Merge tag 'upstream-4.9-rc1' of git://git.infradead.org/linux-ubifs
[cascardo/linux.git] / fs / btrfs / delayed-inode.c
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25
26 #define BTRFS_DELAYED_WRITEBACK         512
27 #define BTRFS_DELAYED_BACKGROUND        128
28 #define BTRFS_DELAYED_BATCH             16
29
30 static struct kmem_cache *delayed_node_cache;
31
32 int __init btrfs_delayed_inode_init(void)
33 {
34         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35                                         sizeof(struct btrfs_delayed_node),
36                                         0,
37                                         SLAB_MEM_SPREAD,
38                                         NULL);
39         if (!delayed_node_cache)
40                 return -ENOMEM;
41         return 0;
42 }
43
44 void btrfs_delayed_inode_exit(void)
45 {
46         kmem_cache_destroy(delayed_node_cache);
47 }
48
49 static inline void btrfs_init_delayed_node(
50                                 struct btrfs_delayed_node *delayed_node,
51                                 struct btrfs_root *root, u64 inode_id)
52 {
53         delayed_node->root = root;
54         delayed_node->inode_id = inode_id;
55         atomic_set(&delayed_node->refs, 0);
56         delayed_node->ins_root = RB_ROOT;
57         delayed_node->del_root = RB_ROOT;
58         mutex_init(&delayed_node->mutex);
59         INIT_LIST_HEAD(&delayed_node->n_list);
60         INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62
63 static inline int btrfs_is_continuous_delayed_item(
64                                         struct btrfs_delayed_item *item1,
65                                         struct btrfs_delayed_item *item2)
66 {
67         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68             item1->key.objectid == item2->key.objectid &&
69             item1->key.type == item2->key.type &&
70             item1->key.offset + 1 == item2->key.offset)
71                 return 1;
72         return 0;
73 }
74
75 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
76                                                         struct btrfs_root *root)
77 {
78         return root->fs_info->delayed_root;
79 }
80
81 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
82 {
83         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
84         struct btrfs_root *root = btrfs_inode->root;
85         u64 ino = btrfs_ino(inode);
86         struct btrfs_delayed_node *node;
87
88         node = ACCESS_ONCE(btrfs_inode->delayed_node);
89         if (node) {
90                 atomic_inc(&node->refs);
91                 return node;
92         }
93
94         spin_lock(&root->inode_lock);
95         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
96         if (node) {
97                 if (btrfs_inode->delayed_node) {
98                         atomic_inc(&node->refs);        /* can be accessed */
99                         BUG_ON(btrfs_inode->delayed_node != node);
100                         spin_unlock(&root->inode_lock);
101                         return node;
102                 }
103                 btrfs_inode->delayed_node = node;
104                 /* can be accessed and cached in the inode */
105                 atomic_add(2, &node->refs);
106                 spin_unlock(&root->inode_lock);
107                 return node;
108         }
109         spin_unlock(&root->inode_lock);
110
111         return NULL;
112 }
113
114 /* Will return either the node or PTR_ERR(-ENOMEM) */
115 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
116                                                         struct inode *inode)
117 {
118         struct btrfs_delayed_node *node;
119         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
120         struct btrfs_root *root = btrfs_inode->root;
121         u64 ino = btrfs_ino(inode);
122         int ret;
123
124 again:
125         node = btrfs_get_delayed_node(inode);
126         if (node)
127                 return node;
128
129         node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130         if (!node)
131                 return ERR_PTR(-ENOMEM);
132         btrfs_init_delayed_node(node, root, ino);
133
134         /* cached in the btrfs inode and can be accessed */
135         atomic_add(2, &node->refs);
136
137         ret = radix_tree_preload(GFP_NOFS);
138         if (ret) {
139                 kmem_cache_free(delayed_node_cache, node);
140                 return ERR_PTR(ret);
141         }
142
143         spin_lock(&root->inode_lock);
144         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145         if (ret == -EEXIST) {
146                 spin_unlock(&root->inode_lock);
147                 kmem_cache_free(delayed_node_cache, node);
148                 radix_tree_preload_end();
149                 goto again;
150         }
151         btrfs_inode->delayed_node = node;
152         spin_unlock(&root->inode_lock);
153         radix_tree_preload_end();
154
155         return node;
156 }
157
158 /*
159  * Call it when holding delayed_node->mutex
160  *
161  * If mod = 1, add this node into the prepared list.
162  */
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164                                      struct btrfs_delayed_node *node,
165                                      int mod)
166 {
167         spin_lock(&root->lock);
168         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169                 if (!list_empty(&node->p_list))
170                         list_move_tail(&node->p_list, &root->prepare_list);
171                 else if (mod)
172                         list_add_tail(&node->p_list, &root->prepare_list);
173         } else {
174                 list_add_tail(&node->n_list, &root->node_list);
175                 list_add_tail(&node->p_list, &root->prepare_list);
176                 atomic_inc(&node->refs);        /* inserted into list */
177                 root->nodes++;
178                 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179         }
180         spin_unlock(&root->lock);
181 }
182
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185                                        struct btrfs_delayed_node *node)
186 {
187         spin_lock(&root->lock);
188         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189                 root->nodes--;
190                 atomic_dec(&node->refs);        /* not in the list */
191                 list_del_init(&node->n_list);
192                 if (!list_empty(&node->p_list))
193                         list_del_init(&node->p_list);
194                 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195         }
196         spin_unlock(&root->lock);
197 }
198
199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200                         struct btrfs_delayed_root *delayed_root)
201 {
202         struct list_head *p;
203         struct btrfs_delayed_node *node = NULL;
204
205         spin_lock(&delayed_root->lock);
206         if (list_empty(&delayed_root->node_list))
207                 goto out;
208
209         p = delayed_root->node_list.next;
210         node = list_entry(p, struct btrfs_delayed_node, n_list);
211         atomic_inc(&node->refs);
212 out:
213         spin_unlock(&delayed_root->lock);
214
215         return node;
216 }
217
218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219                                                 struct btrfs_delayed_node *node)
220 {
221         struct btrfs_delayed_root *delayed_root;
222         struct list_head *p;
223         struct btrfs_delayed_node *next = NULL;
224
225         delayed_root = node->root->fs_info->delayed_root;
226         spin_lock(&delayed_root->lock);
227         if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228                 /* not in the list */
229                 if (list_empty(&delayed_root->node_list))
230                         goto out;
231                 p = delayed_root->node_list.next;
232         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233                 goto out;
234         else
235                 p = node->n_list.next;
236
237         next = list_entry(p, struct btrfs_delayed_node, n_list);
238         atomic_inc(&next->refs);
239 out:
240         spin_unlock(&delayed_root->lock);
241
242         return next;
243 }
244
245 static void __btrfs_release_delayed_node(
246                                 struct btrfs_delayed_node *delayed_node,
247                                 int mod)
248 {
249         struct btrfs_delayed_root *delayed_root;
250
251         if (!delayed_node)
252                 return;
253
254         delayed_root = delayed_node->root->fs_info->delayed_root;
255
256         mutex_lock(&delayed_node->mutex);
257         if (delayed_node->count)
258                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259         else
260                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261         mutex_unlock(&delayed_node->mutex);
262
263         if (atomic_dec_and_test(&delayed_node->refs)) {
264                 bool free = false;
265                 struct btrfs_root *root = delayed_node->root;
266                 spin_lock(&root->inode_lock);
267                 if (atomic_read(&delayed_node->refs) == 0) {
268                         radix_tree_delete(&root->delayed_nodes_tree,
269                                           delayed_node->inode_id);
270                         free = true;
271                 }
272                 spin_unlock(&root->inode_lock);
273                 if (free)
274                         kmem_cache_free(delayed_node_cache, delayed_node);
275         }
276 }
277
278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279 {
280         __btrfs_release_delayed_node(node, 0);
281 }
282
283 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284                                         struct btrfs_delayed_root *delayed_root)
285 {
286         struct list_head *p;
287         struct btrfs_delayed_node *node = NULL;
288
289         spin_lock(&delayed_root->lock);
290         if (list_empty(&delayed_root->prepare_list))
291                 goto out;
292
293         p = delayed_root->prepare_list.next;
294         list_del_init(p);
295         node = list_entry(p, struct btrfs_delayed_node, p_list);
296         atomic_inc(&node->refs);
297 out:
298         spin_unlock(&delayed_root->lock);
299
300         return node;
301 }
302
303 static inline void btrfs_release_prepared_delayed_node(
304                                         struct btrfs_delayed_node *node)
305 {
306         __btrfs_release_delayed_node(node, 1);
307 }
308
309 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310 {
311         struct btrfs_delayed_item *item;
312         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313         if (item) {
314                 item->data_len = data_len;
315                 item->ins_or_del = 0;
316                 item->bytes_reserved = 0;
317                 item->delayed_node = NULL;
318                 atomic_set(&item->refs, 1);
319         }
320         return item;
321 }
322
323 /*
324  * __btrfs_lookup_delayed_item - look up the delayed item by key
325  * @delayed_node: pointer to the delayed node
326  * @key:          the key to look up
327  * @prev:         used to store the prev item if the right item isn't found
328  * @next:         used to store the next item if the right item isn't found
329  *
330  * Note: if we don't find the right item, we will return the prev item and
331  * the next item.
