333         /* The U2 timeout is encoded in 256us intervals */
4334         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4335         /* If the necessary timeout value is bigger than what we can set in the
4336          * USB 3.0 hub, we have to disable hub-initiated U2.
4337          */
4338         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4339                 return timeout_ns;
4340         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4341                         "due to long timeout %llu ms\n", timeout_ns);
4342         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4343 }
4344
4345 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4346                 struct usb_device *udev,
4347                 struct usb_endpoint_descriptor *desc,
4348                 enum usb3_link_state state,
4349                 u16 *timeout)
4350 {
4351         if (state == USB3_LPM_U1) {
4352                 if (xhci->quirks & XHCI_INTEL_HOST)
4353                         return xhci_calculate_intel_u1_timeout(udev, desc);
4354         } else {
4355                 if (xhci->quirks & XHCI_INTEL_HOST)
4356                         return xhci_calculate_intel_u2_timeout(udev, desc);
4357         }
4358
4359         return USB3_LPM_DISABLED;
4360 }
4361
4362 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4363                 struct usb_device *udev,
4364                 struct usb_endpoint_descriptor *desc,
4365                 enum usb3_link_state state,
4366                 u16 *timeout)
4367 {
4368         u16 alt_timeout;
4369
4370         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4371                 desc, state, timeout);
4372
4373         /* If we found we can't enable hub-initiated LPM, or
4374          * the U1 or U2 exit latency was too high to allow
4375          * device-initiated LPM as well, just stop searching.
4376          */
4377         if (alt_timeout == USB3_LPM_DISABLED ||
4378                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4379                 *timeout = alt_timeout;
4380                 return -E2BIG;
4381         }
4382         if (alt_timeout > *timeout)
4383                 *timeout = alt_timeout;
4384         return 0;
4385 }
4386
4387 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4388                 struct usb_device *udev,
4389                 struct usb_host_interface *alt,
4390                 enum usb3_link_state state,
4391                 u16 *timeout)
4392 {
4393         int j;
4394
4395         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4396                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4397                                         &alt->endpoint[j].desc, state, timeout))
4398                         return -E2BIG;
4399                 continue;
4400         }
4401         return 0;
4402 }
4403
4404 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4405                 enum usb3_link_state state)
4406 {
4407         struct usb_device *parent;
4408         unsigned int num_hubs;
4409
4410         if (state == USB3_LPM_U2)
4411                 return 0;
4412
4413         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4414         for (parent = udev->parent, num_hubs = 0; parent->parent;
4415                         parent = parent->parent)
4416                 num_hubs++;
4417
4418         if (num_hubs < 2)
4419                 return 0;
4420
4421         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4422                         " below second-tier hub.\n");
4423         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4424                         "to decrease power consumption.\n");
4425         return -E2BIG;
4426 }
4427
4428 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4429                 struct usb_device *udev,
4430                 enum usb3_link_state state)
4431 {
4432         if (xhci->quirks & XHCI_INTEL_HOST)
4433                 return xhci_check_intel_tier_policy(udev, state);
4434         return -EINVAL;
4435 }
4436
4437 /* Returns the U1 or U2 timeout that should be enabled.
4438  * If the tier check or timeout setting functions return with a non-zero exit
4439  * code, that means the timeout value has been finalized and we shouldn't look
4440  * at any more endpoints.
4441  */
4442 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4443                         struct usb_device *udev, enum usb3_link_state state)
4444 {
4445         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4446         struct usb_host_config *config;
4447         char *state_name;
4448         int i;
4449         u16 timeout = USB3_LPM_DISABLED;
4450
4451         if (state == USB3_LPM_U1)
4452                 state_name = "U1";
4453         else if (state == USB3_LPM_U2)
4454                 state_name = "U2";
4455         else {
4456                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4457                                 state);
4458                 return timeout;
4459         }
4460
4461         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4462                 return timeout;
4463
4464         /* Gather some information about the currently installed configuration
4465          * and alternate interface settings.
