x86/cpu: Rename "WESTMERE2" family to "NEHALEM_G"
[cascardo/linux.git] / fs / btrfs / delayed-inode.c
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25
26 #define BTRFS_DELAYED_WRITEBACK         512
27 #define BTRFS_DELAYED_BACKGROUND        128
28 #define BTRFS_DELAYED_BATCH             16
29
30 static struct kmem_cache *delayed_node_cache;
31
32 int __init btrfs_delayed_inode_init(void)
33 {
34         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35                                         sizeof(struct btrfs_delayed_node),
36                                         0,
37                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
38                                         NULL);
39         if (!delayed_node_cache)
40                 return -ENOMEM;
41         return 0;
42 }
43
44 void btrfs_delayed_inode_exit(void)
45 {
46         kmem_cache_destroy(delayed_node_cache);
47 }
48
49 static inline void btrfs_init_delayed_node(
50                                 struct btrfs_delayed_node *delayed_node,
51                                 struct btrfs_root *root, u64 inode_id)
52 {
53         delayed_node->root = root;
54         delayed_node->inode_id = inode_id;
55         atomic_set(&delayed_node->refs, 0);
56         delayed_node->ins_root = RB_ROOT;
57         delayed_node->del_root = RB_ROOT;
58         mutex_init(&delayed_node->mutex);
59         INIT_LIST_HEAD(&delayed_node->n_list);
60         INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62
63 static inline int btrfs_is_continuous_delayed_item(
64                                         struct btrfs_delayed_item *item1,
65                                         struct btrfs_delayed_item *item2)
66 {
67         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68             item1->key.objectid == item2->key.objectid &&
69             item1->key.type == item2->key.type &&
70             item1->key.offset + 1 == item2->key.offset)
71                 return 1;
72         return 0;
73 }
74
75 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
76                                                         struct btrfs_root *root)
77 {
78         return root->fs_info->delayed_root;
79 }
80
81 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
82 {
83         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
84         struct btrfs_root *root = btrfs_inode->root;
85         u64 ino = btrfs_ino(inode);
86         struct btrfs_delayed_node *node;
87
88         node = ACCESS_ONCE(btrfs_inode->delayed_node);
89         if (node) {
90                 atomic_inc(&node->refs);
91                 return node;
92         }
93
94         spin_lock(&root->inode_lock);
95         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
96         if (node) {
97                 if (btrfs_inode->delayed_node) {
98                         atomic_inc(&node->refs);        /* can be accessed */
99                         BUG_ON(btrfs_inode->delayed_node != node);
100                         spin_unlock(&root->inode_lock);
101                         return node;
102                 }
103                 btrfs_inode->delayed_node = node;
104                 /* can be accessed and cached in the inode */
105                 atomic_add(2, &node->refs);
106                 spin_unlock(&root->inode_lock);
107                 return node;
108         }
109         spin_unlock(&root->inode_lock);
110
111         return NULL;
112 }
113
114 /* Will return either the node or PTR_ERR(-ENOMEM) */
115 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
116                                                         struct inode *inode)
117 {
118         struct btrfs_delayed_node *node;
119         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
120         struct btrfs_root *root = btrfs_inode->root;
121         u64 ino = btrfs_ino(inode);
122         int ret;
123
124 again:
125         node = btrfs_get_delayed_node(inode);
126         if (node)
127                 return node;
128
129         node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130         if (!node)
131                 return ERR_PTR(-ENOMEM);
132         btrfs_init_delayed_node(node, root, ino);
133
134         /* cached in the btrfs inode and can be accessed */
135         atomic_add(2, &node->refs);
136
137         ret = radix_tree_preload(GFP_NOFS);
138         if (ret) {
139                 kmem_cache_free(delayed_node_cache, node);
140                 return ERR_PTR(ret);
141         }
142
143         spin_lock(&root->inode_lock);
144         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145         if (ret == -EEXIST) {
146                 spin_unlock(&root->inode_lock);
147                 kmem_cache_free(delayed_node_cache, node);
148                 radix_tree_preload_end();
149                 goto again;
150         }
151         btrfs_inode->delayed_node = node;
152         spin_unlock(&root->inode_lock);
153         radix_tree_preload_end();
154
155         return node;
156 }
157
158 /*
159  * Call it when holding delayed_node->mutex
160  *
161  * If mod = 1, add this node into the prepared list.
162  */
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164                                      struct btrfs_delayed_node *node,
165                                      int mod)
166 {
167         spin_lock(&root->lock);
168         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169                 if (!list_empty(&node->p_list))
170                         list_move_tail(&node->p_list, &root->prepare_list);
171                 else if (mod)
172                         list_add_tail(&node->p_list, &root->prepare_list);
173         } else {
174                 list_add_tail(&node->n_list, &root->node_list);
175                 list_add_tail(&node->p_list, &root->prepare_list);
176                 atomic_inc(&node->refs);        /* inserted into list */
177                 root->nodes++;
178                 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179         }
180         spin_unlock(&root->lock);
181 }
182
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185                                        struct btrfs_delayed_node *node)
186 {
187         spin_lock(&root->lock);
188         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189                 root->nodes--;
190                 atomic_dec(&node->refs);        /* not in the list */
191                 list_del_init(&node->n_list);
192                 if (!list_empty(&node->p_list))
193                         list_del_init(&node->p_list);
194                 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195         }
196         spin_unlock(&root->lock);
197 }
198
199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200                         struct btrfs_delayed_root *delayed_root)
201 {
202         struct list_head *p;
203         struct btrfs_delayed_node *node = NULL;
204
205         spin_lock(&delayed_root->lock);
206         if (list_empty(&delayed_root->node_list))
207                 goto out;
208
209         p = delayed_root->node_list.next;
210         node = list_entry(p, struct btrfs_delayed_node, n_list);
211         atomic_inc(&node->refs);
212 out:
213         spin_unlock(&delayed_root->lock);
214
215         return node;
216 }
217
218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219                                                 struct btrfs_delayed_node *node)
220 {
221         struct btrfs_delayed_root *delayed_root;
222         struct list_head *p;
223         struct btrfs_delayed_node *next = NULL;
224
225         delayed_root = node->root->fs_info->delayed_root;
226         spin_lock(&delayed_root->lock);
227         if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228                 /* not in the list */
229                 if (list_empty(&delayed_root->node_list))
230                         goto out;
231                 p = delayed_root->node_list.next;
232         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233                 goto out;
234         else
235                 p = node->n_list.next;
236
237         next = list_entry(p, struct btrfs_delayed_node, n_list);
238         atomic_inc(&next->refs);
239 out:
240         spin_unlock(&delayed_root->lock);
241
242         return next;
243 }
244
245 static void __btrfs_release_delayed_node(
246                                 struct btrfs_delayed_node *delayed_node,
247                                 int mod)
248 {
249         struct btrfs_delayed_root *delayed_root;
250
251         if (!delayed_node)
252                 return;
253
254         delayed_root = delayed_node->root->fs_info->delayed_root;
255
256         mutex_lock(&delayed_node->mutex);
257         if (delayed_node->count)
258                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259         else
260                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261         mutex_unlock(&delayed_node->mutex);
262
263         if (atomic_dec_and_test(&delayed_node->refs)) {
264                 bool free = false;
265                 struct btrfs_root *root = delayed_node->root;
266                 spin_lock(&root->inode_lock);
267                 if (atomic_read(&delayed_node->refs) == 0) {
268                         radix_tree_delete(&root->delayed_nodes_tree,
269                                           delayed_node->inode_id);
270                         free = true;
271                 }
272                 spin_unlock(&root->inode_lock);
273                 if (free)
274                         kmem_cache_free(delayed_node_cache, delayed_node);
275         }
276 }
277
278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279 {
280         __btrfs_release_delayed_node(node, 0);
281 }
282
283 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284                                         struct btrfs_delayed_root *delayed_root)
285 {
286         struct list_head *p;
287         struct btrfs_delayed_node *node = NULL;
288
289         spin_lock(&delayed_root->lock);
290         if (list_empty(&delayed_root->prepare_list))
291                 goto out;
292
293         p = delayed_root->prepare_list.next;
294         list_del_init(p);
295         node = list_entry(p, struct btrfs_delayed_node, p_list);
296         atomic_inc(&node->refs);
297 out:
298         spin_unlock(&delayed_root->lock);
299
300         return node;
301 }
302
303 static inline void btrfs_release_prepared_delayed_node(
304                                         struct btrfs_delayed_node *node)
305 {
306         __btrfs_release_delayed_node(node, 1);
307 }
308
309 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310 {
311         struct btrfs_delayed_item *item;
312         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313         if (item) {
314                 item->data_len = data_len;
315                 item->ins_or_del = 0;
316                 item->bytes_reserved = 0;
317                 item->delayed_node = NULL;
318                 atomic_set(&item->refs, 1);
319         }
320         return item;
321 }
322
323 /*
324  * __btrfs_lookup_delayed_item - look up the delayed item by key
325  * @delayed_node: pointer to the delayed node
326  * @key:          the key to look up
327  * @prev:         used to store the prev item if the right item isn't found
328  * @next:         used to store the next item if the right item isn't found
329  *
330  * Note: if we don't find the right item, we will return the prev item and
331  * the next item.