332  */
333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334                                 struct rb_root *root,
335                                 struct btrfs_key *key,
336                                 struct btrfs_delayed_item **prev,
337                                 struct btrfs_delayed_item **next)
338 {
339         struct rb_node *node, *prev_node = NULL;
340         struct btrfs_delayed_item *delayed_item = NULL;
341         int ret = 0;
342
343         node = root->rb_node;
344
345         while (node) {
346                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347                                         rb_node);
348                 prev_node = node;
349                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350                 if (ret < 0)
351                         node = node->rb_right;
352                 else if (ret > 0)
353                         node = node->rb_left;
354                 else
355                         return delayed_item;
356         }
357
358         if (prev) {
359                 if (!prev_node)
360                         *prev = NULL;
361                 else if (ret < 0)
362                         *prev = delayed_item;
363                 else if ((node = rb_prev(prev_node)) != NULL) {
364                         *prev = rb_entry(node, struct btrfs_delayed_item,
365                                          rb_node);
366                 } else
367                         *prev = NULL;
368         }
369
370         if (next) {
371                 if (!prev_node)
372                         *next = NULL;
373                 else if (ret > 0)
374                         *next = delayed_item;
375                 else if ((node = rb_next(prev_node)) != NULL) {
376                         *next = rb_entry(node, struct btrfs_delayed_item,
377                                          rb_node);
378                 } else
379                         *next = NULL;
380         }
381         return NULL;
382 }
383
384 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385                                         struct btrfs_delayed_node *delayed_node,
386                                         struct btrfs_key *key)
387 {
388         struct btrfs_delayed_item *item;
389
390         item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
391                                            NULL, NULL);
392         return item;
393 }
394
395 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
396                                     struct btrfs_delayed_item *ins,
397                                     int action)
398 {
399         struct rb_node **p, *node;
400         struct rb_node *parent_node = NULL;
401         struct rb_root *root;
402         struct btrfs_delayed_item *item;
403         int cmp;
404
405         if (action == BTRFS_DELAYED_INSERTION_ITEM)
406                 root = &delayed_node->ins_root;
407         else if (action == BTRFS_DELAYED_DELETION_ITEM)
408                 root = &delayed_node->del_root;
409         else
410                 BUG();
411         p = &root->rb_node;
412         node = &ins->rb_node;
413
414         while (*p) {
415                 parent_node = *p;
416                 item = rb_entry(parent_node, struct btrfs_delayed_item,
417                                  rb_node);
418
419                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
420                 if (cmp < 0)
421                         p = &(*p)->rb_right;
422                 else if (cmp > 0)
423                         p = &(*p)->rb_left;
424                 else
425                         return -EEXIST;
426         }
427
428         rb_link_node(node, parent_node, p);
429         rb_insert_color(node, root);
430         ins->delayed_node = delayed_node;
431         ins->ins_or_del = action;
432
433         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
434             action == BTRFS_DELAYED_INSERTION_ITEM &&
435             ins->key.offset >= delayed_node->index_cnt)
436                         delayed_node->index_cnt = ins->key.offset + 1;
437
438         delayed_node->count++;
439         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
440         return 0;
441 }
442
443 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
444                                               struct btrfs_delayed_item *item)
445 {
446         return __btrfs_add_delayed_item(node, item,
447                                         BTRFS_DELAYED_INSERTION_ITEM);
448 }
449
450 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
451                                              struct btrfs_delayed_item *item)
452 {
453         return __btrfs_add_delayed_item(node, item,
454                                         BTRFS_DELAYED_DELETION_ITEM);
455 }
456
457 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
458 {
459         int seq = atomic_inc_return(&delayed_root->items_seq);
460
461         /*
462          * atomic_dec_return implies a barrier for waitqueue_active
463          */
464         if ((atomic_dec_return(&delayed_root->items) <
465             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
466             waitqueue_active(&delayed_root->wait))
467                 wake_up(&delayed_root->wait);
468 }
469
470 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
471 {
472         struct rb_root *root;
473         struct btrfs_delayed_root *delayed_root;
474
475         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
476
477         BUG_ON(!delayed_root);
478         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
479                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
480
481         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
482                 root = &delayed_item->delayed_node->ins_root;
483         else
484                 root = &delayed_item->delayed_node->del_root;
485
486         rb_erase(&delayed_item->rb_node, root);
487         delayed_item->delayed_node->count--;
488
489         finish_one_item(delayed_root);
490 }
491
492 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
493 {
494         if (item) {
495                 __btrfs_remove_delayed_item(item);
496                 if (atomic_dec_and_test(&item->refs))
497                         kfree(item);
498         }
499 }
500
501 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
502                                         struct btrfs_delayed_node *delayed_node)
503 {
504         struct rb_node *p;
505         struct btrfs_delayed_item *item = NULL;
506
507         p = rb_first(&delayed_node->ins_root);
508         if (p)
509                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
510
511         return item;
512 }
513
514 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
515                                         struct btrfs_delayed_node *delayed_node)
516 {
517         struct rb_node *p;
518         struct btrfs_delayed_item *item = NULL;
519
520         p = rb_first(&delayed_node->del_root);
521         if (p)
522                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
523
524         return item;
525 }
526
527 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
528                                                 struct btrfs_delayed_item *item)
529 {
530         struct rb_node *p;
531         struct btrfs_delayed_item *next = NULL;
532
533         p = rb_next(&item->rb_node);
534         if (p)
535                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
536
537         return next;
538 }
539
540 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
541                                                struct btrfs_root *root,
542                                                struct btrfs_delayed_item *item)
543 {
544         struct btrfs_block_rsv *src_rsv;
545         struct btrfs_block_rsv *dst_rsv;
546         u64 num_bytes;
547         int ret;
548
549         if (!trans->bytes_reserved)
550                 return 0;
551
552         src_rsv = trans->block_rsv;
553         dst_rsv = &root->fs_info->delayed_block_rsv;
554
555         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
556         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
557         if (!ret) {
558                 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
559                                               item->key.objectid,
560                                               num_bytes, 1);
561                 item->bytes_reserved = num_bytes;
562         }
563
564         return ret;
565 }
566
567 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
568                                                 struct btrfs_delayed_item *item)
569 {
570         struct btrfs_block_rsv *rsv;
571
572         if (!item->bytes_reserved)
573                 return;
574
575         rsv = &root->fs_info->delayed_block_rsv;
576         trace_btrfs_space_reservation(root->fs_info, "delayed_item",
577                                       item->key.objectid, item->bytes_reserved,
578                                       0);
579         btrfs_block_rsv_release(root, rsv,
580                                 item->bytes_reserved);
581 }
582
583 static int btrfs_delayed_inode_reserve_metadata(
584                                         struct btrfs_trans_handle *trans,
585                                         struct btrfs_root *root,
586                                         struct inode *inode,
587                                         struct btrfs_delayed_node *node)
588 {
589         struct btrfs_block_rsv *src_rsv;
590         struct btrfs_block_rsv *dst_rsv;
591         u64 num_bytes;
592         int ret;
593         bool release = false;
594
595         src_rsv = trans->block_rsv;
596         dst_rsv = &root->fs_info->delayed_block_rsv;
597
598         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
599
600         /*
601          * If our block_rsv is the delalloc block reserve then check and see if
602          * we have our extra reservation for updating the inode.  If not fall
603          * through and try to reserve space quickly.
