Merge branch 'acpi-ec'
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (!ret) {
117                 xhci->xhc_state |= XHCI_STATE_HALTED;
118                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119         } else
120                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121                                 XHCI_MAX_HALT_USEC);
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170         if ((state & STS_HALT) == 0) {
171                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172                 return 0;
173         }
174
175         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176         command = readl(&xhci->op_regs->command);
177         command |= CMD_RESET;
178         writel(command, &xhci->op_regs->command);
179
180         /* Existing Intel xHCI controllers require a delay of 1 mS,
181          * after setting the CMD_RESET bit, and before accessing any
182          * HC registers. This allows the HC to complete the
183          * reset operation and be ready for HC register access.
184          * Without this delay, the subsequent HC register access,
185          * may result in a system hang very rarely.
186          */
187         if (xhci->quirks & XHCI_INTEL_HOST)
188                 udelay(1000);
189
190         ret = xhci_handshake(&xhci->op_regs->command,
191                         CMD_RESET, 0, 10 * 1000 * 1000);
192         if (ret)
193                 return ret;
194
195         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
196                          "Wait for controller to be ready for doorbell rings");
197         /*
198          * xHCI cannot write to any doorbells or operational registers other
199          * than status until the "Controller Not Ready" flag is cleared.
200          */
201         ret = xhci_handshake(&xhci->op_regs->status,
202                         STS_CNR, 0, 10 * 1000 * 1000);
203
204         for (i = 0; i < 2; ++i) {
205                 xhci->bus_state[i].port_c_suspend = 0;
206                 xhci->bus_state[i].suspended_ports = 0;
207                 xhci->bus_state[i].resuming_ports = 0;
208         }
209
210         return ret;
211 }
212
213 #ifdef CONFIG_PCI
214 static int xhci_free_msi(struct xhci_hcd *xhci)
215 {
216         int i;
217
218         if (!xhci->msix_entries)
219                 return -EINVAL;
220
221         for (i = 0; i < xhci->msix_count; i++)
222                 if (xhci->msix_entries[i].vector)
223                         free_irq(xhci->msix_entries[i].vector,
224                                         xhci_to_hcd(xhci));
225         return 0;
226 }
227
228 /*
229  * Set up MSI
230  */
231 static int xhci_setup_msi(struct xhci_hcd *xhci)
232 {
233         int ret;
234         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235
236         ret = pci_enable_msi(pdev);
237         if (ret) {
238                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239                                 "failed to allocate MSI entry");
240                 return ret;
241         }
242
243         ret = request_irq(pdev->irq, xhci_msi_irq,
244                                 0, "xhci_hcd", xhci_to_hcd(xhci));
245         if (ret) {
246                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247                                 "disable MSI interrupt");
248                 pci_disable_msi(pdev);
249         }
250
251         return ret;
252 }
253
254 /*
255  * Free IRQs
256  * free all IRQs request
257  */
258 static void xhci_free_irq(struct xhci_hcd *xhci)
259 {
260         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
261         int ret;
262
263         /* return if using legacy interrupt */
264         if (xhci_to_hcd(xhci)->irq > 0)
265                 return;
266
267         ret = xhci_free_msi(xhci);
268         if (!ret)
269                 return;
270         if (pdev->irq > 0)
271                 free_irq(pdev->irq, xhci_to_hcd(xhci));
272
273         return;
274 }
275
276 /*
277  * Set up MSI-X
278  */
279 static int xhci_setup_msix(struct xhci_hcd *xhci)
280 {
281         int i, ret = 0;
282         struct usb_hcd *hcd = xhci_to_hcd(xhci);
283         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284
285         /*
286          * calculate number of msi-x vectors supported.
287          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288          *   with max number of interrupters based on the xhci HCSPARAMS1.
289          * - num_online_cpus: maximum msi-x vectors per CPUs core.
290          *   Add additional 1 vector to ensure always available interrupt.
291          */
292         xhci->msix_count = min(num_online_cpus() + 1,
293                                 HCS_MAX_INTRS(xhci->hcs_params1));
294
295         xhci->msix_entries =
296                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
297                                 GFP_KERNEL);
298         if (!xhci->msix_entries) {
299                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
300                 return -ENOMEM;
301         }
302
303         for (i = 0; i < xhci->msix_count; i++) {
304                 xhci->msix_entries[i].entry = i;
305                 xhci->msix_entries[i].vector = 0;
306         }
307
308         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
309         if (ret) {
310                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
311                                 "Failed to enable MSI-X");
312                 goto free_entries;
313         }
314
315         for (i = 0; i < xhci->msix_count; i++) {
316                 ret = request_irq(xhci->msix_entries[i].vector,
317                                 xhci_msi_irq,
318                                 0, "xhci_hcd", xhci_to_hcd(xhci));
319                 if (ret)
320                         goto disable_msix;
321         }
322
323         hcd->msix_enabled = 1;
324         return ret;
325
326 disable_msix:
327         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
328         xhci_free_irq(xhci);
329         pci_disable_msix(pdev);
330 free_entries:
331         kfree(xhci->msix_entries);
332         xhci->msix_entries = NULL;
333         return ret;
334 }
335
336 /* Free any IRQs and disable MSI-X */
337 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
338 {
339         struct usb_hcd *hcd = xhci_to_hcd(xhci);
340         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
341
342         if (xhci->quirks & XHCI_PLAT)
343                 return;
344
345         xhci_free_irq(xhci);
346
347         if (xhci->msix_entries) {
348                 pci_disable_msix(pdev);
349                 kfree(xhci->msix_entries);
350                 xhci->msix_entries = NULL;
351         } else {
352                 pci_disable_msi(pdev);
353         }
354
355         hcd->msix_enabled = 0;
356         return;
357 }
358
359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
360 {
361         int i;
362
363         if (xhci->msix_entries) {
364                 for (i = 0; i < xhci->msix_count; i++)
365                         synchronize_irq(xhci->msix_entries[i].vector);
366         }
367 }
368
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
372         struct pci_dev  *pdev;
373         int ret;
374
375         /* The xhci platform device has set up IRQs through usb_add_hcd. */
376         if (xhci->quirks & XHCI_PLAT)
377                 return 0;
378
379         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
380         /*
381          * Some Fresco Logic host controllers advertise MSI, but fail to
382          * generate interrupts.  Don't even try to enable MSI.
383          */
384         if (xhci->quirks & XHCI_BROKEN_MSI)
385                 goto legacy_irq;
386
387         /* unregister the legacy interrupt */
388         if (hcd->irq)
389                 free_irq(hcd->irq, hcd);
390         hcd->irq = 0;
391
392         ret = xhci_setup_msix(xhci);
393         if (ret)
394                 /* fall back to msi*/
395                 ret = xhci_setup_msi(xhci);
396
397         if (!ret)
398                 /* hcd->irq is 0, we have MSI */
399                 return 0;
400
401         if (!pdev->irq) {
402                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
403                 return -EINVAL;
404         }
405
406  legacy_irq:
407         if (!strlen(hcd->irq_descr))
408                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
409                          hcd->driver->description, hcd->self.busnum);
410
411         /* fall back to legacy interrupt*/
412         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
413                         hcd->irq_descr, hcd);
414         if (ret) {
415                 xhci_err(xhci, "request interrupt %d failed\n",
416                                 pdev->irq);
417                 return ret;
418         }
419         hcd->irq = pdev->irq;
420         return 0;
421 }
422
423 #else
424
425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
426 {
427         return 0;
428 }
429
430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
431 {
432 }
433
434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
435 {
436 }
437
438 #endif
439
440 static void compliance_mode_recovery(unsigned long arg)
441 {
442         struct xhci_hcd *xhci;
443         struct usb_hcd *hcd;
444         u32 temp;
445         int i;
446
447         xhci = (struct xhci_hcd *)arg;
448
449         for (i = 0; i < xhci->num_usb3_ports; i++) {
450                 temp = readl(xhci->usb3_ports[i]);
451                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
452                         /*
453                          * Compliance Mode Detected. Letting USB Core
454                          * handle the Warm Reset
455                          */
456                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457                                         "Compliance mode detected->port %d",
458                                         i + 1);
459                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
460                                         "Attempting compliance mode recovery");
461                         hcd = xhci->shared_hcd;
462
463                         if (hcd->state == HC_STATE_SUSPENDED)
464                                 usb_hcd_resume_root_hub(hcd);
465
466                         usb_hcd_poll_rh_status(hcd);
467                 }
468         }
469
470         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
471                 mod_timer(&xhci->comp_mode_recovery_timer,
472                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
473 }
474
475 /*
476  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
477  * that causes ports behind that hardware to enter compliance mode sometimes.
478  * The quirk creates a timer that polls every 2 seconds the link state of
479  * each host controller's port and recovers it by issuing a Warm reset
480  * if Compliance mode is detected, otherwise the port will become "dead" (no
481  * device connections or disconnections will be detected anymore). Becasue no
482  * status event is generated when entering compliance mode (per xhci spec),
483  * this quirk is needed on systems that have the failing hardware installed.
484  */
485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
486 {
487         xhci->port_status_u0 = 0;
488         setup_timer(&xhci->comp_mode_recovery_timer,
489                     compliance_mode_recovery, (unsigned long)xhci);
490         xhci->comp_mode_recovery_timer.expires = jiffies +
491                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
492
493         set_timer_slack(&xhci->comp_mode_recovery_timer,
494                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
495         add_timer(&xhci->comp_mode_recovery_timer);
496         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                         "Compliance mode recovery timer initialized");
498 }
499
500 /*
501  * This function identifies the systems that have installed the SN65LVPE502CP
502  * USB3.0 re-driver and that need the Compliance Mode Quirk.
503  * Systems:
504  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
505  */
506 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
507 {
508         const char *dmi_product_name, *dmi_sys_vendor;
509
510         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
511         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
512         if (!dmi_product_name || !dmi_sys_vendor)
513                 return false;
514
515         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
516                 return false;
517
518         if (strstr(dmi_product_name, "Z420") ||
519                         strstr(dmi_product_name, "Z620") ||
520                         strstr(dmi_product_name, "Z820") ||
521                         strstr(dmi_product_name, "Z1 Workstation"))
522                 return true;
523
524         return false;
525 }
526
527 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
528 {
529         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
530 }
531
532
533 /*
534  * Initialize memory for HCD and xHC (one-time init).
535  *
536  * Program the PAGESIZE register, initialize the device context array, create
537  * device contexts (?), set up a command ring segment (or two?), create event
538  * ring (one for now).
539  */
540 int xhci_init(struct usb_hcd *hcd)
541 {
542         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
543         int retval = 0;
544
545         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
546         spin_lock_init(&xhci->lock);
547         if (xhci->hci_version == 0x95 && link_quirk) {
548                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
549                                 "QUIRK: Not clearing Link TRB chain bits.");
550                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
551         } else {
552                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
553                                 "xHCI doesn't need link TRB QUIRK");
554         }
555         retval = xhci_mem_init(xhci, GFP_KERNEL);
556         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
557
558         /* Initializing Compliance Mode Recovery Data If Needed */
559         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
560                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
561                 compliance_mode_recovery_timer_init(xhci);
562         }
563
564         return retval;
565 }
566
567 /*-------------------------------------------------------------------------*/
568
569
570 static int xhci_run_finished(struct xhci_hcd *xhci)
571 {
572         if (xhci_start(xhci)) {
573                 xhci_halt(xhci);
574                 return -ENODEV;
575         }
576         xhci->shared_hcd->state = HC_STATE_RUNNING;
577         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
578
579         if (xhci->quirks & XHCI_NEC_HOST)
580                 xhci_ring_cmd_db(xhci);
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583                         "Finished xhci_run for USB3 roothub");
584         return 0;
585 }
586
587 /*
588  * Start the HC after it was halted.
589  *
590  * This function is called by the USB core when the HC driver is added.
591  * Its opposite is xhci_stop().
592  *
593  * xhci_init() must be called once before this function can be called.
594  * Reset the HC, enable device slot contexts, program DCBAAP, and
595  * set command ring pointer and event ring pointer.
596  *
597  * Setup MSI-X vectors and enable interrupts.
598  */
599 int xhci_run(struct usb_hcd *hcd)
600 {
601         u32 temp;
602         u64 temp_64;
603         int ret;
604         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
605
606         /* Start the xHCI host controller running only after the USB 2.0 roothub
607          * is setup.
608          */
609
610         hcd->uses_new_polling = 1;
611         if (!usb_hcd_is_primary_hcd(hcd))
612                 return xhci_run_finished(xhci);
613
614         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
615
616         ret = xhci_try_enable_msi(hcd);
617         if (ret)
618                 return ret;
619
620         xhci_dbg(xhci, "Command ring memory map follows:\n");
621         xhci_debug_ring(xhci, xhci->cmd_ring);
622         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
623         xhci_dbg_cmd_ptrs(xhci);
624
625         xhci_dbg(xhci, "ERST memory map follows:\n");
626         xhci_dbg_erst(xhci, &xhci->erst);
627         xhci_dbg(xhci, "Event ring:\n");
628         xhci_debug_ring(xhci, xhci->event_ring);
629         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
630         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
631         temp_64 &= ~ERST_PTR_MASK;
632         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
634
635         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
636                         "// Set the interrupt modulation register");
637         temp = readl(&xhci->ir_set->irq_control);
638         temp &= ~ER_IRQ_INTERVAL_MASK;
639         /*
640          * the increment interval is 8 times as much as that defined
641          * in xHCI spec on MTK's controller
642          */
643         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
644         writel(temp, &xhci->ir_set->irq_control);
645
646         /* Set the HCD state before we enable the irqs */
647         temp = readl(&xhci->op_regs->command);
648         temp |= (CMD_EIE);
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650                         "// Enable interrupts, cmd = 0x%x.", temp);
651         writel(temp, &xhci->op_regs->command);
652
653         temp = readl(&xhci->ir_set->irq_pending);
654         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
655                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
656                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
657         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
658         xhci_print_ir_set(xhci, 0);
659
660         if (xhci->quirks & XHCI_NEC_HOST) {
661                 struct xhci_command *command;
662                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
663                 if (!command)
664                         return -ENOMEM;
665                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
666                                 TRB_TYPE(TRB_NEC_GET_FW));
667         }
668         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
669                         "Finished xhci_run for USB2 roothub");
670         return 0;
671 }
672 EXPORT_SYMBOL_GPL(xhci_run);
673
674 /*
675  * Stop xHCI driver.
676  *
677  * This function is called by the USB core when the HC driver is removed.
678  * Its opposite is xhci_run().
679  *
680  * Disable device contexts, disable IRQs, and quiesce the HC.
681  * Reset the HC, finish any completed transactions, and cleanup memory.
682  */
683 void xhci_stop(struct usb_hcd *hcd)
684 {
685         u32 temp;
686         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687
688         if (xhci->xhc_state & XHCI_STATE_HALTED)
689                 return;
690
691         mutex_lock(&xhci->mutex);
692         spin_lock_irq(&xhci->lock);
693         xhci->xhc_state |= XHCI_STATE_HALTED;
694         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
695
696         /* Make sure the xHC is halted for a USB3 roothub
697          * (xhci_stop() could be called as part of failed init).
698          */
699         xhci_halt(xhci);
700         xhci_reset(xhci);
701         spin_unlock_irq(&xhci->lock);
702
703         xhci_cleanup_msix(xhci);
704
705         /* Deleting Compliance Mode Recovery Timer */
706         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
707                         (!(xhci_all_ports_seen_u0(xhci)))) {
708                 del_timer_sync(&xhci->comp_mode_recovery_timer);
709                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
710                                 "%s: compliance mode recovery timer deleted",
711                                 __func__);
712         }
713
714         if (xhci->quirks & XHCI_AMD_PLL_FIX)
715                 usb_amd_dev_put();
716
717         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718                         "// Disabling event ring interrupts");
719         temp = readl(&xhci->op_regs->status);
720         writel(temp & ~STS_EINT, &xhci->op_regs->status);
721         temp = readl(&xhci->ir_set->irq_pending);
722         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
723         xhci_print_ir_set(xhci, 0);
724
725         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
726         xhci_mem_cleanup(xhci);
727         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
728                         "xhci_stop completed - status = %x",
729                         readl(&xhci->op_regs->status));
730         mutex_unlock(&xhci->mutex);
731 }
732
733 /*
734  * Shutdown HC (not bus-specific)
735  *
736  * This is called when the machine is rebooting or halting.  We assume that the
737  * machine will be powered off, and the HC's internal state will be reset.
738  * Don't bother to free memory.
739  *
740  * This will only ever be called with the main usb_hcd (the USB3 roothub).
741  */
742 void xhci_shutdown(struct usb_hcd *hcd)
743 {
744         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
745
746         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
747                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
748
749         spin_lock_irq(&xhci->lock);
750         xhci_halt(xhci);
751         /* Workaround for spurious wakeups at shutdown with HSW */
752         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
753                 xhci_reset(xhci);
754         spin_unlock_irq(&xhci->lock);
755
756         xhci_cleanup_msix(xhci);
757
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_shutdown completed - status = %x",
760                         readl(&xhci->op_regs->status));
761
762         /* Yet another workaround for spurious wakeups at shutdown with HSW */
763         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
764                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
765 }
766
767 #ifdef CONFIG_PM
768 static void xhci_save_registers(struct xhci_hcd *xhci)
769 {
770         xhci->s3.command = readl(&xhci->op_regs->command);
771         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
772         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
773         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
774         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
775         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
776         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
777         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
778         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
779 }
780
781 static void xhci_restore_registers(struct xhci_hcd *xhci)
782 {
783         writel(xhci->s3.command, &xhci->op_regs->command);
784         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
785         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
786         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
787         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
788         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
789         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
790         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
791         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
792 }
793
794 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
795 {
796         u64     val_64;
797
798         /* step 2: initialize command ring buffer */
799         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
800         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
801                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
802                                       xhci->cmd_ring->dequeue) &
803                  (u64) ~CMD_RING_RSVD_BITS) |
804                 xhci->cmd_ring->cycle_state;
805         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
806                         "// Setting command ring address to 0x%llx",
807                         (long unsigned long) val_64);
808         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
809 }
810
811 /*
812  * The whole command ring must be cleared to zero when we suspend the host.
813  *
814  * The host doesn't save the command ring pointer in the suspend well, so we
815  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
816  * aligned, because of the reserved bits in the command ring dequeue pointer
817  * register.  Therefore, we can't just set the dequeue pointer back in the
818  * middle of the ring (TRBs are 16-byte aligned).