4466          */
4467         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4468                         state, &timeout))
4469                 return timeout;
4470
4471         config = udev->actconfig;
4472         if (!config)
4473                 return timeout;
4474
4475         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4476                 struct usb_driver *driver;
4477                 struct usb_interface *intf = config->interface[i];
4478
4479                 if (!intf)
4480                         continue;
4481
4482                 /* Check if any currently bound drivers want hub-initiated LPM
4483                  * disabled.
4484                  */
4485                 if (intf->dev.driver) {
4486                         driver = to_usb_driver(intf->dev.driver);
4487                         if (driver && driver->disable_hub_initiated_lpm) {
4488                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4489                                                 "at request of driver %s\n",
4490                                                 state_name, driver->name);
4491                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4492                         }
4493                 }
4494
4495                 /* Not sure how this could happen... */
4496                 if (!intf->cur_altsetting)
4497                         continue;
4498
4499                 if (xhci_update_timeout_for_interface(xhci, udev,
4500                                         intf->cur_altsetting,
4501                                         state, &timeout))
4502                         return timeout;
4503         }
4504         return timeout;
4505 }
4506
4507 static int calculate_max_exit_latency(struct usb_device *udev,
4508                 enum usb3_link_state state_changed,
4509                 u16 hub_encoded_timeout)
4510 {
4511         unsigned long long u1_mel_us = 0;
4512         unsigned long long u2_mel_us = 0;
4513         unsigned long long mel_us = 0;
4514         bool disabling_u1;
4515         bool disabling_u2;
4516         bool enabling_u1;
4517         bool enabling_u2;
4518
4519         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4520                         hub_encoded_timeout == USB3_LPM_DISABLED);
4521         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4522                         hub_encoded_timeout == USB3_LPM_DISABLED);
4523
4524         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4525                         hub_encoded_timeout != USB3_LPM_DISABLED);
4526         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4527                         hub_encoded_timeout != USB3_LPM_DISABLED);
4528
4529         /* If U1 was already enabled and we're not disabling it,
4530          * or we're going to enable U1, account for the U1 max exit latency.
4531          */
4532         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4533                         enabling_u1)
4534                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4535         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4536                         enabling_u2)
4537                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4538
4539         if (u1_mel_us > u2_mel_us)
4540                 mel_us = u1_mel_us;
4541         else
4542                 mel_us = u2_mel_us;
4543         /* xHCI host controller max exit latency field is only 16 bits wide. */
4544         if (mel_us > MAX_EXIT) {
4545                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4546                                 "is too big.\n", mel_us);
4547                 return -E2BIG;
4548         }
4549         return mel_us;
4550 }
4551
4552 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4553 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4554                         struct usb_device *udev, enum usb3_link_state state)
4555 {
4556         struct xhci_hcd *xhci;
4557         u16 hub_encoded_timeout;
4558         int mel;
4559         int ret;
4560
4561         xhci = hcd_to_xhci(hcd);
4562         /* The LPM timeout values are pretty host-controller specific, so don't
4563          * enable hub-initiated timeouts unless the vendor has provided
4564          * information about their timeout algorithm.
4565          */
4566         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4567                         !xhci->devs[udev->slot_id])
4568                 return USB3_LPM_DISABLED;
4569
4570         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4571         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4572         if (mel < 0) {
4573                 /* Max Exit Latency is too big, disable LPM. */
4574                 hub_encoded_timeout = USB3_LPM_DISABLED;
4575                 mel = 0;
4576         }
4577
4578         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4579         if (ret)
4580                 return ret;
4581         return hub_encoded_timeout;
4582 }
4583
4584 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4585                         struct usb_device *udev, enum usb3_link_state state)
4586 {
4587         struct xhci_hcd *xhci;
4588         u16 mel;
4589         int ret;
4590
4591         xhci = hcd_to_xhci(hcd);
4592         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4593                         !xhci->devs[udev->slot_id])
4594                 return 0;
4595
4596         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4597         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4598         if (ret)
4599                 return ret;
4600         return 0;
4601 }
4602 #else /* CONFIG_PM */
4603
4604 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4605                         struct usb_device *udev, enum usb3_link_state state)
4606 {
4607         return USB3_LPM_DISABLED;
4608 }
4609
4610 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4611                         struct usb_device *udev, enum usb3_link_state state)
4612 {
4613         return 0;
4614 }
4615 #endif  /* CONFIG_PM */
4616
4617 /*-------------------------------------------------------------------------*/
4618
4619 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4620  * internal data structures for the device.