604          *
605          * We used to try and steal from the delalloc block rsv or the global
606          * reserve, but we'd steal a full reservation, which isn't kind.  We are
607          * here through delalloc which means we've likely just cowed down close
608          * to the leaf that contains the inode, so we would steal less just
609          * doing the fallback inode update, so if we do end up having to steal
610          * from the global block rsv we hopefully only steal one or two blocks
611          * worth which is less likely to hurt us.
612          */
613         if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
614                 spin_lock(&BTRFS_I(inode)->lock);
615                 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
616                                        &BTRFS_I(inode)->runtime_flags))
617                         release = true;
618                 else
619                         src_rsv = NULL;
620                 spin_unlock(&BTRFS_I(inode)->lock);
621         }
622
623         /*
624          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
625          * which doesn't reserve space for speed.  This is a problem since we
626          * still need to reserve space for this update, so try to reserve the
627          * space.
628          *
629          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
630          * we're accounted for.
631          */
632         if (!src_rsv || (!trans->bytes_reserved &&
633                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
634                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
635                                           BTRFS_RESERVE_NO_FLUSH);
636                 /*
637                  * Since we're under a transaction reserve_metadata_bytes could
638                  * try to commit the transaction which will make it return
639                  * EAGAIN to make us stop the transaction we have, so return
640                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641                  */
642                 if (ret == -EAGAIN)
643                         ret = -ENOSPC;
644                 if (!ret) {
645                         node->bytes_reserved = num_bytes;
646                         trace_btrfs_space_reservation(root->fs_info,
647                                                       "delayed_inode",
648                                                       btrfs_ino(inode),
649                                                       num_bytes, 1);
650                 }
651                 return ret;
652         }
653
654         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
655
656         /*
657          * Migrate only takes a reservation, it doesn't touch the size of the
658          * block_rsv.  This is to simplify people who don't normally have things
659          * migrated from their block rsv.  If they go to release their
660          * reservation, that will decrease the size as well, so if migrate
661          * reduced size we'd end up with a negative size.  But for the
662          * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
663          * but we could in fact do this reserve/migrate dance several times
664          * between the time we did the original reservation and we'd clean it
665          * up.  So to take care of this, release the space for the meta
666          * reservation here.  I think it may be time for a documentation page on
667          * how block rsvs. work.
668          */
669         if (!ret) {
670                 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
671                                               btrfs_ino(inode), num_bytes, 1);
672                 node->bytes_reserved = num_bytes;
673         }
674
675         if (release) {
676                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
677                                               btrfs_ino(inode), num_bytes, 0);
678                 btrfs_block_rsv_release(root, src_rsv, num_bytes);
679         }
680
681         return ret;
682 }
683
684 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
685                                                 struct btrfs_delayed_node *node)
686 {
687         struct btrfs_block_rsv *rsv;
688
689         if (!node->bytes_reserved)
690                 return;
691
692         rsv = &root->fs_info->delayed_block_rsv;
693         trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
694                                       node->inode_id, node->bytes_reserved, 0);
695         btrfs_block_rsv_release(root, rsv,
696                                 node->bytes_reserved);
697         node->bytes_reserved = 0;
698 }
699
700 /*
701  * This helper will insert some continuous items into the same leaf according
702  * to the free space of the leaf.
703  */
704 static int btrfs_batch_insert_items(struct btrfs_root *root,
705                                     struct btrfs_path *path,
706                                     struct btrfs_delayed_item *item)
707 {
708         struct btrfs_delayed_item *curr, *next;
709         int free_space;
710         int total_data_size = 0, total_size = 0;
711         struct extent_buffer *leaf;
712         char *data_ptr;
713         struct btrfs_key *keys;
714         u32 *data_size;
715         struct list_head head;
716         int slot;
717         int nitems;
718         int i;
719         int ret = 0;
720
721         BUG_ON(!path->nodes[0]);
722
723         leaf = path->nodes[0];
724         free_space = btrfs_leaf_free_space(root, leaf);
725         INIT_LIST_HEAD(&head);
726
727         next = item;
728         nitems = 0;
729
730         /*
731          * count the number of the continuous items that we can insert in batch
732          */
733         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
734                free_space) {
735                 total_data_size += next->data_len;
736                 total_size += next->data_len + sizeof(struct btrfs_item);
737                 list_add_tail(&next->tree_list, &head);
738                 nitems++;
739
740                 curr = next;
741                 next = __btrfs_next_delayed_item(curr);
742                 if (!next)
743                         break;
744
745                 if (!btrfs_is_continuous_delayed_item(curr, next))
746                         break;
747         }
748
749         if (!nitems) {
750                 ret = 0;
751                 goto out;
752         }
753
754         /*
755          * we need allocate some memory space, but it might cause the task
756          * to sleep, so we set all locked nodes in the path to blocking locks
757          * first.