819  */
820 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
821 {
822         struct xhci_ring *ring;
823         struct xhci_segment *seg;
824
825         ring = xhci->cmd_ring;
826         seg = ring->deq_seg;
827         do {
828                 memset(seg->trbs, 0,
829                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
830                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
831                         cpu_to_le32(~TRB_CYCLE);
832                 seg = seg->next;
833         } while (seg != ring->deq_seg);
834
835         /* Reset the software enqueue and dequeue pointers */
836         ring->deq_seg = ring->first_seg;
837         ring->dequeue = ring->first_seg->trbs;
838         ring->enq_seg = ring->deq_seg;
839         ring->enqueue = ring->dequeue;
840
841         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
842         /*
843          * Ring is now zeroed, so the HW should look for change of ownership
844          * when the cycle bit is set to 1.
845          */
846         ring->cycle_state = 1;
847
848         /*
849          * Reset the hardware dequeue pointer.
850          * Yes, this will need to be re-written after resume, but we're paranoid
851          * and want to make sure the hardware doesn't access bogus memory
852          * because, say, the BIOS or an SMI started the host without changing
853          * the command ring pointers.
854          */
855         xhci_set_cmd_ring_deq(xhci);
856 }
857
858 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
859 {
860         int port_index;
861         __le32 __iomem **port_array;
862         unsigned long flags;
863         u32 t1, t2;
864
865         spin_lock_irqsave(&xhci->lock, flags);
866
867         /* disble usb3 ports Wake bits*/
868         port_index = xhci->num_usb3_ports;
869         port_array = xhci->usb3_ports;
870         while (port_index--) {
871                 t1 = readl(port_array[port_index]);
872                 t1 = xhci_port_state_to_neutral(t1);
873                 t2 = t1 & ~PORT_WAKE_BITS;
874                 if (t1 != t2)
875                         writel(t2, port_array[port_index]);
876         }
877
878         /* disble usb2 ports Wake bits*/
879         port_index = xhci->num_usb2_ports;
880         port_array = xhci->usb2_ports;
881         while (port_index--) {
882                 t1 = readl(port_array[port_index]);
883                 t1 = xhci_port_state_to_neutral(t1);
884                 t2 = t1 & ~PORT_WAKE_BITS;
885                 if (t1 != t2)
886                         writel(t2, port_array[port_index]);
887         }
888
889         spin_unlock_irqrestore(&xhci->lock, flags);
890 }
891
892 /*
893  * Stop HC (not bus-specific)
894  *
895  * This is called when the machine transition into S3/S4 mode.
896  *
897  */
898 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
899 {
900         int                     rc = 0;
901         unsigned int            delay = XHCI_MAX_HALT_USEC;
902         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
903         u32                     command;
904
905         if (!hcd->state)
906                 return 0;
907
908         if (hcd->state != HC_STATE_SUSPENDED ||
909                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
910                 return -EINVAL;
911
912         /* Clear root port wake on bits if wakeup not allowed. */
913         if (!do_wakeup)
914                 xhci_disable_port_wake_on_bits(xhci);
915
916         /* Don't poll the roothubs on bus suspend. */
917         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
918         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
919         del_timer_sync(&hcd->rh_timer);
920         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
921         del_timer_sync(&xhci->shared_hcd->rh_timer);
922
923         spin_lock_irq(&xhci->lock);
924         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
925         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
926         /* step 1: stop endpoint */
927         /* skipped assuming that port suspend has done */
928
929         /* step 2: clear Run/Stop bit */
930         command = readl(&xhci->op_regs->command);
931         command &= ~CMD_RUN;
932         writel(command, &xhci->op_regs->command);
933
934         /* Some chips from Fresco Logic need an extraordinary delay */
935         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
936
937         if (xhci_handshake(&xhci->op_regs->status,
938                       STS_HALT, STS_HALT, delay)) {
939                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
940                 spin_unlock_irq(&xhci->lock);
941                 return -ETIMEDOUT;
942         }
943         xhci_clear_command_ring(xhci);
944
945         /* step 3: save registers */
946         xhci_save_registers(xhci);
947
948         /* step 4: set CSS flag */
949         command = readl(&xhci->op_regs->command);
950         command |= CMD_CSS;
951         writel(command, &xhci->op_regs->command);
952         if (xhci_handshake(&xhci->op_regs->status,
953                                 STS_SAVE, 0, 10 * 1000)) {
954                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
955                 spin_unlock_irq(&xhci->lock);
956                 return -ETIMEDOUT;
957         }
958         spin_unlock_irq(&xhci->lock);
959
960         /*
961          * Deleting Compliance Mode Recovery Timer because the xHCI Host
962          * is about to be suspended.
963          */
964         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
965                         (!(xhci_all_ports_seen_u0(xhci)))) {
966                 del_timer_sync(&xhci->comp_mode_recovery_timer);
967                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
968                                 "%s: compliance mode recovery timer deleted",
969                                 __func__);
970         }
971
972         /* step 5: remove core well power */
973         /* synchronize irq when using MSI-X */
974         xhci_msix_sync_irqs(xhci);
975
976         return rc;
977 }
978 EXPORT_SYMBOL_GPL(xhci_suspend);
979
980 /*
981  * start xHC (not bus-specific)
982  *
983  * This is called when the machine transition from S3/S4 mode.
984  *
985  */
986 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
987 {
988         u32                     command, temp = 0, status;
989         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
990         struct usb_hcd          *secondary_hcd;
991         int                     retval = 0;
992         bool                    comp_timer_running = false;
993
994         if (!hcd->state)
995                 return 0;
996
997         /* Wait a bit if either of the roothubs need to settle from the
998          * transition into bus suspend.
999          */
1000         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1001                         time_before(jiffies,
1002                                 xhci->bus_state[1].next_statechange))
1003                 msleep(100);
1004
1005         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007
1008         spin_lock_irq(&xhci->lock);
1009         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1010                 hibernated = true;
1011
1012         if (!hibernated) {
1013                 /* step 1: restore register */
1014                 xhci_restore_registers(xhci);
1015                 /* step 2: initialize command ring buffer */
1016                 xhci_set_cmd_ring_deq(xhci);
1017                 /* step 3: restore state and start state*/
1018                 /* step 3: set CRS flag */
1019                 command = readl(&xhci->op_regs->command);
1020                 command |= CMD_CRS;
1021                 writel(command, &xhci->op_regs->command);
1022                 if (xhci_handshake(&xhci->op_regs->status,
1023                               STS_RESTORE, 0, 10 * 1000)) {
1024                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1025                         spin_unlock_irq(&xhci->lock);
1026                         return -ETIMEDOUT;
1027                 }
1028                 temp = readl(&xhci->op_regs->status);
1029         }
1030
1031         /* If restore operation fails, re-initialize the HC during resume */
1032         if ((temp & STS_SRE) || hibernated) {
1033
1034                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1035                                 !(xhci_all_ports_seen_u0(xhci))) {
1036                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1037                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1038                                 "Compliance Mode Recovery Timer deleted!");
1039                 }
1040
1041                 /* Let the USB core know _both_ roothubs lost power. */
1042                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1043                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1044
1045                 xhci_dbg(xhci, "Stop HCD\n");
1046                 xhci_halt(xhci);
1047                 xhci_reset(xhci);
1048                 spin_unlock_irq(&xhci->lock);
1049                 xhci_cleanup_msix(xhci);
1050
1051                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1052                 temp = readl(&xhci->op_regs->status);
1053                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1054                 temp = readl(&xhci->ir_set->irq_pending);
1055                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1056                 xhci_print_ir_set(xhci, 0);
1057
1058                 xhci_dbg(xhci, "cleaning up memory\n");
1059                 xhci_mem_cleanup(xhci);
1060                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1061                             readl(&xhci->op_regs->status));
1062
1063                 /* USB core calls the PCI reinit and start functions twice:
1064                  * first with the primary HCD, and then with the secondary HCD.
1065                  * If we don't do the same, the host will never be started.
1066                  */
1067                 if (!usb_hcd_is_primary_hcd(hcd))
1068                         secondary_hcd = hcd;
1069                 else
1070                         secondary_hcd = xhci->shared_hcd;
1071
1072                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1073                 retval = xhci_init(hcd->primary_hcd);
1074                 if (retval)
1075                         return retval;
1076                 comp_timer_running = true;
1077
1078                 xhci_dbg(xhci, "Start the primary HCD\n");
1079                 retval = xhci_run(hcd->primary_hcd);
1080                 if (!retval) {
1081                         xhci_dbg(xhci, "Start the secondary HCD\n");
1082                         retval = xhci_run(secondary_hcd);
1083                 }
1084                 hcd->state = HC_STATE_SUSPENDED;
1085                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1086                 goto done;
1087         }
1088
1089         /* step 4: set Run/Stop bit */
1090         command = readl(&xhci->op_regs->command);
1091         command |= CMD_RUN;
1092         writel(command, &xhci->op_regs->command);
1093         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1094                   0, 250 * 1000);
1095
1096         /* step 5: walk topology and initialize portsc,
1097          * portpmsc and portli
1098          */
1099         /* this is done in bus_resume */
1100
1101         /* step 6: restart each of the previously
1102          * Running endpoints by ringing their doorbells
1103          */
1104
1105         spin_unlock_irq(&xhci->lock);
1106
1107  done:
1108         if (retval == 0) {
1109                 /* Resume root hubs only when have pending events. */
1110                 status = readl(&xhci->op_regs->status);
1111                 if (status & STS_EINT) {
1112                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1113                         usb_hcd_resume_root_hub(hcd);
1114                 }
1115         }
1116
1117         /*
1118          * If system is subject to the Quirk, Compliance Mode Timer needs to
1119          * be re-initialized Always after a system resume. Ports are subject
1120          * to suffer the Compliance Mode issue again. It doesn't matter if
1121          * ports have entered previously to U0 before system's suspension.
1122          */
1123         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1124                 compliance_mode_recovery_timer_init(xhci);
1125
1126         /* Re-enable port polling. */
1127         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1128         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1129         usb_hcd_poll_rh_status(xhci->shared_hcd);
1130         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1131         usb_hcd_poll_rh_status(hcd);
1132
1133         return retval;
1134 }
1135 EXPORT_SYMBOL_GPL(xhci_resume);
1136 #endif  /* CONFIG_PM */
1137
1138 /*-------------------------------------------------------------------------*/
1139
1140 /**
1141  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1142  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1143  * value to right shift 1 for the bitmask.
1144  *
1145  * Index  = (epnum * 2) + direction - 1,
1146  * where direction = 0 for OUT, 1 for IN.
1147  * For control endpoints, the IN index is used (OUT index is unused), so
1148  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1149  */
1150 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1151 {
1152         unsigned int index;
1153         if (usb_endpoint_xfer_control(desc))
1154                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1155         else
1156                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1157                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1158         return index;
1159 }
1160
1161 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1162  * address from the XHCI endpoint index.
1163  */
1164 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1165 {
1166         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1167         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1168         return direction | number;
1169 }
1170
1171 /* Find the flag for this endpoint (for use in the control context).  Use the
1172  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1173  * bit 1, etc.
1174  */
1175 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1176 {
1177         return 1 << (xhci_get_endpoint_index(desc) + 1);
1178 }
1179
1180 /* Find the flag for this endpoint (for use in the control context).  Use the
1181  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1182  * bit 1, etc.
1183  */
1184 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1185 {
1186         return 1 << (ep_index + 1);
1187 }
1188
1189 /* Compute the last valid endpoint context index.  Basically, this is the
1190  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1191  * we find the most significant bit set in the added contexts flags.
1192  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1193  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1194  */
1195 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1196 {
1197         return fls(added_ctxs) - 1;
1198 }
1199
1200 /* Returns 1 if the arguments are OK;
1201  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1202  */
1203 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1204                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1205                 const char *func) {
1206         struct xhci_hcd *xhci;
1207         struct xhci_virt_device *virt_dev;
1208
1209         if (!hcd || (check_ep && !ep) || !udev) {
1210                 pr_debug("xHCI %s called with invalid args\n", func);
1211                 return -EINVAL;
1212         }
1213         if (!udev->parent) {
1214                 pr_debug("xHCI %s called for root hub\n", func);
1215                 return 0;
1216         }
1217
1218         xhci = hcd_to_xhci(hcd);
1219         if (check_virt_dev) {
1220                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1221                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1222                                         func);
1223                         return -EINVAL;
1224                 }
1225
1226                 virt_dev = xhci->devs[udev->slot_id];
1227                 if (virt_dev->udev != udev) {
1228                         xhci_dbg(xhci, "xHCI %s called with udev and "
1229                                           "virt_dev does not match\n", func);
1230                         return -EINVAL;
1231                 }
1232         }
1233
1234         if (xhci->xhc_state & XHCI_STATE_HALTED)
1235                 return -ENODEV;
1236
1237         return 1;
1238 }
1239
1240 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1241                 struct usb_device *udev, struct xhci_command *command,
1242                 bool ctx_change, bool must_succeed);
1243
1244 /*
1245  * Full speed devices may have a max packet size greater than 8 bytes, but the
1246  * USB core doesn't know that until it reads the first 8 bytes of the
1247  * descriptor.  If the usb_device's max packet size changes after that point,
1248  * we need to issue an evaluate context command and wait on it.
1249  */
1250 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1251                 unsigned int ep_index, struct urb *urb)
1252 {
1253         struct xhci_container_ctx *out_ctx;
1254         struct xhci_input_control_ctx *ctrl_ctx;
1255         struct xhci_ep_ctx *ep_ctx;
1256         struct xhci_command *command;
1257         int max_packet_size;
1258         int hw_max_packet_size;
1259         int ret = 0;
1260
1261         out_ctx = xhci->devs[slot_id]->out_ctx;
1262         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1263         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1264         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1265         if (hw_max_packet_size != max_packet_size) {
1266                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267                                 "Max Packet Size for ep 0 changed.");
1268                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1269                                 "Max packet size in usb_device = %d",
1270                                 max_packet_size);
1271                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1272                                 "Max packet size in xHCI HW = %d",
1273                                 hw_max_packet_size);
1274                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1275                                 "Issuing evaluate context command.");
1276
1277                 /* Set up the input context flags for the command */
1278                 /* FIXME: This won't work if a non-default control endpoint
1279                  * changes max packet sizes.
1280                  */
1281
1282                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1283                 if (!command)
1284                         return -ENOMEM;
1285
1286                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1287                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1288                 if (!ctrl_ctx) {
1289                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1290                                         __func__);
1291                         ret = -ENOMEM;
1292                         goto command_cleanup;
1293                 }
1294                 /* Set up the modified control endpoint 0 */
1295                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1296                                 xhci->devs[slot_id]->out_ctx, ep_index);
1297
1298                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1299                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1300                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1301
1302                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1303                 ctrl_ctx->drop_flags = 0;
1304
1305                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1306                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1307                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1308                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1309
1310                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1311                                 true, false);
1312
1313                 /* Clean up the input context for later use by bandwidth
1314                  * functions.
1315                  */
1316                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1317 command_cleanup:
1318                 kfree(command->completion);
1319                 kfree(command);
1320         }
1321         return ret;
1322 }
1323
1324 /*
1325  * non-error returns are a promise to giveback() the urb later
1326  * we drop ownership so next owner (or urb unlink) can get it
1327  */
1328 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1329 {
1330         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1331         struct xhci_td *buffer;
1332         unsigned long flags;
1333         int ret = 0;
1334         unsigned int slot_id, ep_index;
1335         struct urb_priv *urb_priv;
1336         int size, i;
1337
1338         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1339                                         true, true, __func__) <= 0)
1340                 return -EINVAL;
1341
1342         slot_id = urb->dev->slot_id;
1343         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1344
1345         if (!HCD_HW_ACCESSIBLE(hcd)) {
1346                 if (!in_interrupt())
1347                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1348                 ret = -ESHUTDOWN;
1349                 goto exit;
1350         }
1351
1352         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1353                 size = urb->number_of_packets;
1354         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1355             urb->transfer_buffer_length > 0 &&
1356             urb->transfer_flags & URB_ZERO_PACKET &&
1357             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1358                 size = 2;
1359         else
1360                 size = 1;
1361
1362         urb_priv = kzalloc(sizeof(struct urb_priv) +
1363                                   size * sizeof(struct xhci_td *), mem_flags);
1364         if (!urb_priv)
1365                 return -ENOMEM;
1366
1367         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1368         if (!buffer) {
1369                 kfree(urb_priv);
1370                 return -ENOMEM;
1371         }
1372
1373         for (i = 0; i < size; i++) {
1374                 urb_priv->td[i] = buffer;
1375                 buffer++;
1376         }
1377
1378         urb_priv->length = size;
1379         urb_priv->td_cnt = 0;
1380         urb->hcpriv = urb_priv;
1381
1382         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1383                 /* Check to see if the max packet size for the default control
1384                  * endpoint changed during FS device enumeration
1385                  */
1386                 if (urb->dev->speed == USB_SPEED_FULL) {
1387                         ret = xhci_check_maxpacket(xhci, slot_id,
1388                                         ep_index, urb);
1389                         if (ret < 0) {
1390                                 xhci_urb_free_priv(urb_priv);
1391                                 urb->hcpriv = NULL;
1392                                 return ret;
1393                         }
1394                 }
1395
1396                 /* We have a spinlock and interrupts disabled, so we must pass
1397                  * atomic context to this function, which may allocate memory.
1398                  */
1399                 spin_lock_irqsave(&xhci->lock, flags);
1400                 if (xhci->xhc_state & XHCI_STATE_DYING)
1401                         goto dying;
1402                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1403                                 slot_id, ep_index);
1404                 if (ret)
1405                         goto free_priv;
1406                 spin_unlock_irqrestore(&xhci->lock, flags);
1407         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1408                 spin_lock_irqsave(&xhci->lock, flags);
1409                 if (xhci->xhc_state & XHCI_STATE_DYING)
1410                         goto dying;
1411                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1412                                 EP_GETTING_STREAMS) {
1413                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1414                                         "is transitioning to using streams.\n");
1415                         ret = -EINVAL;
1416                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1417                                 EP_GETTING_NO_STREAMS) {
1418                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1419                                         "is transitioning to "
1420                                         "not having streams.\n");
1421                         ret = -EINVAL;
1422                 } else {
1423                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1424                                         slot_id, ep_index);
1425                 }
1426                 if (ret)
1427                         goto free_priv;
1428                 spin_unlock_irqrestore(&xhci->lock, flags);
1429         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1430                 spin_lock_irqsave(&xhci->lock, flags);
1431                 if (xhci->xhc_state & XHCI_STATE_DYING)
1432                         goto dying;
1433                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1434                                 slot_id, ep_index);
1435                 if (ret)
1436                         goto free_priv;
1437                 spin_unlock_irqrestore(&xhci->lock, flags);
1438         } else {
1439                 spin_lock_irqsave(&xhci->lock, flags);
1440                 if (xhci->xhc_state & XHCI_STATE_DYING)
1441                         goto dying;
1442                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1443                                 slot_id, ep_index);
1444                 if (ret)
1445                         goto free_priv;
1446                 spin_unlock_irqrestore(&xhci->lock, flags);
1447         }
1448 exit:
1449         return ret;
1450 dying:
1451         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1452                         "non-responsive xHCI host.\n",
1453                         urb->ep->desc.bEndpointAddress, urb);
1454         ret = -ESHUTDOWN;
1455 free_priv:
1456         xhci_urb_free_priv(urb_priv);
1457         urb->hcpriv = NULL;
1458         spin_unlock_irqrestore(&xhci->lock, flags);
1459         return ret;
1460 }
1461
1462 /*
1463  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1464  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1465  * should pick up where it left off in the TD, unless a Set Transfer Ring
1466  * Dequeue Pointer is issued.
