Merge remote-tracking branches 'regmap/topic/devm-irq', 'regmap/topic/doc', 'regmap...
[cascardo/linux.git] / fs / btrfs / backref.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
30
31 struct extent_inode_elem {
32         u64 inum;
33         u64 offset;
34         struct extent_inode_elem *next;
35 };
36
37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
38                                 struct btrfs_file_extent_item *fi,
39                                 u64 extent_item_pos,
40                                 struct extent_inode_elem **eie)
41 {
42         u64 offset = 0;
43         struct extent_inode_elem *e;
44
45         if (!btrfs_file_extent_compression(eb, fi) &&
46             !btrfs_file_extent_encryption(eb, fi) &&
47             !btrfs_file_extent_other_encoding(eb, fi)) {
48                 u64 data_offset;
49                 u64 data_len;
50
51                 data_offset = btrfs_file_extent_offset(eb, fi);
52                 data_len = btrfs_file_extent_num_bytes(eb, fi);
53
54                 if (extent_item_pos < data_offset ||
55                     extent_item_pos >= data_offset + data_len)
56                         return 1;
57                 offset = extent_item_pos - data_offset;
58         }
59
60         e = kmalloc(sizeof(*e), GFP_NOFS);
61         if (!e)
62                 return -ENOMEM;
63
64         e->next = *eie;
65         e->inum = key->objectid;
66         e->offset = key->offset + offset;
67         *eie = e;
68
69         return 0;
70 }
71
72 static void free_inode_elem_list(struct extent_inode_elem *eie)
73 {
74         struct extent_inode_elem *eie_next;
75
76         for (; eie; eie = eie_next) {
77                 eie_next = eie->next;
78                 kfree(eie);
79         }
80 }
81
82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
83                                 u64 extent_item_pos,
84                                 struct extent_inode_elem **eie)
85 {
86         u64 disk_byte;
87         struct btrfs_key key;
88         struct btrfs_file_extent_item *fi;
89         int slot;
90         int nritems;
91         int extent_type;
92         int ret;
93
94         /*
95          * from the shared data ref, we only have the leaf but we need
96          * the key. thus, we must look into all items and see that we
97          * find one (some) with a reference to our extent item.
98          */
99         nritems = btrfs_header_nritems(eb);
100         for (slot = 0; slot < nritems; ++slot) {
101                 btrfs_item_key_to_cpu(eb, &key, slot);
102                 if (key.type != BTRFS_EXTENT_DATA_KEY)
103                         continue;
104                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
105                 extent_type = btrfs_file_extent_type(eb, fi);
106                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
107                         continue;
108                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
110                 if (disk_byte != wanted_disk_byte)
111                         continue;
112
113                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
114                 if (ret < 0)
115                         return ret;
116         }
117
118         return 0;
119 }
120
121 /*
122  * this structure records all encountered refs on the way up to the root
123  */
124 struct __prelim_ref {
125         struct list_head list;
126         u64 root_id;
127         struct btrfs_key key_for_search;
128         int level;
129         int count;
130         struct extent_inode_elem *inode_list;
131         u64 parent;
132         u64 wanted_disk_byte;
133 };
134
135 static struct kmem_cache *btrfs_prelim_ref_cache;
136
137 int __init btrfs_prelim_ref_init(void)
138 {
139         btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
140                                         sizeof(struct __prelim_ref),
141                                         0,
142                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
143                                         NULL);
144         if (!btrfs_prelim_ref_cache)
145                 return -ENOMEM;
146         return 0;
147 }
148
149 void btrfs_prelim_ref_exit(void)
150 {
151         if (btrfs_prelim_ref_cache)
152                 kmem_cache_destroy(btrfs_prelim_ref_cache);
153 }
154
155 /*
156  * the rules for all callers of this function are:
157  * - obtaining the parent is the goal
158  * - if you add a key, you must know that it is a correct key
159  * - if you cannot add the parent or a correct key, then we will look into the
160  *   block later to set a correct key
161  *
162  * delayed refs
163  * ============
164  *        backref type | shared | indirect | shared | indirect
165  * information         |   tree |     tree |   data |     data
166  * --------------------+--------+----------+--------+----------
167  *      parent logical |    y   |     -    |    -   |     -
168  *      key to resolve |    -   |     y    |    y   |     y
169  *  tree block logical |    -   |     -    |    -   |     -
170  *  root for resolving |    y   |     y    |    y   |     y
171  *
172  * - column 1:       we've the parent -> done
173  * - column 2, 3, 4: we use the key to find the parent
174  *
175  * on disk refs (inline or keyed)
176  * ==============================
177  *        backref type | shared | indirect | shared | indirect
178  * information         |   tree |     tree |   data |     data
179  * --------------------+--------+----------+--------+----------
180  *      parent logical |    y   |     -    |    y   |     -
181  *      key to resolve |    -   |     -    |    -   |     y
182  *  tree block logical |    y   |     y    |    y   |     y
183  *  root for resolving |    -   |     y    |    y   |     y
184  *
185  * - column 1, 3: we've the parent -> done
186  * - column 2:    we take the first key from the block to find the parent
187  *                (see __add_missing_keys)
188  * - column 4:    we use the key to find the parent
189  *
190  * additional information that's available but not required to find the parent
191  * block might help in merging entries to gain some speed.
192  */
193
194 static int __add_prelim_ref(struct list_head *head, u64 root_id,
195                             struct btrfs_key *key, int level,
196                             u64 parent, u64 wanted_disk_byte, int count,
197                             gfp_t gfp_mask)
198 {
199         struct __prelim_ref *ref;
200
201         if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
202                 return 0;
203
204         ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205         if (!ref)
206                 return -ENOMEM;
207
208         ref->root_id = root_id;
209         if (key) {
210                 ref->key_for_search = *key;
211                 /*
212                  * We can often find data backrefs with an offset that is too
213                  * large (>= LLONG_MAX, maximum allowed file offset) due to
214                  * underflows when subtracting a file's offset with the data
215                  * offset of its corresponding extent data item. This can
216                  * happen for example in the clone ioctl.
217                  * So if we detect such case we set the search key's offset to
218                  * zero to make sure we will find the matching file extent item
219                  * at add_all_parents(), otherwise we will miss it because the
220                  * offset taken form the backref is much larger then the offset
221                  * of the file extent item. This can make us scan a very large
222                  * number of file extent items, but at least it will not make
223                  * us miss any.
224                  * This is an ugly workaround for a behaviour that should have
225                  * never existed, but it does and a fix for the clone ioctl
226                  * would touch a lot of places, cause backwards incompatibility
227                  * and would not fix the problem for extents cloned with older
228                  * kernels.
229                  */
230                 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
231                     ref->key_for_search.offset >= LLONG_MAX)
232                         ref->key_for_search.offset = 0;
233         } else {
234                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
235         }
236
237         ref->inode_list = NULL;
238         ref->level = level;
239         ref->count = count;
240         ref->parent = parent;
241         ref->wanted_disk_byte = wanted_disk_byte;
242         list_add_tail(&ref->list, head);
243
244         return 0;
245 }
246
247 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
248                            struct ulist *parents, struct __prelim_ref *ref,
249                            int level, u64 time_seq, const u64 *extent_item_pos,
250                            u64 total_refs)
251 {
252         int ret = 0;
253         int slot;
254         struct extent_buffer *eb;
255         struct btrfs_key key;
256         struct btrfs_key *key_for_search = &ref->key_for_search;
257         struct btrfs_file_extent_item *fi;
258         struct extent_inode_elem *eie = NULL, *old = NULL;
259         u64 disk_byte;
260         u64 wanted_disk_byte = ref->wanted_disk_byte;
261         u64 count = 0;
262
263         if (level != 0) {
264                 eb = path->nodes[level];
265                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
266                 if (ret < 0)
267                         return ret;
268                 return 0;
269         }
270
271         /*
272          * We normally enter this function with the path already pointing to
273          * the first item to check. But sometimes, we may enter it with
274          * slot==nritems. In that case, go to the next leaf before we continue.