332  */
333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334                                 struct rb_root *root,
335                                 struct btrfs_key *key,
336                                 struct btrfs_delayed_item **prev,
337                                 struct btrfs_delayed_item **next)
338 {
339         struct rb_node *node, *prev_node = NULL;
340         struct btrfs_delayed_item *delayed_item = NULL;
341         int ret = 0;
342
343         node = root->rb_node;
344
345         while (node) {
346                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347                                         rb_node);
348                 prev_node = node;
349                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350                 if (ret < 0)
351                         node = node->rb_right;
352                 else if (ret > 0)
353                         node = node->rb_left;
354                 else
355                         return delayed_item;
356         }
357
358         if (prev) {
359                 if (!prev_node)
360                         *prev = NULL;
361                 else if (ret < 0)
362                         *prev = delayed_item;
363                 else if ((node = rb_prev(prev_node)) != NULL) {
364                         *prev = rb_entry(node, struct btrfs_delayed_item,
365                                          rb_node);
366                 } else
367                         *prev = NULL;
368         }
369
370         if (next) {
371                 if (!prev_node)
372                         *next = NULL;
373                 else if (ret > 0)
374                         *next = delayed_item;
375                 else if ((node = rb_next(prev_node)) != NULL) {
376                         *next = rb_entry(node, struct btrfs_delayed_item,
377                                          rb_node);
378                 } else
379                         *next = NULL;
380         }
381         return NULL;
382 }
383
384 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385                                         struct btrfs_delayed_node *delayed_node,
386                                         struct btrfs_key *key)
387 {
388         struct btrfs_delayed_item *item;
389
390         item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
391                                            NULL, NULL);
392         return item;
393 }
394
395 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
396                                     struct btrfs_delayed_item *ins,
397                                     int action)
398 {
399         struct rb_node **p, *node;
400         struct rb_node *parent_node = NULL;
401         struct rb_root *root;
402         struct btrfs_delayed_item *item;
403         int cmp;
404
405         if (action == BTRFS_DELAYED_INSERTION_ITEM)
406                 root = &delayed_node->ins_root;
407         else if (action == BTRFS_DELAYED_DELETION_ITEM)
408                 root = &delayed_node->del_root;
409         else
410                 BUG();
411         p = &root->rb_node;
412         node = &ins->rb_node;
413
414         while (*p) {
415                 parent_node = *p;
416                 item = rb_entry(parent_node, struct btrfs_delayed_item,
417                                  rb_node);
418
419                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
420                 if (cmp < 0)
421                         p = &(*p)->rb_right;
422                 else if (cmp > 0)
423                         p = &(*p)->rb_left;
424                 else
425                         return -EEXIST;
426         }
427
428         rb_link_node(node, parent_node, p);
429         rb_insert_color(node, root);
430         ins->delayed_node = delayed_node;
431         ins->ins_or_del = action;
432
433         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
434             action == BTRFS_DELAYED_INSERTION_ITEM &&
435             ins->key.offset >= delayed_node->index_cnt)
436                         delayed_node->index_cnt = ins->key.offset + 1;
437
438         delayed_node->count++;
439         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
440         return 0;
441 }
442
443 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
444                                               struct btrfs_delayed_item *item)
445 {
446         return __btrfs_add_delayed_item(node, item,
447                                         BTRFS_DELAYED_INSERTION_ITEM);
448 }
449
450 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
451                                              struct btrfs_delayed_item *item)
452 {
453         return __btrfs_add_delayed_item(node, item,
454                                         BTRFS_DELAYED_DELETION_ITEM);
455 }
456
457 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
458 {
459         int seq = atomic_inc_return(&delayed_root->items_seq);
460
461         /*
462          * atomic_dec_return implies a barrier for waitqueue_active
463          */
464         if ((atomic_dec_return(&delayed_root->items) <
465             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
466             waitqueue_active(&delayed_root->wait))
467                 wake_up(&delayed_root->wait);
468 }
469
470 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
471 {
472         struct rb_root *root;
473         struct btrfs_delayed_root *delayed_root;
474
475         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
476
477         BUG_ON(!delayed_root);
478         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
479                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
480
481         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
482                 root = &delayed_item->delayed_node->ins_root;
483         else
484                 root = &delayed_item->delayed_node->del_root;
485
486         rb_erase(&delayed_item->rb_node, root);
487         delayed_item->delayed_node->count--;
488
489         finish_one_item(delayed_root);
490 }
491
492 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
493 {
494         if (item) {
495                 __btrfs_remove_delayed_item(item);
496                 if (atomic_dec_and_test(&item->refs))
497                         kfree(item);
498         }
499 }
500
501 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
502                                         struct btrfs_delayed_node *delayed_node)
503 {
504         struct rb_node *p;
505         struct btrfs_delayed_item *item = NULL;
506
507         p = rb_first(&delayed_node->ins_root);
508         if (p)
509                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
510
511         return item;
512 }
513
514 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
515                                         struct btrfs_delayed_node *delayed_node)
516 {
517         struct rb_node *p;
518         struct btrfs_delayed_item *item = NULL;
519
520         p = rb_first(&delayed_node->del_root);
521         if (p)
522                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
523
524         return item;
525 }
526
527 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
528                                                 struct btrfs_delayed_item *item)
529 {
530         struct rb_node *p;
531         struct btrfs_delayed_item *next = NULL;
532
533         p = rb_next(&item->rb_node);
534         if (p)
535                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
536
537         return next;
538 }
539
540 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
541                                                struct btrfs_root *root,
542                                                struct btrfs_delayed_item *item)
543 {
544         struct btrfs_block_rsv *src_rsv;
545         struct btrfs_block_rsv *dst_rsv;
546         u64 num_bytes;
547         int ret;
548
549         if (!trans->bytes_reserved)
550                 return 0;
551
552         src_rsv = trans->block_rsv;
553         dst_rsv = &root->fs_info->delayed_block_rsv;
554
555         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
556         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
557         if (!ret) {
558                 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
559                                               item->key.objectid,
560                                               num_bytes, 1);
561                 item->bytes_reserved = num_bytes;
562         }
563
564         return ret;
565 }
566
567 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
568                                                 struct btrfs_delayed_item *item)
569 {
570         struct btrfs_block_rsv *rsv;
571
572         if (!item->bytes_reserved)
573                 return;
574
575         rsv = &root->fs_info->delayed_block_rsv;
576         trace_btrfs_space_reservation(root->fs_info, "delayed_item",
577                                       item->key.objectid, item->bytes_reserved,
578                                       0);
579         btrfs_block_rsv_release(root, rsv,
580                                 item->bytes_reserved);
581 }
582
583 static int btrfs_delayed_inode_reserve_metadata(
584                                         struct btrfs_trans_handle *trans,
585                                         struct btrfs_root *root,
586                                         struct inode *inode,
587                                         struct btrfs_delayed_node *node)
588 {
589         struct btrfs_block_rsv *src_rsv;
590         struct btrfs_block_rsv *dst_rsv;
591         u64 num_bytes;
592         int ret;
593         bool release = false;
594
595         src_rsv = trans->block_rsv;
596         dst_rsv = &root->fs_info->delayed_block_rsv;
597
598         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
599
600         /*
601          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
602          * which doesn't reserve space for speed.  This is a problem since we
603          * still need to reserve space for this update, so try to reserve the
604          * space.
