ASoC: max98371 Remove duplicate entry in max98371_reg
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (!ret) {
117                 xhci->xhc_state |= XHCI_STATE_HALTED;
118                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119         } else
120                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121                                 XHCI_MAX_HALT_USEC);
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
151
152         return ret;
153 }
154
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164         u32 command;
165         u32 state;
166         int ret, i;
167
168         state = readl(&xhci->op_regs->status);
169         if ((state & STS_HALT) == 0) {
170                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171                 return 0;
172         }
173
174         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175         command = readl(&xhci->op_regs->command);
176         command |= CMD_RESET;
177         writel(command, &xhci->op_regs->command);
178
179         /* Existing Intel xHCI controllers require a delay of 1 mS,
180          * after setting the CMD_RESET bit, and before accessing any
181          * HC registers. This allows the HC to complete the
182          * reset operation and be ready for HC register access.
183          * Without this delay, the subsequent HC register access,
184          * may result in a system hang very rarely.
185          */
186         if (xhci->quirks & XHCI_INTEL_HOST)
187                 udelay(1000);
188
189         ret = xhci_handshake(&xhci->op_regs->command,
190                         CMD_RESET, 0, 10 * 1000 * 1000);
191         if (ret)
192                 return ret;
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; ++i) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215         int i;
216
217         if (!xhci->msix_entries)
218                 return -EINVAL;
219
220         for (i = 0; i < xhci->msix_count; i++)
221                 if (xhci->msix_entries[i].vector)
222                         free_irq(xhci->msix_entries[i].vector,
223                                         xhci_to_hcd(xhci));
224         return 0;
225 }
226
227 /*
228  * Set up MSI
229  */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232         int ret;
233         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235         ret = pci_enable_msi(pdev);
236         if (ret) {
237                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238                                 "failed to allocate MSI entry");
239                 return ret;
240         }
241
242         ret = request_irq(pdev->irq, xhci_msi_irq,
243                                 0, "xhci_hcd", xhci_to_hcd(xhci));
244         if (ret) {
245                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246                                 "disable MSI interrupt");
247                 pci_disable_msi(pdev);
248         }
249
250         return ret;
251 }
252
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260         int ret;
261
262         /* return if using legacy interrupt */
263         if (xhci_to_hcd(xhci)->irq > 0)
264                 return;
265
266         ret = xhci_free_msi(xhci);
267         if (!ret)
268                 return;
269         if (pdev->irq > 0)
270                 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272         return;
273 }
274
275 /*
276  * Set up MSI-X
277  */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280         int i, ret = 0;
281         struct usb_hcd *hcd = xhci_to_hcd(xhci);
282         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284         /*
285          * calculate number of msi-x vectors supported.
286          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287          *   with max number of interrupters based on the xhci HCSPARAMS1.
288          * - num_online_cpus: maximum msi-x vectors per CPUs core.
289          *   Add additional 1 vector to ensure always available interrupt.
290          */
291         xhci->msix_count = min(num_online_cpus() + 1,
292                                 HCS_MAX_INTRS(xhci->hcs_params1));
293
294         xhci->msix_entries =
295                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296                                 GFP_KERNEL);
297         if (!xhci->msix_entries) {
298                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299                 return -ENOMEM;
300         }
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 xhci->msix_entries[i].entry = i;
304                 xhci->msix_entries[i].vector = 0;
305         }
306
307         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308         if (ret) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "Failed to enable MSI-X");
311                 goto free_entries;
312         }
313
314         for (i = 0; i < xhci->msix_count; i++) {
315                 ret = request_irq(xhci->msix_entries[i].vector,
316                                 xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318                 if (ret)
319                         goto disable_msix;
320         }
321
322         hcd->msix_enabled = 1;
323         return ret;
324
325 disable_msix:
326         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327         xhci_free_irq(xhci);
328         pci_disable_msix(pdev);
329 free_entries:
330         kfree(xhci->msix_entries);
331         xhci->msix_entries = NULL;
332         return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338         struct usb_hcd *hcd = xhci_to_hcd(xhci);
339         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341         if (xhci->quirks & XHCI_PLAT)
342                 return;
343
344         xhci_free_irq(xhci);
345
346         if (xhci->msix_entries) {
347                 pci_disable_msix(pdev);
348                 kfree(xhci->msix_entries);
349                 xhci->msix_entries = NULL;
350         } else {
351                 pci_disable_msi(pdev);
352         }
353
354         hcd->msix_enabled = 0;
355         return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360         int i;
361
362         if (xhci->msix_entries) {
363                 for (i = 0; i < xhci->msix_count; i++)
364                         synchronize_irq(xhci->msix_entries[i].vector);
365         }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371         struct pci_dev  *pdev;
372         int ret;
373
374         /* The xhci platform device has set up IRQs through usb_add_hcd. */
375         if (xhci->quirks & XHCI_PLAT)
376                 return 0;
377
378         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379         /*
380          * Some Fresco Logic host controllers advertise MSI, but fail to
381          * generate interrupts.  Don't even try to enable MSI.
382          */
383         if (xhci->quirks & XHCI_BROKEN_MSI)
384                 goto legacy_irq;
385
386         /* unregister the legacy interrupt */
387         if (hcd->irq)
388                 free_irq(hcd->irq, hcd);
389         hcd->irq = 0;
390
391         ret = xhci_setup_msix(xhci);
392         if (ret)
393                 /* fall back to msi*/
394                 ret = xhci_setup_msi(xhci);
395
396         if (!ret)
397                 /* hcd->irq is 0, we have MSI */
398                 return 0;
399
400         if (!pdev->irq) {
401                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402                 return -EINVAL;
403         }
404
405  legacy_irq:
406         if (!strlen(hcd->irq_descr))
407                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408                          hcd->driver->description, hcd->self.busnum);
409
410         /* fall back to legacy interrupt*/
411         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412                         hcd->irq_descr, hcd);
413         if (ret) {
414                 xhci_err(xhci, "request interrupt %d failed\n",
415                                 pdev->irq);
416                 return ret;
417         }
418         hcd->irq = pdev->irq;
419         return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426         return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441         struct xhci_hcd *xhci;
442         struct usb_hcd *hcd;
443         u32 temp;
444         int i;
445
446         xhci = (struct xhci_hcd *)arg;
447
448         for (i = 0; i < xhci->num_usb3_ports; i++) {
449                 temp = readl(xhci->usb3_ports[i]);
450                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451                         /*
452                          * Compliance Mode Detected. Letting USB Core
453                          * handle the Warm Reset
454                          */
455                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456                                         "Compliance mode detected->port %d",
457                                         i + 1);
458                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459                                         "Attempting compliance mode recovery");
460                         hcd = xhci->shared_hcd;
461
462                         if (hcd->state == HC_STATE_SUSPENDED)
463                                 usb_hcd_resume_root_hub(hcd);
464
465                         usb_hcd_poll_rh_status(hcd);
466                 }
467         }
468
469         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470                 mod_timer(&xhci->comp_mode_recovery_timer,
471                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486         xhci->port_status_u0 = 0;
487         setup_timer(&xhci->comp_mode_recovery_timer,
488                     compliance_mode_recovery, (unsigned long)xhci);
489         xhci->comp_mode_recovery_timer.expires = jiffies +
490                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492         set_timer_slack(&xhci->comp_mode_recovery_timer,
493                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494         add_timer(&xhci->comp_mode_recovery_timer);
495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                         "Compliance mode recovery timer initialized");
497 }
498
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507         const char *dmi_product_name, *dmi_sys_vendor;
508
509         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511         if (!dmi_product_name || !dmi_sys_vendor)
512                 return false;
513
514         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515                 return false;
516
517         if (strstr(dmi_product_name, "Z420") ||
518                         strstr(dmi_product_name, "Z620") ||
519                         strstr(dmi_product_name, "Z820") ||
520                         strstr(dmi_product_name, "Z1 Workstation"))
521                 return true;
522
523         return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542         int retval = 0;
543
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545         spin_lock_init(&xhci->lock);
546         if (xhci->hci_version == 0x95 && link_quirk) {
547                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548                                 "QUIRK: Not clearing Link TRB chain bits.");
549                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550         } else {
551                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552                                 "xHCI doesn't need link TRB QUIRK");
553         }
554         retval = xhci_mem_init(xhci, GFP_KERNEL);
555         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557         /* Initializing Compliance Mode Recovery Data If Needed */
558         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560                 compliance_mode_recovery_timer_init(xhci);
561         }
562
563         return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571         if (xhci_start(xhci)) {
572                 xhci_halt(xhci);
573                 return -ENODEV;
574         }
575         xhci->shared_hcd->state = HC_STATE_RUNNING;
576         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578         if (xhci->quirks & XHCI_NEC_HOST)
579                 xhci_ring_cmd_db(xhci);
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582                         "Finished xhci_run for USB3 roothub");
583         return 0;
584 }
585
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         u64 temp_64;
602         int ret;
603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605         /* Start the xHCI host controller running only after the USB 2.0 roothub
606          * is setup.
607          */
608
609         hcd->uses_new_polling = 1;
610         if (!usb_hcd_is_primary_hcd(hcd))
611                 return xhci_run_finished(xhci);
612
613         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615         ret = xhci_try_enable_msi(hcd);
616         if (ret)
617                 return ret;
618
619         xhci_dbg(xhci, "Command ring memory map follows:\n");
620         xhci_debug_ring(xhci, xhci->cmd_ring);
621         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622         xhci_dbg_cmd_ptrs(xhci);
623
624         xhci_dbg(xhci, "ERST memory map follows:\n");
625         xhci_dbg_erst(xhci, &xhci->erst);
626         xhci_dbg(xhci, "Event ring:\n");
627         xhci_debug_ring(xhci, xhci->event_ring);
628         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630         temp_64 &= ~ERST_PTR_MASK;
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Set the interrupt modulation register");
636         temp = readl(&xhci->ir_set->irq_control);
637         temp &= ~ER_IRQ_INTERVAL_MASK;
638         /*
639          * the increment interval is 8 times as much as that defined
640          * in xHCI spec on MTK's controller
641          */
642         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
643         writel(temp, &xhci->ir_set->irq_control);
644
645         /* Set the HCD state before we enable the irqs */
646         temp = readl(&xhci->op_regs->command);
647         temp |= (CMD_EIE);
648         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649                         "// Enable interrupts, cmd = 0x%x.", temp);
650         writel(temp, &xhci->op_regs->command);
651
652         temp = readl(&xhci->ir_set->irq_pending);
653         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
655                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
656         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
657         xhci_print_ir_set(xhci, 0);
658
659         if (xhci->quirks & XHCI_NEC_HOST) {
660                 struct xhci_command *command;
661                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
662                 if (!command)
663                         return -ENOMEM;
664                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
665                                 TRB_TYPE(TRB_NEC_GET_FW));
666         }
667         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668                         "Finished xhci_run for USB2 roothub");
669         return 0;
670 }
671 EXPORT_SYMBOL_GPL(xhci_run);
672
673 /*
674  * Stop xHCI driver.
675  *
676  * This function is called by the USB core when the HC driver is removed.
677  * Its opposite is xhci_run().
678  *
679  * Disable device contexts, disable IRQs, and quiesce the HC.
680  * Reset the HC, finish any completed transactions, and cleanup memory.
681  */
682 void xhci_stop(struct usb_hcd *hcd)
683 {
684         u32 temp;
685         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686
687         if (xhci->xhc_state & XHCI_STATE_HALTED)
688                 return;
689
690         mutex_lock(&xhci->mutex);
691         spin_lock_irq(&xhci->lock);
692         xhci->xhc_state |= XHCI_STATE_HALTED;
693         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
694
695         /* Make sure the xHC is halted for a USB3 roothub
696          * (xhci_stop() could be called as part of failed init).
697          */
698         xhci_halt(xhci);
699         xhci_reset(xhci);
700         spin_unlock_irq(&xhci->lock);
701
702         xhci_cleanup_msix(xhci);
703
704         /* Deleting Compliance Mode Recovery Timer */
705         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706                         (!(xhci_all_ports_seen_u0(xhci)))) {
707                 del_timer_sync(&xhci->comp_mode_recovery_timer);
708                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709                                 "%s: compliance mode recovery timer deleted",
710                                 __func__);
711         }
712
713         if (xhci->quirks & XHCI_AMD_PLL_FIX)
714                 usb_amd_dev_put();
715
716         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717                         "// Disabling event ring interrupts");
718         temp = readl(&xhci->op_regs->status);
719         writel(temp & ~STS_EINT, &xhci->op_regs->status);
720         temp = readl(&xhci->ir_set->irq_pending);
721         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722         xhci_print_ir_set(xhci, 0);
723
724         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725         xhci_mem_cleanup(xhci);
726         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727                         "xhci_stop completed - status = %x",
728                         readl(&xhci->op_regs->status));
729         mutex_unlock(&xhci->mutex);
730 }
731
732 /*
733  * Shutdown HC (not bus-specific)
734  *
735  * This is called when the machine is rebooting or halting.  We assume that the
736  * machine will be powered off, and the HC's internal state will be reset.
737  * Don't bother to free memory.
738  *
739  * This will only ever be called with the main usb_hcd (the USB3 roothub).
740  */
741 void xhci_shutdown(struct usb_hcd *hcd)
742 {
743         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
744
745         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
746                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
747
748         spin_lock_irq(&xhci->lock);
749         xhci_halt(xhci);
750         /* Workaround for spurious wakeups at shutdown with HSW */
751         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
752                 xhci_reset(xhci);
753         spin_unlock_irq(&xhci->lock);
754
755         xhci_cleanup_msix(xhci);
756
757         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758                         "xhci_shutdown completed - status = %x",
759                         readl(&xhci->op_regs->status));
760
761         /* Yet another workaround for spurious wakeups at shutdown with HSW */
762         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
763                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
764 }
765
766 #ifdef CONFIG_PM
767 static void xhci_save_registers(struct xhci_hcd *xhci)
768 {
769         xhci->s3.command = readl(&xhci->op_regs->command);
770         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
771         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
772         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
773         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
774         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
775         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
776         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
777         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
778 }
779
780 static void xhci_restore_registers(struct xhci_hcd *xhci)
781 {
782         writel(xhci->s3.command, &xhci->op_regs->command);
783         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
784         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
785         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
786         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
787         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
788         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
789         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
790         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
791 }
792
793 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
794 {
795         u64     val_64;
796
797         /* step 2: initialize command ring buffer */
798         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
799         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
800                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
801                                       xhci->cmd_ring->dequeue) &
802                  (u64) ~CMD_RING_RSVD_BITS) |
803                 xhci->cmd_ring->cycle_state;
804         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
805                         "// Setting command ring address to 0x%llx",
806                         (long unsigned long) val_64);
807         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
808 }
809
810 /*
811  * The whole command ring must be cleared to zero when we suspend the host.
812  *
813  * The host doesn't save the command ring pointer in the suspend well, so we
814  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
815  * aligned, because of the reserved bits in the command ring dequeue pointer
816  * register.  Therefore, we can't just set the dequeue pointer back in the
817  * middle of the ring (TRBs are 16-byte aligned).
818  */
819 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
820 {
821         struct xhci_ring *ring;
822         struct xhci_segment *seg;
823
824         ring = xhci->cmd_ring;
825         seg = ring->deq_seg;
826         do {
827                 memset(seg->trbs, 0,
828                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
829                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
830                         cpu_to_le32(~TRB_CYCLE);
831                 seg = seg->next;
832         } while (seg != ring->deq_seg);
833
834         /* Reset the software enqueue and dequeue pointers */
835         ring->deq_seg = ring->first_seg;
836         ring->dequeue = ring->first_seg->trbs;
837         ring->enq_seg = ring->deq_seg;
838         ring->enqueue = ring->dequeue;
839
840         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
841         /*
842          * Ring is now zeroed, so the HW should look for change of ownership
843          * when the cycle bit is set to 1.
844          */
845         ring->cycle_state = 1;
846
847         /*
848          * Reset the hardware dequeue pointer.
849          * Yes, this will need to be re-written after resume, but we're paranoid
850          * and want to make sure the hardware doesn't access bogus memory
851          * because, say, the BIOS or an SMI started the host without changing
852          * the command ring pointers.
853          */
854         xhci_set_cmd_ring_deq(xhci);
855 }
856
857 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
858 {
859         int port_index;
860         __le32 __iomem **port_array;
861         unsigned long flags;
862         u32 t1, t2;
863
864         spin_lock_irqsave(&xhci->lock, flags);
865
866         /* disble usb3 ports Wake bits*/
867         port_index = xhci->num_usb3_ports;
868         port_array = xhci->usb3_ports;
869         while (port_index--) {
870                 t1 = readl(port_array[port_index]);
871                 t1 = xhci_port_state_to_neutral(t1);
872                 t2 = t1 & ~PORT_WAKE_BITS;
873                 if (t1 != t2)
874                         writel(t2, port_array[port_index]);
875         }
876
877         /* disble usb2 ports Wake bits*/
878         port_index = xhci->num_usb2_ports;
879         port_array = xhci->usb2_ports;
880         while (port_index--) {
881                 t1 = readl(port_array[port_index]);
882                 t1 = xhci_port_state_to_neutral(t1);
883                 t2 = t1 & ~PORT_WAKE_BITS;
884                 if (t1 != t2)
885                         writel(t2, port_array[port_index]);
886         }
887
888         spin_unlock_irqrestore(&xhci->lock, flags);
889 }
890
891 /*
892  * Stop HC (not bus-specific)
893  *
894  * This is called when the machine transition into S3/S4 mode.
895  *
896  */
897 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
898 {
899         int                     rc = 0;
900         unsigned int            delay = XHCI_MAX_HALT_USEC;
901         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
902         u32                     command;
903
904         if (!hcd->state)
905                 return 0;
906
907         if (hcd->state != HC_STATE_SUSPENDED ||
908                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
909                 return -EINVAL;
910
911         /* Clear root port wake on bits if wakeup not allowed. */
912         if (!do_wakeup)
913                 xhci_disable_port_wake_on_bits(xhci);
914
915         /* Don't poll the roothubs on bus suspend. */
916         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
917         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918         del_timer_sync(&hcd->rh_timer);
919         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
920         del_timer_sync(&xhci->shared_hcd->rh_timer);
921
922         spin_lock_irq(&xhci->lock);
923         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
924         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
925         /* step 1: stop endpoint */
926         /* skipped assuming that port suspend has done */
927
928         /* step 2: clear Run/Stop bit */
929         command = readl(&xhci->op_regs->command);
930         command &= ~CMD_RUN;
931         writel(command, &xhci->op_regs->command);
932
933         /* Some chips from Fresco Logic need an extraordinary delay */
934         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
935
936         if (xhci_handshake(&xhci->op_regs->status,
937                       STS_HALT, STS_HALT, delay)) {
938                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
939                 spin_unlock_irq(&xhci->lock);
940                 return -ETIMEDOUT;
941         }
942         xhci_clear_command_ring(xhci);
943
944         /* step 3: save registers */
945         xhci_save_registers(xhci);
946
947         /* step 4: set CSS flag */
948         command = readl(&xhci->op_regs->command);
949         command |= CMD_CSS;
950         writel(command, &xhci->op_regs->command);
951         if (xhci_handshake(&xhci->op_regs->status,
952                                 STS_SAVE, 0, 10 * 1000)) {
953                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
954                 spin_unlock_irq(&xhci->lock);
955                 return -ETIMEDOUT;
956         }
957         spin_unlock_irq(&xhci->lock);
958
959         /*
960          * Deleting Compliance Mode Recovery Timer because the xHCI Host
961          * is about to be suspended.