275          */
276         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
277                 if (time_seq == (u64)-1)
278                         ret = btrfs_next_leaf(root, path);
279                 else
280                         ret = btrfs_next_old_leaf(root, path, time_seq);
281         }
282
283         while (!ret && count < total_refs) {
284                 eb = path->nodes[0];
285                 slot = path->slots[0];
286
287                 btrfs_item_key_to_cpu(eb, &key, slot);
288
289                 if (key.objectid != key_for_search->objectid ||
290                     key.type != BTRFS_EXTENT_DATA_KEY)
291                         break;
292
293                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
294                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
295
296                 if (disk_byte == wanted_disk_byte) {
297                         eie = NULL;
298                         old = NULL;
299                         count++;
300                         if (extent_item_pos) {
301                                 ret = check_extent_in_eb(&key, eb, fi,
302                                                 *extent_item_pos,
303                                                 &eie);
304                                 if (ret < 0)
305                                         break;
306                         }
307                         if (ret > 0)
308                                 goto next;
309                         ret = ulist_add_merge_ptr(parents, eb->start,
310                                                   eie, (void **)&old, GFP_NOFS);
311                         if (ret < 0)
312                                 break;
313                         if (!ret && extent_item_pos) {
314                                 while (old->next)
315                                         old = old->next;
316                                 old->next = eie;
317                         }
318                         eie = NULL;
319                 }
320 next:
321                 if (time_seq == (u64)-1)
322                         ret = btrfs_next_item(root, path);
323                 else
324                         ret = btrfs_next_old_item(root, path, time_seq);
325         }
326
327         if (ret > 0)
328                 ret = 0;
329         else if (ret < 0)
330                 free_inode_elem_list(eie);
331         return ret;
332 }
333
334 /*
335  * resolve an indirect backref in the form (root_id, key, level)
336  * to a logical address
337  */
338 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
339                                   struct btrfs_path *path, u64 time_seq,
340                                   struct __prelim_ref *ref,
341                                   struct ulist *parents,
342                                   const u64 *extent_item_pos, u64 total_refs)
343 {
344         struct btrfs_root *root;
345         struct btrfs_key root_key;
346         struct extent_buffer *eb;
347         int ret = 0;
348         int root_level;
349         int level = ref->level;
350         int index;
351
352         root_key.objectid = ref->root_id;
353         root_key.type = BTRFS_ROOT_ITEM_KEY;
354         root_key.offset = (u64)-1;
355
356         index = srcu_read_lock(&fs_info->subvol_srcu);
357
358         root = btrfs_get_fs_root(fs_info, &root_key, false);
359         if (IS_ERR(root)) {
360                 srcu_read_unlock(&fs_info->subvol_srcu, index);
361                 ret = PTR_ERR(root);
362                 goto out;
363         }
364
365         if (btrfs_test_is_dummy_root(root)) {
366                 srcu_read_unlock(&fs_info->subvol_srcu, index);
367                 ret = -ENOENT;
368                 goto out;
369         }
370
371         if (path->search_commit_root)
372                 root_level = btrfs_header_level(root->commit_root);
373         else if (time_seq == (u64)-1)
374                 root_level = btrfs_header_level(root->node);
375         else
376                 root_level = btrfs_old_root_level(root, time_seq);
377
378         if (root_level + 1 == level) {
379                 srcu_read_unlock(&fs_info->subvol_srcu, index);
380                 goto out;
381         }
382
383         path->lowest_level = level;
384         if (time_seq == (u64)-1)
385                 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
386                                         0, 0);
387         else
388                 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
389                                             time_seq);
390
391         /* root node has been locked, we can release @subvol_srcu safely here */
392         srcu_read_unlock(&fs_info->subvol_srcu, index);
393
394         pr_debug("search slot in root %llu (level %d, ref count %d) returned "
395                  "%d for key (%llu %u %llu)\n",
396                  ref->root_id, level, ref->count, ret,
397                  ref->key_for_search.objectid, ref->key_for_search.type,
398                  ref->key_for_search.offset);
399         if (ret < 0)
400                 goto out;
401
402         eb = path->nodes[level];
403         while (!eb) {
404                 if (WARN_ON(!level)) {
405                         ret = 1;
406                         goto out;
407                 }
408                 level--;
409                 eb = path->nodes[level];
410         }
411
412         ret = add_all_parents(root, path, parents, ref, level, time_seq,
413                               extent_item_pos, total_refs);
414 out:
415         path->lowest_level = 0;
416         btrfs_release_path(path);
417         return ret;
418 }
419
420 /*
421  * resolve all indirect backrefs from the list
422  */
423 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
424                                    struct btrfs_path *path, u64 time_seq,
425                                    struct list_head *head,
426                                    const u64 *extent_item_pos, u64 total_refs,
427                                    u64 root_objectid)
428 {
429         int err;
430         int ret = 0;
431         struct __prelim_ref *ref;
432         struct __prelim_ref *ref_safe;
433         struct __prelim_ref *new_ref;
434         struct ulist *parents;
435         struct ulist_node *node;
436         struct ulist_iterator uiter;
437
438         parents = ulist_alloc(GFP_NOFS);
439         if (!parents)
440                 return -ENOMEM;
441
442         /*
443          * _safe allows us to insert directly after the current item without
444          * iterating over the newly inserted items.
445          * we're also allowed to re-assign ref during iteration.
446          */
447         list_for_each_entry_safe(ref, ref_safe, head, list) {
448                 if (ref->parent)        /* already direct */
449                         continue;
450                 if (ref->count == 0)
451                         continue;
452                 if (root_objectid && ref->root_id != root_objectid) {
453                         ret = BACKREF_FOUND_SHARED;
454                         goto out;
455                 }
456                 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
457                                              parents, extent_item_pos,
458                                              total_refs);
459                 /*
460                  * we can only tolerate ENOENT,otherwise,we should catch error
461                  * and return directly.
462                  */
463                 if (err == -ENOENT) {
464                         continue;
465                 } else if (err) {
466                         ret = err;
467                         goto out;
468                 }
469
470                 /* we put the first parent into the ref at hand */
471                 ULIST_ITER_INIT(&uiter);
472                 node = ulist_next(parents, &uiter);
473                 ref->parent = node ? node->val : 0;
474                 ref->inode_list = node ?
475                         (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
476
477                 /* additional parents require new refs being added here */
478                 while ((node = ulist_next(parents, &uiter))) {
479                         new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
480                                                    GFP_NOFS);
481                         if (!new_ref) {
482                                 ret = -ENOMEM;
483                                 goto out;
484                         }
485                         memcpy(new_ref, ref, sizeof(*ref));
486                         new_ref->parent = node->val;
487                         new_ref->inode_list = (struct extent_inode_elem *)
488                                                         (uintptr_t)node->aux;
489                         list_add(&new_ref->list, &ref->list);
490                 }
491                 ulist_reinit(parents);
492         }
493 out:
494         ulist_free(parents);
495         return ret;
496 }
497
498 static inline int ref_for_same_block(struct __prelim_ref *ref1,
499                                      struct __prelim_ref *ref2)
500 {
501         if (ref1->level != ref2->level)
502                 return 0;
503         if (ref1->root_id != ref2->root_id)
504                 return 0;
505         if (ref1->key_for_search.type != ref2->key_for_search.type)
506                 return 0;
507         if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
508                 return 0;
509         if (ref1->key_for_search.offset != ref2->key_for_search.offset)
510                 return 0;
511         if (ref1->parent != ref2->parent)
512                 return 0;
513
514         return 1;
515 }
516
517 /*
518  * read tree blocks and add keys where required.
