Merge branch 'generic-zpos-v8' of http://git.linaro.org/people/benjamin.gaignard...
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (!ret) {
117                 xhci->xhc_state |= XHCI_STATE_HALTED;
118                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119         } else
120                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121                                 XHCI_MAX_HALT_USEC);
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170         if ((state & STS_HALT) == 0) {
171                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172                 return 0;
173         }
174
175         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176         command = readl(&xhci->op_regs->command);
177         command |= CMD_RESET;
178         writel(command, &xhci->op_regs->command);
179
180         /* Existing Intel xHCI controllers require a delay of 1 mS,
181          * after setting the CMD_RESET bit, and before accessing any
182          * HC registers. This allows the HC to complete the
183          * reset operation and be ready for HC register access.
184          * Without this delay, the subsequent HC register access,
185          * may result in a system hang very rarely.
186          */
187         if (xhci->quirks & XHCI_INTEL_HOST)
188                 udelay(1000);
189
190         ret = xhci_handshake(&xhci->op_regs->command,
191                         CMD_RESET, 0, 10 * 1000 * 1000);
192         if (ret)
193                 return ret;
194
195         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
196                          "Wait for controller to be ready for doorbell rings");
197         /*
198          * xHCI cannot write to any doorbells or operational registers other
199          * than status until the "Controller Not Ready" flag is cleared.
200          */
201         ret = xhci_handshake(&xhci->op_regs->status,
202                         STS_CNR, 0, 10 * 1000 * 1000);
203
204         for (i = 0; i < 2; ++i) {
205                 xhci->bus_state[i].port_c_suspend = 0;
206                 xhci->bus_state[i].suspended_ports = 0;
207                 xhci->bus_state[i].resuming_ports = 0;
208         }
209
210         return ret;
211 }
212
213 #ifdef CONFIG_PCI
214 static int xhci_free_msi(struct xhci_hcd *xhci)
215 {
216         int i;
217
218         if (!xhci->msix_entries)
219                 return -EINVAL;
220
221         for (i = 0; i < xhci->msix_count; i++)
222                 if (xhci->msix_entries[i].vector)
223                         free_irq(xhci->msix_entries[i].vector,
224                                         xhci_to_hcd(xhci));
225         return 0;
226 }
227
228 /*
229  * Set up MSI
230  */
231 static int xhci_setup_msi(struct xhci_hcd *xhci)
232 {
233         int ret;
234         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235
236         ret = pci_enable_msi(pdev);
237         if (ret) {
238                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239                                 "failed to allocate MSI entry");
240                 return ret;
241         }
242
243         ret = request_irq(pdev->irq, xhci_msi_irq,
244                                 0, "xhci_hcd", xhci_to_hcd(xhci));
245         if (ret) {
246                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247                                 "disable MSI interrupt");
248                 pci_disable_msi(pdev);
249         }
250
251         return ret;
252 }
253
254 /*
255  * Free IRQs
256  * free all IRQs request
257  */
258 static void xhci_free_irq(struct xhci_hcd *xhci)
259 {
260         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
261         int ret;
262
263         /* return if using legacy interrupt */
264         if (xhci_to_hcd(xhci)->irq > 0)
265                 return;
266
267         ret = xhci_free_msi(xhci);
268         if (!ret)
269                 return;
270         if (pdev->irq > 0)
271                 free_irq(pdev->irq, xhci_to_hcd(xhci));
272
273         return;
274 }
275
276 /*
277  * Set up MSI-X
278  */
279 static int xhci_setup_msix(struct xhci_hcd *xhci)
280 {
281         int i, ret = 0;
282         struct usb_hcd *hcd = xhci_to_hcd(xhci);
283         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284
285         /*
286          * calculate number of msi-x vectors supported.
287          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288          *   with max number of interrupters based on the xhci HCSPARAMS1.
289          * - num_online_cpus: maximum msi-x vectors per CPUs core.
290          *   Add additional 1 vector to ensure always available interrupt.
291          */
292         xhci->msix_count = min(num_online_cpus() + 1,
293                                 HCS_MAX_INTRS(xhci->hcs_params1));
294
295         xhci->msix_entries =
296                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
297                                 GFP_KERNEL);
298         if (!xhci->msix_entries) {
299                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
300                 return -ENOMEM;
301         }
302
303         for (i = 0; i < xhci->msix_count; i++) {
304                 xhci->msix_entries[i].entry = i;
305                 xhci->msix_entries[i].vector = 0;
306         }
307
308         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
309         if (ret) {
310                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
311                                 "Failed to enable MSI-X");
312                 goto free_entries;
313         }
314
315         for (i = 0; i < xhci->msix_count; i++) {
316                 ret = request_irq(xhci->msix_entries[i].vector,
317                                 xhci_msi_irq,
318                                 0, "xhci_hcd", xhci_to_hcd(xhci));
319                 if (ret)
320                         goto disable_msix;
321         }
322
323         hcd->msix_enabled = 1;
324         return ret;
325
326 disable_msix:
327         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
328         xhci_free_irq(xhci);
329         pci_disable_msix(pdev);
330 free_entries:
331         kfree(xhci->msix_entries);
332         xhci->msix_entries = NULL;
333         return ret;
334 }
335
336 /* Free any IRQs and disable MSI-X */
337 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
338 {
339         struct usb_hcd *hcd = xhci_to_hcd(xhci);
340         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
341
342         if (xhci->quirks & XHCI_PLAT)
343                 return;
344
345         xhci_free_irq(xhci);
346
347         if (xhci->msix_entries) {
348                 pci_disable_msix(pdev);
349                 kfree(xhci->msix_entries);
350                 xhci->msix_entries = NULL;
351         } else {
352                 pci_disable_msi(pdev);
353         }
354
355         hcd->msix_enabled = 0;
356         return;
357 }
358
359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
360 {
361         int i;
362
363         if (xhci->msix_entries) {
364                 for (i = 0; i < xhci->msix_count; i++)
365                         synchronize_irq(xhci->msix_entries[i].vector);
366         }
367 }
368
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
372         struct pci_dev  *pdev;
373         int ret;
374
375         /* The xhci platform device has set up IRQs through usb_add_hcd. */
376         if (xhci->quirks & XHCI_PLAT)
377                 return 0;
378
379         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
380         /*
381          * Some Fresco Logic host controllers advertise MSI, but fail to
382          * generate interrupts.  Don't even try to enable MSI.
383          */
384         if (xhci->quirks & XHCI_BROKEN_MSI)
385                 goto legacy_irq;
386
387         /* unregister the legacy interrupt */
388         if (hcd->irq)
389                 free_irq(hcd->irq, hcd);
390         hcd->irq = 0;
391
392         ret = xhci_setup_msix(xhci);
393         if (ret)
394                 /* fall back to msi*/
395                 ret = xhci_setup_msi(xhci);
396
397         if (!ret)
398                 /* hcd->irq is 0, we have MSI */
399                 return 0;
400
401         if (!pdev->irq) {
402                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
403                 return -EINVAL;
404         }
405
406  legacy_irq:
407         if (!strlen(hcd->irq_descr))
408                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
409                          hcd->driver->description, hcd->self.busnum);
410
411         /* fall back to legacy interrupt*/
412         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
413                         hcd->irq_descr, hcd);
414         if (ret) {
415                 xhci_err(xhci, "request interrupt %d failed\n",
416                                 pdev->irq);
417                 return ret;
418         }
419         hcd->irq = pdev->irq;
420         return 0;
421 }
422
423 #else
424
425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
426 {
427         return 0;
428 }
429
430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
431 {
432 }
433
434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
435 {
436 }
437
438 #endif
439
440 static void compliance_mode_recovery(unsigned long arg)
441 {
442         struct xhci_hcd *xhci;
443         struct usb_hcd *hcd;
444         u32 temp;
445         int i;
446
447         xhci = (struct xhci_hcd *)arg;
448
449         for (i = 0; i < xhci->num_usb3_ports; i++) {
450                 temp = readl(xhci->usb3_ports[i]);
451                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
452                         /*
453                          * Compliance Mode Detected. Letting USB Core
454                          * handle the Warm Reset
455                          */
456                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457                                         "Compliance mode detected->port %d",
458                                         i + 1);
459                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
460                                         "Attempting compliance mode recovery");
461                         hcd = xhci->shared_hcd;
462
463                         if (hcd->state == HC_STATE_SUSPENDED)
464                                 usb_hcd_resume_root_hub(hcd);
465
466                         usb_hcd_poll_rh_status(hcd);
467                 }
468         }
469
470         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
471                 mod_timer(&xhci->comp_mode_recovery_timer,
472                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
473 }
474
475 /*
476  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
477  * that causes ports behind that hardware to enter compliance mode sometimes.
478  * The quirk creates a timer that polls every 2 seconds the link state of
479  * each host controller's port and recovers it by issuing a Warm reset
480  * if Compliance mode is detected, otherwise the port will become "dead" (no
481  * device connections or disconnections will be detected anymore). Becasue no
482  * status event is generated when entering compliance mode (per xhci spec),
483  * this quirk is needed on systems that have the failing hardware installed.
484  */
485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
486 {
487         xhci->port_status_u0 = 0;
488         setup_timer(&xhci->comp_mode_recovery_timer,
489                     compliance_mode_recovery, (unsigned long)xhci);
490         xhci->comp_mode_recovery_timer.expires = jiffies +
491                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
492
493         add_timer(&xhci->comp_mode_recovery_timer);
494         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495                         "Compliance mode recovery timer initialized");
496 }
497
498 /*
499  * This function identifies the systems that have installed the SN65LVPE502CP
500  * USB3.0 re-driver and that need the Compliance Mode Quirk.
501  * Systems:
502  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
503  */
504 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
505 {
506         const char *dmi_product_name, *dmi_sys_vendor;
507
508         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
509         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
510         if (!dmi_product_name || !dmi_sys_vendor)
511                 return false;
512
513         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
514                 return false;
515
516         if (strstr(dmi_product_name, "Z420") ||
517                         strstr(dmi_product_name, "Z620") ||
518                         strstr(dmi_product_name, "Z820") ||
519                         strstr(dmi_product_name, "Z1 Workstation"))
520                 return true;
521
522         return false;
523 }
524
525 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
526 {
527         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
528 }
529
530
531 /*
532  * Initialize memory for HCD and xHC (one-time init).
533  *
534  * Program the PAGESIZE register, initialize the device context array, create
535  * device contexts (?), set up a command ring segment (or two?), create event
536  * ring (one for now).
537  */
538 int xhci_init(struct usb_hcd *hcd)
539 {
540         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
541         int retval = 0;
542
543         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
544         spin_lock_init(&xhci->lock);
545         if (xhci->hci_version == 0x95 && link_quirk) {
546                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
547                                 "QUIRK: Not clearing Link TRB chain bits.");
548                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
549         } else {
550                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
551                                 "xHCI doesn't need link TRB QUIRK");
552         }
553         retval = xhci_mem_init(xhci, GFP_KERNEL);
554         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
555
556         /* Initializing Compliance Mode Recovery Data If Needed */
557         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
558                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
559                 compliance_mode_recovery_timer_init(xhci);
560         }
561
562         return retval;
563 }
564
565 /*-------------------------------------------------------------------------*/
566
567
568 static int xhci_run_finished(struct xhci_hcd *xhci)
569 {
570         if (xhci_start(xhci)) {
571                 xhci_halt(xhci);
572                 return -ENODEV;
573         }
574         xhci->shared_hcd->state = HC_STATE_RUNNING;
575         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
576
577         if (xhci->quirks & XHCI_NEC_HOST)
578                 xhci_ring_cmd_db(xhci);
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
581                         "Finished xhci_run for USB3 roothub");
582         return 0;
583 }
584
585 /*
586  * Start the HC after it was halted.
587  *
588  * This function is called by the USB core when the HC driver is added.
589  * Its opposite is xhci_stop().
590  *
591  * xhci_init() must be called once before this function can be called.
592  * Reset the HC, enable device slot contexts, program DCBAAP, and
593  * set command ring pointer and event ring pointer.
594  *
595  * Setup MSI-X vectors and enable interrupts.
596  */
597 int xhci_run(struct usb_hcd *hcd)
598 {
599         u32 temp;
600         u64 temp_64;
601         int ret;
602         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
603
604         /* Start the xHCI host controller running only after the USB 2.0 roothub
605          * is setup.
606          */
607
608         hcd->uses_new_polling = 1;
609         if (!usb_hcd_is_primary_hcd(hcd))
610                 return xhci_run_finished(xhci);
611
612         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
613
614         ret = xhci_try_enable_msi(hcd);
615         if (ret)
616                 return ret;
617
618         xhci_dbg(xhci, "Command ring memory map follows:\n");
619         xhci_debug_ring(xhci, xhci->cmd_ring);
620         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
621         xhci_dbg_cmd_ptrs(xhci);
622
623         xhci_dbg(xhci, "ERST memory map follows:\n");
624         xhci_dbg_erst(xhci, &xhci->erst);
625         xhci_dbg(xhci, "Event ring:\n");
626         xhci_debug_ring(xhci, xhci->event_ring);
627         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
628         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
629         temp_64 &= ~ERST_PTR_MASK;
630         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
631                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
632
633         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634                         "// Set the interrupt modulation register");
635         temp = readl(&xhci->ir_set->irq_control);
636         temp &= ~ER_IRQ_INTERVAL_MASK;
637         /*
638          * the increment interval is 8 times as much as that defined
639          * in xHCI spec on MTK's controller
640          */
641         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
642         writel(temp, &xhci->ir_set->irq_control);
643
644         /* Set the HCD state before we enable the irqs */
645         temp = readl(&xhci->op_regs->command);
646         temp |= (CMD_EIE);
647         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
648                         "// Enable interrupts, cmd = 0x%x.", temp);
649         writel(temp, &xhci->op_regs->command);
650
651         temp = readl(&xhci->ir_set->irq_pending);
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
654                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
655         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
656         xhci_print_ir_set(xhci, 0);
657
658         if (xhci->quirks & XHCI_NEC_HOST) {
659                 struct xhci_command *command;
660                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
661                 if (!command)
662                         return -ENOMEM;
663                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
664                                 TRB_TYPE(TRB_NEC_GET_FW));
665         }
666         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
667                         "Finished xhci_run for USB2 roothub");
668         return 0;
669 }
670 EXPORT_SYMBOL_GPL(xhci_run);
671
672 /*
673  * Stop xHCI driver.
674  *
675  * This function is called by the USB core when the HC driver is removed.
676  * Its opposite is xhci_run().
677  *
678  * Disable device contexts, disable IRQs, and quiesce the HC.
679  * Reset the HC, finish any completed transactions, and cleanup memory.
680  */
681 void xhci_stop(struct usb_hcd *hcd)
682 {
683         u32 temp;
684         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685
686         mutex_lock(&xhci->mutex);
687
688         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
689                 spin_lock_irq(&xhci->lock);
690
691                 xhci->xhc_state |= XHCI_STATE_HALTED;
692                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
693                 xhci_halt(xhci);
694                 xhci_reset(xhci);
695
696                 spin_unlock_irq(&xhci->lock);
697         }
698
699         if (!usb_hcd_is_primary_hcd(hcd)) {
700                 mutex_unlock(&xhci->mutex);
701                 return;
702         }
703
704         xhci_cleanup_msix(xhci);
705
706         /* Deleting Compliance Mode Recovery Timer */
707         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
708                         (!(xhci_all_ports_seen_u0(xhci)))) {
709                 del_timer_sync(&xhci->comp_mode_recovery_timer);
710                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
711                                 "%s: compliance mode recovery timer deleted",
712                                 __func__);
713         }
714
715         if (xhci->quirks & XHCI_AMD_PLL_FIX)
716                 usb_amd_dev_put();
717
718         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
719                         "// Disabling event ring interrupts");
720         temp = readl(&xhci->op_regs->status);
721         writel(temp & ~STS_EINT, &xhci->op_regs->status);
722         temp = readl(&xhci->ir_set->irq_pending);
723         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
724         xhci_print_ir_set(xhci, 0);
725
726         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
727         xhci_mem_cleanup(xhci);
728         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
729                         "xhci_stop completed - status = %x",
730                         readl(&xhci->op_regs->status));
731         mutex_unlock(&xhci->mutex);
732 }
733
734 /*
735  * Shutdown HC (not bus-specific)
736  *
737  * This is called when the machine is rebooting or halting.  We assume that the
738  * machine will be powered off, and the HC's internal state will be reset.
739  * Don't bother to free memory.
740  *
741  * This will only ever be called with the main usb_hcd (the USB3 roothub).
742  */
743 void xhci_shutdown(struct usb_hcd *hcd)
744 {
745         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
746
747         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
748                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
749
750         spin_lock_irq(&xhci->lock);
751         xhci_halt(xhci);
752         /* Workaround for spurious wakeups at shutdown with HSW */
753         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
754                 xhci_reset(xhci);
755         spin_unlock_irq(&xhci->lock);
756
757         xhci_cleanup_msix(xhci);
758
759         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
760                         "xhci_shutdown completed - status = %x",
761                         readl(&xhci->op_regs->status));
762
763         /* Yet another workaround for spurious wakeups at shutdown with HSW */
764         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
765                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
766 }
767
768 #ifdef CONFIG_PM
769 static void xhci_save_registers(struct xhci_hcd *xhci)
770 {
771         xhci->s3.command = readl(&xhci->op_regs->command);
772         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
773         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
774         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
775         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
776         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
777         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
778         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
779         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
780 }
781
782 static void xhci_restore_registers(struct xhci_hcd *xhci)
783 {
784         writel(xhci->s3.command, &xhci->op_regs->command);
785         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
786         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
787         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
788         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
789         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
790         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
791         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
792         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
793 }
794
795 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
796 {
797         u64     val_64;
798
799         /* step 2: initialize command ring buffer */
800         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
801         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
802                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
803                                       xhci->cmd_ring->dequeue) &
804                  (u64) ~CMD_RING_RSVD_BITS) |
805                 xhci->cmd_ring->cycle_state;
806         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
807                         "// Setting command ring address to 0x%llx",
808                         (long unsigned long) val_64);
809         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
810 }
811
812 /*
813  * The whole command ring must be cleared to zero when we suspend the host.
814  *
815  * The host doesn't save the command ring pointer in the suspend well, so we
816  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
817  * aligned, because of the reserved bits in the command ring dequeue pointer
818  * register.  Therefore, we can't just set the dequeue pointer back in the
819  * middle of the ring (TRBs are 16-byte aligned).
820  */
821 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
822 {
823         struct xhci_ring *ring;
824         struct xhci_segment *seg;
825
826         ring = xhci->cmd_ring;
827         seg = ring->deq_seg;
828         do {
829                 memset(seg->trbs, 0,
830                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
831                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
832                         cpu_to_le32(~TRB_CYCLE);
833                 seg = seg->next;
834         } while (seg != ring->deq_seg);
835
836         /* Reset the software enqueue and dequeue pointers */
837         ring->deq_seg = ring->first_seg;
838         ring->dequeue = ring->first_seg->trbs;
839         ring->enq_seg = ring->deq_seg;
840         ring->enqueue = ring->dequeue;
841
842         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
843         /*
844          * Ring is now zeroed, so the HW should look for change of ownership
845          * when the cycle bit is set to 1.