962          */
963         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
964                         (!(xhci_all_ports_seen_u0(xhci)))) {
965                 del_timer_sync(&xhci->comp_mode_recovery_timer);
966                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
967                                 "%s: compliance mode recovery timer deleted",
968                                 __func__);
969         }
970
971         /* step 5: remove core well power */
972         /* synchronize irq when using MSI-X */
973         xhci_msix_sync_irqs(xhci);
974
975         return rc;
976 }
977 EXPORT_SYMBOL_GPL(xhci_suspend);
978
979 /*
980  * start xHC (not bus-specific)
981  *
982  * This is called when the machine transition from S3/S4 mode.
983  *
984  */
985 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
986 {
987         u32                     command, temp = 0, status;
988         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
989         struct usb_hcd          *secondary_hcd;
990         int                     retval = 0;
991         bool                    comp_timer_running = false;
992
993         if (!hcd->state)
994                 return 0;
995
996         /* Wait a bit if either of the roothubs need to settle from the
997          * transition into bus suspend.
998          */
999         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1000                         time_before(jiffies,
1001                                 xhci->bus_state[1].next_statechange))
1002                 msleep(100);
1003
1004         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1005         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1006
1007         spin_lock_irq(&xhci->lock);
1008         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1009                 hibernated = true;
1010
1011         if (!hibernated) {
1012                 /* step 1: restore register */
1013                 xhci_restore_registers(xhci);
1014                 /* step 2: initialize command ring buffer */
1015                 xhci_set_cmd_ring_deq(xhci);
1016                 /* step 3: restore state and start state*/
1017                 /* step 3: set CRS flag */
1018                 command = readl(&xhci->op_regs->command);
1019                 command |= CMD_CRS;
1020                 writel(command, &xhci->op_regs->command);
1021                 if (xhci_handshake(&xhci->op_regs->status,
1022                               STS_RESTORE, 0, 10 * 1000)) {
1023                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024                         spin_unlock_irq(&xhci->lock);
1025                         return -ETIMEDOUT;
1026                 }
1027                 temp = readl(&xhci->op_regs->status);
1028         }
1029
1030         /* If restore operation fails, re-initialize the HC during resume */
1031         if ((temp & STS_SRE) || hibernated) {
1032
1033                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1034                                 !(xhci_all_ports_seen_u0(xhci))) {
1035                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1036                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1037                                 "Compliance Mode Recovery Timer deleted!");
1038                 }
1039
1040                 /* Let the USB core know _both_ roothubs lost power. */
1041                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1042                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1043
1044                 xhci_dbg(xhci, "Stop HCD\n");
1045                 xhci_halt(xhci);
1046                 xhci_reset(xhci);
1047                 spin_unlock_irq(&xhci->lock);
1048                 xhci_cleanup_msix(xhci);
1049
1050                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1051                 temp = readl(&xhci->op_regs->status);
1052                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1053                 temp = readl(&xhci->ir_set->irq_pending);
1054                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1055                 xhci_print_ir_set(xhci, 0);
1056
1057                 xhci_dbg(xhci, "cleaning up memory\n");
1058                 xhci_mem_cleanup(xhci);
1059                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1060                             readl(&xhci->op_regs->status));
1061
1062                 /* USB core calls the PCI reinit and start functions twice:
1063                  * first with the primary HCD, and then with the secondary HCD.
1064                  * If we don't do the same, the host will never be started.
1065                  */
1066                 if (!usb_hcd_is_primary_hcd(hcd))
1067                         secondary_hcd = hcd;
1068                 else
1069                         secondary_hcd = xhci->shared_hcd;
1070
1071                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1072                 retval = xhci_init(hcd->primary_hcd);
1073                 if (retval)
1074                         return retval;
1075                 comp_timer_running = true;
1076
1077                 xhci_dbg(xhci, "Start the primary HCD\n");
1078                 retval = xhci_run(hcd->primary_hcd);
1079                 if (!retval) {
1080                         xhci_dbg(xhci, "Start the secondary HCD\n");
1081                         retval = xhci_run(secondary_hcd);
1082                 }
1083                 hcd->state = HC_STATE_SUSPENDED;
1084                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1085                 goto done;
1086         }
1087
1088         /* step 4: set Run/Stop bit */
1089         command = readl(&xhci->op_regs->command);
1090         command |= CMD_RUN;
1091         writel(command, &xhci->op_regs->command);
1092         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1093                   0, 250 * 1000);
1094
1095         /* step 5: walk topology and initialize portsc,
1096          * portpmsc and portli
1097          */
1098         /* this is done in bus_resume */
1099
1100         /* step 6: restart each of the previously
1101          * Running endpoints by ringing their doorbells
1102          */
1103
1104         spin_unlock_irq(&xhci->lock);
1105
1106  done:
1107         if (retval == 0) {
1108                 /* Resume root hubs only when have pending events. */
1109                 status = readl(&xhci->op_regs->status);
1110                 if (status & STS_EINT) {
1111                         usb_hcd_resume_root_hub(hcd);
1112                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1113                 }
1114         }
1115
1116         /*
1117          * If system is subject to the Quirk, Compliance Mode Timer needs to
1118          * be re-initialized Always after a system resume. Ports are subject
1119          * to suffer the Compliance Mode issue again. It doesn't matter if
1120          * ports have entered previously to U0 before system's suspension.
1121          */
1122         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1123                 compliance_mode_recovery_timer_init(xhci);
1124
1125         /* Re-enable port polling. */
1126         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1127         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1128         usb_hcd_poll_rh_status(hcd);
1129         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1130         usb_hcd_poll_rh_status(xhci->shared_hcd);
1131
1132         return retval;
1133 }
1134 EXPORT_SYMBOL_GPL(xhci_resume);
1135 #endif  /* CONFIG_PM */
1136
1137 /*-------------------------------------------------------------------------*/
1138
1139 /**
1140  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1141  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1142  * value to right shift 1 for the bitmask.
1143  *
1144  * Index  = (epnum * 2) + direction - 1,
1145  * where direction = 0 for OUT, 1 for IN.
1146  * For control endpoints, the IN index is used (OUT index is unused), so
1147  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1148  */
1149 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1150 {
1151         unsigned int index;
1152         if (usb_endpoint_xfer_control(desc))
1153                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1154         else
1155                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1156                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1157         return index;
1158 }
1159
1160 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1161  * address from the XHCI endpoint index.
1162  */
1163 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1164 {
1165         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1166         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1167         return direction | number;
1168 }
1169
1170 /* Find the flag for this endpoint (for use in the control context).  Use the
1171  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1172  * bit 1, etc.
1173  */
1174 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1175 {
1176         return 1 << (xhci_get_endpoint_index(desc) + 1);
1177 }
1178
1179 /* Find the flag for this endpoint (for use in the control context).  Use the
1180  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1181  * bit 1, etc.
1182  */
1183 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1184 {
1185         return 1 << (ep_index + 1);
1186 }
1187
1188 /* Compute the last valid endpoint context index.  Basically, this is the
1189  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1190  * we find the most significant bit set in the added contexts flags.
1191  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1192  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1193  */
1194 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1195 {
1196         return fls(added_ctxs) - 1;
1197 }
1198
1199 /* Returns 1 if the arguments are OK;
1200  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1201  */
1202 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1203                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1204                 const char *func) {
1205         struct xhci_hcd *xhci;
1206         struct xhci_virt_device *virt_dev;
1207
1208         if (!hcd || (check_ep && !ep) || !udev) {
1209                 pr_debug("xHCI %s called with invalid args\n", func);
1210                 return -EINVAL;
1211         }
1212         if (!udev->parent) {
1213                 pr_debug("xHCI %s called for root hub\n", func);
1214                 return 0;
1215         }
1216
1217         xhci = hcd_to_xhci(hcd);
1218         if (check_virt_dev) {
1219                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1220                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1221                                         func);
1222                         return -EINVAL;
1223                 }
1224
1225                 virt_dev = xhci->devs[udev->slot_id];
1226                 if (virt_dev->udev != udev) {
1227                         xhci_dbg(xhci, "xHCI %s called with udev and "
1228                                           "virt_dev does not match\n", func);
1229                         return -EINVAL;
1230                 }
1231         }
1232
1233         if (xhci->xhc_state & XHCI_STATE_HALTED)
1234                 return -ENODEV;
1235
1236         return 1;
1237 }
1238
1239 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1240                 struct usb_device *udev, struct xhci_command *command,
1241                 bool ctx_change, bool must_succeed);
1242
1243 /*
1244  * Full speed devices may have a max packet size greater than 8 bytes, but the
1245  * USB core doesn't know that until it reads the first 8 bytes of the
1246  * descriptor.  If the usb_device's max packet size changes after that point,
1247  * we need to issue an evaluate context command and wait on it.
1248  */
1249 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1250                 unsigned int ep_index, struct urb *urb)
1251 {
1252         struct xhci_container_ctx *out_ctx;
1253         struct xhci_input_control_ctx *ctrl_ctx;
1254         struct xhci_ep_ctx *ep_ctx;
1255         struct xhci_command *command;
1256         int max_packet_size;
1257         int hw_max_packet_size;
1258         int ret = 0;
1259
1260         out_ctx = xhci->devs[slot_id]->out_ctx;
1261         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1262         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1263         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1264         if (hw_max_packet_size != max_packet_size) {
1265                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1266                                 "Max Packet Size for ep 0 changed.");
1267                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1268                                 "Max packet size in usb_device = %d",
1269                                 max_packet_size);
1270                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271                                 "Max packet size in xHCI HW = %d",
1272                                 hw_max_packet_size);
1273                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1274                                 "Issuing evaluate context command.");
1275
1276                 /* Set up the input context flags for the command */
1277                 /* FIXME: This won't work if a non-default control endpoint
1278                  * changes max packet sizes.
1279                  */
1280
1281                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1282                 if (!command)
1283                         return -ENOMEM;
1284
1285                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1286                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1287                 if (!ctrl_ctx) {
1288                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1289                                         __func__);
1290                         ret = -ENOMEM;
1291                         goto command_cleanup;
1292                 }
1293                 /* Set up the modified control endpoint 0 */
1294                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1295                                 xhci->devs[slot_id]->out_ctx, ep_index);
1296
1297                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1298                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1299                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1300
1301                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1302                 ctrl_ctx->drop_flags = 0;
1303
1304                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1305                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1306                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1307                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1308
1309                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1310                                 true, false);
1311
1312                 /* Clean up the input context for later use by bandwidth
1313                  * functions.
1314                  */
1315                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1316 command_cleanup:
1317                 kfree(command->completion);
1318                 kfree(command);
1319         }
1320         return ret;
1321 }
1322
1323 /*
1324  * non-error returns are a promise to giveback() the urb later
1325  * we drop ownership so next owner (or urb unlink) can get it
1326  */
1327 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1328 {
1329         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1330         struct xhci_td *buffer;
1331         unsigned long flags;
1332         int ret = 0;
1333         unsigned int slot_id, ep_index;
1334         struct urb_priv *urb_priv;
1335         int size, i;
1336
1337         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1338                                         true, true, __func__) <= 0)
1339                 return -EINVAL;
1340
1341         slot_id = urb->dev->slot_id;
1342         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1343
1344         if (!HCD_HW_ACCESSIBLE(hcd)) {
1345                 if (!in_interrupt())
1346                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1347                 ret = -ESHUTDOWN;
1348                 goto exit;
1349         }
1350
1351         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1352                 size = urb->number_of_packets;
1353         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1354             urb->transfer_buffer_length > 0 &&
1355             urb->transfer_flags & URB_ZERO_PACKET &&
1356             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1357                 size = 2;
1358         else
1359                 size = 1;
1360
1361         urb_priv = kzalloc(sizeof(struct urb_priv) +
1362                                   size * sizeof(struct xhci_td *), mem_flags);
1363         if (!urb_priv)
1364                 return -ENOMEM;
1365
1366         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1367         if (!buffer) {
1368                 kfree(urb_priv);
1369                 return -ENOMEM;
1370         }
1371
1372         for (i = 0; i < size; i++) {
1373                 urb_priv->td[i] = buffer;
1374                 buffer++;
1375         }
1376
1377         urb_priv->length = size;
1378         urb_priv->td_cnt = 0;
1379         urb->hcpriv = urb_priv;
1380
1381         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1382                 /* Check to see if the max packet size for the default control
1383                  * endpoint changed during FS device enumeration
1384                  */
1385                 if (urb->dev->speed == USB_SPEED_FULL) {
1386                         ret = xhci_check_maxpacket(xhci, slot_id,
1387                                         ep_index, urb);
1388                         if (ret < 0) {
1389                                 xhci_urb_free_priv(urb_priv);
1390                                 urb->hcpriv = NULL;
1391                                 return ret;
1392                         }
1393                 }
1394
1395                 /* We have a spinlock and interrupts disabled, so we must pass
1396                  * atomic context to this function, which may allocate memory.
1397                  */
1398                 spin_lock_irqsave(&xhci->lock, flags);
1399                 if (xhci->xhc_state & XHCI_STATE_DYING)
1400                         goto dying;
1401                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1402                                 slot_id, ep_index);
1403                 if (ret)
1404                         goto free_priv;
1405                 spin_unlock_irqrestore(&xhci->lock, flags);
1406         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1407                 spin_lock_irqsave(&xhci->lock, flags);
1408                 if (xhci->xhc_state & XHCI_STATE_DYING)
1409                         goto dying;
1410                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411                                 EP_GETTING_STREAMS) {
1412                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413                                         "is transitioning to using streams.\n");
1414                         ret = -EINVAL;
1415                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416                                 EP_GETTING_NO_STREAMS) {
1417                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418                                         "is transitioning to "
1419                                         "not having streams.\n");
1420                         ret = -EINVAL;
1421                 } else {
1422                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1423                                         slot_id, ep_index);
1424                 }
1425                 if (ret)
1426                         goto free_priv;
1427                 spin_unlock_irqrestore(&xhci->lock, flags);
1428         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1429                 spin_lock_irqsave(&xhci->lock, flags);
1430                 if (xhci->xhc_state & XHCI_STATE_DYING)
1431                         goto dying;
1432                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1433                                 slot_id, ep_index);
1434                 if (ret)
1435                         goto free_priv;
1436                 spin_unlock_irqrestore(&xhci->lock, flags);
1437         } else {
1438                 spin_lock_irqsave(&xhci->lock, flags);
1439                 if (xhci->xhc_state & XHCI_STATE_DYING)
1440                         goto dying;
1441                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1442                                 slot_id, ep_index);
1443                 if (ret)
1444                         goto free_priv;
1445                 spin_unlock_irqrestore(&xhci->lock, flags);
1446         }
1447 exit:
1448         return ret;
1449 dying:
1450         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1451                         "non-responsive xHCI host.\n",
1452                         urb->ep->desc.bEndpointAddress, urb);
1453         ret = -ESHUTDOWN;
1454 free_priv:
1455         xhci_urb_free_priv(urb_priv);
1456         urb->hcpriv = NULL;
1457         spin_unlock_irqrestore(&xhci->lock, flags);
1458         return ret;
1459 }
1460
1461 /* Get the right ring for the given URB.
1462  * If the endpoint supports streams, boundary check the URB's stream ID.
1463  * If the endpoint doesn't support streams, return the singular endpoint ring.
1464  */
1465 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1466                 struct urb *urb)
1467 {
1468         unsigned int slot_id;
1469         unsigned int ep_index;
1470         unsigned int stream_id;
1471         struct xhci_virt_ep *ep;
1472
1473         slot_id = urb->dev->slot_id;
1474         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1475         stream_id = urb->stream_id;
1476         ep = &xhci->devs[slot_id]->eps[ep_index];
1477         /* Common case: no streams */
1478         if (!(ep->ep_state & EP_HAS_STREAMS))
1479                 return ep->ring;
1480
1481         if (stream_id == 0) {
1482                 xhci_warn(xhci,
1483                                 "WARN: Slot ID %u, ep index %u has streams, "
1484                                 "but URB has no stream ID.\n",
1485                                 slot_id, ep_index);
1486                 return NULL;
1487         }
1488
1489         if (stream_id < ep->stream_info->num_streams)
1490                 return ep->stream_info->stream_rings[stream_id];
1491
1492         xhci_warn(xhci,
1493                         "WARN: Slot ID %u, ep index %u has "
1494                         "stream IDs 1 to %u allocated, "
1495                         "but stream ID %u is requested.\n",
1496                         slot_id, ep_index,
1497                         ep->stream_info->num_streams - 1,
1498                         stream_id);
1499         return NULL;
1500 }
1501
1502 /*
1503  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1504  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1505  * should pick up where it left off in the TD, unless a Set Transfer Ring
1506  * Dequeue Pointer is issued.
1507  *
1508  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1509  * the ring.  Since the ring is a contiguous structure, they can't be physically
1510  * removed.  Instead, there are two options:
1511  *
1512  *  1) If the HC is in the middle of processing the URB to be canceled, we
1513  *     simply move the ring's dequeue pointer past those TRBs using the Set
1514  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1515  *     when drivers timeout on the last submitted URB and attempt to cancel.
1516  *
1517  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1518  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1519  *     HC will need to invalidate the any TRBs it has cached after the stop
1520  *     endpoint command, as noted in the xHCI 0.95 errata.
1521  *
1522  *  3) The TD may have completed by the time the Stop Endpoint Command
1523  *     completes, so software needs to handle that case too.
1524  *
1525  * This function should protect against the TD enqueueing code ringing the
1526  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1527  * It also needs to account for multiple cancellations on happening at the same
1528  * time for the same endpoint.
