x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32                       *root, struct btrfs_key *ins_key,
33                       struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct btrfs_root *root, struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct btrfs_root *root,
39                               struct extent_buffer *dst_buf,
40                               struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42                     int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 }
50
51 /*
52  * set all locked nodes in the path to blocking locks.  This should
53  * be done before scheduling
54  */
55 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
56 {
57         int i;
58         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
59                 if (!p->nodes[i] || !p->locks[i])
60                         continue;
61                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
62                 if (p->locks[i] == BTRFS_READ_LOCK)
63                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
64                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
65                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
66         }
67 }
68
69 /*
70  * reset all the locked nodes in the patch to spinning locks.
71  *
72  * held is used to keep lockdep happy, when lockdep is enabled
73  * we set held to a blocking lock before we go around and
74  * retake all the spinlocks in the path.  You can safely use NULL
75  * for held
76  */
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78                                         struct extent_buffer *held, int held_rw)
79 {
80         int i;
81
82         if (held) {
83                 btrfs_set_lock_blocking_rw(held, held_rw);
84                 if (held_rw == BTRFS_WRITE_LOCK)
85                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
86                 else if (held_rw == BTRFS_READ_LOCK)
87                         held_rw = BTRFS_READ_LOCK_BLOCKING;
88         }
89         btrfs_set_path_blocking(p);
90
91         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
92                 if (p->nodes[i] && p->locks[i]) {
93                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
94                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
95                                 p->locks[i] = BTRFS_WRITE_LOCK;
96                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
97                                 p->locks[i] = BTRFS_READ_LOCK;
98                 }
99         }
100
101         if (held)
102                 btrfs_clear_lock_blocking_rw(held, held_rw);
103 }
104
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
107 {
108         if (!p)
109                 return;
110         btrfs_release_path(p);
111         kmem_cache_free(btrfs_path_cachep, p);
112 }
113
114 /*
115  * path release drops references on the extent buffers in the path
116  * and it drops any locks held by this path
117  *
118  * It is safe to call this on paths that no locks or extent buffers held.
119  */
120 noinline void btrfs_release_path(struct btrfs_path *p)
121 {
122         int i;
123
124         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
125                 p->slots[i] = 0;
126                 if (!p->nodes[i])
127                         continue;
128                 if (p->locks[i]) {
129                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
130                         p->locks[i] = 0;
131                 }
132                 free_extent_buffer(p->nodes[i]);
133                 p->nodes[i] = NULL;
134         }
135 }
136
137 /*
138  * safely gets a reference on the root node of a tree.  A lock
139  * is not taken, so a concurrent writer may put a different node
140  * at the root of the tree.  See btrfs_lock_root_node for the
141  * looping required.
142  *
143  * The extent buffer returned by this has a reference taken, so
144  * it won't disappear.  It may stop being the root of the tree
145  * at any time because there are no locks held.
146  */
147 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
148 {
149         struct extent_buffer *eb;
150
151         while (1) {
152                 rcu_read_lock();
153                 eb = rcu_dereference(root->node);
154
155                 /*
156                  * RCU really hurts here, we could free up the root node because
157                  * it was COWed but we may not get the new root node yet so do
158                  * the inc_not_zero dance and if it doesn't work then
159                  * synchronize_rcu and try again.
160                  */
161                 if (atomic_inc_not_zero(&eb->refs)) {
162                         rcu_read_unlock();
163                         break;
164                 }
165                 rcu_read_unlock();
166                 synchronize_rcu();
167         }
168         return eb;
169 }
170
171 /* loop around taking references on and locking the root node of the
172  * tree until you end up with a lock on the root.  A locked buffer
173  * is returned, with a reference held.
174  */
175 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
176 {
177         struct extent_buffer *eb;
178
179         while (1) {
180                 eb = btrfs_root_node(root);
181                 btrfs_tree_lock(eb);
182                 if (eb == root->node)
183                         break;
184                 btrfs_tree_unlock(eb);
185                 free_extent_buffer(eb);
186         }
187         return eb;
188 }
189
190 /* loop around taking references on and locking the root node of the
191  * tree until you end up with a lock on the root.  A locked buffer
192  * is returned, with a reference held.
193  */
194 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
195 {
196         struct extent_buffer *eb;
197
198         while (1) {
199                 eb = btrfs_root_node(root);
200                 btrfs_tree_read_lock(eb);
201                 if (eb == root->node)
202                         break;
203                 btrfs_tree_read_unlock(eb);
204                 free_extent_buffer(eb);
205         }
206         return eb;
207 }
208
209 /* cowonly root (everything not a reference counted cow subvolume), just get
210  * put onto a simple dirty list.  transaction.c walks this to make sure they
211  * get properly updated on disk.
212  */
213 static void add_root_to_dirty_list(struct btrfs_root *root)
214 {
215         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
216             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
217                 return;
218
219         spin_lock(&root->fs_info->trans_lock);
220         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
221                 /* Want the extent tree to be the last on the list */
222                 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
223                         list_move_tail(&root->dirty_list,
224                                        &root->fs_info->dirty_cowonly_roots);
225                 else
226                         list_move(&root->dirty_list,
227                                   &root->fs_info->dirty_cowonly_roots);
228         }
229         spin_unlock(&root->fs_info->trans_lock);
230 }
231
232 /*
233  * used by snapshot creation to make a copy of a root for a tree with
234  * a given objectid.  The buffer with the new root node is returned in
235  * cow_ret, and this func returns zero on success or a negative error code.
236  */
237 int btrfs_copy_root(struct btrfs_trans_handle *trans,
238                       struct btrfs_root *root,
239                       struct extent_buffer *buf,
240                       struct extent_buffer **cow_ret, u64 new_root_objectid)
241 {
242         struct extent_buffer *cow;
243         int ret = 0;
244         int level;
245         struct btrfs_disk_key disk_key;
246
247         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
248                 trans->transid != root->fs_info->running_transaction->transid);
249         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250                 trans->transid != root->last_trans);
251
252         level = btrfs_header_level(buf);
253         if (level == 0)
254                 btrfs_item_key(buf, &disk_key, 0);
255         else
256                 btrfs_node_key(buf, &disk_key, 0);
257
258         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
259                         &disk_key, level, buf->start, 0);
260         if (IS_ERR(cow))
261                 return PTR_ERR(cow);
262
263         copy_extent_buffer(cow, buf, 0, 0, cow->len);
264         btrfs_set_header_bytenr(cow, cow->start);
265         btrfs_set_header_generation(cow, trans->transid);
266         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
267         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
268                                      BTRFS_HEADER_FLAG_RELOC);
269         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
270                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
271         else
272                 btrfs_set_header_owner(cow, new_root_objectid);
273
274         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
275                             BTRFS_FSID_SIZE);
276
277         WARN_ON(btrfs_header_generation(buf) > trans->transid);
278         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279                 ret = btrfs_inc_ref(trans, root, cow, 1);
280         else
281                 ret = btrfs_inc_ref(trans, root, cow, 0);
282
283         if (ret)
284                 return ret;
285
286         btrfs_mark_buffer_dirty(cow);
287         *cow_ret = cow;
288         return 0;
289 }
290
291 enum mod_log_op {
292         MOD_LOG_KEY_REPLACE,
293         MOD_LOG_KEY_ADD,
294         MOD_LOG_KEY_REMOVE,
295         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
296         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
297         MOD_LOG_MOVE_KEYS,
298         MOD_LOG_ROOT_REPLACE,
299 };
300
301 struct tree_mod_move {
302         int dst_slot;
303         int nr_items;
304 };
305
306 struct tree_mod_root {
307         u64 logical;
308         u8 level;
309 };
310
311 struct tree_mod_elem {
312         struct rb_node node;
313         u64 logical;
314         u64 seq;
315         enum mod_log_op op;
316
317         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
318         int slot;
319
320         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
321         u64 generation;
322
323         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
324         struct btrfs_disk_key key;
325         u64 blockptr;
326
327         /* this is used for op == MOD_LOG_MOVE_KEYS */
328         struct tree_mod_move move;
329
330         /* this is used for op == MOD_LOG_ROOT_REPLACE */
331         struct tree_mod_root old_root;
332 };
333
334 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
335 {
336         read_lock(&fs_info->tree_mod_log_lock);
337 }
338
339 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
340 {
341         read_unlock(&fs_info->tree_mod_log_lock);
342 }
343
344 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
345 {
346         write_lock(&fs_info->tree_mod_log_lock);
347 }
348
349 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
350 {
351         write_unlock(&fs_info->tree_mod_log_lock);
352 }
353
354 /*
355  * Pull a new tree mod seq number for our operation.
356  */
357 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
358 {
359         return atomic64_inc_return(&fs_info->tree_mod_seq);
360 }
361
362 /*
363  * This adds a new blocker to the tree mod log's blocker list if the @elem
364  * passed does not already have a sequence number set. So when a caller expects
365  * to record tree modifications, it should ensure to set elem->seq to zero
366  * before calling btrfs_get_tree_mod_seq.
367  * Returns a fresh, unused tree log modification sequence number, even if no new
368  * blocker was added.
369  */
370 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
371                            struct seq_list *elem)
372 {
373         tree_mod_log_write_lock(fs_info);
374         spin_lock(&fs_info->tree_mod_seq_lock);
375         if (!elem->seq) {
376                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
377                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
378         }
379         spin_unlock(&fs_info->tree_mod_seq_lock);
380         tree_mod_log_write_unlock(fs_info);
381
382         return elem->seq;
383 }
384
385 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
386                             struct seq_list *elem)
387 {
388         struct rb_root *tm_root;
389         struct rb_node *node;
390         struct rb_node *next;
391         struct seq_list *cur_elem;
392         struct tree_mod_elem *tm;
393         u64 min_seq = (u64)-1;
394         u64 seq_putting = elem->seq;
395
396         if (!seq_putting)
397                 return;
398
399         spin_lock(&fs_info->tree_mod_seq_lock);
400         list_del(&elem->list);
401         elem->seq = 0;
402
403         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
404                 if (cur_elem->seq < min_seq) {
405                         if (seq_putting > cur_elem->seq) {
406                                 /*
407                                  * blocker with lower sequence number exists, we
408                                  * cannot remove anything from the log
409                                  */
410                                 spin_unlock(&fs_info->tree_mod_seq_lock);
411                                 return;
412                         }
413                         min_seq = cur_elem->seq;
414                 }
415         }
416         spin_unlock(&fs_info->tree_mod_seq_lock);
417
418         /*
419          * anything that's lower than the lowest existing (read: blocked)
420          * sequence number can be removed from the tree.
421          */
422         tree_mod_log_write_lock(fs_info);
423         tm_root = &fs_info->tree_mod_log;
424         for (node = rb_first(tm_root); node; node = next) {
425                 next = rb_next(node);
426                 tm = container_of(node, struct tree_mod_elem, node);
427                 if (tm->seq > min_seq)
428                         continue;
429                 rb_erase(node, tm_root);
430                 kfree(tm);
431         }
432         tree_mod_log_write_unlock(fs_info);
433 }
434
435 /*
436  * key order of the log:
437  *       node/leaf start address -> sequence
438  *
439  * The 'start address' is the logical address of the *new* root node
440  * for root replace operations, or the logical address of the affected
441  * block for all other operations.
442  *
443  * Note: must be called with write lock (tree_mod_log_write_lock).
444  */
445 static noinline int
446 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
447 {
448         struct rb_root *tm_root;
449         struct rb_node **new;
450         struct rb_node *parent = NULL;
451         struct tree_mod_elem *cur;
452
453         BUG_ON(!tm);
454
455         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
456
457         tm_root = &fs_info->tree_mod_log;
458         new = &tm_root->rb_node;
459         while (*new) {
460                 cur = container_of(*new, struct tree_mod_elem, node);
461                 parent = *new;
462                 if (cur->logical < tm->logical)
463                         new = &((*new)->rb_left);
464                 else if (cur->logical > tm->logical)
465                         new = &((*new)->rb_right);
466                 else if (cur->seq < tm->seq)
467                         new = &((*new)->rb_left);
468                 else if (cur->seq > tm->seq)
469                         new = &((*new)->rb_right);
470                 else
471                         return -EEXIST;
472         }
473
474         rb_link_node(&tm->node, parent, new);
475         rb_insert_color(&tm->node, tm_root);
476         return 0;
477 }
478
479 /*
480  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
481  * returns zero with the tree_mod_log_lock acquired. The caller must hold
482  * this until all tree mod log insertions are recorded in the rb tree and then
483  * call tree_mod_log_write_unlock() to release.
484  */
485 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
486                                     struct extent_buffer *eb) {
487         smp_mb();
488         if (list_empty(&(fs_info)->tree_mod_seq_list))
489                 return 1;
490         if (eb && btrfs_header_level(eb) == 0)
491                 return 1;
492
493         tree_mod_log_write_lock(fs_info);
494         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
495                 tree_mod_log_write_unlock(fs_info);
496                 return 1;
497         }
498
499         return 0;
500 }
501
502 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
503 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
504                                     struct extent_buffer *eb)
505 {
506         smp_mb();
507         if (list_empty(&(fs_info)->tree_mod_seq_list))
508                 return 0;
509         if (eb && btrfs_header_level(eb) == 0)
510                 return 0;
511
512         return 1;
513 }
514
515 static struct tree_mod_elem *
516 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
517                     enum mod_log_op op, gfp_t flags)
518 {
519         struct tree_mod_elem *tm;
520
521         tm = kzalloc(sizeof(*tm), flags);
522         if (!tm)
523                 return NULL;
524
525         tm->logical = eb->start;
526         if (op != MOD_LOG_KEY_ADD) {
527                 btrfs_node_key(eb, &tm->key, slot);
528                 tm->blockptr = btrfs_node_blockptr(eb, slot);
529         }
530         tm->op = op;
531         tm->slot = slot;
532         tm->generation = btrfs_node_ptr_generation(eb, slot);
533         RB_CLEAR_NODE(&tm->node);
534
535         return tm;
536 }
537
538 static noinline int
539 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
540                         struct extent_buffer *eb, int slot,
541                         enum mod_log_op op, gfp_t flags)
542 {
543         struct tree_mod_elem *tm;
544         int ret;
545
546         if (!tree_mod_need_log(fs_info, eb))
547                 return 0;
548
549         tm = alloc_tree_mod_elem(eb, slot, op, flags);
550         if (!tm)
551                 return -ENOMEM;
552
553         if (tree_mod_dont_log(fs_info, eb)) {
554                 kfree(tm);
555                 return 0;
556         }
557
558         ret = __tree_mod_log_insert(fs_info, tm);
559         tree_mod_log_write_unlock(fs_info);
560         if (ret)
561                 kfree(tm);
562
563         return ret;
564 }
565
566 static noinline int
567 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
568                          struct extent_buffer *eb, int dst_slot, int src_slot,
569                          int nr_items, gfp_t flags)
570 {
571         struct tree_mod_elem *tm = NULL;
572         struct tree_mod_elem **tm_list = NULL;
573         int ret = 0;
574         int i;
575         int locked = 0;
576
577         if (!tree_mod_need_log(fs_info, eb))
578                 return 0;
579
580         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
581         if (!tm_list)
582                 return -ENOMEM;
583
584         tm = kzalloc(sizeof(*tm), flags);
585         if (!tm) {
586                 ret = -ENOMEM;
587                 goto free_tms;
588         }
589
590         tm->logical = eb->start;
591         tm->slot = src_slot;
592         tm->move.dst_slot = dst_slot;
593         tm->move.nr_items = nr_items;
594         tm->op = MOD_LOG_MOVE_KEYS;
595
596         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
597                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
598                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
599                 if (!tm_list[i]) {
600                         ret = -ENOMEM;
601                         goto free_tms;
602                 }
603         }
604
605         if (tree_mod_dont_log(fs_info, eb))
606                 goto free_tms;
607         locked = 1;
608
609         /*
610          * When we override something during the move, we log these removals.
611          * This can only happen when we move towards the beginning of the
612          * buffer, i.e. dst_slot < src_slot.
613          */
614         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
615                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
616                 if (ret)
617                         goto free_tms;
618         }
619
620         ret = __tree_mod_log_insert(fs_info, tm);
621         if (ret)
622                 goto free_tms;
623         tree_mod_log_write_unlock(fs_info);
624         kfree(tm_list);
625
626         return 0;
627 free_tms:
628         for (i = 0; i < nr_items; i++) {
629                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
630                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
631                 kfree(tm_list[i]);
632         }
633         if (locked)
634                 tree_mod_log_write_unlock(fs_info);
635         kfree(tm_list);
636         kfree(tm);
637
638         return ret;
639 }
640
641 static inline int
642 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
643                        struct tree_mod_elem **tm_list,
644                        int nritems)
645 {
646         int i, j;
647         int ret;
648
649         for (i = nritems - 1; i >= 0; i--) {
650                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
651                 if (ret) {
652                         for (j = nritems - 1; j > i; j--)
653                                 rb_erase(&tm_list[j]->node,
654                                          &fs_info->tree_mod_log);
655                         return ret;
656                 }
657         }
658
659         return 0;
660 }
661
662 static noinline int
663 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
664                          struct extent_buffer *old_root,
665                          struct extent_buffer *new_root, gfp_t flags,
666                          int log_removal)
667 {
668         struct tree_mod_elem *tm = NULL;
669         struct tree_mod_elem **tm_list = NULL;
670         int nritems = 0;
671         int ret = 0;
672         int i;
673
674         if (!tree_mod_need_log(fs_info, NULL))
675                 return 0;
676
677         if (log_removal && btrfs_header_level(old_root) > 0) {
678                 nritems = btrfs_header_nritems(old_root);
679                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
680                                   flags);
681                 if (!tm_list) {
682                         ret = -ENOMEM;
683                         goto free_tms;
684                 }
685                 for (i = 0; i < nritems; i++) {
686                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
687                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
688                         if (!tm_list[i]) {
689                                 ret = -ENOMEM;
690                                 goto free_tms;
691                         }
692                 }
693         }
694
695         tm = kzalloc(sizeof(*tm), flags);
696         if (!tm) {
697                 ret = -ENOMEM;
698                 goto free_tms;
699         }
700
701         tm->logical = new_root->start;
702         tm->old_root.logical = old_root->start;
703         tm->old_root.level = btrfs_header_level(old_root);
704         tm->generation = btrfs_header_generation(old_root);
705         tm->op = MOD_LOG_ROOT_REPLACE;
706
707         if (tree_mod_dont_log(fs_info, NULL))
708                 goto free_tms;
709
710         if (tm_list)
711                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
712         if (!ret)
713                 ret = __tree_mod_log_insert(fs_info, tm);
714
715         tree_mod_log_write_unlock(fs_info);
716         if (ret)
717                 goto free_tms;
718         kfree(tm_list);
719
720         return ret;
721
722 free_tms:
723         if (tm_list) {
724                 for (i = 0; i < nritems; i++)
725                         kfree(tm_list[i]);
726                 kfree(tm_list);
727         }
728         kfree(tm);
729
730         return ret;
731 }
732
733 static struct tree_mod_elem *
734 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
735                       int smallest)
736 {
737         struct rb_root *tm_root;
738         struct rb_node *node;
739         struct tree_mod_elem *cur = NULL;
740         struct tree_mod_elem *found = NULL;
741
742         tree_mod_log_read_lock(fs_info);
743         tm_root = &fs_info->tree_mod_log;
744         node = tm_root->rb_node;
745         while (node) {
746                 cur = container_of(node, struct tree_mod_elem, node);
747                 if (cur->logical < start) {
748                         node = node->rb_left;
749                 } else if (cur->logical > start) {
750                         node = node->rb_right;
751                 } else if (cur->seq < min_seq) {
752                         node = node->rb_left;
753                 } else if (!smallest) {
754                         /* we want the node with the highest seq */
755                         if (found)
756                                 BUG_ON(found->seq > cur->seq);
757                         found = cur;
758                         node = node->rb_left;
759                 } else if (cur->seq > min_seq) {
760                         /* we want the node with the smallest seq */
761                         if (found)
762                                 BUG_ON(found->seq < cur->seq);
763                         found = cur;
764                         node = node->rb_right;
765                 } else {
766                         found = cur;
767                         break;
768                 }
769         }
770         tree_mod_log_read_unlock(fs_info);
771
772         return found;
773 }
774
775 /*
776  * this returns the element from the log with the smallest time sequence
777  * value that's in the log (the oldest log item). any element with a time
778  * sequence lower than min_seq will be ignored.
779  */
780 static struct tree_mod_elem *
781 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
782                            u64 min_seq)
783 {
784         return __tree_mod_log_search(fs_info, start, min_seq, 1);
785 }
786
787 /*
788  * this returns the element from the log with the largest time sequence
789  * value that's in the log (the most recent log item). any element with
790  * a time sequence lower than min_seq will be ignored.