1467  *
1468  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1469  * the ring.  Since the ring is a contiguous structure, they can't be physically
1470  * removed.  Instead, there are two options:
1471  *
1472  *  1) If the HC is in the middle of processing the URB to be canceled, we
1473  *     simply move the ring's dequeue pointer past those TRBs using the Set
1474  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1475  *     when drivers timeout on the last submitted URB and attempt to cancel.
1476  *
1477  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1478  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1479  *     HC will need to invalidate the any TRBs it has cached after the stop
1480  *     endpoint command, as noted in the xHCI 0.95 errata.
1481  *
1482  *  3) The TD may have completed by the time the Stop Endpoint Command
1483  *     completes, so software needs to handle that case too.
1484  *
1485  * This function should protect against the TD enqueueing code ringing the
1486  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1487  * It also needs to account for multiple cancellations on happening at the same
1488  * time for the same endpoint.
1489  *
1490  * Note that this function can be called in any context, or so says
1491  * usb_hcd_unlink_urb()
1492  */
1493 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1494 {
1495         unsigned long flags;
1496         int ret, i;
1497         u32 temp;
1498         struct xhci_hcd *xhci;
1499         struct urb_priv *urb_priv;
1500         struct xhci_td *td;
1501         unsigned int ep_index;
1502         struct xhci_ring *ep_ring;
1503         struct xhci_virt_ep *ep;
1504         struct xhci_command *command;
1505
1506         xhci = hcd_to_xhci(hcd);
1507         spin_lock_irqsave(&xhci->lock, flags);
1508         /* Make sure the URB hasn't completed or been unlinked already */
1509         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1510         if (ret || !urb->hcpriv)
1511                 goto done;
1512         temp = readl(&xhci->op_regs->status);
1513         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1514                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1515                                 "HW died, freeing TD.");
1516                 urb_priv = urb->hcpriv;
1517                 for (i = urb_priv->td_cnt;
1518                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1519                      i++) {
1520                         td = urb_priv->td[i];
1521                         if (!list_empty(&td->td_list))
1522                                 list_del_init(&td->td_list);
1523                         if (!list_empty(&td->cancelled_td_list))
1524                                 list_del_init(&td->cancelled_td_list);
1525                 }
1526
1527                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1528                 spin_unlock_irqrestore(&xhci->lock, flags);
1529                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1530                 xhci_urb_free_priv(urb_priv);
1531                 return ret;
1532         }
1533         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1534                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1535                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1536                                 "Ep 0x%x: URB %p to be canceled on "
1537                                 "non-responsive xHCI host.",
1538                                 urb->ep->desc.bEndpointAddress, urb);
1539                 /* Let the stop endpoint command watchdog timer (which set this
1540                  * state) finish cleaning up the endpoint TD lists.  We must
1541                  * have caught it in the middle of dropping a lock and giving
1542                  * back an URB.
1543                  */
1544                 goto done;
1545         }
1546
1547         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1548         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1549         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1550         if (!ep_ring) {
1551                 ret = -EINVAL;
1552                 goto done;
1553         }
1554
1555         urb_priv = urb->hcpriv;
1556         i = urb_priv->td_cnt;
1557         if (i < urb_priv->length)
1558                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1559                                 "Cancel URB %p, dev %s, ep 0x%x, "
1560                                 "starting at offset 0x%llx",
1561                                 urb, urb->dev->devpath,
1562                                 urb->ep->desc.bEndpointAddress,
1563                                 (unsigned long long) xhci_trb_virt_to_dma(
1564                                         urb_priv->td[i]->start_seg,
1565                                         urb_priv->td[i]->first_trb));
1566
1567         for (; i < urb_priv->length; i++) {
1568                 td = urb_priv->td[i];
1569                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1570         }
1571
1572         /* Queue a stop endpoint command, but only if this is
1573          * the first cancellation to be handled.
1574          */
1575         if (!(ep->ep_state & EP_HALT_PENDING)) {
1576                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1577                 if (!command) {
1578                         ret = -ENOMEM;
1579                         goto done;
1580                 }
1581                 ep->ep_state |= EP_HALT_PENDING;
1582                 ep->stop_cmds_pending++;
1583                 ep->stop_cmd_timer.expires = jiffies +
1584                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1585                 add_timer(&ep->stop_cmd_timer);
1586                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1587                                          ep_index, 0);
1588                 xhci_ring_cmd_db(xhci);
1589         }
1590 done:
1591         spin_unlock_irqrestore(&xhci->lock, flags);
1592         return ret;
1593 }
1594
1595 /* Drop an endpoint from a new bandwidth configuration for this device.
1596  * Only one call to this function is allowed per endpoint before
1597  * check_bandwidth() or reset_bandwidth() must be called.
1598  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1599  * add the endpoint to the schedule with possibly new parameters denoted by a
1600  * different endpoint descriptor in usb_host_endpoint.
1601  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1602  * not allowed.
1603  *
1604  * The USB core will not allow URBs to be queued to an endpoint that is being
1605  * disabled, so there's no need for mutual exclusion to protect
1606  * the xhci->devs[slot_id] structure.
1607  */
1608 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1609                 struct usb_host_endpoint *ep)
1610 {
1611         struct xhci_hcd *xhci;
1612         struct xhci_container_ctx *in_ctx, *out_ctx;
1613         struct xhci_input_control_ctx *ctrl_ctx;
1614         unsigned int ep_index;
1615         struct xhci_ep_ctx *ep_ctx;
1616         u32 drop_flag;
1617         u32 new_add_flags, new_drop_flags;
1618         int ret;
1619
1620         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1621         if (ret <= 0)
1622                 return ret;
1623         xhci = hcd_to_xhci(hcd);
1624         if (xhci->xhc_state & XHCI_STATE_DYING)
1625                 return -ENODEV;
1626
1627         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1628         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1629         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1630                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1631                                 __func__, drop_flag);
1632                 return 0;
1633         }
1634
1635         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1636         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1637         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1638         if (!ctrl_ctx) {
1639                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1640                                 __func__);
1641                 return 0;
1642         }
1643
1644         ep_index = xhci_get_endpoint_index(&ep->desc);
1645         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1646         /* If the HC already knows the endpoint is disabled,
1647          * or the HCD has noted it is disabled, ignore this request
1648          */
1649         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1650              cpu_to_le32(EP_STATE_DISABLED)) ||
1651             le32_to_cpu(ctrl_ctx->drop_flags) &
1652             xhci_get_endpoint_flag(&ep->desc)) {
1653                 /* Do not warn when called after a usb_device_reset */
1654                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1655                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1656                                   __func__, ep);
1657                 return 0;
1658         }
1659
1660         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1661         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1662
1663         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1664         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1665
1666         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1667
1668         if (xhci->quirks & XHCI_MTK_HOST)
1669                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1670
1671         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1672                         (unsigned int) ep->desc.bEndpointAddress,
1673                         udev->slot_id,
1674                         (unsigned int) new_drop_flags,
1675                         (unsigned int) new_add_flags);
1676         return 0;
1677 }
1678
1679 /* Add an endpoint to a new possible bandwidth configuration for this device.
1680  * Only one call to this function is allowed per endpoint before
1681  * check_bandwidth() or reset_bandwidth() must be called.
1682  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1683  * add the endpoint to the schedule with possibly new parameters denoted by a
1684  * different endpoint descriptor in usb_host_endpoint.
1685  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1686  * not allowed.
1687  *
1688  * The USB core will not allow URBs to be queued to an endpoint until the
1689  * configuration or alt setting is installed in the device, so there's no need
1690  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1691  */
1692 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1693                 struct usb_host_endpoint *ep)
1694 {
1695         struct xhci_hcd *xhci;
1696         struct xhci_container_ctx *in_ctx;
1697         unsigned int ep_index;
1698         struct xhci_input_control_ctx *ctrl_ctx;
1699         u32 added_ctxs;
1700         u32 new_add_flags, new_drop_flags;
1701         struct xhci_virt_device *virt_dev;
1702         int ret = 0;
1703
1704         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1705         if (ret <= 0) {
1706                 /* So we won't queue a reset ep command for a root hub */
1707                 ep->hcpriv = NULL;
1708                 return ret;
1709         }
1710         xhci = hcd_to_xhci(hcd);
1711         if (xhci->xhc_state & XHCI_STATE_DYING)
1712                 return -ENODEV;
1713
1714         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1715         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1716                 /* FIXME when we have to issue an evaluate endpoint command to
1717                  * deal with ep0 max packet size changing once we get the
1718                  * descriptors
1719                  */
1720                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1721                                 __func__, added_ctxs);
1722                 return 0;
1723         }
1724
1725         virt_dev = xhci->devs[udev->slot_id];
1726         in_ctx = virt_dev->in_ctx;
1727         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1728         if (!ctrl_ctx) {
1729                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1730                                 __func__);
1731                 return 0;
1732         }
1733
1734         ep_index = xhci_get_endpoint_index(&ep->desc);
1735         /* If this endpoint is already in use, and the upper layers are trying
1736          * to add it again without dropping it, reject the addition.
1737          */
1738         if (virt_dev->eps[ep_index].ring &&
1739                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1740                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1741                                 "without dropping it.\n",
1742                                 (unsigned int) ep->desc.bEndpointAddress);
1743                 return -EINVAL;
1744         }
1745
1746         /* If the HCD has already noted the endpoint is enabled,
1747          * ignore this request.
1748          */
1749         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1750                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1751                                 __func__, ep);
1752                 return 0;
1753         }
1754
1755         /*
1756          * Configuration and alternate setting changes must be done in
1757          * process context, not interrupt context (or so documenation
1758          * for usb_set_interface() and usb_set_configuration() claim).
1759          */
1760         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1761                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1762                                 __func__, ep->desc.bEndpointAddress);
1763                 return -ENOMEM;
1764         }
1765
1766         if (xhci->quirks & XHCI_MTK_HOST) {
1767                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1768                 if (ret < 0) {
1769                         xhci_free_or_cache_endpoint_ring(xhci,
1770                                 virt_dev, ep_index);
1771                         return ret;
1772                 }
1773         }
1774
1775         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1776         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1777
1778         /* If xhci_endpoint_disable() was called for this endpoint, but the
1779          * xHC hasn't been notified yet through the check_bandwidth() call,
1780          * this re-adds a new state for the endpoint from the new endpoint
1781          * descriptors.  We must drop and re-add this endpoint, so we leave the
1782          * drop flags alone.
1783          */
1784         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1785
1786         /* Store the usb_device pointer for later use */
1787         ep->hcpriv = udev;
1788
1789         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1790                         (unsigned int) ep->desc.bEndpointAddress,
1791                         udev->slot_id,
1792                         (unsigned int) new_drop_flags,
1793                         (unsigned int) new_add_flags);
1794         return 0;
1795 }
1796
1797 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1798 {
1799         struct xhci_input_control_ctx *ctrl_ctx;
1800         struct xhci_ep_ctx *ep_ctx;
1801         struct xhci_slot_ctx *slot_ctx;
1802         int i;
1803
1804         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1805         if (!ctrl_ctx) {
1806                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1807                                 __func__);
1808                 return;
1809         }
1810
1811         /* When a device's add flag and drop flag are zero, any subsequent
1812          * configure endpoint command will leave that endpoint's state
1813          * untouched.  Make sure we don't leave any old state in the input
1814          * endpoint contexts.
1815          */
1816         ctrl_ctx->drop_flags = 0;
1817         ctrl_ctx->add_flags = 0;
1818         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1819         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1820         /* Endpoint 0 is always valid */
1821         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1822         for (i = 1; i < 31; ++i) {
1823                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1824                 ep_ctx->ep_info = 0;
1825                 ep_ctx->ep_info2 = 0;
1826                 ep_ctx->deq = 0;
1827                 ep_ctx->tx_info = 0;
1828         }
1829 }
1830
1831 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1832                 struct usb_device *udev, u32 *cmd_status)
1833 {
1834         int ret;
1835
1836         switch (*cmd_status) {
1837         case COMP_CMD_ABORT:
1838         case COMP_CMD_STOP:
1839                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1840                 ret = -ETIME;
1841                 break;
1842         case COMP_ENOMEM:
1843                 dev_warn(&udev->dev,
1844                          "Not enough host controller resources for new device state.\n");
1845                 ret = -ENOMEM;
1846                 /* FIXME: can we allocate more resources for the HC? */
1847                 break;
1848         case COMP_BW_ERR:
1849         case COMP_2ND_BW_ERR:
1850                 dev_warn(&udev->dev,
1851                          "Not enough bandwidth for new device state.\n");
1852                 ret = -ENOSPC;
1853                 /* FIXME: can we go back to the old state? */
1854                 break;
1855         case COMP_TRB_ERR:
1856                 /* the HCD set up something wrong */
1857                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1858                                 "add flag = 1, "
1859                                 "and endpoint is not disabled.\n");
1860                 ret = -EINVAL;
1861                 break;
1862         case COMP_DEV_ERR:
1863                 dev_warn(&udev->dev,
1864                          "ERROR: Incompatible device for endpoint configure command.\n");
1865                 ret = -ENODEV;
1866                 break;
1867         case COMP_SUCCESS:
1868                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1869                                 "Successful Endpoint Configure command");
1870                 ret = 0;
1871                 break;
1872         default:
1873                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1874                                 *cmd_status);
1875                 ret = -EINVAL;
1876                 break;
1877         }
1878         return ret;
1879 }
1880
1881 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1882                 struct usb_device *udev, u32 *cmd_status)
1883 {
1884         int ret;
1885         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1886
1887         switch (*cmd_status) {
1888         case COMP_CMD_ABORT:
1889         case COMP_CMD_STOP:
1890                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1891                 ret = -ETIME;
1892                 break;
1893         case COMP_EINVAL:
1894                 dev_warn(&udev->dev,
1895                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1896                 ret = -EINVAL;
1897                 break;
1898         case COMP_EBADSLT:
1899                 dev_warn(&udev->dev,
1900                         "WARN: slot not enabled for evaluate context command.\n");
1901                 ret = -EINVAL;
1902                 break;
1903         case COMP_CTX_STATE:
1904                 dev_warn(&udev->dev,
1905                         "WARN: invalid context state for evaluate context command.\n");
1906                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1907                 ret = -EINVAL;
1908                 break;
1909         case COMP_DEV_ERR:
1910                 dev_warn(&udev->dev,
1911                         "ERROR: Incompatible device for evaluate context command.\n");
1912                 ret = -ENODEV;
1913                 break;
1914         case COMP_MEL_ERR:
1915                 /* Max Exit Latency too large error */
1916                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1917                 ret = -EINVAL;
1918                 break;
1919         case COMP_SUCCESS:
1920                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1921                                 "Successful evaluate context command");
1922                 ret = 0;
1923                 break;
1924         default:
1925                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1926                         *cmd_status);
1927                 ret = -EINVAL;
1928                 break;
1929         }
1930         return ret;
1931 }
1932
1933 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1934                 struct xhci_input_control_ctx *ctrl_ctx)
1935 {
1936         u32 valid_add_flags;
1937         u32 valid_drop_flags;
1938
1939         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1940          * (bit 1).  The default control endpoint is added during the Address
1941          * Device command and is never removed until the slot is disabled.
1942          */
1943         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1944         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1945
1946         /* Use hweight32 to count the number of ones in the add flags, or
1947          * number of endpoints added.  Don't count endpoints that are changed
1948          * (both added and dropped).
1949          */
1950         return hweight32(valid_add_flags) -
1951                 hweight32(valid_add_flags & valid_drop_flags);
1952 }
1953
1954 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1955                 struct xhci_input_control_ctx *ctrl_ctx)
1956 {
1957         u32 valid_add_flags;
1958         u32 valid_drop_flags;
1959
1960         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1961         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1962
1963         return hweight32(valid_drop_flags) -
1964                 hweight32(valid_add_flags & valid_drop_flags);
1965 }
1966
1967 /*
1968  * We need to reserve the new number of endpoints before the configure endpoint
1969  * command completes.  We can't subtract the dropped endpoints from the number
1970  * of active endpoints until the command completes because we can oversubscribe
1971  * the host in this case:
1972  *
1973  *  - the first configure endpoint command drops more endpoints than it adds
1974  *  - a second configure endpoint command that adds more endpoints is queued
1975  *  - the first configure endpoint command fails, so the config is unchanged
1976  *  - the second command may succeed, even though there isn't enough resources
1977  *
1978  * Must be called with xhci->lock held.
1979  */
1980 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1981                 struct xhci_input_control_ctx *ctrl_ctx)
1982 {
1983         u32 added_eps;
1984
1985         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1986         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1987                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1988                                 "Not enough ep ctxs: "
1989                                 "%u active, need to add %u, limit is %u.",
1990                                 xhci->num_active_eps, added_eps,
1991                                 xhci->limit_active_eps);
1992                 return -ENOMEM;
1993         }
1994         xhci->num_active_eps += added_eps;
1995         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1996                         "Adding %u ep ctxs, %u now active.", added_eps,
1997                         xhci->num_active_eps);
1998         return 0;
1999 }
2000
2001 /*
2002  * The configure endpoint was failed by the xHC for some other reason, so we
2003  * need to revert the resources that failed configuration would have used.
2004  *
2005  * Must be called with xhci->lock held.
2006  */
2007 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2008                 struct xhci_input_control_ctx *ctrl_ctx)
2009 {
2010         u32 num_failed_eps;
2011
2012         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2013         xhci->num_active_eps -= num_failed_eps;
2014         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2015                         "Removing %u failed ep ctxs, %u now active.",
2016                         num_failed_eps,
2017                         xhci->num_active_eps);
2018 }
2019
2020 /*
2021  * Now that the command has completed, clean up the active endpoint count by
2022  * subtracting out the endpoints that were dropped (but not changed).
2023  *
2024  * Must be called with xhci->lock held.