1529  *
1530  * Note that this function can be called in any context, or so says
1531  * usb_hcd_unlink_urb()
1532  */
1533 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1534 {
1535         unsigned long flags;
1536         int ret, i;
1537         u32 temp;
1538         struct xhci_hcd *xhci;
1539         struct urb_priv *urb_priv;
1540         struct xhci_td *td;
1541         unsigned int ep_index;
1542         struct xhci_ring *ep_ring;
1543         struct xhci_virt_ep *ep;
1544         struct xhci_command *command;
1545
1546         xhci = hcd_to_xhci(hcd);
1547         spin_lock_irqsave(&xhci->lock, flags);
1548         /* Make sure the URB hasn't completed or been unlinked already */
1549         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1550         if (ret || !urb->hcpriv)
1551                 goto done;
1552         temp = readl(&xhci->op_regs->status);
1553         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1554                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1555                                 "HW died, freeing TD.");
1556                 urb_priv = urb->hcpriv;
1557                 for (i = urb_priv->td_cnt;
1558                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1559                      i++) {
1560                         td = urb_priv->td[i];
1561                         if (!list_empty(&td->td_list))
1562                                 list_del_init(&td->td_list);
1563                         if (!list_empty(&td->cancelled_td_list))
1564                                 list_del_init(&td->cancelled_td_list);
1565                 }
1566
1567                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1568                 spin_unlock_irqrestore(&xhci->lock, flags);
1569                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1570                 xhci_urb_free_priv(urb_priv);
1571                 return ret;
1572         }
1573         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1574                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1575                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1576                                 "Ep 0x%x: URB %p to be canceled on "
1577                                 "non-responsive xHCI host.",
1578                                 urb->ep->desc.bEndpointAddress, urb);
1579                 /* Let the stop endpoint command watchdog timer (which set this
1580                  * state) finish cleaning up the endpoint TD lists.  We must
1581                  * have caught it in the middle of dropping a lock and giving
1582                  * back an URB.
1583                  */
1584                 goto done;
1585         }
1586
1587         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1588         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1589         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1590         if (!ep_ring) {
1591                 ret = -EINVAL;
1592                 goto done;
1593         }
1594
1595         urb_priv = urb->hcpriv;
1596         i = urb_priv->td_cnt;
1597         if (i < urb_priv->length)
1598                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1599                                 "Cancel URB %p, dev %s, ep 0x%x, "
1600                                 "starting at offset 0x%llx",
1601                                 urb, urb->dev->devpath,
1602                                 urb->ep->desc.bEndpointAddress,
1603                                 (unsigned long long) xhci_trb_virt_to_dma(
1604                                         urb_priv->td[i]->start_seg,
1605                                         urb_priv->td[i]->first_trb));
1606
1607         for (; i < urb_priv->length; i++) {
1608                 td = urb_priv->td[i];
1609                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1610         }
1611
1612         /* Queue a stop endpoint command, but only if this is
1613          * the first cancellation to be handled.
1614          */
1615         if (!(ep->ep_state & EP_HALT_PENDING)) {
1616                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1617                 if (!command) {
1618                         ret = -ENOMEM;
1619                         goto done;
1620                 }
1621                 ep->ep_state |= EP_HALT_PENDING;
1622                 ep->stop_cmds_pending++;
1623                 ep->stop_cmd_timer.expires = jiffies +
1624                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1625                 add_timer(&ep->stop_cmd_timer);
1626                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1627                                          ep_index, 0);
1628                 xhci_ring_cmd_db(xhci);
1629         }
1630 done:
1631         spin_unlock_irqrestore(&xhci->lock, flags);
1632         return ret;
1633 }
1634
1635 /* Drop an endpoint from a new bandwidth configuration for this device.
1636  * Only one call to this function is allowed per endpoint before
1637  * check_bandwidth() or reset_bandwidth() must be called.
1638  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1639  * add the endpoint to the schedule with possibly new parameters denoted by a
1640  * different endpoint descriptor in usb_host_endpoint.
1641  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1642  * not allowed.
1643  *
1644  * The USB core will not allow URBs to be queued to an endpoint that is being
1645  * disabled, so there's no need for mutual exclusion to protect
1646  * the xhci->devs[slot_id] structure.
1647  */
1648 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1649                 struct usb_host_endpoint *ep)
1650 {
1651         struct xhci_hcd *xhci;
1652         struct xhci_container_ctx *in_ctx, *out_ctx;
1653         struct xhci_input_control_ctx *ctrl_ctx;
1654         unsigned int ep_index;
1655         struct xhci_ep_ctx *ep_ctx;
1656         u32 drop_flag;
1657         u32 new_add_flags, new_drop_flags;
1658         int ret;
1659
1660         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1661         if (ret <= 0)
1662                 return ret;
1663         xhci = hcd_to_xhci(hcd);
1664         if (xhci->xhc_state & XHCI_STATE_DYING)
1665                 return -ENODEV;
1666
1667         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1668         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1669         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1670                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1671                                 __func__, drop_flag);
1672                 return 0;
1673         }
1674
1675         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1676         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1677         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1678         if (!ctrl_ctx) {
1679                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1680                                 __func__);
1681                 return 0;
1682         }
1683
1684         ep_index = xhci_get_endpoint_index(&ep->desc);
1685         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1686         /* If the HC already knows the endpoint is disabled,
1687          * or the HCD has noted it is disabled, ignore this request
1688          */
1689         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1690              cpu_to_le32(EP_STATE_DISABLED)) ||
1691             le32_to_cpu(ctrl_ctx->drop_flags) &
1692             xhci_get_endpoint_flag(&ep->desc)) {
1693                 /* Do not warn when called after a usb_device_reset */
1694                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1695                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1696                                   __func__, ep);
1697                 return 0;
1698         }
1699
1700         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1701         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1702
1703         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1704         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1705
1706         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1707
1708         if (xhci->quirks & XHCI_MTK_HOST)
1709                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1710
1711         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1712                         (unsigned int) ep->desc.bEndpointAddress,
1713                         udev->slot_id,
1714                         (unsigned int) new_drop_flags,
1715                         (unsigned int) new_add_flags);
1716         return 0;
1717 }
1718
1719 /* Add an endpoint to a new possible bandwidth configuration for this device.
1720  * Only one call to this function is allowed per endpoint before
1721  * check_bandwidth() or reset_bandwidth() must be called.
1722  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1723  * add the endpoint to the schedule with possibly new parameters denoted by a
1724  * different endpoint descriptor in usb_host_endpoint.
1725  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1726  * not allowed.
1727  *
1728  * The USB core will not allow URBs to be queued to an endpoint until the
1729  * configuration or alt setting is installed in the device, so there's no need
1730  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1731  */
1732 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1733                 struct usb_host_endpoint *ep)
1734 {
1735         struct xhci_hcd *xhci;
1736         struct xhci_container_ctx *in_ctx;
1737         unsigned int ep_index;
1738         struct xhci_input_control_ctx *ctrl_ctx;
1739         u32 added_ctxs;
1740         u32 new_add_flags, new_drop_flags;
1741         struct xhci_virt_device *virt_dev;
1742         int ret = 0;
1743
1744         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1745         if (ret <= 0) {
1746                 /* So we won't queue a reset ep command for a root hub */
1747                 ep->hcpriv = NULL;
1748                 return ret;
1749         }
1750         xhci = hcd_to_xhci(hcd);
1751         if (xhci->xhc_state & XHCI_STATE_DYING)
1752                 return -ENODEV;
1753
1754         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1755         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1756                 /* FIXME when we have to issue an evaluate endpoint command to
1757                  * deal with ep0 max packet size changing once we get the
1758                  * descriptors
1759                  */
1760                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1761                                 __func__, added_ctxs);
1762                 return 0;
1763         }
1764
1765         virt_dev = xhci->devs[udev->slot_id];
1766         in_ctx = virt_dev->in_ctx;
1767         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1768         if (!ctrl_ctx) {
1769                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1770                                 __func__);
1771                 return 0;
1772         }
1773
1774         ep_index = xhci_get_endpoint_index(&ep->desc);
1775         /* If this endpoint is already in use, and the upper layers are trying
1776          * to add it again without dropping it, reject the addition.
1777          */
1778         if (virt_dev->eps[ep_index].ring &&
1779                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1780                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1781                                 "without dropping it.\n",
1782                                 (unsigned int) ep->desc.bEndpointAddress);
1783                 return -EINVAL;
1784         }
1785
1786         /* If the HCD has already noted the endpoint is enabled,
1787          * ignore this request.
1788          */
1789         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1790                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1791                                 __func__, ep);
1792                 return 0;
1793         }
1794
1795         /*
1796          * Configuration and alternate setting changes must be done in
1797          * process context, not interrupt context (or so documenation
1798          * for usb_set_interface() and usb_set_configuration() claim).
1799          */
1800         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1801                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1802                                 __func__, ep->desc.bEndpointAddress);
1803                 return -ENOMEM;
1804         }
1805
1806         if (xhci->quirks & XHCI_MTK_HOST) {
1807                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1808                 if (ret < 0) {
1809                         xhci_free_or_cache_endpoint_ring(xhci,
1810                                 virt_dev, ep_index);
1811                         return ret;
1812                 }
1813         }
1814
1815         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1816         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1817
1818         /* If xhci_endpoint_disable() was called for this endpoint, but the
1819          * xHC hasn't been notified yet through the check_bandwidth() call,
1820          * this re-adds a new state for the endpoint from the new endpoint
1821          * descriptors.  We must drop and re-add this endpoint, so we leave the
1822          * drop flags alone.
1823          */
1824         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1825
1826         /* Store the usb_device pointer for later use */
1827         ep->hcpriv = udev;
1828
1829         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1830                         (unsigned int) ep->desc.bEndpointAddress,
1831                         udev->slot_id,
1832                         (unsigned int) new_drop_flags,
1833                         (unsigned int) new_add_flags);
1834         return 0;
1835 }
1836
1837 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1838 {
1839         struct xhci_input_control_ctx *ctrl_ctx;
1840         struct xhci_ep_ctx *ep_ctx;
1841         struct xhci_slot_ctx *slot_ctx;
1842         int i;
1843
1844         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1845         if (!ctrl_ctx) {
1846                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1847                                 __func__);
1848                 return;
1849         }
1850
1851         /* When a device's add flag and drop flag are zero, any subsequent
1852          * configure endpoint command will leave that endpoint's state
1853          * untouched.  Make sure we don't leave any old state in the input
1854          * endpoint contexts.
1855          */
1856         ctrl_ctx->drop_flags = 0;
1857         ctrl_ctx->add_flags = 0;
1858         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1859         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1860         /* Endpoint 0 is always valid */
1861         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1862         for (i = 1; i < 31; ++i) {
1863                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1864                 ep_ctx->ep_info = 0;
1865                 ep_ctx->ep_info2 = 0;
1866                 ep_ctx->deq = 0;
1867                 ep_ctx->tx_info = 0;
1868         }
1869 }
1870
1871 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1872                 struct usb_device *udev, u32 *cmd_status)
1873 {
1874         int ret;
1875
1876         switch (*cmd_status) {
1877         case COMP_CMD_ABORT:
1878         case COMP_CMD_STOP:
1879                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1880                 ret = -ETIME;
1881                 break;
1882         case COMP_ENOMEM:
1883                 dev_warn(&udev->dev,
1884                          "Not enough host controller resources for new device state.\n");
1885                 ret = -ENOMEM;
1886                 /* FIXME: can we allocate more resources for the HC? */
1887                 break;
1888         case COMP_BW_ERR:
1889         case COMP_2ND_BW_ERR:
1890                 dev_warn(&udev->dev,
1891                          "Not enough bandwidth for new device state.\n");
1892                 ret = -ENOSPC;
1893                 /* FIXME: can we go back to the old state? */
1894                 break;
1895         case COMP_TRB_ERR:
1896                 /* the HCD set up something wrong */
1897                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1898                                 "add flag = 1, "
1899                                 "and endpoint is not disabled.\n");
1900                 ret = -EINVAL;
1901                 break;
1902         case COMP_DEV_ERR:
1903                 dev_warn(&udev->dev,
1904                          "ERROR: Incompatible device for endpoint configure command.\n");
1905                 ret = -ENODEV;
1906                 break;
1907         case COMP_SUCCESS:
1908                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1909                                 "Successful Endpoint Configure command");
1910                 ret = 0;
1911                 break;
1912         default:
1913                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1914                                 *cmd_status);
1915                 ret = -EINVAL;
1916                 break;
1917         }
1918         return ret;
1919 }
1920
1921 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1922                 struct usb_device *udev, u32 *cmd_status)
1923 {
1924         int ret;
1925         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1926
1927         switch (*cmd_status) {
1928         case COMP_CMD_ABORT:
1929         case COMP_CMD_STOP:
1930                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1931                 ret = -ETIME;
1932                 break;
1933         case COMP_EINVAL:
1934                 dev_warn(&udev->dev,
1935                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1936                 ret = -EINVAL;
1937                 break;
1938         case COMP_EBADSLT:
1939                 dev_warn(&udev->dev,
1940                         "WARN: slot not enabled for evaluate context command.\n");
1941                 ret = -EINVAL;
1942                 break;
1943         case COMP_CTX_STATE:
1944                 dev_warn(&udev->dev,
1945                         "WARN: invalid context state for evaluate context command.\n");
1946                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1947                 ret = -EINVAL;
1948                 break;
1949         case COMP_DEV_ERR:
1950                 dev_warn(&udev->dev,
1951                         "ERROR: Incompatible device for evaluate context command.\n");
1952                 ret = -ENODEV;
1953                 break;
1954         case COMP_MEL_ERR:
1955                 /* Max Exit Latency too large error */
1956                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1957                 ret = -EINVAL;
1958                 break;
1959         case COMP_SUCCESS:
1960                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1961                                 "Successful evaluate context command");
1962                 ret = 0;
1963                 break;
1964         default:
1965                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1966                         *cmd_status);
1967                 ret = -EINVAL;
1968                 break;
1969         }
1970         return ret;
1971 }
1972
1973 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1974                 struct xhci_input_control_ctx *ctrl_ctx)
1975 {
1976         u32 valid_add_flags;
1977         u32 valid_drop_flags;
1978
1979         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1980          * (bit 1).  The default control endpoint is added during the Address
1981          * Device command and is never removed until the slot is disabled.
1982          */
1983         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1984         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1985
1986         /* Use hweight32 to count the number of ones in the add flags, or
1987          * number of endpoints added.  Don't count endpoints that are changed
1988          * (both added and dropped).
1989          */
1990         return hweight32(valid_add_flags) -
1991                 hweight32(valid_add_flags & valid_drop_flags);
1992 }
1993
1994 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1995                 struct xhci_input_control_ctx *ctrl_ctx)
1996 {
1997         u32 valid_add_flags;
1998         u32 valid_drop_flags;
1999
2000         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2001         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2002
2003         return hweight32(valid_drop_flags) -
2004                 hweight32(valid_add_flags & valid_drop_flags);
2005 }
2006
2007 /*
2008  * We need to reserve the new number of endpoints before the configure endpoint
2009  * command completes.  We can't subtract the dropped endpoints from the number
2010  * of active endpoints until the command completes because we can oversubscribe
2011  * the host in this case:
2012  *
2013  *  - the first configure endpoint command drops more endpoints than it adds
2014  *  - a second configure endpoint command that adds more endpoints is queued
2015  *  - the first configure endpoint command fails, so the config is unchanged
2016  *  - the second command may succeed, even though there isn't enough resources
2017  *
2018  * Must be called with xhci->lock held.
2019  */
2020 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2021                 struct xhci_input_control_ctx *ctrl_ctx)
2022 {
2023         u32 added_eps;
2024
2025         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2026         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2027                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2028                                 "Not enough ep ctxs: "
2029                                 "%u active, need to add %u, limit is %u.",
2030                                 xhci->num_active_eps, added_eps,
2031                                 xhci->limit_active_eps);
2032                 return -ENOMEM;
2033         }
2034         xhci->num_active_eps += added_eps;
2035         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2036                         "Adding %u ep ctxs, %u now active.", added_eps,
2037                         xhci->num_active_eps);
2038         return 0;
2039 }
2040
2041 /*
2042  * The configure endpoint was failed by the xHC for some other reason, so we
2043  * need to revert the resources that failed configuration would have used.
2044  *
2045  * Must be called with xhci->lock held.
2046  */
2047 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2048                 struct xhci_input_control_ctx *ctrl_ctx)
2049 {
2050         u32 num_failed_eps;
2051
2052         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2053         xhci->num_active_eps -= num_failed_eps;
2054         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2055                         "Removing %u failed ep ctxs, %u now active.",
2056                         num_failed_eps,
2057                         xhci->num_active_eps);
2058 }
2059
2060 /*
2061  * Now that the command has completed, clean up the active endpoint count by
2062  * subtracting out the endpoints that were dropped (but not changed).
2063  *
2064  * Must be called with xhci->lock held.
2065  */
2066 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2067                 struct xhci_input_control_ctx *ctrl_ctx)
2068 {
2069         u32 num_dropped_eps;
2070
2071         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2072         xhci->num_active_eps -= num_dropped_eps;
2073         if (num_dropped_eps)
2074                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2075                                 "Removing %u dropped ep ctxs, %u now active.",
2076                                 num_dropped_eps,
2077                                 xhci->num_active_eps);
2078 }
2079
2080 static unsigned int xhci_get_block_size(struct usb_device *udev)
2081 {
2082         switch (udev->speed) {
2083         case USB_SPEED_LOW:
2084         case USB_SPEED_FULL:
2085                 return FS_BLOCK;
2086         case USB_SPEED_HIGH:
2087                 return HS_BLOCK;
2088         case USB_SPEED_SUPER:
2089         case USB_SPEED_SUPER_PLUS:
2090                 return SS_BLOCK;
2091         case USB_SPEED_UNKNOWN:
2092         case USB_SPEED_WIRELESS:
2093         default:
2094                 /* Should never happen */
2095                 return 1;
2096         }
2097 }
2098
2099 static unsigned int
2100 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2101 {
2102         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2103                 return LS_OVERHEAD;
2104         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2105                 return FS_OVERHEAD;
2106         return HS_OVERHEAD;
2107 }
2108
2109 /* If we are changing a LS/FS device under a HS hub,
2110  * make sure (if we are activating a new TT) that the HS bus has enough
2111  * bandwidth for this new TT.
2112  */
2113 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2114                 struct xhci_virt_device *virt_dev,
2115                 int old_active_eps)
2116 {
2117         struct xhci_interval_bw_table *bw_table;
2118         struct xhci_tt_bw_info *tt_info;
2119
2120         /* Find the bandwidth table for the root port this TT is attached to. */
2121         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2122         tt_info = virt_dev->tt_info;
2123         /* If this TT already had active endpoints, the bandwidth for this TT
2124          * has already been added.  Removing all periodic endpoints (and thus
2125          * making the TT enactive) will only decrease the bandwidth used.