605          *
606          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
607          * we're accounted for.
608          */
609         if (!src_rsv || (!trans->bytes_reserved &&
610                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
611                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
612                                           BTRFS_RESERVE_NO_FLUSH);
613                 /*
614                  * Since we're under a transaction reserve_metadata_bytes could
615                  * try to commit the transaction which will make it return
616                  * EAGAIN to make us stop the transaction we have, so return
617                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
618                  */
619                 if (ret == -EAGAIN)
620                         ret = -ENOSPC;
621                 if (!ret) {
622                         node->bytes_reserved = num_bytes;
623                         trace_btrfs_space_reservation(root->fs_info,
624                                                       "delayed_inode",
625                                                       btrfs_ino(inode),
626                                                       num_bytes, 1);
627                 }
628                 return ret;
629         } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
630                 spin_lock(&BTRFS_I(inode)->lock);
631                 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
632                                        &BTRFS_I(inode)->runtime_flags)) {
633                         spin_unlock(&BTRFS_I(inode)->lock);
634                         release = true;
635                         goto migrate;
636                 }
637                 spin_unlock(&BTRFS_I(inode)->lock);
638
639                 /* Ok we didn't have space pre-reserved.  This shouldn't happen
640                  * too often but it can happen if we do delalloc to an existing
641                  * inode which gets dirtied because of the time update, and then
642                  * isn't touched again until after the transaction commits and
643                  * then we try to write out the data.  First try to be nice and
644                  * reserve something strictly for us.  If not be a pain and try
645                  * to steal from the delalloc block rsv.
646                  */
647                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
648                                           BTRFS_RESERVE_NO_FLUSH);
649                 if (!ret)
650                         goto out;
651
652                 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
653                 if (!ret)
654                         goto out;
655
656                 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
657                         btrfs_debug(root->fs_info,
658                                     "block rsv migrate returned %d", ret);
659                         WARN_ON(1);
660                 }
661                 /*
662                  * Ok this is a problem, let's just steal from the global rsv
663                  * since this really shouldn't happen that often.
664                  */
665                 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
666                                               dst_rsv, num_bytes);
667                 goto out;
668         }
669
670 migrate:
671         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
672
673 out:
674         /*
675          * Migrate only takes a reservation, it doesn't touch the size of the
676          * block_rsv.  This is to simplify people who don't normally have things
677          * migrated from their block rsv.  If they go to release their
678          * reservation, that will decrease the size as well, so if migrate
679          * reduced size we'd end up with a negative size.  But for the
680          * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
681          * but we could in fact do this reserve/migrate dance several times
682          * between the time we did the original reservation and we'd clean it
683          * up.  So to take care of this, release the space for the meta
684          * reservation here.  I think it may be time for a documentation page on
685          * how block rsvs. work.
686          */
687         if (!ret) {
688                 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
689                                               btrfs_ino(inode), num_bytes, 1);
690                 node->bytes_reserved = num_bytes;
691         }
692
693         if (release) {
694                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
695                                               btrfs_ino(inode), num_bytes, 0);
696                 btrfs_block_rsv_release(root, src_rsv, num_bytes);
697         }
698
699         return ret;
700 }
701
702 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
703                                                 struct btrfs_delayed_node *node)
704 {
705         struct btrfs_block_rsv *rsv;
706
707         if (!node->bytes_reserved)
708                 return;
709
710         rsv = &root->fs_info->delayed_block_rsv;
711         trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
712                                       node->inode_id, node->bytes_reserved, 0);
713         btrfs_block_rsv_release(root, rsv,
714                                 node->bytes_reserved);
715         node->bytes_reserved = 0;
716 }
717
718 /*
719  * This helper will insert some continuous items into the same leaf according
720  * to the free space of the leaf.
721  */
722 static int btrfs_batch_insert_items(struct btrfs_root *root,
723                                     struct btrfs_path *path,
724                                     struct btrfs_delayed_item *item)
725 {
726         struct btrfs_delayed_item *curr, *next;
727         int free_space;
728         int total_data_size = 0, total_size = 0;
729         struct extent_buffer *leaf;
730         char *data_ptr;
731         struct btrfs_key *keys;
732         u32 *data_size;
733         struct list_head head;
734         int slot;
735         int nitems;
736         int i;
737         int ret = 0;
738
739         BUG_ON(!path->nodes[0]);
740
741         leaf = path->nodes[0];
742         free_space = btrfs_leaf_free_space(root, leaf);
743         INIT_LIST_HEAD(&head);
744
745         next = item;
746         nitems = 0;
747
748         /*
749          * count the number of the continuous items that we can insert in batch
750          */
751         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
752                free_space) {
753                 total_data_size += next->data_len;
754                 total_size += next->data_len + sizeof(struct btrfs_item);
755                 list_add_tail(&next->tree_list, &head);
756                 nitems++;
757
758                 curr = next;
759                 next = __btrfs_next_delayed_item(curr);
760                 if (!next)
761                         break;
762
763                 if (!btrfs_is_continuous_delayed_item(curr, next))
764                         break;
765         }
766
767         if (!nitems) {
768                 ret = 0;
769                 goto out;
770         }
771
772         /*
773          * we need allocate some memory space, but it might cause the task
774          * to sleep, so we set all locked nodes in the path to blocking locks
775          * first.