791  */
792 static struct tree_mod_elem *
793 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
794 {
795         return __tree_mod_log_search(fs_info, start, min_seq, 0);
796 }
797
798 static noinline int
799 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
800                      struct extent_buffer *src, unsigned long dst_offset,
801                      unsigned long src_offset, int nr_items)
802 {
803         int ret = 0;
804         struct tree_mod_elem **tm_list = NULL;
805         struct tree_mod_elem **tm_list_add, **tm_list_rem;
806         int i;
807         int locked = 0;
808
809         if (!tree_mod_need_log(fs_info, NULL))
810                 return 0;
811
812         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
813                 return 0;
814
815         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
816                           GFP_NOFS);
817         if (!tm_list)
818                 return -ENOMEM;
819
820         tm_list_add = tm_list;
821         tm_list_rem = tm_list + nr_items;
822         for (i = 0; i < nr_items; i++) {
823                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
824                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
825                 if (!tm_list_rem[i]) {
826                         ret = -ENOMEM;
827                         goto free_tms;
828                 }
829
830                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
831                     MOD_LOG_KEY_ADD, GFP_NOFS);
832                 if (!tm_list_add[i]) {
833                         ret = -ENOMEM;
834                         goto free_tms;
835                 }
836         }
837
838         if (tree_mod_dont_log(fs_info, NULL))
839                 goto free_tms;
840         locked = 1;
841
842         for (i = 0; i < nr_items; i++) {
843                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
844                 if (ret)
845                         goto free_tms;
846                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
847                 if (ret)
848                         goto free_tms;
849         }
850
851         tree_mod_log_write_unlock(fs_info);
852         kfree(tm_list);
853
854         return 0;
855
856 free_tms:
857         for (i = 0; i < nr_items * 2; i++) {
858                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
859                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
860                 kfree(tm_list[i]);
861         }
862         if (locked)
863                 tree_mod_log_write_unlock(fs_info);
864         kfree(tm_list);
865
866         return ret;
867 }
868
869 static inline void
870 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
871                      int dst_offset, int src_offset, int nr_items)
872 {
873         int ret;
874         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
875                                        nr_items, GFP_NOFS);
876         BUG_ON(ret < 0);
877 }
878
879 static noinline void
880 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
881                           struct extent_buffer *eb, int slot, int atomic)
882 {
883         int ret;
884
885         ret = tree_mod_log_insert_key(fs_info, eb, slot,
886                                         MOD_LOG_KEY_REPLACE,
887                                         atomic ? GFP_ATOMIC : GFP_NOFS);
888         BUG_ON(ret < 0);
889 }
890
891 static noinline int
892 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
893 {
894         struct tree_mod_elem **tm_list = NULL;
895         int nritems = 0;
896         int i;
897         int ret = 0;
898
899         if (btrfs_header_level(eb) == 0)
900                 return 0;
901
902         if (!tree_mod_need_log(fs_info, NULL))
903                 return 0;
904
905         nritems = btrfs_header_nritems(eb);
906         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
907         if (!tm_list)
908                 return -ENOMEM;
909
910         for (i = 0; i < nritems; i++) {
911                 tm_list[i] = alloc_tree_mod_elem(eb, i,
912                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
913                 if (!tm_list[i]) {
914                         ret = -ENOMEM;
915                         goto free_tms;
916                 }
917         }
918
919         if (tree_mod_dont_log(fs_info, eb))
920                 goto free_tms;
921
922         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
923         tree_mod_log_write_unlock(fs_info);
924         if (ret)
925                 goto free_tms;
926         kfree(tm_list);
927
928         return 0;
929
930 free_tms:
931         for (i = 0; i < nritems; i++)
932                 kfree(tm_list[i]);
933         kfree(tm_list);
934
935         return ret;
936 }
937
938 static noinline void
939 tree_mod_log_set_root_pointer(struct btrfs_root *root,
940                               struct extent_buffer *new_root_node,
941                               int log_removal)
942 {
943         int ret;
944         ret = tree_mod_log_insert_root(root->fs_info, root->node,
945                                        new_root_node, GFP_NOFS, log_removal);
946         BUG_ON(ret < 0);
947 }
948
949 /*
950  * check if the tree block can be shared by multiple trees
951  */
952 int btrfs_block_can_be_shared(struct btrfs_root *root,
953                               struct extent_buffer *buf)
954 {
955         /*
956          * Tree blocks not in reference counted trees and tree roots
957          * are never shared. If a block was allocated after the last
958          * snapshot and the block was not allocated by tree relocation,
959          * we know the block is not shared.
960          */
961         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
962             buf != root->node && buf != root->commit_root &&
963             (btrfs_header_generation(buf) <=
964              btrfs_root_last_snapshot(&root->root_item) ||
965              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
966                 return 1;
967 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
968         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
969             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
970                 return 1;
971 #endif
972         return 0;
973 }
974
975 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
976                                        struct btrfs_root *root,
977                                        struct extent_buffer *buf,
978                                        struct extent_buffer *cow,
979                                        int *last_ref)
980 {
981         u64 refs;
982         u64 owner;
983         u64 flags;
984         u64 new_flags = 0;
985         int ret;
986
987         /*
988          * Backrefs update rules:
989          *
990          * Always use full backrefs for extent pointers in tree block
991          * allocated by tree relocation.
992          *
993          * If a shared tree block is no longer referenced by its owner
994          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
995          * use full backrefs for extent pointers in tree block.
996          *
997          * If a tree block is been relocating
998          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
999          * use full backrefs for extent pointers in tree block.
1000          * The reason for this is some operations (such as drop tree)
1001          * are only allowed for blocks use full backrefs.
1002          */
1003
1004         if (btrfs_block_can_be_shared(root, buf)) {
1005                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1006                                                btrfs_header_level(buf), 1,
1007                                                &refs, &flags);
1008                 if (ret)
1009                         return ret;
1010                 if (refs == 0) {
1011                         ret = -EROFS;
1012                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1013                         return ret;
1014                 }
1015         } else {
1016                 refs = 1;
1017                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1018                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1019                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1020                 else
1021                         flags = 0;
1022         }
1023
1024         owner = btrfs_header_owner(buf);
1025         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1026                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1027
1028         if (refs > 1) {
1029                 if ((owner == root->root_key.objectid ||
1030                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1031                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1032                         ret = btrfs_inc_ref(trans, root, buf, 1);
1033                         BUG_ON(ret); /* -ENOMEM */
1034
1035                         if (root->root_key.objectid ==
1036                             BTRFS_TREE_RELOC_OBJECTID) {
1037                                 ret = btrfs_dec_ref(trans, root, buf, 0);
1038                                 BUG_ON(ret); /* -ENOMEM */
1039                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1040                                 BUG_ON(ret); /* -ENOMEM */
1041                         }
1042                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1043                 } else {
1044
1045                         if (root->root_key.objectid ==
1046                             BTRFS_TREE_RELOC_OBJECTID)
1047                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1048                         else
1049                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1050                         BUG_ON(ret); /* -ENOMEM */
1051                 }
1052                 if (new_flags != 0) {
1053                         int level = btrfs_header_level(buf);
1054
1055                         ret = btrfs_set_disk_extent_flags(trans, root,
1056                                                           buf->start,
1057                                                           buf->len,
1058                                                           new_flags, level, 0);
1059                         if (ret)
1060                                 return ret;
1061                 }
1062         } else {
1063                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1064                         if (root->root_key.objectid ==
1065                             BTRFS_TREE_RELOC_OBJECTID)
1066                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1067                         else
1068                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1069                         BUG_ON(ret); /* -ENOMEM */
1070                         ret = btrfs_dec_ref(trans, root, buf, 1);
1071                         BUG_ON(ret); /* -ENOMEM */
1072                 }
1073                 clean_tree_block(trans, root->fs_info, buf);
1074                 *last_ref = 1;
1075         }
1076         return 0;
1077 }
1078
1079 /*
1080  * does the dirty work in cow of a single block.  The parent block (if
1081  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1082  * dirty and returned locked.  If you modify the block it needs to be marked
1083  * dirty again.
1084  *
1085  * search_start -- an allocation hint for the new block
1086  *
1087  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1088  * bytes the allocator should try to find free next to the block it returns.
1089  * This is just a hint and may be ignored by the allocator.
1090  */
1091 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1092                              struct btrfs_root *root,
1093                              struct extent_buffer *buf,
1094                              struct extent_buffer *parent, int parent_slot,
1095                              struct extent_buffer **cow_ret,
1096                              u64 search_start, u64 empty_size)
1097 {
1098         struct btrfs_disk_key disk_key;
1099         struct extent_buffer *cow;
1100         int level, ret;
1101         int last_ref = 0;
1102         int unlock_orig = 0;
1103         u64 parent_start = 0;
1104
1105         if (*cow_ret == buf)
1106                 unlock_orig = 1;
1107
1108         btrfs_assert_tree_locked(buf);
1109
1110         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1111                 trans->transid != root->fs_info->running_transaction->transid);
1112         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113                 trans->transid != root->last_trans);
1114
1115         level = btrfs_header_level(buf);
1116
1117         if (level == 0)
1118                 btrfs_item_key(buf, &disk_key, 0);
1119         else
1120                 btrfs_node_key(buf, &disk_key, 0);
1121
1122         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1123                 parent_start = parent->start;
1124
1125         cow = btrfs_alloc_tree_block(trans, root, parent_start,
1126                         root->root_key.objectid, &disk_key, level,
1127                         search_start, empty_size);
1128         if (IS_ERR(cow))
1129                 return PTR_ERR(cow);
1130
1131         /* cow is set to blocking by btrfs_init_new_buffer */
1132
1133         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1134         btrfs_set_header_bytenr(cow, cow->start);
1135         btrfs_set_header_generation(cow, trans->transid);
1136         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1137         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1138                                      BTRFS_HEADER_FLAG_RELOC);
1139         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1140                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1141         else
1142                 btrfs_set_header_owner(cow, root->root_key.objectid);
1143
1144         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1145                             BTRFS_FSID_SIZE);
1146
1147         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1148         if (ret) {
1149                 btrfs_abort_transaction(trans, ret);
1150                 return ret;
1151         }
1152
1153         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1154                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1155                 if (ret) {
1156                         btrfs_abort_transaction(trans, ret);
1157                         return ret;
1158                 }
1159         }
1160
1161         if (buf == root->node) {
1162                 WARN_ON(parent && parent != buf);
1163                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1164                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1165                         parent_start = buf->start;
1166
1167                 extent_buffer_get(cow);
1168                 tree_mod_log_set_root_pointer(root, cow, 1);
1169                 rcu_assign_pointer(root->node, cow);
1170
1171                 btrfs_free_tree_block(trans, root, buf, parent_start,
1172                                       last_ref);
1173                 free_extent_buffer(buf);
1174                 add_root_to_dirty_list(root);
1175         } else {
1176                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1177                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1178                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1179                 btrfs_set_node_blockptr(parent, parent_slot,
1180                                         cow->start);
1181                 btrfs_set_node_ptr_generation(parent, parent_slot,
1182                                               trans->transid);
1183                 btrfs_mark_buffer_dirty(parent);
1184                 if (last_ref) {
1185                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1186                         if (ret) {
1187                                 btrfs_abort_transaction(trans, ret);
1188                                 return ret;
1189                         }
1190                 }
1191                 btrfs_free_tree_block(trans, root, buf, parent_start,
1192                                       last_ref);
1193         }
1194         if (unlock_orig)
1195                 btrfs_tree_unlock(buf);
1196         free_extent_buffer_stale(buf);
1197         btrfs_mark_buffer_dirty(cow);
1198         *cow_ret = cow;
1199         return 0;
1200 }
1201
1202 /*
1203  * returns the logical address of the oldest predecessor of the given root.
1204  * entries older than time_seq are ignored.
1205  */
1206 static struct tree_mod_elem *
1207 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1208                            struct extent_buffer *eb_root, u64 time_seq)
1209 {
1210         struct tree_mod_elem *tm;
1211         struct tree_mod_elem *found = NULL;
1212         u64 root_logical = eb_root->start;
1213         int looped = 0;
1214
1215         if (!time_seq)
1216                 return NULL;
1217
1218         /*
1219          * the very last operation that's logged for a root is the
1220          * replacement operation (if it is replaced at all). this has
1221          * the logical address of the *new* root, making it the very
1222          * first operation that's logged for this root.
1223          */
1224         while (1) {
1225                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1226                                                 time_seq);
1227                 if (!looped && !tm)
1228                         return NULL;
1229                 /*
1230                  * if there are no tree operation for the oldest root, we simply
1231                  * return it. this should only happen if that (old) root is at
1232                  * level 0.
1233                  */
1234                 if (!tm)
1235                         break;
1236
1237                 /*
1238                  * if there's an operation that's not a root replacement, we
1239                  * found the oldest version of our root. normally, we'll find a
1240                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1241                  */
1242                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1243                         break;
1244
1245                 found = tm;
1246                 root_logical = tm->old_root.logical;
1247                 looped = 1;
1248         }
1249
1250         /* if there's no old root to return, return what we found instead */
1251         if (!found)
1252                 found = tm;
1253
1254         return found;
1255 }
1256
1257 /*
1258  * tm is a pointer to the first operation to rewind within eb. then, all
1259  * previous operations will be rewound (until we reach something older than
1260  * time_seq).
1261  */
1262 static void
1263 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1264                       u64 time_seq, struct tree_mod_elem *first_tm)
1265 {
1266         u32 n;
1267         struct rb_node *next;
1268         struct tree_mod_elem *tm = first_tm;
1269         unsigned long o_dst;
1270         unsigned long o_src;
1271         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1272
1273         n = btrfs_header_nritems(eb);
1274         tree_mod_log_read_lock(fs_info);
1275         while (tm && tm->seq >= time_seq) {
1276                 /*
1277                  * all the operations are recorded with the operator used for
1278                  * the modification. as we're going backwards, we do the
1279                  * opposite of each operation here.
1280                  */
1281                 switch (tm->op) {
1282                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1283                         BUG_ON(tm->slot < n);
1284                         /* Fallthrough */
1285                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1286                 case MOD_LOG_KEY_REMOVE:
1287                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1288                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1289                         btrfs_set_node_ptr_generation(eb, tm->slot,
1290                                                       tm->generation);
1291                         n++;
1292                         break;
1293                 case MOD_LOG_KEY_REPLACE:
1294                         BUG_ON(tm->slot >= n);
1295                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1296                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1297                         btrfs_set_node_ptr_generation(eb, tm->slot,
1298                                                       tm->generation);
1299                         break;
1300                 case MOD_LOG_KEY_ADD:
1301                         /* if a move operation is needed it's in the log */
1302                         n--;
1303                         break;
1304                 case MOD_LOG_MOVE_KEYS:
1305                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1306                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1307                         memmove_extent_buffer(eb, o_dst, o_src,
1308                                               tm->move.nr_items * p_size);
1309                         break;
1310                 case MOD_LOG_ROOT_REPLACE:
1311                         /*
1312                          * this operation is special. for roots, this must be
1313                          * handled explicitly before rewinding.
1314                          * for non-roots, this operation may exist if the node
1315                          * was a root: root A -> child B; then A gets empty and
1316                          * B is promoted to the new root. in the mod log, we'll
1317                          * have a root-replace operation for B, a tree block
1318                          * that is no root. we simply ignore that operation.
1319                          */
1320                         break;
1321                 }
1322                 next = rb_next(&tm->node);
1323                 if (!next)
1324                         break;
1325                 tm = container_of(next, struct tree_mod_elem, node);
1326                 if (tm->logical != first_tm->logical)
1327                         break;
1328         }
1329         tree_mod_log_read_unlock(fs_info);
1330         btrfs_set_header_nritems(eb, n);
1331 }
1332
1333 /*
1334  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1335  * is returned. If rewind operations happen, a fresh buffer is returned. The
1336  * returned buffer is always read-locked. If the returned buffer is not the
1337  * input buffer, the lock on the input buffer is released and the input buffer
1338  * is freed (its refcount is decremented).
1339  */
1340 static struct extent_buffer *
1341 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1342                     struct extent_buffer *eb, u64 time_seq)
1343 {
1344         struct extent_buffer *eb_rewin;
1345         struct tree_mod_elem *tm;
1346
1347         if (!time_seq)
1348                 return eb;
1349
1350         if (btrfs_header_level(eb) == 0)
1351                 return eb;
1352
1353         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1354         if (!tm)
1355                 return eb;
1356
1357         btrfs_set_path_blocking(path);
1358         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1359
1360         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1361                 BUG_ON(tm->slot != 0);
1362                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1363                                                 eb->len);
1364                 if (!eb_rewin) {
1365                         btrfs_tree_read_unlock_blocking(eb);
1366                         free_extent_buffer(eb);
1367                         return NULL;
1368                 }
1369                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1370                 btrfs_set_header_backref_rev(eb_rewin,
1371                                              btrfs_header_backref_rev(eb));
1372                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1373                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1374         } else {
1375                 eb_rewin = btrfs_clone_extent_buffer(eb);
1376                 if (!eb_rewin) {
1377                         btrfs_tree_read_unlock_blocking(eb);
1378                         free_extent_buffer(eb);
1379                         return NULL;
1380                 }
1381         }
1382
1383         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1384         btrfs_tree_read_unlock_blocking(eb);
1385         free_extent_buffer(eb);
1386
1387         extent_buffer_get(eb_rewin);
1388         btrfs_tree_read_lock(eb_rewin);
1389         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1390         WARN_ON(btrfs_header_nritems(eb_rewin) >
1391                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1392
1393         return eb_rewin;
1394 }
1395
1396 /*
1397  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1398  * value. If there are no changes, the current root->root_node is returned. If
1399  * anything changed in between, there's a fresh buffer allocated on which the
1400  * rewind operations are done. In any case, the returned buffer is read locked.
1401  * Returns NULL on error (with no locks held).
1402  */
1403 static inline struct extent_buffer *
1404 get_old_root(struct btrfs_root *root, u64 time_seq)
1405 {
1406         struct tree_mod_elem *tm;
1407         struct extent_buffer *eb = NULL;
1408         struct extent_buffer *eb_root;
1409         struct extent_buffer *old;
1410         struct tree_mod_root *old_root = NULL;
1411         u64 old_generation = 0;
1412         u64 logical;
1413
1414         eb_root = btrfs_read_lock_root_node(root);
1415         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1416         if (!tm)
1417                 return eb_root;
1418
1419         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1420                 old_root = &tm->old_root;
1421                 old_generation = tm->generation;
1422                 logical = old_root->logical;
1423         } else {
1424                 logical = eb_root->start;
1425         }
1426
1427         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1428         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1429                 btrfs_tree_read_unlock(eb_root);
1430                 free_extent_buffer(eb_root);
1431                 old = read_tree_block(root, logical, 0);
1432                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1433                         if (!IS_ERR(old))
1434                                 free_extent_buffer(old);
1435                         btrfs_warn(root->fs_info,
1436                                 "failed to read tree block %llu from get_old_root", logical);
1437                 } else {
1438                         eb = btrfs_clone_extent_buffer(old);
1439                         free_extent_buffer(old);
1440                 }
1441         } else if (old_root) {
1442                 btrfs_tree_read_unlock(eb_root);
1443                 free_extent_buffer(eb_root);
1444                 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1445                                         root->nodesize);
1446         } else {
1447                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1448                 eb = btrfs_clone_extent_buffer(eb_root);
1449                 btrfs_tree_read_unlock_blocking(eb_root);
1450                 free_extent_buffer(eb_root);
1451         }
1452
1453         if (!eb)
1454                 return NULL;
1455         extent_buffer_get(eb);
1456         btrfs_tree_read_lock(eb);
1457         if (old_root) {
1458                 btrfs_set_header_bytenr(eb, eb->start);
1459                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1460                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1461                 btrfs_set_header_level(eb, old_root->level);
1462                 btrfs_set_header_generation(eb, old_generation);
1463         }
1464         if (tm)
1465                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1466         else
1467                 WARN_ON(btrfs_header_level(eb) != 0);
1468         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1469
1470         return eb;
1471 }
1472
1473 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1474 {
1475         struct tree_mod_elem *tm;
1476         int level;
1477         struct extent_buffer *eb_root = btrfs_root_node(root);
1478
1479         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1480         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1481                 level = tm->old_root.level;
1482         } else {
1483                 level = btrfs_header_level(eb_root);
1484         }
1485         free_extent_buffer(eb_root);
1486
1487         return level;
1488 }
1489
1490 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1491                                    struct btrfs_root *root,
1492                                    struct extent_buffer *buf)
1493 {
1494         if (btrfs_is_testing(root->fs_info))
1495                 return 0;
1496
1497         /* ensure we can see the force_cow */
1498         smp_rmb();
1499
1500         /*
1501          * We do not need to cow a block if
1502          * 1) this block is not created or changed in this transaction;
1503          * 2) this block does not belong to TREE_RELOC tree;
1504          * 3) the root is not forced COW.
1505          *
1506          * What is forced COW:
1507          *    when we create snapshot during committing the transaction,
1508          *    after we've finished coping src root, we must COW the shared
1509          *    block to ensure the metadata consistency.
1510          */
1511         if (btrfs_header_generation(buf) == trans->transid &&
1512             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1513             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1514               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1515             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1516                 return 0;
1517         return 1;
1518 }
1519
1520 /*
1521  * cows a single block, see __btrfs_cow_block for the real work.
1522  * This version of it has extra checks so that a block isn't COWed more than
1523  * once per transaction, as long as it hasn't been written yet
1524  */
1525 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1526                     struct btrfs_root *root, struct extent_buffer *buf,
1527                     struct extent_buffer *parent, int parent_slot,
1528                     struct extent_buffer **cow_ret)
1529 {
1530         u64 search_start;
1531         int ret;
1532
1533         if (trans->transaction != root->fs_info->running_transaction)
1534                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1535                        trans->transid,
1536                        root->fs_info->running_transaction->transid);
1537
1538         if (trans->transid != root->fs_info->generation)
1539                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1540                        trans->transid, root->fs_info->generation);
1541
1542         if (!should_cow_block(trans, root, buf)) {
1543                 trans->dirty = true;
1544                 *cow_ret = buf;
1545                 return 0;
1546         }
1547
1548         search_start = buf->start & ~((u64)SZ_1G - 1);
1549
1550         if (parent)
1551                 btrfs_set_lock_blocking(parent);
1552         btrfs_set_lock_blocking(buf);
1553
1554         ret = __btrfs_cow_block(trans, root, buf, parent,
1555                                  parent_slot, cow_ret, search_start, 0);
1556
1557         trace_btrfs_cow_block(root, buf, *cow_ret);
1558
1559         return ret;
1560 }
1561
1562 /*
1563  * helper function for defrag to decide if two blocks pointed to by a
1564  * node are actually close by
1565  */
1566 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1567 {
1568         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1569                 return 1;
1570         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1571                 return 1;
1572         return 0;
1573 }
1574
1575 /*
1576  * compare two keys in a memcmp fashion
1577  */
1578 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1579 {
1580         struct btrfs_key k1;
1581
1582         btrfs_disk_key_to_cpu(&k1, disk);
1583
1584         return btrfs_comp_cpu_keys(&k1, k2);
1585 }
1586
1587 /*
1588  * same as comp_keys only with two btrfs_key's
1589  */
1590 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1591 {
1592         if (k1->objectid > k2->objectid)
1593                 return 1;
1594         if (k1->objectid < k2->objectid)
1595                 return -1;
1596         if (k1->type > k2->type)
1597                 return 1;
1598         if (k1->type < k2->type)
1599                 return -1;
1600         if (k1->offset > k2->offset)
1601                 return 1;
1602         if (k1->offset < k2->offset)
1603                 return -1;
1604         return 0;
1605 }
1606
1607 /*
1608  * this is used by the defrag code to go through all the
1609  * leaves pointed to by a node and reallocate them so that
1610  * disk order is close to key order
1611  */
1612 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1613                        struct btrfs_root *root, struct extent_buffer *parent,
1614                        int start_slot, u64 *last_ret,
1615                        struct btrfs_key *progress)
1616 {
1617         struct extent_buffer *cur;
1618         u64 blocknr;
1619         u64 gen;
1620         u64 search_start = *last_ret;
1621         u64 last_block = 0;
1622         u64 other;
1623         u32 parent_nritems;
1624         int end_slot;
1625         int i;
1626         int err = 0;
1627         int parent_level;
1628         int uptodate;
1629         u32 blocksize;
1630         int progress_passed = 0;
1631         struct btrfs_disk_key disk_key;
1632
1633         parent_level = btrfs_header_level(parent);
1634
1635         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1636         WARN_ON(trans->transid != root->fs_info->generation);
1637
1638         parent_nritems = btrfs_header_nritems(parent);
1639         blocksize = root->nodesize;
1640         end_slot = parent_nritems - 1;
1641
1642         if (parent_nritems <= 1)
1643                 return 0;
1644
1645         btrfs_set_lock_blocking(parent);
1646
1647         for (i = start_slot; i <= end_slot; i++) {
1648                 int close = 1;
1649
1650                 btrfs_node_key(parent, &disk_key, i);
1651                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1652                         continue;
1653
1654                 progress_passed = 1;
1655                 blocknr = btrfs_node_blockptr(parent, i);
1656                 gen = btrfs_node_ptr_generation(parent, i);
1657                 if (last_block == 0)
1658                         last_block = blocknr;
1659
1660                 if (i > 0) {
1661                         other = btrfs_node_blockptr(parent, i - 1);
1662                         close = close_blocks(blocknr, other, blocksize);
1663                 }
1664                 if (!close && i < end_slot) {
1665                         other = btrfs_node_blockptr(parent, i + 1);
1666                         close = close_blocks(blocknr, other, blocksize);
1667                 }
1668                 if (close) {
1669                         last_block = blocknr;
1670                         continue;
1671                 }
1672
1673                 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1674                 if (cur)
1675                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1676                 else
1677                         uptodate = 0;
1678                 if (!cur || !uptodate) {
1679                         if (!cur) {
1680                                 cur = read_tree_block(root, blocknr, gen);
1681                                 if (IS_ERR(cur)) {
1682                                         return PTR_ERR(cur);
1683                                 } else if (!extent_buffer_uptodate(cur)) {
1684                                         free_extent_buffer(cur);
1685                                         return -EIO;
1686                                 }
1687                         } else if (!uptodate) {
1688                                 err = btrfs_read_buffer(cur, gen);
1689                                 if (err) {
1690                                         free_extent_buffer(cur);
1691                                         return err;
1692                                 }
1693                         }
1694                 }
1695                 if (search_start == 0)
1696                         search_start = last_block;
1697
1698                 btrfs_tree_lock(cur);
1699                 btrfs_set_lock_blocking(cur);
1700                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1701                                         &cur, search_start,
1702                                         min(16 * blocksize,
1703                                             (end_slot - i) * blocksize));
1704                 if (err) {
1705                         btrfs_tree_unlock(cur);
1706                         free_extent_buffer(cur);
1707                         break;
1708                 }
1709                 search_start = cur->start;
1710                 last_block = cur->start;
1711                 *last_ret = search_start;
1712                 btrfs_tree_unlock(cur);
1713                 free_extent_buffer(cur);
1714         }
1715         return err;
1716 }
1717
1718
1719 /*
1720  * search for key in the extent_buffer.  The items start at offset p,
1721  * and they are item_size apart.  There are 'max' items in p.