846          */
847         ring->cycle_state = 1;
848
849         /*
850          * Reset the hardware dequeue pointer.
851          * Yes, this will need to be re-written after resume, but we're paranoid
852          * and want to make sure the hardware doesn't access bogus memory
853          * because, say, the BIOS or an SMI started the host without changing
854          * the command ring pointers.
855          */
856         xhci_set_cmd_ring_deq(xhci);
857 }
858
859 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
860 {
861         int port_index;
862         __le32 __iomem **port_array;
863         unsigned long flags;
864         u32 t1, t2;
865
866         spin_lock_irqsave(&xhci->lock, flags);
867
868         /* disble usb3 ports Wake bits*/
869         port_index = xhci->num_usb3_ports;
870         port_array = xhci->usb3_ports;
871         while (port_index--) {
872                 t1 = readl(port_array[port_index]);
873                 t1 = xhci_port_state_to_neutral(t1);
874                 t2 = t1 & ~PORT_WAKE_BITS;
875                 if (t1 != t2)
876                         writel(t2, port_array[port_index]);
877         }
878
879         /* disble usb2 ports Wake bits*/
880         port_index = xhci->num_usb2_ports;
881         port_array = xhci->usb2_ports;
882         while (port_index--) {
883                 t1 = readl(port_array[port_index]);
884                 t1 = xhci_port_state_to_neutral(t1);
885                 t2 = t1 & ~PORT_WAKE_BITS;
886                 if (t1 != t2)
887                         writel(t2, port_array[port_index]);
888         }
889
890         spin_unlock_irqrestore(&xhci->lock, flags);
891 }
892
893 /*
894  * Stop HC (not bus-specific)
895  *
896  * This is called when the machine transition into S3/S4 mode.
897  *
898  */
899 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
900 {
901         int                     rc = 0;
902         unsigned int            delay = XHCI_MAX_HALT_USEC;
903         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
904         u32                     command;
905
906         if (!hcd->state)
907                 return 0;
908
909         if (hcd->state != HC_STATE_SUSPENDED ||
910                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
911                 return -EINVAL;
912
913         /* Clear root port wake on bits if wakeup not allowed. */
914         if (!do_wakeup)
915                 xhci_disable_port_wake_on_bits(xhci);
916
917         /* Don't poll the roothubs on bus suspend. */
918         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
919         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
920         del_timer_sync(&hcd->rh_timer);
921         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
922         del_timer_sync(&xhci->shared_hcd->rh_timer);
923
924         spin_lock_irq(&xhci->lock);
925         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
926         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
927         /* step 1: stop endpoint */
928         /* skipped assuming that port suspend has done */
929
930         /* step 2: clear Run/Stop bit */
931         command = readl(&xhci->op_regs->command);
932         command &= ~CMD_RUN;
933         writel(command, &xhci->op_regs->command);
934
935         /* Some chips from Fresco Logic need an extraordinary delay */
936         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
937
938         if (xhci_handshake(&xhci->op_regs->status,
939                       STS_HALT, STS_HALT, delay)) {
940                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
941                 spin_unlock_irq(&xhci->lock);
942                 return -ETIMEDOUT;
943         }
944         xhci_clear_command_ring(xhci);
945
946         /* step 3: save registers */
947         xhci_save_registers(xhci);
948
949         /* step 4: set CSS flag */
950         command = readl(&xhci->op_regs->command);
951         command |= CMD_CSS;
952         writel(command, &xhci->op_regs->command);
953         if (xhci_handshake(&xhci->op_regs->status,
954                                 STS_SAVE, 0, 10 * 1000)) {
955                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
956                 spin_unlock_irq(&xhci->lock);
957                 return -ETIMEDOUT;
958         }
959         spin_unlock_irq(&xhci->lock);
960
961         /*
962          * Deleting Compliance Mode Recovery Timer because the xHCI Host
963          * is about to be suspended.
964          */
965         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
966                         (!(xhci_all_ports_seen_u0(xhci)))) {
967                 del_timer_sync(&xhci->comp_mode_recovery_timer);
968                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
969                                 "%s: compliance mode recovery timer deleted",
970                                 __func__);
971         }
972
973         /* step 5: remove core well power */
974         /* synchronize irq when using MSI-X */
975         xhci_msix_sync_irqs(xhci);
976
977         return rc;
978 }
979 EXPORT_SYMBOL_GPL(xhci_suspend);
980
981 /*
982  * start xHC (not bus-specific)
983  *
984  * This is called when the machine transition from S3/S4 mode.
985  *
986  */
987 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
988 {
989         u32                     command, temp = 0, status;
990         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
991         struct usb_hcd          *secondary_hcd;
992         int                     retval = 0;
993         bool                    comp_timer_running = false;
994
995         if (!hcd->state)
996                 return 0;
997
998         /* Wait a bit if either of the roothubs need to settle from the
999          * transition into bus suspend.
1000          */
1001         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1002                         time_before(jiffies,
1003                                 xhci->bus_state[1].next_statechange))
1004                 msleep(100);
1005
1006         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1007         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1008
1009         spin_lock_irq(&xhci->lock);
1010         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1011                 hibernated = true;
1012
1013         if (!hibernated) {
1014                 /* step 1: restore register */
1015                 xhci_restore_registers(xhci);
1016                 /* step 2: initialize command ring buffer */
1017                 xhci_set_cmd_ring_deq(xhci);
1018                 /* step 3: restore state and start state*/
1019                 /* step 3: set CRS flag */
1020                 command = readl(&xhci->op_regs->command);
1021                 command |= CMD_CRS;
1022                 writel(command, &xhci->op_regs->command);
1023                 if (xhci_handshake(&xhci->op_regs->status,
1024                               STS_RESTORE, 0, 10 * 1000)) {
1025                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1026                         spin_unlock_irq(&xhci->lock);
1027                         return -ETIMEDOUT;
1028                 }
1029                 temp = readl(&xhci->op_regs->status);
1030         }
1031
1032         /* If restore operation fails, re-initialize the HC during resume */
1033         if ((temp & STS_SRE) || hibernated) {
1034
1035                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1036                                 !(xhci_all_ports_seen_u0(xhci))) {
1037                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1038                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1039                                 "Compliance Mode Recovery Timer deleted!");
1040                 }
1041
1042                 /* Let the USB core know _both_ roothubs lost power. */
1043                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1044                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1045
1046                 xhci_dbg(xhci, "Stop HCD\n");
1047                 xhci_halt(xhci);
1048                 xhci_reset(xhci);
1049                 spin_unlock_irq(&xhci->lock);
1050                 xhci_cleanup_msix(xhci);
1051
1052                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1053                 temp = readl(&xhci->op_regs->status);
1054                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1055                 temp = readl(&xhci->ir_set->irq_pending);
1056                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1057                 xhci_print_ir_set(xhci, 0);
1058
1059                 xhci_dbg(xhci, "cleaning up memory\n");
1060                 xhci_mem_cleanup(xhci);
1061                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1062                             readl(&xhci->op_regs->status));
1063
1064                 /* USB core calls the PCI reinit and start functions twice:
1065                  * first with the primary HCD, and then with the secondary HCD.
1066                  * If we don't do the same, the host will never be started.
1067                  */
1068                 if (!usb_hcd_is_primary_hcd(hcd))
1069                         secondary_hcd = hcd;
1070                 else
1071                         secondary_hcd = xhci->shared_hcd;
1072
1073                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1074                 retval = xhci_init(hcd->primary_hcd);
1075                 if (retval)
1076                         return retval;
1077                 comp_timer_running = true;
1078
1079                 xhci_dbg(xhci, "Start the primary HCD\n");
1080                 retval = xhci_run(hcd->primary_hcd);
1081                 if (!retval) {
1082                         xhci_dbg(xhci, "Start the secondary HCD\n");
1083                         retval = xhci_run(secondary_hcd);
1084                 }
1085                 hcd->state = HC_STATE_SUSPENDED;
1086                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1087                 goto done;
1088         }
1089
1090         /* step 4: set Run/Stop bit */
1091         command = readl(&xhci->op_regs->command);
1092         command |= CMD_RUN;
1093         writel(command, &xhci->op_regs->command);
1094         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1095                   0, 250 * 1000);
1096
1097         /* step 5: walk topology and initialize portsc,
1098          * portpmsc and portli
1099          */
1100         /* this is done in bus_resume */
1101
1102         /* step 6: restart each of the previously
1103          * Running endpoints by ringing their doorbells
1104          */
1105
1106         spin_unlock_irq(&xhci->lock);
1107
1108  done:
1109         if (retval == 0) {
1110                 /* Resume root hubs only when have pending events. */
1111                 status = readl(&xhci->op_regs->status);
1112                 if (status & STS_EINT) {
1113                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1114                         usb_hcd_resume_root_hub(hcd);
1115                 }
1116         }
1117
1118         /*
1119          * If system is subject to the Quirk, Compliance Mode Timer needs to
1120          * be re-initialized Always after a system resume. Ports are subject
1121          * to suffer the Compliance Mode issue again. It doesn't matter if
1122          * ports have entered previously to U0 before system's suspension.
1123          */
1124         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1125                 compliance_mode_recovery_timer_init(xhci);
1126
1127         /* Re-enable port polling. */
1128         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1129         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1130         usb_hcd_poll_rh_status(xhci->shared_hcd);
1131         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1132         usb_hcd_poll_rh_status(hcd);
1133
1134         return retval;
1135 }
1136 EXPORT_SYMBOL_GPL(xhci_resume);
1137 #endif  /* CONFIG_PM */
1138
1139 /*-------------------------------------------------------------------------*/
1140
1141 /**
1142  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1143  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1144  * value to right shift 1 for the bitmask.
1145  *
1146  * Index  = (epnum * 2) + direction - 1,
1147  * where direction = 0 for OUT, 1 for IN.
1148  * For control endpoints, the IN index is used (OUT index is unused), so
1149  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1150  */
1151 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1152 {
1153         unsigned int index;
1154         if (usb_endpoint_xfer_control(desc))
1155                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1156         else
1157                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1158                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1159         return index;
1160 }
1161
1162 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1163  * address from the XHCI endpoint index.
1164  */
1165 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1166 {
1167         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1168         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1169         return direction | number;
1170 }
1171
1172 /* Find the flag for this endpoint (for use in the control context).  Use the
1173  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1174  * bit 1, etc.
1175  */
1176 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1177 {
1178         return 1 << (xhci_get_endpoint_index(desc) + 1);
1179 }
1180
1181 /* Find the flag for this endpoint (for use in the control context).  Use the
1182  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1183  * bit 1, etc.
1184  */
1185 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1186 {
1187         return 1 << (ep_index + 1);
1188 }
1189
1190 /* Compute the last valid endpoint context index.  Basically, this is the
1191  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1192  * we find the most significant bit set in the added contexts flags.
1193  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1194  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1195  */
1196 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1197 {
1198         return fls(added_ctxs) - 1;
1199 }
1200
1201 /* Returns 1 if the arguments are OK;
1202  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1203  */
1204 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1205                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1206                 const char *func) {
1207         struct xhci_hcd *xhci;
1208         struct xhci_virt_device *virt_dev;
1209
1210         if (!hcd || (check_ep && !ep) || !udev) {
1211                 pr_debug("xHCI %s called with invalid args\n", func);
1212                 return -EINVAL;
1213         }
1214         if (!udev->parent) {
1215                 pr_debug("xHCI %s called for root hub\n", func);
1216                 return 0;
1217         }
1218
1219         xhci = hcd_to_xhci(hcd);
1220         if (check_virt_dev) {
1221                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1222                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1223                                         func);
1224                         return -EINVAL;
1225                 }
1226
1227                 virt_dev = xhci->devs[udev->slot_id];
1228                 if (virt_dev->udev != udev) {
1229                         xhci_dbg(xhci, "xHCI %s called with udev and "
1230                                           "virt_dev does not match\n", func);
1231                         return -EINVAL;
1232                 }
1233         }
1234
1235         if (xhci->xhc_state & XHCI_STATE_HALTED)
1236                 return -ENODEV;
1237
1238         return 1;
1239 }
1240
1241 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1242                 struct usb_device *udev, struct xhci_command *command,
1243                 bool ctx_change, bool must_succeed);
1244
1245 /*
1246  * Full speed devices may have a max packet size greater than 8 bytes, but the
1247  * USB core doesn't know that until it reads the first 8 bytes of the
1248  * descriptor.  If the usb_device's max packet size changes after that point,
1249  * we need to issue an evaluate context command and wait on it.
1250  */
1251 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1252                 unsigned int ep_index, struct urb *urb)
1253 {
1254         struct xhci_container_ctx *out_ctx;
1255         struct xhci_input_control_ctx *ctrl_ctx;
1256         struct xhci_ep_ctx *ep_ctx;
1257         struct xhci_command *command;
1258         int max_packet_size;
1259         int hw_max_packet_size;
1260         int ret = 0;
1261
1262         out_ctx = xhci->devs[slot_id]->out_ctx;
1263         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1264         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1265         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1266         if (hw_max_packet_size != max_packet_size) {
1267                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1268                                 "Max Packet Size for ep 0 changed.");
1269                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1270                                 "Max packet size in usb_device = %d",
1271                                 max_packet_size);
1272                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273                                 "Max packet size in xHCI HW = %d",
1274                                 hw_max_packet_size);
1275                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276                                 "Issuing evaluate context command.");
1277
1278                 /* Set up the input context flags for the command */
1279                 /* FIXME: This won't work if a non-default control endpoint
1280                  * changes max packet sizes.
1281                  */
1282
1283                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1284                 if (!command)
1285                         return -ENOMEM;
1286
1287                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1288                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1289                 if (!ctrl_ctx) {
1290                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1291                                         __func__);
1292                         ret = -ENOMEM;
1293                         goto command_cleanup;
1294                 }
1295                 /* Set up the modified control endpoint 0 */
1296                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1297                                 xhci->devs[slot_id]->out_ctx, ep_index);
1298
1299                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1300                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1301                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1302
1303                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1304                 ctrl_ctx->drop_flags = 0;
1305
1306                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1307                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1308                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1309                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1310
1311                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1312                                 true, false);
1313
1314                 /* Clean up the input context for later use by bandwidth
1315                  * functions.
1316                  */
1317                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1318 command_cleanup:
1319                 kfree(command->completion);
1320                 kfree(command);
1321         }
1322         return ret;
1323 }
1324
1325 /*
1326  * non-error returns are a promise to giveback() the urb later
1327  * we drop ownership so next owner (or urb unlink) can get it
1328  */
1329 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1330 {
1331         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1332         struct xhci_td *buffer;
1333         unsigned long flags;
1334         int ret = 0;
1335         unsigned int slot_id, ep_index;
1336         struct urb_priv *urb_priv;
1337         int size, i;
1338
1339         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1340                                         true, true, __func__) <= 0)
1341                 return -EINVAL;
1342
1343         slot_id = urb->dev->slot_id;
1344         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1345
1346         if (!HCD_HW_ACCESSIBLE(hcd)) {
1347                 if (!in_interrupt())
1348                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1349                 ret = -ESHUTDOWN;
1350                 goto exit;
1351         }
1352
1353         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1354                 size = urb->number_of_packets;
1355         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1356             urb->transfer_buffer_length > 0 &&
1357             urb->transfer_flags & URB_ZERO_PACKET &&
1358             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1359                 size = 2;
1360         else
1361                 size = 1;
1362
1363         urb_priv = kzalloc(sizeof(struct urb_priv) +
1364                                   size * sizeof(struct xhci_td *), mem_flags);
1365         if (!urb_priv)
1366                 return -ENOMEM;
1367
1368         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1369         if (!buffer) {
1370                 kfree(urb_priv);
1371                 return -ENOMEM;
1372         }
1373
1374         for (i = 0; i < size; i++) {
1375                 urb_priv->td[i] = buffer;
1376                 buffer++;
1377         }
1378
1379         urb_priv->length = size;
1380         urb_priv->td_cnt = 0;
1381         urb->hcpriv = urb_priv;
1382
1383         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1384                 /* Check to see if the max packet size for the default control
1385                  * endpoint changed during FS device enumeration
1386                  */
1387                 if (urb->dev->speed == USB_SPEED_FULL) {
1388                         ret = xhci_check_maxpacket(xhci, slot_id,
1389                                         ep_index, urb);
1390                         if (ret < 0) {
1391                                 xhci_urb_free_priv(urb_priv);
1392                                 urb->hcpriv = NULL;
1393                                 return ret;
1394                         }
1395                 }
1396
1397                 /* We have a spinlock and interrupts disabled, so we must pass
1398                  * atomic context to this function, which may allocate memory.
1399                  */
1400                 spin_lock_irqsave(&xhci->lock, flags);
1401                 if (xhci->xhc_state & XHCI_STATE_DYING)
1402                         goto dying;
1403                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1404                                 slot_id, ep_index);
1405                 if (ret)
1406                         goto free_priv;
1407                 spin_unlock_irqrestore(&xhci->lock, flags);
1408         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1409                 spin_lock_irqsave(&xhci->lock, flags);
1410                 if (xhci->xhc_state & XHCI_STATE_DYING)
1411                         goto dying;
1412                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1413                                 EP_GETTING_STREAMS) {
1414                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1415                                         "is transitioning to using streams.\n");
1416                         ret = -EINVAL;
1417                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1418                                 EP_GETTING_NO_STREAMS) {
1419                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1420                                         "is transitioning to "
1421                                         "not having streams.\n");
1422                         ret = -EINVAL;
1423                 } else {
1424                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1425                                         slot_id, ep_index);
1426                 }
1427                 if (ret)
1428                         goto free_priv;
1429                 spin_unlock_irqrestore(&xhci->lock, flags);
1430         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1431                 spin_lock_irqsave(&xhci->lock, flags);
1432                 if (xhci->xhc_state & XHCI_STATE_DYING)
1433                         goto dying;
1434                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1435                                 slot_id, ep_index);
1436                 if (ret)
1437                         goto free_priv;
1438                 spin_unlock_irqrestore(&xhci->lock, flags);
1439         } else {
1440                 spin_lock_irqsave(&xhci->lock, flags);
1441                 if (xhci->xhc_state & XHCI_STATE_DYING)
1442                         goto dying;
1443                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1444                                 slot_id, ep_index);
1445                 if (ret)
1446                         goto free_priv;
1447                 spin_unlock_irqrestore(&xhci->lock, flags);
1448         }
1449 exit:
1450         return ret;
1451 dying:
1452         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1453                         "non-responsive xHCI host.\n",
1454                         urb->ep->desc.bEndpointAddress, urb);
1455         ret = -ESHUTDOWN;
1456 free_priv:
1457         xhci_urb_free_priv(urb_priv);
1458         urb->hcpriv = NULL;
1459         spin_unlock_irqrestore(&xhci->lock, flags);
1460         return ret;
1461 }
1462
1463 /*
1464  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1465  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1466  * should pick up where it left off in the TD, unless a Set Transfer Ring
1467  * Dequeue Pointer is issued.