2025  */
2026 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2027                 struct xhci_input_control_ctx *ctrl_ctx)
2028 {
2029         u32 num_dropped_eps;
2030
2031         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2032         xhci->num_active_eps -= num_dropped_eps;
2033         if (num_dropped_eps)
2034                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2035                                 "Removing %u dropped ep ctxs, %u now active.",
2036                                 num_dropped_eps,
2037                                 xhci->num_active_eps);
2038 }
2039
2040 static unsigned int xhci_get_block_size(struct usb_device *udev)
2041 {
2042         switch (udev->speed) {
2043         case USB_SPEED_LOW:
2044         case USB_SPEED_FULL:
2045                 return FS_BLOCK;
2046         case USB_SPEED_HIGH:
2047                 return HS_BLOCK;
2048         case USB_SPEED_SUPER:
2049         case USB_SPEED_SUPER_PLUS:
2050                 return SS_BLOCK;
2051         case USB_SPEED_UNKNOWN:
2052         case USB_SPEED_WIRELESS:
2053         default:
2054                 /* Should never happen */
2055                 return 1;
2056         }
2057 }
2058
2059 static unsigned int
2060 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2061 {
2062         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2063                 return LS_OVERHEAD;
2064         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2065                 return FS_OVERHEAD;
2066         return HS_OVERHEAD;
2067 }
2068
2069 /* If we are changing a LS/FS device under a HS hub,
2070  * make sure (if we are activating a new TT) that the HS bus has enough
2071  * bandwidth for this new TT.
2072  */
2073 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2074                 struct xhci_virt_device *virt_dev,
2075                 int old_active_eps)
2076 {
2077         struct xhci_interval_bw_table *bw_table;
2078         struct xhci_tt_bw_info *tt_info;
2079
2080         /* Find the bandwidth table for the root port this TT is attached to. */
2081         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2082         tt_info = virt_dev->tt_info;
2083         /* If this TT already had active endpoints, the bandwidth for this TT
2084          * has already been added.  Removing all periodic endpoints (and thus
2085          * making the TT enactive) will only decrease the bandwidth used.
2086          */
2087         if (old_active_eps)
2088                 return 0;
2089         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2090                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2091                         return -ENOMEM;
2092                 return 0;
2093         }
2094         /* Not sure why we would have no new active endpoints...
2095          *
2096          * Maybe because of an Evaluate Context change for a hub update or a
2097          * control endpoint 0 max packet size change?
2098          * FIXME: skip the bandwidth calculation in that case.
2099          */
2100         return 0;
2101 }
2102
2103 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2104                 struct xhci_virt_device *virt_dev)
2105 {
2106         unsigned int bw_reserved;
2107
2108         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2109         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2110                 return -ENOMEM;
2111
2112         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2113         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2114                 return -ENOMEM;
2115
2116         return 0;
2117 }
2118
2119 /*
2120  * This algorithm is a very conservative estimate of the worst-case scheduling
2121  * scenario for any one interval.  The hardware dynamically schedules the
2122  * packets, so we can't tell which microframe could be the limiting factor in
2123  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2124  *
2125  * Obviously, we can't solve an NP complete problem to find the minimum worst
2126  * case scenario.  Instead, we come up with an estimate that is no less than
2127  * the worst case bandwidth used for any one microframe, but may be an
2128  * over-estimate.
2129  *
2130  * We walk the requirements for each endpoint by interval, starting with the
2131  * smallest interval, and place packets in the schedule where there is only one
2132  * possible way to schedule packets for that interval.  In order to simplify
2133  * this algorithm, we record the largest max packet size for each interval, and
2134  * assume all packets will be that size.
2135  *
2136  * For interval 0, we obviously must schedule all packets for each interval.
2137  * The bandwidth for interval 0 is just the amount of data to be transmitted
2138  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2139  * the number of packets).
2140  *
2141  * For interval 1, we have two possible microframes to schedule those packets
2142  * in.  For this algorithm, if we can schedule the same number of packets for
2143  * each possible scheduling opportunity (each microframe), we will do so.  The
2144  * remaining number of packets will be saved to be transmitted in the gaps in
2145  * the next interval's scheduling sequence.
2146  *
2147  * As we move those remaining packets to be scheduled with interval 2 packets,
2148  * we have to double the number of remaining packets to transmit.  This is
2149  * because the intervals are actually powers of 2, and we would be transmitting
2150  * the previous interval's packets twice in this interval.  We also have to be
2151  * sure that when we look at the largest max packet size for this interval, we
2152  * also look at the largest max packet size for the remaining packets and take
2153  * the greater of the two.
2154  *
2155  * The algorithm continues to evenly distribute packets in each scheduling
2156  * opportunity, and push the remaining packets out, until we get to the last
2157  * interval.  Then those packets and their associated overhead are just added
2158  * to the bandwidth used.
2159  */
2160 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2161                 struct xhci_virt_device *virt_dev,
2162                 int old_active_eps)
2163 {
2164         unsigned int bw_reserved;
2165         unsigned int max_bandwidth;
2166         unsigned int bw_used;
2167         unsigned int block_size;
2168         struct xhci_interval_bw_table *bw_table;
2169         unsigned int packet_size = 0;
2170         unsigned int overhead = 0;
2171         unsigned int packets_transmitted = 0;
2172         unsigned int packets_remaining = 0;
2173         unsigned int i;
2174
2175         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2176                 return xhci_check_ss_bw(xhci, virt_dev);
2177
2178         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2179                 max_bandwidth = HS_BW_LIMIT;
2180                 /* Convert percent of bus BW reserved to blocks reserved */
2181                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2182         } else {
2183                 max_bandwidth = FS_BW_LIMIT;
2184                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2185         }
2186
2187         bw_table = virt_dev->bw_table;
2188         /* We need to translate the max packet size and max ESIT payloads into
2189          * the units the hardware uses.
2190          */
2191         block_size = xhci_get_block_size(virt_dev->udev);
2192
2193         /* If we are manipulating a LS/FS device under a HS hub, double check
2194          * that the HS bus has enough bandwidth if we are activing a new TT.
2195          */
2196         if (virt_dev->tt_info) {
2197                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2198                                 "Recalculating BW for rootport %u",
2199                                 virt_dev->real_port);
2200                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2201                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2202                                         "newly activated TT.\n");
2203                         return -ENOMEM;
2204                 }
2205                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2206                                 "Recalculating BW for TT slot %u port %u",
2207                                 virt_dev->tt_info->slot_id,
2208                                 virt_dev->tt_info->ttport);
2209         } else {
2210                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2211                                 "Recalculating BW for rootport %u",
2212                                 virt_dev->real_port);
2213         }
2214
2215         /* Add in how much bandwidth will be used for interval zero, or the
2216          * rounded max ESIT payload + number of packets * largest overhead.
2217          */
2218         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2219                 bw_table->interval_bw[0].num_packets *
2220                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2221
2222         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2223                 unsigned int bw_added;
2224                 unsigned int largest_mps;
2225                 unsigned int interval_overhead;
2226
2227                 /*
2228                  * How many packets could we transmit in this interval?
2229                  * If packets didn't fit in the previous interval, we will need
2230                  * to transmit that many packets twice within this interval.
2231                  */
2232                 packets_remaining = 2 * packets_remaining +
2233                         bw_table->interval_bw[i].num_packets;
2234
2235                 /* Find the largest max packet size of this or the previous
2236                  * interval.
2237                  */
2238                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2239                         largest_mps = 0;
2240                 else {
2241                         struct xhci_virt_ep *virt_ep;
2242                         struct list_head *ep_entry;
2243
2244                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2245                         virt_ep = list_entry(ep_entry,
2246                                         struct xhci_virt_ep, bw_endpoint_list);
2247                         /* Convert to blocks, rounding up */
2248                         largest_mps = DIV_ROUND_UP(
2249                                         virt_ep->bw_info.max_packet_size,
2250                                         block_size);
2251                 }
2252                 if (largest_mps > packet_size)
2253                         packet_size = largest_mps;
2254
2255                 /* Use the larger overhead of this or the previous interval. */
2256                 interval_overhead = xhci_get_largest_overhead(
2257                                 &bw_table->interval_bw[i]);
2258                 if (interval_overhead > overhead)
2259                         overhead = interval_overhead;
2260
2261                 /* How many packets can we evenly distribute across
2262                  * (1 << (i + 1)) possible scheduling opportunities?
2263                  */
2264                 packets_transmitted = packets_remaining >> (i + 1);
2265
2266                 /* Add in the bandwidth used for those scheduled packets */
2267                 bw_added = packets_transmitted * (overhead + packet_size);
2268
2269                 /* How many packets do we have remaining to transmit? */
2270                 packets_remaining = packets_remaining % (1 << (i + 1));
2271
2272                 /* What largest max packet size should those packets have? */
2273                 /* If we've transmitted all packets, don't carry over the
2274                  * largest packet size.
2275                  */
2276                 if (packets_remaining == 0) {
2277                         packet_size = 0;
2278                         overhead = 0;
2279                 } else if (packets_transmitted > 0) {
2280                         /* Otherwise if we do have remaining packets, and we've
2281                          * scheduled some packets in this interval, take the
2282                          * largest max packet size from endpoints with this
2283                          * interval.
2284                          */
2285                         packet_size = largest_mps;
2286                         overhead = interval_overhead;
2287                 }
2288                 /* Otherwise carry over packet_size and overhead from the last
2289                  * time we had a remainder.
2290                  */
2291                 bw_used += bw_added;
2292                 if (bw_used > max_bandwidth) {
2293                         xhci_warn(xhci, "Not enough bandwidth. "
2294                                         "Proposed: %u, Max: %u\n",
2295                                 bw_used, max_bandwidth);
2296                         return -ENOMEM;
2297                 }
2298         }
2299         /*
2300          * Ok, we know we have some packets left over after even-handedly
2301          * scheduling interval 15.  We don't know which microframes they will
2302          * fit into, so we over-schedule and say they will be scheduled every
2303          * microframe.
2304          */
2305         if (packets_remaining > 0)
2306                 bw_used += overhead + packet_size;
2307
2308         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2309                 unsigned int port_index = virt_dev->real_port - 1;
2310
2311                 /* OK, we're manipulating a HS device attached to a
2312                  * root port bandwidth domain.  Include the number of active TTs
2313                  * in the bandwidth used.
2314                  */
2315                 bw_used += TT_HS_OVERHEAD *
2316                         xhci->rh_bw[port_index].num_active_tts;
2317         }
2318
2319         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2320                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2321                 "Available: %u " "percent",
2322                 bw_used, max_bandwidth, bw_reserved,
2323                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2324                 max_bandwidth);
2325
2326         bw_used += bw_reserved;
2327         if (bw_used > max_bandwidth) {
2328                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2329                                 bw_used, max_bandwidth);
2330                 return -ENOMEM;
2331         }
2332
2333         bw_table->bw_used = bw_used;
2334         return 0;
2335 }
2336
2337 static bool xhci_is_async_ep(unsigned int ep_type)
2338 {
2339         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2340                                         ep_type != ISOC_IN_EP &&
2341                                         ep_type != INT_IN_EP);
2342 }
2343
2344 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2345 {
2346         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2347 }
2348
2349 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2350 {
2351         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2352
2353         if (ep_bw->ep_interval == 0)
2354                 return SS_OVERHEAD_BURST +
2355                         (ep_bw->mult * ep_bw->num_packets *
2356                                         (SS_OVERHEAD + mps));
2357         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2358                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2359                                 1 << ep_bw->ep_interval);
2360
2361 }
2362
2363 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2364                 struct xhci_bw_info *ep_bw,
2365                 struct xhci_interval_bw_table *bw_table,
2366                 struct usb_device *udev,
2367                 struct xhci_virt_ep *virt_ep,
2368                 struct xhci_tt_bw_info *tt_info)
2369 {
2370         struct xhci_interval_bw *interval_bw;
2371         int normalized_interval;
2372
2373         if (xhci_is_async_ep(ep_bw->type))
2374                 return;
2375
2376         if (udev->speed >= USB_SPEED_SUPER) {
2377                 if (xhci_is_sync_in_ep(ep_bw->type))
2378                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2379                                 xhci_get_ss_bw_consumed(ep_bw);
2380                 else
2381                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2382                                 xhci_get_ss_bw_consumed(ep_bw);
2383                 return;
2384         }
2385
2386         /* SuperSpeed endpoints never get added to intervals in the table, so
2387          * this check is only valid for HS/FS/LS devices.
2388          */
2389         if (list_empty(&virt_ep->bw_endpoint_list))
2390                 return;
2391         /* For LS/FS devices, we need to translate the interval expressed in
2392          * microframes to frames.
2393          */
2394         if (udev->speed == USB_SPEED_HIGH)
2395                 normalized_interval = ep_bw->ep_interval;
2396         else
2397                 normalized_interval = ep_bw->ep_interval - 3;
2398
2399         if (normalized_interval == 0)
2400                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2401         interval_bw = &bw_table->interval_bw[normalized_interval];
2402         interval_bw->num_packets -= ep_bw->num_packets;
2403         switch (udev->speed) {
2404         case USB_SPEED_LOW:
2405                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2406                 break;
2407         case USB_SPEED_FULL:
2408                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2409                 break;
2410         case USB_SPEED_HIGH:
2411                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2412                 break;
2413         case USB_SPEED_SUPER:
2414         case USB_SPEED_SUPER_PLUS:
2415         case USB_SPEED_UNKNOWN:
2416         case USB_SPEED_WIRELESS:
2417                 /* Should never happen because only LS/FS/HS endpoints will get
2418                  * added to the endpoint list.
2419                  */
2420                 return;
2421         }
2422         if (tt_info)
2423                 tt_info->active_eps -= 1;
2424         list_del_init(&virt_ep->bw_endpoint_list);
2425 }
2426
2427 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2428                 struct xhci_bw_info *ep_bw,
2429                 struct xhci_interval_bw_table *bw_table,
2430                 struct usb_device *udev,
2431                 struct xhci_virt_ep *virt_ep,
2432                 struct xhci_tt_bw_info *tt_info)
2433 {
2434         struct xhci_interval_bw *interval_bw;
2435         struct xhci_virt_ep *smaller_ep;
2436         int normalized_interval;
2437
2438         if (xhci_is_async_ep(ep_bw->type))
2439                 return;
2440
2441         if (udev->speed == USB_SPEED_SUPER) {
2442                 if (xhci_is_sync_in_ep(ep_bw->type))
2443                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2444                                 xhci_get_ss_bw_consumed(ep_bw);
2445                 else
2446                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2447                                 xhci_get_ss_bw_consumed(ep_bw);
2448                 return;
2449         }
2450
2451         /* For LS/FS devices, we need to translate the interval expressed in
2452          * microframes to frames.
2453          */
2454         if (udev->speed == USB_SPEED_HIGH)
2455                 normalized_interval = ep_bw->ep_interval;
2456         else
2457                 normalized_interval = ep_bw->ep_interval - 3;
2458
2459         if (normalized_interval == 0)
2460                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2461         interval_bw = &bw_table->interval_bw[normalized_interval];
2462         interval_bw->num_packets += ep_bw->num_packets;
2463         switch (udev->speed) {
2464         case USB_SPEED_LOW:
2465                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2466                 break;
2467         case USB_SPEED_FULL:
2468                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2469                 break;
2470         case USB_SPEED_HIGH:
2471                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2472                 break;
2473         case USB_SPEED_SUPER:
2474         case USB_SPEED_SUPER_PLUS:
2475         case USB_SPEED_UNKNOWN:
2476         case USB_SPEED_WIRELESS:
2477                 /* Should never happen because only LS/FS/HS endpoints will get
2478                  * added to the endpoint list.
2479                  */
2480                 return;
2481         }
2482
2483         if (tt_info)
2484                 tt_info->active_eps += 1;
2485         /* Insert the endpoint into the list, largest max packet size first. */
2486         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2487                         bw_endpoint_list) {
2488                 if (ep_bw->max_packet_size >=
2489                                 smaller_ep->bw_info.max_packet_size) {
2490                         /* Add the new ep before the smaller endpoint */
2491                         list_add_tail(&virt_ep->bw_endpoint_list,
2492                                         &smaller_ep->bw_endpoint_list);
2493                         return;
2494                 }
2495         }
2496         /* Add the new endpoint at the end of the list. */
2497         list_add_tail(&virt_ep->bw_endpoint_list,
2498                         &interval_bw->endpoints);
2499 }
2500
2501 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2502                 struct xhci_virt_device *virt_dev,
2503                 int old_active_eps)
2504 {
2505         struct xhci_root_port_bw_info *rh_bw_info;
2506         if (!virt_dev->tt_info)
2507                 return;
2508
2509         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2510         if (old_active_eps == 0 &&
2511                                 virt_dev->tt_info->active_eps != 0) {
2512                 rh_bw_info->num_active_tts += 1;
2513                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2514         } else if (old_active_eps != 0 &&
2515                                 virt_dev->tt_info->active_eps == 0) {
2516                 rh_bw_info->num_active_tts -= 1;
2517                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2518         }
2519 }
2520
2521 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2522                 struct xhci_virt_device *virt_dev,
2523                 struct xhci_container_ctx *in_ctx)
2524 {
2525         struct xhci_bw_info ep_bw_info[31];
2526         int i;
2527         struct xhci_input_control_ctx *ctrl_ctx;
2528         int old_active_eps = 0;
2529
2530         if (virt_dev->tt_info)
2531                 old_active_eps = virt_dev->tt_info->active_eps;
2532
2533         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2534         if (!ctrl_ctx) {
2535                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2536                                 __func__);
2537                 return -ENOMEM;
2538         }
2539
2540         for (i = 0; i < 31; i++) {
2541                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2542                         continue;
2543
2544                 /* Make a copy of the BW info in case we need to revert this */
2545                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2546                                 sizeof(ep_bw_info[i]));
2547                 /* Drop the endpoint from the interval table if the endpoint is
2548                  * being dropped or changed.
2549                  */
2550                 if (EP_IS_DROPPED(ctrl_ctx, i))
2551                         xhci_drop_ep_from_interval_table(xhci,
2552                                         &virt_dev->eps[i].bw_info,
2553                                         virt_dev->bw_table,
2554                                         virt_dev->udev,
2555                                         &virt_dev->eps[i],
2556                                         virt_dev->tt_info);
2557         }
2558         /* Overwrite the information stored in the endpoints' bw_info */
2559         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2560         for (i = 0; i < 31; i++) {
2561                 /* Add any changed or added endpoints to the interval table */
2562                 if (EP_IS_ADDED(ctrl_ctx, i))
2563                         xhci_add_ep_to_interval_table(xhci,
2564                                         &virt_dev->eps[i].bw_info,
2565                                         virt_dev->bw_table,
2566                                         virt_dev->udev,
2567                                         &virt_dev->eps[i],
2568                                         virt_dev->tt_info);
2569         }
2570
2571         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2572                 /* Ok, this fits in the bandwidth we have.
2573                  * Update the number of active TTs.
2574                  */
2575                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2576                 return 0;
2577         }
2578
2579         /* We don't have enough bandwidth for this, revert the stored info. */
2580         for (i = 0; i < 31; i++) {
2581                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2582                         continue;
2583
2584                 /* Drop the new copies of any added or changed endpoints from
2585                  * the interval table.