758          */
759         btrfs_set_path_blocking(path);
760
761         keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
762         if (!keys) {
763                 ret = -ENOMEM;
764                 goto out;
765         }
766
767         data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
768         if (!data_size) {
769                 ret = -ENOMEM;
770                 goto error;
771         }
772
773         /* get keys of all the delayed items */
774         i = 0;
775         list_for_each_entry(next, &head, tree_list) {
776                 keys[i] = next->key;
777                 data_size[i] = next->data_len;
778                 i++;
779         }
780
781         /* reset all the locked nodes in the patch to spinning locks. */
782         btrfs_clear_path_blocking(path, NULL, 0);
783
784         /* insert the keys of the items */
785         setup_items_for_insert(root, path, keys, data_size,
786                                total_data_size, total_size, nitems);
787
788         /* insert the dir index items */
789         slot = path->slots[0];
790         list_for_each_entry_safe(curr, next, &head, tree_list) {
791                 data_ptr = btrfs_item_ptr(leaf, slot, char);
792                 write_extent_buffer(leaf, &curr->data,
793                                     (unsigned long)data_ptr,
794                                     curr->data_len);
795                 slot++;
796
797                 btrfs_delayed_item_release_metadata(root, curr);
798
799                 list_del(&curr->tree_list);
800                 btrfs_release_delayed_item(curr);
801         }
802
803 error:
804         kfree(data_size);
805         kfree(keys);
806 out:
807         return ret;
808 }
809
810 /*
811  * This helper can just do simple insertion that needn't extend item for new
812  * data, such as directory name index insertion, inode insertion.
813  */
814 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
815                                      struct btrfs_root *root,
816                                      struct btrfs_path *path,
817                                      struct btrfs_delayed_item *delayed_item)
818 {
819         struct extent_buffer *leaf;
820         char *ptr;
821         int ret;
822
823         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
824                                       delayed_item->data_len);
825         if (ret < 0 && ret != -EEXIST)
826                 return ret;
827
828         leaf = path->nodes[0];
829
830         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
831
832         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
833                             delayed_item->data_len);
834         btrfs_mark_buffer_dirty(leaf);
835
836         btrfs_delayed_item_release_metadata(root, delayed_item);
837         return 0;
838 }
839
840 /*
841  * we insert an item first, then if there are some continuous items, we try
842  * to insert those items into the same leaf.
843  */
844 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
845                                       struct btrfs_path *path,
846                                       struct btrfs_root *root,
847                                       struct btrfs_delayed_node *node)
848 {
849         struct btrfs_delayed_item *curr, *prev;
850         int ret = 0;
851
852 do_again:
853         mutex_lock(&node->mutex);
854         curr = __btrfs_first_delayed_insertion_item(node);
855         if (!curr)
856                 goto insert_end;
857
858         ret = btrfs_insert_delayed_item(trans, root, path, curr);
859         if (ret < 0) {
860                 btrfs_release_path(path);
861                 goto insert_end;
862         }
863
864         prev = curr;
865         curr = __btrfs_next_delayed_item(prev);
866         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
867                 /* insert the continuous items into the same leaf */
868                 path->slots[0]++;
869                 btrfs_batch_insert_items(root, path, curr);
870         }
871         btrfs_release_delayed_item(prev);
872         btrfs_mark_buffer_dirty(path->nodes[0]);
873
874         btrfs_release_path(path);
875         mutex_unlock(&node->mutex);
876         goto do_again;
877
878 insert_end:
879         mutex_unlock(&node->mutex);
880         return ret;
881 }
882
883 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
884                                     struct btrfs_root *root,
885                                     struct btrfs_path *path,
886                                     struct btrfs_delayed_item *item)
887 {
888         struct btrfs_delayed_item *curr, *next;
889         struct extent_buffer *leaf;
890         struct btrfs_key key;
891         struct list_head head;
892         int nitems, i, last_item;
893         int ret = 0;
894
895         BUG_ON(!path->nodes[0]);
896
897         leaf = path->nodes[0];
898
899         i = path->slots[0];
900         last_item = btrfs_header_nritems(leaf) - 1;
901         if (i > last_item)
902                 return -ENOENT; /* FIXME: Is errno suitable? */
903
904         next = item;
905         INIT_LIST_HEAD(&head);
906         btrfs_item_key_to_cpu(leaf, &key, i);
907         nitems = 0;
908         /*
909          * count the number of the dir index items that we can delete in batch
910          */
911         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
912                 list_add_tail(&next->tree_list, &head);
913                 nitems++;
914
915                 curr = next;
916                 next = __btrfs_next_delayed_item(curr);
917                 if (!next)
918                         break;
919
920                 if (!btrfs_is_continuous_delayed_item(curr, next))
921                         break;
922
923                 i++;
924                 if (i > last_item)
925                         break;
926                 btrfs_item_key_to_cpu(leaf, &key, i);
927         }
928
929         if (!nitems)
930                 return 0;
931
932         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
933         if (ret)
934                 goto out;
935
936         list_for_each_entry_safe(curr, next, &head, tree_list) {
937                 btrfs_delayed_item_release_metadata(root, curr);
938                 list_del(&curr->tree_list);
939                 btrfs_release_delayed_item(curr);
940         }
941
942 out:
943         return ret;
944 }
945
946 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
947                                       struct btrfs_path *path,
948                                       struct btrfs_root *root,
949                                       struct btrfs_delayed_node *node)
950 {
951         struct btrfs_delayed_item *curr, *prev;
952         int ret = 0;
953
954 do_again:
955         mutex_lock(&node->mutex);
956         curr = __btrfs_first_delayed_deletion_item(node);
957         if (!curr)
958                 goto delete_fail;
959
960         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
961         if (ret < 0)
962                 goto delete_fail;
963         else if (ret > 0) {
964                 /*
965                  * can't find the item which the node points to, so this node
966                  * is invalid, just drop it.
967                  */
968                 prev = curr;
969                 curr = __btrfs_next_delayed_item(prev);
970                 btrfs_release_delayed_item(prev);
971                 ret = 0;
972                 btrfs_release_path(path);
973                 if (curr) {
974                         mutex_unlock(&node->mutex);
975                         goto do_again;
976                 } else
977                         goto delete_fail;
978         }
979
980         btrfs_batch_delete_items(trans, root, path, curr);
981         btrfs_release_path(path);
982         mutex_unlock(&node->mutex);
983         goto do_again;
984
985 delete_fail:
986         btrfs_release_path(path);
987         mutex_unlock(&node->mutex);
988         return ret;
989 }
990
991 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
992 {
993         struct btrfs_delayed_root *delayed_root;
994
995         if (delayed_node &&
996             test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
997                 BUG_ON(!delayed_node->root);
998                 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
999                 delayed_node->count--;
1000
1001                 delayed_root = delayed_node->root->fs_info->delayed_root;
1002                 finish_one_item(delayed_root);
1003         }
1004 }
1005
1006 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1007 {
1008         struct btrfs_delayed_root *delayed_root;
1009
1010         ASSERT(delayed_node->root);
1011         clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1012         delayed_node->count--;
1013
1014         delayed_root = delayed_node->root->fs_info->delayed_root;
1015         finish_one_item(delayed_root);
1016 }
1017
1018 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1019                                         struct btrfs_root *root,
1020                                         struct btrfs_path *path,
1021                                         struct btrfs_delayed_node *node)
1022 {
1023         struct btrfs_key key;
1024         struct btrfs_inode_item *inode_item;
1025         struct extent_buffer *leaf;
1026         int mod;
1027         int ret;
1028
1029         key.objectid = node->inode_id;
1030         key.type = BTRFS_INODE_ITEM_KEY;
1031         key.offset = 0;
1032
1033         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1034                 mod = -1;
1035         else
1036                 mod = 1;
1037
1038         ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1039         if (ret > 0) {
1040                 btrfs_release_path(path);
1041                 return -ENOENT;
1042         } else if (ret < 0) {
1043                 return ret;
1044         }
1045
1046         leaf = path->nodes[0];
1047         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1048                                     struct btrfs_inode_item);
1049         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1050                             sizeof(struct btrfs_inode_item));
1051         btrfs_mark_buffer_dirty(leaf);
1052
1053         if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1054                 goto no_iref;
1055
1056         path->slots[0]++;
1057         if (path->slots[0] >= btrfs_header_nritems(leaf))
1058                 goto search;
1059 again:
1060         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1061         if (key.objectid != node->inode_id)
1062                 goto out;
1063
1064         if (key.type != BTRFS_INODE_REF_KEY &&
1065             key.type != BTRFS_INODE_EXTREF_KEY)
1066                 goto out;
1067
1068         /*
1069          * Delayed iref deletion is for the inode who has only one link,
1070          * so there is only one iref. The case that several irefs are
1071          * in the same item doesn't exist.