1468  *
1469  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1470  * the ring.  Since the ring is a contiguous structure, they can't be physically
1471  * removed.  Instead, there are two options:
1472  *
1473  *  1) If the HC is in the middle of processing the URB to be canceled, we
1474  *     simply move the ring's dequeue pointer past those TRBs using the Set
1475  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1476  *     when drivers timeout on the last submitted URB and attempt to cancel.
1477  *
1478  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1479  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1480  *     HC will need to invalidate the any TRBs it has cached after the stop
1481  *     endpoint command, as noted in the xHCI 0.95 errata.
1482  *
1483  *  3) The TD may have completed by the time the Stop Endpoint Command
1484  *     completes, so software needs to handle that case too.
1485  *
1486  * This function should protect against the TD enqueueing code ringing the
1487  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1488  * It also needs to account for multiple cancellations on happening at the same
1489  * time for the same endpoint.
1490  *
1491  * Note that this function can be called in any context, or so says
1492  * usb_hcd_unlink_urb()
1493  */
1494 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1495 {
1496         unsigned long flags;
1497         int ret, i;
1498         u32 temp;
1499         struct xhci_hcd *xhci;
1500         struct urb_priv *urb_priv;
1501         struct xhci_td *td;
1502         unsigned int ep_index;
1503         struct xhci_ring *ep_ring;
1504         struct xhci_virt_ep *ep;
1505         struct xhci_command *command;
1506
1507         xhci = hcd_to_xhci(hcd);
1508         spin_lock_irqsave(&xhci->lock, flags);
1509         /* Make sure the URB hasn't completed or been unlinked already */
1510         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1511         if (ret || !urb->hcpriv)
1512                 goto done;
1513         temp = readl(&xhci->op_regs->status);
1514         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1515                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1516                                 "HW died, freeing TD.");
1517                 urb_priv = urb->hcpriv;
1518                 for (i = urb_priv->td_cnt;
1519                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1520                      i++) {
1521                         td = urb_priv->td[i];
1522                         if (!list_empty(&td->td_list))
1523                                 list_del_init(&td->td_list);
1524                         if (!list_empty(&td->cancelled_td_list))
1525                                 list_del_init(&td->cancelled_td_list);
1526                 }
1527
1528                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1529                 spin_unlock_irqrestore(&xhci->lock, flags);
1530                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1531                 xhci_urb_free_priv(urb_priv);
1532                 return ret;
1533         }
1534         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1535                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1536                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1537                                 "Ep 0x%x: URB %p to be canceled on "
1538                                 "non-responsive xHCI host.",
1539                                 urb->ep->desc.bEndpointAddress, urb);
1540                 /* Let the stop endpoint command watchdog timer (which set this
1541                  * state) finish cleaning up the endpoint TD lists.  We must
1542                  * have caught it in the middle of dropping a lock and giving
1543                  * back an URB.
1544                  */
1545                 goto done;
1546         }
1547
1548         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1549         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1550         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1551         if (!ep_ring) {
1552                 ret = -EINVAL;
1553                 goto done;
1554         }
1555
1556         urb_priv = urb->hcpriv;
1557         i = urb_priv->td_cnt;
1558         if (i < urb_priv->length)
1559                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1560                                 "Cancel URB %p, dev %s, ep 0x%x, "
1561                                 "starting at offset 0x%llx",
1562                                 urb, urb->dev->devpath,
1563                                 urb->ep->desc.bEndpointAddress,
1564                                 (unsigned long long) xhci_trb_virt_to_dma(
1565                                         urb_priv->td[i]->start_seg,
1566                                         urb_priv->td[i]->first_trb));
1567
1568         for (; i < urb_priv->length; i++) {
1569                 td = urb_priv->td[i];
1570                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1571         }
1572
1573         /* Queue a stop endpoint command, but only if this is
1574          * the first cancellation to be handled.
1575          */
1576         if (!(ep->ep_state & EP_HALT_PENDING)) {
1577                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1578                 if (!command) {
1579                         ret = -ENOMEM;
1580                         goto done;
1581                 }
1582                 ep->ep_state |= EP_HALT_PENDING;
1583                 ep->stop_cmds_pending++;
1584                 ep->stop_cmd_timer.expires = jiffies +
1585                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1586                 add_timer(&ep->stop_cmd_timer);
1587                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1588                                          ep_index, 0);
1589                 xhci_ring_cmd_db(xhci);
1590         }
1591 done:
1592         spin_unlock_irqrestore(&xhci->lock, flags);
1593         return ret;
1594 }
1595
1596 /* Drop an endpoint from a new bandwidth configuration for this device.
1597  * Only one call to this function is allowed per endpoint before
1598  * check_bandwidth() or reset_bandwidth() must be called.
1599  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1600  * add the endpoint to the schedule with possibly new parameters denoted by a
1601  * different endpoint descriptor in usb_host_endpoint.
1602  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1603  * not allowed.
1604  *
1605  * The USB core will not allow URBs to be queued to an endpoint that is being
1606  * disabled, so there's no need for mutual exclusion to protect
1607  * the xhci->devs[slot_id] structure.
1608  */
1609 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1610                 struct usb_host_endpoint *ep)
1611 {
1612         struct xhci_hcd *xhci;
1613         struct xhci_container_ctx *in_ctx, *out_ctx;
1614         struct xhci_input_control_ctx *ctrl_ctx;
1615         unsigned int ep_index;
1616         struct xhci_ep_ctx *ep_ctx;
1617         u32 drop_flag;
1618         u32 new_add_flags, new_drop_flags;
1619         int ret;
1620
1621         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1622         if (ret <= 0)
1623                 return ret;
1624         xhci = hcd_to_xhci(hcd);
1625         if (xhci->xhc_state & XHCI_STATE_DYING)
1626                 return -ENODEV;
1627
1628         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1629         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1630         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1631                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1632                                 __func__, drop_flag);
1633                 return 0;
1634         }
1635
1636         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1637         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1638         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1639         if (!ctrl_ctx) {
1640                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1641                                 __func__);
1642                 return 0;
1643         }
1644
1645         ep_index = xhci_get_endpoint_index(&ep->desc);
1646         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1647         /* If the HC already knows the endpoint is disabled,
1648          * or the HCD has noted it is disabled, ignore this request
1649          */
1650         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1651              cpu_to_le32(EP_STATE_DISABLED)) ||
1652             le32_to_cpu(ctrl_ctx->drop_flags) &
1653             xhci_get_endpoint_flag(&ep->desc)) {
1654                 /* Do not warn when called after a usb_device_reset */
1655                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1656                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1657                                   __func__, ep);
1658                 return 0;
1659         }
1660
1661         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1662         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1663
1664         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1665         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1666
1667         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1668
1669         if (xhci->quirks & XHCI_MTK_HOST)
1670                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1671
1672         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1673                         (unsigned int) ep->desc.bEndpointAddress,
1674                         udev->slot_id,
1675                         (unsigned int) new_drop_flags,
1676                         (unsigned int) new_add_flags);
1677         return 0;
1678 }
1679
1680 /* Add an endpoint to a new possible bandwidth configuration for this device.
1681  * Only one call to this function is allowed per endpoint before
1682  * check_bandwidth() or reset_bandwidth() must be called.
1683  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1684  * add the endpoint to the schedule with possibly new parameters denoted by a
1685  * different endpoint descriptor in usb_host_endpoint.
1686  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1687  * not allowed.
1688  *
1689  * The USB core will not allow URBs to be queued to an endpoint until the
1690  * configuration or alt setting is installed in the device, so there's no need
1691  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1692  */
1693 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1694                 struct usb_host_endpoint *ep)
1695 {
1696         struct xhci_hcd *xhci;
1697         struct xhci_container_ctx *in_ctx;
1698         unsigned int ep_index;
1699         struct xhci_input_control_ctx *ctrl_ctx;
1700         u32 added_ctxs;
1701         u32 new_add_flags, new_drop_flags;
1702         struct xhci_virt_device *virt_dev;
1703         int ret = 0;
1704
1705         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1706         if (ret <= 0) {
1707                 /* So we won't queue a reset ep command for a root hub */
1708                 ep->hcpriv = NULL;
1709                 return ret;
1710         }
1711         xhci = hcd_to_xhci(hcd);
1712         if (xhci->xhc_state & XHCI_STATE_DYING)
1713                 return -ENODEV;
1714
1715         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1716         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1717                 /* FIXME when we have to issue an evaluate endpoint command to
1718                  * deal with ep0 max packet size changing once we get the
1719                  * descriptors
1720                  */
1721                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1722                                 __func__, added_ctxs);
1723                 return 0;
1724         }
1725
1726         virt_dev = xhci->devs[udev->slot_id];
1727         in_ctx = virt_dev->in_ctx;
1728         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1729         if (!ctrl_ctx) {
1730                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1731                                 __func__);
1732                 return 0;
1733         }
1734
1735         ep_index = xhci_get_endpoint_index(&ep->desc);
1736         /* If this endpoint is already in use, and the upper layers are trying
1737          * to add it again without dropping it, reject the addition.
1738          */
1739         if (virt_dev->eps[ep_index].ring &&
1740                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1741                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1742                                 "without dropping it.\n",
1743                                 (unsigned int) ep->desc.bEndpointAddress);
1744                 return -EINVAL;
1745         }
1746
1747         /* If the HCD has already noted the endpoint is enabled,
1748          * ignore this request.
1749          */
1750         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1751                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1752                                 __func__, ep);
1753                 return 0;
1754         }
1755
1756         /*
1757          * Configuration and alternate setting changes must be done in
1758          * process context, not interrupt context (or so documenation
1759          * for usb_set_interface() and usb_set_configuration() claim).
1760          */
1761         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1762                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1763                                 __func__, ep->desc.bEndpointAddress);
1764                 return -ENOMEM;
1765         }
1766
1767         if (xhci->quirks & XHCI_MTK_HOST) {
1768                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1769                 if (ret < 0) {
1770                         xhci_free_or_cache_endpoint_ring(xhci,
1771                                 virt_dev, ep_index);
1772                         return ret;
1773                 }
1774         }
1775
1776         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1777         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1778
1779         /* If xhci_endpoint_disable() was called for this endpoint, but the
1780          * xHC hasn't been notified yet through the check_bandwidth() call,
1781          * this re-adds a new state for the endpoint from the new endpoint
1782          * descriptors.  We must drop and re-add this endpoint, so we leave the
1783          * drop flags alone.
1784          */
1785         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1786
1787         /* Store the usb_device pointer for later use */
1788         ep->hcpriv = udev;
1789
1790         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1791                         (unsigned int) ep->desc.bEndpointAddress,
1792                         udev->slot_id,
1793                         (unsigned int) new_drop_flags,
1794                         (unsigned int) new_add_flags);
1795         return 0;
1796 }
1797
1798 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1799 {
1800         struct xhci_input_control_ctx *ctrl_ctx;
1801         struct xhci_ep_ctx *ep_ctx;
1802         struct xhci_slot_ctx *slot_ctx;
1803         int i;
1804
1805         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1806         if (!ctrl_ctx) {
1807                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1808                                 __func__);
1809                 return;
1810         }
1811
1812         /* When a device's add flag and drop flag are zero, any subsequent
1813          * configure endpoint command will leave that endpoint's state
1814          * untouched.  Make sure we don't leave any old state in the input
1815          * endpoint contexts.
1816          */
1817         ctrl_ctx->drop_flags = 0;
1818         ctrl_ctx->add_flags = 0;
1819         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1820         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1821         /* Endpoint 0 is always valid */
1822         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1823         for (i = 1; i < 31; ++i) {
1824                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1825                 ep_ctx->ep_info = 0;
1826                 ep_ctx->ep_info2 = 0;
1827                 ep_ctx->deq = 0;
1828                 ep_ctx->tx_info = 0;
1829         }
1830 }
1831
1832 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1833                 struct usb_device *udev, u32 *cmd_status)
1834 {
1835         int ret;
1836
1837         switch (*cmd_status) {
1838         case COMP_CMD_ABORT:
1839         case COMP_CMD_STOP:
1840                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1841                 ret = -ETIME;
1842                 break;
1843         case COMP_ENOMEM:
1844                 dev_warn(&udev->dev,
1845                          "Not enough host controller resources for new device state.\n");
1846                 ret = -ENOMEM;
1847                 /* FIXME: can we allocate more resources for the HC? */
1848                 break;
1849         case COMP_BW_ERR:
1850         case COMP_2ND_BW_ERR:
1851                 dev_warn(&udev->dev,
1852                          "Not enough bandwidth for new device state.\n");
1853                 ret = -ENOSPC;
1854                 /* FIXME: can we go back to the old state? */
1855                 break;
1856         case COMP_TRB_ERR:
1857                 /* the HCD set up something wrong */
1858                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1859                                 "add flag = 1, "
1860                                 "and endpoint is not disabled.\n");
1861                 ret = -EINVAL;
1862                 break;
1863         case COMP_DEV_ERR:
1864                 dev_warn(&udev->dev,
1865                          "ERROR: Incompatible device for endpoint configure command.\n");
1866                 ret = -ENODEV;
1867                 break;
1868         case COMP_SUCCESS:
1869                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1870                                 "Successful Endpoint Configure command");
1871                 ret = 0;
1872                 break;
1873         default:
1874                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1875                                 *cmd_status);
1876                 ret = -EINVAL;
1877                 break;
1878         }
1879         return ret;
1880 }
1881
1882 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1883                 struct usb_device *udev, u32 *cmd_status)
1884 {
1885         int ret;
1886         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1887
1888         switch (*cmd_status) {
1889         case COMP_CMD_ABORT:
1890         case COMP_CMD_STOP:
1891                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1892                 ret = -ETIME;
1893                 break;
1894         case COMP_EINVAL:
1895                 dev_warn(&udev->dev,
1896                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1897                 ret = -EINVAL;
1898                 break;
1899         case COMP_EBADSLT:
1900                 dev_warn(&udev->dev,
1901                         "WARN: slot not enabled for evaluate context command.\n");
1902                 ret = -EINVAL;
1903                 break;
1904         case COMP_CTX_STATE:
1905                 dev_warn(&udev->dev,
1906                         "WARN: invalid context state for evaluate context command.\n");
1907                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1908                 ret = -EINVAL;
1909                 break;
1910         case COMP_DEV_ERR:
1911                 dev_warn(&udev->dev,
1912                         "ERROR: Incompatible device for evaluate context command.\n");
1913                 ret = -ENODEV;
1914                 break;
1915         case COMP_MEL_ERR:
1916                 /* Max Exit Latency too large error */
1917                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1918                 ret = -EINVAL;
1919                 break;
1920         case COMP_SUCCESS:
1921                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1922                                 "Successful evaluate context command");
1923                 ret = 0;
1924                 break;
1925         default:
1926                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1927                         *cmd_status);
1928                 ret = -EINVAL;
1929                 break;
1930         }
1931         return ret;
1932 }
1933
1934 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1935                 struct xhci_input_control_ctx *ctrl_ctx)
1936 {
1937         u32 valid_add_flags;
1938         u32 valid_drop_flags;
1939
1940         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1941          * (bit 1).  The default control endpoint is added during the Address
1942          * Device command and is never removed until the slot is disabled.
1943          */
1944         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1945         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1946
1947         /* Use hweight32 to count the number of ones in the add flags, or
1948          * number of endpoints added.  Don't count endpoints that are changed
1949          * (both added and dropped).
1950          */
1951         return hweight32(valid_add_flags) -
1952                 hweight32(valid_add_flags & valid_drop_flags);
1953 }
1954
1955 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1956                 struct xhci_input_control_ctx *ctrl_ctx)
1957 {
1958         u32 valid_add_flags;
1959         u32 valid_drop_flags;
1960
1961         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1962         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1963
1964         return hweight32(valid_drop_flags) -
1965                 hweight32(valid_add_flags & valid_drop_flags);
1966 }
1967
1968 /*
1969  * We need to reserve the new number of endpoints before the configure endpoint
1970  * command completes.  We can't subtract the dropped endpoints from the number
1971  * of active endpoints until the command completes because we can oversubscribe
1972  * the host in this case:
1973  *
1974  *  - the first configure endpoint command drops more endpoints than it adds
1975  *  - a second configure endpoint command that adds more endpoints is queued
1976  *  - the first configure endpoint command fails, so the config is unchanged
1977  *  - the second command may succeed, even though there isn't enough resources
1978  *
1979  * Must be called with xhci->lock held.
1980  */
1981 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1982                 struct xhci_input_control_ctx *ctrl_ctx)
1983 {
1984         u32 added_eps;
1985
1986         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1987         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1988                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1989                                 "Not enough ep ctxs: "
1990                                 "%u active, need to add %u, limit is %u.",
1991                                 xhci->num_active_eps, added_eps,
1992                                 xhci->limit_active_eps);
1993                 return -ENOMEM;
1994         }
1995         xhci->num_active_eps += added_eps;
1996         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1997                         "Adding %u ep ctxs, %u now active.", added_eps,
1998                         xhci->num_active_eps);
1999         return 0;
2000 }
2001
2002 /*
2003  * The configure endpoint was failed by the xHC for some other reason, so we
2004  * need to revert the resources that failed configuration would have used.
2005  *
2006  * Must be called with xhci->lock held.
2007  */
2008 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2009                 struct xhci_input_control_ctx *ctrl_ctx)
2010 {
2011         u32 num_failed_eps;
2012
2013         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2014         xhci->num_active_eps -= num_failed_eps;
2015         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2016                         "Removing %u failed ep ctxs, %u now active.",
2017                         num_failed_eps,
2018                         xhci->num_active_eps);
2019 }
2020
2021 /*
2022  * Now that the command has completed, clean up the active endpoint count by
2023  * subtracting out the endpoints that were dropped (but not changed).
2024  *
2025  * Must be called with xhci->lock held.