2586                  */
2587                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2588                         xhci_drop_ep_from_interval_table(xhci,
2589                                         &virt_dev->eps[i].bw_info,
2590                                         virt_dev->bw_table,
2591                                         virt_dev->udev,
2592                                         &virt_dev->eps[i],
2593                                         virt_dev->tt_info);
2594                 }
2595                 /* Revert the endpoint back to its old information */
2596                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2597                                 sizeof(ep_bw_info[i]));
2598                 /* Add any changed or dropped endpoints back into the table */
2599                 if (EP_IS_DROPPED(ctrl_ctx, i))
2600                         xhci_add_ep_to_interval_table(xhci,
2601                                         &virt_dev->eps[i].bw_info,
2602                                         virt_dev->bw_table,
2603                                         virt_dev->udev,
2604                                         &virt_dev->eps[i],
2605                                         virt_dev->tt_info);
2606         }
2607         return -ENOMEM;
2608 }
2609
2610
2611 /* Issue a configure endpoint command or evaluate context command
2612  * and wait for it to finish.
2613  */
2614 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2615                 struct usb_device *udev,
2616                 struct xhci_command *command,
2617                 bool ctx_change, bool must_succeed)
2618 {
2619         int ret;
2620         unsigned long flags;
2621         struct xhci_input_control_ctx *ctrl_ctx;
2622         struct xhci_virt_device *virt_dev;
2623
2624         if (!command)
2625                 return -EINVAL;
2626
2627         spin_lock_irqsave(&xhci->lock, flags);
2628         virt_dev = xhci->devs[udev->slot_id];
2629
2630         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2631         if (!ctrl_ctx) {
2632                 spin_unlock_irqrestore(&xhci->lock, flags);
2633                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2634                                 __func__);
2635                 return -ENOMEM;
2636         }
2637
2638         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2639                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2640                 spin_unlock_irqrestore(&xhci->lock, flags);
2641                 xhci_warn(xhci, "Not enough host resources, "
2642                                 "active endpoint contexts = %u\n",
2643                                 xhci->num_active_eps);
2644                 return -ENOMEM;
2645         }
2646         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2647             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2648                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2649                         xhci_free_host_resources(xhci, ctrl_ctx);
2650                 spin_unlock_irqrestore(&xhci->lock, flags);
2651                 xhci_warn(xhci, "Not enough bandwidth\n");
2652                 return -ENOMEM;
2653         }
2654
2655         if (!ctx_change)
2656                 ret = xhci_queue_configure_endpoint(xhci, command,
2657                                 command->in_ctx->dma,
2658                                 udev->slot_id, must_succeed);
2659         else
2660                 ret = xhci_queue_evaluate_context(xhci, command,
2661                                 command->in_ctx->dma,
2662                                 udev->slot_id, must_succeed);
2663         if (ret < 0) {
2664                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2665                         xhci_free_host_resources(xhci, ctrl_ctx);
2666                 spin_unlock_irqrestore(&xhci->lock, flags);
2667                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2668                                 "FIXME allocate a new ring segment");
2669                 return -ENOMEM;
2670         }
2671         xhci_ring_cmd_db(xhci);
2672         spin_unlock_irqrestore(&xhci->lock, flags);
2673
2674         /* Wait for the configure endpoint command to complete */
2675         wait_for_completion(command->completion);
2676
2677         if (!ctx_change)
2678                 ret = xhci_configure_endpoint_result(xhci, udev,
2679                                                      &command->status);
2680         else
2681                 ret = xhci_evaluate_context_result(xhci, udev,
2682                                                    &command->status);
2683
2684         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2685                 spin_lock_irqsave(&xhci->lock, flags);
2686                 /* If the command failed, remove the reserved resources.
2687                  * Otherwise, clean up the estimate to include dropped eps.
2688                  */
2689                 if (ret)
2690                         xhci_free_host_resources(xhci, ctrl_ctx);
2691                 else
2692                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2693                 spin_unlock_irqrestore(&xhci->lock, flags);
2694         }
2695         return ret;
2696 }
2697
2698 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2699         struct xhci_virt_device *vdev, int i)
2700 {
2701         struct xhci_virt_ep *ep = &vdev->eps[i];
2702
2703         if (ep->ep_state & EP_HAS_STREAMS) {
2704                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2705                                 xhci_get_endpoint_address(i));
2706                 xhci_free_stream_info(xhci, ep->stream_info);
2707                 ep->stream_info = NULL;
2708                 ep->ep_state &= ~EP_HAS_STREAMS;
2709         }
2710 }
2711
2712 /* Called after one or more calls to xhci_add_endpoint() or
2713  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2714  * to call xhci_reset_bandwidth().
2715  *
2716  * Since we are in the middle of changing either configuration or
2717  * installing a new alt setting, the USB core won't allow URBs to be
2718  * enqueued for any endpoint on the old config or interface.  Nothing
2719  * else should be touching the xhci->devs[slot_id] structure, so we
2720  * don't need to take the xhci->lock for manipulating that.
2721  */
2722 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2723 {
2724         int i;
2725         int ret = 0;
2726         struct xhci_hcd *xhci;
2727         struct xhci_virt_device *virt_dev;
2728         struct xhci_input_control_ctx *ctrl_ctx;
2729         struct xhci_slot_ctx *slot_ctx;
2730         struct xhci_command *command;
2731
2732         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2733         if (ret <= 0)
2734                 return ret;
2735         xhci = hcd_to_xhci(hcd);
2736         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2737                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2738                 return -ENODEV;
2739
2740         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2741         virt_dev = xhci->devs[udev->slot_id];
2742
2743         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2744         if (!command)
2745                 return -ENOMEM;
2746
2747         command->in_ctx = virt_dev->in_ctx;
2748
2749         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2750         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2751         if (!ctrl_ctx) {
2752                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2753                                 __func__);
2754                 ret = -ENOMEM;
2755                 goto command_cleanup;
2756         }
2757         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2758         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2759         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2760
2761         /* Don't issue the command if there's no endpoints to update. */
2762         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2763             ctrl_ctx->drop_flags == 0) {
2764                 ret = 0;
2765                 goto command_cleanup;
2766         }
2767         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2768         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2769         for (i = 31; i >= 1; i--) {
2770                 __le32 le32 = cpu_to_le32(BIT(i));
2771
2772                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2773                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2774                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2775                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2776                         break;
2777                 }
2778         }
2779         xhci_dbg(xhci, "New Input Control Context:\n");
2780         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2781                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2782
2783         ret = xhci_configure_endpoint(xhci, udev, command,
2784                         false, false);
2785         if (ret)
2786                 /* Callee should call reset_bandwidth() */
2787                 goto command_cleanup;
2788
2789         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2790         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2791                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2792
2793         /* Free any rings that were dropped, but not changed. */
2794         for (i = 1; i < 31; ++i) {
2795                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2796                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2797                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2798                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2799                 }
2800         }
2801         xhci_zero_in_ctx(xhci, virt_dev);
2802         /*
2803          * Install any rings for completely new endpoints or changed endpoints,
2804          * and free or cache any old rings from changed endpoints.
2805          */
2806         for (i = 1; i < 31; ++i) {
2807                 if (!virt_dev->eps[i].new_ring)
2808                         continue;
2809                 /* Only cache or free the old ring if it exists.
2810                  * It may not if this is the first add of an endpoint.
2811                  */
2812                 if (virt_dev->eps[i].ring) {
2813                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2814                 }
2815                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2816                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2817                 virt_dev->eps[i].new_ring = NULL;
2818         }
2819 command_cleanup:
2820         kfree(command->completion);
2821         kfree(command);
2822
2823         return ret;
2824 }
2825
2826 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2827 {
2828         struct xhci_hcd *xhci;
2829         struct xhci_virt_device *virt_dev;
2830         int i, ret;
2831
2832         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2833         if (ret <= 0)
2834                 return;
2835         xhci = hcd_to_xhci(hcd);
2836
2837         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2838         virt_dev = xhci->devs[udev->slot_id];
2839         /* Free any rings allocated for added endpoints */
2840         for (i = 0; i < 31; ++i) {
2841                 if (virt_dev->eps[i].new_ring) {
2842                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2843                         virt_dev->eps[i].new_ring = NULL;
2844                 }
2845         }
2846         xhci_zero_in_ctx(xhci, virt_dev);
2847 }
2848
2849 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2850                 struct xhci_container_ctx *in_ctx,
2851                 struct xhci_container_ctx *out_ctx,
2852                 struct xhci_input_control_ctx *ctrl_ctx,
2853                 u32 add_flags, u32 drop_flags)
2854 {
2855         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2856         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2857         xhci_slot_copy(xhci, in_ctx, out_ctx);
2858         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2859
2860         xhci_dbg(xhci, "Input Context:\n");
2861         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2862 }
2863
2864 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2865                 unsigned int slot_id, unsigned int ep_index,
2866                 struct xhci_dequeue_state *deq_state)
2867 {
2868         struct xhci_input_control_ctx *ctrl_ctx;
2869         struct xhci_container_ctx *in_ctx;
2870         struct xhci_ep_ctx *ep_ctx;
2871         u32 added_ctxs;
2872         dma_addr_t addr;
2873
2874         in_ctx = xhci->devs[slot_id]->in_ctx;
2875         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2876         if (!ctrl_ctx) {
2877                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2878                                 __func__);
2879                 return;
2880         }
2881
2882         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2883                         xhci->devs[slot_id]->out_ctx, ep_index);
2884         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2885         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2886                         deq_state->new_deq_ptr);
2887         if (addr == 0) {
2888                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2889                                 "reset ep command\n");
2890                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2891                                 deq_state->new_deq_seg,
2892                                 deq_state->new_deq_ptr);
2893                 return;
2894         }
2895         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2896
2897         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2898         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2899                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2900                         added_ctxs, added_ctxs);
2901 }
2902
2903 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2904                         unsigned int ep_index, struct xhci_td *td)
2905 {
2906         struct xhci_dequeue_state deq_state;
2907         struct xhci_virt_ep *ep;
2908         struct usb_device *udev = td->urb->dev;
2909
2910         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2911                         "Cleaning up stalled endpoint ring");
2912         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2913         /* We need to move the HW's dequeue pointer past this TD,
2914          * or it will attempt to resend it on the next doorbell ring.
2915          */
2916         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2917                         ep_index, ep->stopped_stream, td, &deq_state);
2918
2919         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2920                 return;
2921
2922         /* HW with the reset endpoint quirk will use the saved dequeue state to
2923          * issue a configure endpoint command later.
2924          */
2925         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2926                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2927                                 "Queueing new dequeue state");
2928                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2929                                 ep_index, ep->stopped_stream, &deq_state);
2930         } else {
2931                 /* Better hope no one uses the input context between now and the
2932                  * reset endpoint completion!
2933                  * XXX: No idea how this hardware will react when stream rings
2934                  * are enabled.
2935                  */
2936                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2937                                 "Setting up input context for "
2938                                 "configure endpoint command");
2939                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2940                                 ep_index, &deq_state);
2941         }
2942 }
2943
2944 /* Called when clearing halted device. The core should have sent the control
2945  * message to clear the device halt condition. The host side of the halt should
2946  * already be cleared with a reset endpoint command issued when the STALL tx
2947  * event was received.
2948  *
2949  * Context: in_interrupt
2950  */
2951
2952 void xhci_endpoint_reset(struct usb_hcd *hcd,
2953                 struct usb_host_endpoint *ep)
2954 {
2955         struct xhci_hcd *xhci;
2956
2957         xhci = hcd_to_xhci(hcd);
2958
2959         /*
2960          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2961          * The Reset Endpoint Command may only be issued to endpoints in the
2962          * Halted state. If software wishes reset the Data Toggle or Sequence
2963          * Number of an endpoint that isn't in the Halted state, then software
2964          * may issue a Configure Endpoint Command with the Drop and Add bits set
2965          * for the target endpoint. that is in the Stopped state.
2966          */
2967
2968         /* For now just print debug to follow the situation */
2969         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2970                  ep->desc.bEndpointAddress);
2971 }
2972
2973 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2974                 struct usb_device *udev, struct usb_host_endpoint *ep,
2975                 unsigned int slot_id)
2976 {
2977         int ret;
2978         unsigned int ep_index;
2979         unsigned int ep_state;
2980
2981         if (!ep)
2982                 return -EINVAL;
2983         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2984         if (ret <= 0)
2985                 return -EINVAL;
2986         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2987                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2988                                 " descriptor for ep 0x%x does not support streams\n",
2989                                 ep->desc.bEndpointAddress);
2990                 return -EINVAL;
2991         }
2992
2993         ep_index = xhci_get_endpoint_index(&ep->desc);
2994         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2995         if (ep_state & EP_HAS_STREAMS ||
2996                         ep_state & EP_GETTING_STREAMS) {
2997                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2998                                 "already has streams set up.\n",
2999                                 ep->desc.bEndpointAddress);
3000                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3001                                 "dynamic stream context array reallocation.\n");
3002                 return -EINVAL;
3003         }
3004         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3005                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3006                                 "endpoint 0x%x; URBs are pending.\n",
3007                                 ep->desc.bEndpointAddress);
3008                 return -EINVAL;
3009         }
3010         return 0;
3011 }
3012
3013 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3014                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3015 {
3016         unsigned int max_streams;
3017
3018         /* The stream context array size must be a power of two */
3019         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3020         /*
3021          * Find out how many primary stream array entries the host controller
3022          * supports.  Later we may use secondary stream arrays (similar to 2nd
3023          * level page entries), but that's an optional feature for xHCI host
3024          * controllers. xHCs must support at least 4 stream IDs.
3025          */
3026         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3027         if (*num_stream_ctxs > max_streams) {
3028                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3029                                 max_streams);
3030                 *num_stream_ctxs = max_streams;
3031                 *num_streams = max_streams;
3032         }
3033 }
3034
3035 /* Returns an error code if one of the endpoint already has streams.
3036  * This does not change any data structures, it only checks and gathers
3037  * information.
3038  */
3039 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3040                 struct usb_device *udev,
3041                 struct usb_host_endpoint **eps, unsigned int num_eps,
3042                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3043 {
3044         unsigned int max_streams;
3045         unsigned int endpoint_flag;
3046         int i;
3047         int ret;
3048
3049         for (i = 0; i < num_eps; i++) {
3050                 ret = xhci_check_streams_endpoint(xhci, udev,
3051                                 eps[i], udev->slot_id);
3052                 if (ret < 0)
3053                         return ret;
3054
3055                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3056                 if (max_streams < (*num_streams - 1)) {
3057                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3058                                         eps[i]->desc.bEndpointAddress,
3059                                         max_streams);
3060                         *num_streams = max_streams+1;
3061                 }
3062
3063                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3064                 if (*changed_ep_bitmask & endpoint_flag)
3065                         return -EINVAL;
3066                 *changed_ep_bitmask |= endpoint_flag;
3067         }
3068         return 0;
3069 }
3070
3071 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3072                 struct usb_device *udev,
3073                 struct usb_host_endpoint **eps, unsigned int num_eps)
3074 {
3075         u32 changed_ep_bitmask = 0;
3076         unsigned int slot_id;
3077         unsigned int ep_index;
3078         unsigned int ep_state;
3079         int i;
3080
3081         slot_id = udev->slot_id;
3082         if (!xhci->devs[slot_id])
3083                 return 0;
3084
3085         for (i = 0; i < num_eps; i++) {
3086                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3087                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3088                 /* Are streams already being freed for the endpoint? */
3089                 if (ep_state & EP_GETTING_NO_STREAMS) {
3090                         xhci_warn(xhci, "WARN Can't disable streams for "
3091                                         "endpoint 0x%x, "
3092                                         "streams are being disabled already\n",
3093                                         eps[i]->desc.bEndpointAddress);
3094                         return 0;
3095                 }
3096                 /* Are there actually any streams to free? */
3097                 if (!(ep_state & EP_HAS_STREAMS) &&
3098                                 !(ep_state & EP_GETTING_STREAMS)) {
3099                         xhci_warn(xhci, "WARN Can't disable streams for "
3100                                         "endpoint 0x%x, "
3101                                         "streams are already disabled!\n",
3102                                         eps[i]->desc.bEndpointAddress);
3103                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3104                                         "with non-streams endpoint\n");
3105                         return 0;
3106                 }
3107                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3108         }
3109         return changed_ep_bitmask;
3110 }
3111
3112 /*
3113  * The USB device drivers use this function (through the HCD interface in USB
3114  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3115  * coordinate mass storage command queueing across multiple endpoints (basically
3116  * a stream ID == a task ID).
3117  *
3118  * Setting up streams involves allocating the same size stream context array
3119  * for each endpoint and issuing a configure endpoint command for all endpoints.
3120  *
3121  * Don't allow the call to succeed if one endpoint only supports one stream
3122  * (which means it doesn't support streams at all).
3123  *
3124  * Drivers may get less stream IDs than they asked for, if the host controller
3125  * hardware or endpoints claim they can't support the number of requested
3126  * stream IDs.
3127  */
3128 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3129                 struct usb_host_endpoint **eps, unsigned int num_eps,
3130                 unsigned int num_streams, gfp_t mem_flags)
3131 {
3132         int i, ret;
3133         struct xhci_hcd *xhci;
3134         struct xhci_virt_device *vdev;
3135         struct xhci_command *config_cmd;
3136         struct xhci_input_control_ctx *ctrl_ctx;
3137         unsigned int ep_index;
3138         unsigned int num_stream_ctxs;
3139         unsigned long flags;
3140         u32 changed_ep_bitmask = 0;
3141
3142         if (!eps)
3143                 return -EINVAL;
3144
3145         /* Add one to the number of streams requested to account for
3146          * stream 0 that is reserved for xHCI usage.
3147          */
3148         num_streams += 1;
3149         xhci = hcd_to_xhci(hcd);
3150         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3151                         num_streams);
3152
3153         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3154         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3155                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3156                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3157                 return -ENOSYS;
3158         }
3159
3160         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3161         if (!config_cmd) {
3162                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3163                 return -ENOMEM;
3164         }
3165         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3166         if (!ctrl_ctx) {
3167                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3168                                 __func__);
3169                 xhci_free_command(xhci, config_cmd);
3170                 return -ENOMEM;
3171         }
3172
3173         /* Check to make sure all endpoints are not already configured for
3174          * streams.  While we're at it, find the maximum number of streams that
3175          * all the endpoints will support and check for duplicate endpoints.
3176          */
3177         spin_lock_irqsave(&xhci->lock, flags);
3178         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3179                         num_eps, &num_streams, &changed_ep_bitmask);
3180         if (ret < 0) {
3181                 xhci_free_command(xhci, config_cmd);
3182                 spin_unlock_irqrestore(&xhci->lock, flags);
3183                 return ret;
3184         }
3185         if (num_streams <= 1) {
3186                 xhci_warn(xhci, "WARN: endpoints can't handle "
3187                                 "more than one stream.\n");
3188                 xhci_free_command(xhci, config_cmd);
3189                 spin_unlock_irqrestore(&xhci->lock, flags);
3190                 return -EINVAL;
3191         }
3192         vdev = xhci->devs[udev->slot_id];
3193         /* Mark each endpoint as being in transition, so
3194          * xhci_urb_enqueue() will reject all URBs.