776          */
777         btrfs_set_path_blocking(path);
778
779         keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
780         if (!keys) {
781                 ret = -ENOMEM;
782                 goto out;
783         }
784
785         data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
786         if (!data_size) {
787                 ret = -ENOMEM;
788                 goto error;
789         }
790
791         /* get keys of all the delayed items */
792         i = 0;
793         list_for_each_entry(next, &head, tree_list) {
794                 keys[i] = next->key;
795                 data_size[i] = next->data_len;
796                 i++;
797         }
798
799         /* reset all the locked nodes in the patch to spinning locks. */
800         btrfs_clear_path_blocking(path, NULL, 0);
801
802         /* insert the keys of the items */
803         setup_items_for_insert(root, path, keys, data_size,
804                                total_data_size, total_size, nitems);
805
806         /* insert the dir index items */
807         slot = path->slots[0];
808         list_for_each_entry_safe(curr, next, &head, tree_list) {
809                 data_ptr = btrfs_item_ptr(leaf, slot, char);
810                 write_extent_buffer(leaf, &curr->data,
811                                     (unsigned long)data_ptr,
812                                     curr->data_len);
813                 slot++;
814
815                 btrfs_delayed_item_release_metadata(root, curr);
816
817                 list_del(&curr->tree_list);
818                 btrfs_release_delayed_item(curr);
819         }
820
821 error:
822         kfree(data_size);
823         kfree(keys);
824 out:
825         return ret;
826 }
827
828 /*
829  * This helper can just do simple insertion that needn't extend item for new
830  * data, such as directory name index insertion, inode insertion.
831  */
832 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
833                                      struct btrfs_root *root,
834                                      struct btrfs_path *path,
835                                      struct btrfs_delayed_item *delayed_item)
836 {
837         struct extent_buffer *leaf;
838         char *ptr;
839         int ret;
840
841         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
842                                       delayed_item->data_len);
843         if (ret < 0 && ret != -EEXIST)
844                 return ret;
845
846         leaf = path->nodes[0];
847
848         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
849
850         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
851                             delayed_item->data_len);
852         btrfs_mark_buffer_dirty(leaf);
853
854         btrfs_delayed_item_release_metadata(root, delayed_item);
855         return 0;
856 }
857
858 /*
859  * we insert an item first, then if there are some continuous items, we try
860  * to insert those items into the same leaf.
861  */
862 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
863                                       struct btrfs_path *path,
864                                       struct btrfs_root *root,
865                                       struct btrfs_delayed_node *node)
866 {
867         struct btrfs_delayed_item *curr, *prev;
868         int ret = 0;
869
870 do_again:
871         mutex_lock(&node->mutex);
872         curr = __btrfs_first_delayed_insertion_item(node);
873         if (!curr)
874                 goto insert_end;
875
876         ret = btrfs_insert_delayed_item(trans, root, path, curr);
877         if (ret < 0) {
878                 btrfs_release_path(path);
879                 goto insert_end;
880         }
881
882         prev = curr;
883         curr = __btrfs_next_delayed_item(prev);
884         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
885                 /* insert the continuous items into the same leaf */
886                 path->slots[0]++;
887                 btrfs_batch_insert_items(root, path, curr);
888         }
889         btrfs_release_delayed_item(prev);
890         btrfs_mark_buffer_dirty(path->nodes[0]);
891
892         btrfs_release_path(path);
893         mutex_unlock(&node->mutex);
894         goto do_again;
895
896 insert_end:
897         mutex_unlock(&node->mutex);
898         return ret;
899 }
900
901 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
902                                     struct btrfs_root *root,
903                                     struct btrfs_path *path,
904                                     struct btrfs_delayed_item *item)
905 {
906         struct btrfs_delayed_item *curr, *next;
907         struct extent_buffer *leaf;
908         struct btrfs_key key;
909         struct list_head head;
910         int nitems, i, last_item;
911         int ret = 0;
912
913         BUG_ON(!path->nodes[0]);
914
915         leaf = path->nodes[0];
916
917         i = path->slots[0];
918         last_item = btrfs_header_nritems(leaf) - 1;
919         if (i > last_item)
920                 return -ENOENT; /* FIXME: Is errno suitable? */
921
922         next = item;
923         INIT_LIST_HEAD(&head);
924         btrfs_item_key_to_cpu(leaf, &key, i);
925         nitems = 0;
926         /*
927          * count the number of the dir index items that we can delete in batch
928          */
929         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
930                 list_add_tail(&next->tree_list, &head);
931                 nitems++;
932
933                 curr = next;
934                 next = __btrfs_next_delayed_item(curr);
935                 if (!next)
936                         break;
937
938                 if (!btrfs_is_continuous_delayed_item(curr, next))
939                         break;
940
941                 i++;
942                 if (i > last_item)
943                         break;
944                 btrfs_item_key_to_cpu(leaf, &key, i);
945         }
946
947         if (!nitems)
948                 return 0;
949
950         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
951         if (ret)
952                 goto out;
953
954         list_for_each_entry_safe(curr, next, &head, tree_list) {
955                 btrfs_delayed_item_release_metadata(root, curr);
956                 list_del(&curr->tree_list);
957                 btrfs_release_delayed_item(curr);
958         }
959
960 out:
961         return ret;
962 }
963
964 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
965                                       struct btrfs_path *path,
966                                       struct btrfs_root *root,
967                                       struct btrfs_delayed_node *node)
968 {
969         struct btrfs_delayed_item *curr, *prev;
970         int ret = 0;
971
972 do_again:
973         mutex_lock(&node->mutex);
974         curr = __btrfs_first_delayed_deletion_item(node);
975         if (!curr)
976                 goto delete_fail;
977
978         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
979         if (ret < 0)
980                 goto delete_fail;
981         else if (ret > 0) {
982                 /*
983                  * can't find the item which the node points to, so this node
984                  * is invalid, just drop it.