2126          */
2127         if (old_active_eps)
2128                 return 0;
2129         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2130                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2131                         return -ENOMEM;
2132                 return 0;
2133         }
2134         /* Not sure why we would have no new active endpoints...
2135          *
2136          * Maybe because of an Evaluate Context change for a hub update or a
2137          * control endpoint 0 max packet size change?
2138          * FIXME: skip the bandwidth calculation in that case.
2139          */
2140         return 0;
2141 }
2142
2143 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2144                 struct xhci_virt_device *virt_dev)
2145 {
2146         unsigned int bw_reserved;
2147
2148         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2149         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2150                 return -ENOMEM;
2151
2152         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2153         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2154                 return -ENOMEM;
2155
2156         return 0;
2157 }
2158
2159 /*
2160  * This algorithm is a very conservative estimate of the worst-case scheduling
2161  * scenario for any one interval.  The hardware dynamically schedules the
2162  * packets, so we can't tell which microframe could be the limiting factor in
2163  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2164  *
2165  * Obviously, we can't solve an NP complete problem to find the minimum worst
2166  * case scenario.  Instead, we come up with an estimate that is no less than
2167  * the worst case bandwidth used for any one microframe, but may be an
2168  * over-estimate.
2169  *
2170  * We walk the requirements for each endpoint by interval, starting with the
2171  * smallest interval, and place packets in the schedule where there is only one
2172  * possible way to schedule packets for that interval.  In order to simplify
2173  * this algorithm, we record the largest max packet size for each interval, and
2174  * assume all packets will be that size.
2175  *
2176  * For interval 0, we obviously must schedule all packets for each interval.
2177  * The bandwidth for interval 0 is just the amount of data to be transmitted
2178  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2179  * the number of packets).
2180  *
2181  * For interval 1, we have two possible microframes to schedule those packets
2182  * in.  For this algorithm, if we can schedule the same number of packets for
2183  * each possible scheduling opportunity (each microframe), we will do so.  The
2184  * remaining number of packets will be saved to be transmitted in the gaps in
2185  * the next interval's scheduling sequence.
2186  *
2187  * As we move those remaining packets to be scheduled with interval 2 packets,
2188  * we have to double the number of remaining packets to transmit.  This is
2189  * because the intervals are actually powers of 2, and we would be transmitting
2190  * the previous interval's packets twice in this interval.  We also have to be
2191  * sure that when we look at the largest max packet size for this interval, we
2192  * also look at the largest max packet size for the remaining packets and take
2193  * the greater of the two.
2194  *
2195  * The algorithm continues to evenly distribute packets in each scheduling
2196  * opportunity, and push the remaining packets out, until we get to the last
2197  * interval.  Then those packets and their associated overhead are just added
2198  * to the bandwidth used.
2199  */
2200 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2201                 struct xhci_virt_device *virt_dev,
2202                 int old_active_eps)
2203 {
2204         unsigned int bw_reserved;
2205         unsigned int max_bandwidth;
2206         unsigned int bw_used;
2207         unsigned int block_size;
2208         struct xhci_interval_bw_table *bw_table;
2209         unsigned int packet_size = 0;
2210         unsigned int overhead = 0;
2211         unsigned int packets_transmitted = 0;
2212         unsigned int packets_remaining = 0;
2213         unsigned int i;
2214
2215         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2216                 return xhci_check_ss_bw(xhci, virt_dev);
2217
2218         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2219                 max_bandwidth = HS_BW_LIMIT;
2220                 /* Convert percent of bus BW reserved to blocks reserved */
2221                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2222         } else {
2223                 max_bandwidth = FS_BW_LIMIT;
2224                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2225         }
2226
2227         bw_table = virt_dev->bw_table;
2228         /* We need to translate the max packet size and max ESIT payloads into
2229          * the units the hardware uses.
2230          */
2231         block_size = xhci_get_block_size(virt_dev->udev);
2232
2233         /* If we are manipulating a LS/FS device under a HS hub, double check
2234          * that the HS bus has enough bandwidth if we are activing a new TT.
2235          */
2236         if (virt_dev->tt_info) {
2237                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2238                                 "Recalculating BW for rootport %u",
2239                                 virt_dev->real_port);
2240                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2241                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2242                                         "newly activated TT.\n");
2243                         return -ENOMEM;
2244                 }
2245                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2246                                 "Recalculating BW for TT slot %u port %u",
2247                                 virt_dev->tt_info->slot_id,
2248                                 virt_dev->tt_info->ttport);
2249         } else {
2250                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2251                                 "Recalculating BW for rootport %u",
2252                                 virt_dev->real_port);
2253         }
2254
2255         /* Add in how much bandwidth will be used for interval zero, or the
2256          * rounded max ESIT payload + number of packets * largest overhead.
2257          */
2258         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2259                 bw_table->interval_bw[0].num_packets *
2260                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2261
2262         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2263                 unsigned int bw_added;
2264                 unsigned int largest_mps;
2265                 unsigned int interval_overhead;
2266
2267                 /*
2268                  * How many packets could we transmit in this interval?
2269                  * If packets didn't fit in the previous interval, we will need
2270                  * to transmit that many packets twice within this interval.
2271                  */
2272                 packets_remaining = 2 * packets_remaining +
2273                         bw_table->interval_bw[i].num_packets;
2274
2275                 /* Find the largest max packet size of this or the previous
2276                  * interval.
2277                  */
2278                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2279                         largest_mps = 0;
2280                 else {
2281                         struct xhci_virt_ep *virt_ep;
2282                         struct list_head *ep_entry;
2283
2284                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2285                         virt_ep = list_entry(ep_entry,
2286                                         struct xhci_virt_ep, bw_endpoint_list);
2287                         /* Convert to blocks, rounding up */
2288                         largest_mps = DIV_ROUND_UP(
2289                                         virt_ep->bw_info.max_packet_size,
2290                                         block_size);
2291                 }
2292                 if (largest_mps > packet_size)
2293                         packet_size = largest_mps;
2294
2295                 /* Use the larger overhead of this or the previous interval. */
2296                 interval_overhead = xhci_get_largest_overhead(
2297                                 &bw_table->interval_bw[i]);
2298                 if (interval_overhead > overhead)
2299                         overhead = interval_overhead;
2300
2301                 /* How many packets can we evenly distribute across
2302                  * (1 << (i + 1)) possible scheduling opportunities?
2303                  */
2304                 packets_transmitted = packets_remaining >> (i + 1);
2305
2306                 /* Add in the bandwidth used for those scheduled packets */
2307                 bw_added = packets_transmitted * (overhead + packet_size);
2308
2309                 /* How many packets do we have remaining to transmit? */
2310                 packets_remaining = packets_remaining % (1 << (i + 1));
2311
2312                 /* What largest max packet size should those packets have? */
2313                 /* If we've transmitted all packets, don't carry over the
2314                  * largest packet size.
2315                  */
2316                 if (packets_remaining == 0) {
2317                         packet_size = 0;
2318                         overhead = 0;
2319                 } else if (packets_transmitted > 0) {
2320                         /* Otherwise if we do have remaining packets, and we've
2321                          * scheduled some packets in this interval, take the
2322                          * largest max packet size from endpoints with this
2323                          * interval.
2324                          */
2325                         packet_size = largest_mps;
2326                         overhead = interval_overhead;
2327                 }
2328                 /* Otherwise carry over packet_size and overhead from the last
2329                  * time we had a remainder.
2330                  */
2331                 bw_used += bw_added;
2332                 if (bw_used > max_bandwidth) {
2333                         xhci_warn(xhci, "Not enough bandwidth. "
2334                                         "Proposed: %u, Max: %u\n",
2335                                 bw_used, max_bandwidth);
2336                         return -ENOMEM;
2337                 }
2338         }
2339         /*
2340          * Ok, we know we have some packets left over after even-handedly
2341          * scheduling interval 15.  We don't know which microframes they will
2342          * fit into, so we over-schedule and say they will be scheduled every
2343          * microframe.
2344          */
2345         if (packets_remaining > 0)
2346                 bw_used += overhead + packet_size;
2347
2348         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2349                 unsigned int port_index = virt_dev->real_port - 1;
2350
2351                 /* OK, we're manipulating a HS device attached to a
2352                  * root port bandwidth domain.  Include the number of active TTs
2353                  * in the bandwidth used.
2354                  */
2355                 bw_used += TT_HS_OVERHEAD *
2356                         xhci->rh_bw[port_index].num_active_tts;
2357         }
2358
2359         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2360                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2361                 "Available: %u " "percent",
2362                 bw_used, max_bandwidth, bw_reserved,
2363                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2364                 max_bandwidth);
2365
2366         bw_used += bw_reserved;
2367         if (bw_used > max_bandwidth) {
2368                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2369                                 bw_used, max_bandwidth);
2370                 return -ENOMEM;
2371         }
2372
2373         bw_table->bw_used = bw_used;
2374         return 0;
2375 }
2376
2377 static bool xhci_is_async_ep(unsigned int ep_type)
2378 {
2379         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2380                                         ep_type != ISOC_IN_EP &&
2381                                         ep_type != INT_IN_EP);
2382 }
2383
2384 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2385 {
2386         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2387 }
2388
2389 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2390 {
2391         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2392
2393         if (ep_bw->ep_interval == 0)
2394                 return SS_OVERHEAD_BURST +
2395                         (ep_bw->mult * ep_bw->num_packets *
2396                                         (SS_OVERHEAD + mps));
2397         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2398                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2399                                 1 << ep_bw->ep_interval);
2400
2401 }
2402
2403 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2404                 struct xhci_bw_info *ep_bw,
2405                 struct xhci_interval_bw_table *bw_table,
2406                 struct usb_device *udev,
2407                 struct xhci_virt_ep *virt_ep,
2408                 struct xhci_tt_bw_info *tt_info)
2409 {
2410         struct xhci_interval_bw *interval_bw;
2411         int normalized_interval;
2412
2413         if (xhci_is_async_ep(ep_bw->type))
2414                 return;
2415
2416         if (udev->speed >= USB_SPEED_SUPER) {
2417                 if (xhci_is_sync_in_ep(ep_bw->type))
2418                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2419                                 xhci_get_ss_bw_consumed(ep_bw);
2420                 else
2421                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2422                                 xhci_get_ss_bw_consumed(ep_bw);
2423                 return;
2424         }
2425
2426         /* SuperSpeed endpoints never get added to intervals in the table, so
2427          * this check is only valid for HS/FS/LS devices.
2428          */
2429         if (list_empty(&virt_ep->bw_endpoint_list))
2430                 return;
2431         /* For LS/FS devices, we need to translate the interval expressed in
2432          * microframes to frames.
2433          */
2434         if (udev->speed == USB_SPEED_HIGH)
2435                 normalized_interval = ep_bw->ep_interval;
2436         else
2437                 normalized_interval = ep_bw->ep_interval - 3;
2438
2439         if (normalized_interval == 0)
2440                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2441         interval_bw = &bw_table->interval_bw[normalized_interval];
2442         interval_bw->num_packets -= ep_bw->num_packets;
2443         switch (udev->speed) {
2444         case USB_SPEED_LOW:
2445                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2446                 break;
2447         case USB_SPEED_FULL:
2448                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2449                 break;
2450         case USB_SPEED_HIGH:
2451                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2452                 break;
2453         case USB_SPEED_SUPER:
2454         case USB_SPEED_SUPER_PLUS:
2455         case USB_SPEED_UNKNOWN:
2456         case USB_SPEED_WIRELESS:
2457                 /* Should never happen because only LS/FS/HS endpoints will get
2458                  * added to the endpoint list.
2459                  */
2460                 return;
2461         }
2462         if (tt_info)
2463                 tt_info->active_eps -= 1;
2464         list_del_init(&virt_ep->bw_endpoint_list);
2465 }
2466
2467 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2468                 struct xhci_bw_info *ep_bw,
2469                 struct xhci_interval_bw_table *bw_table,
2470                 struct usb_device *udev,
2471                 struct xhci_virt_ep *virt_ep,
2472                 struct xhci_tt_bw_info *tt_info)
2473 {
2474         struct xhci_interval_bw *interval_bw;
2475         struct xhci_virt_ep *smaller_ep;
2476         int normalized_interval;
2477
2478         if (xhci_is_async_ep(ep_bw->type))
2479                 return;
2480
2481         if (udev->speed == USB_SPEED_SUPER) {
2482                 if (xhci_is_sync_in_ep(ep_bw->type))
2483                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2484                                 xhci_get_ss_bw_consumed(ep_bw);
2485                 else
2486                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2487                                 xhci_get_ss_bw_consumed(ep_bw);
2488                 return;
2489         }
2490
2491         /* For LS/FS devices, we need to translate the interval expressed in
2492          * microframes to frames.
2493          */
2494         if (udev->speed == USB_SPEED_HIGH)
2495                 normalized_interval = ep_bw->ep_interval;
2496         else
2497                 normalized_interval = ep_bw->ep_interval - 3;
2498
2499         if (normalized_interval == 0)
2500                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2501         interval_bw = &bw_table->interval_bw[normalized_interval];
2502         interval_bw->num_packets += ep_bw->num_packets;
2503         switch (udev->speed) {
2504         case USB_SPEED_LOW:
2505                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2506                 break;
2507         case USB_SPEED_FULL:
2508                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2509                 break;
2510         case USB_SPEED_HIGH:
2511                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2512                 break;
2513         case USB_SPEED_SUPER:
2514         case USB_SPEED_SUPER_PLUS:
2515         case USB_SPEED_UNKNOWN:
2516         case USB_SPEED_WIRELESS:
2517                 /* Should never happen because only LS/FS/HS endpoints will get
2518                  * added to the endpoint list.
2519                  */
2520                 return;
2521         }
2522
2523         if (tt_info)
2524                 tt_info->active_eps += 1;
2525         /* Insert the endpoint into the list, largest max packet size first. */
2526         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2527                         bw_endpoint_list) {
2528                 if (ep_bw->max_packet_size >=
2529                                 smaller_ep->bw_info.max_packet_size) {
2530                         /* Add the new ep before the smaller endpoint */
2531                         list_add_tail(&virt_ep->bw_endpoint_list,
2532                                         &smaller_ep->bw_endpoint_list);
2533                         return;
2534                 }
2535         }
2536         /* Add the new endpoint at the end of the list. */
2537         list_add_tail(&virt_ep->bw_endpoint_list,
2538                         &interval_bw->endpoints);
2539 }
2540
2541 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2542                 struct xhci_virt_device *virt_dev,
2543                 int old_active_eps)
2544 {
2545         struct xhci_root_port_bw_info *rh_bw_info;
2546         if (!virt_dev->tt_info)
2547                 return;
2548
2549         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2550         if (old_active_eps == 0 &&
2551                                 virt_dev->tt_info->active_eps != 0) {
2552                 rh_bw_info->num_active_tts += 1;
2553                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2554         } else if (old_active_eps != 0 &&
2555                                 virt_dev->tt_info->active_eps == 0) {
2556                 rh_bw_info->num_active_tts -= 1;
2557                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2558         }
2559 }
2560
2561 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2562                 struct xhci_virt_device *virt_dev,
2563                 struct xhci_container_ctx *in_ctx)
2564 {
2565         struct xhci_bw_info ep_bw_info[31];
2566         int i;
2567         struct xhci_input_control_ctx *ctrl_ctx;
2568         int old_active_eps = 0;
2569
2570         if (virt_dev->tt_info)
2571                 old_active_eps = virt_dev->tt_info->active_eps;
2572
2573         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2574         if (!ctrl_ctx) {
2575                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2576                                 __func__);
2577                 return -ENOMEM;
2578         }
2579
2580         for (i = 0; i < 31; i++) {
2581                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2582                         continue;
2583
2584                 /* Make a copy of the BW info in case we need to revert this */
2585                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2586                                 sizeof(ep_bw_info[i]));
2587                 /* Drop the endpoint from the interval table if the endpoint is
2588                  * being dropped or changed.
2589                  */
2590                 if (EP_IS_DROPPED(ctrl_ctx, i))
2591                         xhci_drop_ep_from_interval_table(xhci,
2592                                         &virt_dev->eps[i].bw_info,
2593                                         virt_dev->bw_table,
2594                                         virt_dev->udev,
2595                                         &virt_dev->eps[i],
2596                                         virt_dev->tt_info);
2597         }
2598         /* Overwrite the information stored in the endpoints' bw_info */
2599         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2600         for (i = 0; i < 31; i++) {
2601                 /* Add any changed or added endpoints to the interval table */
2602                 if (EP_IS_ADDED(ctrl_ctx, i))
2603                         xhci_add_ep_to_interval_table(xhci,
2604                                         &virt_dev->eps[i].bw_info,
2605                                         virt_dev->bw_table,
2606                                         virt_dev->udev,
2607                                         &virt_dev->eps[i],
2608                                         virt_dev->tt_info);
2609         }
2610
2611         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2612                 /* Ok, this fits in the bandwidth we have.
2613                  * Update the number of active TTs.
2614                  */
2615                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2616                 return 0;
2617         }
2618
2619         /* We don't have enough bandwidth for this, revert the stored info. */
2620         for (i = 0; i < 31; i++) {
2621                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2622                         continue;
2623
2624                 /* Drop the new copies of any added or changed endpoints from
2625                  * the interval table.
2626                  */
2627                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2628                         xhci_drop_ep_from_interval_table(xhci,
2629                                         &virt_dev->eps[i].bw_info,
2630                                         virt_dev->bw_table,
2631                                         virt_dev->udev,
2632                                         &virt_dev->eps[i],
2633                                         virt_dev->tt_info);
2634                 }
2635                 /* Revert the endpoint back to its old information */
2636                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2637                                 sizeof(ep_bw_info[i]));
2638                 /* Add any changed or dropped endpoints back into the table */
2639                 if (EP_IS_DROPPED(ctrl_ctx, i))
2640                         xhci_add_ep_to_interval_table(xhci,
2641                                         &virt_dev->eps[i].bw_info,
2642                                         virt_dev->bw_table,
2643                                         virt_dev->udev,
2644                                         &virt_dev->eps[i],
2645                                         virt_dev->tt_info);
2646         }
2647         return -ENOMEM;
2648 }
2649
2650
2651 /* Issue a configure endpoint command or evaluate context command
2652  * and wait for it to finish.