3195          */
3196         for (i = 0; i < num_eps; i++) {
3197                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3198                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3199         }
3200         spin_unlock_irqrestore(&xhci->lock, flags);
3201
3202         /* Setup internal data structures and allocate HW data structures for
3203          * streams (but don't install the HW structures in the input context
3204          * until we're sure all memory allocation succeeded).
3205          */
3206         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3207         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3208                         num_stream_ctxs, num_streams);
3209
3210         for (i = 0; i < num_eps; i++) {
3211                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3212                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3213                                 num_stream_ctxs,
3214                                 num_streams, mem_flags);
3215                 if (!vdev->eps[ep_index].stream_info)
3216                         goto cleanup;
3217                 /* Set maxPstreams in endpoint context and update deq ptr to
3218                  * point to stream context array. FIXME
3219                  */
3220         }
3221
3222         /* Set up the input context for a configure endpoint command. */
3223         for (i = 0; i < num_eps; i++) {
3224                 struct xhci_ep_ctx *ep_ctx;
3225
3226                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3227                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3228
3229                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3230                                 vdev->out_ctx, ep_index);
3231                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3232                                 vdev->eps[ep_index].stream_info);
3233         }
3234         /* Tell the HW to drop its old copy of the endpoint context info
3235          * and add the updated copy from the input context.
3236          */
3237         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3238                         vdev->out_ctx, ctrl_ctx,
3239                         changed_ep_bitmask, changed_ep_bitmask);
3240
3241         /* Issue and wait for the configure endpoint command */
3242         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3243                         false, false);
3244
3245         /* xHC rejected the configure endpoint command for some reason, so we
3246          * leave the old ring intact and free our internal streams data
3247          * structure.
3248          */
3249         if (ret < 0)
3250                 goto cleanup;
3251
3252         spin_lock_irqsave(&xhci->lock, flags);
3253         for (i = 0; i < num_eps; i++) {
3254                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3255                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3256                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3257                          udev->slot_id, ep_index);
3258                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3259         }
3260         xhci_free_command(xhci, config_cmd);
3261         spin_unlock_irqrestore(&xhci->lock, flags);
3262
3263         /* Subtract 1 for stream 0, which drivers can't use */
3264         return num_streams - 1;
3265
3266 cleanup:
3267         /* If it didn't work, free the streams! */
3268         for (i = 0; i < num_eps; i++) {
3269                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3270                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3271                 vdev->eps[ep_index].stream_info = NULL;
3272                 /* FIXME Unset maxPstreams in endpoint context and
3273                  * update deq ptr to point to normal string ring.
3274                  */
3275                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3276                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3277                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3278         }
3279         xhci_free_command(xhci, config_cmd);
3280         return -ENOMEM;
3281 }
3282
3283 /* Transition the endpoint from using streams to being a "normal" endpoint
3284  * without streams.
3285  *
3286  * Modify the endpoint context state, submit a configure endpoint command,
3287  * and free all endpoint rings for streams if that completes successfully.
3288  */
3289 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3290                 struct usb_host_endpoint **eps, unsigned int num_eps,
3291                 gfp_t mem_flags)
3292 {
3293         int i, ret;
3294         struct xhci_hcd *xhci;
3295         struct xhci_virt_device *vdev;
3296         struct xhci_command *command;
3297         struct xhci_input_control_ctx *ctrl_ctx;
3298         unsigned int ep_index;
3299         unsigned long flags;
3300         u32 changed_ep_bitmask;
3301
3302         xhci = hcd_to_xhci(hcd);
3303         vdev = xhci->devs[udev->slot_id];
3304
3305         /* Set up a configure endpoint command to remove the streams rings */
3306         spin_lock_irqsave(&xhci->lock, flags);
3307         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3308                         udev, eps, num_eps);
3309         if (changed_ep_bitmask == 0) {
3310                 spin_unlock_irqrestore(&xhci->lock, flags);
3311                 return -EINVAL;
3312         }
3313
3314         /* Use the xhci_command structure from the first endpoint.  We may have
3315          * allocated too many, but the driver may call xhci_free_streams() for
3316          * each endpoint it grouped into one call to xhci_alloc_streams().
3317          */
3318         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3319         command = vdev->eps[ep_index].stream_info->free_streams_command;
3320         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3321         if (!ctrl_ctx) {
3322                 spin_unlock_irqrestore(&xhci->lock, flags);
3323                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3324                                 __func__);
3325                 return -EINVAL;
3326         }
3327
3328         for (i = 0; i < num_eps; i++) {
3329                 struct xhci_ep_ctx *ep_ctx;
3330
3331                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3332                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3333                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3334                         EP_GETTING_NO_STREAMS;
3335
3336                 xhci_endpoint_copy(xhci, command->in_ctx,
3337                                 vdev->out_ctx, ep_index);
3338                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3339                                 &vdev->eps[ep_index]);
3340         }
3341         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3342                         vdev->out_ctx, ctrl_ctx,
3343                         changed_ep_bitmask, changed_ep_bitmask);
3344         spin_unlock_irqrestore(&xhci->lock, flags);
3345
3346         /* Issue and wait for the configure endpoint command,
3347          * which must succeed.
3348          */
3349         ret = xhci_configure_endpoint(xhci, udev, command,
3350                         false, true);
3351
3352         /* xHC rejected the configure endpoint command for some reason, so we
3353          * leave the streams rings intact.
3354          */
3355         if (ret < 0)
3356                 return ret;
3357
3358         spin_lock_irqsave(&xhci->lock, flags);
3359         for (i = 0; i < num_eps; i++) {
3360                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3361                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3362                 vdev->eps[ep_index].stream_info = NULL;
3363                 /* FIXME Unset maxPstreams in endpoint context and
3364                  * update deq ptr to point to normal string ring.
3365                  */
3366                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3367                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3368         }
3369         spin_unlock_irqrestore(&xhci->lock, flags);
3370
3371         return 0;
3372 }
3373
3374 /*
3375  * Deletes endpoint resources for endpoints that were active before a Reset
3376  * Device command, or a Disable Slot command.  The Reset Device command leaves
3377  * the control endpoint intact, whereas the Disable Slot command deletes it.
3378  *
3379  * Must be called with xhci->lock held.
3380  */
3381 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3382         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3383 {
3384         int i;
3385         unsigned int num_dropped_eps = 0;
3386         unsigned int drop_flags = 0;
3387
3388         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3389                 if (virt_dev->eps[i].ring) {
3390                         drop_flags |= 1 << i;
3391                         num_dropped_eps++;
3392                 }
3393         }
3394         xhci->num_active_eps -= num_dropped_eps;
3395         if (num_dropped_eps)
3396                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3397                                 "Dropped %u ep ctxs, flags = 0x%x, "
3398                                 "%u now active.",
3399                                 num_dropped_eps, drop_flags,
3400                                 xhci->num_active_eps);
3401 }
3402
3403 /*
3404  * This submits a Reset Device Command, which will set the device state to 0,
3405  * set the device address to 0, and disable all the endpoints except the default
3406  * control endpoint.  The USB core should come back and call
3407  * xhci_address_device(), and then re-set up the configuration.  If this is
3408  * called because of a usb_reset_and_verify_device(), then the old alternate
3409  * settings will be re-installed through the normal bandwidth allocation
3410  * functions.
3411  *
3412  * Wait for the Reset Device command to finish.  Remove all structures
3413  * associated with the endpoints that were disabled.  Clear the input device
3414  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3415  *
3416  * If the virt_dev to be reset does not exist or does not match the udev,
3417  * it means the device is lost, possibly due to the xHC restore error and
3418  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3419  * re-allocate the device.
3420  */
3421 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3422 {
3423         int ret, i;
3424         unsigned long flags;
3425         struct xhci_hcd *xhci;
3426         unsigned int slot_id;
3427         struct xhci_virt_device *virt_dev;
3428         struct xhci_command *reset_device_cmd;
3429         int last_freed_endpoint;
3430         struct xhci_slot_ctx *slot_ctx;
3431         int old_active_eps = 0;
3432
3433         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3434         if (ret <= 0)
3435                 return ret;
3436         xhci = hcd_to_xhci(hcd);
3437         slot_id = udev->slot_id;
3438         virt_dev = xhci->devs[slot_id];
3439         if (!virt_dev) {
3440                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3441                                 "not exist. Re-allocate the device\n", slot_id);
3442                 ret = xhci_alloc_dev(hcd, udev);
3443                 if (ret == 1)
3444                         return 0;
3445                 else
3446                         return -EINVAL;
3447         }
3448
3449         if (virt_dev->tt_info)
3450                 old_active_eps = virt_dev->tt_info->active_eps;
3451
3452         if (virt_dev->udev != udev) {
3453                 /* If the virt_dev and the udev does not match, this virt_dev
3454                  * may belong to another udev.
3455                  * Re-allocate the device.
3456                  */
3457                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3458                                 "not match the udev. Re-allocate the device\n",
3459                                 slot_id);
3460                 ret = xhci_alloc_dev(hcd, udev);
3461                 if (ret == 1)
3462                         return 0;
3463                 else
3464                         return -EINVAL;
3465         }
3466
3467         /* If device is not setup, there is no point in resetting it */
3468         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3469         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3470                                                 SLOT_STATE_DISABLED)
3471                 return 0;
3472
3473         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3474         /* Allocate the command structure that holds the struct completion.
3475          * Assume we're in process context, since the normal device reset
3476          * process has to wait for the device anyway.  Storage devices are
3477          * reset as part of error handling, so use GFP_NOIO instead of
3478          * GFP_KERNEL.
3479          */
3480         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3481         if (!reset_device_cmd) {
3482                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3483                 return -ENOMEM;
3484         }
3485
3486         /* Attempt to submit the Reset Device command to the command ring */
3487         spin_lock_irqsave(&xhci->lock, flags);
3488
3489         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3490         if (ret) {
3491                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3492                 spin_unlock_irqrestore(&xhci->lock, flags);
3493                 goto command_cleanup;
3494         }
3495         xhci_ring_cmd_db(xhci);
3496         spin_unlock_irqrestore(&xhci->lock, flags);
3497
3498         /* Wait for the Reset Device command to finish */
3499         wait_for_completion(reset_device_cmd->completion);
3500
3501         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3502          * unless we tried to reset a slot ID that wasn't enabled,
3503          * or the device wasn't in the addressed or configured state.
3504          */
3505         ret = reset_device_cmd->status;
3506         switch (ret) {
3507         case COMP_CMD_ABORT:
3508         case COMP_CMD_STOP:
3509                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3510                 ret = -ETIME;
3511                 goto command_cleanup;
3512         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3513         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3514                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3515                                 slot_id,
3516                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3517                 xhci_dbg(xhci, "Not freeing device rings.\n");
3518                 /* Don't treat this as an error.  May change my mind later. */
3519                 ret = 0;
3520                 goto command_cleanup;
3521         case COMP_SUCCESS:
3522                 xhci_dbg(xhci, "Successful reset device command.\n");
3523                 break;
3524         default:
3525                 if (xhci_is_vendor_info_code(xhci, ret))
3526                         break;
3527                 xhci_warn(xhci, "Unknown completion code %u for "
3528                                 "reset device command.\n", ret);
3529                 ret = -EINVAL;
3530                 goto command_cleanup;
3531         }
3532
3533         /* Free up host controller endpoint resources */
3534         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3535                 spin_lock_irqsave(&xhci->lock, flags);
3536                 /* Don't delete the default control endpoint resources */
3537                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3538                 spin_unlock_irqrestore(&xhci->lock, flags);
3539         }
3540
3541         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3542         last_freed_endpoint = 1;
3543         for (i = 1; i < 31; ++i) {
3544                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3545
3546                 if (ep->ep_state & EP_HAS_STREAMS) {
3547                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3548                                         xhci_get_endpoint_address(i));
3549                         xhci_free_stream_info(xhci, ep->stream_info);
3550                         ep->stream_info = NULL;
3551                         ep->ep_state &= ~EP_HAS_STREAMS;
3552                 }
3553
3554                 if (ep->ring) {
3555                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3556                         last_freed_endpoint = i;
3557                 }
3558                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3559                         xhci_drop_ep_from_interval_table(xhci,
3560                                         &virt_dev->eps[i].bw_info,
3561                                         virt_dev->bw_table,
3562                                         udev,
3563                                         &virt_dev->eps[i],
3564                                         virt_dev->tt_info);
3565                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3566         }
3567         /* If necessary, update the number of active TTs on this root port */
3568         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3569
3570         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3571         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3572         ret = 0;
3573
3574 command_cleanup:
3575         xhci_free_command(xhci, reset_device_cmd);
3576         return ret;
3577 }
3578
3579 /*
3580  * At this point, the struct usb_device is about to go away, the device has
3581  * disconnected, and all traffic has been stopped and the endpoints have been
3582  * disabled.  Free any HC data structures associated with that device.
3583  */
3584 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3585 {
3586         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3587         struct xhci_virt_device *virt_dev;
3588         unsigned long flags;
3589         u32 state;
3590         int i, ret;
3591         struct xhci_command *command;
3592
3593         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3594         if (!command)
3595                 return;
3596
3597 #ifndef CONFIG_USB_DEFAULT_PERSIST
3598         /*
3599          * We called pm_runtime_get_noresume when the device was attached.
3600          * Decrement the counter here to allow controller to runtime suspend
3601          * if no devices remain.
3602          */
3603         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3604                 pm_runtime_put_noidle(hcd->self.controller);
3605 #endif
3606
3607         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3608         /* If the host is halted due to driver unload, we still need to free the
3609          * device.
3610          */
3611         if (ret <= 0 && ret != -ENODEV) {
3612                 kfree(command);
3613                 return;
3614         }
3615
3616         virt_dev = xhci->devs[udev->slot_id];
3617
3618         /* Stop any wayward timer functions (which may grab the lock) */
3619         for (i = 0; i < 31; ++i) {
3620                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3621                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3622         }
3623
3624         spin_lock_irqsave(&xhci->lock, flags);
3625         /* Don't disable the slot if the host controller is dead. */
3626         state = readl(&xhci->op_regs->status);
3627         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3628                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3629                 xhci_free_virt_device(xhci, udev->slot_id);
3630                 spin_unlock_irqrestore(&xhci->lock, flags);
3631                 kfree(command);
3632                 return;
3633         }
3634
3635         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3636                                     udev->slot_id)) {
3637                 spin_unlock_irqrestore(&xhci->lock, flags);
3638                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3639                 return;
3640         }
3641         xhci_ring_cmd_db(xhci);
3642         spin_unlock_irqrestore(&xhci->lock, flags);
3643
3644         /*
3645          * Event command completion handler will free any data structures
3646          * associated with the slot.  XXX Can free sleep?
3647          */
3648 }
3649
3650 /*
3651  * Checks if we have enough host controller resources for the default control
3652  * endpoint.
3653  *
3654  * Must be called with xhci->lock held.
3655  */
3656 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3657 {
3658         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3659                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3660                                 "Not enough ep ctxs: "
3661                                 "%u active, need to add 1, limit is %u.",
3662                                 xhci->num_active_eps, xhci->limit_active_eps);
3663                 return -ENOMEM;
3664         }
3665         xhci->num_active_eps += 1;
3666         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3667                         "Adding 1 ep ctx, %u now active.",
3668                         xhci->num_active_eps);
3669         return 0;
3670 }
3671
3672
3673 /*
3674  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3675  * timed out, or allocating memory failed.  Returns 1 on success.
3676  */
3677 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3678 {
3679         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3680         unsigned long flags;
3681         int ret, slot_id;
3682         struct xhci_command *command;
3683
3684         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3685         if (!command)
3686                 return 0;
3687
3688         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3689         mutex_lock(&xhci->mutex);
3690         spin_lock_irqsave(&xhci->lock, flags);
3691         command->completion = &xhci->addr_dev;
3692         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3693         if (ret) {
3694                 spin_unlock_irqrestore(&xhci->lock, flags);
3695                 mutex_unlock(&xhci->mutex);
3696                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3697                 kfree(command);
3698                 return 0;
3699         }
3700         xhci_ring_cmd_db(xhci);
3701         spin_unlock_irqrestore(&xhci->lock, flags);
3702
3703         wait_for_completion(command->completion);
3704         slot_id = xhci->slot_id;
3705         mutex_unlock(&xhci->mutex);
3706
3707         if (!slot_id || command->status != COMP_SUCCESS) {
3708                 xhci_err(xhci, "Error while assigning device slot ID\n");
3709                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3710                                 HCS_MAX_SLOTS(
3711                                         readl(&xhci->cap_regs->hcs_params1)));
3712                 kfree(command);
3713                 return 0;
3714         }
3715
3716         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3717                 spin_lock_irqsave(&xhci->lock, flags);
3718                 ret = xhci_reserve_host_control_ep_resources(xhci);
3719                 if (ret) {
3720                         spin_unlock_irqrestore(&xhci->lock, flags);
3721                         xhci_warn(xhci, "Not enough host resources, "
3722                                         "active endpoint contexts = %u\n",
3723                                         xhci->num_active_eps);
3724                         goto disable_slot;
3725                 }
3726                 spin_unlock_irqrestore(&xhci->lock, flags);
3727         }
3728         /* Use GFP_NOIO, since this function can be called from
3729          * xhci_discover_or_reset_device(), which may be called as part of
3730          * mass storage driver error handling.
3731          */
3732         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3733                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3734                 goto disable_slot;
3735         }
3736         udev->slot_id = slot_id;
3737
3738 #ifndef CONFIG_USB_DEFAULT_PERSIST
3739         /*
3740          * If resetting upon resume, we can't put the controller into runtime
3741          * suspend if there is a device attached.
3742          */
3743         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3744                 pm_runtime_get_noresume(hcd->self.controller);
3745 #endif
3746
3747
3748         kfree(command);
3749         /* Is this a LS or FS device under a HS hub? */
3750         /* Hub or peripherial? */
3751         return 1;
3752
3753 disable_slot:
3754         /* Disable slot, if we can do it without mem alloc */
3755         spin_lock_irqsave(&xhci->lock, flags);
3756         command->completion = NULL;
3757         command->status = 0;
3758         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3759                                      udev->slot_id))
3760                 xhci_ring_cmd_db(xhci);
3761         spin_unlock_irqrestore(&xhci->lock, flags);
3762         return 0;
3763 }
3764
3765 /*
3766  * Issue an Address Device command and optionally send a corresponding
3767  * SetAddress request to the device.