985                  */
986                 prev = curr;
987                 curr = __btrfs_next_delayed_item(prev);
988                 btrfs_release_delayed_item(prev);
989                 ret = 0;
990                 btrfs_release_path(path);
991                 if (curr) {
992                         mutex_unlock(&node->mutex);
993                         goto do_again;
994                 } else
995                         goto delete_fail;
996         }
997
998         btrfs_batch_delete_items(trans, root, path, curr);
999         btrfs_release_path(path);
1000         mutex_unlock(&node->mutex);
1001         goto do_again;
1002
1003 delete_fail:
1004         btrfs_release_path(path);
1005         mutex_unlock(&node->mutex);
1006         return ret;
1007 }
1008
1009 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1010 {
1011         struct btrfs_delayed_root *delayed_root;
1012
1013         if (delayed_node &&
1014             test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1015                 BUG_ON(!delayed_node->root);
1016                 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1017                 delayed_node->count--;
1018
1019                 delayed_root = delayed_node->root->fs_info->delayed_root;
1020                 finish_one_item(delayed_root);
1021         }
1022 }
1023
1024 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1025 {
1026         struct btrfs_delayed_root *delayed_root;
1027
1028         ASSERT(delayed_node->root);
1029         clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1030         delayed_node->count--;
1031
1032         delayed_root = delayed_node->root->fs_info->delayed_root;
1033         finish_one_item(delayed_root);
1034 }
1035
1036 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1037                                         struct btrfs_root *root,
1038                                         struct btrfs_path *path,
1039                                         struct btrfs_delayed_node *node)
1040 {
1041         struct btrfs_key key;
1042         struct btrfs_inode_item *inode_item;
1043         struct extent_buffer *leaf;
1044         int mod;
1045         int ret;
1046
1047         key.objectid = node->inode_id;
1048         key.type = BTRFS_INODE_ITEM_KEY;
1049         key.offset = 0;
1050
1051         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1052                 mod = -1;
1053         else
1054                 mod = 1;
1055
1056         ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1057         if (ret > 0) {
1058                 btrfs_release_path(path);
1059                 return -ENOENT;
1060         } else if (ret < 0) {
1061                 return ret;
1062         }
1063
1064         leaf = path->nodes[0];
1065         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1066                                     struct btrfs_inode_item);
1067         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1068                             sizeof(struct btrfs_inode_item));
1069         btrfs_mark_buffer_dirty(leaf);
1070
1071         if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1072                 goto no_iref;
1073
1074         path->slots[0]++;
1075         if (path->slots[0] >= btrfs_header_nritems(leaf))
1076                 goto search;
1077 again:
1078         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1079         if (key.objectid != node->inode_id)
1080                 goto out;
1081
1082         if (key.type != BTRFS_INODE_REF_KEY &&
1083             key.type != BTRFS_INODE_EXTREF_KEY)
1084                 goto out;
1085
1086         /*
1087          * Delayed iref deletion is for the inode who has only one link,
1088          * so there is only one iref. The case that several irefs are
1089          * in the same item doesn't exist.
1090          */
1091         btrfs_del_item(trans, root, path);
1092 out:
1093         btrfs_release_delayed_iref(node);
1094 no_iref:
1095         btrfs_release_path(path);
1096 err_out:
1097         btrfs_delayed_inode_release_metadata(root, node);
1098         btrfs_release_delayed_inode(node);
1099
1100         return ret;
1101
1102 search:
1103         btrfs_release_path(path);
1104
1105         key.type = BTRFS_INODE_EXTREF_KEY;
1106         key.offset = -1;
1107         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1108         if (ret < 0)
1109                 goto err_out;
1110         ASSERT(ret);
1111
1112         ret = 0;
1113         leaf = path->nodes[0];
1114         path->slots[0]--;
1115         goto again;
1116 }
1117
1118 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1119                                              struct btrfs_root *root,
1120                                              struct btrfs_path *path,
1121                                              struct btrfs_delayed_node *node)
1122 {
1123         int ret;
1124
1125         mutex_lock(&node->mutex);
1126         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1127                 mutex_unlock(&node->mutex);
1128                 return 0;
1129         }
1130
1131         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1132         mutex_unlock(&node->mutex);
1133         return ret;
1134 }
1135
1136 static inline int
1137 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1138                                    struct btrfs_path *path,
1139                                    struct btrfs_delayed_node *node)
1140 {
1141         int ret;
1142
1143         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1144         if (ret)
1145                 return ret;
1146
1147         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1148         if (ret)
1149                 return ret;
1150
1151         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1152         return ret;
1153 }
1154
1155 /*
1156  * Called when committing the transaction.
1157  * Returns 0 on success.
1158  * Returns < 0 on error and returns with an aborted transaction with any
1159  * outstanding delayed items cleaned up.
1160  */
1161 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1162                                      struct btrfs_root *root, int nr)
1163 {
1164         struct btrfs_delayed_root *delayed_root;
1165         struct btrfs_delayed_node *curr_node, *prev_node;
1166         struct btrfs_path *path;
1167         struct btrfs_block_rsv *block_rsv;
1168         int ret = 0;
1169         bool count = (nr > 0);
1170
1171         if (trans->aborted)
1172                 return -EIO;
1173
1174         path = btrfs_alloc_path();
1175         if (!path)
1176                 return -ENOMEM;
1177         path->leave_spinning = 1;
1178
1179         block_rsv = trans->block_rsv;
1180         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1181
1182         delayed_root = btrfs_get_delayed_root(root);
1183
1184         curr_node = btrfs_first_delayed_node(delayed_root);
1185         while (curr_node && (!count || (count && nr--))) {
1186                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1187                                                          curr_node);
1188                 if (ret) {
1189                         btrfs_release_delayed_node(curr_node);
1190                         curr_node = NULL;
1191                         btrfs_abort_transaction(trans, root, ret);
1192                         break;
1193                 }
1194
1195                 prev_node = curr_node;
1196                 curr_node = btrfs_next_delayed_node(curr_node);
1197                 btrfs_release_delayed_node(prev_node);
1198         }
1199
1200         if (curr_node)
1201                 btrfs_release_delayed_node(curr_node);
1202         btrfs_free_path(path);
1203         trans->block_rsv = block_rsv;
1204
1205         return ret;
1206 }
1207
1208 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1209                             struct btrfs_root *root)
1210 {
1211         return __btrfs_run_delayed_items(trans, root, -1);
1212 }
1213
1214 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1215                                struct btrfs_root *root, int nr)
1216 {
1217         return __btrfs_run_delayed_items(trans, root, nr);
1218 }
1219
1220 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1221                                      struct inode *inode)
1222 {
1223         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1224         struct btrfs_path *path;
1225         struct btrfs_block_rsv *block_rsv;
1226         int ret;
1227
1228         if (!delayed_node)
1229                 return 0;
1230
1231         mutex_lock(&delayed_node->mutex);
1232         if (!delayed_node->count) {
1233                 mutex_unlock(&delayed_node->mutex);
1234                 btrfs_release_delayed_node(delayed_node);
1235                 return 0;
1236         }
1237         mutex_unlock(&delayed_node->mutex);
1238
1239         path = btrfs_alloc_path();
1240         if (!path) {
1241                 btrfs_release_delayed_node(delayed_node);
1242                 return -ENOMEM;
1243         }
1244         path->leave_spinning = 1;
1245
1246         block_rsv = trans->block_rsv;
1247         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1248
1249         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1250
1251         btrfs_release_delayed_node(delayed_node);
1252         btrfs_free_path(path);
1253         trans->block_rsv = block_rsv;
1254
1255         return ret;
1256 }
1257
1258 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1259 {
1260         struct btrfs_trans_handle *trans;
1261         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1262         struct btrfs_path *path;
1263         struct btrfs_block_rsv *block_rsv;
1264         int ret;
1265
1266         if (!delayed_node)
1267                 return 0;
1268
1269         mutex_lock(&delayed_node->mutex);
1270         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1271                 mutex_unlock(&delayed_node->mutex);
1272                 btrfs_release_delayed_node(delayed_node);
1273                 return 0;
1274         }
1275         mutex_unlock(&delayed_node->mutex);
1276
1277         trans = btrfs_join_transaction(delayed_node->root);
1278         if (IS_ERR(trans)) {