2026  */
2027 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2028                 struct xhci_input_control_ctx *ctrl_ctx)
2029 {
2030         u32 num_dropped_eps;
2031
2032         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2033         xhci->num_active_eps -= num_dropped_eps;
2034         if (num_dropped_eps)
2035                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2036                                 "Removing %u dropped ep ctxs, %u now active.",
2037                                 num_dropped_eps,
2038                                 xhci->num_active_eps);
2039 }
2040
2041 static unsigned int xhci_get_block_size(struct usb_device *udev)
2042 {
2043         switch (udev->speed) {
2044         case USB_SPEED_LOW:
2045         case USB_SPEED_FULL:
2046                 return FS_BLOCK;
2047         case USB_SPEED_HIGH:
2048                 return HS_BLOCK;
2049         case USB_SPEED_SUPER:
2050         case USB_SPEED_SUPER_PLUS:
2051                 return SS_BLOCK;
2052         case USB_SPEED_UNKNOWN:
2053         case USB_SPEED_WIRELESS:
2054         default:
2055                 /* Should never happen */
2056                 return 1;
2057         }
2058 }
2059
2060 static unsigned int
2061 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2062 {
2063         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2064                 return LS_OVERHEAD;
2065         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2066                 return FS_OVERHEAD;
2067         return HS_OVERHEAD;
2068 }
2069
2070 /* If we are changing a LS/FS device under a HS hub,
2071  * make sure (if we are activating a new TT) that the HS bus has enough
2072  * bandwidth for this new TT.
2073  */
2074 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2075                 struct xhci_virt_device *virt_dev,
2076                 int old_active_eps)
2077 {
2078         struct xhci_interval_bw_table *bw_table;
2079         struct xhci_tt_bw_info *tt_info;
2080
2081         /* Find the bandwidth table for the root port this TT is attached to. */
2082         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2083         tt_info = virt_dev->tt_info;
2084         /* If this TT already had active endpoints, the bandwidth for this TT
2085          * has already been added.  Removing all periodic endpoints (and thus
2086          * making the TT enactive) will only decrease the bandwidth used.
2087          */
2088         if (old_active_eps)
2089                 return 0;
2090         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2091                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2092                         return -ENOMEM;
2093                 return 0;
2094         }
2095         /* Not sure why we would have no new active endpoints...
2096          *
2097          * Maybe because of an Evaluate Context change for a hub update or a
2098          * control endpoint 0 max packet size change?
2099          * FIXME: skip the bandwidth calculation in that case.
2100          */
2101         return 0;
2102 }
2103
2104 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2105                 struct xhci_virt_device *virt_dev)
2106 {
2107         unsigned int bw_reserved;
2108
2109         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2110         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2111                 return -ENOMEM;
2112
2113         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2114         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2115                 return -ENOMEM;
2116
2117         return 0;
2118 }
2119
2120 /*
2121  * This algorithm is a very conservative estimate of the worst-case scheduling
2122  * scenario for any one interval.  The hardware dynamically schedules the
2123  * packets, so we can't tell which microframe could be the limiting factor in
2124  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2125  *
2126  * Obviously, we can't solve an NP complete problem to find the minimum worst
2127  * case scenario.  Instead, we come up with an estimate that is no less than
2128  * the worst case bandwidth used for any one microframe, but may be an
2129  * over-estimate.
2130  *
2131  * We walk the requirements for each endpoint by interval, starting with the
2132  * smallest interval, and place packets in the schedule where there is only one
2133  * possible way to schedule packets for that interval.  In order to simplify
2134  * this algorithm, we record the largest max packet size for each interval, and
2135  * assume all packets will be that size.
2136  *
2137  * For interval 0, we obviously must schedule all packets for each interval.
2138  * The bandwidth for interval 0 is just the amount of data to be transmitted
2139  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2140  * the number of packets).
2141  *
2142  * For interval 1, we have two possible microframes to schedule those packets
2143  * in.  For this algorithm, if we can schedule the same number of packets for
2144  * each possible scheduling opportunity (each microframe), we will do so.  The
2145  * remaining number of packets will be saved to be transmitted in the gaps in
2146  * the next interval's scheduling sequence.
2147  *
2148  * As we move those remaining packets to be scheduled with interval 2 packets,
2149  * we have to double the number of remaining packets to transmit.  This is
2150  * because the intervals are actually powers of 2, and we would be transmitting
2151  * the previous interval's packets twice in this interval.  We also have to be
2152  * sure that when we look at the largest max packet size for this interval, we
2153  * also look at the largest max packet size for the remaining packets and take
2154  * the greater of the two.
2155  *
2156  * The algorithm continues to evenly distribute packets in each scheduling
2157  * opportunity, and push the remaining packets out, until we get to the last
2158  * interval.  Then those packets and their associated overhead are just added
2159  * to the bandwidth used.
2160  */
2161 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2162                 struct xhci_virt_device *virt_dev,
2163                 int old_active_eps)
2164 {
2165         unsigned int bw_reserved;
2166         unsigned int max_bandwidth;
2167         unsigned int bw_used;
2168         unsigned int block_size;
2169         struct xhci_interval_bw_table *bw_table;
2170         unsigned int packet_size = 0;
2171         unsigned int overhead = 0;
2172         unsigned int packets_transmitted = 0;
2173         unsigned int packets_remaining = 0;
2174         unsigned int i;
2175
2176         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2177                 return xhci_check_ss_bw(xhci, virt_dev);
2178
2179         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2180                 max_bandwidth = HS_BW_LIMIT;
2181                 /* Convert percent of bus BW reserved to blocks reserved */
2182                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2183         } else {
2184                 max_bandwidth = FS_BW_LIMIT;
2185                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2186         }
2187
2188         bw_table = virt_dev->bw_table;
2189         /* We need to translate the max packet size and max ESIT payloads into
2190          * the units the hardware uses.
2191          */
2192         block_size = xhci_get_block_size(virt_dev->udev);
2193
2194         /* If we are manipulating a LS/FS device under a HS hub, double check
2195          * that the HS bus has enough bandwidth if we are activing a new TT.
2196          */
2197         if (virt_dev->tt_info) {
2198                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2199                                 "Recalculating BW for rootport %u",
2200                                 virt_dev->real_port);
2201                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2202                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2203                                         "newly activated TT.\n");
2204                         return -ENOMEM;
2205                 }
2206                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2207                                 "Recalculating BW for TT slot %u port %u",
2208                                 virt_dev->tt_info->slot_id,
2209                                 virt_dev->tt_info->ttport);
2210         } else {
2211                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2212                                 "Recalculating BW for rootport %u",
2213                                 virt_dev->real_port);
2214         }
2215
2216         /* Add in how much bandwidth will be used for interval zero, or the
2217          * rounded max ESIT payload + number of packets * largest overhead.
2218          */
2219         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2220                 bw_table->interval_bw[0].num_packets *
2221                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2222
2223         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2224                 unsigned int bw_added;
2225                 unsigned int largest_mps;
2226                 unsigned int interval_overhead;
2227
2228                 /*
2229                  * How many packets could we transmit in this interval?
2230                  * If packets didn't fit in the previous interval, we will need
2231                  * to transmit that many packets twice within this interval.
2232                  */
2233                 packets_remaining = 2 * packets_remaining +
2234                         bw_table->interval_bw[i].num_packets;
2235
2236                 /* Find the largest max packet size of this or the previous
2237                  * interval.
2238                  */
2239                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2240                         largest_mps = 0;
2241                 else {
2242                         struct xhci_virt_ep *virt_ep;
2243                         struct list_head *ep_entry;
2244
2245                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2246                         virt_ep = list_entry(ep_entry,
2247                                         struct xhci_virt_ep, bw_endpoint_list);
2248                         /* Convert to blocks, rounding up */
2249                         largest_mps = DIV_ROUND_UP(
2250                                         virt_ep->bw_info.max_packet_size,
2251                                         block_size);
2252                 }
2253                 if (largest_mps > packet_size)
2254                         packet_size = largest_mps;
2255
2256                 /* Use the larger overhead of this or the previous interval. */
2257                 interval_overhead = xhci_get_largest_overhead(
2258                                 &bw_table->interval_bw[i]);
2259                 if (interval_overhead > overhead)
2260                         overhead = interval_overhead;
2261
2262                 /* How many packets can we evenly distribute across
2263                  * (1 << (i + 1)) possible scheduling opportunities?
2264                  */
2265                 packets_transmitted = packets_remaining >> (i + 1);
2266
2267                 /* Add in the bandwidth used for those scheduled packets */
2268                 bw_added = packets_transmitted * (overhead + packet_size);
2269
2270                 /* How many packets do we have remaining to transmit? */
2271                 packets_remaining = packets_remaining % (1 << (i + 1));
2272
2273                 /* What largest max packet size should those packets have? */
2274                 /* If we've transmitted all packets, don't carry over the
2275                  * largest packet size.
2276                  */
2277                 if (packets_remaining == 0) {
2278                         packet_size = 0;
2279                         overhead = 0;
2280                 } else if (packets_transmitted > 0) {
2281                         /* Otherwise if we do have remaining packets, and we've
2282                          * scheduled some packets in this interval, take the
2283                          * largest max packet size from endpoints with this
2284                          * interval.
2285                          */
2286                         packet_size = largest_mps;
2287                         overhead = interval_overhead;
2288                 }
2289                 /* Otherwise carry over packet_size and overhead from the last
2290                  * time we had a remainder.
2291                  */
2292                 bw_used += bw_added;
2293                 if (bw_used > max_bandwidth) {
2294                         xhci_warn(xhci, "Not enough bandwidth. "
2295                                         "Proposed: %u, Max: %u\n",
2296                                 bw_used, max_bandwidth);
2297                         return -ENOMEM;
2298                 }
2299         }
2300         /*
2301          * Ok, we know we have some packets left over after even-handedly
2302          * scheduling interval 15.  We don't know which microframes they will
2303          * fit into, so we over-schedule and say they will be scheduled every
2304          * microframe.
2305          */
2306         if (packets_remaining > 0)
2307                 bw_used += overhead + packet_size;
2308
2309         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2310                 unsigned int port_index = virt_dev->real_port - 1;
2311
2312                 /* OK, we're manipulating a HS device attached to a
2313                  * root port bandwidth domain.  Include the number of active TTs
2314                  * in the bandwidth used.
2315                  */
2316                 bw_used += TT_HS_OVERHEAD *
2317                         xhci->rh_bw[port_index].num_active_tts;
2318         }
2319
2320         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2321                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2322                 "Available: %u " "percent",
2323                 bw_used, max_bandwidth, bw_reserved,
2324                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2325                 max_bandwidth);
2326
2327         bw_used += bw_reserved;
2328         if (bw_used > max_bandwidth) {
2329                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2330                                 bw_used, max_bandwidth);
2331                 return -ENOMEM;
2332         }
2333
2334         bw_table->bw_used = bw_used;
2335         return 0;
2336 }
2337
2338 static bool xhci_is_async_ep(unsigned int ep_type)
2339 {
2340         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2341                                         ep_type != ISOC_IN_EP &&
2342                                         ep_type != INT_IN_EP);
2343 }
2344
2345 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2346 {
2347         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2348 }
2349
2350 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2351 {
2352         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2353
2354         if (ep_bw->ep_interval == 0)
2355                 return SS_OVERHEAD_BURST +
2356                         (ep_bw->mult * ep_bw->num_packets *
2357                                         (SS_OVERHEAD + mps));
2358         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2359                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2360                                 1 << ep_bw->ep_interval);
2361
2362 }
2363
2364 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2365                 struct xhci_bw_info *ep_bw,
2366                 struct xhci_interval_bw_table *bw_table,
2367                 struct usb_device *udev,
2368                 struct xhci_virt_ep *virt_ep,
2369                 struct xhci_tt_bw_info *tt_info)
2370 {
2371         struct xhci_interval_bw *interval_bw;
2372         int normalized_interval;
2373
2374         if (xhci_is_async_ep(ep_bw->type))
2375                 return;
2376
2377         if (udev->speed >= USB_SPEED_SUPER) {
2378                 if (xhci_is_sync_in_ep(ep_bw->type))
2379                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2380                                 xhci_get_ss_bw_consumed(ep_bw);
2381                 else
2382                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2383                                 xhci_get_ss_bw_consumed(ep_bw);
2384                 return;
2385         }
2386
2387         /* SuperSpeed endpoints never get added to intervals in the table, so
2388          * this check is only valid for HS/FS/LS devices.
2389          */
2390         if (list_empty(&virt_ep->bw_endpoint_list))
2391                 return;
2392         /* For LS/FS devices, we need to translate the interval expressed in
2393          * microframes to frames.
2394          */
2395         if (udev->speed == USB_SPEED_HIGH)
2396                 normalized_interval = ep_bw->ep_interval;
2397         else
2398                 normalized_interval = ep_bw->ep_interval - 3;
2399
2400         if (normalized_interval == 0)
2401                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2402         interval_bw = &bw_table->interval_bw[normalized_interval];
2403         interval_bw->num_packets -= ep_bw->num_packets;
2404         switch (udev->speed) {
2405         case USB_SPEED_LOW:
2406                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2407                 break;
2408         case USB_SPEED_FULL:
2409                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2410                 break;
2411         case USB_SPEED_HIGH:
2412                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2413                 break;
2414         case USB_SPEED_SUPER:
2415         case USB_SPEED_SUPER_PLUS:
2416         case USB_SPEED_UNKNOWN:
2417         case USB_SPEED_WIRELESS:
2418                 /* Should never happen because only LS/FS/HS endpoints will get
2419                  * added to the endpoint list.
2420                  */
2421                 return;
2422         }
2423         if (tt_info)
2424                 tt_info->active_eps -= 1;
2425         list_del_init(&virt_ep->bw_endpoint_list);
2426 }
2427
2428 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2429                 struct xhci_bw_info *ep_bw,
2430                 struct xhci_interval_bw_table *bw_table,
2431                 struct usb_device *udev,
2432                 struct xhci_virt_ep *virt_ep,
2433                 struct xhci_tt_bw_info *tt_info)
2434 {
2435         struct xhci_interval_bw *interval_bw;
2436         struct xhci_virt_ep *smaller_ep;
2437         int normalized_interval;
2438
2439         if (xhci_is_async_ep(ep_bw->type))
2440                 return;
2441
2442         if (udev->speed == USB_SPEED_SUPER) {
2443                 if (xhci_is_sync_in_ep(ep_bw->type))
2444                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2445                                 xhci_get_ss_bw_consumed(ep_bw);
2446                 else
2447                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2448                                 xhci_get_ss_bw_consumed(ep_bw);
2449                 return;
2450         }
2451
2452         /* For LS/FS devices, we need to translate the interval expressed in
2453          * microframes to frames.
2454          */
2455         if (udev->speed == USB_SPEED_HIGH)
2456                 normalized_interval = ep_bw->ep_interval;
2457         else
2458                 normalized_interval = ep_bw->ep_interval - 3;
2459
2460         if (normalized_interval == 0)
2461                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2462         interval_bw = &bw_table->interval_bw[normalized_interval];
2463         interval_bw->num_packets += ep_bw->num_packets;
2464         switch (udev->speed) {
2465         case USB_SPEED_LOW:
2466                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2467                 break;
2468         case USB_SPEED_FULL:
2469                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2470                 break;
2471         case USB_SPEED_HIGH:
2472                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2473                 break;
2474         case USB_SPEED_SUPER:
2475         case USB_SPEED_SUPER_PLUS:
2476         case USB_SPEED_UNKNOWN:
2477         case USB_SPEED_WIRELESS:
2478                 /* Should never happen because only LS/FS/HS endpoints will get
2479                  * added to the endpoint list.
2480                  */
2481                 return;
2482         }
2483
2484         if (tt_info)
2485                 tt_info->active_eps += 1;
2486         /* Insert the endpoint into the list, largest max packet size first. */
2487         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2488                         bw_endpoint_list) {
2489                 if (ep_bw->max_packet_size >=
2490                                 smaller_ep->bw_info.max_packet_size) {
2491                         /* Add the new ep before the smaller endpoint */
2492                         list_add_tail(&virt_ep->bw_endpoint_list,
2493                                         &smaller_ep->bw_endpoint_list);
2494                         return;
2495                 }
2496         }
2497         /* Add the new endpoint at the end of the list. */
2498         list_add_tail(&virt_ep->bw_endpoint_list,
2499                         &interval_bw->endpoints);
2500 }
2501
2502 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2503                 struct xhci_virt_device *virt_dev,
2504                 int old_active_eps)
2505 {
2506         struct xhci_root_port_bw_info *rh_bw_info;
2507         if (!virt_dev->tt_info)
2508                 return;
2509
2510         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2511         if (old_active_eps == 0 &&
2512                                 virt_dev->tt_info->active_eps != 0) {
2513                 rh_bw_info->num_active_tts += 1;
2514                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2515         } else if (old_active_eps != 0 &&
2516                                 virt_dev->tt_info->active_eps == 0) {
2517                 rh_bw_info->num_active_tts -= 1;
2518                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2519         }
2520 }
2521
2522 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2523                 struct xhci_virt_device *virt_dev,
2524                 struct xhci_container_ctx *in_ctx)
2525 {
2526         struct xhci_bw_info ep_bw_info[31];
2527         int i;
2528         struct xhci_input_control_ctx *ctrl_ctx;
2529         int old_active_eps = 0;
2530
2531         if (virt_dev->tt_info)
2532                 old_active_eps = virt_dev->tt_info->active_eps;
2533
2534         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2535         if (!ctrl_ctx) {
2536                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2537                                 __func__);
2538                 return -ENOMEM;
2539         }
2540
2541         for (i = 0; i < 31; i++) {
2542                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2543                         continue;
2544
2545                 /* Make a copy of the BW info in case we need to revert this */
2546                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2547                                 sizeof(ep_bw_info[i]));
2548                 /* Drop the endpoint from the interval table if the endpoint is
2549                  * being dropped or changed.
2550                  */
2551                 if (EP_IS_DROPPED(ctrl_ctx, i))
2552                         xhci_drop_ep_from_interval_table(xhci,
2553                                         &virt_dev->eps[i].bw_info,
2554                                         virt_dev->bw_table,
2555                                         virt_dev->udev,
2556                                         &virt_dev->eps[i],
2557                                         virt_dev->tt_info);
2558         }
2559         /* Overwrite the information stored in the endpoints' bw_info */
2560         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2561         for (i = 0; i < 31; i++) {
2562                 /* Add any changed or added endpoints to the interval table */
2563                 if (EP_IS_ADDED(ctrl_ctx, i))
2564                         xhci_add_ep_to_interval_table(xhci,
2565                                         &virt_dev->eps[i].bw_info,
2566                                         virt_dev->bw_table,
2567                                         virt_dev->udev,
2568                                         &virt_dev->eps[i],
2569                                         virt_dev->tt_info);
2570         }
2571
2572         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2573                 /* Ok, this fits in the bandwidth we have.
2574                  * Update the number of active TTs.
2575                  */
2576                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2577                 return 0;
2578         }
2579
2580         /* We don't have enough bandwidth for this, revert the stored info. */
2581         for (i = 0; i < 31; i++) {
2582                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2583                         continue;
2584
2585                 /* Drop the new copies of any added or changed endpoints from
2586                  * the interval table.