3768  */
3769 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3770                              enum xhci_setup_dev setup)
3771 {
3772         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3773         unsigned long flags;
3774         struct xhci_virt_device *virt_dev;
3775         int ret = 0;
3776         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3777         struct xhci_slot_ctx *slot_ctx;
3778         struct xhci_input_control_ctx *ctrl_ctx;
3779         u64 temp_64;
3780         struct xhci_command *command = NULL;
3781
3782         mutex_lock(&xhci->mutex);
3783
3784         if (xhci->xhc_state)    /* dying, removing or halted */
3785                 goto out;
3786
3787         if (!udev->slot_id) {
3788                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3789                                 "Bad Slot ID %d", udev->slot_id);
3790                 ret = -EINVAL;
3791                 goto out;
3792         }
3793
3794         virt_dev = xhci->devs[udev->slot_id];
3795
3796         if (WARN_ON(!virt_dev)) {
3797                 /*
3798                  * In plug/unplug torture test with an NEC controller,
3799                  * a zero-dereference was observed once due to virt_dev = 0.
3800                  * Print useful debug rather than crash if it is observed again!
3801                  */
3802                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3803                         udev->slot_id);
3804                 ret = -EINVAL;
3805                 goto out;
3806         }
3807
3808         if (setup == SETUP_CONTEXT_ONLY) {
3809                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3810                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3811                     SLOT_STATE_DEFAULT) {
3812                         xhci_dbg(xhci, "Slot already in default state\n");
3813                         goto out;
3814                 }
3815         }
3816
3817         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3818         if (!command) {
3819                 ret = -ENOMEM;
3820                 goto out;
3821         }
3822
3823         command->in_ctx = virt_dev->in_ctx;
3824         command->completion = &xhci->addr_dev;
3825
3826         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3827         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3828         if (!ctrl_ctx) {
3829                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3830                                 __func__);
3831                 ret = -EINVAL;
3832                 goto out;
3833         }
3834         /*
3835          * If this is the first Set Address since device plug-in or
3836          * virt_device realloaction after a resume with an xHCI power loss,
3837          * then set up the slot context.
3838          */
3839         if (!slot_ctx->dev_info)
3840                 xhci_setup_addressable_virt_dev(xhci, udev);
3841         /* Otherwise, update the control endpoint ring enqueue pointer. */
3842         else
3843                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3844         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3845         ctrl_ctx->drop_flags = 0;
3846
3847         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3848         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3849         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3850                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3851
3852         spin_lock_irqsave(&xhci->lock, flags);
3853         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3854                                         udev->slot_id, setup);
3855         if (ret) {
3856                 spin_unlock_irqrestore(&xhci->lock, flags);
3857                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858                                 "FIXME: allocate a command ring segment");
3859                 goto out;
3860         }
3861         xhci_ring_cmd_db(xhci);
3862         spin_unlock_irqrestore(&xhci->lock, flags);
3863
3864         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3865         wait_for_completion(command->completion);
3866
3867         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3868          * the SetAddress() "recovery interval" required by USB and aborting the
3869          * command on a timeout.
3870          */
3871         switch (command->status) {
3872         case COMP_CMD_ABORT:
3873         case COMP_CMD_STOP:
3874                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3875                 ret = -ETIME;
3876                 break;
3877         case COMP_CTX_STATE:
3878         case COMP_EBADSLT:
3879                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3880                          act, udev->slot_id);
3881                 ret = -EINVAL;
3882                 break;
3883         case COMP_TX_ERR:
3884                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3885                 ret = -EPROTO;
3886                 break;
3887         case COMP_DEV_ERR:
3888                 dev_warn(&udev->dev,
3889                          "ERROR: Incompatible device for setup %s command\n", act);
3890                 ret = -ENODEV;
3891                 break;
3892         case COMP_SUCCESS:
3893                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3894                                "Successful setup %s command", act);
3895                 break;
3896         default:
3897                 xhci_err(xhci,
3898                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3899                          act, command->status);
3900                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3901                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3902                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3903                 ret = -EINVAL;
3904                 break;
3905         }
3906         if (ret)
3907                 goto out;
3908         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3909         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3910                         "Op regs DCBAA ptr = %#016llx", temp_64);
3911         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3912                 "Slot ID %d dcbaa entry @%p = %#016llx",
3913                 udev->slot_id,
3914                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3915                 (unsigned long long)
3916                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3917         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3918                         "Output Context DMA address = %#08llx",
3919                         (unsigned long long)virt_dev->out_ctx->dma);
3920         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3921         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3922         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3923                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3924         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3925         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3926         /*
3927          * USB core uses address 1 for the roothubs, so we add one to the
3928          * address given back to us by the HC.
3929          */
3930         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3931         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3932                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3933         /* Zero the input context control for later use */
3934         ctrl_ctx->add_flags = 0;
3935         ctrl_ctx->drop_flags = 0;
3936
3937         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3938                        "Internal device address = %d",
3939                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3940 out:
3941         mutex_unlock(&xhci->mutex);
3942         kfree(command);
3943         return ret;
3944 }
3945
3946 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3947 {
3948         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3949 }
3950
3951 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3952 {
3953         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3954 }
3955
3956 /*
3957  * Transfer the port index into real index in the HW port status
3958  * registers. Caculate offset between the port's PORTSC register
3959  * and port status base. Divide the number of per port register
3960  * to get the real index. The raw port number bases 1.
3961  */
3962 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3963 {
3964         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3965         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3966         __le32 __iomem *addr;
3967         int raw_port;
3968
3969         if (hcd->speed < HCD_USB3)
3970                 addr = xhci->usb2_ports[port1 - 1];
3971         else
3972                 addr = xhci->usb3_ports[port1 - 1];
3973
3974         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3975         return raw_port;
3976 }
3977
3978 /*
3979  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3980  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3981  */
3982 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3983                         struct usb_device *udev, u16 max_exit_latency)
3984 {
3985         struct xhci_virt_device *virt_dev;
3986         struct xhci_command *command;
3987         struct xhci_input_control_ctx *ctrl_ctx;
3988         struct xhci_slot_ctx *slot_ctx;
3989         unsigned long flags;
3990         int ret;
3991
3992         spin_lock_irqsave(&xhci->lock, flags);
3993
3994         virt_dev = xhci->devs[udev->slot_id];
3995
3996         /*
3997          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3998          * xHC was re-initialized. Exit latency will be set later after
3999          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4000          */
4001
4002         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4003                 spin_unlock_irqrestore(&xhci->lock, flags);
4004                 return 0;
4005         }
4006
4007         /* Attempt to issue an Evaluate Context command to change the MEL. */
4008         command = xhci->lpm_command;
4009         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4010         if (!ctrl_ctx) {
4011                 spin_unlock_irqrestore(&xhci->lock, flags);
4012                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4013                                 __func__);
4014                 return -ENOMEM;
4015         }
4016
4017         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4018         spin_unlock_irqrestore(&xhci->lock, flags);
4019
4020         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4021         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4022         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4023         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4024         slot_ctx->dev_state = 0;
4025
4026         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4027                         "Set up evaluate context for LPM MEL change.");
4028         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4029         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4030
4031         /* Issue and wait for the evaluate context command. */
4032         ret = xhci_configure_endpoint(xhci, udev, command,
4033                         true, true);
4034         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4035         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4036
4037         if (!ret) {
4038                 spin_lock_irqsave(&xhci->lock, flags);
4039                 virt_dev->current_mel = max_exit_latency;
4040                 spin_unlock_irqrestore(&xhci->lock, flags);
4041         }
4042         return ret;
4043 }
4044
4045 #ifdef CONFIG_PM
4046
4047 /* BESL to HIRD Encoding array for USB2 LPM */
4048 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4049         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4050
4051 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4052 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4053                                         struct usb_device *udev)
4054 {
4055         int u2del, besl, besl_host;
4056         int besl_device = 0;
4057         u32 field;
4058
4059         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4060         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4061
4062         if (field & USB_BESL_SUPPORT) {
4063                 for (besl_host = 0; besl_host < 16; besl_host++) {
4064                         if (xhci_besl_encoding[besl_host] >= u2del)
4065                                 break;
4066                 }
4067                 /* Use baseline BESL value as default */
4068                 if (field & USB_BESL_BASELINE_VALID)
4069                         besl_device = USB_GET_BESL_BASELINE(field);
4070                 else if (field & USB_BESL_DEEP_VALID)
4071                         besl_device = USB_GET_BESL_DEEP(field);
4072         } else {
4073                 if (u2del <= 50)
4074                         besl_host = 0;
4075                 else
4076                         besl_host = (u2del - 51) / 75 + 1;
4077         }
4078
4079         besl = besl_host + besl_device;
4080         if (besl > 15)
4081                 besl = 15;
4082
4083         return besl;
4084 }
4085
4086 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4087 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4088 {
4089         u32 field;
4090         int l1;
4091         int besld = 0;
4092         int hirdm = 0;
4093
4094         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4095
4096         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4097         l1 = udev->l1_params.timeout / 256;
4098
4099         /* device has preferred BESLD */
4100         if (field & USB_BESL_DEEP_VALID) {
4101                 besld = USB_GET_BESL_DEEP(field);
4102                 hirdm = 1;
4103         }
4104
4105         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4106 }
4107
4108 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4109                         struct usb_device *udev, int enable)
4110 {
4111         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4112         __le32 __iomem  **port_array;
4113         __le32 __iomem  *pm_addr, *hlpm_addr;
4114         u32             pm_val, hlpm_val, field;
4115         unsigned int    port_num;
4116         unsigned long   flags;
4117         int             hird, exit_latency;
4118         int             ret;
4119
4120         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4121                         !udev->lpm_capable)
4122                 return -EPERM;
4123
4124         if (!udev->parent || udev->parent->parent ||
4125                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4126                 return -EPERM;
4127
4128         if (udev->usb2_hw_lpm_capable != 1)
4129                 return -EPERM;
4130
4131         spin_lock_irqsave(&xhci->lock, flags);
4132
4133         port_array = xhci->usb2_ports;
4134         port_num = udev->portnum - 1;
4135         pm_addr = port_array[port_num] + PORTPMSC;
4136         pm_val = readl(pm_addr);
4137         hlpm_addr = port_array[port_num] + PORTHLPMC;
4138         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4139
4140         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4141                         enable ? "enable" : "disable", port_num + 1);
4142
4143         if (enable) {
4144                 /* Host supports BESL timeout instead of HIRD */
4145                 if (udev->usb2_hw_lpm_besl_capable) {
4146                         /* if device doesn't have a preferred BESL value use a
4147                          * default one which works with mixed HIRD and BESL
4148                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4149                          */
4150                         if ((field & USB_BESL_SUPPORT) &&
4151                             (field & USB_BESL_BASELINE_VALID))
4152                                 hird = USB_GET_BESL_BASELINE(field);
4153                         else
4154                                 hird = udev->l1_params.besl;
4155
4156                         exit_latency = xhci_besl_encoding[hird];
4157                         spin_unlock_irqrestore(&xhci->lock, flags);
4158
4159                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4160                          * input context for link powermanagement evaluate
4161                          * context commands. It is protected by hcd->bandwidth
4162                          * mutex and is shared by all devices. We need to set
4163                          * the max ext latency in USB 2 BESL LPM as well, so
4164                          * use the same mutex and xhci_change_max_exit_latency()
4165                          */
4166                         mutex_lock(hcd->bandwidth_mutex);
4167                         ret = xhci_change_max_exit_latency(xhci, udev,
4168                                                            exit_latency);
4169                         mutex_unlock(hcd->bandwidth_mutex);
4170
4171                         if (ret < 0)
4172                                 return ret;
4173                         spin_lock_irqsave(&xhci->lock, flags);
4174
4175                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4176                         writel(hlpm_val, hlpm_addr);
4177                         /* flush write */
4178                         readl(hlpm_addr);
4179                 } else {
4180                         hird = xhci_calculate_hird_besl(xhci, udev);
4181                 }
4182
4183                 pm_val &= ~PORT_HIRD_MASK;
4184                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4185                 writel(pm_val, pm_addr);
4186                 pm_val = readl(pm_addr);
4187                 pm_val |= PORT_HLE;
4188                 writel(pm_val, pm_addr);
4189                 /* flush write */
4190                 readl(pm_addr);
4191         } else {
4192                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4193                 writel(pm_val, pm_addr);
4194                 /* flush write */
4195                 readl(pm_addr);
4196                 if (udev->usb2_hw_lpm_besl_capable) {
4197                         spin_unlock_irqrestore(&xhci->lock, flags);
4198                         mutex_lock(hcd->bandwidth_mutex);
4199                         xhci_change_max_exit_latency(xhci, udev, 0);
4200                         mutex_unlock(hcd->bandwidth_mutex);
4201                         return 0;
4202                 }
4203         }
4204
4205         spin_unlock_irqrestore(&xhci->lock, flags);
4206         return 0;
4207 }
4208
4209 /* check if a usb2 port supports a given extened capability protocol
4210  * only USB2 ports extended protocol capability values are cached.
4211  * Return 1 if capability is supported
4212  */
4213 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4214                                            unsigned capability)
4215 {
4216         u32 port_offset, port_count;
4217         int i;
4218
4219         for (i = 0; i < xhci->num_ext_caps; i++) {
4220                 if (xhci->ext_caps[i] & capability) {
4221                         /* port offsets starts at 1 */
4222                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4223                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4224                         if (port >= port_offset &&
4225                             port < port_offset + port_count)
4226                                 return 1;
4227                 }
4228         }
4229         return 0;
4230 }
4231
4232 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4233 {
4234         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4235         int             portnum = udev->portnum - 1;
4236
4237         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4238                         !udev->lpm_capable)
4239                 return 0;
4240
4241         /* we only support lpm for non-hub device connected to root hub yet */
4242         if (!udev->parent || udev->parent->parent ||
4243                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4244                 return 0;
4245
4246         if (xhci->hw_lpm_support == 1 &&
4247                         xhci_check_usb2_port_capability(
4248                                 xhci, portnum, XHCI_HLC)) {
4249                 udev->usb2_hw_lpm_capable = 1;
4250                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4251                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4252                 if (xhci_check_usb2_port_capability(xhci, portnum,
4253                                         XHCI_BLC))
4254                         udev->usb2_hw_lpm_besl_capable = 1;
4255         }
4256
4257         return 0;
4258 }
4259
4260 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4261
4262 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4263 static unsigned long long xhci_service_interval_to_ns(
4264                 struct usb_endpoint_descriptor *desc)
4265 {
4266         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4267 }
4268
4269 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4270                 enum usb3_link_state state)
4271 {
4272         unsigned long long sel;
4273         unsigned long long pel;
4274         unsigned int max_sel_pel;
4275         char *state_name;
4276
4277         switch (state) {
4278         case USB3_LPM_U1:
4279                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4280                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4281                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4282                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4283                 state_name = "U1";
4284                 break;
4285         case USB3_LPM_U2:
4286                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4287                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4288                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4289                 state_name = "U2";
4290                 break;
4291         default:
4292                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4293                                 __func__);
4294                 return USB3_LPM_DISABLED;
4295         }
4296
4297         if (sel <= max_sel_pel && pel <= max_sel_pel)
4298                 return USB3_LPM_DEVICE_INITIATED;
4299
4300         if (sel > max_sel_pel)
4301                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4302                                 "due to long SEL %llu ms\n",
4303                                 state_name, sel);
4304         else
4305                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4306                                 "due to long PEL %llu ms\n",
4307                                 state_name, pel);
4308         return USB3_LPM_DISABLED;
4309 }
4310
4311 /* The U1 timeout should be the maximum of the following values:
4312  *  - For control endpoints, U1 system exit latency (SEL) * 3
4313  *  - For bulk endpoints, U1 SEL * 5
4314  *  - For interrupt endpoints:
4315  *    - Notification EPs, U1 SEL * 3
4316  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4317  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4318  */
4319 static unsigned long long xhci_calculate_intel_u1_timeout(
4320                 struct usb_device *udev,
4321                 struct usb_endpoint_descriptor *desc)
4322 {
4323         unsigned long long timeout_ns;
4324         int ep_type;
4325         int intr_type;
4326
4327         ep_type = usb_endpoint_type(desc);
4328         switch (ep_type) {
4329         case USB_ENDPOINT_XFER_CONTROL:
4330                 timeout_ns = udev->u1_params.sel * 3;
4331                 break;
4332         case USB_ENDPOINT_XFER_BULK:
4333                 timeout_ns = udev->u1_params.sel * 5;
4334                 break;
4335         case USB_ENDPOINT_XFER_INT:
4336                 intr_type = usb_endpoint_interrupt_type(desc);
4337                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4338                         timeout_ns = udev->u1_params.sel * 3;
4339                         break;
4340                 }
4341                 /* Otherwise the calculation is the same as isoc eps */
4342         case USB_ENDPOINT_XFER_ISOC:
4343                 timeout_ns = xhci_service_interval_to_ns(desc);
4344                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4345                 if (timeout_ns < udev->u1_params.sel * 2)
4346                         timeout_ns = udev->u1_params.sel * 2;
4347                 break;
4348         default:
4349                 return 0;
4350         }
4351
4352         return timeout_ns;
4353 }
4354
4355 /* Returns the hub-encoded U1 timeout value. */
4356 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4357                 struct usb_device *udev,
4358                 struct usb_endpoint_descriptor *desc)
4359 {
4360         unsigned long long timeout_ns;
4361
4362         if (xhci->quirks & XHCI_INTEL_HOST)
4363                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4364         else
4365                 timeout_ns = udev->u1_params.sel;
4366
4367         /* The U1 timeout is encoded in 1us intervals.
4368          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4369          */
4370         if (timeout_ns == USB3_LPM_DISABLED)
4371                 timeout_ns = 1;
4372         else
4373                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4374
4375         /* If the necessary timeout value is bigger than what we can set in the
4376          * USB 3.0 hub, we have to disable hub-initiated U1.
4377          */
4378         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4379                 return timeout_ns;
4380         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4381                         "due to long timeout %llu ms\n", timeout_ns);
4382         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4383 }
4384
4385 /* The U2 timeout should be the maximum of:
4386  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4387  *  - largest bInterval of any active periodic endpoint (to avoid going
4388  *    into lower power link states between intervals).
4389  *  - the U2 Exit Latency of the device
4390  */
4391 static unsigned long long xhci_calculate_intel_u2_timeout(
4392                 struct usb_device *udev,
4393                 struct usb_endpoint_descriptor *desc)
4394 {
4395         unsigned long long timeout_ns;
4396         unsigned long long u2_del_ns;
4397
4398         timeout_ns = 10 * 1000 * 1000;
4399
4400         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4401                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4402                 timeout_ns = xhci_service_interval_to_ns(desc);
4403
4404         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4405         if (u2_del_ns > timeout_ns)
4406                 timeout_ns = u2_del_ns;
4407
4408         return timeout_ns;
4409 }
4410
4411 /* Returns the hub-encoded U2 timeout value. */
4412 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4413                 struct usb_device *udev,
4414                 struct usb_endpoint_descriptor *desc)
4415 {
4416         unsigned long long timeout_ns;
4417
4418         if (xhci->quirks & XHCI_INTEL_HOST)
4419                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4420         else
4421                 timeout_ns = udev->u2_params.sel;
4422
4423         /* The U2 timeout is encoded in 256us intervals */
4424         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4425         /* If the necessary timeout value is bigger than what we can set in the
4426          * USB 3.0 hub, we have to disable hub-initiated U2.