1072          */
1073         btrfs_del_item(trans, root, path);
1074 out:
1075         btrfs_release_delayed_iref(node);
1076 no_iref:
1077         btrfs_release_path(path);
1078 err_out:
1079         btrfs_delayed_inode_release_metadata(root, node);
1080         btrfs_release_delayed_inode(node);
1081
1082         return ret;
1083
1084 search:
1085         btrfs_release_path(path);
1086
1087         key.type = BTRFS_INODE_EXTREF_KEY;
1088         key.offset = -1;
1089         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1090         if (ret < 0)
1091                 goto err_out;
1092         ASSERT(ret);
1093
1094         ret = 0;
1095         leaf = path->nodes[0];
1096         path->slots[0]--;
1097         goto again;
1098 }
1099
1100 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1101                                              struct btrfs_root *root,
1102                                              struct btrfs_path *path,
1103                                              struct btrfs_delayed_node *node)
1104 {
1105         int ret;
1106
1107         mutex_lock(&node->mutex);
1108         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1109                 mutex_unlock(&node->mutex);
1110                 return 0;
1111         }
1112
1113         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1114         mutex_unlock(&node->mutex);
1115         return ret;
1116 }
1117
1118 static inline int
1119 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1120                                    struct btrfs_path *path,
1121                                    struct btrfs_delayed_node *node)
1122 {
1123         int ret;
1124
1125         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1126         if (ret)
1127                 return ret;
1128
1129         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1130         if (ret)
1131                 return ret;
1132
1133         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1134         return ret;
1135 }
1136
1137 /*
1138  * Called when committing the transaction.
1139  * Returns 0 on success.
1140  * Returns < 0 on error and returns with an aborted transaction with any
1141  * outstanding delayed items cleaned up.
1142  */
1143 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1144                                      struct btrfs_root *root, int nr)
1145 {
1146         struct btrfs_delayed_root *delayed_root;
1147         struct btrfs_delayed_node *curr_node, *prev_node;
1148         struct btrfs_path *path;
1149         struct btrfs_block_rsv *block_rsv;
1150         int ret = 0;
1151         bool count = (nr > 0);
1152
1153         if (trans->aborted)
1154                 return -EIO;
1155
1156         path = btrfs_alloc_path();
1157         if (!path)
1158                 return -ENOMEM;
1159         path->leave_spinning = 1;
1160
1161         block_rsv = trans->block_rsv;
1162         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1163
1164         delayed_root = btrfs_get_delayed_root(root);
1165
1166         curr_node = btrfs_first_delayed_node(delayed_root);
1167         while (curr_node && (!count || (count && nr--))) {
1168                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1169                                                          curr_node);
1170                 if (ret) {
1171                         btrfs_release_delayed_node(curr_node);
1172                         curr_node = NULL;
1173                         btrfs_abort_transaction(trans, ret);
1174                         break;
1175                 }
1176
1177                 prev_node = curr_node;
1178                 curr_node = btrfs_next_delayed_node(curr_node);
1179                 btrfs_release_delayed_node(prev_node);
1180         }
1181
1182         if (curr_node)
1183                 btrfs_release_delayed_node(curr_node);
1184         btrfs_free_path(path);
1185         trans->block_rsv = block_rsv;
1186
1187         return ret;
1188 }
1189
1190 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1191                             struct btrfs_root *root)
1192 {
1193         return __btrfs_run_delayed_items(trans, root, -1);
1194 }
1195
1196 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1197                                struct btrfs_root *root, int nr)
1198 {
1199         return __btrfs_run_delayed_items(trans, root, nr);
1200 }
1201
1202 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1203                                      struct inode *inode)
1204 {
1205         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1206         struct btrfs_path *path;
1207         struct btrfs_block_rsv *block_rsv;
1208         int ret;
1209
1210         if (!delayed_node)
1211                 return 0;
1212
1213         mutex_lock(&delayed_node->mutex);
1214         if (!delayed_node->count) {
1215                 mutex_unlock(&delayed_node->mutex);
1216                 btrfs_release_delayed_node(delayed_node);
1217                 return 0;
1218         }
1219         mutex_unlock(&delayed_node->mutex);
1220
1221         path = btrfs_alloc_path();
1222         if (!path) {
1223                 btrfs_release_delayed_node(delayed_node);
1224                 return -ENOMEM;
1225         }
1226         path->leave_spinning = 1;
1227
1228         block_rsv = trans->block_rsv;
1229         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1230
1231         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1232
1233         btrfs_release_delayed_node(delayed_node);
1234         btrfs_free_path(path);
1235         trans->block_rsv = block_rsv;
1236
1237         return ret;
1238 }
1239
1240 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1241 {
1242         struct btrfs_trans_handle *trans;
1243         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1244         struct btrfs_path *path;
1245         struct btrfs_block_rsv *block_rsv;
1246         int ret;
1247
1248         if (!delayed_node)
1249                 return 0;
1250
1251         mutex_lock(&delayed_node->mutex);
1252         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1253                 mutex_unlock(&delayed_node->mutex);
1254                 btrfs_release_delayed_node(delayed_node);
1255                 return 0;
1256         }
1257         mutex_unlock(&delayed_node->mutex);
1258
1259         trans = btrfs_join_transaction(delayed_node->root);
1260         if (IS_ERR(trans)) {
1261                 ret = PTR_ERR(trans);
1262                 goto out;
1263         }
1264
1265         path = btrfs_alloc_path();
1266         if (!path) {
1267                 ret = -ENOMEM;
1268                 goto trans_out;
1269         }
1270         path->leave_spinning = 1;
1271
1272         block_rsv = trans->block_rsv;
1273         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1274
1275         mutex_lock(&delayed_node->mutex);
1276         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1277                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1278                                                    path, delayed_node);
1279         else
1280                 ret = 0;
1281         mutex_unlock(&delayed_node->mutex);
1282
1283         btrfs_free_path(path);
1284         trans->block_rsv = block_rsv;
1285 trans_out:
1286         btrfs_end_transaction(trans, delayed_node->root);
1287         btrfs_btree_balance_dirty(delayed_node->root);
1288 out:
1289         btrfs_release_delayed_node(delayed_node);
1290
1291         return ret;
1292 }
1293
1294 void btrfs_remove_delayed_node(struct inode *inode)
1295 {
1296         struct btrfs_delayed_node *delayed_node;
1297
1298         delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1299         if (!delayed_node)
1300                 return;
1301
1302         BTRFS_I(inode)->delayed_node = NULL;
1303         btrfs_release_delayed_node(delayed_node);
1304 }
1305
1306 struct btrfs_async_delayed_work {
1307         struct btrfs_delayed_root *delayed_root;
1308         int nr;
1309         struct btrfs_work work;
1310 };
1311
1312 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1313 {
1314         struct btrfs_async_delayed_work *async_work;
1315         struct btrfs_delayed_root *delayed_root;
1316         struct btrfs_trans_handle *trans;
1317         struct btrfs_path *path;
1318         struct btrfs_delayed_node *delayed_node = NULL;
