x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
59                                  BTRFS_HEADER_FLAG_RELOC |\
60                                  BTRFS_SUPER_FLAG_ERROR |\
61                                  BTRFS_SUPER_FLAG_SEEDING |\
62                                  BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68                                     int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71                                       struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74                                         struct extent_io_tree *dirty_pages,
75                                         int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77                                        struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87         struct bio *bio;
88         bio_end_io_t *end_io;
89         void *private;
90         struct btrfs_fs_info *info;
91         int error;
92         enum btrfs_wq_endio_type metadata;
93         struct list_head list;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122         struct inode *inode;
123         struct bio *bio;
124         struct list_head list;
125         extent_submit_bio_hook_t *submit_bio_start;
126         extent_submit_bio_hook_t *submit_bio_done;
127         int mirror_num;
128         unsigned long bio_flags;
129         /*
130          * bio_offset is optional, can be used if the pages in the bio
131          * can't tell us where in the file the bio should go
132          */
133         u64 bio_offset;
134         struct btrfs_work work;
135         int error;
136 };
137
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167         u64                     id;             /* root objectid */
168         const char              *name_stem;     /* lock name stem */
169         char                    names[BTRFS_MAX_LEVEL + 1][20];
170         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
173         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
174         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
175         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
176         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
177         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
178         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
179         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
180         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
181         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
182         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
183         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184         { .id = 0,                              .name_stem = "tree"     },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189         int i, j;
190
191         /* initialize lockdep class names */
192         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196                         snprintf(ks->names[j], sizeof(ks->names[j]),
197                                  "btrfs-%s-%02d", ks->name_stem, j);
198         }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202                                     int level)
203 {
204         struct btrfs_lockdep_keyset *ks;
205
206         BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208         /* find the matching keyset, id 0 is the default entry */
209         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210                 if (ks->id == objectid)
211                         break;
212
213         lockdep_set_class_and_name(&eb->lock,
214                                    &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224                 struct page *page, size_t pg_offset, u64 start, u64 len,
225                 int create)
226 {
227         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228         struct extent_map *em;
229         int ret;
230
231         read_lock(&em_tree->lock);
232         em = lookup_extent_mapping(em_tree, start, len);
233         if (em) {
234                 em->bdev =
235                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236                 read_unlock(&em_tree->lock);
237                 goto out;
238         }
239         read_unlock(&em_tree->lock);
240
241         em = alloc_extent_map();
242         if (!em) {
243                 em = ERR_PTR(-ENOMEM);
244                 goto out;
245         }
246         em->start = 0;
247         em->len = (u64)-1;
248         em->block_len = (u64)-1;
249         em->block_start = 0;
250         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251
252         write_lock(&em_tree->lock);
253         ret = add_extent_mapping(em_tree, em, 0);
254         if (ret == -EEXIST) {
255                 free_extent_map(em);
256                 em = lookup_extent_mapping(em_tree, start, len);
257                 if (!em)
258                         em = ERR_PTR(-EIO);
259         } else if (ret) {
260                 free_extent_map(em);
261                 em = ERR_PTR(ret);
262         }
263         write_unlock(&em_tree->lock);
264
265 out:
266         return em;
267 }
268
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271         return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276         put_unaligned_le32(~crc, result);
277 }
278
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284                            struct extent_buffer *buf,
285                            int verify)
286 {
287         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288         char *result = NULL;
289         unsigned long len;
290         unsigned long cur_len;
291         unsigned long offset = BTRFS_CSUM_SIZE;
292         char *kaddr;
293         unsigned long map_start;
294         unsigned long map_len;
295         int err;
296         u32 crc = ~(u32)0;
297         unsigned long inline_result;
298
299         len = buf->len - offset;
300         while (len > 0) {
301                 err = map_private_extent_buffer(buf, offset, 32,
302                                         &kaddr, &map_start, &map_len);
303                 if (err)
304                         return err;
305                 cur_len = min(len, map_len - (offset - map_start));
306                 crc = btrfs_csum_data(kaddr + offset - map_start,
307                                       crc, cur_len);
308                 len -= cur_len;
309                 offset += cur_len;
310         }
311         if (csum_size > sizeof(inline_result)) {
312                 result = kzalloc(csum_size, GFP_NOFS);
313                 if (!result)
314                         return -ENOMEM;
315         } else {
316                 result = (char *)&inline_result;
317         }
318
319         btrfs_csum_final(crc, result);
320
321         if (verify) {
322                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323                         u32 val;
324                         u32 found = 0;
325                         memcpy(&found, result, csum_size);
326
327                         read_extent_buffer(buf, &val, 0, csum_size);
328                         btrfs_warn_rl(fs_info,
329                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
330                                 fs_info->sb->s_id, buf->start,
331                                 val, found, btrfs_header_level(buf));
332                         if (result != (char *)&inline_result)
333                                 kfree(result);
334                         return -EUCLEAN;
335                 }
336         } else {
337                 write_extent_buffer(buf, result, 0, csum_size);
338         }
339         if (result != (char *)&inline_result)
340                 kfree(result);
341         return 0;
342 }
343
344 /*
345  * we can't consider a given block up to date unless the transid of the
346  * block matches the transid in the parent node's pointer.  This is how we
347  * detect blocks that either didn't get written at all or got written
348  * in the wrong place.
349  */
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351                                  struct extent_buffer *eb, u64 parent_transid,
352                                  int atomic)
353 {
354         struct extent_state *cached_state = NULL;
355         int ret;
356         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357
358         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359                 return 0;
360
361         if (atomic)
362                 return -EAGAIN;
363
364         if (need_lock) {
365                 btrfs_tree_read_lock(eb);
366                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367         }
368
369         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370                          &cached_state);
371         if (extent_buffer_uptodate(eb) &&
372             btrfs_header_generation(eb) == parent_transid) {
373                 ret = 0;
374                 goto out;
375         }
376         btrfs_err_rl(eb->fs_info,
377                 "parent transid verify failed on %llu wanted %llu found %llu",
378                         eb->start,
379                         parent_transid, btrfs_header_generation(eb));
380         ret = 1;
381
382         /*
383          * Things reading via commit roots that don't have normal protection,
384          * like send, can have a really old block in cache that may point at a
385          * block that has been freed and re-allocated.  So don't clear uptodate
386          * if we find an eb that is under IO (dirty/writeback) because we could
387          * end up reading in the stale data and then writing it back out and
388          * making everybody very sad.
389          */
390         if (!extent_buffer_under_io(eb))
391                 clear_extent_buffer_uptodate(eb);
392 out:
393         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394                              &cached_state, GFP_NOFS);
395         if (need_lock)
396                 btrfs_tree_read_unlock_blocking(eb);
397         return ret;
398 }
399
400 /*
401  * Return 0 if the superblock checksum type matches the checksum value of that
402  * algorithm. Pass the raw disk superblock data.
403  */
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405                                   char *raw_disk_sb)
406 {
407         struct btrfs_super_block *disk_sb =
408                 (struct btrfs_super_block *)raw_disk_sb;
409         u16 csum_type = btrfs_super_csum_type(disk_sb);
410         int ret = 0;
411
412         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413                 u32 crc = ~(u32)0;
414                 const int csum_size = sizeof(crc);
415                 char result[csum_size];
416
417                 /*
418                  * The super_block structure does not span the whole
419                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420                  * is filled with zeros and is included in the checksum.
421                  */
422                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424                 btrfs_csum_final(crc, result);
425
426                 if (memcmp(raw_disk_sb, result, csum_size))
427                         ret = 1;
428         }
429
430         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
432                                 csum_type);
433                 ret = 1;
434         }
435
436         return ret;
437 }
438
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444                                           struct extent_buffer *eb,
445                                           u64 parent_transid)
446 {
447         struct extent_io_tree *io_tree;
448         int failed = 0;
449         int ret;
450         int num_copies = 0;
451         int mirror_num = 0;
452         int failed_mirror = 0;
453
454         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456         while (1) {
457                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458                                                btree_get_extent, mirror_num);
459                 if (!ret) {
460                         if (!verify_parent_transid(io_tree, eb,
461                                                    parent_transid, 0))
462                                 break;
463                         else
464                                 ret = -EIO;
465                 }
466
467                 /*
468                  * This buffer's crc is fine, but its contents are corrupted, so
469                  * there is no reason to read the other copies, they won't be
470                  * any less wrong.
471                  */
472                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473                         break;
474
475                 num_copies = btrfs_num_copies(root->fs_info,
476                                               eb->start, eb->len);
477                 if (num_copies == 1)
478                         break;
479
480                 if (!failed_mirror) {
481                         failed = 1;
482                         failed_mirror = eb->read_mirror;
483                 }
484
485                 mirror_num++;
486                 if (mirror_num == failed_mirror)
487                         mirror_num++;
488
489                 if (mirror_num > num_copies)
490                         break;
491         }
492
493         if (failed && !ret && failed_mirror)
494                 repair_eb_io_failure(root, eb, failed_mirror);
495
496         return ret;
497 }
498
499 /*
500  * checksum a dirty tree block before IO.  This has extra checks to make sure
501  * we only fill in the checksum field in the first page of a multi-page block
502  */
503
504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
505 {
506         u64 start = page_offset(page);
507         u64 found_start;
508         struct extent_buffer *eb;
509
510         eb = (struct extent_buffer *)page->private;
511         if (page != eb->pages[0])
512                 return 0;
513
514         found_start = btrfs_header_bytenr(eb);
515         /*
516          * Please do not consolidate these warnings into a single if.
517          * It is useful to know what went wrong.
518          */
519         if (WARN_ON(found_start != start))
520                 return -EUCLEAN;
521         if (WARN_ON(!PageUptodate(page)))
522                 return -EUCLEAN;
523
524         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526
527         return csum_tree_block(fs_info, eb, 0);
528 }
529
530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531                                  struct extent_buffer *eb)
532 {
533         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534         u8 fsid[BTRFS_UUID_SIZE];
535         int ret = 1;
536
537         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538         while (fs_devices) {
539                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540                         ret = 0;
541                         break;
542                 }
543                 fs_devices = fs_devices->seed;
544         }
545         return ret;
546 }
547
548 #define CORRUPT(reason, eb, root, slot)                         \
549         btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu," \
550                    " root=%llu, slot=%d",                       \
551                    btrfs_header_level(eb) == 0 ? "leaf" : "node",\
552                    reason, btrfs_header_bytenr(eb), root->objectid, slot)
553
554 static noinline int check_leaf(struct btrfs_root *root,
555                                struct extent_buffer *leaf)
556 {
557         struct btrfs_key key;
558         struct btrfs_key leaf_key;
559         u32 nritems = btrfs_header_nritems(leaf);
560         int slot;
561
562         if (nritems == 0) {
563                 struct btrfs_root *check_root;
564
565                 key.objectid = btrfs_header_owner(leaf);
566                 key.type = BTRFS_ROOT_ITEM_KEY;
567                 key.offset = (u64)-1;
568
569                 check_root = btrfs_get_fs_root(root->fs_info, &key, false);
570                 /*
571                  * The only reason we also check NULL here is that during
572                  * open_ctree() some roots has not yet been set up.