2653  */
2654 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2655                 struct usb_device *udev,
2656                 struct xhci_command *command,
2657                 bool ctx_change, bool must_succeed)
2658 {
2659         int ret;
2660         unsigned long flags;
2661         struct xhci_input_control_ctx *ctrl_ctx;
2662         struct xhci_virt_device *virt_dev;
2663
2664         if (!command)
2665                 return -EINVAL;
2666
2667         spin_lock_irqsave(&xhci->lock, flags);
2668         virt_dev = xhci->devs[udev->slot_id];
2669
2670         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2671         if (!ctrl_ctx) {
2672                 spin_unlock_irqrestore(&xhci->lock, flags);
2673                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2674                                 __func__);
2675                 return -ENOMEM;
2676         }
2677
2678         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2679                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2680                 spin_unlock_irqrestore(&xhci->lock, flags);
2681                 xhci_warn(xhci, "Not enough host resources, "
2682                                 "active endpoint contexts = %u\n",
2683                                 xhci->num_active_eps);
2684                 return -ENOMEM;
2685         }
2686         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2687             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2688                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2689                         xhci_free_host_resources(xhci, ctrl_ctx);
2690                 spin_unlock_irqrestore(&xhci->lock, flags);
2691                 xhci_warn(xhci, "Not enough bandwidth\n");
2692                 return -ENOMEM;
2693         }
2694
2695         if (!ctx_change)
2696                 ret = xhci_queue_configure_endpoint(xhci, command,
2697                                 command->in_ctx->dma,
2698                                 udev->slot_id, must_succeed);
2699         else
2700                 ret = xhci_queue_evaluate_context(xhci, command,
2701                                 command->in_ctx->dma,
2702                                 udev->slot_id, must_succeed);
2703         if (ret < 0) {
2704                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2705                         xhci_free_host_resources(xhci, ctrl_ctx);
2706                 spin_unlock_irqrestore(&xhci->lock, flags);
2707                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2708                                 "FIXME allocate a new ring segment");
2709                 return -ENOMEM;
2710         }
2711         xhci_ring_cmd_db(xhci);
2712         spin_unlock_irqrestore(&xhci->lock, flags);
2713
2714         /* Wait for the configure endpoint command to complete */
2715         wait_for_completion(command->completion);
2716
2717         if (!ctx_change)
2718                 ret = xhci_configure_endpoint_result(xhci, udev,
2719                                                      &command->status);
2720         else
2721                 ret = xhci_evaluate_context_result(xhci, udev,
2722                                                    &command->status);
2723
2724         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2725                 spin_lock_irqsave(&xhci->lock, flags);
2726                 /* If the command failed, remove the reserved resources.
2727                  * Otherwise, clean up the estimate to include dropped eps.
2728                  */
2729                 if (ret)
2730                         xhci_free_host_resources(xhci, ctrl_ctx);
2731                 else
2732                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2733                 spin_unlock_irqrestore(&xhci->lock, flags);
2734         }
2735         return ret;
2736 }
2737
2738 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2739         struct xhci_virt_device *vdev, int i)
2740 {
2741         struct xhci_virt_ep *ep = &vdev->eps[i];
2742
2743         if (ep->ep_state & EP_HAS_STREAMS) {
2744                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2745                                 xhci_get_endpoint_address(i));
2746                 xhci_free_stream_info(xhci, ep->stream_info);
2747                 ep->stream_info = NULL;
2748                 ep->ep_state &= ~EP_HAS_STREAMS;
2749         }
2750 }
2751
2752 /* Called after one or more calls to xhci_add_endpoint() or
2753  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2754  * to call xhci_reset_bandwidth().
2755  *
2756  * Since we are in the middle of changing either configuration or
2757  * installing a new alt setting, the USB core won't allow URBs to be
2758  * enqueued for any endpoint on the old config or interface.  Nothing
2759  * else should be touching the xhci->devs[slot_id] structure, so we
2760  * don't need to take the xhci->lock for manipulating that.
2761  */
2762 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2763 {
2764         int i;
2765         int ret = 0;
2766         struct xhci_hcd *xhci;
2767         struct xhci_virt_device *virt_dev;
2768         struct xhci_input_control_ctx *ctrl_ctx;
2769         struct xhci_slot_ctx *slot_ctx;
2770         struct xhci_command *command;
2771
2772         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2773         if (ret <= 0)
2774                 return ret;
2775         xhci = hcd_to_xhci(hcd);
2776         if (xhci->xhc_state & XHCI_STATE_DYING)
2777                 return -ENODEV;
2778
2779         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2780         virt_dev = xhci->devs[udev->slot_id];
2781
2782         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2783         if (!command)
2784                 return -ENOMEM;
2785
2786         command->in_ctx = virt_dev->in_ctx;
2787
2788         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2789         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2790         if (!ctrl_ctx) {
2791                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2792                                 __func__);
2793                 ret = -ENOMEM;
2794                 goto command_cleanup;
2795         }
2796         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2797         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2798         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2799
2800         /* Don't issue the command if there's no endpoints to update. */
2801         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2802             ctrl_ctx->drop_flags == 0) {
2803                 ret = 0;
2804                 goto command_cleanup;
2805         }
2806         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2807         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2808         for (i = 31; i >= 1; i--) {
2809                 __le32 le32 = cpu_to_le32(BIT(i));
2810
2811                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2812                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2813                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2814                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2815                         break;
2816                 }
2817         }
2818         xhci_dbg(xhci, "New Input Control Context:\n");
2819         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2820                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2821
2822         ret = xhci_configure_endpoint(xhci, udev, command,
2823                         false, false);
2824         if (ret)
2825                 /* Callee should call reset_bandwidth() */
2826                 goto command_cleanup;
2827
2828         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2829         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2830                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2831
2832         /* Free any rings that were dropped, but not changed. */
2833         for (i = 1; i < 31; ++i) {
2834                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2835                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2836                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2837                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2838                 }
2839         }
2840         xhci_zero_in_ctx(xhci, virt_dev);
2841         /*
2842          * Install any rings for completely new endpoints or changed endpoints,
2843          * and free or cache any old rings from changed endpoints.
2844          */
2845         for (i = 1; i < 31; ++i) {
2846                 if (!virt_dev->eps[i].new_ring)
2847                         continue;
2848                 /* Only cache or free the old ring if it exists.
2849                  * It may not if this is the first add of an endpoint.
2850                  */
2851                 if (virt_dev->eps[i].ring) {
2852                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2853                 }
2854                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2855                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2856                 virt_dev->eps[i].new_ring = NULL;
2857         }
2858 command_cleanup:
2859         kfree(command->completion);
2860         kfree(command);
2861
2862         return ret;
2863 }
2864
2865 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2866 {
2867         struct xhci_hcd *xhci;
2868         struct xhci_virt_device *virt_dev;
2869         int i, ret;
2870
2871         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2872         if (ret <= 0)
2873                 return;
2874         xhci = hcd_to_xhci(hcd);
2875
2876         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2877         virt_dev = xhci->devs[udev->slot_id];
2878         /* Free any rings allocated for added endpoints */
2879         for (i = 0; i < 31; ++i) {
2880                 if (virt_dev->eps[i].new_ring) {
2881                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2882                         virt_dev->eps[i].new_ring = NULL;
2883                 }
2884         }
2885         xhci_zero_in_ctx(xhci, virt_dev);
2886 }
2887
2888 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2889                 struct xhci_container_ctx *in_ctx,
2890                 struct xhci_container_ctx *out_ctx,
2891                 struct xhci_input_control_ctx *ctrl_ctx,
2892                 u32 add_flags, u32 drop_flags)
2893 {
2894         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2895         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2896         xhci_slot_copy(xhci, in_ctx, out_ctx);
2897         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2898
2899         xhci_dbg(xhci, "Input Context:\n");
2900         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2901 }
2902
2903 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2904                 unsigned int slot_id, unsigned int ep_index,
2905                 struct xhci_dequeue_state *deq_state)
2906 {
2907         struct xhci_input_control_ctx *ctrl_ctx;
2908         struct xhci_container_ctx *in_ctx;
2909         struct xhci_ep_ctx *ep_ctx;
2910         u32 added_ctxs;
2911         dma_addr_t addr;
2912
2913         in_ctx = xhci->devs[slot_id]->in_ctx;
2914         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2915         if (!ctrl_ctx) {
2916                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2917                                 __func__);
2918                 return;
2919         }
2920
2921         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2922                         xhci->devs[slot_id]->out_ctx, ep_index);
2923         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2924         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2925                         deq_state->new_deq_ptr);
2926         if (addr == 0) {
2927                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2928                                 "reset ep command\n");
2929                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2930                                 deq_state->new_deq_seg,
2931                                 deq_state->new_deq_ptr);
2932                 return;
2933         }
2934         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2935
2936         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2937         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2938                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2939                         added_ctxs, added_ctxs);
2940 }
2941
2942 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2943                         unsigned int ep_index, struct xhci_td *td)
2944 {
2945         struct xhci_dequeue_state deq_state;
2946         struct xhci_virt_ep *ep;
2947         struct usb_device *udev = td->urb->dev;
2948
2949         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2950                         "Cleaning up stalled endpoint ring");
2951         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2952         /* We need to move the HW's dequeue pointer past this TD,
2953          * or it will attempt to resend it on the next doorbell ring.
2954          */
2955         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2956                         ep_index, ep->stopped_stream, td, &deq_state);
2957
2958         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2959                 return;
2960
2961         /* HW with the reset endpoint quirk will use the saved dequeue state to
2962          * issue a configure endpoint command later.
2963          */
2964         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2965                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2966                                 "Queueing new dequeue state");
2967                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2968                                 ep_index, ep->stopped_stream, &deq_state);
2969         } else {
2970                 /* Better hope no one uses the input context between now and the
2971                  * reset endpoint completion!
2972                  * XXX: No idea how this hardware will react when stream rings
2973                  * are enabled.
2974                  */
2975                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2976                                 "Setting up input context for "
2977                                 "configure endpoint command");
2978                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2979                                 ep_index, &deq_state);
2980         }
2981 }
2982
2983 /* Called when clearing halted device. The core should have sent the control
2984  * message to clear the device halt condition. The host side of the halt should
2985  * already be cleared with a reset endpoint command issued when the STALL tx
2986  * event was received.
2987  *
2988  * Context: in_interrupt
2989  */
2990
2991 void xhci_endpoint_reset(struct usb_hcd *hcd,
2992                 struct usb_host_endpoint *ep)
2993 {
2994         struct xhci_hcd *xhci;
2995
2996         xhci = hcd_to_xhci(hcd);
2997
2998         /*
2999          * We might need to implement the config ep cmd in xhci 4.8.1 note:
3000          * The Reset Endpoint Command may only be issued to endpoints in the
3001          * Halted state. If software wishes reset the Data Toggle or Sequence
3002          * Number of an endpoint that isn't in the Halted state, then software
3003          * may issue a Configure Endpoint Command with the Drop and Add bits set
3004          * for the target endpoint. that is in the Stopped state.
3005          */
3006
3007         /* For now just print debug to follow the situation */
3008         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3009                  ep->desc.bEndpointAddress);
3010 }
3011
3012 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3013                 struct usb_device *udev, struct usb_host_endpoint *ep,
3014                 unsigned int slot_id)
3015 {
3016         int ret;
3017         unsigned int ep_index;
3018         unsigned int ep_state;
3019
3020         if (!ep)
3021                 return -EINVAL;
3022         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3023         if (ret <= 0)
3024                 return -EINVAL;
3025         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3026                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3027                                 " descriptor for ep 0x%x does not support streams\n",
3028                                 ep->desc.bEndpointAddress);
3029                 return -EINVAL;
3030         }
3031
3032         ep_index = xhci_get_endpoint_index(&ep->desc);
3033         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3034         if (ep_state & EP_HAS_STREAMS ||
3035                         ep_state & EP_GETTING_STREAMS) {
3036                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3037                                 "already has streams set up.\n",
3038                                 ep->desc.bEndpointAddress);
3039                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3040                                 "dynamic stream context array reallocation.\n");
3041                 return -EINVAL;
3042         }
3043         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3044                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3045                                 "endpoint 0x%x; URBs are pending.\n",
3046                                 ep->desc.bEndpointAddress);
3047                 return -EINVAL;
3048         }
3049         return 0;
3050 }
3051
3052 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3053                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3054 {
3055         unsigned int max_streams;
3056
3057         /* The stream context array size must be a power of two */
3058         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3059         /*
3060          * Find out how many primary stream array entries the host controller
3061          * supports.  Later we may use secondary stream arrays (similar to 2nd
3062          * level page entries), but that's an optional feature for xHCI host
3063          * controllers. xHCs must support at least 4 stream IDs.
3064          */
3065         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3066         if (*num_stream_ctxs > max_streams) {
3067                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3068                                 max_streams);
3069                 *num_stream_ctxs = max_streams;
3070                 *num_streams = max_streams;
3071         }
3072 }
3073
3074 /* Returns an error code if one of the endpoint already has streams.
3075  * This does not change any data structures, it only checks and gathers
3076  * information.
3077  */
3078 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3079                 struct usb_device *udev,
3080                 struct usb_host_endpoint **eps, unsigned int num_eps,
3081                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3082 {
3083         unsigned int max_streams;
3084         unsigned int endpoint_flag;
3085         int i;
3086         int ret;
3087
3088         for (i = 0; i < num_eps; i++) {
3089                 ret = xhci_check_streams_endpoint(xhci, udev,
3090                                 eps[i], udev->slot_id);
3091                 if (ret < 0)
3092                         return ret;
3093
3094                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3095                 if (max_streams < (*num_streams - 1)) {
3096                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3097                                         eps[i]->desc.bEndpointAddress,
3098                                         max_streams);
3099                         *num_streams = max_streams+1;
3100                 }
3101
3102                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3103                 if (*changed_ep_bitmask & endpoint_flag)
3104                         return -EINVAL;
3105                 *changed_ep_bitmask |= endpoint_flag;
3106         }
3107         return 0;
3108 }
3109
3110 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3111                 struct usb_device *udev,
3112                 struct usb_host_endpoint **eps, unsigned int num_eps)
3113 {
3114         u32 changed_ep_bitmask = 0;
3115         unsigned int slot_id;
3116         unsigned int ep_index;
3117         unsigned int ep_state;
3118         int i;
3119
3120         slot_id = udev->slot_id;
3121         if (!xhci->devs[slot_id])
3122                 return 0;
3123
3124         for (i = 0; i < num_eps; i++) {
3125                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3126                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3127                 /* Are streams already being freed for the endpoint? */
3128                 if (ep_state & EP_GETTING_NO_STREAMS) {
3129                         xhci_warn(xhci, "WARN Can't disable streams for "
3130                                         "endpoint 0x%x, "
3131                                         "streams are being disabled already\n",
3132                                         eps[i]->desc.bEndpointAddress);
3133                         return 0;
3134                 }
3135                 /* Are there actually any streams to free? */
3136                 if (!(ep_state & EP_HAS_STREAMS) &&
3137                                 !(ep_state & EP_GETTING_STREAMS)) {
3138                         xhci_warn(xhci, "WARN Can't disable streams for "
3139                                         "endpoint 0x%x, "
3140                                         "streams are already disabled!\n",
3141                                         eps[i]->desc.bEndpointAddress);
3142                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3143                                         "with non-streams endpoint\n");
3144                         return 0;
3145                 }
3146                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3147         }
3148         return changed_ep_bitmask;
3149 }
3150
3151 /*
3152  * The USB device drivers use this function (through the HCD interface in USB
3153  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3154  * coordinate mass storage command queueing across multiple endpoints (basically
3155  * a stream ID == a task ID).
3156  *
3157  * Setting up streams involves allocating the same size stream context array
3158  * for each endpoint and issuing a configure endpoint command for all endpoints.
3159  *
3160  * Don't allow the call to succeed if one endpoint only supports one stream
3161  * (which means it doesn't support streams at all).
3162  *
3163  * Drivers may get less stream IDs than they asked for, if the host controller
3164  * hardware or endpoints claim they can't support the number of requested
3165  * stream IDs.
3166  */
3167 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3168                 struct usb_host_endpoint **eps, unsigned int num_eps,
3169                 unsigned int num_streams, gfp_t mem_flags)
3170 {
3171         int i, ret;
3172         struct xhci_hcd *xhci;
3173         struct xhci_virt_device *vdev;
3174         struct xhci_command *config_cmd;
3175         struct xhci_input_control_ctx *ctrl_ctx;
3176         unsigned int ep_index;
3177         unsigned int num_stream_ctxs;
3178         unsigned long flags;
3179         u32 changed_ep_bitmask = 0;
3180
3181         if (!eps)
3182                 return -EINVAL;
3183
3184         /* Add one to the number of streams requested to account for
3185          * stream 0 that is reserved for xHCI usage.
3186          */
3187         num_streams += 1;
3188         xhci = hcd_to_xhci(hcd);
3189         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3190                         num_streams);
3191
3192         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3193         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3194                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3195                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3196                 return -ENOSYS;
3197         }
3198
3199         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3200         if (!config_cmd) {
3201                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3202                 return -ENOMEM;
3203         }
3204         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3205         if (!ctrl_ctx) {
3206                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3207                                 __func__);
3208                 xhci_free_command(xhci, config_cmd);
3209                 return -ENOMEM;
3210         }
3211
3212         /* Check to make sure all endpoints are not already configured for
3213          * streams.  While we're at it, find the maximum number of streams that
3214          * all the endpoints will support and check for duplicate endpoints.
3215          */
3216         spin_lock_irqsave(&xhci->lock, flags);
3217         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3218                         num_eps, &num_streams, &changed_ep_bitmask);
3219         if (ret < 0) {
3220                 xhci_free_command(xhci, config_cmd);
3221                 spin_unlock_irqrestore(&xhci->lock, flags);
3222                 return ret;
3223         }
3224         if (num_streams <= 1) {
3225                 xhci_warn(xhci, "WARN: endpoints can't handle "
3226                                 "more than one stream.\n");
3227                 xhci_free_command(xhci, config_cmd);
3228                 spin_unlock_irqrestore(&xhci->lock, flags);
3229                 return -EINVAL;
3230         }
3231         vdev = xhci->devs[udev->slot_id];
3232         /* Mark each endpoint as being in transition, so
3233          * xhci_urb_enqueue() will reject all URBs.
3234          */
3235         for (i = 0; i < num_eps; i++) {
3236                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3237                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3238         }
3239         spin_unlock_irqrestore(&xhci->lock, flags);
3240
3241         /* Setup internal data structures and allocate HW data structures for
3242          * streams (but don't install the HW structures in the input context
3243          * until we're sure all memory allocation succeeded).