1722  *
1723  * the slot in the array is returned via slot, and it points to
1724  * the place where you would insert key if it is not found in
1725  * the array.
1726  *
1727  * slot may point to max if the key is bigger than all of the keys
1728  */
1729 static noinline int generic_bin_search(struct extent_buffer *eb,
1730                                        unsigned long p,
1731                                        int item_size, struct btrfs_key *key,
1732                                        int max, int *slot)
1733 {
1734         int low = 0;
1735         int high = max;
1736         int mid;
1737         int ret;
1738         struct btrfs_disk_key *tmp = NULL;
1739         struct btrfs_disk_key unaligned;
1740         unsigned long offset;
1741         char *kaddr = NULL;
1742         unsigned long map_start = 0;
1743         unsigned long map_len = 0;
1744         int err;
1745
1746         if (low > high) {
1747                 btrfs_err(eb->fs_info,
1748                  "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1749                           __func__, low, high, eb->start,
1750                           btrfs_header_owner(eb), btrfs_header_level(eb));
1751                 return -EINVAL;
1752         }
1753
1754         while (low < high) {
1755                 mid = (low + high) / 2;
1756                 offset = p + mid * item_size;
1757
1758                 if (!kaddr || offset < map_start ||
1759                     (offset + sizeof(struct btrfs_disk_key)) >
1760                     map_start + map_len) {
1761
1762                         err = map_private_extent_buffer(eb, offset,
1763                                                 sizeof(struct btrfs_disk_key),
1764                                                 &kaddr, &map_start, &map_len);
1765
1766                         if (!err) {
1767                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1768                                                         map_start);
1769                         } else if (err == 1) {
1770                                 read_extent_buffer(eb, &unaligned,
1771                                                    offset, sizeof(unaligned));
1772                                 tmp = &unaligned;
1773                         } else {
1774                                 return err;
1775                         }
1776
1777                 } else {
1778                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1779                                                         map_start);
1780                 }
1781                 ret = comp_keys(tmp, key);
1782
1783                 if (ret < 0)
1784                         low = mid + 1;
1785                 else if (ret > 0)
1786                         high = mid;
1787                 else {
1788                         *slot = mid;
1789                         return 0;
1790                 }
1791         }
1792         *slot = low;
1793         return 1;
1794 }
1795
1796 /*
1797  * simple bin_search frontend that does the right thing for
1798  * leaves vs nodes
1799  */
1800 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1801                       int level, int *slot)
1802 {
1803         if (level == 0)
1804                 return generic_bin_search(eb,
1805                                           offsetof(struct btrfs_leaf, items),
1806                                           sizeof(struct btrfs_item),
1807                                           key, btrfs_header_nritems(eb),
1808                                           slot);
1809         else
1810                 return generic_bin_search(eb,
1811                                           offsetof(struct btrfs_node, ptrs),
1812                                           sizeof(struct btrfs_key_ptr),
1813                                           key, btrfs_header_nritems(eb),
1814                                           slot);
1815 }
1816
1817 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1818                      int level, int *slot)
1819 {
1820         return bin_search(eb, key, level, slot);
1821 }
1822
1823 static void root_add_used(struct btrfs_root *root, u32 size)
1824 {
1825         spin_lock(&root->accounting_lock);
1826         btrfs_set_root_used(&root->root_item,
1827                             btrfs_root_used(&root->root_item) + size);
1828         spin_unlock(&root->accounting_lock);
1829 }
1830
1831 static void root_sub_used(struct btrfs_root *root, u32 size)
1832 {
1833         spin_lock(&root->accounting_lock);
1834         btrfs_set_root_used(&root->root_item,
1835                             btrfs_root_used(&root->root_item) - size);
1836         spin_unlock(&root->accounting_lock);
1837 }
1838
1839 /* given a node and slot number, this reads the blocks it points to.  The
1840  * extent buffer is returned with a reference taken (but unlocked).
1841  */
1842 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1843                                    struct extent_buffer *parent, int slot)
1844 {
1845         int level = btrfs_header_level(parent);
1846         struct extent_buffer *eb;
1847
1848         if (slot < 0 || slot >= btrfs_header_nritems(parent))
1849                 return ERR_PTR(-ENOENT);
1850
1851         BUG_ON(level == 0);
1852
1853         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1854                              btrfs_node_ptr_generation(parent, slot));
1855         if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1856                 free_extent_buffer(eb);
1857                 eb = ERR_PTR(-EIO);
1858         }
1859
1860         return eb;
1861 }
1862
1863 /*
1864  * node level balancing, used to make sure nodes are in proper order for
1865  * item deletion.  We balance from the top down, so we have to make sure
1866  * that a deletion won't leave an node completely empty later on.
1867  */
1868 static noinline int balance_level(struct btrfs_trans_handle *trans,
1869                          struct btrfs_root *root,
1870                          struct btrfs_path *path, int level)
1871 {
1872         struct extent_buffer *right = NULL;
1873         struct extent_buffer *mid;
1874         struct extent_buffer *left = NULL;
1875         struct extent_buffer *parent = NULL;
1876         int ret = 0;
1877         int wret;
1878         int pslot;
1879         int orig_slot = path->slots[level];
1880         u64 orig_ptr;
1881
1882         if (level == 0)
1883                 return 0;
1884
1885         mid = path->nodes[level];
1886
1887         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1888                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1889         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1890
1891         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1892
1893         if (level < BTRFS_MAX_LEVEL - 1) {
1894                 parent = path->nodes[level + 1];
1895                 pslot = path->slots[level + 1];
1896         }
1897
1898         /*
1899          * deal with the case where there is only one pointer in the root
1900          * by promoting the node below to a root
1901          */
1902         if (!parent) {
1903                 struct extent_buffer *child;
1904
1905                 if (btrfs_header_nritems(mid) != 1)
1906                         return 0;
1907
1908                 /* promote the child to a root */
1909                 child = read_node_slot(root, mid, 0);
1910                 if (IS_ERR(child)) {
1911                         ret = PTR_ERR(child);
1912                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1913                         goto enospc;
1914                 }
1915
1916                 btrfs_tree_lock(child);
1917                 btrfs_set_lock_blocking(child);
1918                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1919                 if (ret) {
1920                         btrfs_tree_unlock(child);
1921                         free_extent_buffer(child);
1922                         goto enospc;
1923                 }
1924
1925                 tree_mod_log_set_root_pointer(root, child, 1);
1926                 rcu_assign_pointer(root->node, child);
1927
1928                 add_root_to_dirty_list(root);
1929                 btrfs_tree_unlock(child);
1930
1931                 path->locks[level] = 0;
1932                 path->nodes[level] = NULL;
1933                 clean_tree_block(trans, root->fs_info, mid);
1934                 btrfs_tree_unlock(mid);
1935                 /* once for the path */
1936                 free_extent_buffer(mid);
1937
1938                 root_sub_used(root, mid->len);
1939                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1940                 /* once for the root ptr */
1941                 free_extent_buffer_stale(mid);
1942                 return 0;
1943         }
1944         if (btrfs_header_nritems(mid) >
1945             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1946                 return 0;
1947
1948         left = read_node_slot(root, parent, pslot - 1);
1949         if (IS_ERR(left))
1950                 left = NULL;
1951
1952         if (left) {
1953                 btrfs_tree_lock(left);
1954                 btrfs_set_lock_blocking(left);
1955                 wret = btrfs_cow_block(trans, root, left,
1956                                        parent, pslot - 1, &left);
1957                 if (wret) {
1958                         ret = wret;
1959                         goto enospc;
1960                 }
1961         }
1962
1963         right = read_node_slot(root, parent, pslot + 1);
1964         if (IS_ERR(right))
1965                 right = NULL;
1966
1967         if (right) {
1968                 btrfs_tree_lock(right);
1969                 btrfs_set_lock_blocking(right);
1970                 wret = btrfs_cow_block(trans, root, right,
1971                                        parent, pslot + 1, &right);
1972                 if (wret) {
1973                         ret = wret;
1974                         goto enospc;
1975                 }
1976         }
1977
1978         /* first, try to make some room in the middle buffer */
1979         if (left) {
1980                 orig_slot += btrfs_header_nritems(left);
1981                 wret = push_node_left(trans, root, left, mid, 1);
1982                 if (wret < 0)
1983                         ret = wret;
1984         }
1985
1986         /*
1987          * then try to empty the right most buffer into the middle
1988          */
1989         if (right) {
1990                 wret = push_node_left(trans, root, mid, right, 1);
1991                 if (wret < 0 && wret != -ENOSPC)
1992                         ret = wret;
1993                 if (btrfs_header_nritems(right) == 0) {
1994                         clean_tree_block(trans, root->fs_info, right);
1995                         btrfs_tree_unlock(right);
1996                         del_ptr(root, path, level + 1, pslot + 1);
1997                         root_sub_used(root, right->len);
1998                         btrfs_free_tree_block(trans, root, right, 0, 1);
1999                         free_extent_buffer_stale(right);
2000                         right = NULL;
2001                 } else {
2002                         struct btrfs_disk_key right_key;
2003                         btrfs_node_key(right, &right_key, 0);
2004                         tree_mod_log_set_node_key(root->fs_info, parent,
2005                                                   pslot + 1, 0);
2006                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2007                         btrfs_mark_buffer_dirty(parent);
2008                 }
2009         }
2010         if (btrfs_header_nritems(mid) == 1) {
2011                 /*
2012                  * we're not allowed to leave a node with one item in the
2013                  * tree during a delete.  A deletion from lower in the tree
2014                  * could try to delete the only pointer in this node.
2015                  * So, pull some keys from the left.
2016                  * There has to be a left pointer at this point because
2017                  * otherwise we would have pulled some pointers from the
2018                  * right
2019                  */
2020                 if (!left) {
2021                         ret = -EROFS;
2022                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
2023                         goto enospc;
2024                 }
2025                 wret = balance_node_right(trans, root, mid, left);
2026                 if (wret < 0) {
2027                         ret = wret;
2028                         goto enospc;
2029                 }
2030                 if (wret == 1) {
2031                         wret = push_node_left(trans, root, left, mid, 1);
2032                         if (wret < 0)
2033                                 ret = wret;
2034                 }
2035                 BUG_ON(wret == 1);
2036         }
2037         if (btrfs_header_nritems(mid) == 0) {
2038                 clean_tree_block(trans, root->fs_info, mid);
2039                 btrfs_tree_unlock(mid);
2040                 del_ptr(root, path, level + 1, pslot);
2041                 root_sub_used(root, mid->len);
2042                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2043                 free_extent_buffer_stale(mid);
2044                 mid = NULL;
2045         } else {
2046                 /* update the parent key to reflect our changes */
2047                 struct btrfs_disk_key mid_key;
2048                 btrfs_node_key(mid, &mid_key, 0);
2049                 tree_mod_log_set_node_key(root->fs_info, parent,
2050                                           pslot, 0);
2051                 btrfs_set_node_key(parent, &mid_key, pslot);
2052                 btrfs_mark_buffer_dirty(parent);
2053         }
2054
2055         /* update the path */
2056         if (left) {
2057                 if (btrfs_header_nritems(left) > orig_slot) {
2058                         extent_buffer_get(left);
2059                         /* left was locked after cow */
2060                         path->nodes[level] = left;
2061                         path->slots[level + 1] -= 1;
2062                         path->slots[level] = orig_slot;
2063                         if (mid) {
2064                                 btrfs_tree_unlock(mid);
2065                                 free_extent_buffer(mid);
2066                         }
2067                 } else {
2068                         orig_slot -= btrfs_header_nritems(left);
2069                         path->slots[level] = orig_slot;
2070                 }
2071         }
2072         /* double check we haven't messed things up */
2073         if (orig_ptr !=
2074             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2075                 BUG();
2076 enospc:
2077         if (right) {
2078                 btrfs_tree_unlock(right);
2079                 free_extent_buffer(right);
2080         }
2081         if (left) {
2082                 if (path->nodes[level] != left)
2083                         btrfs_tree_unlock(left);
2084                 free_extent_buffer(left);
2085         }
2086         return ret;
2087 }
2088
2089 /* Node balancing for insertion.  Here we only split or push nodes around
2090  * when they are completely full.  This is also done top down, so we
2091  * have to be pessimistic.
2092  */
2093 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2094                                           struct btrfs_root *root,
2095                                           struct btrfs_path *path, int level)
2096 {
2097         struct extent_buffer *right = NULL;
2098         struct extent_buffer *mid;
2099         struct extent_buffer *left = NULL;
2100         struct extent_buffer *parent = NULL;
2101         int ret = 0;
2102         int wret;
2103         int pslot;
2104         int orig_slot = path->slots[level];
2105
2106         if (level == 0)
2107                 return 1;
2108
2109         mid = path->nodes[level];
2110         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2111
2112         if (level < BTRFS_MAX_LEVEL - 1) {
2113                 parent = path->nodes[level + 1];
2114                 pslot = path->slots[level + 1];
2115         }
2116
2117         if (!parent)
2118                 return 1;
2119
2120         left = read_node_slot(root, parent, pslot - 1);
2121         if (IS_ERR(left))
2122                 left = NULL;
2123
2124         /* first, try to make some room in the middle buffer */
2125         if (left) {
2126                 u32 left_nr;
2127
2128                 btrfs_tree_lock(left);
2129                 btrfs_set_lock_blocking(left);
2130
2131                 left_nr = btrfs_header_nritems(left);
2132                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2133                         wret = 1;
2134                 } else {
2135                         ret = btrfs_cow_block(trans, root, left, parent,
2136                                               pslot - 1, &left);
2137                         if (ret)
2138                                 wret = 1;
2139                         else {
2140                                 wret = push_node_left(trans, root,
2141                                                       left, mid, 0);
2142                         }
2143                 }
2144                 if (wret < 0)
2145                         ret = wret;
2146                 if (wret == 0) {
2147                         struct btrfs_disk_key disk_key;
2148                         orig_slot += left_nr;
2149                         btrfs_node_key(mid, &disk_key, 0);
2150                         tree_mod_log_set_node_key(root->fs_info, parent,
2151                                                   pslot, 0);
2152                         btrfs_set_node_key(parent, &disk_key, pslot);
2153                         btrfs_mark_buffer_dirty(parent);
2154                         if (btrfs_header_nritems(left) > orig_slot) {
2155                                 path->nodes[level] = left;
2156                                 path->slots[level + 1] -= 1;
2157                                 path->slots[level] = orig_slot;
2158                                 btrfs_tree_unlock(mid);
2159                                 free_extent_buffer(mid);
2160                         } else {
2161                                 orig_slot -=
2162                                         btrfs_header_nritems(left);
2163                                 path->slots[level] = orig_slot;
2164                                 btrfs_tree_unlock(left);
2165                                 free_extent_buffer(left);
2166                         }
2167                         return 0;
2168                 }
2169                 btrfs_tree_unlock(left);
2170                 free_extent_buffer(left);
2171         }
2172         right = read_node_slot(root, parent, pslot + 1);
2173         if (IS_ERR(right))
2174                 right = NULL;
2175
2176         /*
2177          * then try to empty the right most buffer into the middle
2178          */
2179         if (right) {
2180                 u32 right_nr;
2181
2182                 btrfs_tree_lock(right);
2183                 btrfs_set_lock_blocking(right);
2184
2185                 right_nr = btrfs_header_nritems(right);
2186                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2187                         wret = 1;
2188                 } else {
2189                         ret = btrfs_cow_block(trans, root, right,
2190                                               parent, pslot + 1,
2191                                               &right);
2192                         if (ret)
2193                                 wret = 1;
2194                         else {
2195                                 wret = balance_node_right(trans, root,
2196                                                           right, mid);
2197                         }
2198                 }
2199                 if (wret < 0)
2200                         ret = wret;
2201                 if (wret == 0) {
2202                         struct btrfs_disk_key disk_key;
2203
2204                         btrfs_node_key(right, &disk_key, 0);
2205                         tree_mod_log_set_node_key(root->fs_info, parent,
2206                                                   pslot + 1, 0);
2207                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2208                         btrfs_mark_buffer_dirty(parent);
2209
2210                         if (btrfs_header_nritems(mid) <= orig_slot) {
2211                                 path->nodes[level] = right;
2212                                 path->slots[level + 1] += 1;
2213                                 path->slots[level] = orig_slot -
2214                                         btrfs_header_nritems(mid);
2215                                 btrfs_tree_unlock(mid);
2216                                 free_extent_buffer(mid);
2217                         } else {
2218                                 btrfs_tree_unlock(right);
2219                                 free_extent_buffer(right);
2220                         }
2221                         return 0;
2222                 }
2223                 btrfs_tree_unlock(right);
2224                 free_extent_buffer(right);
2225         }
2226         return 1;
2227 }
2228
2229 /*
2230  * readahead one full node of leaves, finding things that are close
2231  * to the block in 'slot', and triggering ra on them.
2232  */
2233 static void reada_for_search(struct btrfs_root *root,
2234                              struct btrfs_path *path,
2235                              int level, int slot, u64 objectid)
2236 {
2237         struct extent_buffer *node;
2238         struct btrfs_disk_key disk_key;
2239         u32 nritems;
2240         u64 search;
2241         u64 target;
2242         u64 nread = 0;
2243         struct extent_buffer *eb;
2244         u32 nr;
2245         u32 blocksize;
2246         u32 nscan = 0;
2247
2248         if (level != 1)
2249                 return;
2250
2251         if (!path->nodes[level])
2252                 return;
2253
2254         node = path->nodes[level];
2255
2256         search = btrfs_node_blockptr(node, slot);
2257         blocksize = root->nodesize;
2258         eb = btrfs_find_tree_block(root->fs_info, search);
2259         if (eb) {
2260                 free_extent_buffer(eb);
2261                 return;
2262         }
2263
2264         target = search;
2265
2266         nritems = btrfs_header_nritems(node);
2267         nr = slot;
2268
2269         while (1) {
2270                 if (path->reada == READA_BACK) {
2271                         if (nr == 0)
2272                                 break;
2273                         nr--;
2274                 } else if (path->reada == READA_FORWARD) {
2275                         nr++;
2276                         if (nr >= nritems)
2277                                 break;
2278                 }
2279                 if (path->reada == READA_BACK && objectid) {
2280                         btrfs_node_key(node, &disk_key, nr);
2281                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2282                                 break;
2283                 }
2284                 search = btrfs_node_blockptr(node, nr);
2285                 if ((search <= target && target - search <= 65536) ||
2286                     (search > target && search - target <= 65536)) {
2287                         readahead_tree_block(root, search);
2288                         nread += blocksize;
2289                 }
2290                 nscan++;
2291                 if ((nread > 65536 || nscan > 32))
2292                         break;
2293         }
2294 }
2295
2296 static noinline void reada_for_balance(struct btrfs_root *root,
2297                                        struct btrfs_path *path, int level)
2298 {
2299         int slot;
2300         int nritems;
2301         struct extent_buffer *parent;
2302         struct extent_buffer *eb;
2303         u64 gen;
2304         u64 block1 = 0;
2305         u64 block2 = 0;
2306
2307         parent = path->nodes[level + 1];
2308         if (!parent)
2309                 return;
2310
2311         nritems = btrfs_header_nritems(parent);
2312         slot = path->slots[level + 1];
2313
2314         if (slot > 0) {
2315                 block1 = btrfs_node_blockptr(parent, slot - 1);
2316                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2317                 eb = btrfs_find_tree_block(root->fs_info, block1);
2318                 /*
2319                  * if we get -eagain from btrfs_buffer_uptodate, we
2320                  * don't want to return eagain here.  That will loop
2321                  * forever
2322                  */
2323                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2324                         block1 = 0;
2325                 free_extent_buffer(eb);
2326         }
2327         if (slot + 1 < nritems) {
2328                 block2 = btrfs_node_blockptr(parent, slot + 1);
2329                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2330                 eb = btrfs_find_tree_block(root->fs_info, block2);
2331                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2332                         block2 = 0;
2333                 free_extent_buffer(eb);
2334         }
2335
2336         if (block1)
2337                 readahead_tree_block(root, block1);
2338         if (block2)
2339                 readahead_tree_block(root, block2);
2340 }
2341
2342
2343 /*
2344  * when we walk down the tree, it is usually safe to unlock the higher layers
2345  * in the tree.  The exceptions are when our path goes through slot 0, because
2346  * operations on the tree might require changing key pointers higher up in the
2347  * tree.
2348  *
2349  * callers might also have set path->keep_locks, which tells this code to keep
2350  * the lock if the path points to the last slot in the block.  This is part of
2351  * walking through the tree, and selecting the next slot in the higher block.