573                  */
574                 if (!IS_ERR_OR_NULL(check_root)) {
575                         /* if leaf is the root, then it's fine */
576                         if (leaf->start !=
577                             btrfs_root_bytenr(&check_root->root_item)) {
578                                 CORRUPT("non-root leaf's nritems is 0",
579                                         leaf, root, 0);
580                                 return -EIO;
581                         }
582                 }
583                 return 0;
584         }
585
586         /* Check the 0 item */
587         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
588             BTRFS_LEAF_DATA_SIZE(root)) {
589                 CORRUPT("invalid item offset size pair", leaf, root, 0);
590                 return -EIO;
591         }
592
593         /*
594          * Check to make sure each items keys are in the correct order and their
595          * offsets make sense.  We only have to loop through nritems-1 because
596          * we check the current slot against the next slot, which verifies the
597          * next slot's offset+size makes sense and that the current's slot
598          * offset is correct.
599          */
600         for (slot = 0; slot < nritems - 1; slot++) {
601                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
602                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
603
604                 /* Make sure the keys are in the right order */
605                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
606                         CORRUPT("bad key order", leaf, root, slot);
607                         return -EIO;
608                 }
609
610                 /*
611                  * Make sure the offset and ends are right, remember that the
612                  * item data starts at the end of the leaf and grows towards the
613                  * front.
614                  */
615                 if (btrfs_item_offset_nr(leaf, slot) !=
616                         btrfs_item_end_nr(leaf, slot + 1)) {
617                         CORRUPT("slot offset bad", leaf, root, slot);
618                         return -EIO;
619                 }
620
621                 /*
622                  * Check to make sure that we don't point outside of the leaf,
623                  * just in case all the items are consistent to each other, but
624                  * all point outside of the leaf.
625                  */
626                 if (btrfs_item_end_nr(leaf, slot) >
627                     BTRFS_LEAF_DATA_SIZE(root)) {
628                         CORRUPT("slot end outside of leaf", leaf, root, slot);
629                         return -EIO;
630                 }
631         }
632
633         return 0;
634 }
635
636 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
637 {
638         unsigned long nr = btrfs_header_nritems(node);
639         struct btrfs_key key, next_key;
640         int slot;
641         u64 bytenr;
642         int ret = 0;
643
644         if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
645                 btrfs_crit(root->fs_info,
646                            "corrupt node: block %llu root %llu nritems %lu",
647                            node->start, root->objectid, nr);
648                 return -EIO;
649         }
650
651         for (slot = 0; slot < nr - 1; slot++) {
652                 bytenr = btrfs_node_blockptr(node, slot);
653                 btrfs_node_key_to_cpu(node, &key, slot);
654                 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
655
656                 if (!bytenr) {
657                         CORRUPT("invalid item slot", node, root, slot);
658                         ret = -EIO;
659                         goto out;
660                 }
661
662                 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
663                         CORRUPT("bad key order", node, root, slot);
664                         ret = -EIO;
665                         goto out;
666                 }
667         }
668 out:
669         return ret;
670 }
671
672 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
673                                       u64 phy_offset, struct page *page,
674                                       u64 start, u64 end, int mirror)
675 {
676         u64 found_start;
677         int found_level;
678         struct extent_buffer *eb;
679         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
680         struct btrfs_fs_info *fs_info = root->fs_info;
681         int ret = 0;
682         int reads_done;
683
684         if (!page->private)
685                 goto out;
686
687         eb = (struct extent_buffer *)page->private;
688
689         /* the pending IO might have been the only thing that kept this buffer
690          * in memory.  Make sure we have a ref for all this other checks
691          */
692         extent_buffer_get(eb);
693
694         reads_done = atomic_dec_and_test(&eb->io_pages);
695         if (!reads_done)
696                 goto err;
697
698         eb->read_mirror = mirror;
699         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
700                 ret = -EIO;
701                 goto err;
702         }
703
704         found_start = btrfs_header_bytenr(eb);
705         if (found_start != eb->start) {
706                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
707                              found_start, eb->start);
708                 ret = -EIO;
709                 goto err;
710         }
711         if (check_tree_block_fsid(fs_info, eb)) {
712                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
713                              eb->start);
714                 ret = -EIO;
715                 goto err;
716         }
717         found_level = btrfs_header_level(eb);
718         if (found_level >= BTRFS_MAX_LEVEL) {
719                 btrfs_err(fs_info, "bad tree block level %d",
720                           (int)btrfs_header_level(eb));
721                 ret = -EIO;
722                 goto err;
723         }
724
725         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
726                                        eb, found_level);
727
728         ret = csum_tree_block(fs_info, eb, 1);
729         if (ret)
730                 goto err;
731
732         /*
733          * If this is a leaf block and it is corrupt, set the corrupt bit so
734          * that we don't try and read the other copies of this block, just
735          * return -EIO.
736          */
737         if (found_level == 0 && check_leaf(root, eb)) {
738                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
739                 ret = -EIO;
740         }
741
742         if (found_level > 0 && check_node(root, eb))
743                 ret = -EIO;
744
745         if (!ret)
746                 set_extent_buffer_uptodate(eb);
747 err:
748         if (reads_done &&
749             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
750                 btree_readahead_hook(fs_info, eb, eb->start, ret);
751
752         if (ret) {
753                 /*
754                  * our io error hook is going to dec the io pages
755                  * again, we have to make sure it has something
756                  * to decrement
757                  */
758                 atomic_inc(&eb->io_pages);
759                 clear_extent_buffer_uptodate(eb);
760         }
761         free_extent_buffer(eb);
762 out:
763         return ret;
764 }
765
766 static int btree_io_failed_hook(struct page *page, int failed_mirror)
767 {
768         struct extent_buffer *eb;
769
770         eb = (struct extent_buffer *)page->private;
771         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
772         eb->read_mirror = failed_mirror;
773         atomic_dec(&eb->io_pages);
774         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
775                 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
776         return -EIO;    /* we fixed nothing */
777 }
778
779 static void end_workqueue_bio(struct bio *bio)
780 {
781         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
782         struct btrfs_fs_info *fs_info;
783         struct btrfs_workqueue *wq;
784         btrfs_work_func_t func;
785
786         fs_info = end_io_wq->info;
787         end_io_wq->error = bio->bi_error;
788
789         if (bio_op(bio) == REQ_OP_WRITE) {
790                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
791                         wq = fs_info->endio_meta_write_workers;
792                         func = btrfs_endio_meta_write_helper;
793                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
794                         wq = fs_info->endio_freespace_worker;
795                         func = btrfs_freespace_write_helper;
796                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
797                         wq = fs_info->endio_raid56_workers;
798                         func = btrfs_endio_raid56_helper;
799                 } else {
800                         wq = fs_info->endio_write_workers;
801                         func = btrfs_endio_write_helper;
802                 }
803         } else {
804                 if (unlikely(end_io_wq->metadata ==
805                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
806                         wq = fs_info->endio_repair_workers;
807                         func = btrfs_endio_repair_helper;
808                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
809                         wq = fs_info->endio_raid56_workers;
810                         func = btrfs_endio_raid56_helper;
811                 } else if (end_io_wq->metadata) {
812                         wq = fs_info->endio_meta_workers;
813                         func = btrfs_endio_meta_helper;
814                 } else {
815                         wq = fs_info->endio_workers;
816                         func = btrfs_endio_helper;
817                 }
818         }
819
820         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
821         btrfs_queue_work(wq, &end_io_wq->work);
822 }
823
824 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
825                         enum btrfs_wq_endio_type metadata)
826 {
827         struct btrfs_end_io_wq *end_io_wq;
828
829         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
830         if (!end_io_wq)
831                 return -ENOMEM;
832
833         end_io_wq->private = bio->bi_private;
834         end_io_wq->end_io = bio->bi_end_io;
835         end_io_wq->info = info;
836         end_io_wq->error = 0;
837         end_io_wq->bio = bio;
838         end_io_wq->metadata = metadata;
839
840         bio->bi_private = end_io_wq;
841         bio->bi_end_io = end_workqueue_bio;
842         return 0;
843 }
844
845 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
846 {
847         unsigned long limit = min_t(unsigned long,
848                                     info->thread_pool_size,
849                                     info->fs_devices->open_devices);
850         return 256 * limit;
851 }
852
853 static void run_one_async_start(struct btrfs_work *work)
854 {
855         struct async_submit_bio *async;
856         int ret;
857
858         async = container_of(work, struct  async_submit_bio, work);
859         ret = async->submit_bio_start(async->inode, async->bio,
860                                       async->mirror_num, async->bio_flags,
861                                       async->bio_offset);
862         if (ret)
863                 async->error = ret;
864 }
865
866 static void run_one_async_done(struct btrfs_work *work)
867 {
868         struct btrfs_fs_info *fs_info;
869         struct async_submit_bio *async;
870         int limit;
871
872         async = container_of(work, struct  async_submit_bio, work);
873         fs_info = BTRFS_I(async->inode)->root->fs_info;
874
875         limit = btrfs_async_submit_limit(fs_info);
876         limit = limit * 2 / 3;
877
878         /*
879          * atomic_dec_return implies a barrier for waitqueue_active
880          */
881         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
882             waitqueue_active(&fs_info->async_submit_wait))
883                 wake_up(&fs_info->async_submit_wait);
884
885         /* If an error occurred we just want to clean up the bio and move on */
886         if (async->error) {
887                 async->bio->bi_error = async->error;
888                 bio_endio(async->bio);
889                 return;
890         }
891
892         async->submit_bio_done(async->inode, async->bio, async->mirror_num,
893                                async->bio_flags, async->bio_offset);
894 }
895
896 static void run_one_async_free(struct btrfs_work *work)
897 {
898         struct async_submit_bio *async;
899
900         async = container_of(work, struct  async_submit_bio, work);
901         kfree(async);
902 }
903
904 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
905                         struct bio *bio, int mirror_num,
906                         unsigned long bio_flags,
907                         u64 bio_offset,
908                         extent_submit_bio_hook_t *submit_bio_start,
909                         extent_submit_bio_hook_t *submit_bio_done)
910 {
911         struct async_submit_bio *async;
912
913         async = kmalloc(sizeof(*async), GFP_NOFS);
914         if (!async)
915                 return -ENOMEM;
916
917         async->inode = inode;
918         async->bio = bio;
919         async->mirror_num = mirror_num;
920         async->submit_bio_start = submit_bio_start;
921         async->submit_bio_done = submit_bio_done;
922
923         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
924                         run_one_async_done, run_one_async_free);
925