1279                 ret = PTR_ERR(trans);
1280                 goto out;
1281         }
1282
1283         path = btrfs_alloc_path();
1284         if (!path) {
1285                 ret = -ENOMEM;
1286                 goto trans_out;
1287         }
1288         path->leave_spinning = 1;
1289
1290         block_rsv = trans->block_rsv;
1291         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1292
1293         mutex_lock(&delayed_node->mutex);
1294         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1295                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1296                                                    path, delayed_node);
1297         else
1298                 ret = 0;
1299         mutex_unlock(&delayed_node->mutex);
1300
1301         btrfs_free_path(path);
1302         trans->block_rsv = block_rsv;
1303 trans_out:
1304         btrfs_end_transaction(trans, delayed_node->root);
1305         btrfs_btree_balance_dirty(delayed_node->root);
1306 out:
1307         btrfs_release_delayed_node(delayed_node);
1308
1309         return ret;
1310 }
1311
1312 void btrfs_remove_delayed_node(struct inode *inode)
1313 {
1314         struct btrfs_delayed_node *delayed_node;
1315
1316         delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1317         if (!delayed_node)
1318                 return;
1319
1320         BTRFS_I(inode)->delayed_node = NULL;
1321         btrfs_release_delayed_node(delayed_node);
1322 }
1323
1324 struct btrfs_async_delayed_work {
1325         struct btrfs_delayed_root *delayed_root;
1326         int nr;
1327         struct btrfs_work work;
1328 };
1329
1330 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1331 {
1332         struct btrfs_async_delayed_work *async_work;
1333         struct btrfs_delayed_root *delayed_root;
1334         struct btrfs_trans_handle *trans;
1335         struct btrfs_path *path;
1336         struct btrfs_delayed_node *delayed_node = NULL;
1337         struct btrfs_root *root;
1338         struct btrfs_block_rsv *block_rsv;
1339         int total_done = 0;
1340
1341         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1342         delayed_root = async_work->delayed_root;
1343
1344         path = btrfs_alloc_path();
1345         if (!path)
1346                 goto out;
1347
1348 again:
1349         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1350                 goto free_path;
1351
1352         delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1353         if (!delayed_node)
1354                 goto free_path;
1355
1356         path->leave_spinning = 1;
1357         root = delayed_node->root;
1358
1359         trans = btrfs_join_transaction(root);
1360         if (IS_ERR(trans))
1361                 goto release_path;
1362
1363         block_rsv = trans->block_rsv;
1364         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1365
1366         __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1367
1368         trans->block_rsv = block_rsv;
1369         btrfs_end_transaction(trans, root);
1370         btrfs_btree_balance_dirty_nodelay(root);
1371
1372 release_path:
1373         btrfs_release_path(path);
1374         total_done++;
1375
1376         btrfs_release_prepared_delayed_node(delayed_node);
1377         if (async_work->nr == 0 || total_done < async_work->nr)
1378                 goto again;
1379
1380 free_path:
1381         btrfs_free_path(path);
1382 out:
1383         wake_up(&delayed_root->wait);
1384         kfree(async_work);
1385 }
1386
1387
1388 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1389                                      struct btrfs_fs_info *fs_info, int nr)
1390 {
1391         struct btrfs_async_delayed_work *async_work;
1392
1393         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1394                 return 0;
1395
1396         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1397         if (!async_work)
1398                 return -ENOMEM;
1399
1400         async_work->delayed_root = delayed_root;
1401         btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1402                         btrfs_async_run_delayed_root, NULL, NULL);
1403         async_work->nr = nr;
1404
1405         btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1406         return 0;
1407 }
1408
1409 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1410 {
1411         struct btrfs_delayed_root *delayed_root;
1412         delayed_root = btrfs_get_delayed_root(root);
1413         WARN_ON(btrfs_first_delayed_node(delayed_root));
1414 }
1415
1416 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1417 {
1418         int val = atomic_read(&delayed_root->items_seq);
1419
1420         if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1421                 return 1;
1422
1423         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1424                 return 1;
1425
1426         return 0;
1427 }
1428
1429 void btrfs_balance_delayed_items(struct btrfs_root *root)
1430 {
1431         struct btrfs_delayed_root *delayed_root;
1432         struct btrfs_fs_info *fs_info = root->fs_info;
1433
1434         delayed_root = btrfs_get_delayed_root(root);
1435
1436         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1437                 return;
1438
1439         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1440                 int seq;
1441                 int ret;
1442
1443                 seq = atomic_read(&delayed_root->items_seq);
1444
1445                 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1446                 if (ret)
1447                         return;
1448
1449                 wait_event_interruptible(delayed_root->wait,
1450                                          could_end_wait(delayed_root, seq));
1451                 return;
1452         }
1453
1454         btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1455 }
1456
1457 /* Will return 0 or -ENOMEM */
1458 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1459                                    struct btrfs_root *root, const char *name,
1460                                    int name_len, struct inode *dir,
1461                                    struct btrfs_disk_key *disk_key, u8 type,
1462                                    u64 index)
1463 {
1464         struct btrfs_delayed_node *delayed_node;
1465         struct btrfs_delayed_item *delayed_item;
1466         struct btrfs_dir_item *dir_item;
1467         int ret;
1468
1469         delayed_node = btrfs_get_or_create_delayed_node(dir);
1470         if (IS_ERR(delayed_node))
1471                 return PTR_ERR(delayed_node);
1472
1473         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1474         if (!delayed_item) {
1475                 ret = -ENOMEM;
1476                 goto release_node;
1477         }
1478
1479         delayed_item->key.objectid = btrfs_ino(dir);
1480         delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1481         delayed_item->key.offset = index;
1482
1483         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1484         dir_item->location = *disk_key;
1485         btrfs_set_stack_dir_transid(dir_item, trans->transid);
1486         btrfs_set_stack_dir_data_len(dir_item, 0);
1487         btrfs_set_stack_dir_name_len(dir_item, name_len);
1488         btrfs_set_stack_dir_type(dir_item, type);
1489         memcpy((char *)(dir_item + 1), name, name_len);
1490
1491         ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1492         /*
1493          * we have reserved enough space when we start a new transaction,
1494          * so reserving metadata failure is impossible
1495          */
1496         BUG_ON(ret);
1497
1498
1499         mutex_lock(&delayed_node->mutex);
1500         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1501         if (unlikely(ret)) {
1502                 btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1503                                 "into the insertion tree of the delayed node"
1504                                 "(root id: %llu, inode id: %llu, errno: %d)",
1505                                 name_len, name, delayed_node->root->objectid,
1506                                 delayed_node->inode_id, ret);
1507                 BUG();
1508         }
1509         mutex_unlock(&delayed_node->mutex);
1510
1511 release_node:
1512         btrfs_release_delayed_node(delayed_node);
1513         return ret;
1514 }
1515
1516 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1517                                                struct btrfs_delayed_node *node,
1518                                                struct btrfs_key *key)
1519 {
1520         struct btrfs_delayed_item *item;
1521
1522         mutex_lock(&node->mutex);
1523         item = __btrfs_lookup_delayed_insertion_item(node, key);
1524         if (!item) {
1525                 mutex_unlock(&node->mutex);
1526                 return 1;
1527         }
1528
1529         btrfs_delayed_item_release_metadata(root, item);
1530         btrfs_release_delayed_item(item);
1531         mutex_unlock(&node->mutex);
1532         return 0;
1533 }
1534
1535 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1536                                    struct btrfs_root *root, struct inode *dir,
1537                                    u64 index)
1538 {
1539         struct btrfs_delayed_node *node;
1540         struct btrfs_delayed_item *item;
1541         struct btrfs_key item_key;
1542         int ret;
1543
1544         node = btrfs_get_or_create_delayed_node(dir);
1545         if (IS_ERR(node))
1546                 return PTR_ERR(node);
1547
1548         item_key.objectid = btrfs_ino(dir);
1549         item_key.type = BTRFS_DIR_INDEX_KEY;
1550         item_key.offset = index;
1551
1552         ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1553         if (!ret)
1554                 goto end;
1555
1556         item = btrfs_alloc_delayed_item(0);
1557         if (!item) {
1558                 ret = -ENOMEM;
1559                 goto end;
1560         }
1561
1562         item->key = item_key;
1563
1564         ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1565         /*
1566          * we have reserved enough space when we start a new transaction,
1567          * so reserving metadata failure is impossible.