3244          */
3245         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3246         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3247                         num_stream_ctxs, num_streams);
3248
3249         for (i = 0; i < num_eps; i++) {
3250                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3251                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3252                                 num_stream_ctxs,
3253                                 num_streams, mem_flags);
3254                 if (!vdev->eps[ep_index].stream_info)
3255                         goto cleanup;
3256                 /* Set maxPstreams in endpoint context and update deq ptr to
3257                  * point to stream context array. FIXME
3258                  */
3259         }
3260
3261         /* Set up the input context for a configure endpoint command. */
3262         for (i = 0; i < num_eps; i++) {
3263                 struct xhci_ep_ctx *ep_ctx;
3264
3265                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3266                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3267
3268                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3269                                 vdev->out_ctx, ep_index);
3270                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3271                                 vdev->eps[ep_index].stream_info);
3272         }
3273         /* Tell the HW to drop its old copy of the endpoint context info
3274          * and add the updated copy from the input context.
3275          */
3276         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3277                         vdev->out_ctx, ctrl_ctx,
3278                         changed_ep_bitmask, changed_ep_bitmask);
3279
3280         /* Issue and wait for the configure endpoint command */
3281         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3282                         false, false);
3283
3284         /* xHC rejected the configure endpoint command for some reason, so we
3285          * leave the old ring intact and free our internal streams data
3286          * structure.
3287          */
3288         if (ret < 0)
3289                 goto cleanup;
3290
3291         spin_lock_irqsave(&xhci->lock, flags);
3292         for (i = 0; i < num_eps; i++) {
3293                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3294                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3295                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3296                          udev->slot_id, ep_index);
3297                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3298         }
3299         xhci_free_command(xhci, config_cmd);
3300         spin_unlock_irqrestore(&xhci->lock, flags);
3301
3302         /* Subtract 1 for stream 0, which drivers can't use */
3303         return num_streams - 1;
3304
3305 cleanup:
3306         /* If it didn't work, free the streams! */
3307         for (i = 0; i < num_eps; i++) {
3308                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3309                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3310                 vdev->eps[ep_index].stream_info = NULL;
3311                 /* FIXME Unset maxPstreams in endpoint context and
3312                  * update deq ptr to point to normal string ring.
3313                  */
3314                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3315                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3316                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3317         }
3318         xhci_free_command(xhci, config_cmd);
3319         return -ENOMEM;
3320 }
3321
3322 /* Transition the endpoint from using streams to being a "normal" endpoint
3323  * without streams.
3324  *
3325  * Modify the endpoint context state, submit a configure endpoint command,
3326  * and free all endpoint rings for streams if that completes successfully.
3327  */
3328 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3329                 struct usb_host_endpoint **eps, unsigned int num_eps,
3330                 gfp_t mem_flags)
3331 {
3332         int i, ret;
3333         struct xhci_hcd *xhci;
3334         struct xhci_virt_device *vdev;
3335         struct xhci_command *command;
3336         struct xhci_input_control_ctx *ctrl_ctx;
3337         unsigned int ep_index;
3338         unsigned long flags;
3339         u32 changed_ep_bitmask;
3340
3341         xhci = hcd_to_xhci(hcd);
3342         vdev = xhci->devs[udev->slot_id];
3343
3344         /* Set up a configure endpoint command to remove the streams rings */
3345         spin_lock_irqsave(&xhci->lock, flags);
3346         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3347                         udev, eps, num_eps);
3348         if (changed_ep_bitmask == 0) {
3349                 spin_unlock_irqrestore(&xhci->lock, flags);
3350                 return -EINVAL;
3351         }
3352
3353         /* Use the xhci_command structure from the first endpoint.  We may have
3354          * allocated too many, but the driver may call xhci_free_streams() for
3355          * each endpoint it grouped into one call to xhci_alloc_streams().
3356          */
3357         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3358         command = vdev->eps[ep_index].stream_info->free_streams_command;
3359         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3360         if (!ctrl_ctx) {
3361                 spin_unlock_irqrestore(&xhci->lock, flags);
3362                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3363                                 __func__);
3364                 return -EINVAL;
3365         }
3366
3367         for (i = 0; i < num_eps; i++) {
3368                 struct xhci_ep_ctx *ep_ctx;
3369
3370                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3371                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3372                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3373                         EP_GETTING_NO_STREAMS;
3374
3375                 xhci_endpoint_copy(xhci, command->in_ctx,
3376                                 vdev->out_ctx, ep_index);
3377                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3378                                 &vdev->eps[ep_index]);
3379         }
3380         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3381                         vdev->out_ctx, ctrl_ctx,
3382                         changed_ep_bitmask, changed_ep_bitmask);
3383         spin_unlock_irqrestore(&xhci->lock, flags);
3384
3385         /* Issue and wait for the configure endpoint command,
3386          * which must succeed.
3387          */
3388         ret = xhci_configure_endpoint(xhci, udev, command,
3389                         false, true);
3390
3391         /* xHC rejected the configure endpoint command for some reason, so we
3392          * leave the streams rings intact.
3393          */
3394         if (ret < 0)
3395                 return ret;
3396
3397         spin_lock_irqsave(&xhci->lock, flags);
3398         for (i = 0; i < num_eps; i++) {
3399                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3400                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3401                 vdev->eps[ep_index].stream_info = NULL;
3402                 /* FIXME Unset maxPstreams in endpoint context and
3403                  * update deq ptr to point to normal string ring.
3404                  */
3405                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3406                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3407         }
3408         spin_unlock_irqrestore(&xhci->lock, flags);
3409
3410         return 0;
3411 }
3412
3413 /*
3414  * Deletes endpoint resources for endpoints that were active before a Reset
3415  * Device command, or a Disable Slot command.  The Reset Device command leaves
3416  * the control endpoint intact, whereas the Disable Slot command deletes it.
3417  *
3418  * Must be called with xhci->lock held.
3419  */
3420 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3421         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3422 {
3423         int i;
3424         unsigned int num_dropped_eps = 0;
3425         unsigned int drop_flags = 0;
3426
3427         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3428                 if (virt_dev->eps[i].ring) {
3429                         drop_flags |= 1 << i;
3430                         num_dropped_eps++;
3431                 }
3432         }
3433         xhci->num_active_eps -= num_dropped_eps;
3434         if (num_dropped_eps)
3435                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3436                                 "Dropped %u ep ctxs, flags = 0x%x, "
3437                                 "%u now active.",
3438                                 num_dropped_eps, drop_flags,
3439                                 xhci->num_active_eps);
3440 }
3441
3442 /*
3443  * This submits a Reset Device Command, which will set the device state to 0,
3444  * set the device address to 0, and disable all the endpoints except the default
3445  * control endpoint.  The USB core should come back and call
3446  * xhci_address_device(), and then re-set up the configuration.  If this is
3447  * called because of a usb_reset_and_verify_device(), then the old alternate
3448  * settings will be re-installed through the normal bandwidth allocation
3449  * functions.
3450  *
3451  * Wait for the Reset Device command to finish.  Remove all structures
3452  * associated with the endpoints that were disabled.  Clear the input device
3453  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3454  *
3455  * If the virt_dev to be reset does not exist or does not match the udev,
3456  * it means the device is lost, possibly due to the xHC restore error and
3457  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3458  * re-allocate the device.
3459  */
3460 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3461 {
3462         int ret, i;
3463         unsigned long flags;
3464         struct xhci_hcd *xhci;
3465         unsigned int slot_id;
3466         struct xhci_virt_device *virt_dev;
3467         struct xhci_command *reset_device_cmd;
3468         int last_freed_endpoint;
3469         struct xhci_slot_ctx *slot_ctx;
3470         int old_active_eps = 0;
3471
3472         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3473         if (ret <= 0)
3474                 return ret;
3475         xhci = hcd_to_xhci(hcd);
3476         slot_id = udev->slot_id;
3477         virt_dev = xhci->devs[slot_id];
3478         if (!virt_dev) {
3479                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3480                                 "not exist. Re-allocate the device\n", slot_id);
3481                 ret = xhci_alloc_dev(hcd, udev);
3482                 if (ret == 1)
3483                         return 0;
3484                 else
3485                         return -EINVAL;
3486         }
3487
3488         if (virt_dev->tt_info)
3489                 old_active_eps = virt_dev->tt_info->active_eps;
3490
3491         if (virt_dev->udev != udev) {
3492                 /* If the virt_dev and the udev does not match, this virt_dev
3493                  * may belong to another udev.
3494                  * Re-allocate the device.
3495                  */
3496                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3497                                 "not match the udev. Re-allocate the device\n",
3498                                 slot_id);
3499                 ret = xhci_alloc_dev(hcd, udev);
3500                 if (ret == 1)
3501                         return 0;
3502                 else
3503                         return -EINVAL;
3504         }
3505
3506         /* If device is not setup, there is no point in resetting it */
3507         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3508         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3509                                                 SLOT_STATE_DISABLED)
3510                 return 0;
3511
3512         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3513         /* Allocate the command structure that holds the struct completion.
3514          * Assume we're in process context, since the normal device reset
3515          * process has to wait for the device anyway.  Storage devices are
3516          * reset as part of error handling, so use GFP_NOIO instead of
3517          * GFP_KERNEL.
3518          */
3519         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3520         if (!reset_device_cmd) {
3521                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3522                 return -ENOMEM;
3523         }
3524
3525         /* Attempt to submit the Reset Device command to the command ring */
3526         spin_lock_irqsave(&xhci->lock, flags);
3527
3528         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3529         if (ret) {
3530                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3531                 spin_unlock_irqrestore(&xhci->lock, flags);
3532                 goto command_cleanup;
3533         }
3534         xhci_ring_cmd_db(xhci);
3535         spin_unlock_irqrestore(&xhci->lock, flags);
3536
3537         /* Wait for the Reset Device command to finish */
3538         wait_for_completion(reset_device_cmd->completion);
3539
3540         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3541          * unless we tried to reset a slot ID that wasn't enabled,
3542          * or the device wasn't in the addressed or configured state.
3543          */
3544         ret = reset_device_cmd->status;
3545         switch (ret) {
3546         case COMP_CMD_ABORT:
3547         case COMP_CMD_STOP:
3548                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3549                 ret = -ETIME;
3550                 goto command_cleanup;
3551         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3552         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3553                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3554                                 slot_id,
3555                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3556                 xhci_dbg(xhci, "Not freeing device rings.\n");
3557                 /* Don't treat this as an error.  May change my mind later. */
3558                 ret = 0;
3559                 goto command_cleanup;
3560         case COMP_SUCCESS:
3561                 xhci_dbg(xhci, "Successful reset device command.\n");
3562                 break;
3563         default:
3564                 if (xhci_is_vendor_info_code(xhci, ret))
3565                         break;
3566                 xhci_warn(xhci, "Unknown completion code %u for "
3567                                 "reset device command.\n", ret);
3568                 ret = -EINVAL;
3569                 goto command_cleanup;
3570         }
3571
3572         /* Free up host controller endpoint resources */
3573         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3574                 spin_lock_irqsave(&xhci->lock, flags);
3575                 /* Don't delete the default control endpoint resources */
3576                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3577                 spin_unlock_irqrestore(&xhci->lock, flags);
3578         }
3579
3580         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3581         last_freed_endpoint = 1;
3582         for (i = 1; i < 31; ++i) {
3583                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3584
3585                 if (ep->ep_state & EP_HAS_STREAMS) {
3586                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3587                                         xhci_get_endpoint_address(i));
3588                         xhci_free_stream_info(xhci, ep->stream_info);
3589                         ep->stream_info = NULL;
3590                         ep->ep_state &= ~EP_HAS_STREAMS;
3591                 }
3592
3593                 if (ep->ring) {
3594                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3595                         last_freed_endpoint = i;
3596                 }
3597                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3598                         xhci_drop_ep_from_interval_table(xhci,
3599                                         &virt_dev->eps[i].bw_info,
3600                                         virt_dev->bw_table,
3601                                         udev,
3602                                         &virt_dev->eps[i],
3603                                         virt_dev->tt_info);
3604                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3605         }
3606         /* If necessary, update the number of active TTs on this root port */
3607         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3608
3609         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3610         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3611         ret = 0;
3612
3613 command_cleanup:
3614         xhci_free_command(xhci, reset_device_cmd);
3615         return ret;
3616 }
3617
3618 /*
3619  * At this point, the struct usb_device is about to go away, the device has
3620  * disconnected, and all traffic has been stopped and the endpoints have been
3621  * disabled.  Free any HC data structures associated with that device.
3622  */
3623 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3624 {
3625         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3626         struct xhci_virt_device *virt_dev;
3627         unsigned long flags;
3628         u32 state;
3629         int i, ret;
3630         struct xhci_command *command;
3631
3632         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3633         if (!command)
3634                 return;
3635
3636 #ifndef CONFIG_USB_DEFAULT_PERSIST
3637         /*
3638          * We called pm_runtime_get_noresume when the device was attached.
3639          * Decrement the counter here to allow controller to runtime suspend
3640          * if no devices remain.
3641          */
3642         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3643                 pm_runtime_put_noidle(hcd->self.controller);
3644 #endif
3645
3646         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3647         /* If the host is halted due to driver unload, we still need to free the
3648          * device.
3649          */
3650         if (ret <= 0 && ret != -ENODEV) {
3651                 kfree(command);
3652                 return;
3653         }
3654
3655         virt_dev = xhci->devs[udev->slot_id];
3656
3657         /* Stop any wayward timer functions (which may grab the lock) */
3658         for (i = 0; i < 31; ++i) {
3659                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3660                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3661         }
3662
3663         spin_lock_irqsave(&xhci->lock, flags);
3664         /* Don't disable the slot if the host controller is dead. */
3665         state = readl(&xhci->op_regs->status);
3666         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3667                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3668                 xhci_free_virt_device(xhci, udev->slot_id);
3669                 spin_unlock_irqrestore(&xhci->lock, flags);
3670                 kfree(command);
3671                 return;
3672         }
3673
3674         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3675                                     udev->slot_id)) {
3676                 spin_unlock_irqrestore(&xhci->lock, flags);
3677                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3678                 return;
3679         }
3680         xhci_ring_cmd_db(xhci);
3681         spin_unlock_irqrestore(&xhci->lock, flags);
3682
3683         /*
3684          * Event command completion handler will free any data structures
3685          * associated with the slot.  XXX Can free sleep?
3686          */
3687 }
3688
3689 /*
3690  * Checks if we have enough host controller resources for the default control
3691  * endpoint.
3692  *
3693  * Must be called with xhci->lock held.
3694  */
3695 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3696 {
3697         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3698                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3699                                 "Not enough ep ctxs: "
3700                                 "%u active, need to add 1, limit is %u.",
3701                                 xhci->num_active_eps, xhci->limit_active_eps);
3702                 return -ENOMEM;
3703         }
3704         xhci->num_active_eps += 1;
3705         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3706                         "Adding 1 ep ctx, %u now active.",
3707                         xhci->num_active_eps);
3708         return 0;
3709 }
3710
3711
3712 /*
3713  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3714  * timed out, or allocating memory failed.  Returns 1 on success.
3715  */
3716 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3717 {
3718         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3719         unsigned long flags;
3720         int ret, slot_id;
3721         struct xhci_command *command;
3722
3723         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3724         if (!command)
3725                 return 0;
3726
3727         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3728         mutex_lock(&xhci->mutex);
3729         spin_lock_irqsave(&xhci->lock, flags);
3730         command->completion = &xhci->addr_dev;
3731         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3732         if (ret) {
3733                 spin_unlock_irqrestore(&xhci->lock, flags);
3734                 mutex_unlock(&xhci->mutex);
3735                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3736                 kfree(command);
3737                 return 0;
3738         }
3739         xhci_ring_cmd_db(xhci);
3740         spin_unlock_irqrestore(&xhci->lock, flags);
3741
3742         wait_for_completion(command->completion);
3743         slot_id = xhci->slot_id;
3744         mutex_unlock(&xhci->mutex);
3745
3746         if (!slot_id || command->status != COMP_SUCCESS) {
3747                 xhci_err(xhci, "Error while assigning device slot ID\n");
3748                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3749                                 HCS_MAX_SLOTS(
3750                                         readl(&xhci->cap_regs->hcs_params1)));
3751                 kfree(command);
3752                 return 0;
3753         }
3754
3755         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3756                 spin_lock_irqsave(&xhci->lock, flags);
3757                 ret = xhci_reserve_host_control_ep_resources(xhci);
3758                 if (ret) {
3759                         spin_unlock_irqrestore(&xhci->lock, flags);
3760                         xhci_warn(xhci, "Not enough host resources, "
3761                                         "active endpoint contexts = %u\n",
3762                                         xhci->num_active_eps);
3763                         goto disable_slot;
3764                 }
3765                 spin_unlock_irqrestore(&xhci->lock, flags);
3766         }
3767         /* Use GFP_NOIO, since this function can be called from
3768          * xhci_discover_or_reset_device(), which may be called as part of
3769          * mass storage driver error handling.
3770          */
3771         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3772                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3773                 goto disable_slot;
3774         }
3775         udev->slot_id = slot_id;
3776
3777 #ifndef CONFIG_USB_DEFAULT_PERSIST
3778         /*
3779          * If resetting upon resume, we can't put the controller into runtime
3780          * suspend if there is a device attached.
3781          */
3782         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3783                 pm_runtime_get_noresume(hcd->self.controller);
3784 #endif
3785
3786
3787         kfree(command);
3788         /* Is this a LS or FS device under a HS hub? */
3789         /* Hub or peripherial? */
3790         return 1;
3791
3792 disable_slot:
3793         /* Disable slot, if we can do it without mem alloc */
3794         spin_lock_irqsave(&xhci->lock, flags);
3795         command->completion = NULL;
3796         command->status = 0;
3797         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3798                                      udev->slot_id))
3799                 xhci_ring_cmd_db(xhci);
3800         spin_unlock_irqrestore(&xhci->lock, flags);
3801         return 0;
3802 }
3803
3804 /*
3805  * Issue an Address Device command and optionally send a corresponding
3806  * SetAddress request to the device.
3807  */
3808 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3809                              enum xhci_setup_dev setup)
3810 {
3811         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3812         unsigned long flags;
3813         struct xhci_virt_device *virt_dev;
3814         int ret = 0;
3815         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3816         struct xhci_slot_ctx *slot_ctx;
3817         struct xhci_input_control_ctx *ctrl_ctx;
3818         u64 temp_64;
3819         struct xhci_command *command = NULL;
3820
3821         mutex_lock(&xhci->mutex);
3822
3823         if (xhci->xhc_state)    /* dying or halted */
3824                 goto out;
3825
3826         if (!udev->slot_id) {
3827                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3828                                 "Bad Slot ID %d", udev->slot_id);
3829                 ret = -EINVAL;
3830                 goto out;
3831         }
3832
3833         virt_dev = xhci->devs[udev->slot_id];
3834
3835         if (WARN_ON(!virt_dev)) {
3836                 /*
3837                  * In plug/unplug torture test with an NEC controller,
3838                  * a zero-dereference was observed once due to virt_dev = 0.