926         async->bio_flags = bio_flags;
927         async->bio_offset = bio_offset;
928
929         async->error = 0;
930
931         atomic_inc(&fs_info->nr_async_submits);
932
933         if (bio->bi_opf & REQ_SYNC)
934                 btrfs_set_work_high_priority(&async->work);
935
936         btrfs_queue_work(fs_info->workers, &async->work);
937
938         while (atomic_read(&fs_info->async_submit_draining) &&
939               atomic_read(&fs_info->nr_async_submits)) {
940                 wait_event(fs_info->async_submit_wait,
941                            (atomic_read(&fs_info->nr_async_submits) == 0));
942         }
943
944         return 0;
945 }
946
947 static int btree_csum_one_bio(struct bio *bio)
948 {
949         struct bio_vec *bvec;
950         struct btrfs_root *root;
951         int i, ret = 0;
952
953         bio_for_each_segment_all(bvec, bio, i) {
954                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
955                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
956                 if (ret)
957                         break;
958         }
959
960         return ret;
961 }
962
963 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
964                                     int mirror_num, unsigned long bio_flags,
965                                     u64 bio_offset)
966 {
967         /*
968          * when we're called for a write, we're already in the async
969          * submission context.  Just jump into btrfs_map_bio
970          */
971         return btree_csum_one_bio(bio);
972 }
973
974 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
975                                  int mirror_num, unsigned long bio_flags,
976                                  u64 bio_offset)
977 {
978         int ret;
979
980         /*
981          * when we're called for a write, we're already in the async
982          * submission context.  Just jump into btrfs_map_bio
983          */
984         ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
985         if (ret) {
986                 bio->bi_error = ret;
987                 bio_endio(bio);
988         }
989         return ret;
990 }
991
992 static int check_async_write(struct inode *inode, unsigned long bio_flags)
993 {
994         if (bio_flags & EXTENT_BIO_TREE_LOG)
995                 return 0;
996 #ifdef CONFIG_X86
997         if (static_cpu_has(X86_FEATURE_XMM4_2))
998                 return 0;
999 #endif
1000         return 1;
1001 }
1002
1003 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1004                                  int mirror_num, unsigned long bio_flags,
1005                                  u64 bio_offset)
1006 {
1007         int async = check_async_write(inode, bio_flags);
1008         int ret;
1009
1010         if (bio_op(bio) != REQ_OP_WRITE) {
1011                 /*
1012                  * called for a read, do the setup so that checksum validation
1013                  * can happen in the async kernel threads
1014                  */
1015                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
1016                                           bio, BTRFS_WQ_ENDIO_METADATA);
1017                 if (ret)
1018                         goto out_w_error;
1019                 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1020         } else if (!async) {
1021                 ret = btree_csum_one_bio(bio);
1022                 if (ret)
1023                         goto out_w_error;
1024                 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1025         } else {
1026                 /*
1027                  * kthread helpers are used to submit writes so that
1028                  * checksumming can happen in parallel across all CPUs
1029                  */
1030                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1031                                           inode, bio, mirror_num, 0,
1032                                           bio_offset,
1033                                           __btree_submit_bio_start,
1034                                           __btree_submit_bio_done);
1035         }
1036
1037         if (ret)
1038                 goto out_w_error;
1039         return 0;
1040
1041 out_w_error:
1042         bio->bi_error = ret;
1043         bio_endio(bio);
1044         return ret;
1045 }
1046
1047 #ifdef CONFIG_MIGRATION
1048 static int btree_migratepage(struct address_space *mapping,
1049                         struct page *newpage, struct page *page,
1050                         enum migrate_mode mode)
1051 {
1052         /*
1053          * we can't safely write a btree page from here,
1054          * we haven't done the locking hook
1055          */
1056         if (PageDirty(page))
1057                 return -EAGAIN;
1058         /*
1059          * Buffers may be managed in a filesystem specific way.
1060          * We must have no buffers or drop them.
1061          */
1062         if (page_has_private(page) &&
1063             !try_to_release_page(page, GFP_KERNEL))
1064                 return -EAGAIN;
1065         return migrate_page(mapping, newpage, page, mode);
1066 }
1067 #endif
1068
1069
1070 static int btree_writepages(struct address_space *mapping,
1071                             struct writeback_control *wbc)
1072 {
1073         struct btrfs_fs_info *fs_info;
1074         int ret;
1075
1076         if (wbc->sync_mode == WB_SYNC_NONE) {
1077
1078                 if (wbc->for_kupdate)
1079                         return 0;
1080
1081                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1082                 /* this is a bit racy, but that's ok */
1083                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1084                                              BTRFS_DIRTY_METADATA_THRESH);
1085                 if (ret < 0)
1086                         return 0;
1087         }
1088         return btree_write_cache_pages(mapping, wbc);
1089 }
1090
1091 static int btree_readpage(struct file *file, struct page *page)
1092 {
1093         struct extent_io_tree *tree;
1094         tree = &BTRFS_I(page->mapping->host)->io_tree;
1095         return extent_read_full_page(tree, page, btree_get_extent, 0);
1096 }
1097
1098 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1099 {
1100         if (PageWriteback(page) || PageDirty(page))
1101                 return 0;
1102
1103         return try_release_extent_buffer(page);
1104 }
1105
1106 static void btree_invalidatepage(struct page *page, unsigned int offset,
1107                                  unsigned int length)
1108 {
1109         struct extent_io_tree *tree;
1110         tree = &BTRFS_I(page->mapping->host)->io_tree;
1111         extent_invalidatepage(tree, page, offset);
1112         btree_releasepage(page, GFP_NOFS);
1113         if (PagePrivate(page)) {
1114                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1115                            "page private not zero on page %llu",
1116                            (unsigned long long)page_offset(page));
1117                 ClearPagePrivate(page);
1118                 set_page_private(page, 0);
1119                 put_page(page);
1120         }
1121 }
1122
1123 static int btree_set_page_dirty(struct page *page)
1124 {
1125 #ifdef DEBUG
1126         struct extent_buffer *eb;
1127
1128         BUG_ON(!PagePrivate(page));
1129         eb = (struct extent_buffer *)page->private;
1130         BUG_ON(!eb);
1131         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1132         BUG_ON(!atomic_read(&eb->refs));
1133         btrfs_assert_tree_locked(eb);
1134 #endif
1135         return __set_page_dirty_nobuffers(page);
1136 }
1137
1138 static const struct address_space_operations btree_aops = {
1139         .readpage       = btree_readpage,
1140         .writepages     = btree_writepages,
1141         .releasepage    = btree_releasepage,
1142         .invalidatepage = btree_invalidatepage,
1143 #ifdef CONFIG_MIGRATION
1144         .migratepage    = btree_migratepage,
1145 #endif
1146         .set_page_dirty = btree_set_page_dirty,
1147 };
1148
1149 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1150 {
1151         struct extent_buffer *buf = NULL;
1152         struct inode *btree_inode = root->fs_info->btree_inode;
1153
1154         buf = btrfs_find_create_tree_block(root, bytenr);
1155         if (IS_ERR(buf))
1156                 return;
1157         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1158                                  buf, WAIT_NONE, btree_get_extent, 0);
1159         free_extent_buffer(buf);
1160 }
1161
1162 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1163                          int mirror_num, struct extent_buffer **eb)
1164 {
1165         struct extent_buffer *buf = NULL;
1166         struct inode *btree_inode = root->fs_info->btree_inode;
1167         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1168         int ret;
1169
1170         buf = btrfs_find_create_tree_block(root, bytenr);
1171         if (IS_ERR(buf))
1172                 return 0;
1173
1174         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1175
1176         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1177                                        btree_get_extent, mirror_num);
1178         if (ret) {
1179                 free_extent_buffer(buf);
1180                 return ret;
1181         }
1182
1183         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1184                 free_extent_buffer(buf);
1185                 return -EIO;
1186         } else if (extent_buffer_uptodate(buf)) {
1187                 *eb = buf;
1188         } else {
1189                 free_extent_buffer(buf);
1190         }
1191         return 0;
1192 }
1193
1194 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1195                                             u64 bytenr)
1196 {
1197         return find_extent_buffer(fs_info, bytenr);
1198 }
1199
1200 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1201                                                  u64 bytenr)
1202 {
1203         if (btrfs_is_testing(root->fs_info))
1204                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1205                                 root->nodesize);
1206         return alloc_extent_buffer(root->fs_info, bytenr);
1207 }
1208
1209
1210 int btrfs_write_tree_block(struct extent_buffer *buf)
1211 {
1212         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1213                                         buf->start + buf->len - 1);
1214 }
1215
1216 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1217 {
1218         return filemap_fdatawait_range(buf->pages[0]->mapping,
1219                                        buf->start, buf->start + buf->len - 1);
1220 }
1221
1222 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1223                                       u64 parent_transid)
1224 {
1225         struct extent_buffer *buf = NULL;
1226         int ret;
1227
1228         buf = btrfs_find_create_tree_block(root, bytenr);
1229         if (IS_ERR(buf))
1230                 return buf;
1231
1232         ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
1233         if (ret) {
1234                 free_extent_buffer(buf);
1235                 return ERR_PTR(ret);
1236         }
1237         return buf;
1238
1239 }
1240
1241 void clean_tree_block(struct btrfs_trans_handle *trans,
1242                       struct btrfs_fs_info *fs_info,
1243                       struct extent_buffer *buf)
1244 {
1245         if (btrfs_header_generation(buf) ==
1246             fs_info->running_transaction->transid) {
1247                 btrfs_assert_tree_locked(buf);
1248
1249                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1250                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1251                                              -buf->len,
1252                                              fs_info->dirty_metadata_batch);
1253                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1254                         btrfs_set_lock_blocking(buf);
1255                         clear_extent_buffer_dirty(buf);
1256                 }
1257         }
1258 }
1259
1260 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1261 {
1262         struct btrfs_subvolume_writers *writers;
1263         int ret;
1264
1265         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1266         if (!writers)
1267                 return ERR_PTR(-ENOMEM);
1268
1269         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1270         if (ret < 0) {
1271                 kfree(writers);
1272                 return ERR_PTR(ret);
1273         }
1274
1275         init_waitqueue_head(&writers->wait);
1276         return writers;
1277 }
1278
1279 static void
1280 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1281 {
1282         percpu_counter_destroy(&writers->counter);
1283         kfree(writers);
1284 }
1285
1286 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1287                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1288                          u64 objectid)
1289 {
1290         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1291         root->node = NULL;
1292         root->commit_root = NULL;
1293         root->sectorsize = sectorsize;
1294         root->nodesize = nodesize;
1295         root->stripesize = stripesize;
1296         root->state = 0;
1297         root->orphan_cleanup_state = 0;
1298
1299         root->objectid = objectid;
1300         root->last_trans = 0;
1301         root->highest_objectid = 0;
1302         root->nr_delalloc_inodes = 0;
1303         root->nr_ordered_extents = 0;
1304         root->name = NULL;
1305         root->inode_tree = RB_ROOT;
1306         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1307         root->block_rsv = NULL;