519  */
520 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
521                               struct list_head *head)
522 {
523         struct __prelim_ref *ref;
524         struct extent_buffer *eb;
525
526         list_for_each_entry(ref, head, list) {
527                 if (ref->parent)
528                         continue;
529                 if (ref->key_for_search.type)
530                         continue;
531                 BUG_ON(!ref->wanted_disk_byte);
532                 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
533                                      0);
534                 if (IS_ERR(eb)) {
535                         return PTR_ERR(eb);
536                 } else if (!extent_buffer_uptodate(eb)) {
537                         free_extent_buffer(eb);
538                         return -EIO;
539                 }
540                 btrfs_tree_read_lock(eb);
541                 if (btrfs_header_level(eb) == 0)
542                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
543                 else
544                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
545                 btrfs_tree_read_unlock(eb);
546                 free_extent_buffer(eb);
547         }
548         return 0;
549 }
550
551 /*
552  * merge backrefs and adjust counts accordingly
553  *
554  * mode = 1: merge identical keys, if key is set
555  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
556  *           additionally, we could even add a key range for the blocks we
557  *           looked into to merge even more (-> replace unresolved refs by those
558  *           having a parent).
559  * mode = 2: merge identical parents
560  */
561 static void __merge_refs(struct list_head *head, int mode)
562 {
563         struct __prelim_ref *pos1;
564
565         list_for_each_entry(pos1, head, list) {
566                 struct __prelim_ref *pos2 = pos1, *tmp;
567
568                 list_for_each_entry_safe_continue(pos2, tmp, head, list) {
569                         struct __prelim_ref *xchg, *ref1 = pos1, *ref2 = pos2;
570                         struct extent_inode_elem *eie;
571
572                         if (!ref_for_same_block(ref1, ref2))
573                                 continue;
574                         if (mode == 1) {
575                                 if (!ref1->parent && ref2->parent) {
576                                         xchg = ref1;
577                                         ref1 = ref2;
578                                         ref2 = xchg;
579                                 }
580                         } else {
581                                 if (ref1->parent != ref2->parent)
582                                         continue;
583                         }
584
585                         eie = ref1->inode_list;
586                         while (eie && eie->next)
587                                 eie = eie->next;
588                         if (eie)
589                                 eie->next = ref2->inode_list;
590                         else
591                                 ref1->inode_list = ref2->inode_list;
592                         ref1->count += ref2->count;
593
594                         list_del(&ref2->list);
595                         kmem_cache_free(btrfs_prelim_ref_cache, ref2);
596                 }
597
598         }
599 }
600
601 /*
602  * add all currently queued delayed refs from this head whose seq nr is
603  * smaller or equal that seq to the list
604  */
605 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
606                               struct list_head *prefs, u64 *total_refs,
607                               u64 inum)
608 {
609         struct btrfs_delayed_ref_node *node;
610         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
611         struct btrfs_key key;
612         struct btrfs_key op_key = {0};
613         int sgn;
614         int ret = 0;
615
616         if (extent_op && extent_op->update_key)
617                 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
618
619         spin_lock(&head->lock);
620         list_for_each_entry(node, &head->ref_list, list) {
621                 if (node->seq > seq)
622                         continue;
623
624                 switch (node->action) {
625                 case BTRFS_ADD_DELAYED_EXTENT:
626                 case BTRFS_UPDATE_DELAYED_HEAD:
627                         WARN_ON(1);
628                         continue;
629                 case BTRFS_ADD_DELAYED_REF:
630                         sgn = 1;
631                         break;
632                 case BTRFS_DROP_DELAYED_REF:
633                         sgn = -1;
634                         break;
635                 default:
636                         BUG_ON(1);
637                 }
638                 *total_refs += (node->ref_mod * sgn);
639                 switch (node->type) {
640                 case BTRFS_TREE_BLOCK_REF_KEY: {
641                         struct btrfs_delayed_tree_ref *ref;
642
643                         ref = btrfs_delayed_node_to_tree_ref(node);
644                         ret = __add_prelim_ref(prefs, ref->root, &op_key,
645                                                ref->level + 1, 0, node->bytenr,
646                                                node->ref_mod * sgn, GFP_ATOMIC);
647                         break;
648                 }
649                 case BTRFS_SHARED_BLOCK_REF_KEY: {
650                         struct btrfs_delayed_tree_ref *ref;
651
652                         ref = btrfs_delayed_node_to_tree_ref(node);
653                         ret = __add_prelim_ref(prefs, 0, NULL,
654                                                ref->level + 1, ref->parent,
655                                                node->bytenr,
656                                                node->ref_mod * sgn, GFP_ATOMIC);
657                         break;
658                 }
659                 case BTRFS_EXTENT_DATA_REF_KEY: {
660                         struct btrfs_delayed_data_ref *ref;
661                         ref = btrfs_delayed_node_to_data_ref(node);
662
663                         key.objectid = ref->objectid;
664                         key.type = BTRFS_EXTENT_DATA_KEY;
665                         key.offset = ref->offset;
666
667                         /*
668                          * Found a inum that doesn't match our known inum, we
669                          * know it's shared.
670                          */
671                         if (inum && ref->objectid != inum) {
672                                 ret = BACKREF_FOUND_SHARED;
673                                 break;
674                         }
675
676                         ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
677                                                node->bytenr,
678                                                node->ref_mod * sgn, GFP_ATOMIC);
679                         break;
680                 }
681                 case BTRFS_SHARED_DATA_REF_KEY: {
682                         struct btrfs_delayed_data_ref *ref;
683
684                         ref = btrfs_delayed_node_to_data_ref(node);
685                         ret = __add_prelim_ref(prefs, 0, NULL, 0,
686                                                ref->parent, node->bytenr,
687                                                node->ref_mod * sgn, GFP_ATOMIC);
688                         break;
689                 }
690                 default:
691                         WARN_ON(1);
692                 }
693                 if (ret)
694                         break;
695         }
696         spin_unlock(&head->lock);
697         return ret;
698 }
699
700 /*
701  * add all inline backrefs for bytenr to the list
702  */
703 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
704                              struct btrfs_path *path, u64 bytenr,
705                              int *info_level, struct list_head *prefs,
706                              u64 *total_refs, u64 inum)
707 {
708         int ret = 0;
709         int slot;
710         struct extent_buffer *leaf;
711         struct btrfs_key key;
712         struct btrfs_key found_key;
713         unsigned long ptr;
714         unsigned long end;
715         struct btrfs_extent_item *ei;
716         u64 flags;
717         u64 item_size;
718
719         /*
720          * enumerate all inline refs
721          */
722         leaf = path->nodes[0];
723         slot = path->slots[0];
724
725         item_size = btrfs_item_size_nr(leaf, slot);
726         BUG_ON(item_size < sizeof(*ei));
727
728         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
729         flags = btrfs_extent_flags(leaf, ei);
730         *total_refs += btrfs_extent_refs(leaf, ei);
731         btrfs_item_key_to_cpu(leaf, &found_key, slot);
732
733         ptr = (unsigned long)(ei + 1);
734         end = (unsigned long)ei + item_size;
735
736         if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
737             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
738                 struct btrfs_tree_block_info *info;
739
740                 info = (struct btrfs_tree_block_info *)ptr;
741                 *info_level = btrfs_tree_block_level(leaf, info);