2587                  */
2588                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2589                         xhci_drop_ep_from_interval_table(xhci,
2590                                         &virt_dev->eps[i].bw_info,
2591                                         virt_dev->bw_table,
2592                                         virt_dev->udev,
2593                                         &virt_dev->eps[i],
2594                                         virt_dev->tt_info);
2595                 }
2596                 /* Revert the endpoint back to its old information */
2597                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2598                                 sizeof(ep_bw_info[i]));
2599                 /* Add any changed or dropped endpoints back into the table */
2600                 if (EP_IS_DROPPED(ctrl_ctx, i))
2601                         xhci_add_ep_to_interval_table(xhci,
2602                                         &virt_dev->eps[i].bw_info,
2603                                         virt_dev->bw_table,
2604                                         virt_dev->udev,
2605                                         &virt_dev->eps[i],
2606                                         virt_dev->tt_info);
2607         }
2608         return -ENOMEM;
2609 }
2610
2611
2612 /* Issue a configure endpoint command or evaluate context command
2613  * and wait for it to finish.
2614  */
2615 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2616                 struct usb_device *udev,
2617                 struct xhci_command *command,
2618                 bool ctx_change, bool must_succeed)
2619 {
2620         int ret;
2621         unsigned long flags;
2622         struct xhci_input_control_ctx *ctrl_ctx;
2623         struct xhci_virt_device *virt_dev;
2624
2625         if (!command)
2626                 return -EINVAL;
2627
2628         spin_lock_irqsave(&xhci->lock, flags);
2629         virt_dev = xhci->devs[udev->slot_id];
2630
2631         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2632         if (!ctrl_ctx) {
2633                 spin_unlock_irqrestore(&xhci->lock, flags);
2634                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2635                                 __func__);
2636                 return -ENOMEM;
2637         }
2638
2639         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2640                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2641                 spin_unlock_irqrestore(&xhci->lock, flags);
2642                 xhci_warn(xhci, "Not enough host resources, "
2643                                 "active endpoint contexts = %u\n",
2644                                 xhci->num_active_eps);
2645                 return -ENOMEM;
2646         }
2647         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2648             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2649                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2650                         xhci_free_host_resources(xhci, ctrl_ctx);
2651                 spin_unlock_irqrestore(&xhci->lock, flags);
2652                 xhci_warn(xhci, "Not enough bandwidth\n");
2653                 return -ENOMEM;
2654         }
2655
2656         if (!ctx_change)
2657                 ret = xhci_queue_configure_endpoint(xhci, command,
2658                                 command->in_ctx->dma,
2659                                 udev->slot_id, must_succeed);
2660         else
2661                 ret = xhci_queue_evaluate_context(xhci, command,
2662                                 command->in_ctx->dma,
2663                                 udev->slot_id, must_succeed);
2664         if (ret < 0) {
2665                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2666                         xhci_free_host_resources(xhci, ctrl_ctx);
2667                 spin_unlock_irqrestore(&xhci->lock, flags);
2668                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2669                                 "FIXME allocate a new ring segment");
2670                 return -ENOMEM;
2671         }
2672         xhci_ring_cmd_db(xhci);
2673         spin_unlock_irqrestore(&xhci->lock, flags);
2674
2675         /* Wait for the configure endpoint command to complete */
2676         wait_for_completion(command->completion);
2677
2678         if (!ctx_change)
2679                 ret = xhci_configure_endpoint_result(xhci, udev,
2680                                                      &command->status);
2681         else
2682                 ret = xhci_evaluate_context_result(xhci, udev,
2683                                                    &command->status);
2684
2685         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2686                 spin_lock_irqsave(&xhci->lock, flags);
2687                 /* If the command failed, remove the reserved resources.
2688                  * Otherwise, clean up the estimate to include dropped eps.
2689                  */
2690                 if (ret)
2691                         xhci_free_host_resources(xhci, ctrl_ctx);
2692                 else
2693                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2694                 spin_unlock_irqrestore(&xhci->lock, flags);
2695         }
2696         return ret;
2697 }
2698
2699 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2700         struct xhci_virt_device *vdev, int i)
2701 {
2702         struct xhci_virt_ep *ep = &vdev->eps[i];
2703
2704         if (ep->ep_state & EP_HAS_STREAMS) {
2705                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2706                                 xhci_get_endpoint_address(i));
2707                 xhci_free_stream_info(xhci, ep->stream_info);
2708                 ep->stream_info = NULL;
2709                 ep->ep_state &= ~EP_HAS_STREAMS;
2710         }
2711 }
2712
2713 /* Called after one or more calls to xhci_add_endpoint() or
2714  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2715  * to call xhci_reset_bandwidth().
2716  *
2717  * Since we are in the middle of changing either configuration or
2718  * installing a new alt setting, the USB core won't allow URBs to be
2719  * enqueued for any endpoint on the old config or interface.  Nothing
2720  * else should be touching the xhci->devs[slot_id] structure, so we
2721  * don't need to take the xhci->lock for manipulating that.
2722  */
2723 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2724 {
2725         int i;
2726         int ret = 0;
2727         struct xhci_hcd *xhci;
2728         struct xhci_virt_device *virt_dev;
2729         struct xhci_input_control_ctx *ctrl_ctx;
2730         struct xhci_slot_ctx *slot_ctx;
2731         struct xhci_command *command;
2732
2733         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2734         if (ret <= 0)
2735                 return ret;
2736         xhci = hcd_to_xhci(hcd);
2737         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2738                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2739                 return -ENODEV;
2740
2741         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2742         virt_dev = xhci->devs[udev->slot_id];
2743
2744         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2745         if (!command)
2746                 return -ENOMEM;
2747
2748         command->in_ctx = virt_dev->in_ctx;
2749
2750         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2751         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2752         if (!ctrl_ctx) {
2753                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2754                                 __func__);
2755                 ret = -ENOMEM;
2756                 goto command_cleanup;
2757         }
2758         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2759         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2760         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2761
2762         /* Don't issue the command if there's no endpoints to update. */
2763         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2764             ctrl_ctx->drop_flags == 0) {
2765                 ret = 0;
2766                 goto command_cleanup;
2767         }
2768         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2769         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2770         for (i = 31; i >= 1; i--) {
2771                 __le32 le32 = cpu_to_le32(BIT(i));
2772
2773                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2774                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2775                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2776                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2777                         break;
2778                 }
2779         }
2780         xhci_dbg(xhci, "New Input Control Context:\n");
2781         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2782                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2783
2784         ret = xhci_configure_endpoint(xhci, udev, command,
2785                         false, false);
2786         if (ret)
2787                 /* Callee should call reset_bandwidth() */
2788                 goto command_cleanup;
2789
2790         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2791         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2792                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2793
2794         /* Free any rings that were dropped, but not changed. */
2795         for (i = 1; i < 31; ++i) {
2796                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2797                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2798                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2799                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2800                 }
2801         }
2802         xhci_zero_in_ctx(xhci, virt_dev);
2803         /*
2804          * Install any rings for completely new endpoints or changed endpoints,
2805          * and free or cache any old rings from changed endpoints.
2806          */
2807         for (i = 1; i < 31; ++i) {
2808                 if (!virt_dev->eps[i].new_ring)
2809                         continue;
2810                 /* Only cache or free the old ring if it exists.
2811                  * It may not if this is the first add of an endpoint.
2812                  */
2813                 if (virt_dev->eps[i].ring) {
2814                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2815                 }
2816                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2817                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2818                 virt_dev->eps[i].new_ring = NULL;
2819         }
2820 command_cleanup:
2821         kfree(command->completion);
2822         kfree(command);
2823
2824         return ret;
2825 }
2826
2827 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2828 {
2829         struct xhci_hcd *xhci;
2830         struct xhci_virt_device *virt_dev;
2831         int i, ret;
2832
2833         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2834         if (ret <= 0)
2835                 return;
2836         xhci = hcd_to_xhci(hcd);
2837
2838         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2839         virt_dev = xhci->devs[udev->slot_id];
2840         /* Free any rings allocated for added endpoints */
2841         for (i = 0; i < 31; ++i) {
2842                 if (virt_dev->eps[i].new_ring) {
2843                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2844                         virt_dev->eps[i].new_ring = NULL;
2845                 }
2846         }
2847         xhci_zero_in_ctx(xhci, virt_dev);
2848 }
2849
2850 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2851                 struct xhci_container_ctx *in_ctx,
2852                 struct xhci_container_ctx *out_ctx,
2853                 struct xhci_input_control_ctx *ctrl_ctx,
2854                 u32 add_flags, u32 drop_flags)
2855 {
2856         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2857         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2858         xhci_slot_copy(xhci, in_ctx, out_ctx);
2859         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2860
2861         xhci_dbg(xhci, "Input Context:\n");
2862         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2863 }
2864
2865 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2866                 unsigned int slot_id, unsigned int ep_index,
2867                 struct xhci_dequeue_state *deq_state)
2868 {
2869         struct xhci_input_control_ctx *ctrl_ctx;
2870         struct xhci_container_ctx *in_ctx;
2871         struct xhci_ep_ctx *ep_ctx;
2872         u32 added_ctxs;
2873         dma_addr_t addr;
2874
2875         in_ctx = xhci->devs[slot_id]->in_ctx;
2876         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2877         if (!ctrl_ctx) {
2878                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2879                                 __func__);
2880                 return;
2881         }
2882
2883         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2884                         xhci->devs[slot_id]->out_ctx, ep_index);
2885         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2886         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2887                         deq_state->new_deq_ptr);
2888         if (addr == 0) {
2889                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2890                                 "reset ep command\n");
2891                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2892                                 deq_state->new_deq_seg,
2893                                 deq_state->new_deq_ptr);
2894                 return;
2895         }
2896         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2897
2898         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2899         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2900                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2901                         added_ctxs, added_ctxs);
2902 }
2903
2904 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2905                         unsigned int ep_index, struct xhci_td *td)
2906 {
2907         struct xhci_dequeue_state deq_state;
2908         struct xhci_virt_ep *ep;
2909         struct usb_device *udev = td->urb->dev;
2910
2911         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2912                         "Cleaning up stalled endpoint ring");
2913         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2914         /* We need to move the HW's dequeue pointer past this TD,
2915          * or it will attempt to resend it on the next doorbell ring.
2916          */
2917         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2918                         ep_index, ep->stopped_stream, td, &deq_state);
2919
2920         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2921                 return;
2922
2923         /* HW with the reset endpoint quirk will use the saved dequeue state to
2924          * issue a configure endpoint command later.
2925          */
2926         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2927                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2928                                 "Queueing new dequeue state");
2929                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2930                                 ep_index, ep->stopped_stream, &deq_state);
2931         } else {
2932                 /* Better hope no one uses the input context between now and the
2933                  * reset endpoint completion!
2934                  * XXX: No idea how this hardware will react when stream rings
2935                  * are enabled.
2936                  */
2937                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2938                                 "Setting up input context for "
2939                                 "configure endpoint command");
2940                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2941                                 ep_index, &deq_state);
2942         }
2943 }
2944
2945 /* Called when clearing halted device. The core should have sent the control
2946  * message to clear the device halt condition. The host side of the halt should
2947  * already be cleared with a reset endpoint command issued when the STALL tx
2948  * event was received.
2949  *
2950  * Context: in_interrupt
2951  */
2952
2953 void xhci_endpoint_reset(struct usb_hcd *hcd,
2954                 struct usb_host_endpoint *ep)
2955 {
2956         struct xhci_hcd *xhci;
2957
2958         xhci = hcd_to_xhci(hcd);
2959
2960         /*
2961          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2962          * The Reset Endpoint Command may only be issued to endpoints in the
2963          * Halted state. If software wishes reset the Data Toggle or Sequence
2964          * Number of an endpoint that isn't in the Halted state, then software
2965          * may issue a Configure Endpoint Command with the Drop and Add bits set
2966          * for the target endpoint. that is in the Stopped state.
2967          */
2968
2969         /* For now just print debug to follow the situation */
2970         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2971                  ep->desc.bEndpointAddress);
2972 }
2973
2974 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2975                 struct usb_device *udev, struct usb_host_endpoint *ep,
2976                 unsigned int slot_id)
2977 {
2978         int ret;
2979         unsigned int ep_index;
2980         unsigned int ep_state;
2981
2982         if (!ep)
2983                 return -EINVAL;
2984         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2985         if (ret <= 0)
2986                 return -EINVAL;
2987         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2988                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2989                                 " descriptor for ep 0x%x does not support streams\n",
2990                                 ep->desc.bEndpointAddress);
2991                 return -EINVAL;
2992         }
2993
2994         ep_index = xhci_get_endpoint_index(&ep->desc);
2995         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2996         if (ep_state & EP_HAS_STREAMS ||
2997                         ep_state & EP_GETTING_STREAMS) {
2998                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2999                                 "already has streams set up.\n",
3000                                 ep->desc.bEndpointAddress);
3001                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3002                                 "dynamic stream context array reallocation.\n");
3003                 return -EINVAL;
3004         }
3005         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3006                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3007                                 "endpoint 0x%x; URBs are pending.\n",
3008                                 ep->desc.bEndpointAddress);
3009                 return -EINVAL;
3010         }
3011         return 0;
3012 }
3013
3014 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3015                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3016 {
3017         unsigned int max_streams;
3018
3019         /* The stream context array size must be a power of two */
3020         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3021         /*
3022          * Find out how many primary stream array entries the host controller
3023          * supports.  Later we may use secondary stream arrays (similar to 2nd
3024          * level page entries), but that's an optional feature for xHCI host
3025          * controllers. xHCs must support at least 4 stream IDs.
3026          */
3027         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3028         if (*num_stream_ctxs > max_streams) {
3029                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3030                                 max_streams);
3031                 *num_stream_ctxs = max_streams;
3032                 *num_streams = max_streams;
3033         }
3034 }
3035
3036 /* Returns an error code if one of the endpoint already has streams.
3037  * This does not change any data structures, it only checks and gathers
3038  * information.
3039  */
3040 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3041                 struct usb_device *udev,
3042                 struct usb_host_endpoint **eps, unsigned int num_eps,
3043                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3044 {
3045         unsigned int max_streams;
3046         unsigned int endpoint_flag;
3047         int i;
3048         int ret;
3049
3050         for (i = 0; i < num_eps; i++) {
3051                 ret = xhci_check_streams_endpoint(xhci, udev,
3052                                 eps[i], udev->slot_id);
3053                 if (ret < 0)
3054                         return ret;
3055
3056                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3057                 if (max_streams < (*num_streams - 1)) {
3058                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3059                                         eps[i]->desc.bEndpointAddress,
3060                                         max_streams);
3061                         *num_streams = max_streams+1;
3062                 }
3063
3064                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3065                 if (*changed_ep_bitmask & endpoint_flag)
3066                         return -EINVAL;
3067                 *changed_ep_bitmask |= endpoint_flag;
3068         }
3069         return 0;
3070 }
3071
3072 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3073                 struct usb_device *udev,
3074                 struct usb_host_endpoint **eps, unsigned int num_eps)
3075 {
3076         u32 changed_ep_bitmask = 0;
3077         unsigned int slot_id;
3078         unsigned int ep_index;
3079         unsigned int ep_state;
3080         int i;
3081
3082         slot_id = udev->slot_id;
3083         if (!xhci->devs[slot_id])
3084                 return 0;
3085
3086         for (i = 0; i < num_eps; i++) {
3087                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3088                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3089                 /* Are streams already being freed for the endpoint? */
3090                 if (ep_state & EP_GETTING_NO_STREAMS) {
3091                         xhci_warn(xhci, "WARN Can't disable streams for "
3092                                         "endpoint 0x%x, "
3093                                         "streams are being disabled already\n",
3094                                         eps[i]->desc.bEndpointAddress);
3095                         return 0;
3096                 }
3097                 /* Are there actually any streams to free? */
3098                 if (!(ep_state & EP_HAS_STREAMS) &&
3099                                 !(ep_state & EP_GETTING_STREAMS)) {
3100                         xhci_warn(xhci, "WARN Can't disable streams for "
3101                                         "endpoint 0x%x, "
3102                                         "streams are already disabled!\n",
3103                                         eps[i]->desc.bEndpointAddress);
3104                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3105                                         "with non-streams endpoint\n");
3106                         return 0;
3107                 }
3108                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3109         }
3110         return changed_ep_bitmask;
3111 }
3112
3113 /*
3114  * The USB device drivers use this function (through the HCD interface in USB
3115  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3116  * coordinate mass storage command queueing across multiple endpoints (basically
3117  * a stream ID == a task ID).
3118  *
3119  * Setting up streams involves allocating the same size stream context array
3120  * for each endpoint and issuing a configure endpoint command for all endpoints.
3121  *
3122  * Don't allow the call to succeed if one endpoint only supports one stream
3123  * (which means it doesn't support streams at all).
3124  *
3125  * Drivers may get less stream IDs than they asked for, if the host controller
3126  * hardware or endpoints claim they can't support the number of requested
3127  * stream IDs.
3128  */
3129 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3130                 struct usb_host_endpoint **eps, unsigned int num_eps,
3131                 unsigned int num_streams, gfp_t mem_flags)
3132 {
3133         int i, ret;
3134         struct xhci_hcd *xhci;
3135         struct xhci_virt_device *vdev;
3136         struct xhci_command *config_cmd;
3137         struct xhci_input_control_ctx *ctrl_ctx;
3138         unsigned int ep_index;
3139         unsigned int num_stream_ctxs;
3140         unsigned int max_packet;
3141         unsigned long flags;
3142         u32 changed_ep_bitmask = 0;
3143
3144         if (!eps)
3145                 return -EINVAL;
3146
3147         /* Add one to the number of streams requested to account for
3148          * stream 0 that is reserved for xHCI usage.
3149          */
3150         num_streams += 1;
3151         xhci = hcd_to_xhci(hcd);
3152         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3153                         num_streams);
3154
3155         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3156         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3157                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3158                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3159                 return -ENOSYS;
3160         }
3161
3162         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3163         if (!config_cmd) {
3164                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3165                 return -ENOMEM;
3166         }
3167         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3168         if (!ctrl_ctx) {
3169                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3170                                 __func__);
3171                 xhci_free_command(xhci, config_cmd);
3172                 return -ENOMEM;
3173         }
3174
3175         /* Check to make sure all endpoints are not already configured for
3176          * streams.  While we're at it, find the maximum number of streams that
3177          * all the endpoints will support and check for duplicate endpoints.
3178          */
3179         spin_lock_irqsave(&xhci->lock, flags);
3180         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3181                         num_eps, &num_streams, &changed_ep_bitmask);
3182         if (ret < 0) {
3183                 xhci_free_command(xhci, config_cmd);
3184                 spin_unlock_irqrestore(&xhci->lock, flags);
3185                 return ret;
3186         }
3187         if (num_streams <= 1) {
3188                 xhci_warn(xhci, "WARN: endpoints can't handle "
3189                                 "more than one stream.\n");
3190                 xhci_free_command(xhci, config_cmd);
3191                 spin_unlock_irqrestore(&xhci->lock, flags);
3192                 return -EINVAL;
3193         }
3194         vdev = xhci->devs[udev->slot_id];
3195         /* Mark each endpoint as being in transition, so
3196          * xhci_urb_enqueue() will reject all URBs.