1308         root->orphan_block_rsv = NULL;
1309
1310         INIT_LIST_HEAD(&root->dirty_list);
1311         INIT_LIST_HEAD(&root->root_list);
1312         INIT_LIST_HEAD(&root->delalloc_inodes);
1313         INIT_LIST_HEAD(&root->delalloc_root);
1314         INIT_LIST_HEAD(&root->ordered_extents);
1315         INIT_LIST_HEAD(&root->ordered_root);
1316         INIT_LIST_HEAD(&root->logged_list[0]);
1317         INIT_LIST_HEAD(&root->logged_list[1]);
1318         spin_lock_init(&root->orphan_lock);
1319         spin_lock_init(&root->inode_lock);
1320         spin_lock_init(&root->delalloc_lock);
1321         spin_lock_init(&root->ordered_extent_lock);
1322         spin_lock_init(&root->accounting_lock);
1323         spin_lock_init(&root->log_extents_lock[0]);
1324         spin_lock_init(&root->log_extents_lock[1]);
1325         mutex_init(&root->objectid_mutex);
1326         mutex_init(&root->log_mutex);
1327         mutex_init(&root->ordered_extent_mutex);
1328         mutex_init(&root->delalloc_mutex);
1329         init_waitqueue_head(&root->log_writer_wait);
1330         init_waitqueue_head(&root->log_commit_wait[0]);
1331         init_waitqueue_head(&root->log_commit_wait[1]);
1332         INIT_LIST_HEAD(&root->log_ctxs[0]);
1333         INIT_LIST_HEAD(&root->log_ctxs[1]);
1334         atomic_set(&root->log_commit[0], 0);
1335         atomic_set(&root->log_commit[1], 0);
1336         atomic_set(&root->log_writers, 0);
1337         atomic_set(&root->log_batch, 0);
1338         atomic_set(&root->orphan_inodes, 0);
1339         atomic_set(&root->refs, 1);
1340         atomic_set(&root->will_be_snapshoted, 0);
1341         atomic_set(&root->qgroup_meta_rsv, 0);
1342         root->log_transid = 0;
1343         root->log_transid_committed = -1;
1344         root->last_log_commit = 0;
1345         if (!dummy)
1346                 extent_io_tree_init(&root->dirty_log_pages,
1347                                      fs_info->btree_inode->i_mapping);
1348
1349         memset(&root->root_key, 0, sizeof(root->root_key));
1350         memset(&root->root_item, 0, sizeof(root->root_item));
1351         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1352         if (!dummy)
1353                 root->defrag_trans_start = fs_info->generation;
1354         else
1355                 root->defrag_trans_start = 0;
1356         root->root_key.objectid = objectid;
1357         root->anon_dev = 0;
1358
1359         spin_lock_init(&root->root_item_lock);
1360 }
1361
1362 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1363                 gfp_t flags)
1364 {
1365         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1366         if (root)
1367                 root->fs_info = fs_info;
1368         return root;
1369 }
1370
1371 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1372 /* Should only be used by the testing infrastructure */
1373 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1374                                           u32 sectorsize, u32 nodesize)
1375 {
1376         struct btrfs_root *root;
1377
1378         if (!fs_info)
1379                 return ERR_PTR(-EINVAL);
1380
1381         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1382         if (!root)
1383                 return ERR_PTR(-ENOMEM);
1384         /* We don't use the stripesize in selftest, set it as sectorsize */
1385         __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1386                         BTRFS_ROOT_TREE_OBJECTID);
1387         root->alloc_bytenr = 0;
1388
1389         return root;
1390 }
1391 #endif
1392
1393 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1394                                      struct btrfs_fs_info *fs_info,
1395                                      u64 objectid)
1396 {
1397         struct extent_buffer *leaf;
1398         struct btrfs_root *tree_root = fs_info->tree_root;
1399         struct btrfs_root *root;
1400         struct btrfs_key key;
1401         int ret = 0;
1402         uuid_le uuid;
1403
1404         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1405         if (!root)
1406                 return ERR_PTR(-ENOMEM);
1407
1408         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1409                 tree_root->stripesize, root, fs_info, objectid);
1410         root->root_key.objectid = objectid;
1411         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1412         root->root_key.offset = 0;
1413
1414         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1415         if (IS_ERR(leaf)) {
1416                 ret = PTR_ERR(leaf);
1417                 leaf = NULL;
1418                 goto fail;
1419         }
1420
1421         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1422         btrfs_set_header_bytenr(leaf, leaf->start);
1423         btrfs_set_header_generation(leaf, trans->transid);
1424         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1425         btrfs_set_header_owner(leaf, objectid);
1426         root->node = leaf;
1427
1428         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1429                             BTRFS_FSID_SIZE);
1430         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1431                             btrfs_header_chunk_tree_uuid(leaf),
1432                             BTRFS_UUID_SIZE);
1433         btrfs_mark_buffer_dirty(leaf);
1434
1435         root->commit_root = btrfs_root_node(root);
1436         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1437
1438         root->root_item.flags = 0;
1439         root->root_item.byte_limit = 0;
1440         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1441         btrfs_set_root_generation(&root->root_item, trans->transid);
1442         btrfs_set_root_level(&root->root_item, 0);
1443         btrfs_set_root_refs(&root->root_item, 1);
1444         btrfs_set_root_used(&root->root_item, leaf->len);
1445         btrfs_set_root_last_snapshot(&root->root_item, 0);
1446         btrfs_set_root_dirid(&root->root_item, 0);
1447         uuid_le_gen(&uuid);
1448         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1449         root->root_item.drop_level = 0;
1450
1451         key.objectid = objectid;
1452         key.type = BTRFS_ROOT_ITEM_KEY;
1453         key.offset = 0;
1454         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1455         if (ret)
1456                 goto fail;
1457
1458         btrfs_tree_unlock(leaf);
1459
1460         return root;
1461
1462 fail:
1463         if (leaf) {
1464                 btrfs_tree_unlock(leaf);
1465                 free_extent_buffer(root->commit_root);
1466                 free_extent_buffer(leaf);
1467         }
1468         kfree(root);
1469
1470         return ERR_PTR(ret);
1471 }
1472
1473 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1474                                          struct btrfs_fs_info *fs_info)
1475 {
1476         struct btrfs_root *root;
1477         struct btrfs_root *tree_root = fs_info->tree_root;
1478         struct extent_buffer *leaf;
1479
1480         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1481         if (!root)
1482                 return ERR_PTR(-ENOMEM);
1483
1484         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1485                      tree_root->stripesize, root, fs_info,
1486                      BTRFS_TREE_LOG_OBJECTID);
1487
1488         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1489         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1490         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1491
1492         /*
1493          * DON'T set REF_COWS for log trees
1494          *
1495          * log trees do not get reference counted because they go away
1496          * before a real commit is actually done.  They do store pointers
1497          * to file data extents, and those reference counts still get
1498          * updated (along with back refs to the log tree).
1499          */
1500
1501         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1502                         NULL, 0, 0, 0);
1503         if (IS_ERR(leaf)) {
1504                 kfree(root);
1505                 return ERR_CAST(leaf);
1506         }
1507
1508         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1509         btrfs_set_header_bytenr(leaf, leaf->start);
1510         btrfs_set_header_generation(leaf, trans->transid);
1511         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1512         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1513         root->node = leaf;
1514
1515         write_extent_buffer(root->node, root->fs_info->fsid,
1516                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1517         btrfs_mark_buffer_dirty(root->node);
1518         btrfs_tree_unlock(root->node);
1519         return root;
1520 }
1521
1522 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1523                              struct btrfs_fs_info *fs_info)
1524 {
1525         struct btrfs_root *log_root;
1526
1527         log_root = alloc_log_tree(trans, fs_info);
1528         if (IS_ERR(log_root))
1529                 return PTR_ERR(log_root);
1530         WARN_ON(fs_info->log_root_tree);
1531         fs_info->log_root_tree = log_root;
1532         return 0;
1533 }
1534
1535 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1536                        struct btrfs_root *root)
1537 {
1538         struct btrfs_root *log_root;
1539         struct btrfs_inode_item *inode_item;
1540
1541         log_root = alloc_log_tree(trans, root->fs_info);
1542         if (IS_ERR(log_root))
1543                 return PTR_ERR(log_root);
1544
1545         log_root->last_trans = trans->transid;
1546         log_root->root_key.offset = root->root_key.objectid;
1547
1548         inode_item = &log_root->root_item.inode;
1549         btrfs_set_stack_inode_generation(inode_item, 1);
1550         btrfs_set_stack_inode_size(inode_item, 3);
1551         btrfs_set_stack_inode_nlink(inode_item, 1);
1552         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1553         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1554
1555         btrfs_set_root_node(&log_root->root_item, log_root->node);
1556
1557         WARN_ON(root->log_root);
1558         root->log_root = log_root;
1559         root->log_transid = 0;
1560         root->log_transid_committed = -1;
1561         root->last_log_commit = 0;
1562         return 0;
1563 }
1564
1565 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1566                                                struct btrfs_key *key)
1567 {
1568         struct btrfs_root *root;
1569         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1570         struct btrfs_path *path;
1571         u64 generation;
1572         int ret;
1573
1574         path = btrfs_alloc_path();
1575         if (!path)
1576                 return ERR_PTR(-ENOMEM);
1577
1578         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1579         if (!root) {
1580                 ret = -ENOMEM;
1581                 goto alloc_fail;
1582         }
1583
1584         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1585                 tree_root->stripesize, root, fs_info, key->objectid);
1586
1587         ret = btrfs_find_root(tree_root, key, path,
1588                               &root->root_item, &root->root_key);
1589         if (ret) {
1590                 if (ret > 0)
1591                         ret = -ENOENT;
1592                 goto find_fail;
1593         }
1594
1595         generation = btrfs_root_generation(&root->root_item);
1596         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1597                                      generation);
1598         if (IS_ERR(root->node)) {
1599                 ret = PTR_ERR(root->node);
1600                 goto find_fail;
1601         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1602                 ret = -EIO;
1603                 free_extent_buffer(root->node);
1604                 goto find_fail;
1605         }
1606         root->commit_root = btrfs_root_node(root);
1607 out:
1608         btrfs_free_path(path);
1609         return root;
1610
1611 find_fail:
1612         kfree(root);
1613 alloc_fail:
1614         root = ERR_PTR(ret);
1615         goto out;
1616 }
1617
1618 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1619                                       struct btrfs_key *location)
1620 {
1621         struct btrfs_root *root;
1622
1623         root = btrfs_read_tree_root(tree_root, location);
1624         if (IS_ERR(root))
1625                 return root;
1626
1627         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1628                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1629                 btrfs_check_and_init_root_item(&root->root_item);
1630         }
1631
1632         return root;
1633 }
1634
1635 int btrfs_init_fs_root(struct btrfs_root *root)
1636 {
1637         int ret;
1638         struct btrfs_subvolume_writers *writers;
1639
1640         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1641         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1642                                         GFP_NOFS);
1643         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1644                 ret = -ENOMEM;
1645                 goto fail;
1646         }
1647
1648         writers = btrfs_alloc_subvolume_writers();
1649         if (IS_ERR(writers)) {
1650                 ret = PTR_ERR(writers);
1651                 goto fail;
1652         }
1653         root->subv_writers = writers;
1654
1655         btrfs_init_free_ino_ctl(root);
1656         spin_lock_init(&root->ino_cache_lock);
1657         init_waitqueue_head(&root->ino_cache_wait);
1658
1659         ret = get_anon_bdev(&root->anon_dev);
1660         if (ret)
1661                 goto fail;
1662
1663         mutex_lock(&root->objectid_mutex);