3839                  * Print useful debug rather than crash if it is observed again!
3840                  */
3841                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3842                         udev->slot_id);
3843                 ret = -EINVAL;
3844                 goto out;
3845         }
3846
3847         if (setup == SETUP_CONTEXT_ONLY) {
3848                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3849                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3850                     SLOT_STATE_DEFAULT) {
3851                         xhci_dbg(xhci, "Slot already in default state\n");
3852                         goto out;
3853                 }
3854         }
3855
3856         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3857         if (!command) {
3858                 ret = -ENOMEM;
3859                 goto out;
3860         }
3861
3862         command->in_ctx = virt_dev->in_ctx;
3863         command->completion = &xhci->addr_dev;
3864
3865         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3866         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3867         if (!ctrl_ctx) {
3868                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3869                                 __func__);
3870                 ret = -EINVAL;
3871                 goto out;
3872         }
3873         /*
3874          * If this is the first Set Address since device plug-in or
3875          * virt_device realloaction after a resume with an xHCI power loss,
3876          * then set up the slot context.
3877          */
3878         if (!slot_ctx->dev_info)
3879                 xhci_setup_addressable_virt_dev(xhci, udev);
3880         /* Otherwise, update the control endpoint ring enqueue pointer. */
3881         else
3882                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3883         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3884         ctrl_ctx->drop_flags = 0;
3885
3886         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3887         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3888         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3889                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3890
3891         spin_lock_irqsave(&xhci->lock, flags);
3892         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3893                                         udev->slot_id, setup);
3894         if (ret) {
3895                 spin_unlock_irqrestore(&xhci->lock, flags);
3896                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3897                                 "FIXME: allocate a command ring segment");
3898                 goto out;
3899         }
3900         xhci_ring_cmd_db(xhci);
3901         spin_unlock_irqrestore(&xhci->lock, flags);
3902
3903         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3904         wait_for_completion(command->completion);
3905
3906         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3907          * the SetAddress() "recovery interval" required by USB and aborting the
3908          * command on a timeout.
3909          */
3910         switch (command->status) {
3911         case COMP_CMD_ABORT:
3912         case COMP_CMD_STOP:
3913                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3914                 ret = -ETIME;
3915                 break;
3916         case COMP_CTX_STATE:
3917         case COMP_EBADSLT:
3918                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3919                          act, udev->slot_id);
3920                 ret = -EINVAL;
3921                 break;
3922         case COMP_TX_ERR:
3923                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3924                 ret = -EPROTO;
3925                 break;
3926         case COMP_DEV_ERR:
3927                 dev_warn(&udev->dev,
3928                          "ERROR: Incompatible device for setup %s command\n", act);
3929                 ret = -ENODEV;
3930                 break;
3931         case COMP_SUCCESS:
3932                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3933                                "Successful setup %s command", act);
3934                 break;
3935         default:
3936                 xhci_err(xhci,
3937                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3938                          act, command->status);
3939                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3940                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3941                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3942                 ret = -EINVAL;
3943                 break;
3944         }
3945         if (ret)
3946                 goto out;
3947         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3948         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3949                         "Op regs DCBAA ptr = %#016llx", temp_64);
3950         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951                 "Slot ID %d dcbaa entry @%p = %#016llx",
3952                 udev->slot_id,
3953                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3954                 (unsigned long long)
3955                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3956         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3957                         "Output Context DMA address = %#08llx",
3958                         (unsigned long long)virt_dev->out_ctx->dma);
3959         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3960         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3961         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3962                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3963         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3964         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3965         /*
3966          * USB core uses address 1 for the roothubs, so we add one to the
3967          * address given back to us by the HC.
3968          */
3969         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3970         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3971                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3972         /* Zero the input context control for later use */
3973         ctrl_ctx->add_flags = 0;
3974         ctrl_ctx->drop_flags = 0;
3975
3976         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3977                        "Internal device address = %d",
3978                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3979 out:
3980         mutex_unlock(&xhci->mutex);
3981         kfree(command);
3982         return ret;
3983 }
3984
3985 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3986 {
3987         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3988 }
3989
3990 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3991 {
3992         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3993 }
3994
3995 /*
3996  * Transfer the port index into real index in the HW port status
3997  * registers. Caculate offset between the port's PORTSC register
3998  * and port status base. Divide the number of per port register
3999  * to get the real index. The raw port number bases 1.
4000  */
4001 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4002 {
4003         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4004         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4005         __le32 __iomem *addr;
4006         int raw_port;
4007
4008         if (hcd->speed < HCD_USB3)
4009                 addr = xhci->usb2_ports[port1 - 1];
4010         else
4011                 addr = xhci->usb3_ports[port1 - 1];
4012
4013         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4014         return raw_port;
4015 }
4016
4017 /*
4018  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4019  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4020  */
4021 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4022                         struct usb_device *udev, u16 max_exit_latency)
4023 {
4024         struct xhci_virt_device *virt_dev;
4025         struct xhci_command *command;
4026         struct xhci_input_control_ctx *ctrl_ctx;
4027         struct xhci_slot_ctx *slot_ctx;
4028         unsigned long flags;
4029         int ret;
4030
4031         spin_lock_irqsave(&xhci->lock, flags);
4032
4033         virt_dev = xhci->devs[udev->slot_id];
4034
4035         /*
4036          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4037          * xHC was re-initialized. Exit latency will be set later after
4038          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4039          */
4040
4041         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4042                 spin_unlock_irqrestore(&xhci->lock, flags);
4043                 return 0;
4044         }
4045
4046         /* Attempt to issue an Evaluate Context command to change the MEL. */
4047         command = xhci->lpm_command;
4048         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4049         if (!ctrl_ctx) {
4050                 spin_unlock_irqrestore(&xhci->lock, flags);
4051                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4052                                 __func__);
4053                 return -ENOMEM;
4054         }
4055
4056         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4057         spin_unlock_irqrestore(&xhci->lock, flags);
4058
4059         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4060         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4061         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4062         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4063         slot_ctx->dev_state = 0;
4064
4065         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4066                         "Set up evaluate context for LPM MEL change.");
4067         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4068         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4069
4070         /* Issue and wait for the evaluate context command. */
4071         ret = xhci_configure_endpoint(xhci, udev, command,
4072                         true, true);
4073         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4074         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4075
4076         if (!ret) {
4077                 spin_lock_irqsave(&xhci->lock, flags);
4078                 virt_dev->current_mel = max_exit_latency;
4079                 spin_unlock_irqrestore(&xhci->lock, flags);
4080         }
4081         return ret;
4082 }
4083
4084 #ifdef CONFIG_PM
4085
4086 /* BESL to HIRD Encoding array for USB2 LPM */
4087 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4088         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4089
4090 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4091 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4092                                         struct usb_device *udev)
4093 {
4094         int u2del, besl, besl_host;
4095         int besl_device = 0;
4096         u32 field;
4097
4098         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4099         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4100
4101         if (field & USB_BESL_SUPPORT) {
4102                 for (besl_host = 0; besl_host < 16; besl_host++) {
4103                         if (xhci_besl_encoding[besl_host] >= u2del)
4104                                 break;
4105                 }
4106                 /* Use baseline BESL value as default */
4107                 if (field & USB_BESL_BASELINE_VALID)
4108                         besl_device = USB_GET_BESL_BASELINE(field);
4109                 else if (field & USB_BESL_DEEP_VALID)
4110                         besl_device = USB_GET_BESL_DEEP(field);
4111         } else {
4112                 if (u2del <= 50)
4113                         besl_host = 0;
4114                 else
4115                         besl_host = (u2del - 51) / 75 + 1;
4116         }
4117
4118         besl = besl_host + besl_device;
4119         if (besl > 15)
4120                 besl = 15;
4121
4122         return besl;
4123 }
4124
4125 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4126 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4127 {
4128         u32 field;
4129         int l1;
4130         int besld = 0;
4131         int hirdm = 0;
4132
4133         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4134
4135         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4136         l1 = udev->l1_params.timeout / 256;
4137
4138         /* device has preferred BESLD */
4139         if (field & USB_BESL_DEEP_VALID) {
4140                 besld = USB_GET_BESL_DEEP(field);
4141                 hirdm = 1;
4142         }
4143
4144         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4145 }
4146
4147 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4148                         struct usb_device *udev, int enable)
4149 {
4150         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4151         __le32 __iomem  **port_array;
4152         __le32 __iomem  *pm_addr, *hlpm_addr;
4153         u32             pm_val, hlpm_val, field;
4154         unsigned int    port_num;
4155         unsigned long   flags;
4156         int             hird, exit_latency;
4157         int             ret;
4158
4159         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4160                         !udev->lpm_capable)
4161                 return -EPERM;
4162
4163         if (!udev->parent || udev->parent->parent ||
4164                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4165                 return -EPERM;
4166
4167         if (udev->usb2_hw_lpm_capable != 1)
4168                 return -EPERM;
4169
4170         spin_lock_irqsave(&xhci->lock, flags);
4171
4172         port_array = xhci->usb2_ports;
4173         port_num = udev->portnum - 1;
4174         pm_addr = port_array[port_num] + PORTPMSC;
4175         pm_val = readl(pm_addr);
4176         hlpm_addr = port_array[port_num] + PORTHLPMC;
4177         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4178
4179         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4180                         enable ? "enable" : "disable", port_num + 1);
4181
4182         if (enable) {
4183                 /* Host supports BESL timeout instead of HIRD */
4184                 if (udev->usb2_hw_lpm_besl_capable) {
4185                         /* if device doesn't have a preferred BESL value use a
4186                          * default one which works with mixed HIRD and BESL
4187                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4188                          */
4189                         if ((field & USB_BESL_SUPPORT) &&
4190                             (field & USB_BESL_BASELINE_VALID))
4191                                 hird = USB_GET_BESL_BASELINE(field);
4192                         else
4193                                 hird = udev->l1_params.besl;
4194
4195                         exit_latency = xhci_besl_encoding[hird];
4196                         spin_unlock_irqrestore(&xhci->lock, flags);
4197
4198                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4199                          * input context for link powermanagement evaluate
4200                          * context commands. It is protected by hcd->bandwidth
4201                          * mutex and is shared by all devices. We need to set
4202                          * the max ext latency in USB 2 BESL LPM as well, so
4203                          * use the same mutex and xhci_change_max_exit_latency()
4204                          */
4205                         mutex_lock(hcd->bandwidth_mutex);
4206                         ret = xhci_change_max_exit_latency(xhci, udev,
4207                                                            exit_latency);
4208                         mutex_unlock(hcd->bandwidth_mutex);
4209
4210                         if (ret < 0)
4211                                 return ret;
4212                         spin_lock_irqsave(&xhci->lock, flags);
4213
4214                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4215                         writel(hlpm_val, hlpm_addr);
4216                         /* flush write */
4217                         readl(hlpm_addr);
4218                 } else {
4219                         hird = xhci_calculate_hird_besl(xhci, udev);
4220                 }
4221
4222                 pm_val &= ~PORT_HIRD_MASK;
4223                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4224                 writel(pm_val, pm_addr);
4225                 pm_val = readl(pm_addr);
4226                 pm_val |= PORT_HLE;
4227                 writel(pm_val, pm_addr);
4228                 /* flush write */
4229                 readl(pm_addr);
4230         } else {
4231                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4232                 writel(pm_val, pm_addr);
4233                 /* flush write */
4234                 readl(pm_addr);
4235                 if (udev->usb2_hw_lpm_besl_capable) {
4236                         spin_unlock_irqrestore(&xhci->lock, flags);
4237                         mutex_lock(hcd->bandwidth_mutex);
4238                         xhci_change_max_exit_latency(xhci, udev, 0);
4239                         mutex_unlock(hcd->bandwidth_mutex);
4240                         return 0;
4241                 }
4242         }
4243
4244         spin_unlock_irqrestore(&xhci->lock, flags);
4245         return 0;
4246 }
4247
4248 /* check if a usb2 port supports a given extened capability protocol
4249  * only USB2 ports extended protocol capability values are cached.
4250  * Return 1 if capability is supported
4251  */
4252 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4253                                            unsigned capability)
4254 {
4255         u32 port_offset, port_count;
4256         int i;
4257
4258         for (i = 0; i < xhci->num_ext_caps; i++) {
4259                 if (xhci->ext_caps[i] & capability) {
4260                         /* port offsets starts at 1 */
4261                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4262                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4263                         if (port >= port_offset &&
4264                             port < port_offset + port_count)
4265                                 return 1;
4266                 }
4267         }
4268         return 0;
4269 }
4270
4271 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4272 {
4273         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4274         int             portnum = udev->portnum - 1;
4275
4276         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4277                         !udev->lpm_capable)
4278                 return 0;
4279
4280         /* we only support lpm for non-hub device connected to root hub yet */
4281         if (!udev->parent || udev->parent->parent ||
4282                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4283                 return 0;
4284
4285         if (xhci->hw_lpm_support == 1 &&
4286                         xhci_check_usb2_port_capability(
4287                                 xhci, portnum, XHCI_HLC)) {
4288                 udev->usb2_hw_lpm_capable = 1;
4289                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4290                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4291                 if (xhci_check_usb2_port_capability(xhci, portnum,
4292                                         XHCI_BLC))
4293                         udev->usb2_hw_lpm_besl_capable = 1;
4294         }
4295
4296         return 0;
4297 }
4298
4299 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4300
4301 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4302 static unsigned long long xhci_service_interval_to_ns(
4303                 struct usb_endpoint_descriptor *desc)
4304 {
4305         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4306 }
4307
4308 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4309                 enum usb3_link_state state)
4310 {
4311         unsigned long long sel;
4312         unsigned long long pel;
4313         unsigned int max_sel_pel;
4314         char *state_name;
4315
4316         switch (state) {
4317         case USB3_LPM_U1:
4318                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4319                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4320                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4321                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4322                 state_name = "U1";
4323                 break;
4324         case USB3_LPM_U2:
4325                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4326                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4327                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4328                 state_name = "U2";
4329                 break;
4330         default:
4331                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4332                                 __func__);
4333                 return USB3_LPM_DISABLED;
4334         }
4335
4336         if (sel <= max_sel_pel && pel <= max_sel_pel)
4337                 return USB3_LPM_DEVICE_INITIATED;
4338
4339         if (sel > max_sel_pel)
4340                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4341                                 "due to long SEL %llu ms\n",
4342                                 state_name, sel);
4343         else
4344                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4345                                 "due to long PEL %llu ms\n",
4346                                 state_name, pel);
4347         return USB3_LPM_DISABLED;
4348 }
4349
4350 /* The U1 timeout should be the maximum of the following values:
4351  *  - For control endpoints, U1 system exit latency (SEL) * 3
4352  *  - For bulk endpoints, U1 SEL * 5
4353  *  - For interrupt endpoints:
4354  *    - Notification EPs, U1 SEL * 3
4355  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4356  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4357  */
4358 static unsigned long long xhci_calculate_intel_u1_timeout(
4359                 struct usb_device *udev,
4360                 struct usb_endpoint_descriptor *desc)
4361 {
4362         unsigned long long timeout_ns;
4363         int ep_type;
4364         int intr_type;
4365
4366         ep_type = usb_endpoint_type(desc);
4367         switch (ep_type) {
4368         case USB_ENDPOINT_XFER_CONTROL:
4369                 timeout_ns = udev->u1_params.sel * 3;
4370                 break;
4371         case USB_ENDPOINT_XFER_BULK:
4372                 timeout_ns = udev->u1_params.sel * 5;
4373                 break;
4374         case USB_ENDPOINT_XFER_INT:
4375                 intr_type = usb_endpoint_interrupt_type(desc);
4376                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4377                         timeout_ns = udev->u1_params.sel * 3;
4378                         break;
4379                 }
4380                 /* Otherwise the calculation is the same as isoc eps */
4381         case USB_ENDPOINT_XFER_ISOC:
4382                 timeout_ns = xhci_service_interval_to_ns(desc);
4383                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4384                 if (timeout_ns < udev->u1_params.sel * 2)
4385                         timeout_ns = udev->u1_params.sel * 2;
4386                 break;
4387         default:
4388                 return 0;
4389         }
4390
4391         return timeout_ns;
4392 }
4393
4394 /* Returns the hub-encoded U1 timeout value. */
4395 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4396                 struct usb_device *udev,
4397                 struct usb_endpoint_descriptor *desc)
4398 {
4399         unsigned long long timeout_ns;
4400
4401         if (xhci->quirks & XHCI_INTEL_HOST)
4402                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4403         else
4404                 timeout_ns = udev->u1_params.sel;
4405
4406         /* The U1 timeout is encoded in 1us intervals.
4407          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4408          */
4409         if (timeout_ns == USB3_LPM_DISABLED)
4410                 timeout_ns = 1;
4411         else
4412                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4413
4414         /* If the necessary timeout value is bigger than what we can set in the
4415          * USB 3.0 hub, we have to disable hub-initiated U1.
4416          */
4417         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4418                 return timeout_ns;
4419         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4420                         "due to long timeout %llu ms\n", timeout_ns);
4421         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4422 }
4423
4424 /* The U2 timeout should be the maximum of:
4425  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4426  *  - largest bInterval of any active periodic endpoint (to avoid going
4427  *    into lower power link states between intervals).
4428  *  - the U2 Exit Latency of the device
4429  */
4430 static unsigned long long xhci_calculate_intel_u2_timeout(
4431                 struct usb_device *udev,
4432                 struct usb_endpoint_descriptor *desc)
4433 {
4434         unsigned long long timeout_ns;
4435         unsigned long long u2_del_ns;
4436
4437         timeout_ns = 10 * 1000 * 1000;
4438
4439         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4440                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4441                 timeout_ns = xhci_service_interval_to_ns(desc);
4442
4443         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4444         if (u2_del_ns > timeout_ns)
4445                 timeout_ns = u2_del_ns;
4446
4447         return timeout_ns;
4448 }
4449
4450 /* Returns the hub-encoded U2 timeout value. */
4451 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4452                 struct usb_device *udev,
4453                 struct usb_endpoint_descriptor *desc)
4454 {
4455         unsigned long long timeout_ns;
4456
4457         if (xhci->quirks & XHCI_INTEL_HOST)
4458                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4459         else
4460                 timeout_ns = udev->u2_params.sel;
4461
4462         /* The U2 timeout is encoded in 256us intervals */
4463         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4464         /* If the necessary timeout value is bigger than what we can set in the
4465          * USB 3.0 hub, we have to disable hub-initiated U2.