3197          */
3198         for (i = 0; i < num_eps; i++) {
3199                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3200                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3201         }
3202         spin_unlock_irqrestore(&xhci->lock, flags);
3203
3204         /* Setup internal data structures and allocate HW data structures for
3205          * streams (but don't install the HW structures in the input context
3206          * until we're sure all memory allocation succeeded).
3207          */
3208         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3209         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3210                         num_stream_ctxs, num_streams);
3211
3212         for (i = 0; i < num_eps; i++) {
3213                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3214                 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
3215                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3216                                 num_stream_ctxs,
3217                                 num_streams,
3218                                 max_packet, mem_flags);
3219                 if (!vdev->eps[ep_index].stream_info)
3220                         goto cleanup;
3221                 /* Set maxPstreams in endpoint context and update deq ptr to
3222                  * point to stream context array. FIXME
3223                  */
3224         }
3225
3226         /* Set up the input context for a configure endpoint command. */
3227         for (i = 0; i < num_eps; i++) {
3228                 struct xhci_ep_ctx *ep_ctx;
3229
3230                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3231                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3232
3233                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3234                                 vdev->out_ctx, ep_index);
3235                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3236                                 vdev->eps[ep_index].stream_info);
3237         }
3238         /* Tell the HW to drop its old copy of the endpoint context info
3239          * and add the updated copy from the input context.
3240          */
3241         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3242                         vdev->out_ctx, ctrl_ctx,
3243                         changed_ep_bitmask, changed_ep_bitmask);
3244
3245         /* Issue and wait for the configure endpoint command */
3246         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3247                         false, false);
3248
3249         /* xHC rejected the configure endpoint command for some reason, so we
3250          * leave the old ring intact and free our internal streams data
3251          * structure.
3252          */
3253         if (ret < 0)
3254                 goto cleanup;
3255
3256         spin_lock_irqsave(&xhci->lock, flags);
3257         for (i = 0; i < num_eps; i++) {
3258                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3259                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3260                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3261                          udev->slot_id, ep_index);
3262                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3263         }
3264         xhci_free_command(xhci, config_cmd);
3265         spin_unlock_irqrestore(&xhci->lock, flags);
3266
3267         /* Subtract 1 for stream 0, which drivers can't use */
3268         return num_streams - 1;
3269
3270 cleanup:
3271         /* If it didn't work, free the streams! */
3272         for (i = 0; i < num_eps; i++) {
3273                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3274                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3275                 vdev->eps[ep_index].stream_info = NULL;
3276                 /* FIXME Unset maxPstreams in endpoint context and
3277                  * update deq ptr to point to normal string ring.
3278                  */
3279                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3280                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3281                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3282         }
3283         xhci_free_command(xhci, config_cmd);
3284         return -ENOMEM;
3285 }
3286
3287 /* Transition the endpoint from using streams to being a "normal" endpoint
3288  * without streams.
3289  *
3290  * Modify the endpoint context state, submit a configure endpoint command,
3291  * and free all endpoint rings for streams if that completes successfully.
3292  */
3293 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3294                 struct usb_host_endpoint **eps, unsigned int num_eps,
3295                 gfp_t mem_flags)
3296 {
3297         int i, ret;
3298         struct xhci_hcd *xhci;
3299         struct xhci_virt_device *vdev;
3300         struct xhci_command *command;
3301         struct xhci_input_control_ctx *ctrl_ctx;
3302         unsigned int ep_index;
3303         unsigned long flags;
3304         u32 changed_ep_bitmask;
3305
3306         xhci = hcd_to_xhci(hcd);
3307         vdev = xhci->devs[udev->slot_id];
3308
3309         /* Set up a configure endpoint command to remove the streams rings */
3310         spin_lock_irqsave(&xhci->lock, flags);
3311         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3312                         udev, eps, num_eps);
3313         if (changed_ep_bitmask == 0) {
3314                 spin_unlock_irqrestore(&xhci->lock, flags);
3315                 return -EINVAL;
3316         }
3317
3318         /* Use the xhci_command structure from the first endpoint.  We may have
3319          * allocated too many, but the driver may call xhci_free_streams() for
3320          * each endpoint it grouped into one call to xhci_alloc_streams().
3321          */
3322         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3323         command = vdev->eps[ep_index].stream_info->free_streams_command;
3324         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3325         if (!ctrl_ctx) {
3326                 spin_unlock_irqrestore(&xhci->lock, flags);
3327                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3328                                 __func__);
3329                 return -EINVAL;
3330         }
3331
3332         for (i = 0; i < num_eps; i++) {
3333                 struct xhci_ep_ctx *ep_ctx;
3334
3335                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3336                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3337                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3338                         EP_GETTING_NO_STREAMS;
3339
3340                 xhci_endpoint_copy(xhci, command->in_ctx,
3341                                 vdev->out_ctx, ep_index);
3342                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3343                                 &vdev->eps[ep_index]);
3344         }
3345         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3346                         vdev->out_ctx, ctrl_ctx,
3347                         changed_ep_bitmask, changed_ep_bitmask);
3348         spin_unlock_irqrestore(&xhci->lock, flags);
3349
3350         /* Issue and wait for the configure endpoint command,
3351          * which must succeed.
3352          */
3353         ret = xhci_configure_endpoint(xhci, udev, command,
3354                         false, true);
3355
3356         /* xHC rejected the configure endpoint command for some reason, so we
3357          * leave the streams rings intact.
3358          */
3359         if (ret < 0)
3360                 return ret;
3361
3362         spin_lock_irqsave(&xhci->lock, flags);
3363         for (i = 0; i < num_eps; i++) {
3364                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3365                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3366                 vdev->eps[ep_index].stream_info = NULL;
3367                 /* FIXME Unset maxPstreams in endpoint context and
3368                  * update deq ptr to point to normal string ring.
3369                  */
3370                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3371                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3372         }
3373         spin_unlock_irqrestore(&xhci->lock, flags);
3374
3375         return 0;
3376 }
3377
3378 /*
3379  * Deletes endpoint resources for endpoints that were active before a Reset
3380  * Device command, or a Disable Slot command.  The Reset Device command leaves
3381  * the control endpoint intact, whereas the Disable Slot command deletes it.
3382  *
3383  * Must be called with xhci->lock held.
3384  */
3385 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3386         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3387 {
3388         int i;
3389         unsigned int num_dropped_eps = 0;
3390         unsigned int drop_flags = 0;
3391
3392         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3393                 if (virt_dev->eps[i].ring) {
3394                         drop_flags |= 1 << i;
3395                         num_dropped_eps++;
3396                 }
3397         }
3398         xhci->num_active_eps -= num_dropped_eps;
3399         if (num_dropped_eps)
3400                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3401                                 "Dropped %u ep ctxs, flags = 0x%x, "
3402                                 "%u now active.",
3403                                 num_dropped_eps, drop_flags,
3404                                 xhci->num_active_eps);
3405 }
3406
3407 /*
3408  * This submits a Reset Device Command, which will set the device state to 0,
3409  * set the device address to 0, and disable all the endpoints except the default
3410  * control endpoint.  The USB core should come back and call
3411  * xhci_address_device(), and then re-set up the configuration.  If this is
3412  * called because of a usb_reset_and_verify_device(), then the old alternate
3413  * settings will be re-installed through the normal bandwidth allocation
3414  * functions.
3415  *
3416  * Wait for the Reset Device command to finish.  Remove all structures
3417  * associated with the endpoints that were disabled.  Clear the input device
3418  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3419  *
3420  * If the virt_dev to be reset does not exist or does not match the udev,
3421  * it means the device is lost, possibly due to the xHC restore error and
3422  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3423  * re-allocate the device.
3424  */
3425 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3426 {
3427         int ret, i;
3428         unsigned long flags;
3429         struct xhci_hcd *xhci;
3430         unsigned int slot_id;
3431         struct xhci_virt_device *virt_dev;
3432         struct xhci_command *reset_device_cmd;
3433         int last_freed_endpoint;
3434         struct xhci_slot_ctx *slot_ctx;
3435         int old_active_eps = 0;
3436
3437         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3438         if (ret <= 0)
3439                 return ret;
3440         xhci = hcd_to_xhci(hcd);
3441         slot_id = udev->slot_id;
3442         virt_dev = xhci->devs[slot_id];
3443         if (!virt_dev) {
3444                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3445                                 "not exist. Re-allocate the device\n", slot_id);
3446                 ret = xhci_alloc_dev(hcd, udev);
3447                 if (ret == 1)
3448                         return 0;
3449                 else
3450                         return -EINVAL;
3451         }
3452
3453         if (virt_dev->tt_info)
3454                 old_active_eps = virt_dev->tt_info->active_eps;
3455
3456         if (virt_dev->udev != udev) {
3457                 /* If the virt_dev and the udev does not match, this virt_dev
3458                  * may belong to another udev.
3459                  * Re-allocate the device.
3460                  */
3461                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3462                                 "not match the udev. Re-allocate the device\n",
3463                                 slot_id);
3464                 ret = xhci_alloc_dev(hcd, udev);
3465                 if (ret == 1)
3466                         return 0;
3467                 else
3468                         return -EINVAL;
3469         }
3470
3471         /* If device is not setup, there is no point in resetting it */
3472         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3473         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3474                                                 SLOT_STATE_DISABLED)
3475                 return 0;
3476
3477         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3478         /* Allocate the command structure that holds the struct completion.
3479          * Assume we're in process context, since the normal device reset
3480          * process has to wait for the device anyway.  Storage devices are
3481          * reset as part of error handling, so use GFP_NOIO instead of
3482          * GFP_KERNEL.
3483          */
3484         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3485         if (!reset_device_cmd) {
3486                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3487                 return -ENOMEM;
3488         }
3489
3490         /* Attempt to submit the Reset Device command to the command ring */
3491         spin_lock_irqsave(&xhci->lock, flags);
3492
3493         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3494         if (ret) {
3495                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3496                 spin_unlock_irqrestore(&xhci->lock, flags);
3497                 goto command_cleanup;
3498         }
3499         xhci_ring_cmd_db(xhci);
3500         spin_unlock_irqrestore(&xhci->lock, flags);
3501
3502         /* Wait for the Reset Device command to finish */
3503         wait_for_completion(reset_device_cmd->completion);
3504
3505         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3506          * unless we tried to reset a slot ID that wasn't enabled,
3507          * or the device wasn't in the addressed or configured state.
3508          */
3509         ret = reset_device_cmd->status;
3510         switch (ret) {
3511         case COMP_CMD_ABORT:
3512         case COMP_CMD_STOP:
3513                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3514                 ret = -ETIME;
3515                 goto command_cleanup;
3516         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3517         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3518                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3519                                 slot_id,
3520                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3521                 xhci_dbg(xhci, "Not freeing device rings.\n");
3522                 /* Don't treat this as an error.  May change my mind later. */
3523                 ret = 0;
3524                 goto command_cleanup;
3525         case COMP_SUCCESS:
3526                 xhci_dbg(xhci, "Successful reset device command.\n");
3527                 break;
3528         default:
3529                 if (xhci_is_vendor_info_code(xhci, ret))
3530                         break;
3531                 xhci_warn(xhci, "Unknown completion code %u for "
3532                                 "reset device command.\n", ret);
3533                 ret = -EINVAL;
3534                 goto command_cleanup;
3535         }
3536
3537         /* Free up host controller endpoint resources */
3538         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3539                 spin_lock_irqsave(&xhci->lock, flags);
3540                 /* Don't delete the default control endpoint resources */
3541                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3542                 spin_unlock_irqrestore(&xhci->lock, flags);
3543         }
3544
3545         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3546         last_freed_endpoint = 1;
3547         for (i = 1; i < 31; ++i) {
3548                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3549
3550                 if (ep->ep_state & EP_HAS_STREAMS) {
3551                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3552                                         xhci_get_endpoint_address(i));
3553                         xhci_free_stream_info(xhci, ep->stream_info);
3554                         ep->stream_info = NULL;
3555                         ep->ep_state &= ~EP_HAS_STREAMS;
3556                 }
3557
3558                 if (ep->ring) {
3559                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3560                         last_freed_endpoint = i;
3561                 }
3562                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3563                         xhci_drop_ep_from_interval_table(xhci,
3564                                         &virt_dev->eps[i].bw_info,
3565                                         virt_dev->bw_table,
3566                                         udev,
3567                                         &virt_dev->eps[i],
3568                                         virt_dev->tt_info);
3569                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3570         }
3571         /* If necessary, update the number of active TTs on this root port */
3572         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3573
3574         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3575         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3576         ret = 0;
3577
3578 command_cleanup:
3579         xhci_free_command(xhci, reset_device_cmd);
3580         return ret;
3581 }
3582
3583 /*
3584  * At this point, the struct usb_device is about to go away, the device has
3585  * disconnected, and all traffic has been stopped and the endpoints have been
3586  * disabled.  Free any HC data structures associated with that device.
3587  */
3588 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3589 {
3590         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3591         struct xhci_virt_device *virt_dev;
3592         unsigned long flags;
3593         u32 state;
3594         int i, ret;
3595         struct xhci_command *command;
3596
3597         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3598         if (!command)
3599                 return;
3600
3601 #ifndef CONFIG_USB_DEFAULT_PERSIST
3602         /*
3603          * We called pm_runtime_get_noresume when the device was attached.
3604          * Decrement the counter here to allow controller to runtime suspend
3605          * if no devices remain.
3606          */
3607         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3608                 pm_runtime_put_noidle(hcd->self.controller);
3609 #endif
3610
3611         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3612         /* If the host is halted due to driver unload, we still need to free the
3613          * device.
3614          */
3615         if (ret <= 0 && ret != -ENODEV) {
3616                 kfree(command);
3617                 return;
3618         }
3619
3620         virt_dev = xhci->devs[udev->slot_id];
3621
3622         /* Stop any wayward timer functions (which may grab the lock) */
3623         for (i = 0; i < 31; ++i) {
3624                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3625                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3626         }
3627
3628         spin_lock_irqsave(&xhci->lock, flags);
3629         /* Don't disable the slot if the host controller is dead. */
3630         state = readl(&xhci->op_regs->status);
3631         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3632                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3633                 xhci_free_virt_device(xhci, udev->slot_id);
3634                 spin_unlock_irqrestore(&xhci->lock, flags);
3635                 kfree(command);
3636                 return;
3637         }
3638
3639         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3640                                     udev->slot_id)) {
3641                 spin_unlock_irqrestore(&xhci->lock, flags);
3642                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3643                 return;
3644         }
3645         xhci_ring_cmd_db(xhci);
3646         spin_unlock_irqrestore(&xhci->lock, flags);
3647
3648         /*
3649          * Event command completion handler will free any data structures
3650          * associated with the slot.  XXX Can free sleep?
3651          */
3652 }
3653
3654 /*
3655  * Checks if we have enough host controller resources for the default control
3656  * endpoint.
3657  *
3658  * Must be called with xhci->lock held.
3659  */
3660 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3661 {
3662         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3663                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3664                                 "Not enough ep ctxs: "
3665                                 "%u active, need to add 1, limit is %u.",
3666                                 xhci->num_active_eps, xhci->limit_active_eps);
3667                 return -ENOMEM;
3668         }
3669         xhci->num_active_eps += 1;
3670         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3671                         "Adding 1 ep ctx, %u now active.",
3672                         xhci->num_active_eps);
3673         return 0;
3674 }
3675
3676
3677 /*
3678  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3679  * timed out, or allocating memory failed.  Returns 1 on success.
3680  */
3681 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3682 {
3683         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3684         unsigned long flags;
3685         int ret, slot_id;
3686         struct xhci_command *command;
3687
3688         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3689         if (!command)
3690                 return 0;
3691
3692         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3693         mutex_lock(&xhci->mutex);
3694         spin_lock_irqsave(&xhci->lock, flags);
3695         command->completion = &xhci->addr_dev;
3696         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3697         if (ret) {
3698                 spin_unlock_irqrestore(&xhci->lock, flags);
3699                 mutex_unlock(&xhci->mutex);
3700                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3701                 kfree(command);
3702                 return 0;
3703         }
3704         xhci_ring_cmd_db(xhci);
3705         spin_unlock_irqrestore(&xhci->lock, flags);
3706
3707         wait_for_completion(command->completion);
3708         slot_id = xhci->slot_id;
3709         mutex_unlock(&xhci->mutex);
3710
3711         if (!slot_id || command->status != COMP_SUCCESS) {
3712                 xhci_err(xhci, "Error while assigning device slot ID\n");
3713                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3714                                 HCS_MAX_SLOTS(
3715                                         readl(&xhci->cap_regs->hcs_params1)));
3716                 kfree(command);
3717                 return 0;
3718         }
3719
3720         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3721                 spin_lock_irqsave(&xhci->lock, flags);
3722                 ret = xhci_reserve_host_control_ep_resources(xhci);
3723                 if (ret) {
3724                         spin_unlock_irqrestore(&xhci->lock, flags);
3725                         xhci_warn(xhci, "Not enough host resources, "
3726                                         "active endpoint contexts = %u\n",
3727                                         xhci->num_active_eps);
3728                         goto disable_slot;
3729                 }
3730                 spin_unlock_irqrestore(&xhci->lock, flags);
3731         }
3732         /* Use GFP_NOIO, since this function can be called from
3733          * xhci_discover_or_reset_device(), which may be called as part of
3734          * mass storage driver error handling.
3735          */
3736         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3737                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3738                 goto disable_slot;
3739         }
3740         udev->slot_id = slot_id;
3741
3742 #ifndef CONFIG_USB_DEFAULT_PERSIST
3743         /*
3744          * If resetting upon resume, we can't put the controller into runtime
3745          * suspend if there is a device attached.
3746          */
3747         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3748                 pm_runtime_get_noresume(hcd->self.controller);
3749 #endif
3750
3751
3752         kfree(command);
3753         /* Is this a LS or FS device under a HS hub? */
3754         /* Hub or peripherial? */
3755         return 1;
3756
3757 disable_slot:
3758         /* Disable slot, if we can do it without mem alloc */
3759         spin_lock_irqsave(&xhci->lock, flags);
3760         command->completion = NULL;
3761         command->status = 0;
3762         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3763                                      udev->slot_id))
3764                 xhci_ring_cmd_db(xhci);
3765         spin_unlock_irqrestore(&xhci->lock, flags);
3766         return 0;
3767 }
3768
3769 /*
3770  * Issue an Address Device command and optionally send a corresponding
3771  * SetAddress request to the device.