1319         struct btrfs_root *root;
1320         struct btrfs_block_rsv *block_rsv;
1321         int total_done = 0;
1322
1323         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1324         delayed_root = async_work->delayed_root;
1325
1326         path = btrfs_alloc_path();
1327         if (!path)
1328                 goto out;
1329
1330 again:
1331         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1332                 goto free_path;
1333
1334         delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1335         if (!delayed_node)
1336                 goto free_path;
1337
1338         path->leave_spinning = 1;
1339         root = delayed_node->root;
1340
1341         trans = btrfs_join_transaction(root);
1342         if (IS_ERR(trans))
1343                 goto release_path;
1344
1345         block_rsv = trans->block_rsv;
1346         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1347
1348         __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1349
1350         trans->block_rsv = block_rsv;
1351         btrfs_end_transaction(trans, root);
1352         btrfs_btree_balance_dirty_nodelay(root);
1353
1354 release_path:
1355         btrfs_release_path(path);
1356         total_done++;
1357
1358         btrfs_release_prepared_delayed_node(delayed_node);
1359         if (async_work->nr == 0 || total_done < async_work->nr)
1360                 goto again;
1361
1362 free_path:
1363         btrfs_free_path(path);
1364 out:
1365         wake_up(&delayed_root->wait);
1366         kfree(async_work);
1367 }
1368
1369
1370 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1371                                      struct btrfs_fs_info *fs_info, int nr)
1372 {
1373         struct btrfs_async_delayed_work *async_work;
1374
1375         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1376                 return 0;
1377
1378         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1379         if (!async_work)
1380                 return -ENOMEM;
1381
1382         async_work->delayed_root = delayed_root;
1383         btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1384                         btrfs_async_run_delayed_root, NULL, NULL);
1385         async_work->nr = nr;
1386
1387         btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1388         return 0;
1389 }
1390
1391 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1392 {
1393         struct btrfs_delayed_root *delayed_root;
1394         delayed_root = btrfs_get_delayed_root(root);
1395         WARN_ON(btrfs_first_delayed_node(delayed_root));
1396 }
1397
1398 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1399 {
1400         int val = atomic_read(&delayed_root->items_seq);
1401
1402         if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1403                 return 1;
1404
1405         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1406                 return 1;
1407
1408         return 0;
1409 }
1410
1411 void btrfs_balance_delayed_items(struct btrfs_root *root)
1412 {
1413         struct btrfs_delayed_root *delayed_root;
1414         struct btrfs_fs_info *fs_info = root->fs_info;
1415
1416         delayed_root = btrfs_get_delayed_root(root);
1417
1418         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1419                 return;
1420
1421         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1422                 int seq;
1423                 int ret;
1424
1425                 seq = atomic_read(&delayed_root->items_seq);
1426
1427                 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1428                 if (ret)
1429                         return;
1430
1431                 wait_event_interruptible(delayed_root->wait,
1432                                          could_end_wait(delayed_root, seq));
1433                 return;
1434         }
1435
1436         btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1437 }
1438
1439 /* Will return 0 or -ENOMEM */
1440 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1441                                    struct btrfs_root *root, const char *name,
1442                                    int name_len, struct inode *dir,
1443                                    struct btrfs_disk_key *disk_key, u8 type,
1444                                    u64 index)
1445 {
1446         struct btrfs_delayed_node *delayed_node;
1447         struct btrfs_delayed_item *delayed_item;
1448         struct btrfs_dir_item *dir_item;
1449         int ret;
1450
1451         delayed_node = btrfs_get_or_create_delayed_node(dir);
1452         if (IS_ERR(delayed_node))
1453                 return PTR_ERR(delayed_node);
1454
1455         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1456         if (!delayed_item) {
1457                 ret = -ENOMEM;
1458                 goto release_node;
1459         }
1460
1461         delayed_item->key.objectid = btrfs_ino(dir);
1462         delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1463         delayed_item->key.offset = index;
1464
1465         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1466         dir_item->location = *disk_key;
1467         btrfs_set_stack_dir_transid(dir_item, trans->transid);
1468         btrfs_set_stack_dir_data_len(dir_item, 0);
1469         btrfs_set_stack_dir_name_len(dir_item, name_len);
1470         btrfs_set_stack_dir_type(dir_item, type);
1471         memcpy((char *)(dir_item + 1), name, name_len);
1472
1473         ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1474         /*
1475          * we have reserved enough space when we start a new transaction,
1476          * so reserving metadata failure is impossible
1477          */
1478         BUG_ON(ret);
1479
1480
1481         mutex_lock(&delayed_node->mutex);
1482         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1483         if (unlikely(ret)) {
1484                 btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1485                                 "into the insertion tree of the delayed node"
1486                                 "(root id: %llu, inode id: %llu, errno: %d)",
1487                                 name_len, name, delayed_node->root->objectid,
1488                                 delayed_node->inode_id, ret);
1489                 BUG();
1490         }
1491         mutex_unlock(&delayed_node->mutex);
1492
1493 release_node:
1494         btrfs_release_delayed_node(delayed_node);
1495         return ret;
1496 }
1497
1498 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1499                                                struct btrfs_delayed_node *node,
1500                                                struct btrfs_key *key)
1501 {
1502         struct btrfs_delayed_item *item;
1503
1504         mutex_lock(&node->mutex);
1505         item = __btrfs_lookup_delayed_insertion_item(node, key);
1506         if (!item) {
1507                 mutex_unlock(&node->mutex);
1508                 return 1;
1509         }
1510
1511         btrfs_delayed_item_release_metadata(root, item);
1512         btrfs_release_delayed_item(item);
1513         mutex_unlock(&node->mutex);
1514         return 0;
1515 }
1516
1517 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1518                                    struct btrfs_root *root, struct inode *dir,
1519                                    u64 index)
1520 {
1521         struct btrfs_delayed_node *node;
1522         struct btrfs_delayed_item *item;
1523         struct btrfs_key item_key;
1524         int ret;
1525
1526         node = btrfs_get_or_create_delayed_node(dir);
1527         if (IS_ERR(node))
1528                 return PTR_ERR(node);
1529
1530         item_key.objectid = btrfs_ino(dir);
1531         item_key.type = BTRFS_DIR_INDEX_KEY;
1532         item_key.offset = index;
1533
1534         ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1535         if (!ret)
1536                 goto end;
1537
1538         item = btrfs_alloc_delayed_item(0);
1539         if (!item) {
1540                 ret = -ENOMEM;
1541                 goto end;
1542         }
1543
1544         item->key = item_key;
1545
1546         ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1547         /*
1548          * we have reserved enough space when we start a new transaction,
1549          * so reserving metadata failure is impossible.