742                 ptr += sizeof(struct btrfs_tree_block_info);
743                 BUG_ON(ptr > end);
744         } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
745                 *info_level = found_key.offset;
746         } else {
747                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
748         }
749
750         while (ptr < end) {
751                 struct btrfs_extent_inline_ref *iref;
752                 u64 offset;
753                 int type;
754
755                 iref = (struct btrfs_extent_inline_ref *)ptr;
756                 type = btrfs_extent_inline_ref_type(leaf, iref);
757                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
758
759                 switch (type) {
760                 case BTRFS_SHARED_BLOCK_REF_KEY:
761                         ret = __add_prelim_ref(prefs, 0, NULL,
762                                                 *info_level + 1, offset,
763                                                 bytenr, 1, GFP_NOFS);
764                         break;
765                 case BTRFS_SHARED_DATA_REF_KEY: {
766                         struct btrfs_shared_data_ref *sdref;
767                         int count;
768
769                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
770                         count = btrfs_shared_data_ref_count(leaf, sdref);
771                         ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
772                                                bytenr, count, GFP_NOFS);
773                         break;
774                 }
775                 case BTRFS_TREE_BLOCK_REF_KEY:
776                         ret = __add_prelim_ref(prefs, offset, NULL,
777                                                *info_level + 1, 0,
778                                                bytenr, 1, GFP_NOFS);
779                         break;
780                 case BTRFS_EXTENT_DATA_REF_KEY: {
781                         struct btrfs_extent_data_ref *dref;
782                         int count;
783                         u64 root;
784
785                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
786                         count = btrfs_extent_data_ref_count(leaf, dref);
787                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
788                                                                       dref);
789                         key.type = BTRFS_EXTENT_DATA_KEY;
790                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
791
792                         if (inum && key.objectid != inum) {
793                                 ret = BACKREF_FOUND_SHARED;
794                                 break;
795                         }
796
797                         root = btrfs_extent_data_ref_root(leaf, dref);
798                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
799                                                bytenr, count, GFP_NOFS);
800                         break;
801                 }
802                 default:
803                         WARN_ON(1);
804                 }
805                 if (ret)
806                         return ret;
807                 ptr += btrfs_extent_inline_ref_size(type);
808         }
809
810         return 0;
811 }
812
813 /*
814  * add all non-inline backrefs for bytenr to the list
815  */
816 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
817                             struct btrfs_path *path, u64 bytenr,
818                             int info_level, struct list_head *prefs, u64 inum)
819 {
820         struct btrfs_root *extent_root = fs_info->extent_root;
821         int ret;
822         int slot;
823         struct extent_buffer *leaf;
824         struct btrfs_key key;
825
826         while (1) {
827                 ret = btrfs_next_item(extent_root, path);
828                 if (ret < 0)
829                         break;
830                 if (ret) {
831                         ret = 0;
832                         break;
833                 }
834
835                 slot = path->slots[0];
836                 leaf = path->nodes[0];
837                 btrfs_item_key_to_cpu(leaf, &key, slot);
838
839                 if (key.objectid != bytenr)
840                         break;
841                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
842                         continue;
843                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
844                         break;
845
846                 switch (key.type) {
847                 case BTRFS_SHARED_BLOCK_REF_KEY:
848                         ret = __add_prelim_ref(prefs, 0, NULL,
849                                                 info_level + 1, key.offset,
850                                                 bytenr, 1, GFP_NOFS);
851                         break;
852                 case BTRFS_SHARED_DATA_REF_KEY: {
853                         struct btrfs_shared_data_ref *sdref;
854                         int count;
855
856                         sdref = btrfs_item_ptr(leaf, slot,
857                                               struct btrfs_shared_data_ref);
858                         count = btrfs_shared_data_ref_count(leaf, sdref);
859                         ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
860                                                 bytenr, count, GFP_NOFS);
861                         break;
862                 }
863                 case BTRFS_TREE_BLOCK_REF_KEY:
864                         ret = __add_prelim_ref(prefs, key.offset, NULL,
865                                                info_level + 1, 0,
866                                                bytenr, 1, GFP_NOFS);
867                         break;
868                 case BTRFS_EXTENT_DATA_REF_KEY: {
869                         struct btrfs_extent_data_ref *dref;
870                         int count;
871                         u64 root;
872
873                         dref = btrfs_item_ptr(leaf, slot,
874                                               struct btrfs_extent_data_ref);
875                         count = btrfs_extent_data_ref_count(leaf, dref);
876                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
877                                                                       dref);
878                         key.type = BTRFS_EXTENT_DATA_KEY;
879                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
880
881                         if (inum && key.objectid != inum) {
882                                 ret = BACKREF_FOUND_SHARED;
883                                 break;
884                         }
885
886                         root = btrfs_extent_data_ref_root(leaf, dref);
887                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
888                                                bytenr, count, GFP_NOFS);
889                         break;
890                 }
891                 default:
892                         WARN_ON(1);
893                 }
894                 if (ret)
895                         return ret;
896
897         }
898
899         return ret;
900 }
901
902 /*
903  * this adds all existing backrefs (inline backrefs, backrefs and delayed
904  * refs) for the given bytenr to the refs list, merges duplicates and resolves
905  * indirect refs to their parent bytenr.
906  * When roots are found, they're added to the roots list
907  *
908  * NOTE: This can return values > 0
909  *
910  * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
911  * much like trans == NULL case, the difference only lies in it will not
912  * commit root.
913  * The special case is for qgroup to search roots in commit_transaction().
914  *
915  * FIXME some caching might speed things up
916  */
917 static int find_parent_nodes(struct btrfs_trans_handle *trans,
918                              struct btrfs_fs_info *fs_info, u64 bytenr,
919                              u64 time_seq, struct ulist *refs,
920                              struct ulist *roots, const u64 *extent_item_pos,
921                              u64 root_objectid, u64 inum)
922 {
923         struct btrfs_key key;
924         struct btrfs_path *path;
925         struct btrfs_delayed_ref_root *delayed_refs = NULL;
926         struct btrfs_delayed_ref_head *head;
927         int info_level = 0;
928         int ret;
929         struct list_head prefs_delayed;
930         struct list_head prefs;
931         struct __prelim_ref *ref;
932         struct extent_inode_elem *eie = NULL;
933         u64 total_refs = 0;
934
935         INIT_LIST_HEAD(&prefs);
936         INIT_LIST_HEAD(&prefs_delayed);
937
938         key.objectid = bytenr;
939         key.offset = (u64)-1;
940         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
941                 key.type = BTRFS_METADATA_ITEM_KEY;
942         else
943                 key.type = BTRFS_EXTENT_ITEM_KEY;
944
945         path = btrfs_alloc_path();
946         if (!path)
947                 return -ENOMEM;
948         if (!trans) {
949                 path->search_commit_root = 1;
950                 path->skip_locking = 1;
951         }
952
953         if (time_seq == (u64)-1)
954                 path->skip_locking = 1;
955
956         /*
957          * grab both a lock on the path and a lock on the delayed ref head.