1568          */
1569         BUG_ON(ret);
1570
1571         mutex_lock(&node->mutex);
1572         ret = __btrfs_add_delayed_deletion_item(node, item);
1573         if (unlikely(ret)) {
1574                 btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1575                                 "into the deletion tree of the delayed node"
1576                                 "(root id: %llu, inode id: %llu, errno: %d)",
1577                                 index, node->root->objectid, node->inode_id,
1578                                 ret);
1579                 BUG();
1580         }
1581         mutex_unlock(&node->mutex);
1582 end:
1583         btrfs_release_delayed_node(node);
1584         return ret;
1585 }
1586
1587 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1588 {
1589         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1590
1591         if (!delayed_node)
1592                 return -ENOENT;
1593
1594         /*
1595          * Since we have held i_mutex of this directory, it is impossible that
1596          * a new directory index is added into the delayed node and index_cnt
1597          * is updated now. So we needn't lock the delayed node.
1598          */
1599         if (!delayed_node->index_cnt) {
1600                 btrfs_release_delayed_node(delayed_node);
1601                 return -EINVAL;
1602         }
1603
1604         BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1605         btrfs_release_delayed_node(delayed_node);
1606         return 0;
1607 }
1608
1609 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1610                              struct list_head *del_list)
1611 {
1612         struct btrfs_delayed_node *delayed_node;
1613         struct btrfs_delayed_item *item;
1614
1615         delayed_node = btrfs_get_delayed_node(inode);
1616         if (!delayed_node)
1617                 return;
1618
1619         mutex_lock(&delayed_node->mutex);
1620         item = __btrfs_first_delayed_insertion_item(delayed_node);
1621         while (item) {
1622                 atomic_inc(&item->refs);
1623                 list_add_tail(&item->readdir_list, ins_list);
1624                 item = __btrfs_next_delayed_item(item);
1625         }
1626
1627         item = __btrfs_first_delayed_deletion_item(delayed_node);
1628         while (item) {
1629                 atomic_inc(&item->refs);
1630                 list_add_tail(&item->readdir_list, del_list);
1631                 item = __btrfs_next_delayed_item(item);
1632         }
1633         mutex_unlock(&delayed_node->mutex);
1634         /*
1635          * This delayed node is still cached in the btrfs inode, so refs
1636          * must be > 1 now, and we needn't check it is going to be freed
1637          * or not.
1638          *
1639          * Besides that, this function is used to read dir, we do not
1640          * insert/delete delayed items in this period. So we also needn't
1641          * requeue or dequeue this delayed node.
1642          */
1643         atomic_dec(&delayed_node->refs);
1644 }
1645
1646 void btrfs_put_delayed_items(struct list_head *ins_list,
1647                              struct list_head *del_list)
1648 {
1649         struct btrfs_delayed_item *curr, *next;
1650
1651         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1652                 list_del(&curr->readdir_list);
1653                 if (atomic_dec_and_test(&curr->refs))
1654                         kfree(curr);
1655         }
1656
1657         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1658                 list_del(&curr->readdir_list);
1659                 if (atomic_dec_and_test(&curr->refs))
1660                         kfree(curr);
1661         }
1662 }
1663
1664 int btrfs_should_delete_dir_index(struct list_head *del_list,
1665                                   u64 index)
1666 {
1667         struct btrfs_delayed_item *curr, *next;
1668         int ret;
1669
1670         if (list_empty(del_list))
1671                 return 0;
1672
1673         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1674                 if (curr->key.offset > index)
1675                         break;
1676
1677                 list_del(&curr->readdir_list);
1678                 ret = (curr->key.offset == index);
1679
1680                 if (atomic_dec_and_test(&curr->refs))
1681                         kfree(curr);
1682
1683                 if (ret)
1684                         return 1;
1685                 else
1686                         continue;
1687         }
1688         return 0;
1689 }
1690
1691 /*
1692  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1693  *
1694  */
1695 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1696                                     struct list_head *ins_list, bool *emitted)
1697 {
1698         struct btrfs_dir_item *di;
1699         struct btrfs_delayed_item *curr, *next;
1700         struct btrfs_key location;
1701         char *name;
1702         int name_len;
1703         int over = 0;
1704         unsigned char d_type;
1705
1706         if (list_empty(ins_list))
1707                 return 0;
1708
1709         /*
1710          * Changing the data of the delayed item is impossible. So
1711          * we needn't lock them. And we have held i_mutex of the
1712          * directory, nobody can delete any directory indexes now.