1550          */
1551         BUG_ON(ret);
1552
1553         mutex_lock(&node->mutex);
1554         ret = __btrfs_add_delayed_deletion_item(node, item);
1555         if (unlikely(ret)) {
1556                 btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1557                                 "into the deletion tree of the delayed node"
1558                                 "(root id: %llu, inode id: %llu, errno: %d)",
1559                                 index, node->root->objectid, node->inode_id,
1560                                 ret);
1561                 BUG();
1562         }
1563         mutex_unlock(&node->mutex);
1564 end:
1565         btrfs_release_delayed_node(node);
1566         return ret;
1567 }
1568
1569 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1570 {
1571         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1572
1573         if (!delayed_node)
1574                 return -ENOENT;
1575
1576         /*
1577          * Since we have held i_mutex of this directory, it is impossible that
1578          * a new directory index is added into the delayed node and index_cnt
1579          * is updated now. So we needn't lock the delayed node.
1580          */
1581         if (!delayed_node->index_cnt) {
1582                 btrfs_release_delayed_node(delayed_node);
1583                 return -EINVAL;
1584         }
1585
1586         BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1587         btrfs_release_delayed_node(delayed_node);
1588         return 0;
1589 }
1590
1591 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1592                                      struct list_head *ins_list,
1593                                      struct list_head *del_list)
1594 {
1595         struct btrfs_delayed_node *delayed_node;
1596         struct btrfs_delayed_item *item;
1597
1598         delayed_node = btrfs_get_delayed_node(inode);
1599         if (!delayed_node)
1600                 return false;
1601
1602         /*
1603          * We can only do one readdir with delayed items at a time because of
1604          * item->readdir_list.
1605          */
1606         inode_unlock_shared(inode);
1607         inode_lock(inode);
1608
1609         mutex_lock(&delayed_node->mutex);
1610         item = __btrfs_first_delayed_insertion_item(delayed_node);
1611         while (item) {
1612                 atomic_inc(&item->refs);
1613                 list_add_tail(&item->readdir_list, ins_list);
1614                 item = __btrfs_next_delayed_item(item);
1615         }
1616
1617         item = __btrfs_first_delayed_deletion_item(delayed_node);
1618         while (item) {
1619                 atomic_inc(&item->refs);
1620                 list_add_tail(&item->readdir_list, del_list);
1621                 item = __btrfs_next_delayed_item(item);
1622         }
1623         mutex_unlock(&delayed_node->mutex);
1624         /*
1625          * This delayed node is still cached in the btrfs inode, so refs
1626          * must be > 1 now, and we needn't check it is going to be freed
1627          * or not.
1628          *
1629          * Besides that, this function is used to read dir, we do not
1630          * insert/delete delayed items in this period. So we also needn't
1631          * requeue or dequeue this delayed node.
1632          */
1633         atomic_dec(&delayed_node->refs);
1634
1635         return true;
1636 }
1637
1638 void btrfs_readdir_put_delayed_items(struct inode *inode,
1639                                      struct list_head *ins_list,
1640                                      struct list_head *del_list)
1641 {
1642         struct btrfs_delayed_item *curr, *next;
1643
1644         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1645                 list_del(&curr->readdir_list);
1646                 if (atomic_dec_and_test(&curr->refs))
1647                         kfree(curr);
1648         }
1649
1650         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1651                 list_del(&curr->readdir_list);
1652                 if (atomic_dec_and_test(&curr->refs))
1653                         kfree(curr);
1654         }
1655
1656         /*
1657          * The VFS is going to do up_read(), so we need to downgrade back to a
1658          * read lock.
1659          */
1660         downgrade_write(&inode->i_rwsem);
1661 }
1662
1663 int btrfs_should_delete_dir_index(struct list_head *del_list,
1664                                   u64 index)
1665 {
1666         struct btrfs_delayed_item *curr, *next;
1667         int ret;
1668
1669         if (list_empty(del_list))
1670                 return 0;
1671
1672         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1673                 if (curr->key.offset > index)
1674                         break;
1675
1676                 list_del(&curr->readdir_list);
1677                 ret = (curr->key.offset == index);
1678
1679                 if (atomic_dec_and_test(&curr->refs))
1680                         kfree(curr);
1681
1682                 if (ret)
1683                         return 1;
1684                 else
1685                         continue;
1686         }
1687         return 0;
1688 }
1689
1690 /*
1691  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1692  *
1693  */
1694 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1695                                     struct list_head *ins_list, bool *emitted)
1696 {
1697         struct btrfs_dir_item *di;
1698         struct btrfs_delayed_item *curr, *next;
1699         struct btrfs_key location;
1700         char *name;
1701         int name_len;
1702         int over = 0;
1703         unsigned char d_type;
1704
1705         if (list_empty(ins_list))
1706                 return 0;
1707
1708         /*
1709          * Changing the data of the delayed item is impossible. So
1710          * we needn't lock them. And we have held i_mutex of the
1711          * directory, nobody can delete any directory indexes now.