4466          */
4467         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4468                 return timeout_ns;
4469         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4470                         "due to long timeout %llu ms\n", timeout_ns);
4471         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4472 }
4473
4474 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4475                 struct usb_device *udev,
4476                 struct usb_endpoint_descriptor *desc,
4477                 enum usb3_link_state state,
4478                 u16 *timeout)
4479 {
4480         if (state == USB3_LPM_U1)
4481                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4482         else if (state == USB3_LPM_U2)
4483                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4484
4485         return USB3_LPM_DISABLED;
4486 }
4487
4488 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4489                 struct usb_device *udev,
4490                 struct usb_endpoint_descriptor *desc,
4491                 enum usb3_link_state state,
4492                 u16 *timeout)
4493 {
4494         u16 alt_timeout;
4495
4496         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4497                 desc, state, timeout);
4498
4499         /* If we found we can't enable hub-initiated LPM, or
4500          * the U1 or U2 exit latency was too high to allow
4501          * device-initiated LPM as well, just stop searching.
4502          */
4503         if (alt_timeout == USB3_LPM_DISABLED ||
4504                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4505                 *timeout = alt_timeout;
4506                 return -E2BIG;
4507         }
4508         if (alt_timeout > *timeout)
4509                 *timeout = alt_timeout;
4510         return 0;
4511 }
4512
4513 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4514                 struct usb_device *udev,
4515                 struct usb_host_interface *alt,
4516                 enum usb3_link_state state,
4517                 u16 *timeout)
4518 {
4519         int j;
4520
4521         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4522                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4523                                         &alt->endpoint[j].desc, state, timeout))
4524                         return -E2BIG;
4525                 continue;
4526         }
4527         return 0;
4528 }
4529
4530 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4531                 enum usb3_link_state state)
4532 {
4533         struct usb_device *parent;
4534         unsigned int num_hubs;
4535
4536         if (state == USB3_LPM_U2)
4537                 return 0;
4538
4539         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4540         for (parent = udev->parent, num_hubs = 0; parent->parent;
4541                         parent = parent->parent)
4542                 num_hubs++;
4543
4544         if (num_hubs < 2)
4545                 return 0;
4546
4547         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4548                         " below second-tier hub.\n");
4549         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4550                         "to decrease power consumption.\n");
4551         return -E2BIG;
4552 }
4553
4554 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4555                 struct usb_device *udev,
4556                 enum usb3_link_state state)
4557 {
4558         if (xhci->quirks & XHCI_INTEL_HOST)
4559                 return xhci_check_intel_tier_policy(udev, state);
4560         else
4561                 return 0;
4562 }
4563
4564 /* Returns the U1 or U2 timeout that should be enabled.
4565  * If the tier check or timeout setting functions return with a non-zero exit
4566  * code, that means the timeout value has been finalized and we shouldn't look
4567  * at any more endpoints.
4568  */
4569 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4570                         struct usb_device *udev, enum usb3_link_state state)
4571 {
4572         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4573         struct usb_host_config *config;
4574         char *state_name;
4575         int i;
4576         u16 timeout = USB3_LPM_DISABLED;
4577
4578         if (state == USB3_LPM_U1)
4579                 state_name = "U1";
4580         else if (state == USB3_LPM_U2)
4581                 state_name = "U2";
4582         else {
4583                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4584                                 state);
4585                 return timeout;
4586         }
4587
4588         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4589                 return timeout;
4590
4591         /* Gather some information about the currently installed configuration
4592          * and alternate interface settings.
4593          */
4594         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4595                         state, &timeout))
4596                 return timeout;
4597
4598         config = udev->actconfig;
4599         if (!config)
4600                 return timeout;
4601
4602         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4603                 struct usb_driver *driver;
4604                 struct usb_interface *intf = config->interface[i];
4605
4606                 if (!intf)
4607                         continue;
4608
4609                 /* Check if any currently bound drivers want hub-initiated LPM
4610                  * disabled.
4611                  */
4612                 if (intf->dev.driver) {
4613                         driver = to_usb_driver(intf->dev.driver);
4614                         if (driver && driver->disable_hub_initiated_lpm) {
4615                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4616                                                 "at request of driver %s\n",
4617                                                 state_name, driver->name);
4618                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4619                         }
4620                 }
4621
4622                 /* Not sure how this could happen... */
4623                 if (!intf->cur_altsetting)
4624                         continue;
4625
4626                 if (xhci_update_timeout_for_interface(xhci, udev,
4627                                         intf->cur_altsetting,
4628                                         state, &timeout))
4629                         return timeout;
4630         }
4631         return timeout;
4632 }
4633
4634 static int calculate_max_exit_latency(struct usb_device *udev,
4635                 enum usb3_link_state state_changed,
4636                 u16 hub_encoded_timeout)
4637 {
4638         unsigned long long u1_mel_us = 0;
4639         unsigned long long u2_mel_us = 0;
4640         unsigned long long mel_us = 0;
4641         bool disabling_u1;
4642         bool disabling_u2;
4643         bool enabling_u1;
4644         bool enabling_u2;
4645
4646         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4647                         hub_encoded_timeout == USB3_LPM_DISABLED);
4648         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4649                         hub_encoded_timeout == USB3_LPM_DISABLED);
4650
4651         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4652                         hub_encoded_timeout != USB3_LPM_DISABLED);
4653         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4654                         hub_encoded_timeout != USB3_LPM_DISABLED);
4655
4656         /* If U1 was already enabled and we're not disabling it,
4657          * or we're going to enable U1, account for the U1 max exit latency.
4658          */
4659         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4660                         enabling_u1)
4661                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4662         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4663                         enabling_u2)
4664                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4665
4666         if (u1_mel_us > u2_mel_us)
4667                 mel_us = u1_mel_us;
4668         else
4669                 mel_us = u2_mel_us;
4670         /* xHCI host controller max exit latency field is only 16 bits wide. */
4671         if (mel_us > MAX_EXIT) {
4672                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4673                                 "is too big.\n", mel_us);
4674                 return -E2BIG;
4675         }
4676         return mel_us;
4677 }
4678
4679 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4680 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4681                         struct usb_device *udev, enum usb3_link_state state)
4682 {
4683         struct xhci_hcd *xhci;
4684         u16 hub_encoded_timeout;
4685         int mel;
4686         int ret;
4687
4688         xhci = hcd_to_xhci(hcd);
4689         /* The LPM timeout values are pretty host-controller specific, so don't
4690          * enable hub-initiated timeouts unless the vendor has provided
4691          * information about their timeout algorithm.
4692          */
4693         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4694                         !xhci->devs[udev->slot_id])
4695                 return USB3_LPM_DISABLED;
4696
4697         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4698         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4699         if (mel < 0) {
4700                 /* Max Exit Latency is too big, disable LPM. */
4701                 hub_encoded_timeout = USB3_LPM_DISABLED;
4702                 mel = 0;
4703         }
4704
4705         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4706         if (ret)
4707                 return ret;
4708         return hub_encoded_timeout;
4709 }
4710
4711 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4712                         struct usb_device *udev, enum usb3_link_state state)
4713 {
4714         struct xhci_hcd *xhci;
4715         u16 mel;
4716
4717         xhci = hcd_to_xhci(hcd);
4718         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4719                         !xhci->devs[udev->slot_id])
4720                 return 0;
4721
4722         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4723         return xhci_change_max_exit_latency(xhci, udev, mel);
4724 }
4725 #else /* CONFIG_PM */
4726
4727 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4728                                 struct usb_device *udev, int enable)
4729 {
4730         return 0;
4731 }
4732
4733 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4734 {
4735         return 0;
4736 }
4737
4738 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4739                         struct usb_device *udev, enum usb3_link_state state)
4740 {
4741         return USB3_LPM_DISABLED;
4742 }
4743
4744 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4745                         struct usb_device *udev, enum usb3_link_state state)
4746 {
4747         return 0;
4748 }
4749 #endif  /* CONFIG_PM */
4750
4751 /*-------------------------------------------------------------------------*/
4752
4753 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4754  * internal data structures for the device.
4755  */
4756 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4757                         struct usb_tt *tt, gfp_t mem_flags)
4758 {
4759         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4760         struct xhci_virt_device *vdev;
4761         struct xhci_command *config_cmd;
4762         struct xhci_input_control_ctx *ctrl_ctx;
4763         struct xhci_slot_ctx *slot_ctx;
4764         unsigned long flags;
4765         unsigned think_time;
4766         int ret;
4767
4768         /* Ignore root hubs */
4769         if (!hdev->parent)
4770                 return 0;
4771
4772         vdev = xhci->devs[hdev->slot_id];
4773         if (!vdev) {
4774                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4775                 return -EINVAL;
4776         }
4777         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4778         if (!config_cmd) {
4779                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4780                 return -ENOMEM;
4781         }
4782         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4783         if (!ctrl_ctx) {
4784                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4785                                 __func__);
4786                 xhci_free_command(xhci, config_cmd);
4787                 return -ENOMEM;
4788         }
4789
4790         spin_lock_irqsave(&xhci->lock, flags);
4791         if (hdev->speed == USB_SPEED_HIGH &&
4792                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4793                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4794                 xhci_free_command(xhci, config_cmd);
4795                 spin_unlock_irqrestore(&xhci->lock, flags);
4796                 return -ENOMEM;
4797         }
4798
4799         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4800         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4801         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4802         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4803         /*
4804          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4805          * but it may be already set to 1 when setup an xHCI virtual
4806          * device, so clear it anyway.
4807          */
4808         if (tt->multi)
4809                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4810         else if (hdev->speed == USB_SPEED_FULL)
4811                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4812
4813         if (xhci->hci_version > 0x95) {
4814                 xhci_dbg(xhci, "xHCI version %x needs hub "
4815                                 "TT think time and number of ports\n",
4816                                 (unsigned int) xhci->hci_version);
4817                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4818                 /* Set TT think time - convert from ns to FS bit times.
4819                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4820                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4821                  *
4822                  * xHCI 1.0: this field shall be 0 if the device is not a
4823                  * High-spped hub.
4824                  */
4825                 think_time = tt->think_time;
4826                 if (think_time != 0)
4827                         think_time = (think_time / 666) - 1;
4828                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4829                         slot_ctx->tt_info |=
4830                                 cpu_to_le32(TT_THINK_TIME(think_time));
4831         } else {
4832                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4833                                 "TT think time or number of ports\n",
4834                                 (unsigned int) xhci->hci_version);
4835         }
4836         slot_ctx->dev_state = 0;
4837         spin_unlock_irqrestore(&xhci->lock, flags);
4838
4839         xhci_dbg(xhci, "Set up %s for hub device.\n",
4840                         (xhci->hci_version > 0x95) ?
4841                         "configure endpoint" : "evaluate context");
4842         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4843         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4844
4845         /* Issue and wait for the configure endpoint or
4846          * evaluate context command.
4847          */
4848         if (xhci->hci_version > 0x95)
4849                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4850                                 false, false);
4851         else
4852                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4853                                 true, false);
4854
4855         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4856         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4857
4858         xhci_free_command(xhci, config_cmd);
4859         return ret;
4860 }
4861
4862 int xhci_get_frame(struct usb_hcd *hcd)
4863 {
4864         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4865         /* EHCI mods by the periodic size.  Why? */
4866         return readl(&xhci->run_regs->microframe_index) >> 3;
4867 }
4868
4869 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4870 {
4871         struct xhci_hcd         *xhci;
4872         struct device           *dev = hcd->self.controller;
4873         int                     retval;
4874
4875         /* Accept arbitrarily long scatter-gather lists */
4876         hcd->self.sg_tablesize = ~0;
4877
4878         /* support to build packet from discontinuous buffers */
4879         hcd->self.no_sg_constraint = 1;
4880
4881         /* XHCI controllers don't stop the ep queue on short packets :| */
4882         hcd->self.no_stop_on_short = 1;
4883
4884         xhci = hcd_to_xhci(hcd);
4885
4886         if (usb_hcd_is_primary_hcd(hcd)) {
4887                 xhci->main_hcd = hcd;
4888                 /* Mark the first roothub as being USB 2.0.
4889                  * The xHCI driver will register the USB 3.0 roothub.
4890                  */
4891                 hcd->speed = HCD_USB2;
4892                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4893                 /*
4894                  * USB 2.0 roothub under xHCI has an integrated TT,
4895                  * (rate matching hub) as opposed to having an OHCI/UHCI
4896                  * companion controller.
4897                  */
4898                 hcd->has_tt = 1;
4899         } else {
4900                 if (xhci->sbrn == 0x31) {
4901                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4902                         hcd->speed = HCD_USB31;
4903                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4904                 }
4905                 /* xHCI private pointer was set in xhci_pci_probe for the second
4906                  * registered roothub.
4907                  */
4908                 return 0;
4909         }
4910
4911         mutex_init(&xhci->mutex);
4912         xhci->cap_regs = hcd->regs;
4913         xhci->op_regs = hcd->regs +
4914                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4915         xhci->run_regs = hcd->regs +
4916                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4917         /* Cache read-only capability registers */
4918         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4919         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4920         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4921         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4922         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4923         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4924         if (xhci->hci_version > 0x100)
4925                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4926         xhci_print_registers(xhci);
4927
4928         xhci->quirks = quirks;
4929
4930         get_quirks(dev, xhci);
4931
4932         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4933          * success event after a short transfer. This quirk will ignore such
4934          * spurious event.
4935          */
4936         if (xhci->hci_version > 0x96)
4937                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4938
4939         /* Make sure the HC is halted. */
4940         retval = xhci_halt(xhci);
4941         if (retval)
4942                 return retval;
4943
4944         xhci_dbg(xhci, "Resetting HCD\n");
4945         /* Reset the internal HC memory state and registers. */
4946         retval = xhci_reset(xhci);
4947         if (retval)
4948                 return retval;
4949         xhci_dbg(xhci, "Reset complete\n");
4950
4951         /* Set dma_mask and coherent_dma_mask to 64-bits,
4952          * if xHC supports 64-bit addressing */
4953         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4954                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4955                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4956                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4957         } else {
4958                 /*
4959                  * This is to avoid error in cases where a 32-bit USB
4960                  * controller is used on a 64-bit capable system.
4961                  */
4962                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4963                 if (retval)
4964                         return retval;
4965                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4966                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4967         }
4968
4969         xhci_dbg(xhci, "Calling HCD init\n");
4970         /* Initialize HCD and host controller data structures. */
4971         retval = xhci_init(hcd);
4972         if (retval)
4973                 return retval;
4974         xhci_dbg(xhci, "Called HCD init\n");
4975
4976         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4977                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4978
4979         return 0;
4980 }
4981 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4982
4983 static const struct hc_driver xhci_hc_driver = {
4984         .description =          "xhci-hcd",
4985         .product_desc =         "xHCI Host Controller",
4986         .hcd_priv_size =        sizeof(struct xhci_hcd),
4987
4988         /*
4989          * generic hardware linkage
4990          */
4991         .irq =                  xhci_irq,
4992         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4993
4994         /*
4995          * basic lifecycle operations
4996          */
4997         .reset =                NULL, /* set in xhci_init_driver() */
4998         .start =                xhci_run,
4999         .stop =                 xhci_stop,
5000         .shutdown =             xhci_shutdown,
5001
5002         /*
5003          * managing i/o requests and associated device resources
5004          */
5005         .urb_enqueue =          xhci_urb_enqueue,
5006         .urb_dequeue =          xhci_urb_dequeue,
5007         .alloc_dev =            xhci_alloc_dev,
5008         .free_dev =             xhci_free_dev,
5009         .alloc_streams =        xhci_alloc_streams,
5010         .free_streams =         xhci_free_streams,
5011         .add_endpoint =         xhci_add_endpoint,
5012         .drop_endpoint =        xhci_drop_endpoint,
5013         .endpoint_reset =       xhci_endpoint_reset,
5014         .check_bandwidth =      xhci_check_bandwidth,
5015         .reset_bandwidth =      xhci_reset_bandwidth,
5016         .address_device =       xhci_address_device,
5017         .enable_device =        xhci_enable_device,
5018         .update_hub_device =    xhci_update_hub_device,
5019         .reset_device =         xhci_discover_or_reset_device,
5020
5021         /*
5022          * scheduling support
5023          */
5024         .get_frame_number =     xhci_get_frame,
5025
5026         /*
5027          * root hub support
5028          */
5029         .hub_control =          xhci_hub_control,
5030         .hub_status_data =      xhci_hub_status_data,
5031         .bus_suspend =          xhci_bus_suspend,
5032         .bus_resume =           xhci_bus_resume,
5033
5034         /*
5035          * call back when device connected and addressed
5036          */
5037         .update_device =        xhci_update_device,
5038         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5039         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5040         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5041         .find_raw_port_number = xhci_find_raw_port_number,
5042 };
5043
5044 void xhci_init_driver(struct hc_driver *drv,
5045                       const struct xhci_driver_overrides *over)
5046 {
5047         BUG_ON(!over);
5048
5049         /* Copy the generic table to drv then apply the overrides */
5050         *drv = xhci_hc_driver;
5051
5052         if (over) {
5053                 drv->hcd_priv_size += over->extra_priv_size;
5054                 if (over->reset)
5055                         drv->reset = over->reset;
5056                 if (over->start)
5057                         drv->start = over->start;
5058         }
5059 }
5060 EXPORT_SYMBOL_GPL(xhci_init_driver);
5061
5062 MODULE_DESCRIPTION(DRIVER_DESC);
5063 MODULE_AUTHOR(DRIVER_AUTHOR);
5064 MODULE_LICENSE("GPL");
5065
5066 static int __init xhci_hcd_init(void)
5067 {
5068         /*
5069          * Check the compiler generated sizes of structures that must be laid
5070          * out in specific ways for hardware access.
5071          */
5072         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5073         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5074         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5075         /* xhci_device_control has eight fields, and also
5076          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5077          */
5078         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5079         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5080         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5081         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5082         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5083         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5084         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5085
5086         if (usb_disabled())
5087                 return -ENODEV;
5088
5089         return 0;
5090 }
5091
5092 /*
5093  * If an init function is provided, an exit function must also be provided
5094  * to allow module unload.
5095  */
5096 static void __exit xhci_hcd_fini(void) { }
5097
5098 module_init(xhci_hcd_init);
5099 module_exit(xhci_hcd_fini);