958          * We need both to get a consistent picture of how the refs look
959          * at a specified point in time
960          */
961 again:
962         head = NULL;
963
964         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
965         if (ret < 0)
966                 goto out;
967         BUG_ON(ret == 0);
968
969 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
970         if (trans && likely(trans->type != __TRANS_DUMMY) &&
971             time_seq != (u64)-1) {
972 #else
973         if (trans && time_seq != (u64)-1) {
974 #endif
975                 /*
976                  * look if there are updates for this ref queued and lock the
977                  * head
978                  */
979                 delayed_refs = &trans->transaction->delayed_refs;
980                 spin_lock(&delayed_refs->lock);
981                 head = btrfs_find_delayed_ref_head(trans, bytenr);
982                 if (head) {
983                         if (!mutex_trylock(&head->mutex)) {
984                                 atomic_inc(&head->node.refs);
985                                 spin_unlock(&delayed_refs->lock);
986
987                                 btrfs_release_path(path);
988
989                                 /*
990                                  * Mutex was contended, block until it's
991                                  * released and try again
992                                  */
993                                 mutex_lock(&head->mutex);
994                                 mutex_unlock(&head->mutex);
995                                 btrfs_put_delayed_ref(&head->node);
996                                 goto again;
997                         }
998                         spin_unlock(&delayed_refs->lock);
999                         ret = __add_delayed_refs(head, time_seq,
1000                                                  &prefs_delayed, &total_refs,
1001                                                  inum);
1002                         mutex_unlock(&head->mutex);
1003                         if (ret)
1004                                 goto out;
1005                 } else {
1006                         spin_unlock(&delayed_refs->lock);
1007                 }
1008         }
1009
1010         if (path->slots[0]) {
1011                 struct extent_buffer *leaf;
1012                 int slot;
1013
1014                 path->slots[0]--;
1015                 leaf = path->nodes[0];
1016                 slot = path->slots[0];
1017                 btrfs_item_key_to_cpu(leaf, &key, slot);
1018                 if (key.objectid == bytenr &&
1019                     (key.type == BTRFS_EXTENT_ITEM_KEY ||
1020                      key.type == BTRFS_METADATA_ITEM_KEY)) {
1021                         ret = __add_inline_refs(fs_info, path, bytenr,
1022                                                 &info_level, &prefs,
1023                                                 &total_refs, inum);
1024                         if (ret)
1025                                 goto out;
1026                         ret = __add_keyed_refs(fs_info, path, bytenr,
1027                                                info_level, &prefs, inum);
1028                         if (ret)
1029                                 goto out;
1030                 }
1031         }
1032         btrfs_release_path(path);
1033
1034         list_splice_init(&prefs_delayed, &prefs);
1035
1036         ret = __add_missing_keys(fs_info, &prefs);
1037         if (ret)
1038                 goto out;
1039
1040         __merge_refs(&prefs, 1);
1041
1042         ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1043                                       extent_item_pos, total_refs,
1044                                       root_objectid);
1045         if (ret)
1046                 goto out;
1047
1048         __merge_refs(&prefs, 2);
1049
1050         while (!list_empty(&prefs)) {
1051                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1052                 WARN_ON(ref->count < 0);
1053                 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1054                         if (root_objectid && ref->root_id != root_objectid) {
1055                                 ret = BACKREF_FOUND_SHARED;
1056                                 goto out;
1057                         }
1058
1059                         /* no parent == root of tree */
1060                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1061                         if (ret < 0)
1062                                 goto out;
1063                 }
1064                 if (ref->count && ref->parent) {
1065                         if (extent_item_pos && !ref->inode_list &&
1066                             ref->level == 0) {
1067                                 struct extent_buffer *eb;
1068
1069                                 eb = read_tree_block(fs_info->extent_root,
1070                                                            ref->parent, 0);
1071                                 if (IS_ERR(eb)) {
1072                                         ret = PTR_ERR(eb);
1073                                         goto out;
1074                                 } else if (!extent_buffer_uptodate(eb)) {
1075                                         free_extent_buffer(eb);
1076                                         ret = -EIO;
1077                                         goto out;
1078                                 }
1079                                 btrfs_tree_read_lock(eb);
1080                                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1081                                 ret = find_extent_in_eb(eb, bytenr,
1082                                                         *extent_item_pos, &eie);
1083                                 btrfs_tree_read_unlock_blocking(eb);
1084                                 free_extent_buffer(eb);
1085                                 if (ret < 0)
1086                                         goto out;
1087                                 ref->inode_list = eie;
1088                         }
1089                         ret = ulist_add_merge_ptr(refs, ref->parent,
1090                                                   ref->inode_list,
1091                                                   (void **)&eie, GFP_NOFS);
1092                         if (ret < 0)
1093                                 goto out;
1094                         if (!ret && extent_item_pos) {
1095                                 /*
1096                                  * we've recorded that parent, so we must extend
1097                                  * its inode list here
1098                                  */
1099                                 BUG_ON(!eie);
1100                                 while (eie->next)
1101                                         eie = eie->next;
1102                                 eie->next = ref->inode_list;
1103                         }
1104                         eie = NULL;
1105                 }
1106                 list_del(&ref->list);
1107                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1108         }
1109
1110 out:
1111         btrfs_free_path(path);
1112         while (!list_empty(&prefs)) {
1113                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1114                 list_del(&ref->list);
1115                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1116         }
1117         while (!list_empty(&prefs_delayed)) {
1118                 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1119                                        list);
1120                 list_del(&ref->list);
1121                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1122         }
1123         if (ret < 0)
1124                 free_inode_elem_list(eie);
1125         return ret;
1126 }
1127
1128 static void free_leaf_list(struct ulist *blocks)
1129 {
1130         struct ulist_node *node = NULL;
1131         struct extent_inode_elem *eie;
1132         struct ulist_iterator uiter;
1133
1134         ULIST_ITER_INIT(&uiter);
1135         while ((node = ulist_next(blocks, &uiter))) {
1136                 if (!node->aux)
1137                         continue;
1138                 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1139                 free_inode_elem_list(eie);
1140                 node->aux = 0;
1141         }
1142
1143         ulist_free(blocks);
1144 }
1145
1146 /*
1147  * Finds all leafs with a reference to the specified combination of bytenr and
1148  * offset. key_list_head will point to a list of corresponding keys (caller must
1149  * free each list element). The leafs will be stored in the leafs ulist, which
1150  * must be freed with ulist_free.
1151  *
1152  * returns 0 on success, <0 on error
1153  */
1154 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1155                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1156                                 u64 time_seq, struct ulist **leafs,
1157                                 const u64 *extent_item_pos)
1158 {
1159         int ret;
1160
1161         *leafs = ulist_alloc(GFP_NOFS);
1162         if (!*leafs)
1163                 return -ENOMEM;
1164
1165         ret = find_parent_nodes(trans, fs_info, bytenr,
1166                                 time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1167         if (ret < 0 && ret != -ENOENT) {
1168                 free_leaf_list(*leafs);
1169                 return ret;
1170         }
1171
1172         return 0;
1173 }
1174
1175 /*
1176  * walk all backrefs for a given extent to find all roots that reference this
1177  * extent. Walking a backref means finding all extents that reference this
1178  * extent and in turn walk the backrefs of those, too. Naturally this is a
1179  * recursive process, but here it is implemented in an iterative fashion: We
1180  * find all referencing extents for the extent in question and put them on a
1181  * list. In turn, we find all referencing extents for those, further appending
1182  * to the list. The way we iterate the list allows adding more elements after
1183  * the current while iterating. The process stops when we reach the end of the
1184  * list. Found roots are added to the roots list.
1185  *
1186  * returns 0 on success, < 0 on error.
1187  */
1188 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1189                                   struct btrfs_fs_info *fs_info, u64 bytenr,
1190                                   u64 time_seq, struct ulist **roots)
1191 {
1192         struct ulist *tmp;
1193         struct ulist_node *node = NULL;
1194         struct ulist_iterator uiter;
1195         int ret;
1196
1197         tmp = ulist_alloc(GFP_NOFS);
1198         if (!tmp)
1199                 return -ENOMEM;
1200         *roots = ulist_alloc(GFP_NOFS);
1201         if (!*roots) {
1202                 ulist_free(tmp);
1203                 return -ENOMEM;
1204         }
1205
1206         ULIST_ITER_INIT(&uiter);
1207         while (1) {
1208                 ret = find_parent_nodes(trans, fs_info, bytenr,
1209                                         time_seq, tmp, *roots, NULL, 0, 0);
1210                 if (ret < 0 && ret != -ENOENT) {
1211                         ulist_free(tmp);
1212                         ulist_free(*roots);
1213                         return ret;
1214                 }
1215                 node = ulist_next(tmp, &uiter);
1216                 if (!node)
1217                         break;
1218                 bytenr = node->val;
1219                 cond_resched();
1220         }
1221
1222         ulist_free(tmp);
1223         return 0;
1224 }
1225
1226 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1227                          struct btrfs_fs_info *fs_info, u64 bytenr,
1228                          u64 time_seq, struct ulist **roots)
1229 {
1230         int ret;
1231
1232         if (!trans)
1233                 down_read(&fs_info->commit_root_sem);
1234         ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1235         if (!trans)
1236                 up_read(&fs_info->commit_root_sem);
1237         return ret;
1238 }
1239
1240 /**
1241  * btrfs_check_shared - tell us whether an extent is shared
1242  *
1243  * @trans: optional trans handle
1244  *
1245  * btrfs_check_shared uses the backref walking code but will short
1246  * circuit as soon as it finds a root or inode that doesn't match the
1247  * one passed in. This provides a significant performance benefit for
1248  * callers (such as fiemap) which want to know whether the extent is
1249  * shared but do not need a ref count.