4621  */
4622 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4623                         struct usb_tt *tt, gfp_t mem_flags)
4624 {
4625         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4626         struct xhci_virt_device *vdev;
4627         struct xhci_command *config_cmd;
4628         struct xhci_input_control_ctx *ctrl_ctx;
4629         struct xhci_slot_ctx *slot_ctx;
4630         unsigned long flags;
4631         unsigned think_time;
4632         int ret;
4633
4634         /* Ignore root hubs */
4635         if (!hdev->parent)
4636                 return 0;
4637
4638         vdev = xhci->devs[hdev->slot_id];
4639         if (!vdev) {
4640                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4641                 return -EINVAL;
4642         }
4643         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4644         if (!config_cmd) {
4645                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4646                 return -ENOMEM;
4647         }
4648         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4649         if (!ctrl_ctx) {
4650                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4651                                 __func__);
4652                 xhci_free_command(xhci, config_cmd);
4653                 return -ENOMEM;
4654         }
4655
4656         spin_lock_irqsave(&xhci->lock, flags);
4657         if (hdev->speed == USB_SPEED_HIGH &&
4658                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4659                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4660                 xhci_free_command(xhci, config_cmd);
4661                 spin_unlock_irqrestore(&xhci->lock, flags);
4662                 return -ENOMEM;
4663         }
4664
4665         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4666         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4667         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4668         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4669         if (tt->multi)
4670                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4671         if (xhci->hci_version > 0x95) {
4672                 xhci_dbg(xhci, "xHCI version %x needs hub "
4673                                 "TT think time and number of ports\n",
4674                                 (unsigned int) xhci->hci_version);
4675                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4676                 /* Set TT think time - convert from ns to FS bit times.
4677                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4678                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4679                  *
4680                  * xHCI 1.0: this field shall be 0 if the device is not a
4681                  * High-spped hub.
4682                  */
4683                 think_time = tt->think_time;
4684                 if (think_time != 0)
4685                         think_time = (think_time / 666) - 1;
4686                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4687                         slot_ctx->tt_info |=
4688                                 cpu_to_le32(TT_THINK_TIME(think_time));
4689         } else {
4690                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4691                                 "TT think time or number of ports\n",
4692                                 (unsigned int) xhci->hci_version);
4693         }
4694         slot_ctx->dev_state = 0;
4695         spin_unlock_irqrestore(&xhci->lock, flags);
4696
4697         xhci_dbg(xhci, "Set up %s for hub device.\n",
4698                         (xhci->hci_version > 0x95) ?
4699                         "configure endpoint" : "evaluate context");
4700         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4701         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4702
4703         /* Issue and wait for the configure endpoint or
4704          * evaluate context command.
4705          */
4706         if (xhci->hci_version > 0x95)
4707                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4708                                 false, false);
4709         else
4710                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4711                                 true, false);
4712
4713         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4714         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4715
4716         xhci_free_command(xhci, config_cmd);
4717         return ret;
4718 }
4719
4720 int xhci_get_frame(struct usb_hcd *hcd)
4721 {
4722         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4723         /* EHCI mods by the periodic size.  Why? */
4724         return readl(&xhci->run_regs->microframe_index) >> 3;
4725 }
4726
4727 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4728 {
4729         struct xhci_hcd         *xhci;
4730         struct device           *dev = hcd->self.controller;
4731         int                     retval;
4732
4733         /* Accept arbitrarily long scatter-gather lists */
4734         hcd->self.sg_tablesize = ~0;
4735
4736         /* support to build packet from discontinuous buffers */
4737         hcd->self.no_sg_constraint = 1;
4738
4739         /* XHCI controllers don't stop the ep queue on short packets :| */
4740         hcd->self.no_stop_on_short = 1;
4741
4742         if (usb_hcd_is_primary_hcd(hcd)) {
4743                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4744                 if (!xhci)
4745                         return -ENOMEM;
4746                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4747                 xhci->main_hcd = hcd;
4748                 /* Mark the first roothub as being USB 2.0.