1664         ret = btrfs_find_highest_objectid(root,
1665                                         &root->highest_objectid);
1666         if (ret) {
1667                 mutex_unlock(&root->objectid_mutex);
1668                 goto fail;
1669         }
1670
1671         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1672
1673         mutex_unlock(&root->objectid_mutex);
1674
1675         return 0;
1676 fail:
1677         /* the caller is responsible to call free_fs_root */
1678         return ret;
1679 }
1680
1681 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1682                                         u64 root_id)
1683 {
1684         struct btrfs_root *root;
1685
1686         spin_lock(&fs_info->fs_roots_radix_lock);
1687         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1688                                  (unsigned long)root_id);
1689         spin_unlock(&fs_info->fs_roots_radix_lock);
1690         return root;
1691 }
1692
1693 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1694                          struct btrfs_root *root)
1695 {
1696         int ret;
1697
1698         ret = radix_tree_preload(GFP_NOFS);
1699         if (ret)
1700                 return ret;
1701
1702         spin_lock(&fs_info->fs_roots_radix_lock);
1703         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1704                                 (unsigned long)root->root_key.objectid,
1705                                 root);
1706         if (ret == 0)
1707                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1708         spin_unlock(&fs_info->fs_roots_radix_lock);
1709         radix_tree_preload_end();
1710
1711         return ret;
1712 }
1713
1714 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1715                                      struct btrfs_key *location,
1716                                      bool check_ref)
1717 {
1718         struct btrfs_root *root;
1719         struct btrfs_path *path;
1720         struct btrfs_key key;
1721         int ret;
1722
1723         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1724                 return fs_info->tree_root;
1725         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1726                 return fs_info->extent_root;
1727         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1728                 return fs_info->chunk_root;
1729         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1730                 return fs_info->dev_root;
1731         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1732                 return fs_info->csum_root;
1733         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1734                 return fs_info->quota_root ? fs_info->quota_root :
1735                                              ERR_PTR(-ENOENT);
1736         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1737                 return fs_info->uuid_root ? fs_info->uuid_root :
1738                                             ERR_PTR(-ENOENT);
1739         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1740                 return fs_info->free_space_root ? fs_info->free_space_root :
1741                                                   ERR_PTR(-ENOENT);
1742 again:
1743         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1744         if (root) {
1745                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1746                         return ERR_PTR(-ENOENT);
1747                 return root;
1748         }
1749
1750         root = btrfs_read_fs_root(fs_info->tree_root, location);
1751         if (IS_ERR(root))
1752                 return root;
1753
1754         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1755                 ret = -ENOENT;
1756                 goto fail;
1757         }
1758
1759         ret = btrfs_init_fs_root(root);
1760         if (ret)
1761                 goto fail;
1762
1763         path = btrfs_alloc_path();
1764         if (!path) {
1765                 ret = -ENOMEM;
1766                 goto fail;
1767         }
1768         key.objectid = BTRFS_ORPHAN_OBJECTID;
1769         key.type = BTRFS_ORPHAN_ITEM_KEY;
1770         key.offset = location->objectid;
1771
1772         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1773         btrfs_free_path(path);
1774         if (ret < 0)
1775                 goto fail;
1776         if (ret == 0)
1777                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1778
1779         ret = btrfs_insert_fs_root(fs_info, root);
1780         if (ret) {
1781                 if (ret == -EEXIST) {
1782                         free_fs_root(root);
1783                         goto again;
1784                 }
1785                 goto fail;
1786         }
1787         return root;
1788 fail:
1789         free_fs_root(root);
1790         return ERR_PTR(ret);
1791 }
1792
1793 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1794 {
1795         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1796         int ret = 0;
1797         struct btrfs_device *device;
1798         struct backing_dev_info *bdi;
1799
1800         rcu_read_lock();
1801         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1802                 if (!device->bdev)
1803                         continue;
1804                 bdi = blk_get_backing_dev_info(device->bdev);
1805                 if (bdi_congested(bdi, bdi_bits)) {
1806                         ret = 1;
1807                         break;
1808                 }
1809         }
1810         rcu_read_unlock();
1811         return ret;
1812 }
1813
1814 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1815 {
1816         int err;
1817
1818         err = bdi_setup_and_register(bdi, "btrfs");
1819         if (err)
1820                 return err;
1821
1822         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1823         bdi->congested_fn       = btrfs_congested_fn;
1824         bdi->congested_data     = info;
1825         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1826         return 0;
1827 }
1828
1829 /*
1830  * called by the kthread helper functions to finally call the bio end_io
1831  * functions.  This is where read checksum verification actually happens
1832  */
1833 static void end_workqueue_fn(struct btrfs_work *work)
1834 {
1835         struct bio *bio;
1836         struct btrfs_end_io_wq *end_io_wq;
1837
1838         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1839         bio = end_io_wq->bio;
1840
1841         bio->bi_error = end_io_wq->error;
1842         bio->bi_private = end_io_wq->private;
1843         bio->bi_end_io = end_io_wq->end_io;
1844         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1845         bio_endio(bio);
1846 }
1847
1848 static int cleaner_kthread(void *arg)
1849 {
1850         struct btrfs_root *root = arg;
1851         int again;
1852         struct btrfs_trans_handle *trans;
1853
1854         do {
1855                 again = 0;
1856
1857                 /* Make the cleaner go to sleep early. */
1858                 if (btrfs_need_cleaner_sleep(root))
1859                         goto sleep;
1860
1861                 /*
1862                  * Do not do anything if we might cause open_ctree() to block
1863                  * before we have finished mounting the filesystem.
1864                  */
1865                 if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
1866                         goto sleep;
1867
1868                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1869                         goto sleep;
1870
1871                 /*
1872                  * Avoid the problem that we change the status of the fs
1873                  * during the above check and trylock.
1874                  */
1875                 if (btrfs_need_cleaner_sleep(root)) {
1876                         mutex_unlock(&root->fs_info->cleaner_mutex);
1877                         goto sleep;
1878                 }
1879
1880                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1881                 btrfs_run_delayed_iputs(root);
1882                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1883
1884                 again = btrfs_clean_one_deleted_snapshot(root);
1885                 mutex_unlock(&root->fs_info->cleaner_mutex);
1886
1887                 /*
1888                  * The defragger has dealt with the R/O remount and umount,
1889                  * needn't do anything special here.
1890                  */
1891                 btrfs_run_defrag_inodes(root->fs_info);
1892
1893                 /*
1894                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895                  * with relocation (btrfs_relocate_chunk) and relocation
1896                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899                  * unused block groups.
1900                  */
1901                 btrfs_delete_unused_bgs(root->fs_info);
1902 sleep:
1903                 if (!again) {
1904                         set_current_state(TASK_INTERRUPTIBLE);
1905                         if (!kthread_should_stop())
1906                                 schedule();
1907                         __set_current_state(TASK_RUNNING);
1908                 }
1909         } while (!kthread_should_stop());
1910
1911         /*
1912          * Transaction kthread is stopped before us and wakes us up.
1913          * However we might have started a new transaction and COWed some
1914          * tree blocks when deleting unused block groups for example. So
1915          * make sure we commit the transaction we started to have a clean
1916          * shutdown when evicting the btree inode - if it has dirty pages
1917          * when we do the final iput() on it, eviction will trigger a
1918          * writeback for it which will fail with null pointer dereferences
1919          * since work queues and other resources were already released and
1920          * destroyed by the time the iput/eviction/writeback is made.
1921          */
1922         trans = btrfs_attach_transaction(root);
1923         if (IS_ERR(trans)) {
1924                 if (PTR_ERR(trans) != -ENOENT)
1925                         btrfs_err(root->fs_info,
1926                                   "cleaner transaction attach returned %ld",
1927                                   PTR_ERR(trans));
1928         } else {
1929                 int ret;
1930
1931                 ret = btrfs_commit_transaction(trans, root);
1932                 if (ret)
1933                         btrfs_err(root->fs_info,
1934                                   "cleaner open transaction commit returned %d",
1935                                   ret);
1936         }
1937
1938         return 0;
1939 }
1940
1941 static int transaction_kthread(void *arg)
1942 {
1943         struct btrfs_root *root = arg;
1944         struct btrfs_trans_handle *trans;
1945         struct btrfs_transaction *cur;
1946         u64 transid;
1947         unsigned long now;
1948         unsigned long delay;
1949         bool cannot_commit;
1950
1951         do {
1952                 cannot_commit = false;
1953                 delay = HZ * root->fs_info->commit_interval;
1954                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1955
1956                 spin_lock(&root->fs_info->trans_lock);
1957                 cur = root->fs_info->running_transaction;
1958                 if (!cur) {
1959                         spin_unlock(&root->fs_info->trans_lock);
1960                         goto sleep;
1961                 }
1962
1963                 now = get_seconds();
1964                 if (cur->state < TRANS_STATE_BLOCKED &&
1965                     (now < cur->start_time ||
1966                      now - cur->start_time < root->fs_info->commit_interval)) {
1967                         spin_unlock(&root->fs_info->trans_lock);
1968                         delay = HZ * 5;
1969                         goto sleep;
1970                 }
1971                 transid = cur->transid;
1972                 spin_unlock(&root->fs_info->trans_lock);
1973
1974                 /* If the file system is aborted, this will always fail. */
1975                 trans = btrfs_attach_transaction(root);
1976                 if (IS_ERR(trans)) {
1977                         if (PTR_ERR(trans) != -ENOENT)
1978                                 cannot_commit = true;
1979                         goto sleep;
1980                 }
1981                 if (transid == trans->transid) {
1982                         btrfs_commit_transaction(trans, root);
1983                 } else {
1984                         btrfs_end_transaction(trans, root);
1985                 }
1986 sleep:
1987                 wake_up_process(root->fs_info->cleaner_kthread);
1988                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1989
1990                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1991                                       &root->fs_info->fs_state)))
1992                         btrfs_cleanup_transaction(root);
1993                 set_current_state(TASK_INTERRUPTIBLE);
1994                 if (!kthread_should_stop() &&
1995                                 (!btrfs_transaction_blocked(root->fs_info) ||
1996                                  cannot_commit))
1997                         schedule_timeout(delay);
1998                 __set_current_state(TASK_RUNNING);
1999         } while (!kthread_should_stop());
2000         return 0;
2001 }
2002
2003 /*
2004  * this will find the highest generation in the array of
2005  * root backups.  The index of the highest array is returned,
2006  * or -1 if we can't find anything.
2007  *
2008  * We check to make sure the array is valid by comparing the
2009  * generation of the latest  root in the array with the generation
2010  * in the super block.  If they don't match we pitch it.