2352  *
2353  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2354  * if lowest_unlock is 1, level 0 won't be unlocked
2355  */
2356 static noinline void unlock_up(struct btrfs_path *path, int level,
2357                                int lowest_unlock, int min_write_lock_level,
2358                                int *write_lock_level)
2359 {
2360         int i;
2361         int skip_level = level;
2362         int no_skips = 0;
2363         struct extent_buffer *t;
2364
2365         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2366                 if (!path->nodes[i])
2367                         break;
2368                 if (!path->locks[i])
2369                         break;
2370                 if (!no_skips && path->slots[i] == 0) {
2371                         skip_level = i + 1;
2372                         continue;
2373                 }
2374                 if (!no_skips && path->keep_locks) {
2375                         u32 nritems;
2376                         t = path->nodes[i];
2377                         nritems = btrfs_header_nritems(t);
2378                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2379                                 skip_level = i + 1;
2380                                 continue;
2381                         }
2382                 }
2383                 if (skip_level < i && i >= lowest_unlock)
2384                         no_skips = 1;
2385
2386                 t = path->nodes[i];
2387                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2388                         btrfs_tree_unlock_rw(t, path->locks[i]);
2389                         path->locks[i] = 0;
2390                         if (write_lock_level &&
2391                             i > min_write_lock_level &&
2392                             i <= *write_lock_level) {
2393                                 *write_lock_level = i - 1;
2394                         }
2395                 }
2396         }
2397 }
2398
2399 /*
2400  * This releases any locks held in the path starting at level and
2401  * going all the way up to the root.
2402  *
2403  * btrfs_search_slot will keep the lock held on higher nodes in a few
2404  * corner cases, such as COW of the block at slot zero in the node.  This
2405  * ignores those rules, and it should only be called when there are no
2406  * more updates to be done higher up in the tree.
2407  */
2408 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2409 {
2410         int i;
2411
2412         if (path->keep_locks)
2413                 return;
2414
2415         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2416                 if (!path->nodes[i])
2417                         continue;
2418                 if (!path->locks[i])
2419                         continue;
2420                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2421                 path->locks[i] = 0;
2422         }
2423 }
2424
2425 /*
2426  * helper function for btrfs_search_slot.  The goal is to find a block
2427  * in cache without setting the path to blocking.  If we find the block
2428  * we return zero and the path is unchanged.
2429  *
2430  * If we can't find the block, we set the path blocking and do some
2431  * reada.  -EAGAIN is returned and the search must be repeated.
2432  */
2433 static int
2434 read_block_for_search(struct btrfs_trans_handle *trans,
2435                        struct btrfs_root *root, struct btrfs_path *p,
2436                        struct extent_buffer **eb_ret, int level, int slot,
2437                        struct btrfs_key *key, u64 time_seq)
2438 {
2439         u64 blocknr;
2440         u64 gen;
2441         struct extent_buffer *b = *eb_ret;
2442         struct extent_buffer *tmp;
2443         int ret;
2444
2445         blocknr = btrfs_node_blockptr(b, slot);
2446         gen = btrfs_node_ptr_generation(b, slot);
2447
2448         tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2449         if (tmp) {
2450                 /* first we do an atomic uptodate check */
2451                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2452                         *eb_ret = tmp;
2453                         return 0;
2454                 }
2455
2456                 /* the pages were up to date, but we failed
2457                  * the generation number check.  Do a full
2458                  * read for the generation number that is correct.
2459                  * We must do this without dropping locks so
2460                  * we can trust our generation number
2461                  */
2462                 btrfs_set_path_blocking(p);
2463
2464                 /* now we're allowed to do a blocking uptodate check */
2465                 ret = btrfs_read_buffer(tmp, gen);
2466                 if (!ret) {
2467                         *eb_ret = tmp;
2468                         return 0;
2469                 }
2470                 free_extent_buffer(tmp);
2471                 btrfs_release_path(p);
2472                 return -EIO;
2473         }
2474
2475         /*
2476          * reduce lock contention at high levels
2477          * of the btree by dropping locks before
2478          * we read.  Don't release the lock on the current
2479          * level because we need to walk this node to figure
2480          * out which blocks to read.
2481          */
2482         btrfs_unlock_up_safe(p, level + 1);
2483         btrfs_set_path_blocking(p);
2484
2485         free_extent_buffer(tmp);
2486         if (p->reada != READA_NONE)
2487                 reada_for_search(root, p, level, slot, key->objectid);
2488
2489         btrfs_release_path(p);
2490
2491         ret = -EAGAIN;
2492         tmp = read_tree_block(root, blocknr, 0);
2493         if (!IS_ERR(tmp)) {
2494                 /*
2495                  * If the read above didn't mark this buffer up to date,
2496                  * it will never end up being up to date.  Set ret to EIO now
2497                  * and give up so that our caller doesn't loop forever
2498                  * on our EAGAINs.
2499                  */
2500                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2501                         ret = -EIO;
2502                 free_extent_buffer(tmp);
2503         } else {
2504                 ret = PTR_ERR(tmp);
2505         }
2506         return ret;
2507 }
2508
2509 /*
2510  * helper function for btrfs_search_slot.  This does all of the checks
2511  * for node-level blocks and does any balancing required based on
2512  * the ins_len.
2513  *
2514  * If no extra work was required, zero is returned.  If we had to
2515  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2516  * start over
2517  */
2518 static int
2519 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2520                        struct btrfs_root *root, struct btrfs_path *p,
2521                        struct extent_buffer *b, int level, int ins_len,
2522                        int *write_lock_level)
2523 {
2524         int ret;
2525         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2526             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2527                 int sret;
2528
2529                 if (*write_lock_level < level + 1) {
2530                         *write_lock_level = level + 1;
2531                         btrfs_release_path(p);
2532                         goto again;
2533                 }
2534
2535                 btrfs_set_path_blocking(p);
2536                 reada_for_balance(root, p, level);
2537                 sret = split_node(trans, root, p, level);
2538                 btrfs_clear_path_blocking(p, NULL, 0);
2539
2540                 BUG_ON(sret > 0);
2541                 if (sret) {
2542                         ret = sret;
2543                         goto done;
2544                 }
2545                 b = p->nodes[level];
2546         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2547                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2548                 int sret;
2549
2550                 if (*write_lock_level < level + 1) {
2551                         *write_lock_level = level + 1;
2552                         btrfs_release_path(p);
2553                         goto again;
2554                 }
2555
2556                 btrfs_set_path_blocking(p);
2557                 reada_for_balance(root, p, level);
2558                 sret = balance_level(trans, root, p, level);
2559                 btrfs_clear_path_blocking(p, NULL, 0);
2560
2561                 if (sret) {
2562                         ret = sret;
2563                         goto done;
2564                 }
2565                 b = p->nodes[level];
2566                 if (!b) {
2567                         btrfs_release_path(p);
2568                         goto again;
2569                 }
2570                 BUG_ON(btrfs_header_nritems(b) == 1);
2571         }
2572         return 0;
2573
2574 again:
2575         ret = -EAGAIN;
2576 done:
2577         return ret;
2578 }
2579
2580 static void key_search_validate(struct extent_buffer *b,
2581                                 struct btrfs_key *key,
2582                                 int level)
2583 {
2584 #ifdef CONFIG_BTRFS_ASSERT
2585         struct btrfs_disk_key disk_key;
2586
2587         btrfs_cpu_key_to_disk(&disk_key, key);
2588
2589         if (level == 0)
2590                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2591                     offsetof(struct btrfs_leaf, items[0].key),
2592                     sizeof(disk_key)));
2593         else
2594                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2595                     offsetof(struct btrfs_node, ptrs[0].key),
2596                     sizeof(disk_key)));
2597 #endif
2598 }
2599
2600 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2601                       int level, int *prev_cmp, int *slot)
2602 {
2603         if (*prev_cmp != 0) {
2604                 *prev_cmp = bin_search(b, key, level, slot);
2605                 return *prev_cmp;
2606         }
2607
2608         key_search_validate(b, key, level);
2609         *slot = 0;
2610
2611         return 0;
2612 }
2613
2614 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2615                 u64 iobjectid, u64 ioff, u8 key_type,
2616                 struct btrfs_key *found_key)
2617 {
2618         int ret;
2619         struct btrfs_key key;
2620         struct extent_buffer *eb;
2621
2622         ASSERT(path);
2623         ASSERT(found_key);
2624
2625         key.type = key_type;
2626         key.objectid = iobjectid;
2627         key.offset = ioff;
2628
2629         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2630         if (ret < 0)
2631                 return ret;
2632
2633         eb = path->nodes[0];
2634         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2635                 ret = btrfs_next_leaf(fs_root, path);
2636                 if (ret)
2637                         return ret;
2638                 eb = path->nodes[0];
2639         }
2640
2641         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2642         if (found_key->type != key.type ||
2643                         found_key->objectid != key.objectid)
2644                 return 1;
2645
2646         return 0;
2647 }
2648
2649 /*
2650  * look for key in the tree.  path is filled in with nodes along the way
2651  * if key is found, we return zero and you can find the item in the leaf
2652  * level of the path (level 0)
2653  *
2654  * If the key isn't found, the path points to the slot where it should
2655  * be inserted, and 1 is returned.  If there are other errors during the
2656  * search a negative error number is returned.
2657  *
2658  * if ins_len > 0, nodes and leaves will be split as we walk down the
2659  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2660  * possible)
2661  */
2662 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2663                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2664                       ins_len, int cow)
2665 {
2666         struct extent_buffer *b;
2667         int slot;
2668         int ret;
2669         int err;
2670         int level;
2671         int lowest_unlock = 1;
2672         int root_lock;
2673         /* everything at write_lock_level or lower must be write locked */
2674         int write_lock_level = 0;
2675         u8 lowest_level = 0;
2676         int min_write_lock_level;
2677         int prev_cmp;
2678
2679         lowest_level = p->lowest_level;
2680         WARN_ON(lowest_level && ins_len > 0);
2681         WARN_ON(p->nodes[0] != NULL);
2682         BUG_ON(!cow && ins_len);
2683
2684         if (ins_len < 0) {
2685                 lowest_unlock = 2;
2686
2687                 /* when we are removing items, we might have to go up to level
2688                  * two as we update tree pointers  Make sure we keep write
2689                  * for those levels as well
2690                  */
2691                 write_lock_level = 2;
2692         } else if (ins_len > 0) {
2693                 /*
2694                  * for inserting items, make sure we have a write lock on
2695                  * level 1 so we can update keys
2696                  */
2697                 write_lock_level = 1;
2698         }
2699
2700         if (!cow)
2701                 write_lock_level = -1;
2702
2703         if (cow && (p->keep_locks || p->lowest_level))
2704                 write_lock_level = BTRFS_MAX_LEVEL;
2705
2706         min_write_lock_level = write_lock_level;
2707
2708 again:
2709         prev_cmp = -1;
2710         /*
2711          * we try very hard to do read locks on the root
2712          */
2713         root_lock = BTRFS_READ_LOCK;
2714         level = 0;
2715         if (p->search_commit_root) {
2716                 /*
2717                  * the commit roots are read only
2718                  * so we always do read locks
2719                  */
2720                 if (p->need_commit_sem)
2721                         down_read(&root->fs_info->commit_root_sem);
2722                 b = root->commit_root;
2723                 extent_buffer_get(b);
2724                 level = btrfs_header_level(b);
2725                 if (p->need_commit_sem)
2726                         up_read(&root->fs_info->commit_root_sem);
2727                 if (!p->skip_locking)
2728                         btrfs_tree_read_lock(b);
2729         } else {
2730                 if (p->skip_locking) {
2731                         b = btrfs_root_node(root);
2732                         level = btrfs_header_level(b);
2733                 } else {
2734                         /* we don't know the level of the root node
2735                          * until we actually have it read locked
2736                          */
2737                         b = btrfs_read_lock_root_node(root);
2738                         level = btrfs_header_level(b);
2739                         if (level <= write_lock_level) {
2740                                 /* whoops, must trade for write lock */
2741                                 btrfs_tree_read_unlock(b);
2742                                 free_extent_buffer(b);
2743                                 b = btrfs_lock_root_node(root);
2744                                 root_lock = BTRFS_WRITE_LOCK;
2745
2746                                 /* the level might have changed, check again */
2747                                 level = btrfs_header_level(b);
2748                         }
2749                 }
2750         }
2751         p->nodes[level] = b;
2752         if (!p->skip_locking)
2753                 p->locks[level] = root_lock;
2754
2755         while (b) {
2756                 level = btrfs_header_level(b);
2757
2758                 /*
2759                  * setup the path here so we can release it under lock
2760                  * contention with the cow code
2761                  */
2762                 if (cow) {
2763                         /*
2764                          * if we don't really need to cow this block
2765                          * then we don't want to set the path blocking,
2766                          * so we test it here
2767                          */
2768                         if (!should_cow_block(trans, root, b)) {
2769                                 trans->dirty = true;
2770                                 goto cow_done;
2771                         }
2772
2773                         /*
2774                          * must have write locks on this node and the
2775                          * parent
2776                          */
2777                         if (level > write_lock_level ||
2778                             (level + 1 > write_lock_level &&
2779                             level + 1 < BTRFS_MAX_LEVEL &&
2780                             p->nodes[level + 1])) {
2781                                 write_lock_level = level + 1;
2782                                 btrfs_release_path(p);
2783                                 goto again;
2784                         }
2785
2786                         btrfs_set_path_blocking(p);
2787                         err = btrfs_cow_block(trans, root, b,
2788                                               p->nodes[level + 1],
2789                                               p->slots[level + 1], &b);
2790                         if (err) {
2791                                 ret = err;
2792                                 goto done;
2793                         }
2794                 }
2795 cow_done:
2796                 p->nodes[level] = b;
2797                 btrfs_clear_path_blocking(p, NULL, 0);
2798
2799                 /*
2800                  * we have a lock on b and as long as we aren't changing
2801                  * the tree, there is no way to for the items in b to change.
2802                  * It is safe to drop the lock on our parent before we
2803                  * go through the expensive btree search on b.
2804                  *
2805                  * If we're inserting or deleting (ins_len != 0), then we might
2806                  * be changing slot zero, which may require changing the parent.
2807                  * So, we can't drop the lock until after we know which slot
2808                  * we're operating on.
2809                  */
2810                 if (!ins_len && !p->keep_locks) {
2811                         int u = level + 1;
2812
2813                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2814                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2815                                 p->locks[u] = 0;
2816                         }
2817                 }
2818
2819                 ret = key_search(b, key, level, &prev_cmp, &slot);
2820                 if (ret < 0)
2821                         goto done;
2822
2823                 if (level != 0) {
2824                         int dec = 0;
2825                         if (ret && slot > 0) {
2826                                 dec = 1;
2827                                 slot -= 1;
2828                         }
2829                         p->slots[level] = slot;
2830                         err = setup_nodes_for_search(trans, root, p, b, level,
2831                                              ins_len, &write_lock_level);
2832                         if (err == -EAGAIN)
2833                                 goto again;
2834                         if (err) {
2835                                 ret = err;
2836                                 goto done;
2837                         }
2838                         b = p->nodes[level];
2839                         slot = p->slots[level];
2840
2841                         /*
2842                          * slot 0 is special, if we change the key
2843                          * we have to update the parent pointer
2844                          * which means we must have a write lock
2845                          * on the parent
2846                          */
2847                         if (slot == 0 && ins_len &&
2848                             write_lock_level < level + 1) {
2849                                 write_lock_level = level + 1;
2850                                 btrfs_release_path(p);
2851                                 goto again;
2852                         }
2853
2854                         unlock_up(p, level, lowest_unlock,
2855                                   min_write_lock_level, &write_lock_level);
2856
2857                         if (level == lowest_level) {
2858                                 if (dec)
2859                                         p->slots[level]++;
2860                                 goto done;
2861                         }
2862
2863                         err = read_block_for_search(trans, root, p,
2864                                                     &b, level, slot, key, 0);
2865                         if (err == -EAGAIN)
2866                                 goto again;
2867                         if (err) {
2868                                 ret = err;
2869                                 goto done;
2870                         }
2871
2872                         if (!p->skip_locking) {
2873                                 level = btrfs_header_level(b);
2874                                 if (level <= write_lock_level) {
2875                                         err = btrfs_try_tree_write_lock(b);
2876                                         if (!err) {
2877                                                 btrfs_set_path_blocking(p);
2878                                                 btrfs_tree_lock(b);
2879                                                 btrfs_clear_path_blocking(p, b,
2880                                                                   BTRFS_WRITE_LOCK);
2881                                         }
2882                                         p->locks[level] = BTRFS_WRITE_LOCK;
2883                                 } else {
2884                                         err = btrfs_tree_read_lock_atomic(b);
2885                                         if (!err) {
2886                                                 btrfs_set_path_blocking(p);
2887                                                 btrfs_tree_read_lock(b);
2888                                                 btrfs_clear_path_blocking(p, b,
2889                                                                   BTRFS_READ_LOCK);
2890                                         }
2891                                         p->locks[level] = BTRFS_READ_LOCK;
2892                                 }
2893                                 p->nodes[level] = b;
2894                         }
2895                 } else {
2896                         p->slots[level] = slot;
2897                         if (ins_len > 0 &&
2898                             btrfs_leaf_free_space(root, b) < ins_len) {
2899                                 if (write_lock_level < 1) {
2900                                         write_lock_level = 1;
2901                                         btrfs_release_path(p);
2902                                         goto again;
2903                                 }
2904
2905                                 btrfs_set_path_blocking(p);
2906                                 err = split_leaf(trans, root, key,
2907                                                  p, ins_len, ret == 0);
2908                                 btrfs_clear_path_blocking(p, NULL, 0);
2909
2910                                 BUG_ON(err > 0);
2911                                 if (err) {
2912                                         ret = err;
2913                                         goto done;
2914                                 }
2915                         }
2916                         if (!p->search_for_split)
2917                                 unlock_up(p, level, lowest_unlock,
2918                                           min_write_lock_level, &write_lock_level);
2919                         goto done;
2920                 }
2921         }
2922         ret = 1;
2923 done:
2924         /*
2925          * we don't really know what they plan on doing with the path
2926          * from here on, so for now just mark it as blocking
2927          */
2928         if (!p->leave_spinning)
2929                 btrfs_set_path_blocking(p);
2930         if (ret < 0 && !p->skip_release_on_error)
2931                 btrfs_release_path(p);
2932         return ret;
2933 }
2934
2935 /*
2936  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2937  * current state of the tree together with the operations recorded in the tree
2938  * modification log to search for the key in a previous version of this tree, as
2939  * denoted by the time_seq parameter.
2940  *
2941  * Naturally, there is no support for insert, delete or cow operations.
2942  *
2943  * The resulting path and return value will be set up as if we called
2944  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2945  */
2946 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2947                           struct btrfs_path *p, u64 time_seq)
2948 {
2949         struct extent_buffer *b;
2950         int slot;
2951         int ret;
2952         int err;
2953         int level;
2954         int lowest_unlock = 1;
2955         u8 lowest_level = 0;
2956         int prev_cmp = -1;
2957
2958         lowest_level = p->lowest_level;
2959         WARN_ON(p->nodes[0] != NULL);
2960
2961         if (p->search_commit_root) {
2962                 BUG_ON(time_seq);
2963                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2964         }
2965
2966 again:
2967         b = get_old_root(root, time_seq);
2968         level = btrfs_header_level(b);
2969         p->locks[level] = BTRFS_READ_LOCK;
2970
2971         while (b) {
2972                 level = btrfs_header_level(b);
2973                 p->nodes[level] = b;
2974                 btrfs_clear_path_blocking(p, NULL, 0);
2975
2976                 /*
2977                  * we have a lock on b and as long as we aren't changing
2978                  * the tree, there is no way to for the items in b to change.
2979                  * It is safe to drop the lock on our parent before we
2980                  * go through the expensive btree search on b.
2981                  */
2982                 btrfs_unlock_up_safe(p, level + 1);
2983
2984                 /*
2985                  * Since we can unwind ebs we want to do a real search every
2986                  * time.
2987                  */
2988                 prev_cmp = -1;
2989                 ret = key_search(b, key, level, &prev_cmp, &slot);
2990
2991                 if (level != 0) {
2992                         int dec = 0;
2993                         if (ret && slot > 0) {
2994                                 dec = 1;
2995                                 slot -= 1;
2996                         }
2997                         p->slots[level] = slot;
2998                         unlock_up(p, level, lowest_unlock, 0, NULL);
2999
3000                         if (level == lowest_level) {
3001                                 if (dec)
3002                                         p->slots[level]++;
3003                                 goto done;
3004                         }
3005
3006                         err = read_block_for_search(NULL, root, p, &b, level,
3007                                                     slot, key, time_seq);
3008                         if (err == -EAGAIN)
3009                                 goto again;
3010                         if (err) {
3011                                 ret = err;
3012                                 goto done;
3013                         }
3014
3015                         level = btrfs_header_level(b);
3016                         err = btrfs_tree_read_lock_atomic(b);
3017                         if (!err) {
3018                                 btrfs_set_path_blocking(p);
3019                                 btrfs_tree_read_lock(b);
3020                                 btrfs_clear_path_blocking(p, b,
3021                                                           BTRFS_READ_LOCK);
3022                         }
3023                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3024                         if (!b) {
3025                                 ret = -ENOMEM;
3026                                 goto done;
3027                         }
3028                         p->locks[level] = BTRFS_READ_LOCK;
3029                         p->nodes[level] = b;
3030                 } else {
3031                         p->slots[level] = slot;
3032                         unlock_up(p, level, lowest_unlock, 0, NULL);
3033                         goto done;
3034                 }
3035         }
3036         ret = 1;
3037 done:
3038         if (!p->leave_spinning)
3039                 btrfs_set_path_blocking(p);
3040         if (ret < 0)
3041                 btrfs_release_path(p);
3042
3043         return ret;
3044 }
3045
3046 /*
3047  * helper to use instead of search slot if no exact match is needed but
3048  * instead the next or previous item should be returned.
3049  * When find_higher is true, the next higher item is returned, the next lower
3050  * otherwise.
3051  * When return_any and find_higher are both true, and no higher item is found,
3052  * return the next lower instead.
3053  * When return_any is true and find_higher is false, and no lower item is found,
3054  * return the next higher instead.
3055  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3056  * < 0 on error
3057  */
3058 int btrfs_search_slot_for_read(struct btrfs_root *root,
3059                                struct btrfs_key *key, struct btrfs_path *p,
3060                                int find_higher, int return_any)
3061 {
3062         int ret;
3063         struct extent_buffer *leaf;
3064
3065 again:
3066         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3067         if (ret <= 0)
3068                 return ret;
3069         /*
3070          * a return value of 1 means the path is at the position where the
3071          * item should be inserted. Normally this is the next bigger item,
3072          * but in case the previous item is the last in a leaf, path points
3073          * to the first free slot in the previous leaf, i.e. at an invalid
3074          * item.