1250  *
1251  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1252  */
1253 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1254                        struct btrfs_fs_info *fs_info, u64 root_objectid,
1255                        u64 inum, u64 bytenr)
1256 {
1257         struct ulist *tmp = NULL;
1258         struct ulist *roots = NULL;
1259         struct ulist_iterator uiter;
1260         struct ulist_node *node;
1261         struct seq_list elem = SEQ_LIST_INIT(elem);
1262         int ret = 0;
1263
1264         tmp = ulist_alloc(GFP_NOFS);
1265         roots = ulist_alloc(GFP_NOFS);
1266         if (!tmp || !roots) {
1267                 ulist_free(tmp);
1268                 ulist_free(roots);
1269                 return -ENOMEM;
1270         }
1271
1272         if (trans)
1273                 btrfs_get_tree_mod_seq(fs_info, &elem);
1274         else
1275                 down_read(&fs_info->commit_root_sem);
1276         ULIST_ITER_INIT(&uiter);
1277         while (1) {
1278                 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1279                                         roots, NULL, root_objectid, inum);
1280                 if (ret == BACKREF_FOUND_SHARED) {
1281                         /* this is the only condition under which we return 1 */
1282                         ret = 1;
1283                         break;
1284                 }
1285                 if (ret < 0 && ret != -ENOENT)
1286                         break;
1287                 ret = 0;
1288                 node = ulist_next(tmp, &uiter);
1289                 if (!node)
1290                         break;
1291                 bytenr = node->val;
1292                 cond_resched();
1293         }
1294         if (trans)
1295                 btrfs_put_tree_mod_seq(fs_info, &elem);
1296         else
1297                 up_read(&fs_info->commit_root_sem);
1298         ulist_free(tmp);
1299         ulist_free(roots);
1300         return ret;
1301 }
1302
1303 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1304                           u64 start_off, struct btrfs_path *path,
1305                           struct btrfs_inode_extref **ret_extref,
1306                           u64 *found_off)
1307 {
1308         int ret, slot;
1309         struct btrfs_key key;
1310         struct btrfs_key found_key;
1311         struct btrfs_inode_extref *extref;
1312         struct extent_buffer *leaf;
1313         unsigned long ptr;
1314
1315         key.objectid = inode_objectid;
1316         key.type = BTRFS_INODE_EXTREF_KEY;
1317         key.offset = start_off;
1318
1319         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1320         if (ret < 0)
1321                 return ret;
1322
1323         while (1) {
1324                 leaf = path->nodes[0];
1325                 slot = path->slots[0];
1326                 if (slot >= btrfs_header_nritems(leaf)) {
1327                         /*
1328                          * If the item at offset is not found,
1329                          * btrfs_search_slot will point us to the slot
1330                          * where it should be inserted. In our case
1331                          * that will be the slot directly before the
1332                          * next INODE_REF_KEY_V2 item. In the case
1333                          * that we're pointing to the last slot in a
1334                          * leaf, we must move one leaf over.
1335                          */
1336                         ret = btrfs_next_leaf(root, path);
1337                         if (ret) {
1338                                 if (ret >= 1)
1339                                         ret = -ENOENT;
1340                                 break;
1341                         }
1342                         continue;
1343                 }
1344
1345                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1346
1347                 /*
1348                  * Check that we're still looking at an extended ref key for
1349                  * this particular objectid. If we have different
1350                  * objectid or type then there are no more to be found
1351                  * in the tree and we can exit.
1352                  */
1353                 ret = -ENOENT;
1354                 if (found_key.objectid != inode_objectid)
1355                         break;
1356                 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1357                         break;
1358
1359                 ret = 0;
1360                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1361                 extref = (struct btrfs_inode_extref *)ptr;
1362                 *ret_extref = extref;
1363                 if (found_off)
1364                         *found_off = found_key.offset;
1365                 break;
1366         }
1367
1368         return ret;
1369 }
1370
1371 /*
1372  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1373  * Elements of the path are separated by '/' and the path is guaranteed to be
1374  * 0-terminated. the path is only given within the current file system.
1375  * Therefore, it never starts with a '/'. the caller is responsible to provide
1376  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1377  * the start point of the resulting string is returned. this pointer is within
1378  * dest, normally.
1379  * in case the path buffer would overflow, the pointer is decremented further
1380  * as if output was written to the buffer, though no more output is actually
1381  * generated. that way, the caller can determine how much space would be
1382  * required for the path to fit into the buffer. in that case, the returned
1383  * value will be smaller than dest. callers must check this!
1384  */
1385 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1386                         u32 name_len, unsigned long name_off,
1387                         struct extent_buffer *eb_in, u64 parent,
1388                         char *dest, u32 size)
1389 {
1390         int slot;
1391         u64 next_inum;
1392         int ret;
1393         s64 bytes_left = ((s64)size) - 1;
1394         struct extent_buffer *eb = eb_in;
1395         struct btrfs_key found_key;
1396         int leave_spinning = path->leave_spinning;
1397         struct btrfs_inode_ref *iref;
1398
1399         if (bytes_left >= 0)
1400                 dest[bytes_left] = '\0';
1401
1402         path->leave_spinning = 1;
1403         while (1) {
1404                 bytes_left -= name_len;
1405                 if (bytes_left >= 0)
1406                         read_extent_buffer(eb, dest + bytes_left,
1407                                            name_off, name_len);
1408                 if (eb != eb_in) {
1409                         if (!path->skip_locking)
1410                                 btrfs_tree_read_unlock_blocking(eb);
1411                         free_extent_buffer(eb);
1412                 }
1413                 ret = btrfs_find_item(fs_root, path, parent, 0,
1414                                 BTRFS_INODE_REF_KEY, &found_key);
1415                 if (ret > 0)
1416                         ret = -ENOENT;
1417                 if (ret)
1418                         break;
1419
1420                 next_inum = found_key.offset;
1421
1422                 /* regular exit ahead */
1423                 if (parent == next_inum)
1424                         break;
1425
1426                 slot = path->slots[0];
1427                 eb = path->nodes[0];
1428                 /* make sure we can use eb after releasing the path */
1429                 if (eb != eb_in) {
1430                         if (!path->skip_locking)
1431                                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1432                         path->nodes[0] = NULL;
1433                         path->locks[0] = 0;
1434                 }
1435                 btrfs_release_path(path);
1436                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1437
1438                 name_len = btrfs_inode_ref_name_len(eb, iref);
1439                 name_off = (unsigned long)(iref + 1);
1440
1441                 parent = next_inum;
1442                 --bytes_left;
1443                 if (bytes_left >= 0)
1444                         dest[bytes_left] = '/';
1445         }
1446
1447         btrfs_release_path(path);
1448         path->leave_spinning = leave_spinning;
1449
1450         if (ret)
1451                 return ERR_PTR(ret);
1452
1453         return dest + bytes_left;
1454 }
1455
1456 /*
1457  * this makes the path point to (logical EXTENT_ITEM *)
1458  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1459  * tree blocks and <0 on error.