3772  */
3773 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3774                              enum xhci_setup_dev setup)
3775 {
3776         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3777         unsigned long flags;
3778         struct xhci_virt_device *virt_dev;
3779         int ret = 0;
3780         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3781         struct xhci_slot_ctx *slot_ctx;
3782         struct xhci_input_control_ctx *ctrl_ctx;
3783         u64 temp_64;
3784         struct xhci_command *command = NULL;
3785
3786         mutex_lock(&xhci->mutex);
3787
3788         if (xhci->xhc_state)    /* dying, removing or halted */
3789                 goto out;
3790
3791         if (!udev->slot_id) {
3792                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3793                                 "Bad Slot ID %d", udev->slot_id);
3794                 ret = -EINVAL;
3795                 goto out;
3796         }
3797
3798         virt_dev = xhci->devs[udev->slot_id];
3799
3800         if (WARN_ON(!virt_dev)) {
3801                 /*
3802                  * In plug/unplug torture test with an NEC controller,
3803                  * a zero-dereference was observed once due to virt_dev = 0.
3804                  * Print useful debug rather than crash if it is observed again!
3805                  */
3806                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3807                         udev->slot_id);
3808                 ret = -EINVAL;
3809                 goto out;
3810         }
3811
3812         if (setup == SETUP_CONTEXT_ONLY) {
3813                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3814                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3815                     SLOT_STATE_DEFAULT) {
3816                         xhci_dbg(xhci, "Slot already in default state\n");
3817                         goto out;
3818                 }
3819         }
3820
3821         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3822         if (!command) {
3823                 ret = -ENOMEM;
3824                 goto out;
3825         }
3826
3827         command->in_ctx = virt_dev->in_ctx;
3828         command->completion = &xhci->addr_dev;
3829
3830         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3831         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3832         if (!ctrl_ctx) {
3833                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3834                                 __func__);
3835                 ret = -EINVAL;
3836                 goto out;
3837         }
3838         /*
3839          * If this is the first Set Address since device plug-in or
3840          * virt_device realloaction after a resume with an xHCI power loss,
3841          * then set up the slot context.
3842          */
3843         if (!slot_ctx->dev_info)
3844                 xhci_setup_addressable_virt_dev(xhci, udev);
3845         /* Otherwise, update the control endpoint ring enqueue pointer. */
3846         else
3847                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3848         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3849         ctrl_ctx->drop_flags = 0;
3850
3851         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3852         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3853         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3854                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3855
3856         spin_lock_irqsave(&xhci->lock, flags);
3857         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3858                                         udev->slot_id, setup);
3859         if (ret) {
3860                 spin_unlock_irqrestore(&xhci->lock, flags);
3861                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3862                                 "FIXME: allocate a command ring segment");
3863                 goto out;
3864         }
3865         xhci_ring_cmd_db(xhci);
3866         spin_unlock_irqrestore(&xhci->lock, flags);
3867
3868         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3869         wait_for_completion(command->completion);
3870
3871         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3872          * the SetAddress() "recovery interval" required by USB and aborting the
3873          * command on a timeout.
3874          */
3875         switch (command->status) {
3876         case COMP_CMD_ABORT:
3877         case COMP_CMD_STOP:
3878                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3879                 ret = -ETIME;
3880                 break;
3881         case COMP_CTX_STATE:
3882         case COMP_EBADSLT:
3883                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3884                          act, udev->slot_id);
3885                 ret = -EINVAL;
3886                 break;
3887         case COMP_TX_ERR:
3888                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3889                 ret = -EPROTO;
3890                 break;
3891         case COMP_DEV_ERR:
3892                 dev_warn(&udev->dev,
3893                          "ERROR: Incompatible device for setup %s command\n", act);
3894                 ret = -ENODEV;
3895                 break;
3896         case COMP_SUCCESS:
3897                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3898                                "Successful setup %s command", act);
3899                 break;
3900         default:
3901                 xhci_err(xhci,
3902                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3903                          act, command->status);
3904                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3905                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3906                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3907                 ret = -EINVAL;
3908                 break;
3909         }
3910         if (ret)
3911                 goto out;
3912         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3913         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3914                         "Op regs DCBAA ptr = %#016llx", temp_64);
3915         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3916                 "Slot ID %d dcbaa entry @%p = %#016llx",
3917                 udev->slot_id,
3918                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3919                 (unsigned long long)
3920                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3921         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3922                         "Output Context DMA address = %#08llx",
3923                         (unsigned long long)virt_dev->out_ctx->dma);
3924         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3925         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3926         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3927                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3928         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3929         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3930         /*
3931          * USB core uses address 1 for the roothubs, so we add one to the
3932          * address given back to us by the HC.
3933          */
3934         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3935         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3936                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3937         /* Zero the input context control for later use */
3938         ctrl_ctx->add_flags = 0;
3939         ctrl_ctx->drop_flags = 0;
3940
3941         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3942                        "Internal device address = %d",
3943                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3944 out:
3945         mutex_unlock(&xhci->mutex);
3946         kfree(command);
3947         return ret;
3948 }
3949
3950 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3951 {
3952         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3953 }
3954
3955 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3956 {
3957         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3958 }
3959
3960 /*
3961  * Transfer the port index into real index in the HW port status
3962  * registers. Caculate offset between the port's PORTSC register
3963  * and port status base. Divide the number of per port register
3964  * to get the real index. The raw port number bases 1.
3965  */
3966 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3967 {
3968         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3969         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3970         __le32 __iomem *addr;
3971         int raw_port;
3972
3973         if (hcd->speed < HCD_USB3)
3974                 addr = xhci->usb2_ports[port1 - 1];
3975         else
3976                 addr = xhci->usb3_ports[port1 - 1];
3977
3978         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3979         return raw_port;
3980 }
3981
3982 /*
3983  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3984  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3985  */
3986 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3987                         struct usb_device *udev, u16 max_exit_latency)
3988 {
3989         struct xhci_virt_device *virt_dev;
3990         struct xhci_command *command;
3991         struct xhci_input_control_ctx *ctrl_ctx;
3992         struct xhci_slot_ctx *slot_ctx;
3993         unsigned long flags;
3994         int ret;
3995
3996         spin_lock_irqsave(&xhci->lock, flags);
3997
3998         virt_dev = xhci->devs[udev->slot_id];
3999
4000         /*
4001          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4002          * xHC was re-initialized. Exit latency will be set later after
4003          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4004          */
4005
4006         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4007                 spin_unlock_irqrestore(&xhci->lock, flags);
4008                 return 0;
4009         }
4010
4011         /* Attempt to issue an Evaluate Context command to change the MEL. */
4012         command = xhci->lpm_command;
4013         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4014         if (!ctrl_ctx) {
4015                 spin_unlock_irqrestore(&xhci->lock, flags);
4016                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4017                                 __func__);
4018                 return -ENOMEM;
4019         }
4020
4021         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4022         spin_unlock_irqrestore(&xhci->lock, flags);
4023
4024         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4025         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4026         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4027         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4028         slot_ctx->dev_state = 0;
4029
4030         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4031                         "Set up evaluate context for LPM MEL change.");
4032         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4033         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4034
4035         /* Issue and wait for the evaluate context command. */
4036         ret = xhci_configure_endpoint(xhci, udev, command,
4037                         true, true);
4038         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4039         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4040
4041         if (!ret) {
4042                 spin_lock_irqsave(&xhci->lock, flags);
4043                 virt_dev->current_mel = max_exit_latency;
4044                 spin_unlock_irqrestore(&xhci->lock, flags);
4045         }
4046         return ret;
4047 }
4048
4049 #ifdef CONFIG_PM
4050
4051 /* BESL to HIRD Encoding array for USB2 LPM */
4052 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4053         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4054
4055 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4056 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4057                                         struct usb_device *udev)
4058 {
4059         int u2del, besl, besl_host;
4060         int besl_device = 0;
4061         u32 field;
4062
4063         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4064         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4065
4066         if (field & USB_BESL_SUPPORT) {
4067                 for (besl_host = 0; besl_host < 16; besl_host++) {
4068                         if (xhci_besl_encoding[besl_host] >= u2del)
4069                                 break;
4070                 }
4071                 /* Use baseline BESL value as default */
4072                 if (field & USB_BESL_BASELINE_VALID)
4073                         besl_device = USB_GET_BESL_BASELINE(field);
4074                 else if (field & USB_BESL_DEEP_VALID)
4075                         besl_device = USB_GET_BESL_DEEP(field);
4076         } else {
4077                 if (u2del <= 50)
4078                         besl_host = 0;
4079                 else
4080                         besl_host = (u2del - 51) / 75 + 1;
4081         }
4082
4083         besl = besl_host + besl_device;
4084         if (besl > 15)
4085                 besl = 15;
4086
4087         return besl;
4088 }
4089
4090 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4091 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4092 {
4093         u32 field;
4094         int l1;
4095         int besld = 0;
4096         int hirdm = 0;
4097
4098         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4099
4100         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4101         l1 = udev->l1_params.timeout / 256;
4102
4103         /* device has preferred BESLD */
4104         if (field & USB_BESL_DEEP_VALID) {
4105                 besld = USB_GET_BESL_DEEP(field);
4106                 hirdm = 1;
4107         }
4108
4109         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4110 }
4111
4112 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4113                         struct usb_device *udev, int enable)
4114 {
4115         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4116         __le32 __iomem  **port_array;
4117         __le32 __iomem  *pm_addr, *hlpm_addr;
4118         u32             pm_val, hlpm_val, field;
4119         unsigned int    port_num;
4120         unsigned long   flags;
4121         int             hird, exit_latency;
4122         int             ret;
4123
4124         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4125                         !udev->lpm_capable)
4126                 return -EPERM;
4127
4128         if (!udev->parent || udev->parent->parent ||
4129                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4130                 return -EPERM;
4131
4132         if (udev->usb2_hw_lpm_capable != 1)
4133                 return -EPERM;
4134
4135         spin_lock_irqsave(&xhci->lock, flags);
4136
4137         port_array = xhci->usb2_ports;
4138         port_num = udev->portnum - 1;
4139         pm_addr = port_array[port_num] + PORTPMSC;
4140         pm_val = readl(pm_addr);
4141         hlpm_addr = port_array[port_num] + PORTHLPMC;
4142         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4143
4144         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4145                         enable ? "enable" : "disable", port_num + 1);
4146
4147         if (enable) {
4148                 /* Host supports BESL timeout instead of HIRD */
4149                 if (udev->usb2_hw_lpm_besl_capable) {
4150                         /* if device doesn't have a preferred BESL value use a
4151                          * default one which works with mixed HIRD and BESL
4152                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4153                          */
4154                         if ((field & USB_BESL_SUPPORT) &&
4155                             (field & USB_BESL_BASELINE_VALID))
4156                                 hird = USB_GET_BESL_BASELINE(field);
4157                         else
4158                                 hird = udev->l1_params.besl;
4159
4160                         exit_latency = xhci_besl_encoding[hird];
4161                         spin_unlock_irqrestore(&xhci->lock, flags);
4162
4163                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4164                          * input context for link powermanagement evaluate
4165                          * context commands. It is protected by hcd->bandwidth
4166                          * mutex and is shared by all devices. We need to set
4167                          * the max ext latency in USB 2 BESL LPM as well, so
4168                          * use the same mutex and xhci_change_max_exit_latency()
4169                          */
4170                         mutex_lock(hcd->bandwidth_mutex);
4171                         ret = xhci_change_max_exit_latency(xhci, udev,
4172                                                            exit_latency);
4173                         mutex_unlock(hcd->bandwidth_mutex);
4174
4175                         if (ret < 0)
4176                                 return ret;
4177                         spin_lock_irqsave(&xhci->lock, flags);
4178
4179                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4180                         writel(hlpm_val, hlpm_addr);
4181                         /* flush write */
4182                         readl(hlpm_addr);
4183                 } else {
4184                         hird = xhci_calculate_hird_besl(xhci, udev);
4185                 }
4186
4187                 pm_val &= ~PORT_HIRD_MASK;
4188                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4189                 writel(pm_val, pm_addr);
4190                 pm_val = readl(pm_addr);
4191                 pm_val |= PORT_HLE;
4192                 writel(pm_val, pm_addr);
4193                 /* flush write */
4194                 readl(pm_addr);
4195         } else {
4196                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4197                 writel(pm_val, pm_addr);
4198                 /* flush write */
4199                 readl(pm_addr);
4200                 if (udev->usb2_hw_lpm_besl_capable) {
4201                         spin_unlock_irqrestore(&xhci->lock, flags);
4202                         mutex_lock(hcd->bandwidth_mutex);
4203                         xhci_change_max_exit_latency(xhci, udev, 0);
4204                         mutex_unlock(hcd->bandwidth_mutex);
4205                         return 0;
4206                 }
4207         }
4208
4209         spin_unlock_irqrestore(&xhci->lock, flags);
4210         return 0;
4211 }
4212
4213 /* check if a usb2 port supports a given extened capability protocol
4214  * only USB2 ports extended protocol capability values are cached.
4215  * Return 1 if capability is supported
4216  */
4217 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4218                                            unsigned capability)
4219 {
4220         u32 port_offset, port_count;
4221         int i;
4222
4223         for (i = 0; i < xhci->num_ext_caps; i++) {
4224                 if (xhci->ext_caps[i] & capability) {
4225                         /* port offsets starts at 1 */
4226                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4227                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4228                         if (port >= port_offset &&
4229                             port < port_offset + port_count)
4230                                 return 1;
4231                 }
4232         }
4233         return 0;
4234 }
4235
4236 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4237 {
4238         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4239         int             portnum = udev->portnum - 1;
4240
4241         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4242                         !udev->lpm_capable)
4243                 return 0;
4244
4245         /* we only support lpm for non-hub device connected to root hub yet */
4246         if (!udev->parent || udev->parent->parent ||
4247                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4248                 return 0;
4249
4250         if (xhci->hw_lpm_support == 1 &&
4251                         xhci_check_usb2_port_capability(
4252                                 xhci, portnum, XHCI_HLC)) {
4253                 udev->usb2_hw_lpm_capable = 1;
4254                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4255                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4256                 if (xhci_check_usb2_port_capability(xhci, portnum,
4257                                         XHCI_BLC))
4258                         udev->usb2_hw_lpm_besl_capable = 1;
4259         }
4260
4261         return 0;
4262 }
4263
4264 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4265
4266 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4267 static unsigned long long xhci_service_interval_to_ns(
4268                 struct usb_endpoint_descriptor *desc)
4269 {
4270         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4271 }
4272
4273 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4274                 enum usb3_link_state state)
4275 {
4276         unsigned long long sel;
4277         unsigned long long pel;
4278         unsigned int max_sel_pel;
4279         char *state_name;
4280
4281         switch (state) {
4282         case USB3_LPM_U1:
4283                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4284                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4285                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4286                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4287                 state_name = "U1";
4288                 break;
4289         case USB3_LPM_U2:
4290                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4291                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4292                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4293                 state_name = "U2";
4294                 break;
4295         default:
4296                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4297                                 __func__);
4298                 return USB3_LPM_DISABLED;
4299         }
4300
4301         if (sel <= max_sel_pel && pel <= max_sel_pel)
4302                 return USB3_LPM_DEVICE_INITIATED;
4303
4304         if (sel > max_sel_pel)
4305                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4306                                 "due to long SEL %llu ms\n",
4307                                 state_name, sel);
4308         else
4309                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4310                                 "due to long PEL %llu ms\n",
4311                                 state_name, pel);
4312         return USB3_LPM_DISABLED;
4313 }
4314
4315 /* The U1 timeout should be the maximum of the following values:
4316  *  - For control endpoints, U1 system exit latency (SEL) * 3
4317  *  - For bulk endpoints, U1 SEL * 5
4318  *  - For interrupt endpoints:
4319  *    - Notification EPs, U1 SEL * 3
4320  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4321  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4322  */
4323 static unsigned long long xhci_calculate_intel_u1_timeout(
4324                 struct usb_device *udev,
4325                 struct usb_endpoint_descriptor *desc)
4326 {
4327         unsigned long long timeout_ns;
4328         int ep_type;
4329         int intr_type;
4330
4331         ep_type = usb_endpoint_type(desc);
4332         switch (ep_type) {
4333         case USB_ENDPOINT_XFER_CONTROL:
4334                 timeout_ns = udev->u1_params.sel * 3;
4335                 break;
4336         case USB_ENDPOINT_XFER_BULK:
4337                 timeout_ns = udev->u1_params.sel * 5;
4338                 break;
4339         case USB_ENDPOINT_XFER_INT:
4340                 intr_type = usb_endpoint_interrupt_type(desc);
4341                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4342                         timeout_ns = udev->u1_params.sel * 3;
4343                         break;
4344                 }
4345                 /* Otherwise the calculation is the same as isoc eps */
4346         case USB_ENDPOINT_XFER_ISOC:
4347                 timeout_ns = xhci_service_interval_to_ns(desc);
4348                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4349                 if (timeout_ns < udev->u1_params.sel * 2)
4350                         timeout_ns = udev->u1_params.sel * 2;
4351                 break;
4352         default:
4353                 return 0;
4354         }
4355
4356         return timeout_ns;
4357 }
4358
4359 /* Returns the hub-encoded U1 timeout value. */
4360 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4361                 struct usb_device *udev,
4362                 struct usb_endpoint_descriptor *desc)
4363 {
4364         unsigned long long timeout_ns;
4365
4366         if (xhci->quirks & XHCI_INTEL_HOST)
4367                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4368         else
4369                 timeout_ns = udev->u1_params.sel;
4370
4371         /* The U1 timeout is encoded in 1us intervals.
4372          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4373          */
4374         if (timeout_ns == USB3_LPM_DISABLED)
4375                 timeout_ns = 1;
4376         else
4377                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4378
4379         /* If the necessary timeout value is bigger than what we can set in the
4380          * USB 3.0 hub, we have to disable hub-initiated U1.
4381          */
4382         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4383                 return timeout_ns;
4384         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4385                         "due to long timeout %llu ms\n", timeout_ns);
4386         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4387 }
4388
4389 /* The U2 timeout should be the maximum of:
4390  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4391  *  - largest bInterval of any active periodic endpoint (to avoid going
4392  *    into lower power link states between intervals).
4393  *  - the U2 Exit Latency of the device
4394  */
4395 static unsigned long long xhci_calculate_intel_u2_timeout(
4396                 struct usb_device *udev,
4397                 struct usb_endpoint_descriptor *desc)
4398 {
4399         unsigned long long timeout_ns;
4400         unsigned long long u2_del_ns;
4401
4402         timeout_ns = 10 * 1000 * 1000;
4403
4404         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4405                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4406                 timeout_ns = xhci_service_interval_to_ns(desc);
4407
4408         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4409         if (u2_del_ns > timeout_ns)
4410                 timeout_ns = u2_del_ns;
4411
4412         return timeout_ns;
4413 }
4414
4415 /* Returns the hub-encoded U2 timeout value. */
4416 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4417                 struct usb_device *udev,
4418                 struct usb_endpoint_descriptor *desc)
4419 {
4420         unsigned long long timeout_ns;
4421
4422         if (xhci->quirks & XHCI_INTEL_HOST)
4423                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4424         else
4425                 timeout_ns = udev->u2_params.sel;
4426
4427         /* The U2 timeout is encoded in 256us intervals */
4428         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4429         /* If the necessary timeout value is bigger than what we can set in the
4430          * USB 3.0 hub, we have to disable hub-initiated U2.