3075          */
3076         leaf = p->nodes[0];
3077
3078         if (find_higher) {
3079                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3080                         ret = btrfs_next_leaf(root, p);
3081                         if (ret <= 0)
3082                                 return ret;
3083                         if (!return_any)
3084                                 return 1;
3085                         /*
3086                          * no higher item found, return the next
3087                          * lower instead
3088                          */
3089                         return_any = 0;
3090                         find_higher = 0;
3091                         btrfs_release_path(p);
3092                         goto again;
3093                 }
3094         } else {
3095                 if (p->slots[0] == 0) {
3096                         ret = btrfs_prev_leaf(root, p);
3097                         if (ret < 0)
3098                                 return ret;
3099                         if (!ret) {
3100                                 leaf = p->nodes[0];
3101                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3102                                         p->slots[0]--;
3103                                 return 0;
3104                         }
3105                         if (!return_any)
3106                                 return 1;
3107                         /*
3108                          * no lower item found, return the next
3109                          * higher instead
3110                          */
3111                         return_any = 0;
3112                         find_higher = 1;
3113                         btrfs_release_path(p);
3114                         goto again;
3115                 } else {
3116                         --p->slots[0];
3117                 }
3118         }
3119         return 0;
3120 }
3121
3122 /*
3123  * adjust the pointers going up the tree, starting at level
3124  * making sure the right key of each node is points to 'key'.
3125  * This is used after shifting pointers to the left, so it stops
3126  * fixing up pointers when a given leaf/node is not in slot 0 of the
3127  * higher levels
3128  *
3129  */
3130 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3131                            struct btrfs_path *path,
3132                            struct btrfs_disk_key *key, int level)
3133 {
3134         int i;
3135         struct extent_buffer *t;
3136
3137         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3138                 int tslot = path->slots[i];
3139                 if (!path->nodes[i])
3140                         break;
3141                 t = path->nodes[i];
3142                 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3143                 btrfs_set_node_key(t, key, tslot);
3144                 btrfs_mark_buffer_dirty(path->nodes[i]);
3145                 if (tslot != 0)
3146                         break;
3147         }
3148 }
3149
3150 /*
3151  * update item key.
3152  *
3153  * This function isn't completely safe. It's the caller's responsibility
3154  * that the new key won't break the order
3155  */
3156 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3157                              struct btrfs_path *path,
3158                              struct btrfs_key *new_key)
3159 {
3160         struct btrfs_disk_key disk_key;
3161         struct extent_buffer *eb;
3162         int slot;
3163
3164         eb = path->nodes[0];
3165         slot = path->slots[0];
3166         if (slot > 0) {
3167                 btrfs_item_key(eb, &disk_key, slot - 1);
3168                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3169         }
3170         if (slot < btrfs_header_nritems(eb) - 1) {
3171                 btrfs_item_key(eb, &disk_key, slot + 1);
3172                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3173         }
3174
3175         btrfs_cpu_key_to_disk(&disk_key, new_key);
3176         btrfs_set_item_key(eb, &disk_key, slot);
3177         btrfs_mark_buffer_dirty(eb);
3178         if (slot == 0)
3179                 fixup_low_keys(fs_info, path, &disk_key, 1);
3180 }
3181
3182 /*
3183  * try to push data from one node into the next node left in the
3184  * tree.
3185  *
3186  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3187  * error, and > 0 if there was no room in the left hand block.
3188  */
3189 static int push_node_left(struct btrfs_trans_handle *trans,
3190                           struct btrfs_root *root, struct extent_buffer *dst,
3191                           struct extent_buffer *src, int empty)
3192 {
3193         int push_items = 0;
3194         int src_nritems;
3195         int dst_nritems;
3196         int ret = 0;
3197
3198         src_nritems = btrfs_header_nritems(src);
3199         dst_nritems = btrfs_header_nritems(dst);
3200         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3201         WARN_ON(btrfs_header_generation(src) != trans->transid);
3202         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3203
3204         if (!empty && src_nritems <= 8)
3205                 return 1;
3206
3207         if (push_items <= 0)
3208                 return 1;
3209
3210         if (empty) {
3211                 push_items = min(src_nritems, push_items);
3212                 if (push_items < src_nritems) {
3213                         /* leave at least 8 pointers in the node if
3214                          * we aren't going to empty it
3215                          */
3216                         if (src_nritems - push_items < 8) {
3217                                 if (push_items <= 8)
3218                                         return 1;
3219                                 push_items -= 8;
3220                         }
3221                 }
3222         } else
3223                 push_items = min(src_nritems - 8, push_items);
3224
3225         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3226                                    push_items);
3227         if (ret) {
3228                 btrfs_abort_transaction(trans, ret);
3229                 return ret;
3230         }
3231         copy_extent_buffer(dst, src,
3232                            btrfs_node_key_ptr_offset(dst_nritems),
3233                            btrfs_node_key_ptr_offset(0),
3234                            push_items * sizeof(struct btrfs_key_ptr));
3235
3236         if (push_items < src_nritems) {
3237                 /*
3238                  * don't call tree_mod_log_eb_move here, key removal was already
3239                  * fully logged by tree_mod_log_eb_copy above.
3240                  */
3241                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3242                                       btrfs_node_key_ptr_offset(push_items),
3243                                       (src_nritems - push_items) *
3244                                       sizeof(struct btrfs_key_ptr));
3245         }
3246         btrfs_set_header_nritems(src, src_nritems - push_items);
3247         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3248         btrfs_mark_buffer_dirty(src);
3249         btrfs_mark_buffer_dirty(dst);
3250
3251         return ret;
3252 }
3253
3254 /*
3255  * try to push data from one node into the next node right in the
3256  * tree.
3257  *
3258  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3259  * error, and > 0 if there was no room in the right hand block.
3260  *
3261  * this will  only push up to 1/2 the contents of the left node over
3262  */
3263 static int balance_node_right(struct btrfs_trans_handle *trans,
3264                               struct btrfs_root *root,
3265                               struct extent_buffer *dst,
3266                               struct extent_buffer *src)
3267 {
3268         int push_items = 0;
3269         int max_push;
3270         int src_nritems;
3271         int dst_nritems;
3272         int ret = 0;
3273
3274         WARN_ON(btrfs_header_generation(src) != trans->transid);
3275         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3276
3277         src_nritems = btrfs_header_nritems(src);
3278         dst_nritems = btrfs_header_nritems(dst);
3279         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3280         if (push_items <= 0)
3281                 return 1;
3282
3283         if (src_nritems < 4)
3284                 return 1;
3285
3286         max_push = src_nritems / 2 + 1;
3287         /* don't try to empty the node */
3288         if (max_push >= src_nritems)
3289                 return 1;
3290
3291         if (max_push < push_items)
3292                 push_items = max_push;
3293
3294         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3295         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3296                                       btrfs_node_key_ptr_offset(0),
3297                                       (dst_nritems) *
3298                                       sizeof(struct btrfs_key_ptr));
3299
3300         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3301                                    src_nritems - push_items, push_items);
3302         if (ret) {
3303                 btrfs_abort_transaction(trans, ret);
3304                 return ret;
3305         }
3306         copy_extent_buffer(dst, src,
3307                            btrfs_node_key_ptr_offset(0),
3308                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3309                            push_items * sizeof(struct btrfs_key_ptr));
3310
3311         btrfs_set_header_nritems(src, src_nritems - push_items);
3312         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3313
3314         btrfs_mark_buffer_dirty(src);
3315         btrfs_mark_buffer_dirty(dst);
3316
3317         return ret;
3318 }
3319
3320 /*
3321  * helper function to insert a new root level in the tree.
3322  * A new node is allocated, and a single item is inserted to
3323  * point to the existing root
3324  *
3325  * returns zero on success or < 0 on failure.
3326  */
3327 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3328                            struct btrfs_root *root,
3329                            struct btrfs_path *path, int level)
3330 {
3331         u64 lower_gen;
3332         struct extent_buffer *lower;
3333         struct extent_buffer *c;
3334         struct extent_buffer *old;
3335         struct btrfs_disk_key lower_key;
3336
3337         BUG_ON(path->nodes[level]);
3338         BUG_ON(path->nodes[level-1] != root->node);
3339
3340         lower = path->nodes[level-1];
3341         if (level == 1)
3342                 btrfs_item_key(lower, &lower_key, 0);
3343         else
3344                 btrfs_node_key(lower, &lower_key, 0);
3345
3346         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3347                                    &lower_key, level, root->node->start, 0);
3348         if (IS_ERR(c))
3349                 return PTR_ERR(c);
3350
3351         root_add_used(root, root->nodesize);
3352
3353         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3354         btrfs_set_header_nritems(c, 1);
3355         btrfs_set_header_level(c, level);
3356         btrfs_set_header_bytenr(c, c->start);
3357         btrfs_set_header_generation(c, trans->transid);
3358         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3359         btrfs_set_header_owner(c, root->root_key.objectid);
3360
3361         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3362                             BTRFS_FSID_SIZE);
3363
3364         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3365                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3366
3367         btrfs_set_node_key(c, &lower_key, 0);
3368         btrfs_set_node_blockptr(c, 0, lower->start);
3369         lower_gen = btrfs_header_generation(lower);
3370         WARN_ON(lower_gen != trans->transid);
3371
3372         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3373
3374         btrfs_mark_buffer_dirty(c);
3375
3376         old = root->node;
3377         tree_mod_log_set_root_pointer(root, c, 0);
3378         rcu_assign_pointer(root->node, c);
3379
3380         /* the super has an extra ref to root->node */
3381         free_extent_buffer(old);
3382
3383         add_root_to_dirty_list(root);
3384         extent_buffer_get(c);
3385         path->nodes[level] = c;
3386         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3387         path->slots[level] = 0;
3388         return 0;
3389 }
3390
3391 /*
3392  * worker function to insert a single pointer in a node.
3393  * the node should have enough room for the pointer already
3394  *
3395  * slot and level indicate where you want the key to go, and
3396  * blocknr is the block the key points to.
3397  */
3398 static void insert_ptr(struct btrfs_trans_handle *trans,
3399                        struct btrfs_root *root, struct btrfs_path *path,
3400                        struct btrfs_disk_key *key, u64 bytenr,
3401                        int slot, int level)
3402 {
3403         struct extent_buffer *lower;
3404         int nritems;
3405         int ret;
3406
3407         BUG_ON(!path->nodes[level]);
3408         btrfs_assert_tree_locked(path->nodes[level]);
3409         lower = path->nodes[level];
3410         nritems = btrfs_header_nritems(lower);
3411         BUG_ON(slot > nritems);
3412         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3413         if (slot != nritems) {
3414                 if (level)
3415                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3416                                              slot, nritems - slot);
3417                 memmove_extent_buffer(lower,
3418                               btrfs_node_key_ptr_offset(slot + 1),
3419                               btrfs_node_key_ptr_offset(slot),
3420                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3421         }
3422         if (level) {
3423                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3424                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3425                 BUG_ON(ret < 0);
3426         }
3427         btrfs_set_node_key(lower, key, slot);
3428         btrfs_set_node_blockptr(lower, slot, bytenr);
3429         WARN_ON(trans->transid == 0);
3430         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3431         btrfs_set_header_nritems(lower, nritems + 1);
3432         btrfs_mark_buffer_dirty(lower);
3433 }
3434
3435 /*
3436  * split the node at the specified level in path in two.
3437  * The path is corrected to point to the appropriate node after the split
3438  *
3439  * Before splitting this tries to make some room in the node by pushing
3440  * left and right, if either one works, it returns right away.
3441  *
3442  * returns 0 on success and < 0 on failure
3443  */
3444 static noinline int split_node(struct btrfs_trans_handle *trans,
3445                                struct btrfs_root *root,
3446                                struct btrfs_path *path, int level)
3447 {
3448         struct extent_buffer *c;
3449         struct extent_buffer *split;
3450         struct btrfs_disk_key disk_key;
3451         int mid;
3452         int ret;
3453         u32 c_nritems;
3454
3455         c = path->nodes[level];
3456         WARN_ON(btrfs_header_generation(c) != trans->transid);
3457         if (c == root->node) {
3458                 /*
3459                  * trying to split the root, lets make a new one
3460                  *
3461                  * tree mod log: We don't log_removal old root in
3462                  * insert_new_root, because that root buffer will be kept as a
3463                  * normal node. We are going to log removal of half of the
3464                  * elements below with tree_mod_log_eb_copy. We're holding a
3465                  * tree lock on the buffer, which is why we cannot race with
3466                  * other tree_mod_log users.
3467                  */
3468                 ret = insert_new_root(trans, root, path, level + 1);
3469                 if (ret)
3470                         return ret;
3471         } else {
3472                 ret = push_nodes_for_insert(trans, root, path, level);
3473                 c = path->nodes[level];
3474                 if (!ret && btrfs_header_nritems(c) <
3475                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3476                         return 0;
3477                 if (ret < 0)
3478                         return ret;
3479         }
3480
3481         c_nritems = btrfs_header_nritems(c);
3482         mid = (c_nritems + 1) / 2;
3483         btrfs_node_key(c, &disk_key, mid);
3484
3485         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3486                         &disk_key, level, c->start, 0);
3487         if (IS_ERR(split))
3488                 return PTR_ERR(split);
3489
3490         root_add_used(root, root->nodesize);
3491
3492         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3493         btrfs_set_header_level(split, btrfs_header_level(c));
3494         btrfs_set_header_bytenr(split, split->start);
3495         btrfs_set_header_generation(split, trans->transid);
3496         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3497         btrfs_set_header_owner(split, root->root_key.objectid);
3498         write_extent_buffer(split, root->fs_info->fsid,
3499                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3500         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3501                             btrfs_header_chunk_tree_uuid(split),
3502                             BTRFS_UUID_SIZE);
3503
3504         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3505                                    mid, c_nritems - mid);
3506         if (ret) {
3507                 btrfs_abort_transaction(trans, ret);
3508                 return ret;
3509         }
3510         copy_extent_buffer(split, c,
3511                            btrfs_node_key_ptr_offset(0),
3512                            btrfs_node_key_ptr_offset(mid),
3513                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3514         btrfs_set_header_nritems(split, c_nritems - mid);
3515         btrfs_set_header_nritems(c, mid);
3516         ret = 0;
3517
3518         btrfs_mark_buffer_dirty(c);
3519         btrfs_mark_buffer_dirty(split);
3520
3521         insert_ptr(trans, root, path, &disk_key, split->start,
3522                    path->slots[level + 1] + 1, level + 1);
3523
3524         if (path->slots[level] >= mid) {
3525                 path->slots[level] -= mid;
3526                 btrfs_tree_unlock(c);
3527                 free_extent_buffer(c);
3528                 path->nodes[level] = split;
3529                 path->slots[level + 1] += 1;
3530         } else {
3531                 btrfs_tree_unlock(split);
3532                 free_extent_buffer(split);
3533         }
3534         return ret;
3535 }
3536
3537 /*
3538  * how many bytes are required to store the items in a leaf.  start
3539  * and nr indicate which items in the leaf to check.  This totals up the
3540  * space used both by the item structs and the item data
3541  */
3542 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3543 {
3544         struct btrfs_item *start_item;
3545         struct btrfs_item *end_item;
3546         struct btrfs_map_token token;
3547         int data_len;
3548         int nritems = btrfs_header_nritems(l);
3549         int end = min(nritems, start + nr) - 1;
3550
3551         if (!nr)
3552                 return 0;
3553         btrfs_init_map_token(&token);
3554         start_item = btrfs_item_nr(start);
3555         end_item = btrfs_item_nr(end);
3556         data_len = btrfs_token_item_offset(l, start_item, &token) +
3557                 btrfs_token_item_size(l, start_item, &token);
3558         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3559         data_len += sizeof(struct btrfs_item) * nr;
3560         WARN_ON(data_len < 0);
3561         return data_len;
3562 }
3563
3564 /*
3565  * The space between the end of the leaf items and
3566  * the start of the leaf data.  IOW, how much room
3567  * the leaf has left for both items and data
3568  */
3569 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3570                                    struct extent_buffer *leaf)
3571 {
3572         int nritems = btrfs_header_nritems(leaf);
3573         int ret;
3574         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3575         if (ret < 0) {
3576                 btrfs_crit(root->fs_info,
3577                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3578                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3579                        leaf_space_used(leaf, 0, nritems), nritems);
3580         }
3581         return ret;
3582 }
3583
3584 /*
3585  * min slot controls the lowest index we're willing to push to the
3586  * right.  We'll push up to and including min_slot, but no lower
3587  */
3588 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3589                                       struct btrfs_root *root,
3590                                       struct btrfs_path *path,
3591                                       int data_size, int empty,
3592                                       struct extent_buffer *right,
3593                                       int free_space, u32 left_nritems,
3594                                       u32 min_slot)
3595 {
3596         struct extent_buffer *left = path->nodes[0];
3597         struct extent_buffer *upper = path->nodes[1];
3598         struct btrfs_map_token token;
3599         struct btrfs_disk_key disk_key;
3600         int slot;
3601         u32 i;
3602         int push_space = 0;
3603         int push_items = 0;
3604         struct btrfs_item *item;
3605         u32 nr;
3606         u32 right_nritems;
3607         u32 data_end;
3608         u32 this_item_size;
3609
3610         btrfs_init_map_token(&token);
3611
3612         if (empty)
3613                 nr = 0;
3614         else
3615                 nr = max_t(u32, 1, min_slot);
3616
3617         if (path->slots[0] >= left_nritems)
3618                 push_space += data_size;
3619
3620         slot = path->slots[1];
3621         i = left_nritems - 1;
3622         while (i >= nr) {
3623                 item = btrfs_item_nr(i);
3624
3625                 if (!empty && push_items > 0) {
3626                         if (path->slots[0] > i)
3627                                 break;
3628                         if (path->slots[0] == i) {
3629                                 int space = btrfs_leaf_free_space(root, left);
3630                                 if (space + push_space * 2 > free_space)
3631                                         break;
3632                         }
3633                 }
3634
3635                 if (path->slots[0] == i)
3636                         push_space += data_size;
3637
3638                 this_item_size = btrfs_item_size(left, item);
3639                 if (this_item_size + sizeof(*item) + push_space > free_space)
3640                         break;
3641
3642                 push_items++;
3643                 push_space += this_item_size + sizeof(*item);
3644                 if (i == 0)
3645                         break;
3646                 i--;
3647         }
3648
3649         if (push_items == 0)
3650                 goto out_unlock;
3651
3652         WARN_ON(!empty && push_items == left_nritems);
3653
3654         /* push left to right */
3655         right_nritems = btrfs_header_nritems(right);
3656
3657         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3658         push_space -= leaf_data_end(root, left);
3659
3660         /* make room in the right data area */
3661         data_end = leaf_data_end(root, right);
3662         memmove_extent_buffer(right,
3663                               btrfs_leaf_data(right) + data_end - push_space,
3664                               btrfs_leaf_data(right) + data_end,
3665                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3666
3667         /* copy from the left data area */
3668         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3669                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3670                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3671                      push_space);
3672
3673         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3674                               btrfs_item_nr_offset(0),
3675                               right_nritems * sizeof(struct btrfs_item));
3676
3677         /* copy the items from left to right */
3678         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3679                    btrfs_item_nr_offset(left_nritems - push_items),
3680                    push_items * sizeof(struct btrfs_item));
3681
3682         /* update the item pointers */
3683         right_nritems += push_items;
3684         btrfs_set_header_nritems(right, right_nritems);
3685         push_space = BTRFS_LEAF_DATA_SIZE(root);
3686         for (i = 0; i < right_nritems; i++) {
3687                 item = btrfs_item_nr(i);
3688                 push_space -= btrfs_token_item_size(right, item, &token);
3689                 btrfs_set_token_item_offset(right, item, push_space, &token);
3690         }
3691
3692         left_nritems -= push_items;
3693         btrfs_set_header_nritems(left, left_nritems);
3694
3695         if (left_nritems)
3696                 btrfs_mark_buffer_dirty(left);
3697         else
3698                 clean_tree_block(trans, root->fs_info, left);
3699
3700         btrfs_mark_buffer_dirty(right);
3701
3702         btrfs_item_key(right, &disk_key, 0);
3703         btrfs_set_node_key(upper, &disk_key, slot + 1);
3704         btrfs_mark_buffer_dirty(upper);
3705
3706         /* then fixup the leaf pointer in the path */
3707         if (path->slots[0] >= left_nritems) {
3708                 path->slots[0] -= left_nritems;
3709                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3710                         clean_tree_block(trans, root->fs_info, path->nodes[0]);
3711                 btrfs_tree_unlock(path->nodes[0]);
3712                 free_extent_buffer(path->nodes[0]);
3713                 path->nodes[0] = right;
3714                 path->slots[1] += 1;
3715         } else {
3716                 btrfs_tree_unlock(right);
3717                 free_extent_buffer(right);
3718         }
3719         return 0;
3720
3721 out_unlock:
3722         btrfs_tree_unlock(right);
3723         free_extent_buffer(right);
3724         return 1;
3725 }
3726
3727 /*
3728  * push some data in the path leaf to the right, trying to free up at
3729  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3730  *
3731  * returns 1 if the push failed because the other node didn't have enough
3732  * room, 0 if everything worked out and < 0 if there were major errors.
3733  *
3734  * this will push starting from min_slot to the end of the leaf.  It won't
3735  * push any slot lower than min_slot
3736  */
3737 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3738                            *root, struct btrfs_path *path,
3739                            int min_data_size, int data_size,
3740                            int empty, u32 min_slot)
3741 {
3742         struct extent_buffer *left = path->nodes[0];
3743         struct extent_buffer *right;
3744         struct extent_buffer *upper;
3745         int slot;
3746         int free_space;
3747         u32 left_nritems;
3748         int ret;
3749
3750         if (!path->nodes[1])
3751                 return 1;
3752
3753         slot = path->slots[1];
3754         upper = path->nodes[1];
3755         if (slot >= btrfs_header_nritems(upper) - 1)
3756                 return 1;
3757
3758         btrfs_assert_tree_locked(path->nodes[1]);
3759
3760         right = read_node_slot(root, upper, slot + 1);
3761         /*
3762          * slot + 1 is not valid or we fail to read the right node,
3763          * no big deal, just return.