2011  */
2012 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2013 {
2014         u64 cur;
2015         int newest_index = -1;
2016         struct btrfs_root_backup *root_backup;
2017         int i;
2018
2019         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2020                 root_backup = info->super_copy->super_roots + i;
2021                 cur = btrfs_backup_tree_root_gen(root_backup);
2022                 if (cur == newest_gen)
2023                         newest_index = i;
2024         }
2025
2026         /* check to see if we actually wrapped around */
2027         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2028                 root_backup = info->super_copy->super_roots;
2029                 cur = btrfs_backup_tree_root_gen(root_backup);
2030                 if (cur == newest_gen)
2031                         newest_index = 0;
2032         }
2033         return newest_index;
2034 }
2035
2036
2037 /*
2038  * find the oldest backup so we know where to store new entries
2039  * in the backup array.  This will set the backup_root_index
2040  * field in the fs_info struct
2041  */
2042 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2043                                      u64 newest_gen)
2044 {
2045         int newest_index = -1;
2046
2047         newest_index = find_newest_super_backup(info, newest_gen);
2048         /* if there was garbage in there, just move along */
2049         if (newest_index == -1) {
2050                 info->backup_root_index = 0;
2051         } else {
2052                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2053         }
2054 }
2055
2056 /*
2057  * copy all the root pointers into the super backup array.
2058  * this will bump the backup pointer by one when it is
2059  * done
2060  */
2061 static void backup_super_roots(struct btrfs_fs_info *info)
2062 {
2063         int next_backup;
2064         struct btrfs_root_backup *root_backup;
2065         int last_backup;
2066
2067         next_backup = info->backup_root_index;
2068         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2069                 BTRFS_NUM_BACKUP_ROOTS;
2070
2071         /*
2072          * just overwrite the last backup if we're at the same generation
2073          * this happens only at umount
2074          */
2075         root_backup = info->super_for_commit->super_roots + last_backup;
2076         if (btrfs_backup_tree_root_gen(root_backup) ==
2077             btrfs_header_generation(info->tree_root->node))
2078                 next_backup = last_backup;
2079
2080         root_backup = info->super_for_commit->super_roots + next_backup;
2081
2082         /*
2083          * make sure all of our padding and empty slots get zero filled
2084          * regardless of which ones we use today
2085          */
2086         memset(root_backup, 0, sizeof(*root_backup));
2087
2088         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2089
2090         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2091         btrfs_set_backup_tree_root_gen(root_backup,
2092                                btrfs_header_generation(info->tree_root->node));
2093
2094         btrfs_set_backup_tree_root_level(root_backup,
2095                                btrfs_header_level(info->tree_root->node));
2096
2097         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2098         btrfs_set_backup_chunk_root_gen(root_backup,
2099                                btrfs_header_generation(info->chunk_root->node));
2100         btrfs_set_backup_chunk_root_level(root_backup,
2101                                btrfs_header_level(info->chunk_root->node));
2102
2103         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2104         btrfs_set_backup_extent_root_gen(root_backup,
2105                                btrfs_header_generation(info->extent_root->node));
2106         btrfs_set_backup_extent_root_level(root_backup,
2107                                btrfs_header_level(info->extent_root->node));
2108
2109         /*
2110          * we might commit during log recovery, which happens before we set
2111          * the fs_root.  Make sure it is valid before we fill it in.
2112          */
2113         if (info->fs_root && info->fs_root->node) {
2114                 btrfs_set_backup_fs_root(root_backup,
2115                                          info->fs_root->node->start);
2116                 btrfs_set_backup_fs_root_gen(root_backup,
2117                                btrfs_header_generation(info->fs_root->node));
2118                 btrfs_set_backup_fs_root_level(root_backup,
2119                                btrfs_header_level(info->fs_root->node));
2120         }
2121
2122         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2123         btrfs_set_backup_dev_root_gen(root_backup,
2124                                btrfs_header_generation(info->dev_root->node));
2125         btrfs_set_backup_dev_root_level(root_backup,
2126                                        btrfs_header_level(info->dev_root->node));
2127
2128         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2129         btrfs_set_backup_csum_root_gen(root_backup,
2130                                btrfs_header_generation(info->csum_root->node));
2131         btrfs_set_backup_csum_root_level(root_backup,
2132                                btrfs_header_level(info->csum_root->node));
2133
2134         btrfs_set_backup_total_bytes(root_backup,
2135                              btrfs_super_total_bytes(info->super_copy));
2136         btrfs_set_backup_bytes_used(root_backup,
2137                              btrfs_super_bytes_used(info->super_copy));
2138         btrfs_set_backup_num_devices(root_backup,
2139                              btrfs_super_num_devices(info->super_copy));
2140
2141         /*
2142          * if we don't copy this out to the super_copy, it won't get remembered
2143          * for the next commit
2144          */
2145         memcpy(&info->super_copy->super_roots,
2146                &info->super_for_commit->super_roots,
2147                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2148 }
2149
2150 /*
2151  * this copies info out of the root backup array and back into
2152  * the in-memory super block.  It is meant to help iterate through
2153  * the array, so you send it the number of backups you've already
2154  * tried and the last backup index you used.
2155  *
2156  * this returns -1 when it has tried all the backups
2157  */
2158 static noinline int next_root_backup(struct btrfs_fs_info *info,
2159                                      struct btrfs_super_block *super,
2160                                      int *num_backups_tried, int *backup_index)
2161 {
2162         struct btrfs_root_backup *root_backup;
2163         int newest = *backup_index;
2164
2165         if (*num_backups_tried == 0) {
2166                 u64 gen = btrfs_super_generation(super);
2167
2168                 newest = find_newest_super_backup(info, gen);
2169                 if (newest == -1)
2170                         return -1;
2171
2172                 *backup_index = newest;
2173                 *num_backups_tried = 1;
2174         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2175                 /* we've tried all the backups, all done */
2176                 return -1;
2177         } else {
2178                 /* jump to the next oldest backup */
2179                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2180                         BTRFS_NUM_BACKUP_ROOTS;
2181                 *backup_index = newest;
2182                 *num_backups_tried += 1;
2183         }
2184         root_backup = super->super_roots + newest;
2185
2186         btrfs_set_super_generation(super,
2187                                    btrfs_backup_tree_root_gen(root_backup));
2188         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2189         btrfs_set_super_root_level(super,
2190                                    btrfs_backup_tree_root_level(root_backup));
2191         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2192
2193         /*
2194          * fixme: the total bytes and num_devices need to match or we should
2195          * need a fsck
2196          */
2197         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2198         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2199         return 0;
2200 }
2201
2202 /* helper to cleanup workers */
2203 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2204 {
2205         btrfs_destroy_workqueue(fs_info->fixup_workers);
2206         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2207         btrfs_destroy_workqueue(fs_info->workers);
2208         btrfs_destroy_workqueue(fs_info->endio_workers);
2209         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2210         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2211         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2212         btrfs_destroy_workqueue(fs_info->rmw_workers);
2213         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2214         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2215         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2216         btrfs_destroy_workqueue(fs_info->submit_workers);
2217         btrfs_destroy_workqueue(fs_info->delayed_workers);
2218         btrfs_destroy_workqueue(fs_info->caching_workers);
2219         btrfs_destroy_workqueue(fs_info->readahead_workers);
2220         btrfs_destroy_workqueue(fs_info->flush_workers);
2221         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2222         btrfs_destroy_workqueue(fs_info->extent_workers);
2223 }
2224
2225 static void free_root_extent_buffers(struct btrfs_root *root)
2226 {
2227         if (root) {
2228                 free_extent_buffer(root->node);
2229                 free_extent_buffer(root->commit_root);
2230                 root->node = NULL;
2231                 root->commit_root = NULL;
2232         }
2233 }
2234
2235 /* helper to cleanup tree roots */
2236 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2237 {
2238         free_root_extent_buffers(info->tree_root);
2239
2240         free_root_extent_buffers(info->dev_root);
2241         free_root_extent_buffers(info->extent_root);
2242         free_root_extent_buffers(info->csum_root);
2243         free_root_extent_buffers(info->quota_root);
2244         free_root_extent_buffers(info->uuid_root);
2245         if (chunk_root)
2246                 free_root_extent_buffers(info->chunk_root);
2247         free_root_extent_buffers(info->free_space_root);
2248 }
2249
2250 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2251 {
2252         int ret;
2253         struct btrfs_root *gang[8];
2254         int i;
2255
2256         while (!list_empty(&fs_info->dead_roots)) {
2257                 gang[0] = list_entry(fs_info->dead_roots.next,
2258                                      struct btrfs_root, root_list);
2259                 list_del(&gang[0]->root_list);
2260
2261                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2262                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2263                 } else {
2264                         free_extent_buffer(gang[0]->node);
2265                         free_extent_buffer(gang[0]->commit_root);
2266                         btrfs_put_fs_root(gang[0]);
2267                 }
2268         }
2269
2270         while (1) {
2271                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2272                                              (void **)gang, 0,
2273                                              ARRAY_SIZE(gang));
2274                 if (!ret)
2275                         break;
2276                 for (i = 0; i < ret; i++)
2277                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2278         }
2279
2280         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2281                 btrfs_free_log_root_tree(NULL, fs_info);
2282                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2283                                             fs_info->pinned_extents);
2284         }
2285 }
2286
2287 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2288 {
2289         mutex_init(&fs_info->scrub_lock);
2290         atomic_set(&fs_info->scrubs_running, 0);
2291         atomic_set(&fs_info->scrub_pause_req, 0);
2292         atomic_set(&fs_info->scrubs_paused, 0);
2293         atomic_set(&fs_info->scrub_cancel_req, 0);
2294         init_waitqueue_head(&fs_info->scrub_pause_wait);
2295         fs_info->scrub_workers_refcnt = 0;
2296 }
2297
2298 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2299 {
2300         spin_lock_init(&fs_info->balance_lock);
2301         mutex_init(&fs_info->balance_mutex);
2302         atomic_set(&fs_info->balance_running, 0);
2303         atomic_set(&fs_info->balance_pause_req, 0);
2304         atomic_set(&fs_info->balance_cancel_req, 0);
2305         fs_info->balance_ctl = NULL;
2306         init_waitqueue_head(&fs_info->balance_wait_q);
2307 }
2308
2309 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2310                                    struct btrfs_root *tree_root)
2311 {
2312         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2313         set_nlink(fs_info->btree_inode, 1);
2314         /*
2315          * we set the i_size on the btree inode to the max possible int.