4431          */
4432         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4433                 return timeout_ns;
4434         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4435                         "due to long timeout %llu ms\n", timeout_ns);
4436         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4437 }
4438
4439 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4440                 struct usb_device *udev,
4441                 struct usb_endpoint_descriptor *desc,
4442                 enum usb3_link_state state,
4443                 u16 *timeout)
4444 {
4445         if (state == USB3_LPM_U1)
4446                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4447         else if (state == USB3_LPM_U2)
4448                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4449
4450         return USB3_LPM_DISABLED;
4451 }
4452
4453 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4454                 struct usb_device *udev,
4455                 struct usb_endpoint_descriptor *desc,
4456                 enum usb3_link_state state,
4457                 u16 *timeout)
4458 {
4459         u16 alt_timeout;
4460
4461         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4462                 desc, state, timeout);
4463
4464         /* If we found we can't enable hub-initiated LPM, or
4465          * the U1 or U2 exit latency was too high to allow
4466          * device-initiated LPM as well, just stop searching.
4467          */
4468         if (alt_timeout == USB3_LPM_DISABLED ||
4469                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4470                 *timeout = alt_timeout;
4471                 return -E2BIG;
4472         }
4473         if (alt_timeout > *timeout)
4474                 *timeout = alt_timeout;
4475         return 0;
4476 }
4477
4478 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4479                 struct usb_device *udev,
4480                 struct usb_host_interface *alt,
4481                 enum usb3_link_state state,
4482                 u16 *timeout)
4483 {
4484         int j;
4485
4486         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4487                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4488                                         &alt->endpoint[j].desc, state, timeout))
4489                         return -E2BIG;
4490                 continue;
4491         }
4492         return 0;
4493 }
4494
4495 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4496                 enum usb3_link_state state)
4497 {
4498         struct usb_device *parent;
4499         unsigned int num_hubs;
4500
4501         if (state == USB3_LPM_U2)
4502                 return 0;
4503
4504         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4505         for (parent = udev->parent, num_hubs = 0; parent->parent;
4506                         parent = parent->parent)
4507                 num_hubs++;
4508
4509         if (num_hubs < 2)
4510                 return 0;
4511
4512         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4513                         " below second-tier hub.\n");
4514         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4515                         "to decrease power consumption.\n");
4516         return -E2BIG;
4517 }
4518
4519 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4520                 struct usb_device *udev,
4521                 enum usb3_link_state state)
4522 {
4523         if (xhci->quirks & XHCI_INTEL_HOST)
4524                 return xhci_check_intel_tier_policy(udev, state);
4525         else
4526                 return 0;
4527 }
4528
4529 /* Returns the U1 or U2 timeout that should be enabled.
4530  * If the tier check or timeout setting functions return with a non-zero exit
4531  * code, that means the timeout value has been finalized and we shouldn't look
4532  * at any more endpoints.
4533  */
4534 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4535                         struct usb_device *udev, enum usb3_link_state state)
4536 {
4537         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4538         struct usb_host_config *config;
4539         char *state_name;
4540         int i;
4541         u16 timeout = USB3_LPM_DISABLED;
4542
4543         if (state == USB3_LPM_U1)
4544                 state_name = "U1";
4545         else if (state == USB3_LPM_U2)
4546                 state_name = "U2";
4547         else {
4548                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4549                                 state);
4550                 return timeout;
4551         }
4552
4553         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4554                 return timeout;
4555
4556         /* Gather some information about the currently installed configuration
4557          * and alternate interface settings.
4558          */
4559         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4560                         state, &timeout))
4561                 return timeout;
4562
4563         config = udev->actconfig;
4564         if (!config)
4565                 return timeout;
4566
4567         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4568                 struct usb_driver *driver;
4569                 struct usb_interface *intf = config->interface[i];
4570
4571                 if (!intf)
4572                         continue;
4573
4574                 /* Check if any currently bound drivers want hub-initiated LPM
4575                  * disabled.
4576                  */
4577                 if (intf->dev.driver) {
4578                         driver = to_usb_driver(intf->dev.driver);
4579                         if (driver && driver->disable_hub_initiated_lpm) {
4580                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4581                                                 "at request of driver %s\n",
4582                                                 state_name, driver->name);
4583                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4584                         }
4585                 }
4586
4587                 /* Not sure how this could happen... */
4588                 if (!intf->cur_altsetting)
4589                         continue;
4590
4591                 if (xhci_update_timeout_for_interface(xhci, udev,
4592                                         intf->cur_altsetting,
4593                                         state, &timeout))
4594                         return timeout;
4595         }
4596         return timeout;
4597 }
4598
4599 static int calculate_max_exit_latency(struct usb_device *udev,
4600                 enum usb3_link_state state_changed,
4601                 u16 hub_encoded_timeout)
4602 {
4603         unsigned long long u1_mel_us = 0;
4604         unsigned long long u2_mel_us = 0;
4605         unsigned long long mel_us = 0;
4606         bool disabling_u1;
4607         bool disabling_u2;
4608         bool enabling_u1;
4609         bool enabling_u2;
4610
4611         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4612                         hub_encoded_timeout == USB3_LPM_DISABLED);
4613         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4614                         hub_encoded_timeout == USB3_LPM_DISABLED);
4615
4616         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4617                         hub_encoded_timeout != USB3_LPM_DISABLED);
4618         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4619                         hub_encoded_timeout != USB3_LPM_DISABLED);
4620
4621         /* If U1 was already enabled and we're not disabling it,
4622          * or we're going to enable U1, account for the U1 max exit latency.
4623          */
4624         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4625                         enabling_u1)
4626                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4627         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4628                         enabling_u2)
4629                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4630
4631         if (u1_mel_us > u2_mel_us)
4632                 mel_us = u1_mel_us;
4633         else
4634                 mel_us = u2_mel_us;
4635         /* xHCI host controller max exit latency field is only 16 bits wide. */
4636         if (mel_us > MAX_EXIT) {
4637                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4638                                 "is too big.\n", mel_us);
4639                 return -E2BIG;
4640         }
4641         return mel_us;
4642 }
4643
4644 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4645 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4646                         struct usb_device *udev, enum usb3_link_state state)
4647 {
4648         struct xhci_hcd *xhci;
4649         u16 hub_encoded_timeout;
4650         int mel;
4651         int ret;
4652
4653         xhci = hcd_to_xhci(hcd);
4654         /* The LPM timeout values are pretty host-controller specific, so don't
4655          * enable hub-initiated timeouts unless the vendor has provided
4656          * information about their timeout algorithm.
4657          */
4658         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4659                         !xhci->devs[udev->slot_id])
4660                 return USB3_LPM_DISABLED;
4661
4662         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4663         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4664         if (mel < 0) {
4665                 /* Max Exit Latency is too big, disable LPM. */
4666                 hub_encoded_timeout = USB3_LPM_DISABLED;
4667                 mel = 0;
4668         }
4669
4670         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4671         if (ret)
4672                 return ret;
4673         return hub_encoded_timeout;
4674 }
4675
4676 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4677                         struct usb_device *udev, enum usb3_link_state state)
4678 {
4679         struct xhci_hcd *xhci;
4680         u16 mel;
4681
4682         xhci = hcd_to_xhci(hcd);
4683         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4684                         !xhci->devs[udev->slot_id])
4685                 return 0;
4686
4687         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4688         return xhci_change_max_exit_latency(xhci, udev, mel);
4689 }
4690 #else /* CONFIG_PM */
4691
4692 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4693                                 struct usb_device *udev, int enable)
4694 {
4695         return 0;
4696 }
4697
4698 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4699 {
4700         return 0;
4701 }
4702
4703 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4704                         struct usb_device *udev, enum usb3_link_state state)
4705 {
4706         return USB3_LPM_DISABLED;
4707 }
4708
4709 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4710                         struct usb_device *udev, enum usb3_link_state state)
4711 {
4712         return 0;
4713 }
4714 #endif  /* CONFIG_PM */
4715
4716 /*-------------------------------------------------------------------------*/
4717
4718 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4719  * internal data structures for the device.
4720  */
4721 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4722                         struct usb_tt *tt, gfp_t mem_flags)
4723 {
4724         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4725         struct xhci_virt_device *vdev;
4726         struct xhci_command *config_cmd;
4727         struct xhci_input_control_ctx *ctrl_ctx;
4728         struct xhci_slot_ctx *slot_ctx;
4729         unsigned long flags;
4730         unsigned think_time;
4731         int ret;
4732
4733         /* Ignore root hubs */
4734         if (!hdev->parent)
4735                 return 0;
4736
4737         vdev = xhci->devs[hdev->slot_id];
4738         if (!vdev) {
4739                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4740                 return -EINVAL;
4741         }
4742         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4743         if (!config_cmd) {
4744                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4745                 return -ENOMEM;
4746         }
4747         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4748         if (!ctrl_ctx) {
4749                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4750                                 __func__);
4751                 xhci_free_command(xhci, config_cmd);
4752                 return -ENOMEM;
4753         }
4754
4755         spin_lock_irqsave(&xhci->lock, flags);
4756         if (hdev->speed == USB_SPEED_HIGH &&
4757                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4758                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4759                 xhci_free_command(xhci, config_cmd);
4760                 spin_unlock_irqrestore(&xhci->lock, flags);
4761                 return -ENOMEM;
4762         }
4763
4764         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4765         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4766         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4767         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4768         /*
4769          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4770          * but it may be already set to 1 when setup an xHCI virtual
4771          * device, so clear it anyway.
4772          */
4773         if (tt->multi)
4774                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4775         else if (hdev->speed == USB_SPEED_FULL)
4776                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4777
4778         if (xhci->hci_version > 0x95) {
4779                 xhci_dbg(xhci, "xHCI version %x needs hub "
4780                                 "TT think time and number of ports\n",
4781                                 (unsigned int) xhci->hci_version);
4782                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4783                 /* Set TT think time - convert from ns to FS bit times.
4784                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4785                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4786                  *
4787                  * xHCI 1.0: this field shall be 0 if the device is not a
4788                  * High-spped hub.
4789                  */
4790                 think_time = tt->think_time;
4791                 if (think_time != 0)
4792                         think_time = (think_time / 666) - 1;
4793                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4794                         slot_ctx->tt_info |=
4795                                 cpu_to_le32(TT_THINK_TIME(think_time));
4796         } else {
4797                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4798                                 "TT think time or number of ports\n",
4799                                 (unsigned int) xhci->hci_version);
4800         }
4801         slot_ctx->dev_state = 0;
4802         spin_unlock_irqrestore(&xhci->lock, flags);
4803
4804         xhci_dbg(xhci, "Set up %s for hub device.\n",
4805                         (xhci->hci_version > 0x95) ?
4806                         "configure endpoint" : "evaluate context");
4807         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4808         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4809
4810         /* Issue and wait for the configure endpoint or
4811          * evaluate context command.
4812          */
4813         if (xhci->hci_version > 0x95)
4814                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4815                                 false, false);
4816         else
4817                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4818                                 true, false);
4819
4820         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4821         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4822
4823         xhci_free_command(xhci, config_cmd);
4824         return ret;
4825 }
4826
4827 int xhci_get_frame(struct usb_hcd *hcd)
4828 {
4829         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4830         /* EHCI mods by the periodic size.  Why? */
4831         return readl(&xhci->run_regs->microframe_index) >> 3;
4832 }
4833
4834 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4835 {
4836         struct xhci_hcd         *xhci;
4837         struct device           *dev = hcd->self.controller;
4838         int                     retval;
4839
4840         /* Accept arbitrarily long scatter-gather lists */
4841         hcd->self.sg_tablesize = ~0;
4842
4843         /* support to build packet from discontinuous buffers */
4844         hcd->self.no_sg_constraint = 1;
4845
4846         /* XHCI controllers don't stop the ep queue on short packets :| */
4847         hcd->self.no_stop_on_short = 1;
4848
4849         xhci = hcd_to_xhci(hcd);
4850
4851         if (usb_hcd_is_primary_hcd(hcd)) {
4852                 xhci->main_hcd = hcd;
4853                 /* Mark the first roothub as being USB 2.0.
4854                  * The xHCI driver will register the USB 3.0 roothub.
4855                  */
4856                 hcd->speed = HCD_USB2;
4857                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4858                 /*
4859                  * USB 2.0 roothub under xHCI has an integrated TT,
4860                  * (rate matching hub) as opposed to having an OHCI/UHCI
4861                  * companion controller.
4862                  */
4863                 hcd->has_tt = 1;
4864         } else {
4865                 if (xhci->sbrn == 0x31) {
4866                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4867                         hcd->speed = HCD_USB31;
4868                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4869                 }
4870                 /* xHCI private pointer was set in xhci_pci_probe for the second
4871                  * registered roothub.
4872                  */
4873                 return 0;
4874         }
4875
4876         mutex_init(&xhci->mutex);
4877         xhci->cap_regs = hcd->regs;
4878         xhci->op_regs = hcd->regs +
4879                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4880         xhci->run_regs = hcd->regs +
4881                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4882         /* Cache read-only capability registers */
4883         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4884         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4885         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4886         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4887         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4888         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4889         if (xhci->hci_version > 0x100)
4890                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4891         xhci_print_registers(xhci);
4892
4893         xhci->quirks |= quirks;
4894
4895         get_quirks(dev, xhci);
4896
4897         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4898          * success event after a short transfer. This quirk will ignore such
4899          * spurious event.
4900          */
4901         if (xhci->hci_version > 0x96)
4902                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4903
4904         /* Make sure the HC is halted. */
4905         retval = xhci_halt(xhci);
4906         if (retval)
4907                 return retval;
4908
4909         xhci_dbg(xhci, "Resetting HCD\n");
4910         /* Reset the internal HC memory state and registers. */
4911         retval = xhci_reset(xhci);
4912         if (retval)
4913                 return retval;
4914         xhci_dbg(xhci, "Reset complete\n");
4915
4916         /*
4917          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4918          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4919          * address memory pointers actually. So, this driver clears the AC64
4920          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4921          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4922          */
4923         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4924                 xhci->hcc_params &= ~BIT(0);
4925
4926         /* Set dma_mask and coherent_dma_mask to 64-bits,
4927          * if xHC supports 64-bit addressing */
4928         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4929                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4930                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4931                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4932         } else {
4933                 /*
4934                  * This is to avoid error in cases where a 32-bit USB
4935                  * controller is used on a 64-bit capable system.
4936                  */
4937                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4938                 if (retval)
4939                         return retval;
4940                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4941                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4942         }
4943
4944         xhci_dbg(xhci, "Calling HCD init\n");
4945         /* Initialize HCD and host controller data structures. */
4946         retval = xhci_init(hcd);
4947         if (retval)
4948                 return retval;
4949         xhci_dbg(xhci, "Called HCD init\n");
4950
4951         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4952                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4953
4954         return 0;
4955 }
4956 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4957
4958 static const struct hc_driver xhci_hc_driver = {
4959         .description =          "xhci-hcd",
4960         .product_desc =         "xHCI Host Controller",
4961         .hcd_priv_size =        sizeof(struct xhci_hcd),
4962
4963         /*
4964          * generic hardware linkage
4965          */
4966         .irq =                  xhci_irq,
4967         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4968
4969         /*
4970          * basic lifecycle operations
4971          */
4972         .reset =                NULL, /* set in xhci_init_driver() */
4973         .start =                xhci_run,
4974         .stop =                 xhci_stop,
4975         .shutdown =             xhci_shutdown,
4976
4977         /*
4978          * managing i/o requests and associated device resources
4979          */
4980         .urb_enqueue =          xhci_urb_enqueue,
4981         .urb_dequeue =          xhci_urb_dequeue,
4982         .alloc_dev =            xhci_alloc_dev,
4983         .free_dev =             xhci_free_dev,
4984         .alloc_streams =        xhci_alloc_streams,
4985         .free_streams =         xhci_free_streams,
4986         .add_endpoint =         xhci_add_endpoint,
4987         .drop_endpoint =        xhci_drop_endpoint,
4988         .endpoint_reset =       xhci_endpoint_reset,
4989         .check_bandwidth =      xhci_check_bandwidth,
4990         .reset_bandwidth =      xhci_reset_bandwidth,
4991         .address_device =       xhci_address_device,
4992         .enable_device =        xhci_enable_device,
4993         .update_hub_device =    xhci_update_hub_device,
4994         .reset_device =         xhci_discover_or_reset_device,
4995
4996         /*
4997          * scheduling support
4998          */
4999         .get_frame_number =     xhci_get_frame,
5000
5001         /*
5002          * root hub support
5003          */
5004         .hub_control =          xhci_hub_control,
5005         .hub_status_data =      xhci_hub_status_data,
5006         .bus_suspend =          xhci_bus_suspend,
5007         .bus_resume =           xhci_bus_resume,
5008
5009         /*
5010          * call back when device connected and addressed
5011          */
5012         .update_device =        xhci_update_device,
5013         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5014         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5015         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5016         .find_raw_port_number = xhci_find_raw_port_number,
5017 };
5018
5019 void xhci_init_driver(struct hc_driver *drv,
5020                       const struct xhci_driver_overrides *over)
5021 {
5022         BUG_ON(!over);
5023
5024         /* Copy the generic table to drv then apply the overrides */
5025         *drv = xhci_hc_driver;
5026
5027         if (over) {
5028                 drv->hcd_priv_size += over->extra_priv_size;
5029                 if (over->reset)
5030                         drv->reset = over->reset;
5031                 if (over->start)
5032                         drv->start = over->start;
5033         }
5034 }
5035 EXPORT_SYMBOL_GPL(xhci_init_driver);
5036
5037 MODULE_DESCRIPTION(DRIVER_DESC);
5038 MODULE_AUTHOR(DRIVER_AUTHOR);
5039 MODULE_LICENSE("GPL");
5040
5041 static int __init xhci_hcd_init(void)
5042 {
5043         /*
5044          * Check the compiler generated sizes of structures that must be laid
5045          * out in specific ways for hardware access.
5046          */
5047         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5048         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5049         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5050         /* xhci_device_control has eight fields, and also
5051          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5052          */
5053         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5054         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5055         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5056         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5057         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5058         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5059         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5060
5061         if (usb_disabled())
5062                 return -ENODEV;
5063
5064         return 0;
5065 }
5066
5067 /*
5068  * If an init function is provided, an exit function must also be provided
5069  * to allow module unload.
5070  */
5071 static void __exit xhci_hcd_fini(void) { }
5072
5073 module_init(xhci_hcd_init);
5074 module_exit(xhci_hcd_fini);