3764          */
3765         if (IS_ERR(right))
3766                 return 1;
3767
3768         btrfs_tree_lock(right);
3769         btrfs_set_lock_blocking(right);
3770
3771         free_space = btrfs_leaf_free_space(root, right);
3772         if (free_space < data_size)
3773                 goto out_unlock;
3774
3775         /* cow and double check */
3776         ret = btrfs_cow_block(trans, root, right, upper,
3777                               slot + 1, &right);
3778         if (ret)
3779                 goto out_unlock;
3780
3781         free_space = btrfs_leaf_free_space(root, right);
3782         if (free_space < data_size)
3783                 goto out_unlock;
3784
3785         left_nritems = btrfs_header_nritems(left);
3786         if (left_nritems == 0)
3787                 goto out_unlock;
3788
3789         if (path->slots[0] == left_nritems && !empty) {
3790                 /* Key greater than all keys in the leaf, right neighbor has
3791                  * enough room for it and we're not emptying our leaf to delete
3792                  * it, therefore use right neighbor to insert the new item and
3793                  * no need to touch/dirty our left leaft. */
3794                 btrfs_tree_unlock(left);
3795                 free_extent_buffer(left);
3796                 path->nodes[0] = right;
3797                 path->slots[0] = 0;
3798                 path->slots[1]++;
3799                 return 0;
3800         }
3801
3802         return __push_leaf_right(trans, root, path, min_data_size, empty,
3803                                 right, free_space, left_nritems, min_slot);
3804 out_unlock:
3805         btrfs_tree_unlock(right);
3806         free_extent_buffer(right);
3807         return 1;
3808 }
3809
3810 /*
3811  * push some data in the path leaf to the left, trying to free up at
3812  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3813  *
3814  * max_slot can put a limit on how far into the leaf we'll push items.  The
3815  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3816  * items
3817  */
3818 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3819                                      struct btrfs_root *root,
3820                                      struct btrfs_path *path, int data_size,
3821                                      int empty, struct extent_buffer *left,
3822                                      int free_space, u32 right_nritems,
3823                                      u32 max_slot)
3824 {
3825         struct btrfs_disk_key disk_key;
3826         struct extent_buffer *right = path->nodes[0];
3827         int i;
3828         int push_space = 0;
3829         int push_items = 0;
3830         struct btrfs_item *item;
3831         u32 old_left_nritems;
3832         u32 nr;
3833         int ret = 0;
3834         u32 this_item_size;
3835         u32 old_left_item_size;
3836         struct btrfs_map_token token;
3837
3838         btrfs_init_map_token(&token);
3839
3840         if (empty)
3841                 nr = min(right_nritems, max_slot);
3842         else
3843                 nr = min(right_nritems - 1, max_slot);
3844
3845         for (i = 0; i < nr; i++) {
3846                 item = btrfs_item_nr(i);
3847
3848                 if (!empty && push_items > 0) {
3849                         if (path->slots[0] < i)
3850                                 break;
3851                         if (path->slots[0] == i) {
3852                                 int space = btrfs_leaf_free_space(root, right);
3853                                 if (space + push_space * 2 > free_space)
3854                                         break;
3855                         }
3856                 }
3857
3858                 if (path->slots[0] == i)
3859                         push_space += data_size;
3860
3861                 this_item_size = btrfs_item_size(right, item);
3862                 if (this_item_size + sizeof(*item) + push_space > free_space)
3863                         break;
3864
3865                 push_items++;
3866                 push_space += this_item_size + sizeof(*item);
3867         }
3868
3869         if (push_items == 0) {
3870                 ret = 1;
3871                 goto out;
3872         }
3873         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3874
3875         /* push data from right to left */
3876         copy_extent_buffer(left, right,
3877                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3878                            btrfs_item_nr_offset(0),
3879                            push_items * sizeof(struct btrfs_item));
3880
3881         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3882                      btrfs_item_offset_nr(right, push_items - 1);
3883
3884         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3885                      leaf_data_end(root, left) - push_space,
3886                      btrfs_leaf_data(right) +
3887                      btrfs_item_offset_nr(right, push_items - 1),
3888                      push_space);
3889         old_left_nritems = btrfs_header_nritems(left);
3890         BUG_ON(old_left_nritems <= 0);
3891
3892         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3893         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3894                 u32 ioff;
3895
3896                 item = btrfs_item_nr(i);
3897
3898                 ioff = btrfs_token_item_offset(left, item, &token);
3899                 btrfs_set_token_item_offset(left, item,
3900                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3901                       &token);
3902         }
3903         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3904
3905         /* fixup right node */
3906         if (push_items > right_nritems)
3907                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3908                        right_nritems);
3909
3910         if (push_items < right_nritems) {
3911                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3912                                                   leaf_data_end(root, right);
3913                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3914                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3915                                       btrfs_leaf_data(right) +
3916                                       leaf_data_end(root, right), push_space);
3917
3918                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3919                               btrfs_item_nr_offset(push_items),
3920                              (btrfs_header_nritems(right) - push_items) *
3921                              sizeof(struct btrfs_item));
3922         }
3923         right_nritems -= push_items;
3924         btrfs_set_header_nritems(right, right_nritems);
3925         push_space = BTRFS_LEAF_DATA_SIZE(root);
3926         for (i = 0; i < right_nritems; i++) {
3927                 item = btrfs_item_nr(i);
3928
3929                 push_space = push_space - btrfs_token_item_size(right,
3930                                                                 item, &token);
3931                 btrfs_set_token_item_offset(right, item, push_space, &token);
3932         }
3933
3934         btrfs_mark_buffer_dirty(left);
3935         if (right_nritems)
3936                 btrfs_mark_buffer_dirty(right);
3937         else
3938                 clean_tree_block(trans, root->fs_info, right);
3939
3940         btrfs_item_key(right, &disk_key, 0);
3941         fixup_low_keys(root->fs_info, path, &disk_key, 1);
3942
3943         /* then fixup the leaf pointer in the path */
3944         if (path->slots[0] < push_items) {
3945                 path->slots[0] += old_left_nritems;
3946                 btrfs_tree_unlock(path->nodes[0]);
3947                 free_extent_buffer(path->nodes[0]);
3948                 path->nodes[0] = left;
3949                 path->slots[1] -= 1;
3950         } else {
3951                 btrfs_tree_unlock(left);
3952                 free_extent_buffer(left);
3953                 path->slots[0] -= push_items;
3954         }
3955         BUG_ON(path->slots[0] < 0);
3956         return ret;
3957 out:
3958         btrfs_tree_unlock(left);
3959         free_extent_buffer(left);
3960         return ret;
3961 }
3962
3963 /*
3964  * push some data in the path leaf to the left, trying to free up at
3965  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3966  *
3967  * max_slot can put a limit on how far into the leaf we'll push items.  The
3968  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3969  * items
3970  */
3971 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3972                           *root, struct btrfs_path *path, int min_data_size,
3973                           int data_size, int empty, u32 max_slot)
3974 {
3975         struct extent_buffer *right = path->nodes[0];
3976         struct extent_buffer *left;
3977         int slot;
3978         int free_space;
3979         u32 right_nritems;
3980         int ret = 0;
3981
3982         slot = path->slots[1];
3983         if (slot == 0)
3984                 return 1;
3985         if (!path->nodes[1])
3986                 return 1;
3987
3988         right_nritems = btrfs_header_nritems(right);
3989         if (right_nritems == 0)
3990                 return 1;
3991
3992         btrfs_assert_tree_locked(path->nodes[1]);
3993
3994         left = read_node_slot(root, path->nodes[1], slot - 1);
3995         /*
3996          * slot - 1 is not valid or we fail to read the left node,
3997          * no big deal, just return.
3998          */
3999         if (IS_ERR(left))
4000                 return 1;
4001
4002         btrfs_tree_lock(left);
4003         btrfs_set_lock_blocking(left);
4004
4005         free_space = btrfs_leaf_free_space(root, left);
4006         if (free_space < data_size) {
4007                 ret = 1;
4008                 goto out;
4009         }
4010
4011         /* cow and double check */
4012         ret = btrfs_cow_block(trans, root, left,
4013                               path->nodes[1], slot - 1, &left);
4014         if (ret) {
4015                 /* we hit -ENOSPC, but it isn't fatal here */
4016                 if (ret == -ENOSPC)
4017                         ret = 1;
4018                 goto out;
4019         }
4020
4021         free_space = btrfs_leaf_free_space(root, left);
4022         if (free_space < data_size) {
4023                 ret = 1;
4024                 goto out;
4025         }
4026
4027         return __push_leaf_left(trans, root, path, min_data_size,
4028                                empty, left, free_space, right_nritems,
4029                                max_slot);
4030 out:
4031         btrfs_tree_unlock(left);
4032         free_extent_buffer(left);
4033         return ret;
4034 }
4035
4036 /*
4037  * split the path's leaf in two, making sure there is at least data_size
4038  * available for the resulting leaf level of the path.
4039  */
4040 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4041                                     struct btrfs_root *root,
4042                                     struct btrfs_path *path,
4043                                     struct extent_buffer *l,
4044                                     struct extent_buffer *right,
4045                                     int slot, int mid, int nritems)
4046 {
4047         int data_copy_size;
4048         int rt_data_off;
4049         int i;
4050         struct btrfs_disk_key disk_key;
4051         struct btrfs_map_token token;
4052
4053         btrfs_init_map_token(&token);
4054
4055         nritems = nritems - mid;
4056         btrfs_set_header_nritems(right, nritems);
4057         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4058
4059         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4060                            btrfs_item_nr_offset(mid),
4061                            nritems * sizeof(struct btrfs_item));
4062
4063         copy_extent_buffer(right, l,
4064                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4065                      data_copy_size, btrfs_leaf_data(l) +
4066                      leaf_data_end(root, l), data_copy_size);
4067
4068         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4069                       btrfs_item_end_nr(l, mid);
4070
4071         for (i = 0; i < nritems; i++) {
4072                 struct btrfs_item *item = btrfs_item_nr(i);
4073                 u32 ioff;
4074
4075                 ioff = btrfs_token_item_offset(right, item, &token);
4076                 btrfs_set_token_item_offset(right, item,
4077                                             ioff + rt_data_off, &token);
4078         }
4079
4080         btrfs_set_header_nritems(l, mid);
4081         btrfs_item_key(right, &disk_key, 0);
4082         insert_ptr(trans, root, path, &disk_key, right->start,
4083                    path->slots[1] + 1, 1);
4084
4085         btrfs_mark_buffer_dirty(right);
4086         btrfs_mark_buffer_dirty(l);
4087         BUG_ON(path->slots[0] != slot);
4088
4089         if (mid <= slot) {
4090                 btrfs_tree_unlock(path->nodes[0]);
4091                 free_extent_buffer(path->nodes[0]);
4092                 path->nodes[0] = right;
4093                 path->slots[0] -= mid;
4094                 path->slots[1] += 1;
4095         } else {
4096                 btrfs_tree_unlock(right);
4097                 free_extent_buffer(right);
4098         }
4099
4100         BUG_ON(path->slots[0] < 0);
4101 }
4102
4103 /*
4104  * double splits happen when we need to insert a big item in the middle
4105  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4106  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4107  *          A                 B                 C
4108  *
4109  * We avoid this by trying to push the items on either side of our target
4110  * into the adjacent leaves.  If all goes well we can avoid the double split
4111  * completely.
4112  */
4113 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4114                                           struct btrfs_root *root,
4115                                           struct btrfs_path *path,
4116                                           int data_size)
4117 {
4118         int ret;
4119         int progress = 0;
4120         int slot;
4121         u32 nritems;
4122         int space_needed = data_size;
4123
4124         slot = path->slots[0];
4125         if (slot < btrfs_header_nritems(path->nodes[0]))
4126                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4127
4128         /*
4129          * try to push all the items after our slot into the
4130          * right leaf
4131          */
4132         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4133         if (ret < 0)
4134                 return ret;
4135
4136         if (ret == 0)
4137                 progress++;
4138
4139         nritems = btrfs_header_nritems(path->nodes[0]);
4140         /*
4141          * our goal is to get our slot at the start or end of a leaf.  If
4142          * we've done so we're done
4143          */
4144         if (path->slots[0] == 0 || path->slots[0] == nritems)
4145                 return 0;
4146
4147         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4148                 return 0;
4149
4150         /* try to push all the items before our slot into the next leaf */
4151         slot = path->slots[0];
4152         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4153         if (ret < 0)
4154                 return ret;
4155
4156         if (ret == 0)
4157                 progress++;
4158
4159         if (progress)
4160                 return 0;
4161         return 1;
4162 }
4163
4164 /*
4165  * split the path's leaf in two, making sure there is at least data_size
4166  * available for the resulting leaf level of the path.
4167  *
4168  * returns 0 if all went well and < 0 on failure.
4169  */
4170 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4171                                struct btrfs_root *root,
4172                                struct btrfs_key *ins_key,
4173                                struct btrfs_path *path, int data_size,
4174                                int extend)
4175 {
4176         struct btrfs_disk_key disk_key;
4177         struct extent_buffer *l;
4178         u32 nritems;
4179         int mid;
4180         int slot;
4181         struct extent_buffer *right;
4182         struct btrfs_fs_info *fs_info = root->fs_info;
4183         int ret = 0;
4184         int wret;
4185         int split;
4186         int num_doubles = 0;
4187         int tried_avoid_double = 0;
4188
4189         l = path->nodes[0];
4190         slot = path->slots[0];
4191         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4192             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4193                 return -EOVERFLOW;
4194
4195         /* first try to make some room by pushing left and right */
4196         if (data_size && path->nodes[1]) {
4197                 int space_needed = data_size;
4198
4199                 if (slot < btrfs_header_nritems(l))
4200                         space_needed -= btrfs_leaf_free_space(root, l);
4201
4202                 wret = push_leaf_right(trans, root, path, space_needed,
4203                                        space_needed, 0, 0);
4204                 if (wret < 0)
4205                         return wret;
4206                 if (wret) {
4207                         wret = push_leaf_left(trans, root, path, space_needed,
4208                                               space_needed, 0, (u32)-1);
4209                         if (wret < 0)
4210                                 return wret;
4211                 }
4212                 l = path->nodes[0];
4213
4214                 /* did the pushes work? */
4215                 if (btrfs_leaf_free_space(root, l) >= data_size)
4216                         return 0;
4217         }
4218
4219         if (!path->nodes[1]) {
4220                 ret = insert_new_root(trans, root, path, 1);
4221                 if (ret)
4222                         return ret;
4223         }
4224 again:
4225         split = 1;
4226         l = path->nodes[0];
4227         slot = path->slots[0];
4228         nritems = btrfs_header_nritems(l);
4229         mid = (nritems + 1) / 2;
4230
4231         if (mid <= slot) {
4232                 if (nritems == 1 ||
4233                     leaf_space_used(l, mid, nritems - mid) + data_size >
4234                         BTRFS_LEAF_DATA_SIZE(root)) {
4235                         if (slot >= nritems) {
4236                                 split = 0;
4237                         } else {
4238                                 mid = slot;
4239                                 if (mid != nritems &&
4240                                     leaf_space_used(l, mid, nritems - mid) +
4241                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4242                                         if (data_size && !tried_avoid_double)
4243                                                 goto push_for_double;
4244                                         split = 2;
4245                                 }
4246                         }
4247                 }
4248         } else {
4249                 if (leaf_space_used(l, 0, mid) + data_size >
4250                         BTRFS_LEAF_DATA_SIZE(root)) {
4251                         if (!extend && data_size && slot == 0) {
4252                                 split = 0;
4253                         } else if ((extend || !data_size) && slot == 0) {
4254                                 mid = 1;
4255                         } else {
4256                                 mid = slot;
4257                                 if (mid != nritems &&
4258                                     leaf_space_used(l, mid, nritems - mid) +
4259                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4260                                         if (data_size && !tried_avoid_double)
4261                                                 goto push_for_double;
4262                                         split = 2;
4263                                 }
4264                         }
4265                 }
4266         }
4267
4268         if (split == 0)
4269                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4270         else
4271                 btrfs_item_key(l, &disk_key, mid);
4272
4273         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4274                         &disk_key, 0, l->start, 0);
4275         if (IS_ERR(right))
4276                 return PTR_ERR(right);
4277
4278         root_add_used(root, root->nodesize);
4279
4280         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4281         btrfs_set_header_bytenr(right, right->start);
4282         btrfs_set_header_generation(right, trans->transid);
4283         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4284         btrfs_set_header_owner(right, root->root_key.objectid);
4285         btrfs_set_header_level(right, 0);
4286         write_extent_buffer(right, fs_info->fsid,
4287                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4288
4289         write_extent_buffer(right, fs_info->chunk_tree_uuid,
4290                             btrfs_header_chunk_tree_uuid(right),
4291                             BTRFS_UUID_SIZE);
4292
4293         if (split == 0) {
4294                 if (mid <= slot) {
4295                         btrfs_set_header_nritems(right, 0);
4296                         insert_ptr(trans, root, path, &disk_key, right->start,
4297                                    path->slots[1] + 1, 1);
4298                         btrfs_tree_unlock(path->nodes[0]);
4299                         free_extent_buffer(path->nodes[0]);
4300                         path->nodes[0] = right;
4301                         path->slots[0] = 0;
4302                         path->slots[1] += 1;
4303                 } else {
4304                         btrfs_set_header_nritems(right, 0);
4305                         insert_ptr(trans, root, path, &disk_key, right->start,
4306                                           path->slots[1], 1);
4307                         btrfs_tree_unlock(path->nodes[0]);
4308                         free_extent_buffer(path->nodes[0]);
4309                         path->nodes[0] = right;
4310                         path->slots[0] = 0;
4311                         if (path->slots[1] == 0)
4312                                 fixup_low_keys(fs_info, path, &disk_key, 1);
4313                 }
4314                 /*
4315                  * We create a new leaf 'right' for the required ins_len and
4316                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4317                  * the content of ins_len to 'right'.
4318                  */
4319                 return ret;
4320         }
4321
4322         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4323
4324         if (split == 2) {
4325                 BUG_ON(num_doubles != 0);
4326                 num_doubles++;
4327                 goto again;
4328         }
4329
4330         return 0;
4331
4332 push_for_double:
4333         push_for_double_split(trans, root, path, data_size);
4334         tried_avoid_double = 1;
4335         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4336                 return 0;
4337         goto again;
4338 }
4339
4340 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4341                                          struct btrfs_root *root,
4342                                          struct btrfs_path *path, int ins_len)
4343 {
4344         struct btrfs_key key;
4345         struct extent_buffer *leaf;
4346         struct btrfs_file_extent_item *fi;
4347         u64 extent_len = 0;
4348         u32 item_size;
4349         int ret;
4350
4351         leaf = path->nodes[0];
4352         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4353
4354         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4355                key.type != BTRFS_EXTENT_CSUM_KEY);
4356
4357         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4358                 return 0;
4359
4360         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4361         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4362                 fi = btrfs_item_ptr(leaf, path->slots[0],
4363                                     struct btrfs_file_extent_item);
4364                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4365         }
4366         btrfs_release_path(path);
4367
4368         path->keep_locks = 1;
4369         path->search_for_split = 1;
4370         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4371         path->search_for_split = 0;
4372         if (ret > 0)
4373                 ret = -EAGAIN;
4374         if (ret < 0)
4375                 goto err;
4376
4377         ret = -EAGAIN;
4378         leaf = path->nodes[0];
4379         /* if our item isn't there, return now */
4380         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4381                 goto err;
4382
4383         /* the leaf has  changed, it now has room.  return now */
4384         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4385                 goto err;
4386
4387         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4388                 fi = btrfs_item_ptr(leaf, path->slots[0],
4389                                     struct btrfs_file_extent_item);
4390                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4391                         goto err;
4392         }
4393
4394         btrfs_set_path_blocking(path);
4395         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4396         if (ret)
4397                 goto err;
4398
4399         path->keep_locks = 0;
4400         btrfs_unlock_up_safe(path, 1);
4401         return 0;
4402 err:
4403         path->keep_locks = 0;
4404         return ret;
4405 }
4406
4407 static noinline int split_item(struct btrfs_trans_handle *trans,
4408                                struct btrfs_root *root,
4409                                struct btrfs_path *path,
4410                                struct btrfs_key *new_key,
4411                                unsigned long split_offset)
4412 {
4413         struct extent_buffer *leaf;
4414         struct btrfs_item *item;
4415         struct btrfs_item *new_item;
4416         int slot;
4417         char *buf;
4418         u32 nritems;
4419         u32 item_size;
4420         u32 orig_offset;
4421         struct btrfs_disk_key disk_key;
4422
4423         leaf = path->nodes[0];
4424         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4425
4426         btrfs_set_path_blocking(path);
4427
4428         item = btrfs_item_nr(path->slots[0]);
4429         orig_offset = btrfs_item_offset(leaf, item);
4430         item_size = btrfs_item_size(leaf, item);
4431
4432         buf = kmalloc(item_size, GFP_NOFS);
4433         if (!buf)
4434                 return -ENOMEM;
4435
4436         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4437                             path->slots[0]), item_size);
4438
4439         slot = path->slots[0] + 1;
4440         nritems = btrfs_header_nritems(leaf);
4441         if (slot != nritems) {
4442                 /* shift the items */
4443                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4444                                 btrfs_item_nr_offset(slot),
4445                                 (nritems - slot) * sizeof(struct btrfs_item));
4446         }
4447
4448         btrfs_cpu_key_to_disk(&disk_key, new_key);
4449         btrfs_set_item_key(leaf, &disk_key, slot);
4450
4451         new_item = btrfs_item_nr(slot);
4452
4453         btrfs_set_item_offset(leaf, new_item, orig_offset);
4454         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4455
4456         btrfs_set_item_offset(leaf, item,
4457                               orig_offset + item_size - split_offset);
4458         btrfs_set_item_size(leaf, item, split_offset);
4459
4460         btrfs_set_header_nritems(leaf, nritems + 1);
4461
4462         /* write the data for the start of the original item */
4463         write_extent_buffer(leaf, buf,
4464                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4465                             split_offset);
4466
4467         /* write the data for the new item */
4468         write_extent_buffer(leaf, buf + split_offset,
4469                             btrfs_item_ptr_offset(leaf, slot),
4470                             item_size - split_offset);
4471         btrfs_mark_buffer_dirty(leaf);
4472
4473         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4474         kfree(buf);
4475         return 0;
4476 }
4477
4478 /*
4479  * This function splits a single item into two items,
4480  * giving 'new_key' to the new item and splitting the
4481  * old one at split_offset (from the start of the item).
4482  *
4483  * The path may be released by this operation.  After
4484  * the split, the path is pointing to the old item.  The
4485  * new item is going to be in the same node as the old one.
4486  *
4487  * Note, the item being split must be smaller enough to live alone on
4488  * a tree block with room for one extra struct btrfs_item
4489  *
4490  * This allows us to split the item in place, keeping a lock on the
4491  * leaf the entire time.
4492  */
4493 int btrfs_split_item(struct btrfs_trans_handle *trans,
4494                      struct btrfs_root *root,
4495                      struct btrfs_path *path,
4496                      struct btrfs_key *new_key,
4497                      unsigned long split_offset)
4498 {
4499         int ret;
4500         ret = setup_leaf_for_split(trans, root, path,
4501                                    sizeof(struct btrfs_item));
4502         if (ret)
4503                 return ret;
4504
4505         ret = split_item(trans, root, path, new_key, split_offset);
4506         return ret;
4507 }
4508
4509 /*
4510  * This function duplicate a item, giving 'new_key' to the new item.
4511  * It guarantees both items live in the same tree leaf and the new item
4512  * is contiguous with the original item.
4513  *
4514  * This allows us to split file extent in place, keeping a lock on the
4515  * leaf the entire time.