1460  */
1461 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1462                         struct btrfs_path *path, struct btrfs_key *found_key,
1463                         u64 *flags_ret)
1464 {
1465         int ret;
1466         u64 flags;
1467         u64 size = 0;
1468         u32 item_size;
1469         struct extent_buffer *eb;
1470         struct btrfs_extent_item *ei;
1471         struct btrfs_key key;
1472
1473         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1474                 key.type = BTRFS_METADATA_ITEM_KEY;
1475         else
1476                 key.type = BTRFS_EXTENT_ITEM_KEY;
1477         key.objectid = logical;
1478         key.offset = (u64)-1;
1479
1480         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1481         if (ret < 0)
1482                 return ret;
1483
1484         ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1485         if (ret) {
1486                 if (ret > 0)
1487                         ret = -ENOENT;
1488                 return ret;
1489         }
1490         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1491         if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1492                 size = fs_info->extent_root->nodesize;
1493         else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1494                 size = found_key->offset;
1495
1496         if (found_key->objectid > logical ||
1497             found_key->objectid + size <= logical) {
1498                 pr_debug("logical %llu is not within any extent\n", logical);
1499                 return -ENOENT;
1500         }
1501
1502         eb = path->nodes[0];
1503         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1504         BUG_ON(item_size < sizeof(*ei));
1505
1506         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1507         flags = btrfs_extent_flags(eb, ei);
1508
1509         pr_debug("logical %llu is at position %llu within the extent (%llu "
1510                  "EXTENT_ITEM %llu) flags %#llx size %u\n",
1511                  logical, logical - found_key->objectid, found_key->objectid,
1512                  found_key->offset, flags, item_size);
1513
1514         WARN_ON(!flags_ret);
1515         if (flags_ret) {
1516                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1517                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1518                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1519                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1520                 else
1521                         BUG_ON(1);
1522                 return 0;
1523         }
1524
1525         return -EIO;
1526 }
1527
1528 /*
1529  * helper function to iterate extent inline refs. ptr must point to a 0 value
1530  * for the first call and may be modified. it is used to track state.
1531  * if more refs exist, 0 is returned and the next call to
1532  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1533  * next ref. after the last ref was processed, 1 is returned.
1534  * returns <0 on error
1535  */
1536 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1537                                    struct btrfs_key *key,
1538                                    struct btrfs_extent_item *ei, u32 item_size,
1539                                    struct btrfs_extent_inline_ref **out_eiref,
1540                                    int *out_type)
1541 {
1542         unsigned long end;
1543         u64 flags;
1544         struct btrfs_tree_block_info *info;
1545
1546         if (!*ptr) {
1547                 /* first call */
1548                 flags = btrfs_extent_flags(eb, ei);
1549                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1550                         if (key->type == BTRFS_METADATA_ITEM_KEY) {
1551                                 /* a skinny metadata extent */
1552                                 *out_eiref =
1553                                      (struct btrfs_extent_inline_ref *)(ei + 1);
1554                         } else {
1555                                 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1556                                 info = (struct btrfs_tree_block_info *)(ei + 1);
1557                                 *out_eiref =
1558                                    (struct btrfs_extent_inline_ref *)(info + 1);
1559                         }
1560                 } else {
1561                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1562                 }
1563                 *ptr = (unsigned long)*out_eiref;
1564                 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1565                         return -ENOENT;
1566         }
1567
1568         end = (unsigned long)ei + item_size;
1569         *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1570         *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1571
1572         *ptr += btrfs_extent_inline_ref_size(*out_type);
1573         WARN_ON(*ptr > end);
1574         if (*ptr == end)
1575                 return 1; /* last */
1576
1577         return 0;
1578 }
1579
1580 /*
1581  * reads the tree block backref for an extent. tree level and root are returned
1582  * through out_level and out_root. ptr must point to a 0 value for the first
1583  * call and may be modified (see __get_extent_inline_ref comment).
1584  * returns 0 if data was provided, 1 if there was no more data to provide or
1585  * <0 on error.
1586  */
1587 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1588                             struct btrfs_key *key, struct btrfs_extent_item *ei,
1589                             u32 item_size, u64 *out_root, u8 *out_level)
1590 {
1591         int ret;
1592         int type;
1593         struct btrfs_extent_inline_ref *eiref;
1594
1595         if (*ptr == (unsigned long)-1)
1596                 return 1;
1597
1598         while (1) {
1599                 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1600                                               &eiref, &type);
1601                 if (ret < 0)
1602                         return ret;
1603
1604                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1605                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1606                         break;
1607
1608                 if (ret == 1)
1609                         return 1;
1610         }
1611
1612         /* we can treat both ref types equally here */
1613         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1614
1615         if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1616                 struct btrfs_tree_block_info *info;
1617
1618                 info = (struct btrfs_tree_block_info *)(ei + 1);
1619                 *out_level = btrfs_tree_block_level(eb, info);
1620         } else {
1621                 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1622                 *out_level = (u8)key->offset;
1623         }
1624
1625         if (ret == 1)
1626                 *ptr = (unsigned long)-1;
1627
1628         return 0;
1629 }
1630
1631 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1632                                 u64 root, u64 extent_item_objectid,
1633                                 iterate_extent_inodes_t *iterate, void *ctx)
1634 {
1635         struct extent_inode_elem *eie;
1636         int ret = 0;
1637
1638         for (eie = inode_list; eie; eie = eie->next) {
1639                 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1640                          "root %llu\n", extent_item_objectid,
1641                          eie->inum, eie->offset, root);
1642                 ret = iterate(eie->inum, eie->offset, root, ctx);
1643                 if (ret) {
1644                         pr_debug("stopping iteration for %llu due to ret=%d\n",
1645                                  extent_item_objectid, ret);
1646                         break;
1647                 }
1648         }
1649
1650         return ret;
1651 }
1652
1653 /*
1654  * calls iterate() for every inode that references the extent identified by
1655  * the given parameters.
1656  * when the iterator function returns a non-zero value, iteration stops.
1657  */
1658 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1659                                 u64 extent_item_objectid, u64 extent_item_pos,
1660                                 int search_commit_root,
1661                                 iterate_extent_inodes_t *iterate, void *ctx)
1662 {
1663         int ret;
1664         struct btrfs_trans_handle *trans = NULL;
1665         struct ulist *refs = NULL;
1666         struct ulist *roots = NULL;
1667         struct ulist_node *ref_node = NULL;
1668         struct ulist_node *root_node = NULL;
1669         struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1670         struct ulist_iterator ref_uiter;
1671         struct ulist_iterator root_uiter;
1672
1673         pr_debug("resolving all inodes for extent %llu\n",
1674                         extent_item_objectid);
1675
1676         if (!search_commit_root) {
1677                 trans = btrfs_join_transaction(fs_info->extent_root);
1678                 if (IS_ERR(trans))
1679                         return PTR_ERR(trans);
1680                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1681         } else {
1682                 down_read(&fs_info->commit_root_sem);
1683         }
1684
1685         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1686                                    tree_mod_seq_elem.seq, &refs,
1687                                    &extent_item_pos);
1688         if (ret)
1689                 goto out;
1690
1691         ULIST_ITER_INIT(&ref_uiter);
1692         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1693                 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1694                                              tree_mod_seq_elem.seq, &roots);
1695                 if (ret)
1696                         break;
1697                 ULIST_ITER_INIT(&root_uiter);
1698                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1699                         pr_debug("root %llu references leaf %llu, data list "
1700                                  "%#llx\n", root_node->val, ref_node->val,
1701                                  ref_node->aux);
1702                         ret = iterate_leaf_refs((struct extent_inode_elem *)
1703                                                 (uintptr_t)ref_node->aux,
1704                                                 root_node->val,
1705                                                 extent_item_objectid,
1706                                                 iterate, ctx);
1707                 }
1708                 ulist_free(roots);
1709         }
1710
1711         free_leaf_list(refs);
1712 out:
1713         if (!search_commit_root) {
1714                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1715                 btrfs_end_transaction(trans, fs_info->extent_root);
1716         } else {
1717                 up_read(&fs_info->commit_root_sem);
1718         }
1719