2316          * the real end of the address space is determined by all of
2317          * the devices in the system
2318          */
2319         fs_info->btree_inode->i_size = OFFSET_MAX;
2320         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2321
2322         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2323         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2324                              fs_info->btree_inode->i_mapping);
2325         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2326         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2327
2328         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2329
2330         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2331         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2332                sizeof(struct btrfs_key));
2333         set_bit(BTRFS_INODE_DUMMY,
2334                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2335         btrfs_insert_inode_hash(fs_info->btree_inode);
2336 }
2337
2338 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2339 {
2340         fs_info->dev_replace.lock_owner = 0;
2341         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2342         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2343         rwlock_init(&fs_info->dev_replace.lock);
2344         atomic_set(&fs_info->dev_replace.read_locks, 0);
2345         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2346         init_waitqueue_head(&fs_info->replace_wait);
2347         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2348 }
2349
2350 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2351 {
2352         spin_lock_init(&fs_info->qgroup_lock);
2353         mutex_init(&fs_info->qgroup_ioctl_lock);
2354         fs_info->qgroup_tree = RB_ROOT;
2355         fs_info->qgroup_op_tree = RB_ROOT;
2356         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2357         fs_info->qgroup_seq = 1;
2358         fs_info->qgroup_ulist = NULL;
2359         fs_info->qgroup_rescan_running = false;
2360         mutex_init(&fs_info->qgroup_rescan_lock);
2361 }
2362
2363 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2364                 struct btrfs_fs_devices *fs_devices)
2365 {
2366         int max_active = fs_info->thread_pool_size;
2367         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2368
2369         fs_info->workers =
2370                 btrfs_alloc_workqueue(fs_info, "worker",
2371                                       flags | WQ_HIGHPRI, max_active, 16);
2372
2373         fs_info->delalloc_workers =
2374                 btrfs_alloc_workqueue(fs_info, "delalloc",
2375                                       flags, max_active, 2);
2376
2377         fs_info->flush_workers =
2378                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2379                                       flags, max_active, 0);
2380
2381         fs_info->caching_workers =
2382                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2383
2384         /*
2385          * a higher idle thresh on the submit workers makes it much more
2386          * likely that bios will be send down in a sane order to the
2387          * devices
2388          */
2389         fs_info->submit_workers =
2390                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2391                                       min_t(u64, fs_devices->num_devices,
2392                                             max_active), 64);
2393
2394         fs_info->fixup_workers =
2395                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2396
2397         /*
2398          * endios are largely parallel and should have a very
2399          * low idle thresh
2400          */
2401         fs_info->endio_workers =
2402                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2403         fs_info->endio_meta_workers =
2404                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2405                                       max_active, 4);
2406         fs_info->endio_meta_write_workers =
2407                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2408                                       max_active, 2);
2409         fs_info->endio_raid56_workers =
2410                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2411                                       max_active, 4);
2412         fs_info->endio_repair_workers =
2413                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2414         fs_info->rmw_workers =
2415                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2416         fs_info->endio_write_workers =
2417                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2418                                       max_active, 2);
2419         fs_info->endio_freespace_worker =
2420                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2421                                       max_active, 0);
2422         fs_info->delayed_workers =
2423                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2424                                       max_active, 0);
2425         fs_info->readahead_workers =
2426                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2427                                       max_active, 2);
2428         fs_info->qgroup_rescan_workers =
2429                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2430         fs_info->extent_workers =
2431                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2432                                       min_t(u64, fs_devices->num_devices,
2433                                             max_active), 8);
2434
2435         if (!(fs_info->workers && fs_info->delalloc_workers &&
2436               fs_info->submit_workers && fs_info->flush_workers &&
2437               fs_info->endio_workers && fs_info->endio_meta_workers &&
2438               fs_info->endio_meta_write_workers &&
2439               fs_info->endio_repair_workers &&
2440               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2441               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2442               fs_info->caching_workers && fs_info->readahead_workers &&
2443               fs_info->fixup_workers && fs_info->delayed_workers &&
2444               fs_info->extent_workers &&
2445               fs_info->qgroup_rescan_workers)) {
2446                 return -ENOMEM;
2447         }
2448
2449         return 0;
2450 }
2451
2452 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2453                             struct btrfs_fs_devices *fs_devices)
2454 {
2455         int ret;
2456         struct btrfs_root *tree_root = fs_info->tree_root;
2457         struct btrfs_root *log_tree_root;
2458         struct btrfs_super_block *disk_super = fs_info->super_copy;
2459         u64 bytenr = btrfs_super_log_root(disk_super);
2460
2461         if (fs_devices->rw_devices == 0) {
2462                 btrfs_warn(fs_info, "log replay required on RO media");
2463                 return -EIO;
2464         }
2465
2466         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2467         if (!log_tree_root)
2468                 return -ENOMEM;
2469
2470         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2471                         tree_root->stripesize, log_tree_root, fs_info,
2472                         BTRFS_TREE_LOG_OBJECTID);
2473
2474         log_tree_root->node = read_tree_block(tree_root, bytenr,
2475                         fs_info->generation + 1);
2476         if (IS_ERR(log_tree_root->node)) {
2477                 btrfs_warn(fs_info, "failed to read log tree");
2478                 ret = PTR_ERR(log_tree_root->node);
2479                 kfree(log_tree_root);
2480                 return ret;
2481         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2482                 btrfs_err(fs_info, "failed to read log tree");
2483                 free_extent_buffer(log_tree_root->node);
2484                 kfree(log_tree_root);
2485                 return -EIO;
2486         }
2487         /* returns with log_tree_root freed on success */
2488         ret = btrfs_recover_log_trees(log_tree_root);
2489         if (ret) {
2490                 btrfs_handle_fs_error(tree_root->fs_info, ret,
2491                             "Failed to recover log tree");
2492                 free_extent_buffer(log_tree_root->node);
2493                 kfree(log_tree_root);
2494                 return ret;
2495         }
2496
2497         if (fs_info->sb->s_flags & MS_RDONLY) {
2498                 ret = btrfs_commit_super(tree_root);
2499                 if (ret)
2500                         return ret;
2501         }
2502
2503         return 0;
2504 }
2505
2506 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2507                             struct btrfs_root *tree_root)
2508 {
2509         struct btrfs_root *root;
2510         struct btrfs_key location;
2511         int ret;
2512
2513         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2514         location.type = BTRFS_ROOT_ITEM_KEY;
2515         location.offset = 0;
2516
2517         root = btrfs_read_tree_root(tree_root, &location);
2518         if (IS_ERR(root))
2519                 return PTR_ERR(root);
2520         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521         fs_info->extent_root = root;
2522
2523         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2524         root = btrfs_read_tree_root(tree_root, &location);
2525         if (IS_ERR(root))
2526                 return PTR_ERR(root);
2527         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2528         fs_info->dev_root = root;
2529         btrfs_init_devices_late(fs_info);
2530
2531         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2532         root = btrfs_read_tree_root(tree_root, &location);
2533         if (IS_ERR(root))
2534                 return PTR_ERR(root);
2535         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2536         fs_info->csum_root = root;
2537
2538         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2539         root = btrfs_read_tree_root(tree_root, &location);
2540         if (!IS_ERR(root)) {
2541                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2542                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2543                 fs_info->quota_root = root;
2544         }
2545
2546         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2547         root = btrfs_read_tree_root(tree_root, &location);
2548         if (IS_ERR(root)) {
2549                 ret = PTR_ERR(root);
2550                 if (ret != -ENOENT)
2551                         return ret;
2552         } else {
2553                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2554                 fs_info->uuid_root = root;
2555         }
2556
2557         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2558                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2559                 root = btrfs_read_tree_root(tree_root, &location);
2560                 if (IS_ERR(root))
2561                         return PTR_ERR(root);
2562                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2563                 fs_info->free_space_root = root;
2564         }
2565
2566         return 0;
2567 }
2568
2569 int open_ctree(struct super_block *sb,
2570                struct btrfs_fs_devices *fs_devices,
2571                char *options)
2572 {
2573         u32 sectorsize;
2574         u32 nodesize;
2575         u32 stripesize;
2576         u64 generation;
2577         u64 features;
2578         struct btrfs_key location;
2579         struct buffer_head *bh;
2580         struct btrfs_super_block *disk_super;
2581         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2582         struct btrfs_root *tree_root;
2583         struct btrfs_root *chunk_root;
2584         int ret;
2585         int err = -EINVAL;
2586         int num_backups_tried = 0;
2587         int backup_index = 0;
2588         int max_active;
2589         int clear_free_space_tree = 0;
2590
2591         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2592         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2593         if (!tree_root || !chunk_root) {
2594                 err = -ENOMEM;
2595                 goto fail;
2596         }
2597
2598         ret = init_srcu_struct(&fs_info->subvol_srcu);
2599         if (ret) {
2600                 err = ret;
2601                 goto fail;
2602         }
2603
2604         ret = setup_bdi(fs_info, &fs_info->bdi);
2605         if (ret) {
2606                 err = ret;
2607                 goto fail_srcu;
2608         }
2609
2610         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2611         if (ret) {
2612                 err = ret;
2613                 goto fail_bdi;
2614         }
2615         fs_info->dirty_metadata_batch = PAGE_SIZE *
2616                                         (1 + ilog2(nr_cpu_ids));
2617
2618         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2619         if (ret) {
2620                 err = ret;
2621                 goto fail_dirty_metadata_bytes;
2622         }
2623
2624         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2625         if (ret) {
2626                 err = ret;
2627                 goto fail_delalloc_bytes;
2628         }
2629
2630         fs_info->btree_inode = new_inode(sb);
2631         if (!fs_info->btree_inode) {
2632                 err = -ENOMEM;
2633                 goto fail_bio_counter;
2634         }
2635
2636         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2637
2638         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2639         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2640         INIT_LIST_HEAD(&fs_info->trans_list);
2641         INIT_LIST_HEAD(&fs_info->dead_roots);
2642         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2643         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2644         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2645         spin_lock_init(&fs_info->delalloc_root_lock);
2646         spin_lock_init(&fs_info->trans_lock);
2647         spin_lock_init(&fs_info->fs_roots_radix_lock);
2648         spin_lock_init(&fs_info->delayed_iput_lock);
2649         spin_lock_init(&fs_info->defrag_inodes_lock);
2650         spin_lock_init(&fs_info->free_chunk_lock);
2651         spin_lock_init(&fs_info->tree_mod_seq_lock);
2652         spin_lock_init(&fs_info->super_lock);
2653         spin_lock_init(&fs_info->qgroup_op_lock);
2654         spin_lock_init(&fs_info->buffer_lock);
2655         spin_lock_init(&fs_info->unused_bgs_lock);
2656         rwlock_init(&fs_info->tree_mod_log_lock);
2657         mutex_init(&fs_info->unused_bg_unpin_mutex);