1713          */
1714         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1715                 list_del(&curr->readdir_list);
1716
1717                 if (curr->key.offset < ctx->pos) {
1718                         if (atomic_dec_and_test(&curr->refs))
1719                                 kfree(curr);
1720                         continue;
1721                 }
1722
1723                 ctx->pos = curr->key.offset;
1724
1725                 di = (struct btrfs_dir_item *)curr->data;
1726                 name = (char *)(di + 1);
1727                 name_len = btrfs_stack_dir_name_len(di);
1728
1729                 d_type = btrfs_filetype_table[di->type];
1730                 btrfs_disk_key_to_cpu(&location, &di->location);
1731
1732                 over = !dir_emit(ctx, name, name_len,
1733                                location.objectid, d_type);
1734
1735                 if (atomic_dec_and_test(&curr->refs))
1736                         kfree(curr);
1737
1738                 if (over)
1739                         return 1;
1740                 *emitted = true;
1741         }
1742         return 0;
1743 }
1744
1745 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1746                                   struct btrfs_inode_item *inode_item,
1747                                   struct inode *inode)
1748 {
1749         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1750         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1751         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1752         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1753         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1754         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1755         btrfs_set_stack_inode_generation(inode_item,
1756                                          BTRFS_I(inode)->generation);
1757         btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1758         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1759         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1760         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1761         btrfs_set_stack_inode_block_group(inode_item, 0);
1762
1763         btrfs_set_stack_timespec_sec(&inode_item->atime,
1764                                      inode->i_atime.tv_sec);
1765         btrfs_set_stack_timespec_nsec(&inode_item->atime,
1766                                       inode->i_atime.tv_nsec);
1767
1768         btrfs_set_stack_timespec_sec(&inode_item->mtime,
1769                                      inode->i_mtime.tv_sec);
1770         btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1771                                       inode->i_mtime.tv_nsec);
1772
1773         btrfs_set_stack_timespec_sec(&inode_item->ctime,
1774                                      inode->i_ctime.tv_sec);
1775         btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1776                                       inode->i_ctime.tv_nsec);
1777
1778         btrfs_set_stack_timespec_sec(&inode_item->otime,
1779                                      BTRFS_I(inode)->i_otime.tv_sec);
1780         btrfs_set_stack_timespec_nsec(&inode_item->otime,
1781                                      BTRFS_I(inode)->i_otime.tv_nsec);
1782 }
1783
1784 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1785 {
1786         struct btrfs_delayed_node *delayed_node;
1787         struct btrfs_inode_item *inode_item;
1788
1789         delayed_node = btrfs_get_delayed_node(inode);
1790         if (!delayed_node)
1791                 return -ENOENT;
1792
1793         mutex_lock(&delayed_node->mutex);
1794         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1795                 mutex_unlock(&delayed_node->mutex);
1796                 btrfs_release_delayed_node(delayed_node);
1797                 return -ENOENT;
1798         }
1799
1800         inode_item = &delayed_node->inode_item;
1801
1802         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1803         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1804         btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1805         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1806         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1807         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1808         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1809         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1810
1811         inode->i_version = btrfs_stack_inode_sequence(inode_item);
1812         inode->i_rdev = 0;
1813         *rdev = btrfs_stack_inode_rdev(inode_item);
1814         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1815
1816         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1817         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1818
1819         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1820         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1821
1822         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1823         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1824
1825         BTRFS_I(inode)->i_otime.tv_sec =
1826                 btrfs_stack_timespec_sec(&inode_item->otime);
1827         BTRFS_I(inode)->i_otime.tv_nsec =
1828                 btrfs_stack_timespec_nsec(&inode_item->otime);
1829
1830         inode->i_generation = BTRFS_I(inode)->generation;
1831         BTRFS_I(inode)->index_cnt = (u64)-1;
1832
1833         mutex_unlock(&delayed_node->mutex);
1834         btrfs_release_delayed_node(delayed_node);
1835         return 0;
1836 }
1837
1838 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1839                                struct btrfs_root *root, struct inode *inode)
1840 {
1841         struct btrfs_delayed_node *delayed_node;
1842         int ret = 0;
1843
1844         delayed_node = btrfs_get_or_create_delayed_node(inode);
1845         if (IS_ERR(delayed_node))
1846                 return PTR_ERR(delayed_node);
1847
1848         mutex_lock(&delayed_node->mutex);
1849         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1850                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1851                 goto release_node;
1852         }
1853
1854         ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1855                                                    delayed_node);
1856         if (ret)
1857                 goto release_node;
1858
1859         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1860         set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1861         delayed_node->count++;
1862         atomic_inc(&root->fs_info->delayed_root->items);
1863 release_node:
1864         mutex_unlock(&delayed_node->mutex);
1865         btrfs_release_delayed_node(delayed_node);
1866         return ret;
1867 }
1868
1869 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1870 {
1871         struct btrfs_delayed_node *delayed_node;
1872
1873         /*
1874          * we don't do delayed inode updates during log recovery because it
1875          * leads to enospc problems.  This means we also can't do
1876          * delayed inode refs
1877          */
1878         if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
1879                 return -EAGAIN;
1880
1881         delayed_node = btrfs_get_or_create_delayed_node(inode);
1882         if (IS_ERR(delayed_node))
1883                 return PTR_ERR(delayed_node);
1884
1885         /*
1886          * We don't reserve space for inode ref deletion is because:
1887          * - We ONLY do async inode ref deletion for the inode who has only
1888          *   one link(i_nlink == 1), it means there is only one inode ref.
1889          *   And in most case, the inode ref and the inode item are in the
1890          *   same leaf, and we will deal with them at the same time.
1891          *   Since we are sure we will reserve the space for the inode item,
1892          *   it is unnecessary to reserve space for inode ref deletion.
1893          * - If the inode ref and the inode item are not in the same leaf,
1894          *   We also needn't worry about enospc problem, because we reserve
1895          *   much more space for the inode update than it needs.
1896          * - At the worst, we can steal some space from the global reservation.
1897          *   It is very rare.
1898          */
1899         mutex_lock(&delayed_node->mutex);
1900         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1901                 goto release_node;
1902
1903         set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1904         delayed_node->count++;
1905         atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1906 release_node:
1907         mutex_unlock(&delayed_node->mutex);
1908         btrfs_release_delayed_node(delayed_node);
1909         return 0;
1910 }
1911
1912 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1913 {
1914         struct btrfs_root *root = delayed_node->root;
1915         struct btrfs_delayed_item *curr_item, *prev_item;
1916
1917         mutex_lock(&delayed_node->mutex);
1918         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1919         while (curr_item) {
1920                 btrfs_delayed_item_release_metadata(root, curr_item);
1921                 prev_item = curr_item;
1922                 curr_item = __btrfs_next_delayed_item(prev_item);
1923                 btrfs_release_delayed_item(prev_item);
1924         }
1925
1926         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1927         while (curr_item) {
1928                 btrfs_delayed_item_release_metadata(root, curr_item);
1929                 prev_item = curr_item;
1930                 curr_item = __btrfs_next_delayed_item(prev_item);
1931                 btrfs_release_delayed_item(prev_item);
1932         }
1933
1934         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1935                 btrfs_release_delayed_iref(delayed_node);
1936
1937         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1938                 btrfs_delayed_inode_release_metadata(root, delayed_node);
1939                 btrfs_release_delayed_inode(delayed_node);
1940         }
1941         mutex_unlock(&delayed_node->mutex);
1942 }
1943
1944 void btrfs_kill_delayed_inode_items(struct inode *inode)
1945 {
1946         struct btrfs_delayed_node *delayed_node;
1947
1948         delayed_node = btrfs_get_delayed_node(inode);
1949         if (!delayed_node)
1950                 return;
1951
1952         __btrfs_kill_delayed_node(delayed_node);
1953         btrfs_release_delayed_node(delayed_node);
1954 }
1955
1956 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1957 {
1958         u64 inode_id = 0;
1959         struct btrfs_delayed_node *delayed_nodes[8];
1960         int i, n;
1961
1962         while (1) {
1963                 spin_lock(&root->inode_lock);
1964                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1965                                            (void **)delayed_nodes, inode_id,
1966                                            ARRAY_SIZE(delayed_nodes));
1967                 if (!n) {
1968                         spin_unlock(&root->inode_lock);
1969                         break;
1970                 }
1971
1972                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1973
1974                 for (i = 0; i < n; i++)
1975                         atomic_inc(&delayed_nodes[i]->refs);
1976                 spin_unlock(&root->inode_lock);
1977
1978                 for (i = 0; i < n; i++) {
1979                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1980                         btrfs_release_delayed_node(delayed_nodes[i]);
1981                 }
1982         }
1983 }
1984
1985 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1986 {
1987         struct btrfs_delayed_root *delayed_root;
1988         struct btrfs_delayed_node *curr_node, *prev_node;
1989
1990         delayed_root = btrfs_get_delayed_root(root);
1991
1992         curr_node = btrfs_first_delayed_node(delayed_root);
1993         while (curr_node) {
1994                 __btrfs_kill_delayed_node(curr_node);
1995
1996                 prev_node = curr_node;
1997                 curr_node = btrfs_next_delayed_node(curr_node);
1998                 btrfs_release_delayed_node(prev_node);
1999         }
2000 }
2001