4427          */
4428         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4429                 return timeout_ns;
4430         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4431                         "due to long timeout %llu ms\n", timeout_ns);
4432         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4433 }
4434
4435 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4436                 struct usb_device *udev,
4437                 struct usb_endpoint_descriptor *desc,
4438                 enum usb3_link_state state,
4439                 u16 *timeout)
4440 {
4441         if (state == USB3_LPM_U1)
4442                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4443         else if (state == USB3_LPM_U2)
4444                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4445
4446         return USB3_LPM_DISABLED;
4447 }
4448
4449 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4450                 struct usb_device *udev,
4451                 struct usb_endpoint_descriptor *desc,
4452                 enum usb3_link_state state,
4453                 u16 *timeout)
4454 {
4455         u16 alt_timeout;
4456
4457         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4458                 desc, state, timeout);
4459
4460         /* If we found we can't enable hub-initiated LPM, or
4461          * the U1 or U2 exit latency was too high to allow
4462          * device-initiated LPM as well, just stop searching.
4463          */
4464         if (alt_timeout == USB3_LPM_DISABLED ||
4465                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4466                 *timeout = alt_timeout;
4467                 return -E2BIG;
4468         }
4469         if (alt_timeout > *timeout)
4470                 *timeout = alt_timeout;
4471         return 0;
4472 }
4473
4474 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4475                 struct usb_device *udev,
4476                 struct usb_host_interface *alt,
4477                 enum usb3_link_state state,
4478                 u16 *timeout)
4479 {
4480         int j;
4481
4482         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4483                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4484                                         &alt->endpoint[j].desc, state, timeout))
4485                         return -E2BIG;
4486                 continue;
4487         }
4488         return 0;
4489 }
4490
4491 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4492                 enum usb3_link_state state)
4493 {
4494         struct usb_device *parent;
4495         unsigned int num_hubs;
4496
4497         if (state == USB3_LPM_U2)
4498                 return 0;
4499
4500         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4501         for (parent = udev->parent, num_hubs = 0; parent->parent;
4502                         parent = parent->parent)
4503                 num_hubs++;
4504
4505         if (num_hubs < 2)
4506                 return 0;
4507
4508         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4509                         " below second-tier hub.\n");
4510         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4511                         "to decrease power consumption.\n");
4512         return -E2BIG;
4513 }
4514
4515 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4516                 struct usb_device *udev,
4517                 enum usb3_link_state state)
4518 {
4519         if (xhci->quirks & XHCI_INTEL_HOST)
4520                 return xhci_check_intel_tier_policy(udev, state);
4521         else
4522                 return 0;
4523 }
4524
4525 /* Returns the U1 or U2 timeout that should be enabled.
4526  * If the tier check or timeout setting functions return with a non-zero exit
4527  * code, that means the timeout value has been finalized and we shouldn't look
4528  * at any more endpoints.
4529  */
4530 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4531                         struct usb_device *udev, enum usb3_link_state state)
4532 {
4533         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4534         struct usb_host_config *config;
4535         char *state_name;
4536         int i;
4537         u16 timeout = USB3_LPM_DISABLED;
4538
4539         if (state == USB3_LPM_U1)
4540                 state_name = "U1";
4541         else if (state == USB3_LPM_U2)
4542                 state_name = "U2";
4543         else {
4544                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4545                                 state);
4546                 return timeout;
4547         }
4548
4549         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4550                 return timeout;
4551
4552         /* Gather some information about the currently installed configuration
4553          * and alternate interface settings.
4554          */
4555         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4556                         state, &timeout))
4557                 return timeout;
4558
4559         config = udev->actconfig;
4560         if (!config)
4561                 return timeout;
4562
4563         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4564                 struct usb_driver *driver;
4565                 struct usb_interface *intf = config->interface[i];
4566
4567                 if (!intf)
4568                         continue;
4569
4570                 /* Check if any currently bound drivers want hub-initiated LPM
4571                  * disabled.
4572                  */
4573                 if (intf->dev.driver) {
4574                         driver = to_usb_driver(intf->dev.driver);
4575                         if (driver && driver->disable_hub_initiated_lpm) {
4576                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4577                                                 "at request of driver %s\n",
4578                                                 state_name, driver->name);
4579                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4580                         }
4581                 }
4582
4583                 /* Not sure how this could happen... */
4584                 if (!intf->cur_altsetting)
4585                         continue;
4586
4587                 if (xhci_update_timeout_for_interface(xhci, udev,
4588                                         intf->cur_altsetting,
4589                                         state, &timeout))
4590                         return timeout;
4591         }
4592         return timeout;
4593 }
4594
4595 static int calculate_max_exit_latency(struct usb_device *udev,
4596                 enum usb3_link_state state_changed,
4597                 u16 hub_encoded_timeout)
4598 {
4599         unsigned long long u1_mel_us = 0;
4600         unsigned long long u2_mel_us = 0;
4601         unsigned long long mel_us = 0;
4602         bool disabling_u1;
4603         bool disabling_u2;
4604         bool enabling_u1;
4605         bool enabling_u2;
4606
4607         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4608                         hub_encoded_timeout == USB3_LPM_DISABLED);
4609         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4610                         hub_encoded_timeout == USB3_LPM_DISABLED);
4611
4612         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4613                         hub_encoded_timeout != USB3_LPM_DISABLED);
4614         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4615                         hub_encoded_timeout != USB3_LPM_DISABLED);
4616
4617         /* If U1 was already enabled and we're not disabling it,
4618          * or we're going to enable U1, account for the U1 max exit latency.
4619          */
4620         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4621                         enabling_u1)
4622                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4623         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4624                         enabling_u2)
4625                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4626
4627         if (u1_mel_us > u2_mel_us)
4628                 mel_us = u1_mel_us;
4629         else
4630                 mel_us = u2_mel_us;
4631         /* xHCI host controller max exit latency field is only 16 bits wide. */
4632         if (mel_us > MAX_EXIT) {
4633                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4634                                 "is too big.\n", mel_us);
4635                 return -E2BIG;
4636         }
4637         return mel_us;
4638 }
4639
4640 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4641 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4642                         struct usb_device *udev, enum usb3_link_state state)
4643 {
4644         struct xhci_hcd *xhci;
4645         u16 hub_encoded_timeout;
4646         int mel;
4647         int ret;
4648
4649         xhci = hcd_to_xhci(hcd);
4650         /* The LPM timeout values are pretty host-controller specific, so don't
4651          * enable hub-initiated timeouts unless the vendor has provided
4652          * information about their timeout algorithm.
4653          */
4654         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4655                         !xhci->devs[udev->slot_id])
4656                 return USB3_LPM_DISABLED;
4657
4658         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4659         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4660         if (mel < 0) {
4661                 /* Max Exit Latency is too big, disable LPM. */
4662                 hub_encoded_timeout = USB3_LPM_DISABLED;
4663                 mel = 0;
4664         }
4665
4666         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4667         if (ret)
4668                 return ret;
4669         return hub_encoded_timeout;
4670 }
4671
4672 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4673                         struct usb_device *udev, enum usb3_link_state state)
4674 {
4675         struct xhci_hcd *xhci;
4676         u16 mel;
4677
4678         xhci = hcd_to_xhci(hcd);
4679         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4680                         !xhci->devs[udev->slot_id])
4681                 return 0;
4682
4683         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4684         return xhci_change_max_exit_latency(xhci, udev, mel);
4685 }
4686 #else /* CONFIG_PM */
4687
4688 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4689                                 struct usb_device *udev, int enable)
4690 {
4691         return 0;
4692 }
4693
4694 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4695 {
4696         return 0;
4697 }
4698
4699 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4700                         struct usb_device *udev, enum usb3_link_state state)
4701 {
4702         return USB3_LPM_DISABLED;
4703 }
4704
4705 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4706                         struct usb_device *udev, enum usb3_link_state state)
4707 {
4708         return 0;
4709 }
4710 #endif  /* CONFIG_PM */
4711
4712 /*-------------------------------------------------------------------------*/
4713
4714 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4715  * internal data structures for the device.
4716  */
4717 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4718                         struct usb_tt *tt, gfp_t mem_flags)
4719 {
4720         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4721         struct xhci_virt_device *vdev;
4722         struct xhci_command *config_cmd;
4723         struct xhci_input_control_ctx *ctrl_ctx;
4724         struct xhci_slot_ctx *slot_ctx;
4725         unsigned long flags;
4726         unsigned think_time;
4727         int ret;
4728
4729         /* Ignore root hubs */
4730         if (!hdev->parent)
4731                 return 0;
4732
4733         vdev = xhci->devs[hdev->slot_id];
4734         if (!vdev) {
4735                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4736                 return -EINVAL;
4737         }
4738         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4739         if (!config_cmd) {
4740                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4741                 return -ENOMEM;
4742         }
4743         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4744         if (!ctrl_ctx) {
4745                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4746                                 __func__);
4747                 xhci_free_command(xhci, config_cmd);
4748                 return -ENOMEM;
4749         }
4750
4751         spin_lock_irqsave(&xhci->lock, flags);
4752         if (hdev->speed == USB_SPEED_HIGH &&
4753                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4754                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4755                 xhci_free_command(xhci, config_cmd);
4756                 spin_unlock_irqrestore(&xhci->lock, flags);
4757                 return -ENOMEM;
4758         }
4759
4760         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4761         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4762         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4763         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4764         /*
4765          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4766          * but it may be already set to 1 when setup an xHCI virtual
4767          * device, so clear it anyway.
4768          */
4769         if (tt->multi)
4770                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4771         else if (hdev->speed == USB_SPEED_FULL)
4772                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4773
4774         if (xhci->hci_version > 0x95) {
4775                 xhci_dbg(xhci, "xHCI version %x needs hub "
4776                                 "TT think time and number of ports\n",
4777                                 (unsigned int) xhci->hci_version);
4778                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4779                 /* Set TT think time - convert from ns to FS bit times.
4780                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4781                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4782                  *
4783                  * xHCI 1.0: this field shall be 0 if the device is not a
4784                  * High-spped hub.
4785                  */
4786                 think_time = tt->think_time;
4787                 if (think_time != 0)
4788                         think_time = (think_time / 666) - 1;
4789                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4790                         slot_ctx->tt_info |=
4791                                 cpu_to_le32(TT_THINK_TIME(think_time));
4792         } else {
4793                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4794                                 "TT think time or number of ports\n",
4795                                 (unsigned int) xhci->hci_version);
4796         }
4797         slot_ctx->dev_state = 0;
4798         spin_unlock_irqrestore(&xhci->lock, flags);
4799
4800         xhci_dbg(xhci, "Set up %s for hub device.\n",
4801                         (xhci->hci_version > 0x95) ?
4802                         "configure endpoint" : "evaluate context");
4803         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4804         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4805
4806         /* Issue and wait for the configure endpoint or
4807          * evaluate context command.
4808          */
4809         if (xhci->hci_version > 0x95)
4810                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4811                                 false, false);
4812         else
4813                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4814                                 true, false);
4815
4816         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4817         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4818
4819         xhci_free_command(xhci, config_cmd);
4820         return ret;
4821 }
4822
4823 int xhci_get_frame(struct usb_hcd *hcd)
4824 {
4825         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4826         /* EHCI mods by the periodic size.  Why? */
4827         return readl(&xhci->run_regs->microframe_index) >> 3;
4828 }
4829
4830 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4831 {
4832         struct xhci_hcd         *xhci;
4833         struct device           *dev = hcd->self.controller;
4834         int                     retval;
4835
4836         /* Accept arbitrarily long scatter-gather lists */
4837         hcd->self.sg_tablesize = ~0;
4838
4839         /* support to build packet from discontinuous buffers */
4840         hcd->self.no_sg_constraint = 1;
4841
4842         /* XHCI controllers don't stop the ep queue on short packets :| */
4843         hcd->self.no_stop_on_short = 1;
4844
4845         xhci = hcd_to_xhci(hcd);
4846
4847         if (usb_hcd_is_primary_hcd(hcd)) {
4848                 xhci->main_hcd = hcd;
4849                 /* Mark the first roothub as being USB 2.0.
4850                  * The xHCI driver will register the USB 3.0 roothub.
4851                  */
4852                 hcd->speed = HCD_USB2;
4853                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4854                 /*
4855                  * USB 2.0 roothub under xHCI has an integrated TT,
4856                  * (rate matching hub) as opposed to having an OHCI/UHCI
4857                  * companion controller.
4858                  */
4859                 hcd->has_tt = 1;
4860         } else {
4861                 if (xhci->sbrn == 0x31) {
4862                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4863                         hcd->speed = HCD_USB31;
4864                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4865                 }
4866                 /* xHCI private pointer was set in xhci_pci_probe for the second
4867                  * registered roothub.
4868                  */
4869                 return 0;
4870         }
4871
4872         mutex_init(&xhci->mutex);
4873         xhci->cap_regs = hcd->regs;
4874         xhci->op_regs = hcd->regs +
4875                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4876         xhci->run_regs = hcd->regs +
4877                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4878         /* Cache read-only capability registers */
4879         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4880         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4881         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4882         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4883         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4884         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4885         if (xhci->hci_version > 0x100)
4886                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4887         xhci_print_registers(xhci);
4888
4889         xhci->quirks = quirks;
4890
4891         get_quirks(dev, xhci);
4892
4893         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4894          * success event after a short transfer. This quirk will ignore such
4895          * spurious event.
4896          */
4897         if (xhci->hci_version > 0x96)
4898                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4899
4900         /* Make sure the HC is halted. */
4901         retval = xhci_halt(xhci);
4902         if (retval)
4903                 return retval;
4904
4905         xhci_dbg(xhci, "Resetting HCD\n");
4906         /* Reset the internal HC memory state and registers. */
4907         retval = xhci_reset(xhci);
4908         if (retval)
4909                 return retval;
4910         xhci_dbg(xhci, "Reset complete\n");
4911
4912         /*
4913          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4914          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4915          * address memory pointers actually. So, this driver clears the AC64
4916          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4917          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4918          */
4919         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4920                 xhci->hcc_params &= ~BIT(0);
4921
4922         /* Set dma_mask and coherent_dma_mask to 64-bits,
4923          * if xHC supports 64-bit addressing */
4924         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4925                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4926                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4927                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4928         } else {
4929                 /*
4930                  * This is to avoid error in cases where a 32-bit USB
4931                  * controller is used on a 64-bit capable system.
4932                  */
4933                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4934                 if (retval)
4935                         return retval;
4936                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4937                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4938         }
4939
4940         xhci_dbg(xhci, "Calling HCD init\n");
4941         /* Initialize HCD and host controller data structures. */
4942         retval = xhci_init(hcd);
4943         if (retval)
4944                 return retval;
4945         xhci_dbg(xhci, "Called HCD init\n");
4946
4947         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4948                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4949
4950         return 0;
4951 }
4952 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4953
4954 static const struct hc_driver xhci_hc_driver = {
4955         .description =          "xhci-hcd",
4956         .product_desc =         "xHCI Host Controller",
4957         .hcd_priv_size =        sizeof(struct xhci_hcd),
4958
4959         /*
4960          * generic hardware linkage
4961          */
4962         .irq =                  xhci_irq,
4963         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4964
4965         /*
4966          * basic lifecycle operations
4967          */
4968         .reset =                NULL, /* set in xhci_init_driver() */
4969         .start =                xhci_run,
4970         .stop =                 xhci_stop,
4971         .shutdown =             xhci_shutdown,
4972
4973         /*
4974          * managing i/o requests and associated device resources
4975          */
4976         .urb_enqueue =          xhci_urb_enqueue,
4977         .urb_dequeue =          xhci_urb_dequeue,
4978         .alloc_dev =            xhci_alloc_dev,
4979         .free_dev =             xhci_free_dev,
4980         .alloc_streams =        xhci_alloc_streams,
4981         .free_streams =         xhci_free_streams,
4982         .add_endpoint =         xhci_add_endpoint,
4983         .drop_endpoint =        xhci_drop_endpoint,
4984         .endpoint_reset =       xhci_endpoint_reset,
4985         .check_bandwidth =      xhci_check_bandwidth,
4986         .reset_bandwidth =      xhci_reset_bandwidth,
4987         .address_device =       xhci_address_device,
4988         .enable_device =        xhci_enable_device,
4989         .update_hub_device =    xhci_update_hub_device,
4990         .reset_device =         xhci_discover_or_reset_device,
4991
4992         /*
4993          * scheduling support
4994          */
4995         .get_frame_number =     xhci_get_frame,
4996
4997         /*
4998          * root hub support
4999          */
5000         .hub_control =          xhci_hub_control,
5001         .hub_status_data =      xhci_hub_status_data,
5002         .bus_suspend =          xhci_bus_suspend,
5003         .bus_resume =           xhci_bus_resume,
5004
5005         /*
5006          * call back when device connected and addressed
5007          */
5008         .update_device =        xhci_update_device,
5009         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5010         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5011         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5012         .find_raw_port_number = xhci_find_raw_port_number,
5013 };
5014
5015 void xhci_init_driver(struct hc_driver *drv,
5016                       const struct xhci_driver_overrides *over)
5017 {
5018         BUG_ON(!over);
5019
5020         /* Copy the generic table to drv then apply the overrides */
5021         *drv = xhci_hc_driver;
5022
5023         if (over) {
5024                 drv->hcd_priv_size += over->extra_priv_size;
5025                 if (over->reset)
5026                         drv->reset = over->reset;
5027                 if (over->start)
5028                         drv->start = over->start;
5029         }
5030 }
5031 EXPORT_SYMBOL_GPL(xhci_init_driver);
5032
5033 MODULE_DESCRIPTION(DRIVER_DESC);
5034 MODULE_AUTHOR(DRIVER_AUTHOR);
5035 MODULE_LICENSE("GPL");
5036
5037 static int __init xhci_hcd_init(void)
5038 {
5039         /*
5040          * Check the compiler generated sizes of structures that must be laid
5041          * out in specific ways for hardware access.
5042          */
5043         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5044         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5045         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5046         /* xhci_device_control has eight fields, and also
5047          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5048          */
5049         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5050         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5051         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5052         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5053         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5054         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5055         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5056
5057         if (usb_disabled())
5058                 return -ENODEV;
5059
5060         return 0;
5061 }
5062
5063 /*
5064  * If an init function is provided, an exit function must also be provided
5065  * to allow module unload.
5066  */
5067 static void __exit xhci_hcd_fini(void) { }
5068
5069 module_init(xhci_hcd_init);
5070 module_exit(xhci_hcd_fini);