4516  */
4517 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4518                          struct btrfs_root *root,
4519                          struct btrfs_path *path,
4520                          struct btrfs_key *new_key)
4521 {
4522         struct extent_buffer *leaf;
4523         int ret;
4524         u32 item_size;
4525
4526         leaf = path->nodes[0];
4527         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4528         ret = setup_leaf_for_split(trans, root, path,
4529                                    item_size + sizeof(struct btrfs_item));
4530         if (ret)
4531                 return ret;
4532
4533         path->slots[0]++;
4534         setup_items_for_insert(root, path, new_key, &item_size,
4535                                item_size, item_size +
4536                                sizeof(struct btrfs_item), 1);
4537         leaf = path->nodes[0];
4538         memcpy_extent_buffer(leaf,
4539                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4540                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4541                              item_size);
4542         return 0;
4543 }
4544
4545 /*
4546  * make the item pointed to by the path smaller.  new_size indicates
4547  * how small to make it, and from_end tells us if we just chop bytes
4548  * off the end of the item or if we shift the item to chop bytes off
4549  * the front.
4550  */
4551 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4552                          u32 new_size, int from_end)
4553 {
4554         int slot;
4555         struct extent_buffer *leaf;
4556         struct btrfs_item *item;
4557         u32 nritems;
4558         unsigned int data_end;
4559         unsigned int old_data_start;
4560         unsigned int old_size;
4561         unsigned int size_diff;
4562         int i;
4563         struct btrfs_map_token token;
4564
4565         btrfs_init_map_token(&token);
4566
4567         leaf = path->nodes[0];
4568         slot = path->slots[0];
4569
4570         old_size = btrfs_item_size_nr(leaf, slot);
4571         if (old_size == new_size)
4572                 return;
4573
4574         nritems = btrfs_header_nritems(leaf);
4575         data_end = leaf_data_end(root, leaf);
4576
4577         old_data_start = btrfs_item_offset_nr(leaf, slot);
4578
4579         size_diff = old_size - new_size;
4580
4581         BUG_ON(slot < 0);
4582         BUG_ON(slot >= nritems);
4583
4584         /*
4585          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4586          */
4587         /* first correct the data pointers */
4588         for (i = slot; i < nritems; i++) {
4589                 u32 ioff;
4590                 item = btrfs_item_nr(i);
4591
4592                 ioff = btrfs_token_item_offset(leaf, item, &token);
4593                 btrfs_set_token_item_offset(leaf, item,
4594                                             ioff + size_diff, &token);
4595         }
4596
4597         /* shift the data */
4598         if (from_end) {
4599                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4600                               data_end + size_diff, btrfs_leaf_data(leaf) +
4601                               data_end, old_data_start + new_size - data_end);
4602         } else {
4603                 struct btrfs_disk_key disk_key;
4604                 u64 offset;
4605
4606                 btrfs_item_key(leaf, &disk_key, slot);
4607
4608                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4609                         unsigned long ptr;
4610                         struct btrfs_file_extent_item *fi;
4611
4612                         fi = btrfs_item_ptr(leaf, slot,
4613                                             struct btrfs_file_extent_item);
4614                         fi = (struct btrfs_file_extent_item *)(
4615                              (unsigned long)fi - size_diff);
4616
4617                         if (btrfs_file_extent_type(leaf, fi) ==
4618                             BTRFS_FILE_EXTENT_INLINE) {
4619                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4620                                 memmove_extent_buffer(leaf, ptr,
4621                                       (unsigned long)fi,
4622                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4623                         }
4624                 }
4625
4626                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4627                               data_end + size_diff, btrfs_leaf_data(leaf) +
4628                               data_end, old_data_start - data_end);
4629
4630                 offset = btrfs_disk_key_offset(&disk_key);
4631                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4632                 btrfs_set_item_key(leaf, &disk_key, slot);
4633                 if (slot == 0)
4634                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
4635         }
4636
4637         item = btrfs_item_nr(slot);
4638         btrfs_set_item_size(leaf, item, new_size);
4639         btrfs_mark_buffer_dirty(leaf);
4640
4641         if (btrfs_leaf_free_space(root, leaf) < 0) {
4642                 btrfs_print_leaf(root, leaf);
4643                 BUG();
4644         }
4645 }
4646
4647 /*
4648  * make the item pointed to by the path bigger, data_size is the added size.
4649  */
4650 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4651                        u32 data_size)
4652 {
4653         int slot;
4654         struct extent_buffer *leaf;
4655         struct btrfs_item *item;
4656         u32 nritems;
4657         unsigned int data_end;
4658         unsigned int old_data;
4659         unsigned int old_size;
4660         int i;
4661         struct btrfs_map_token token;
4662
4663         btrfs_init_map_token(&token);
4664
4665         leaf = path->nodes[0];
4666
4667         nritems = btrfs_header_nritems(leaf);
4668         data_end = leaf_data_end(root, leaf);
4669
4670         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4671                 btrfs_print_leaf(root, leaf);
4672                 BUG();
4673         }
4674         slot = path->slots[0];
4675         old_data = btrfs_item_end_nr(leaf, slot);
4676
4677         BUG_ON(slot < 0);
4678         if (slot >= nritems) {
4679                 btrfs_print_leaf(root, leaf);
4680                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4681                        slot, nritems);
4682                 BUG_ON(1);
4683         }
4684
4685         /*
4686          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4687          */
4688         /* first correct the data pointers */
4689         for (i = slot; i < nritems; i++) {
4690                 u32 ioff;
4691                 item = btrfs_item_nr(i);
4692
4693                 ioff = btrfs_token_item_offset(leaf, item, &token);
4694                 btrfs_set_token_item_offset(leaf, item,
4695                                             ioff - data_size, &token);
4696         }
4697
4698         /* shift the data */
4699         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4700                       data_end - data_size, btrfs_leaf_data(leaf) +
4701                       data_end, old_data - data_end);
4702
4703         data_end = old_data;
4704         old_size = btrfs_item_size_nr(leaf, slot);
4705         item = btrfs_item_nr(slot);
4706         btrfs_set_item_size(leaf, item, old_size + data_size);
4707         btrfs_mark_buffer_dirty(leaf);
4708
4709         if (btrfs_leaf_free_space(root, leaf) < 0) {
4710                 btrfs_print_leaf(root, leaf);
4711                 BUG();
4712         }
4713 }
4714
4715 /*
4716  * this is a helper for btrfs_insert_empty_items, the main goal here is
4717  * to save stack depth by doing the bulk of the work in a function
4718  * that doesn't call btrfs_search_slot
4719  */
4720 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4721                             struct btrfs_key *cpu_key, u32 *data_size,
4722                             u32 total_data, u32 total_size, int nr)
4723 {
4724         struct btrfs_item *item;
4725         int i;
4726         u32 nritems;
4727         unsigned int data_end;
4728         struct btrfs_disk_key disk_key;
4729         struct extent_buffer *leaf;
4730         int slot;
4731         struct btrfs_map_token token;
4732
4733         if (path->slots[0] == 0) {
4734                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4735                 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4736         }
4737         btrfs_unlock_up_safe(path, 1);
4738
4739         btrfs_init_map_token(&token);
4740
4741         leaf = path->nodes[0];
4742         slot = path->slots[0];
4743
4744         nritems = btrfs_header_nritems(leaf);
4745         data_end = leaf_data_end(root, leaf);
4746
4747         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4748                 btrfs_print_leaf(root, leaf);
4749                 btrfs_crit(root->fs_info,
4750                            "not enough freespace need %u have %d",
4751                            total_size, btrfs_leaf_free_space(root, leaf));
4752                 BUG();
4753         }
4754
4755         if (slot != nritems) {
4756                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4757
4758                 if (old_data < data_end) {
4759                         btrfs_print_leaf(root, leaf);
4760                         btrfs_crit(root->fs_info,
4761                                    "slot %d old_data %d data_end %d",
4762                                    slot, old_data, data_end);
4763                         BUG_ON(1);
4764                 }
4765                 /*
4766                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4767                  */
4768                 /* first correct the data pointers */
4769                 for (i = slot; i < nritems; i++) {
4770                         u32 ioff;
4771
4772                         item = btrfs_item_nr(i);
4773                         ioff = btrfs_token_item_offset(leaf, item, &token);
4774                         btrfs_set_token_item_offset(leaf, item,
4775                                                     ioff - total_data, &token);
4776                 }
4777                 /* shift the items */
4778                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4779                               btrfs_item_nr_offset(slot),
4780                               (nritems - slot) * sizeof(struct btrfs_item));
4781
4782                 /* shift the data */
4783                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4784                               data_end - total_data, btrfs_leaf_data(leaf) +
4785                               data_end, old_data - data_end);
4786                 data_end = old_data;
4787         }
4788
4789         /* setup the item for the new data */
4790         for (i = 0; i < nr; i++) {
4791                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4792                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4793                 item = btrfs_item_nr(slot + i);
4794                 btrfs_set_token_item_offset(leaf, item,
4795                                             data_end - data_size[i], &token);
4796                 data_end -= data_size[i];
4797                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4798         }
4799
4800         btrfs_set_header_nritems(leaf, nritems + nr);
4801         btrfs_mark_buffer_dirty(leaf);
4802
4803         if (btrfs_leaf_free_space(root, leaf) < 0) {
4804                 btrfs_print_leaf(root, leaf);
4805                 BUG();
4806         }
4807 }
4808
4809 /*
4810  * Given a key and some data, insert items into the tree.
4811  * This does all the path init required, making room in the tree if needed.
4812  */
4813 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4814                             struct btrfs_root *root,
4815                             struct btrfs_path *path,
4816                             struct btrfs_key *cpu_key, u32 *data_size,
4817                             int nr)
4818 {
4819         int ret = 0;
4820         int slot;
4821         int i;
4822         u32 total_size = 0;
4823         u32 total_data = 0;
4824
4825         for (i = 0; i < nr; i++)
4826                 total_data += data_size[i];
4827
4828         total_size = total_data + (nr * sizeof(struct btrfs_item));
4829         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4830         if (ret == 0)
4831                 return -EEXIST;
4832         if (ret < 0)
4833                 return ret;
4834
4835         slot = path->slots[0];
4836         BUG_ON(slot < 0);
4837
4838         setup_items_for_insert(root, path, cpu_key, data_size,
4839                                total_data, total_size, nr);
4840         return 0;
4841 }
4842
4843 /*
4844  * Given a key and some data, insert an item into the tree.
4845  * This does all the path init required, making room in the tree if needed.
4846  */
4847 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4848                       *root, struct btrfs_key *cpu_key, void *data, u32
4849                       data_size)
4850 {
4851         int ret = 0;
4852         struct btrfs_path *path;
4853         struct extent_buffer *leaf;
4854         unsigned long ptr;
4855
4856         path = btrfs_alloc_path();
4857         if (!path)
4858                 return -ENOMEM;
4859         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4860         if (!ret) {
4861                 leaf = path->nodes[0];
4862                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4863                 write_extent_buffer(leaf, data, ptr, data_size);
4864                 btrfs_mark_buffer_dirty(leaf);
4865         }
4866         btrfs_free_path(path);
4867         return ret;
4868 }
4869
4870 /*
4871  * delete the pointer from a given node.
4872  *
4873  * the tree should have been previously balanced so the deletion does not
4874  * empty a node.
4875  */
4876 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4877                     int level, int slot)
4878 {
4879         struct extent_buffer *parent = path->nodes[level];
4880         u32 nritems;
4881         int ret;
4882
4883         nritems = btrfs_header_nritems(parent);
4884         if (slot != nritems - 1) {
4885                 if (level)
4886                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4887                                              slot + 1, nritems - slot - 1);
4888                 memmove_extent_buffer(parent,
4889                               btrfs_node_key_ptr_offset(slot),
4890                               btrfs_node_key_ptr_offset(slot + 1),
4891                               sizeof(struct btrfs_key_ptr) *
4892                               (nritems - slot - 1));
4893         } else if (level) {
4894                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4895                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4896                 BUG_ON(ret < 0);
4897         }
4898
4899         nritems--;
4900         btrfs_set_header_nritems(parent, nritems);
4901         if (nritems == 0 && parent == root->node) {
4902                 BUG_ON(btrfs_header_level(root->node) != 1);
4903                 /* just turn the root into a leaf and break */
4904                 btrfs_set_header_level(root->node, 0);
4905         } else if (slot == 0) {
4906                 struct btrfs_disk_key disk_key;
4907
4908                 btrfs_node_key(parent, &disk_key, 0);
4909                 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4910         }
4911         btrfs_mark_buffer_dirty(parent);
4912 }
4913
4914 /*
4915  * a helper function to delete the leaf pointed to by path->slots[1] and
4916  * path->nodes[1].
4917  *
4918  * This deletes the pointer in path->nodes[1] and frees the leaf
4919  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4920  *
4921  * The path must have already been setup for deleting the leaf, including
4922  * all the proper balancing.  path->nodes[1] must be locked.
4923  */
4924 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4925                                     struct btrfs_root *root,
4926                                     struct btrfs_path *path,
4927                                     struct extent_buffer *leaf)
4928 {
4929         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4930         del_ptr(root, path, 1, path->slots[1]);
4931
4932         /*
4933          * btrfs_free_extent is expensive, we want to make sure we
4934          * aren't holding any locks when we call it
4935          */
4936         btrfs_unlock_up_safe(path, 0);
4937
4938         root_sub_used(root, leaf->len);
4939
4940         extent_buffer_get(leaf);
4941         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4942         free_extent_buffer_stale(leaf);
4943 }
4944 /*
4945  * delete the item at the leaf level in path.  If that empties
4946  * the leaf, remove it from the tree
4947  */
4948 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4949                     struct btrfs_path *path, int slot, int nr)
4950 {
4951         struct extent_buffer *leaf;
4952         struct btrfs_item *item;
4953         u32 last_off;
4954         u32 dsize = 0;
4955         int ret = 0;
4956         int wret;
4957         int i;
4958         u32 nritems;
4959         struct btrfs_map_token token;
4960
4961         btrfs_init_map_token(&token);
4962
4963         leaf = path->nodes[0];
4964         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4965
4966         for (i = 0; i < nr; i++)
4967                 dsize += btrfs_item_size_nr(leaf, slot + i);
4968
4969         nritems = btrfs_header_nritems(leaf);
4970
4971         if (slot + nr != nritems) {
4972                 int data_end = leaf_data_end(root, leaf);
4973
4974                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4975                               data_end + dsize,
4976                               btrfs_leaf_data(leaf) + data_end,
4977                               last_off - data_end);
4978
4979                 for (i = slot + nr; i < nritems; i++) {
4980                         u32 ioff;
4981
4982                         item = btrfs_item_nr(i);
4983                         ioff = btrfs_token_item_offset(leaf, item, &token);
4984                         btrfs_set_token_item_offset(leaf, item,
4985                                                     ioff + dsize, &token);
4986                 }
4987
4988                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4989                               btrfs_item_nr_offset(slot + nr),
4990                               sizeof(struct btrfs_item) *
4991                               (nritems - slot - nr));
4992         }
4993         btrfs_set_header_nritems(leaf, nritems - nr);
4994         nritems -= nr;
4995
4996         /* delete the leaf if we've emptied it */
4997         if (nritems == 0) {
4998                 if (leaf == root->node) {
4999                         btrfs_set_header_level(leaf, 0);
5000                 } else {
5001                         btrfs_set_path_blocking(path);
5002                         clean_tree_block(trans, root->fs_info, leaf);
5003                         btrfs_del_leaf(trans, root, path, leaf);
5004                 }
5005         } else {
5006                 int used = leaf_space_used(leaf, 0, nritems);
5007                 if (slot == 0) {
5008                         struct btrfs_disk_key disk_key;
5009
5010                         btrfs_item_key(leaf, &disk_key, 0);
5011                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
5012                 }
5013
5014                 /* delete the leaf if it is mostly empty */
5015                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5016                         /* push_leaf_left fixes the path.
5017                          * make sure the path still points to our leaf
5018                          * for possible call to del_ptr below
5019                          */
5020                         slot = path->slots[1];
5021                         extent_buffer_get(leaf);
5022
5023                         btrfs_set_path_blocking(path);
5024                         wret = push_leaf_left(trans, root, path, 1, 1,
5025                                               1, (u32)-1);
5026                         if (wret < 0 && wret != -ENOSPC)
5027                                 ret = wret;
5028
5029                         if (path->nodes[0] == leaf &&
5030                             btrfs_header_nritems(leaf)) {
5031                                 wret = push_leaf_right(trans, root, path, 1,
5032                                                        1, 1, 0);
5033                                 if (wret < 0 && wret != -ENOSPC)
5034                                         ret = wret;
5035                         }
5036
5037                         if (btrfs_header_nritems(leaf) == 0) {
5038                                 path->slots[1] = slot;
5039                                 btrfs_del_leaf(trans, root, path, leaf);
5040                                 free_extent_buffer(leaf);
5041                                 ret = 0;
5042                         } else {
5043                                 /* if we're still in the path, make sure
5044                                  * we're dirty.  Otherwise, one of the
5045                                  * push_leaf functions must have already
5046                                  * dirtied this buffer
5047                                  */
5048                                 if (path->nodes[0] == leaf)
5049                                         btrfs_mark_buffer_dirty(leaf);
5050                                 free_extent_buffer(leaf);
5051                         }
5052                 } else {
5053                         btrfs_mark_buffer_dirty(leaf);
5054                 }
5055         }
5056         return ret;
5057 }
5058
5059 /*
5060  * search the tree again to find a leaf with lesser keys
5061  * returns 0 if it found something or 1 if there are no lesser leaves.
5062  * returns < 0 on io errors.
5063  *
5064  * This may release the path, and so you may lose any locks held at the
5065  * time you call it.
5066  */
5067 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5068 {
5069         struct btrfs_key key;
5070         struct btrfs_disk_key found_key;
5071         int ret;
5072
5073         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5074
5075         if (key.offset > 0) {
5076                 key.offset--;
5077         } else if (key.type > 0) {
5078                 key.type--;
5079                 key.offset = (u64)-1;
5080         } else if (key.objectid > 0) {
5081                 key.objectid--;
5082                 key.type = (u8)-1;
5083                 key.offset = (u64)-1;
5084         } else {
5085                 return 1;
5086         }
5087
5088         btrfs_release_path(path);
5089         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5090         if (ret < 0)
5091                 return ret;
5092         btrfs_item_key(path->nodes[0], &found_key, 0);
5093         ret = comp_keys(&found_key, &key);
5094         /*
5095          * We might have had an item with the previous key in the tree right
5096          * before we released our path. And after we released our path, that
5097          * item might have been pushed to the first slot (0) of the leaf we
5098          * were holding due to a tree balance. Alternatively, an item with the
5099          * previous key can exist as the only element of a leaf (big fat item).
5100          * Therefore account for these 2 cases, so that our callers (like
5101          * btrfs_previous_item) don't miss an existing item with a key matching
5102          * the previous key we computed above.
5103          */
5104         if (ret <= 0)
5105                 return 0;
5106         return 1;
5107 }
5108
5109 /*
5110  * A helper function to walk down the tree starting at min_key, and looking
5111  * for nodes or leaves that are have a minimum transaction id.
5112  * This is used by the btree defrag code, and tree logging
5113  *
5114  * This does not cow, but it does stuff the starting key it finds back
5115  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5116  * key and get a writable path.
5117  *
5118  * This does lock as it descends, and path->keep_locks should be set
5119  * to 1 by the caller.
5120  *
5121  * This honors path->lowest_level to prevent descent past a given level
5122  * of the tree.
5123  *
5124  * min_trans indicates the oldest transaction that you are interested
5125  * in walking through.  Any nodes or leaves older than min_trans are
5126  * skipped over (without reading them).
5127  *
5128  * returns zero if something useful was found, < 0 on error and 1 if there
5129  * was nothing in the tree that matched the search criteria.
5130  */
5131 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5132                          struct btrfs_path *path,
5133                          u64 min_trans)
5134 {
5135         struct extent_buffer *cur;
5136         struct btrfs_key found_key;
5137         int slot;
5138         int sret;
5139         u32 nritems;
5140         int level;
5141         int ret = 1;
5142         int keep_locks = path->keep_locks;
5143
5144         path->keep_locks = 1;
5145 again:
5146         cur = btrfs_read_lock_root_node(root);
5147         level = btrfs_header_level(cur);
5148         WARN_ON(path->nodes[level]);
5149         path->nodes[level] = cur;
5150         path->locks[level] = BTRFS_READ_LOCK;
5151
5152         if (btrfs_header_generation(cur) < min_trans) {
5153                 ret = 1;
5154                 goto out;
5155         }
5156         while (1) {
5157                 nritems = btrfs_header_nritems(cur);
5158                 level = btrfs_header_level(cur);
5159                 sret = bin_search(cur, min_key, level, &slot);
5160
5161                 /* at the lowest level, we're done, setup the path and exit */
5162                 if (level == path->lowest_level) {
5163                         if (slot >= nritems)
5164                                 goto find_next_key;
5165                         ret = 0;
5166                         path->slots[level] = slot;
5167                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5168                         goto out;
5169                 }
5170                 if (sret && slot > 0)
5171                         slot--;
5172                 /*
5173                  * check this node pointer against the min_trans parameters.
5174                  * If it is too old, old, skip to the next one.
5175                  */
5176                 while (slot < nritems) {
5177                         u64 gen;
5178
5179                         gen = btrfs_node_ptr_generation(cur, slot);
5180                         if (gen < min_trans) {
5181                                 slot++;
5182                                 continue;
5183                         }
5184                         break;
5185                 }
5186 find_next_key:
5187                 /*
5188                  * we didn't find a candidate key in this node, walk forward
5189                  * and find another one
5190                  */
5191                 if (slot >= nritems) {
5192                         path->slots[level] = slot;
5193                         btrfs_set_path_blocking(path);
5194                         sret = btrfs_find_next_key(root, path, min_key, level,
5195                                                   min_trans);
5196                         if (sret == 0) {
5197                                 btrfs_release_path(path);
5198                                 goto again;
5199                         } else {
5200                                 goto out;
5201                         }
5202                 }
5203                 /* save our key for returning back */
5204                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5205                 path->slots[level] = slot;
5206                 if (level == path->lowest_level) {
5207                         ret = 0;
5208                         goto out;
5209                 }
5210                 btrfs_set_path_blocking(path);
5211                 cur = read_node_slot(root, cur, slot);
5212                 if (IS_ERR(cur)) {
5213                         ret = PTR_ERR(cur);
5214                         goto out;
5215                 }
5216
5217                 btrfs_tree_read_lock(cur);
5218
5219                 path->locks[level - 1] = BTRFS_READ_LOCK;
5220                 path->nodes[level - 1] = cur;
5221                 unlock_up(path, level, 1, 0, NULL);
5222                 btrfs_clear_path_blocking(path, NULL, 0);
5223         }
5224 out:
5225         path->keep_locks = keep_locks;
5226         if (ret == 0) {
5227                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5228                 btrfs_set_path_blocking(path);
5229                 memcpy(min_key, &found_key, sizeof(found_key));
5230         }
5231         return ret;
5232 }
5233
5234 static int tree_move_down(struct btrfs_root *root,
5235                            struct btrfs_path *path,
5236                            int *level, int root_level)
5237 {
5238         struct extent_buffer *eb;
5239
5240         BUG_ON(*level == 0);
5241         eb = read_node_slot(root, path->nodes[*level], path->slots[*level]);
5242         if (IS_ERR(eb))
5243                 return PTR_ERR(eb);
5244
5245         path->nodes[*level - 1] = eb;
5246         path->slots[*level - 1] = 0;
5247         (*level)--;
5248         return 0;
5249 }
5250
5251 static int tree_move_next_or_upnext(struct btrfs_root *root,
5252                                     struct btrfs_path *path,
5253                                     int *level, int root_level)
5254 {
5255         int ret = 0;
5256         int nritems;
5257         nritems = btrfs_header_nritems(path->nodes[*level]);
5258
5259         path->slots[*level]++;
5260
5261         while (path->slots[*level] >= nritems) {
5262                 if (*level == root_level)
5263                         return -1;
5264
5265                 /* move upnext */
5266                 path->slots[*level] = 0;
5267                 free_extent_buffer(path->nodes[*level]);
5268                 path->nodes[*level] = NULL;
5269                 (*level)++;
5270                 path->slots[*level]++;
5271
5272                 nritems = btrfs_header_nritems(path->nodes[*level]);
5273                 ret = 1;
5274         }
5275         return ret;
5276 }
5277
5278 /*
5279  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5280  * or down.