4749                  * The xHCI driver will register the USB 3.0 roothub.
4750                  */
4751                 hcd->speed = HCD_USB2;
4752                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4753                 /*
4754                  * USB 2.0 roothub under xHCI has an integrated TT,
4755                  * (rate matching hub) as opposed to having an OHCI/UHCI
4756                  * companion controller.
4757                  */
4758                 hcd->has_tt = 1;
4759         } else {
4760                 /* xHCI private pointer was set in xhci_pci_probe for the second
4761                  * registered roothub.
4762                  */
4763                 return 0;
4764         }
4765
4766         xhci->cap_regs = hcd->regs;
4767         xhci->op_regs = hcd->regs +
4768                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4769         xhci->run_regs = hcd->regs +
4770                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4771         /* Cache read-only capability registers */
4772         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4773         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4774         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4775         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4776         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4777         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4778         xhci_print_registers(xhci);
4779
4780         xhci->quirks = quirks;
4781
4782         get_quirks(dev, xhci);
4783
4784         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4785          * success event after a short transfer. This quirk will ignore such
4786          * spurious event.
4787          */
4788         if (xhci->hci_version > 0x96)
4789                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4790
4791         /* Make sure the HC is halted. */
4792         retval = xhci_halt(xhci);
4793         if (retval)
4794                 goto error;
4795
4796         xhci_dbg(xhci, "Resetting HCD\n");
4797         /* Reset the internal HC memory state and registers. */
4798         retval = xhci_reset(xhci);
4799         if (retval)
4800                 goto error;
4801         xhci_dbg(xhci, "Reset complete\n");
4802
4803         /* Set dma_mask and coherent_dma_mask to 64-bits,
4804          * if xHC supports 64-bit addressing */
4805         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4806                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4807                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4808                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4809         }
4810
4811         xhci_dbg(xhci, "Calling HCD init\n");
4812         /* Initialize HCD and host controller data structures. */
4813         retval = xhci_init(hcd);
4814         if (retval)
4815                 goto error;
4816         xhci_dbg(xhci, "Called HCD init\n");
4817         return 0;
4818 error:
4819         kfree(xhci);
4820         return retval;
4821 }
4822
4823 MODULE_DESCRIPTION(DRIVER_DESC);
4824 MODULE_AUTHOR(DRIVER_AUTHOR);
4825 MODULE_LICENSE("GPL");
4826
4827 static int __init xhci_hcd_init(void)
4828 {
4829         int retval;
4830
4831         retval = xhci_register_pci();
4832         if (retval < 0) {
4833                 pr_debug("Problem registering PCI driver.\n");
4834                 return retval;
4835         }
4836         retval = xhci_register_plat();
4837         if (retval < 0) {
4838                 pr_debug("Problem registering platform driver.\n");
4839                 goto unreg_pci;
4840         }
4841         /*
4842          * Check the compiler generated sizes of structures that must be laid
4843          * out in specific ways for hardware access.
4844          */
4845         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4846         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4847         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4848         /* xhci_device_control has eight fields, and also
4849          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4850          */
4851         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4852         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4853         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4854         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4855         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4856         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4857         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4858         return 0;
4859 unreg_pci:
4860         xhci_unregister_pci();
4861         return retval;
4862 }
4863 module_init(xhci_hcd_init);
4864
4865 static void __exit xhci_hcd_cleanup(void)
4866 {
4867         xhci_unregister_pci();
4868         xhci_unregister_plat();
4869 }
4870 module_exit(xhci_hcd_cleanup);