1720         return ret;
1721 }
1722
1723 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1724                                 struct btrfs_path *path,
1725                                 iterate_extent_inodes_t *iterate, void *ctx)
1726 {
1727         int ret;
1728         u64 extent_item_pos;
1729         u64 flags = 0;
1730         struct btrfs_key found_key;
1731         int search_commit_root = path->search_commit_root;
1732
1733         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1734         btrfs_release_path(path);
1735         if (ret < 0)
1736                 return ret;
1737         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1738                 return -EINVAL;
1739
1740         extent_item_pos = logical - found_key.objectid;
1741         ret = iterate_extent_inodes(fs_info, found_key.objectid,
1742                                         extent_item_pos, search_commit_root,
1743                                         iterate, ctx);
1744
1745         return ret;
1746 }
1747
1748 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1749                               struct extent_buffer *eb, void *ctx);
1750
1751 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1752                               struct btrfs_path *path,
1753                               iterate_irefs_t *iterate, void *ctx)
1754 {
1755         int ret = 0;
1756         int slot;
1757         u32 cur;
1758         u32 len;
1759         u32 name_len;
1760         u64 parent = 0;
1761         int found = 0;
1762         struct extent_buffer *eb;
1763         struct btrfs_item *item;
1764         struct btrfs_inode_ref *iref;
1765         struct btrfs_key found_key;
1766
1767         while (!ret) {
1768                 ret = btrfs_find_item(fs_root, path, inum,
1769                                 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1770                                 &found_key);
1771
1772                 if (ret < 0)
1773                         break;
1774                 if (ret) {
1775                         ret = found ? 0 : -ENOENT;
1776                         break;
1777                 }
1778                 ++found;
1779
1780                 parent = found_key.offset;
1781                 slot = path->slots[0];
1782                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1783                 if (!eb) {
1784                         ret = -ENOMEM;
1785                         break;
1786                 }
1787                 extent_buffer_get(eb);
1788                 btrfs_tree_read_lock(eb);
1789                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1790                 btrfs_release_path(path);
1791
1792                 item = btrfs_item_nr(slot);
1793                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1794
1795                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1796                         name_len = btrfs_inode_ref_name_len(eb, iref);
1797                         /* path must be released before calling iterate()! */
1798                         pr_debug("following ref at offset %u for inode %llu in "
1799                                  "tree %llu\n", cur, found_key.objectid,
1800                                  fs_root->objectid);
1801                         ret = iterate(parent, name_len,
1802                                       (unsigned long)(iref + 1), eb, ctx);
1803                         if (ret)
1804                                 break;
1805                         len = sizeof(*iref) + name_len;
1806                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
1807                 }
1808                 btrfs_tree_read_unlock_blocking(eb);
1809                 free_extent_buffer(eb);
1810         }
1811
1812         btrfs_release_path(path);
1813
1814         return ret;
1815 }
1816
1817 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1818                                  struct btrfs_path *path,
1819                                  iterate_irefs_t *iterate, void *ctx)
1820 {
1821         int ret;
1822         int slot;
1823         u64 offset = 0;
1824         u64 parent;
1825         int found = 0;
1826         struct extent_buffer *eb;
1827         struct btrfs_inode_extref *extref;
1828         u32 item_size;
1829         u32 cur_offset;
1830         unsigned long ptr;
1831
1832         while (1) {
1833                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1834                                             &offset);
1835                 if (ret < 0)
1836                         break;
1837                 if (ret) {
1838                         ret = found ? 0 : -ENOENT;
1839                         break;
1840                 }
1841                 ++found;
1842
1843                 slot = path->slots[0];
1844                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1845                 if (!eb) {
1846                         ret = -ENOMEM;
1847                         break;
1848                 }
1849                 extent_buffer_get(eb);
1850
1851                 btrfs_tree_read_lock(eb);
1852                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1853                 btrfs_release_path(path);
1854
1855                 item_size = btrfs_item_size_nr(eb, slot);
1856                 ptr = btrfs_item_ptr_offset(eb, slot);
1857                 cur_offset = 0;
1858
1859                 while (cur_offset < item_size) {
1860                         u32 name_len;
1861
1862                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1863                         parent = btrfs_inode_extref_parent(eb, extref);
1864                         name_len = btrfs_inode_extref_name_len(eb, extref);
1865                         ret = iterate(parent, name_len,
1866                                       (unsigned long)&extref->name, eb, ctx);
1867                         if (ret)
1868                                 break;
1869
1870                         cur_offset += btrfs_inode_extref_name_len(eb, extref);
1871                         cur_offset += sizeof(*extref);
1872                 }
1873                 btrfs_tree_read_unlock_blocking(eb);
1874                 free_extent_buffer(eb);
1875
1876                 offset++;
1877         }
1878
1879         btrfs_release_path(path);
1880
1881         return ret;
1882 }
1883
1884 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1885                          struct btrfs_path *path, iterate_irefs_t *iterate,
1886                          void *ctx)
1887 {
1888         int ret;
1889         int found_refs = 0;
1890
1891         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1892         if (!ret)
1893                 ++found_refs;
1894         else if (ret != -ENOENT)
1895                 return ret;
1896
1897         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1898         if (ret == -ENOENT && found_refs)
1899                 return 0;
1900
1901         return ret;
1902 }
1903
1904 /*
1905  * returns 0 if the path could be dumped (probably truncated)
1906  * returns <0 in case of an error
1907  */
1908 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1909                          struct extent_buffer *eb, void *ctx)
1910 {
1911         struct inode_fs_paths *ipath = ctx;
1912         char *fspath;
1913         char *fspath_min;
1914         int i = ipath->fspath->elem_cnt;
1915         const int s_ptr = sizeof(char *);
1916         u32 bytes_left;
1917
1918         bytes_left = ipath->fspath->bytes_left > s_ptr ?
1919                                         ipath->fspath->bytes_left - s_ptr : 0;
1920
1921         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1922         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1923                                    name_off, eb, inum, fspath_min, bytes_left);
1924         if (IS_ERR(fspath))
1925                 return PTR_ERR(fspath);
1926
1927         if (fspath > fspath_min) {
1928                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1929                 ++ipath->fspath->elem_cnt;
1930                 ipath->fspath->bytes_left = fspath - fspath_min;
1931         } else {
1932                 ++ipath->fspath->elem_missed;
1933                 ipath->fspath->bytes_missing += fspath_min - fspath;
1934                 ipath->fspath->bytes_left = 0;
1935         }
1936
1937         return 0;
1938 }
1939
1940 /*
1941  * this dumps all file system paths to the inode into the ipath struct, provided
1942  * is has been created large enough. each path is zero-terminated and accessed
1943  * from ipath->fspath->val[i].
1944  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1945  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1946  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1947  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1948  * have been needed to return all paths.
1949  */
1950 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1951 {
1952         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1953                              inode_to_path, ipath);
1954 }
1955
1956 struct btrfs_data_container *init_data_container(u32 total_bytes)
1957 {
1958         struct btrfs_data_container *data;
1959         size_t alloc_bytes;
1960
1961         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1962         data = vmalloc(alloc_bytes);
1963         if (!data)
1964                 return ERR_PTR(-ENOMEM);
1965
1966         if (total_bytes >= sizeof(*data)) {
1967                 data->bytes_left = total_bytes - sizeof(*data);
1968                 data->bytes_missing = 0;
1969         } else {
1970                 data->bytes_missing = sizeof(*data) - total_bytes;
1971                 data->bytes_left = 0;
1972         }
1973
1974         data->elem_cnt = 0;
1975         data->elem_missed = 0;
1976
1977         return data;
1978 }
1979
1980 /*
1981  * allocates space to return multiple file system paths for an inode.
1982  * total_bytes to allocate are passed, note that space usable for actual path
1983  * information will be total_bytes - sizeof(struct inode_fs_paths).
1984  * the returned pointer must be freed with free_ipath() in the end.
1985  */
1986 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1987                                         struct btrfs_path *path)
1988 {
1989         struct inode_fs_paths *ifp;
1990         struct btrfs_data_container *fspath;
1991
1992         fspath = init_data_container(total_bytes);
1993         if (IS_ERR(fspath))
1994                 return (void *)fspath;
1995
1996         ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1997         if (!ifp) {
1998                 kfree(fspath);
1999                 return ERR_PTR(-ENOMEM);
2000         }
2001
2002         ifp->btrfs_path = path;
2003         ifp->fspath = fspath;
2004         ifp->fs_root = fs_root;
2005
2006         return ifp;
2007 }
2008
2009 void free_ipath(struct inode_fs_paths *ipath)
2010 {
2011         if (!ipath)
2012                 return;
2013         vfree(ipath->fspath);
2014         kfree(ipath);
2015 }