5281  */
5282 static int tree_advance(struct btrfs_root *root,
5283                         struct btrfs_path *path,
5284                         int *level, int root_level,
5285                         int allow_down,
5286                         struct btrfs_key *key)
5287 {
5288         int ret;
5289
5290         if (*level == 0 || !allow_down) {
5291                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5292         } else {
5293                 ret = tree_move_down(root, path, level, root_level);
5294         }
5295         if (ret >= 0) {
5296                 if (*level == 0)
5297                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5298                                         path->slots[*level]);
5299                 else
5300                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5301                                         path->slots[*level]);
5302         }
5303         return ret;
5304 }
5305
5306 static int tree_compare_item(struct btrfs_root *left_root,
5307                              struct btrfs_path *left_path,
5308                              struct btrfs_path *right_path,
5309                              char *tmp_buf)
5310 {
5311         int cmp;
5312         int len1, len2;
5313         unsigned long off1, off2;
5314
5315         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5316         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5317         if (len1 != len2)
5318                 return 1;
5319
5320         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5321         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5322                                 right_path->slots[0]);
5323
5324         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5325
5326         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5327         if (cmp)
5328                 return 1;
5329         return 0;
5330 }
5331
5332 #define ADVANCE 1
5333 #define ADVANCE_ONLY_NEXT -1
5334
5335 /*
5336  * This function compares two trees and calls the provided callback for
5337  * every changed/new/deleted item it finds.
5338  * If shared tree blocks are encountered, whole subtrees are skipped, making
5339  * the compare pretty fast on snapshotted subvolumes.
5340  *
5341  * This currently works on commit roots only. As commit roots are read only,
5342  * we don't do any locking. The commit roots are protected with transactions.
5343  * Transactions are ended and rejoined when a commit is tried in between.
5344  *
5345  * This function checks for modifications done to the trees while comparing.
5346  * If it detects a change, it aborts immediately.
5347  */
5348 int btrfs_compare_trees(struct btrfs_root *left_root,
5349                         struct btrfs_root *right_root,
5350                         btrfs_changed_cb_t changed_cb, void *ctx)
5351 {
5352         int ret;
5353         int cmp;
5354         struct btrfs_path *left_path = NULL;
5355         struct btrfs_path *right_path = NULL;
5356         struct btrfs_key left_key;
5357         struct btrfs_key right_key;
5358         char *tmp_buf = NULL;
5359         int left_root_level;
5360         int right_root_level;
5361         int left_level;
5362         int right_level;
5363         int left_end_reached;
5364         int right_end_reached;
5365         int advance_left;
5366         int advance_right;
5367         u64 left_blockptr;
5368         u64 right_blockptr;
5369         u64 left_gen;
5370         u64 right_gen;
5371
5372         left_path = btrfs_alloc_path();
5373         if (!left_path) {
5374                 ret = -ENOMEM;
5375                 goto out;
5376         }
5377         right_path = btrfs_alloc_path();
5378         if (!right_path) {
5379                 ret = -ENOMEM;
5380                 goto out;
5381         }
5382
5383         tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5384         if (!tmp_buf) {
5385                 tmp_buf = vmalloc(left_root->nodesize);
5386                 if (!tmp_buf) {
5387                         ret = -ENOMEM;
5388                         goto out;
5389                 }
5390         }
5391
5392         left_path->search_commit_root = 1;
5393         left_path->skip_locking = 1;
5394         right_path->search_commit_root = 1;
5395         right_path->skip_locking = 1;
5396
5397         /*
5398          * Strategy: Go to the first items of both trees. Then do
5399          *
5400          * If both trees are at level 0
5401          *   Compare keys of current items
5402          *     If left < right treat left item as new, advance left tree
5403          *       and repeat
5404          *     If left > right treat right item as deleted, advance right tree
5405          *       and repeat
5406          *     If left == right do deep compare of items, treat as changed if
5407          *       needed, advance both trees and repeat
5408          * If both trees are at the same level but not at level 0
5409          *   Compare keys of current nodes/leafs
5410          *     If left < right advance left tree and repeat
5411          *     If left > right advance right tree and repeat
5412          *     If left == right compare blockptrs of the next nodes/leafs
5413          *       If they match advance both trees but stay at the same level
5414          *         and repeat
5415          *       If they don't match advance both trees while allowing to go
5416          *         deeper and repeat
5417          * If tree levels are different
5418          *   Advance the tree that needs it and repeat
5419          *
5420          * Advancing a tree means:
5421          *   If we are at level 0, try to go to the next slot. If that's not
5422          *   possible, go one level up and repeat. Stop when we found a level
5423          *   where we could go to the next slot. We may at this point be on a
5424          *   node or a leaf.
5425          *
5426          *   If we are not at level 0 and not on shared tree blocks, go one
5427          *   level deeper.
5428          *
5429          *   If we are not at level 0 and on shared tree blocks, go one slot to
5430          *   the right if possible or go up and right.
5431          */
5432
5433         down_read(&left_root->fs_info->commit_root_sem);
5434         left_level = btrfs_header_level(left_root->commit_root);
5435         left_root_level = left_level;
5436         left_path->nodes[left_level] = left_root->commit_root;
5437         extent_buffer_get(left_path->nodes[left_level]);
5438
5439         right_level = btrfs_header_level(right_root->commit_root);
5440         right_root_level = right_level;
5441         right_path->nodes[right_level] = right_root->commit_root;
5442         extent_buffer_get(right_path->nodes[right_level]);
5443         up_read(&left_root->fs_info->commit_root_sem);
5444
5445         if (left_level == 0)
5446                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5447                                 &left_key, left_path->slots[left_level]);
5448         else
5449                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5450                                 &left_key, left_path->slots[left_level]);
5451         if (right_level == 0)
5452                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5453                                 &right_key, right_path->slots[right_level]);
5454         else
5455                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5456                                 &right_key, right_path->slots[right_level]);
5457
5458         left_end_reached = right_end_reached = 0;
5459         advance_left = advance_right = 0;
5460
5461         while (1) {
5462                 if (advance_left && !left_end_reached) {
5463                         ret = tree_advance(left_root, left_path, &left_level,
5464                                         left_root_level,
5465                                         advance_left != ADVANCE_ONLY_NEXT,
5466                                         &left_key);
5467                         if (ret == -1)
5468                                 left_end_reached = ADVANCE;
5469                         else if (ret < 0)
5470                                 goto out;
5471                         advance_left = 0;
5472                 }
5473                 if (advance_right && !right_end_reached) {
5474                         ret = tree_advance(right_root, right_path, &right_level,
5475                                         right_root_level,
5476                                         advance_right != ADVANCE_ONLY_NEXT,
5477                                         &right_key);
5478                         if (ret == -1)
5479                                 right_end_reached = ADVANCE;
5480                         else if (ret < 0)
5481                                 goto out;
5482                         advance_right = 0;
5483                 }
5484
5485                 if (left_end_reached && right_end_reached) {
5486                         ret = 0;
5487                         goto out;
5488                 } else if (left_end_reached) {
5489                         if (right_level == 0) {
5490                                 ret = changed_cb(left_root, right_root,
5491                                                 left_path, right_path,
5492                                                 &right_key,
5493                                                 BTRFS_COMPARE_TREE_DELETED,
5494                                                 ctx);
5495                                 if (ret < 0)
5496                                         goto out;
5497                         }
5498                         advance_right = ADVANCE;
5499                         continue;
5500                 } else if (right_end_reached) {
5501                         if (left_level == 0) {
5502                                 ret = changed_cb(left_root, right_root,
5503                                                 left_path, right_path,
5504                                                 &left_key,
5505                                                 BTRFS_COMPARE_TREE_NEW,
5506                                                 ctx);
5507                                 if (ret < 0)
5508                                         goto out;
5509                         }
5510                         advance_left = ADVANCE;
5511                         continue;
5512                 }
5513
5514                 if (left_level == 0 && right_level == 0) {
5515                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5516                         if (cmp < 0) {
5517                                 ret = changed_cb(left_root, right_root,
5518                                                 left_path, right_path,
5519                                                 &left_key,
5520                                                 BTRFS_COMPARE_TREE_NEW,
5521                                                 ctx);
5522                                 if (ret < 0)
5523                                         goto out;
5524                                 advance_left = ADVANCE;
5525                         } else if (cmp > 0) {
5526                                 ret = changed_cb(left_root, right_root,
5527                                                 left_path, right_path,
5528                                                 &right_key,
5529                                                 BTRFS_COMPARE_TREE_DELETED,
5530                                                 ctx);
5531                                 if (ret < 0)
5532                                         goto out;
5533                                 advance_right = ADVANCE;
5534                         } else {
5535                                 enum btrfs_compare_tree_result result;
5536
5537                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5538                                 ret = tree_compare_item(left_root, left_path,
5539                                                 right_path, tmp_buf);
5540                                 if (ret)
5541                                         result = BTRFS_COMPARE_TREE_CHANGED;
5542                                 else
5543                                         result = BTRFS_COMPARE_TREE_SAME;
5544                                 ret = changed_cb(left_root, right_root,
5545                                                  left_path, right_path,
5546                                                  &left_key, result, ctx);
5547                                 if (ret < 0)
5548                                         goto out;
5549                                 advance_left = ADVANCE;
5550                                 advance_right = ADVANCE;
5551                         }
5552                 } else if (left_level == right_level) {
5553                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5554                         if (cmp < 0) {
5555                                 advance_left = ADVANCE;
5556                         } else if (cmp > 0) {
5557                                 advance_right = ADVANCE;
5558                         } else {
5559                                 left_blockptr = btrfs_node_blockptr(
5560                                                 left_path->nodes[left_level],
5561                                                 left_path->slots[left_level]);
5562                                 right_blockptr = btrfs_node_blockptr(
5563                                                 right_path->nodes[right_level],
5564                                                 right_path->slots[right_level]);
5565                                 left_gen = btrfs_node_ptr_generation(
5566                                                 left_path->nodes[left_level],
5567                                                 left_path->slots[left_level]);
5568                                 right_gen = btrfs_node_ptr_generation(
5569                                                 right_path->nodes[right_level],
5570                                                 right_path->slots[right_level]);
5571                                 if (left_blockptr == right_blockptr &&
5572                                     left_gen == right_gen) {
5573                                         /*
5574                                          * As we're on a shared block, don't
5575                                          * allow to go deeper.
5576                                          */
5577                                         advance_left = ADVANCE_ONLY_NEXT;
5578                                         advance_right = ADVANCE_ONLY_NEXT;
5579                                 } else {
5580                                         advance_left = ADVANCE;
5581                                         advance_right = ADVANCE;
5582                                 }
5583                         }
5584                 } else if (left_level < right_level) {
5585                         advance_right = ADVANCE;
5586                 } else {
5587                         advance_left = ADVANCE;
5588                 }
5589         }
5590
5591 out:
5592         btrfs_free_path(left_path);
5593         btrfs_free_path(right_path);
5594         kvfree(tmp_buf);
5595         return ret;
5596 }
5597
5598 /*
5599  * this is similar to btrfs_next_leaf, but does not try to preserve
5600  * and fixup the path.  It looks for and returns the next key in the
5601  * tree based on the current path and the min_trans parameters.
5602  *
5603  * 0 is returned if another key is found, < 0 if there are any errors
5604  * and 1 is returned if there are no higher keys in the tree
5605  *
5606  * path->keep_locks should be set to 1 on the search made before
5607  * calling this function.
5608  */
5609 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5610                         struct btrfs_key *key, int level, u64 min_trans)
5611 {
5612         int slot;
5613         struct extent_buffer *c;
5614
5615         WARN_ON(!path->keep_locks);
5616         while (level < BTRFS_MAX_LEVEL) {
5617                 if (!path->nodes[level])
5618                         return 1;
5619
5620                 slot = path->slots[level] + 1;
5621                 c = path->nodes[level];
5622 next:
5623                 if (slot >= btrfs_header_nritems(c)) {
5624                         int ret;
5625                         int orig_lowest;
5626                         struct btrfs_key cur_key;
5627                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5628                             !path->nodes[level + 1])
5629                                 return 1;
5630
5631                         if (path->locks[level + 1]) {
5632                                 level++;
5633                                 continue;
5634                         }
5635
5636                         slot = btrfs_header_nritems(c) - 1;
5637                         if (level == 0)
5638                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5639                         else
5640                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5641
5642                         orig_lowest = path->lowest_level;
5643                         btrfs_release_path(path);
5644                         path->lowest_level = level;
5645                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5646                                                 0, 0);
5647                         path->lowest_level = orig_lowest;
5648                         if (ret < 0)
5649                                 return ret;
5650
5651                         c = path->nodes[level];
5652                         slot = path->slots[level];
5653                         if (ret == 0)
5654                                 slot++;
5655                         goto next;
5656                 }
5657
5658                 if (level == 0)
5659                         btrfs_item_key_to_cpu(c, key, slot);
5660                 else {
5661                         u64 gen = btrfs_node_ptr_generation(c, slot);
5662
5663                         if (gen < min_trans) {
5664                                 slot++;
5665                                 goto next;
5666                         }
5667                         btrfs_node_key_to_cpu(c, key, slot);
5668                 }
5669                 return 0;
5670         }
5671         return 1;
5672 }
5673
5674 /*
5675  * search the tree again to find a leaf with greater keys
5676  * returns 0 if it found something or 1 if there are no greater leaves.
5677  * returns < 0 on io errors.
5678  */
5679 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5680 {
5681         return btrfs_next_old_leaf(root, path, 0);
5682 }
5683
5684 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5685                         u64 time_seq)
5686 {
5687         int slot;
5688         int level;
5689         struct extent_buffer *c;
5690         struct extent_buffer *next;
5691         struct btrfs_key key;
5692         u32 nritems;
5693         int ret;
5694         int old_spinning = path->leave_spinning;
5695         int next_rw_lock = 0;
5696
5697         nritems = btrfs_header_nritems(path->nodes[0]);
5698         if (nritems == 0)
5699                 return 1;
5700
5701         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5702 again:
5703         level = 1;
5704         next = NULL;
5705         next_rw_lock = 0;
5706         btrfs_release_path(path);
5707
5708         path->keep_locks = 1;
5709         path->leave_spinning = 1;
5710
5711         if (time_seq)
5712                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5713         else
5714                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5715         path->keep_locks = 0;
5716
5717         if (ret < 0)
5718                 return ret;
5719
5720         nritems = btrfs_header_nritems(path->nodes[0]);
5721         /*
5722          * by releasing the path above we dropped all our locks.  A balance
5723          * could have added more items next to the key that used to be
5724          * at the very end of the block.  So, check again here and
5725          * advance the path if there are now more items available.
5726          */
5727         if (nritems > 0 && path->slots[0] < nritems - 1) {
5728                 if (ret == 0)
5729                         path->slots[0]++;
5730                 ret = 0;
5731                 goto done;
5732         }
5733         /*
5734          * So the above check misses one case:
5735          * - after releasing the path above, someone has removed the item that
5736          *   used to be at the very end of the block, and balance between leafs
5737          *   gets another one with bigger key.offset to replace it.
5738          *
5739          * This one should be returned as well, or we can get leaf corruption
5740          * later(esp. in __btrfs_drop_extents()).
5741          *
5742          * And a bit more explanation about this check,
5743          * with ret > 0, the key isn't found, the path points to the slot
5744          * where it should be inserted, so the path->slots[0] item must be the
5745          * bigger one.
5746          */
5747         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5748                 ret = 0;
5749                 goto done;
5750         }
5751
5752         while (level < BTRFS_MAX_LEVEL) {
5753                 if (!path->nodes[level]) {
5754                         ret = 1;
5755                         goto done;
5756                 }
5757
5758                 slot = path->slots[level] + 1;
5759                 c = path->nodes[level];
5760                 if (slot >= btrfs_header_nritems(c)) {
5761                         level++;
5762                         if (level == BTRFS_MAX_LEVEL) {
5763                                 ret = 1;
5764                                 goto done;
5765                         }
5766                         continue;
5767                 }
5768
5769                 if (next) {
5770                         btrfs_tree_unlock_rw(next, next_rw_lock);
5771                         free_extent_buffer(next);
5772                 }
5773
5774                 next = c;
5775                 next_rw_lock = path->locks[level];
5776                 ret = read_block_for_search(NULL, root, path, &next, level,
5777                                             slot, &key, 0);
5778                 if (ret == -EAGAIN)
5779                         goto again;
5780
5781                 if (ret < 0) {
5782                         btrfs_release_path(path);
5783                         goto done;
5784                 }
5785
5786                 if (!path->skip_locking) {
5787                         ret = btrfs_try_tree_read_lock(next);
5788                         if (!ret && time_seq) {
5789                                 /*
5790                                  * If we don't get the lock, we may be racing
5791                                  * with push_leaf_left, holding that lock while
5792                                  * itself waiting for the leaf we've currently
5793                                  * locked. To solve this situation, we give up
5794                                  * on our lock and cycle.
5795                                  */
5796                                 free_extent_buffer(next);
5797                                 btrfs_release_path(path);
5798                                 cond_resched();
5799                                 goto again;
5800                         }
5801                         if (!ret) {
5802                                 btrfs_set_path_blocking(path);
5803                                 btrfs_tree_read_lock(next);
5804                                 btrfs_clear_path_blocking(path, next,
5805                                                           BTRFS_READ_LOCK);
5806                         }
5807                         next_rw_lock = BTRFS_READ_LOCK;
5808                 }
5809                 break;
5810         }
5811         path->slots[level] = slot;
5812         while (1) {
5813                 level--;
5814                 c = path->nodes[level];
5815                 if (path->locks[level])
5816                         btrfs_tree_unlock_rw(c, path->locks[level]);
5817
5818                 free_extent_buffer(c);
5819                 path->nodes[level] = next;
5820                 path->slots[level] = 0;
5821                 if (!path->skip_locking)
5822                         path->locks[level] = next_rw_lock;
5823                 if (!level)
5824                         break;
5825
5826                 ret = read_block_for_search(NULL, root, path, &next, level,
5827                                             0, &key, 0);
5828                 if (ret == -EAGAIN)
5829                         goto again;
5830
5831                 if (ret < 0) {
5832                         btrfs_release_path(path);
5833                         goto done;
5834                 }
5835
5836                 if (!path->skip_locking) {
5837                         ret = btrfs_try_tree_read_lock(next);
5838                         if (!ret) {
5839                                 btrfs_set_path_blocking(path);
5840                                 btrfs_tree_read_lock(next);
5841                                 btrfs_clear_path_blocking(path, next,
5842                                                           BTRFS_READ_LOCK);
5843                         }
5844                         next_rw_lock = BTRFS_READ_LOCK;
5845                 }
5846         }
5847         ret = 0;
5848 done:
5849         unlock_up(path, 0, 1, 0, NULL);
5850         path->leave_spinning = old_spinning;
5851         if (!old_spinning)
5852                 btrfs_set_path_blocking(path);
5853
5854         return ret;
5855 }
5856
5857 /*
5858  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5859  * searching until it gets past min_objectid or finds an item of 'type'
5860  *
5861  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5862  */
5863 int btrfs_previous_item(struct btrfs_root *root,
5864                         struct btrfs_path *path, u64 min_objectid,
5865                         int type)
5866 {
5867         struct btrfs_key found_key;
5868         struct extent_buffer *leaf;
5869         u32 nritems;
5870         int ret;
5871
5872         while (1) {
5873                 if (path->slots[0] == 0) {
5874                         btrfs_set_path_blocking(path);
5875                         ret = btrfs_prev_leaf(root, path);
5876                         if (ret != 0)
5877                                 return ret;
5878                 } else {
5879                         path->slots[0]--;
5880                 }
5881                 leaf = path->nodes[0];
5882                 nritems = btrfs_header_nritems(leaf);
5883                 if (nritems == 0)
5884                         return 1;
5885                 if (path->slots[0] == nritems)
5886                         path->slots[0]--;
5887
5888                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5889                 if (found_key.objectid < min_objectid)
5890                         break;
5891                 if (found_key.type == type)
5892                         return 0;
5893                 if (found_key.objectid == min_objectid &&
5894                     found_key.type < type)
5895                         break;
5896         }
5897         return 1;
5898 }
5899
5900 /*
5901  * search in extent tree to find a previous Metadata/Data extent item with
5902  * min objecitd.
5903  *
5904  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5905  */
5906 int btrfs_previous_extent_item(struct btrfs_root *root,
5907                         struct btrfs_path *path, u64 min_objectid)
5908 {
5909         struct btrfs_key found_key;
5910         struct extent_buffer *leaf;
5911         u32 nritems;
5912         int ret;
5913
5914         while (1) {
5915                 if (path->slots[0] == 0) {
5916                         btrfs_set_path_blocking(path);
5917                         ret = btrfs_prev_leaf(root, path);
5918                         if (ret != 0)
5919                                 return ret;
5920                 } else {
5921                         path->slots[0]--;
5922                 }
5923                 leaf = path->nodes[0];
5924                 nritems = btrfs_header_nritems(leaf);
5925                 if (nritems == 0)
5926                         return 1;
5927                 if (path->slots[0] == nritems)
5928                         path->slots[0]--;
5929
5930                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5931                 if (found_key.objectid < min_objectid)
5932                         break;
5933                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5934                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5935                         return 0;
5936                 if (found_key.objectid == min_objectid &&
5937                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5938                         break;
5939         }
5940         return 1;
5941 }