1712          */
1713         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1714                 list_del(&curr->readdir_list);
1715
1716                 if (curr->key.offset < ctx->pos) {
1717                         if (atomic_dec_and_test(&curr->refs))
1718                                 kfree(curr);
1719                         continue;
1720                 }
1721
1722                 ctx->pos = curr->key.offset;
1723
1724                 di = (struct btrfs_dir_item *)curr->data;
1725                 name = (char *)(di + 1);
1726                 name_len = btrfs_stack_dir_name_len(di);
1727
1728                 d_type = btrfs_filetype_table[di->type];
1729                 btrfs_disk_key_to_cpu(&location, &di->location);
1730
1731                 over = !dir_emit(ctx, name, name_len,
1732                                location.objectid, d_type);
1733
1734                 if (atomic_dec_and_test(&curr->refs))
1735                         kfree(curr);
1736
1737                 if (over)
1738                         return 1;
1739                 *emitted = true;
1740         }
1741         return 0;
1742 }
1743
1744 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1745                                   struct btrfs_inode_item *inode_item,
1746                                   struct inode *inode)
1747 {
1748         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1749         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1750         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1751         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1752         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1753         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1754         btrfs_set_stack_inode_generation(inode_item,
1755                                          BTRFS_I(inode)->generation);
1756         btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1757         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1758         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1759         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1760         btrfs_set_stack_inode_block_group(inode_item, 0);
1761
1762         btrfs_set_stack_timespec_sec(&inode_item->atime,
1763                                      inode->i_atime.tv_sec);
1764         btrfs_set_stack_timespec_nsec(&inode_item->atime,
1765                                       inode->i_atime.tv_nsec);
1766
1767         btrfs_set_stack_timespec_sec(&inode_item->mtime,
1768                                      inode->i_mtime.tv_sec);
1769         btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1770                                       inode->i_mtime.tv_nsec);
1771
1772         btrfs_set_stack_timespec_sec(&inode_item->ctime,
1773                                      inode->i_ctime.tv_sec);
1774         btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1775                                       inode->i_ctime.tv_nsec);
1776
1777         btrfs_set_stack_timespec_sec(&inode_item->otime,
1778                                      BTRFS_I(inode)->i_otime.tv_sec);
1779         btrfs_set_stack_timespec_nsec(&inode_item->otime,
1780                                      BTRFS_I(inode)->i_otime.tv_nsec);
1781 }
1782
1783 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1784 {
1785         struct btrfs_delayed_node *delayed_node;
1786         struct btrfs_inode_item *inode_item;
1787
1788         delayed_node = btrfs_get_delayed_node(inode);
1789         if (!delayed_node)
1790                 return -ENOENT;
1791
1792         mutex_lock(&delayed_node->mutex);
1793         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1794                 mutex_unlock(&delayed_node->mutex);
1795                 btrfs_release_delayed_node(delayed_node);
1796                 return -ENOENT;
1797         }
1798
1799         inode_item = &delayed_node->inode_item;
1800
1801         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1802         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1803         btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1804         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1805         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1806         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1807         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1808         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1809
1810         inode->i_version = btrfs_stack_inode_sequence(inode_item);
1811         inode->i_rdev = 0;
1812         *rdev = btrfs_stack_inode_rdev(inode_item);
1813         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1814
1815         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1816         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1817
1818         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1819         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1820
1821         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1822         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1823
1824         BTRFS_I(inode)->i_otime.tv_sec =
1825                 btrfs_stack_timespec_sec(&inode_item->otime);
1826         BTRFS_I(inode)->i_otime.tv_nsec =
1827                 btrfs_stack_timespec_nsec(&inode_item->otime);
1828
1829         inode->i_generation = BTRFS_I(inode)->generation;
1830         BTRFS_I(inode)->index_cnt = (u64)-1;
1831
1832         mutex_unlock(&delayed_node->mutex);
1833         btrfs_release_delayed_node(delayed_node);
1834         return 0;
1835 }
1836
1837 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1838                                struct btrfs_root *root, struct inode *inode)
1839 {
1840         struct btrfs_delayed_node *delayed_node;
1841         int ret = 0;
1842
1843         delayed_node = btrfs_get_or_create_delayed_node(inode);
1844         if (IS_ERR(delayed_node))
1845                 return PTR_ERR(delayed_node);
1846
1847         mutex_lock(&delayed_node->mutex);
1848         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1849                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1850                 goto release_node;
1851         }
1852
1853         ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1854                                                    delayed_node);
1855         if (ret)
1856                 goto release_node;
1857
1858         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1859         set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1860         delayed_node->count++;
1861         atomic_inc(&root->fs_info->delayed_root->items);
1862 release_node:
1863         mutex_unlock(&delayed_node->mutex);
1864         btrfs_release_delayed_node(delayed_node);
1865         return ret;
1866 }
1867
1868 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1869 {
1870         struct btrfs_delayed_node *delayed_node;
1871
1872         /*
1873          * we don't do delayed inode updates during log recovery because it
1874          * leads to enospc problems.  This means we also can't do
1875          * delayed inode refs
1876          */
1877         if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
1878                 return -EAGAIN;
1879
1880         delayed_node = btrfs_get_or_create_delayed_node(inode);
1881         if (IS_ERR(delayed_node))
1882                 return PTR_ERR(delayed_node);
1883
1884         /*
1885          * We don't reserve space for inode ref deletion is because:
1886          * - We ONLY do async inode ref deletion for the inode who has only
1887          *   one link(i_nlink == 1), it means there is only one inode ref.
1888          *   And in most case, the inode ref and the inode item are in the
1889          *   same leaf, and we will deal with them at the same time.
1890          *   Since we are sure we will reserve the space for the inode item,
1891          *   it is unnecessary to reserve space for inode ref deletion.
1892          * - If the inode ref and the inode item are not in the same leaf,
1893          *   We also needn't worry about enospc problem, because we reserve
1894          *   much more space for the inode update than it needs.
1895          * - At the worst, we can steal some space from the global reservation.
1896          *   It is very rare.
1897          */
1898         mutex_lock(&delayed_node->mutex);
1899         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1900                 goto release_node;
1901
1902         set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1903         delayed_node->count++;
1904         atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1905 release_node:
1906         mutex_unlock(&delayed_node->mutex);
1907         btrfs_release_delayed_node(delayed_node);
1908         return 0;
1909 }
1910
1911 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1912 {
1913         struct btrfs_root *root = delayed_node->root;
1914         struct btrfs_delayed_item *curr_item, *prev_item;
1915
1916         mutex_lock(&delayed_node->mutex);
1917         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1918         while (curr_item) {
1919                 btrfs_delayed_item_release_metadata(root, curr_item);
1920                 prev_item = curr_item;
1921                 curr_item = __btrfs_next_delayed_item(prev_item);
1922                 btrfs_release_delayed_item(prev_item);
1923         }
1924
1925         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1926         while (curr_item) {
1927                 btrfs_delayed_item_release_metadata(root, curr_item);
1928                 prev_item = curr_item;
1929                 curr_item = __btrfs_next_delayed_item(prev_item);
1930                 btrfs_release_delayed_item(prev_item);
1931         }
1932
1933         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1934                 btrfs_release_delayed_iref(delayed_node);
1935
1936         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1937                 btrfs_delayed_inode_release_metadata(root, delayed_node);
1938                 btrfs_release_delayed_inode(delayed_node);
1939         }
1940         mutex_unlock(&delayed_node->mutex);
1941 }
1942
1943 void btrfs_kill_delayed_inode_items(struct inode *inode)
1944 {
1945         struct btrfs_delayed_node *delayed_node;
1946
1947         delayed_node = btrfs_get_delayed_node(inode);
1948         if (!delayed_node)
1949                 return;
1950
1951         __btrfs_kill_delayed_node(delayed_node);
1952         btrfs_release_delayed_node(delayed_node);
1953 }
1954
1955 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1956 {
1957         u64 inode_id = 0;
1958         struct btrfs_delayed_node *delayed_nodes[8];
1959         int i, n;
1960
1961         while (1) {
1962                 spin_lock(&root->inode_lock);
1963                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1964                                            (void **)delayed_nodes, inode_id,
1965                                            ARRAY_SIZE(delayed_nodes));
1966                 if (!n) {
1967                         spin_unlock(&root->inode_lock);
1968                         break;
1969                 }
1970
1971                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1972
1973                 for (i = 0; i < n; i++)
1974                         atomic_inc(&delayed_nodes[i]->refs);
1975                 spin_unlock(&root->inode_lock);
1976
1977                 for (i = 0; i < n; i++) {
1978                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1979                         btrfs_release_delayed_node(delayed_nodes[i]);
1980                 }
1981         }
1982 }
1983
1984 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1985 {
1986         struct btrfs_delayed_root *delayed_root;
1987         struct btrfs_delayed_node *curr_node, *prev_node;
1988
1989         delayed_root = btrfs_get_delayed_root(root);
1990
1991         curr_node = btrfs_first_delayed_node(delayed_root);
1992         while (curr_node) {
1993                 __btrfs_kill_delayed_node(curr_node);
1994
1995                 prev_node = curr_node;
1996                 curr_node = btrfs_next_delayed_node(curr_node);
1997                 btrfs_release_delayed_node(prev_node);
1998         }
1999 }
2000