2658         mutex_init(&fs_info->delete_unused_bgs_mutex);
2659         mutex_init(&fs_info->reloc_mutex);
2660         mutex_init(&fs_info->delalloc_root_mutex);
2661         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2662         seqlock_init(&fs_info->profiles_lock);
2663
2664         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2665         INIT_LIST_HEAD(&fs_info->space_info);
2666         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2667         INIT_LIST_HEAD(&fs_info->unused_bgs);
2668         btrfs_mapping_init(&fs_info->mapping_tree);
2669         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2670                              BTRFS_BLOCK_RSV_GLOBAL);
2671         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2672                              BTRFS_BLOCK_RSV_DELALLOC);
2673         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2674         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2675         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2676         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2677                              BTRFS_BLOCK_RSV_DELOPS);
2678         atomic_set(&fs_info->nr_async_submits, 0);
2679         atomic_set(&fs_info->async_delalloc_pages, 0);
2680         atomic_set(&fs_info->async_submit_draining, 0);
2681         atomic_set(&fs_info->nr_async_bios, 0);
2682         atomic_set(&fs_info->defrag_running, 0);
2683         atomic_set(&fs_info->qgroup_op_seq, 0);
2684         atomic_set(&fs_info->reada_works_cnt, 0);
2685         atomic64_set(&fs_info->tree_mod_seq, 0);
2686         fs_info->fs_frozen = 0;
2687         fs_info->sb = sb;
2688         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2689         fs_info->metadata_ratio = 0;
2690         fs_info->defrag_inodes = RB_ROOT;
2691         fs_info->free_chunk_space = 0;
2692         fs_info->tree_mod_log = RB_ROOT;
2693         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2694         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2695         /* readahead state */
2696         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2697         spin_lock_init(&fs_info->reada_lock);
2698
2699         fs_info->thread_pool_size = min_t(unsigned long,
2700                                           num_online_cpus() + 2, 8);
2701
2702         INIT_LIST_HEAD(&fs_info->ordered_roots);
2703         spin_lock_init(&fs_info->ordered_root_lock);
2704         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2705                                         GFP_KERNEL);
2706         if (!fs_info->delayed_root) {
2707                 err = -ENOMEM;
2708                 goto fail_iput;
2709         }
2710         btrfs_init_delayed_root(fs_info->delayed_root);
2711
2712         btrfs_init_scrub(fs_info);
2713 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2714         fs_info->check_integrity_print_mask = 0;
2715 #endif
2716         btrfs_init_balance(fs_info);
2717         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2718
2719         sb->s_blocksize = 4096;
2720         sb->s_blocksize_bits = blksize_bits(4096);
2721         sb->s_bdi = &fs_info->bdi;
2722
2723         btrfs_init_btree_inode(fs_info, tree_root);
2724
2725         spin_lock_init(&fs_info->block_group_cache_lock);
2726         fs_info->block_group_cache_tree = RB_ROOT;
2727         fs_info->first_logical_byte = (u64)-1;
2728
2729         extent_io_tree_init(&fs_info->freed_extents[0],
2730                              fs_info->btree_inode->i_mapping);
2731         extent_io_tree_init(&fs_info->freed_extents[1],
2732                              fs_info->btree_inode->i_mapping);
2733         fs_info->pinned_extents = &fs_info->freed_extents[0];
2734         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2735
2736         mutex_init(&fs_info->ordered_operations_mutex);
2737         mutex_init(&fs_info->tree_log_mutex);
2738         mutex_init(&fs_info->chunk_mutex);
2739         mutex_init(&fs_info->transaction_kthread_mutex);
2740         mutex_init(&fs_info->cleaner_mutex);
2741         mutex_init(&fs_info->volume_mutex);
2742         mutex_init(&fs_info->ro_block_group_mutex);
2743         init_rwsem(&fs_info->commit_root_sem);
2744         init_rwsem(&fs_info->cleanup_work_sem);
2745         init_rwsem(&fs_info->subvol_sem);
2746         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2747
2748         btrfs_init_dev_replace_locks(fs_info);
2749         btrfs_init_qgroup(fs_info);
2750
2751         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2752         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2753
2754         init_waitqueue_head(&fs_info->transaction_throttle);
2755         init_waitqueue_head(&fs_info->transaction_wait);
2756         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2757         init_waitqueue_head(&fs_info->async_submit_wait);
2758
2759         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2760
2761         ret = btrfs_alloc_stripe_hash_table(fs_info);
2762         if (ret) {
2763                 err = ret;
2764                 goto fail_alloc;
2765         }
2766
2767         __setup_root(4096, 4096, 4096, tree_root,
2768                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2769
2770         invalidate_bdev(fs_devices->latest_bdev);
2771
2772         /*
2773          * Read super block and check the signature bytes only
2774          */
2775         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2776         if (IS_ERR(bh)) {
2777                 err = PTR_ERR(bh);
2778                 goto fail_alloc;
2779         }
2780
2781         /*
2782          * We want to check superblock checksum, the type is stored inside.
2783          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2784          */
2785         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2786                 btrfs_err(fs_info, "superblock checksum mismatch");
2787                 err = -EINVAL;
2788                 brelse(bh);
2789                 goto fail_alloc;
2790         }
2791
2792         /*
2793          * super_copy is zeroed at allocation time and we never touch the
2794          * following bytes up to INFO_SIZE, the checksum is calculated from
2795          * the whole block of INFO_SIZE
2796          */
2797         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2798         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2799                sizeof(*fs_info->super_for_commit));
2800         brelse(bh);
2801
2802         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2803
2804         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2805         if (ret) {
2806                 btrfs_err(fs_info, "superblock contains fatal errors");
2807                 err = -EINVAL;
2808                 goto fail_alloc;
2809         }
2810
2811         disk_super = fs_info->super_copy;
2812         if (!btrfs_super_root(disk_super))
2813                 goto fail_alloc;
2814
2815         /* check FS state, whether FS is broken. */
2816         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2817                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2818
2819         /*
2820          * run through our array of backup supers and setup
2821          * our ring pointer to the oldest one
2822          */
2823         generation = btrfs_super_generation(disk_super);
2824         find_oldest_super_backup(fs_info, generation);
2825
2826         /*
2827          * In the long term, we'll store the compression type in the super
2828          * block, and it'll be used for per file compression control.
2829          */
2830         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2831
2832         ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2833         if (ret) {
2834                 err = ret;
2835                 goto fail_alloc;
2836         }
2837
2838         features = btrfs_super_incompat_flags(disk_super) &
2839                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2840         if (features) {
2841                 btrfs_err(fs_info,
2842                     "cannot mount because of unsupported optional features (%llx)",
2843                     features);
2844                 err = -EINVAL;
2845                 goto fail_alloc;
2846         }
2847
2848         features = btrfs_super_incompat_flags(disk_super);
2849         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2850         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2851                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2852
2853         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2854                 btrfs_info(fs_info, "has skinny extents");
2855
2856         /*
2857          * flag our filesystem as having big metadata blocks if
2858          * they are bigger than the page size
2859          */
2860         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2861                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2862                         btrfs_info(fs_info,
2863                                 "flagging fs with big metadata feature");
2864                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2865         }
2866
2867         nodesize = btrfs_super_nodesize(disk_super);
2868         sectorsize = btrfs_super_sectorsize(disk_super);
2869         stripesize = sectorsize;
2870         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2871         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2872
2873         /*
2874          * mixed block groups end up with duplicate but slightly offset
2875          * extent buffers for the same range.  It leads to corruptions
2876          */
2877         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2878             (sectorsize != nodesize)) {
2879                 btrfs_err(fs_info,
2880 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2881                         nodesize, sectorsize);
2882                 goto fail_alloc;
2883         }
2884
2885         /*
2886          * Needn't use the lock because there is no other task which will
2887          * update the flag.
2888          */
2889         btrfs_set_super_incompat_flags(disk_super, features);
2890
2891         features = btrfs_super_compat_ro_flags(disk_super) &
2892                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2893         if (!(sb->s_flags & MS_RDONLY) && features) {
2894                 btrfs_err(fs_info,
2895         "cannot mount read-write because of unsupported optional features (%llx)",
2896                        features);
2897                 err = -EINVAL;
2898                 goto fail_alloc;
2899         }
2900
2901         max_active = fs_info->thread_pool_size;
2902
2903         ret = btrfs_init_workqueues(fs_info, fs_devices);
2904         if (ret) {
2905                 err = ret;
2906                 goto fail_sb_buffer;
2907         }
2908
2909         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2910         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2911                                     SZ_4M / PAGE_SIZE);
2912
2913         tree_root->nodesize = nodesize;
2914         tree_root->sectorsize = sectorsize;
2915         tree_root->stripesize = stripesize;
2916
2917         sb->s_blocksize = sectorsize;
2918         sb->s_blocksize_bits = blksize_bits(sectorsize);
2919
2920         mutex_lock(&fs_info->chunk_mutex);
2921         ret = btrfs_read_sys_array(tree_root);
2922         mutex_unlock(&fs_info->chunk_mutex);
2923         if (ret) {
2924                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2925                 goto fail_sb_buffer;
2926         }
2927
2928         generation = btrfs_super_chunk_root_generation(disk_super);
2929
2930         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2931                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2932
2933         chunk_root->node = read_tree_block(chunk_root,
2934                                            btrfs_super_chunk_root(disk_super),
2935                                            generation);
2936         if (IS_ERR(chunk_root->node) ||
2937             !extent_buffer_uptodate(chunk_root->node)) {
2938                 btrfs_err(fs_info, "failed to read chunk root");
2939                 if (!IS_ERR(chunk_root->node))
2940                         free_extent_buffer(chunk_root->node);
2941                 chunk_root->node = NULL;
2942                 goto fail_tree_roots;
2943         }
2944         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2945         chunk_root->commit_root = btrfs_root_node(chunk_root);
2946
2947         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2948            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2949
2950         ret = btrfs_read_chunk_tree(chunk_root);
2951         if (ret) {
2952                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2953                 goto fail_tree_roots;
2954         }
2955
2956         /*
2957          * keep the device that is marked to be the target device for the
2958          * dev_replace procedure
2959          */
2960         btrfs_close_extra_devices(fs_devices, 0);
2961
2962         if (!fs_devices->latest_bdev) {
2963                 btrfs_err(fs_info, "failed to read devices");
2964                 goto fail_tree_roots;
2965         }
2966
2967 retry_root_backup:
2968         generation = btrfs_super_generation(disk_super);
2969
2970         tree_root->node = read_tree_block(tree_root,
2971                                           btrfs_super_root(disk_super),
2972                                           generation);
2973         if (IS_ERR(tree_root->node) ||
2974             !extent_buffer_uptodate(tree_root->node)) {
2975                 btrfs_warn(fs_info, "failed to read tree root");
2976                 if (!IS_ERR(tree_root->node))
2977                         free_extent_buffer(tree_root->node);
2978                 tree_root->node = NULL;
2979                 goto recovery_tree_root;
2980         }
2981
2982         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2983         tree_root->commit_root = btrfs_root_node(tree_root);
2984         btrfs_set_root_refs(&tree_root->root_item, 1);
2985
2986         mutex_lock(&tree_root->objectid_mutex);
2987         ret = btrfs_find_highest_objectid(tree_root,
2988                                         &tree_root->highest_objectid);
2989         if (ret) {
2990                 mutex_unlock(&tree_root->objectid_mutex);
2991                 goto recovery_tree_root;
2992         }
2993
2994         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2995
2996         mutex_unlock(&tree_root->objectid_mutex);
2997
2998         ret = btrfs_read_roots(fs_info, tree_root);
2999         if (ret)
3000                 goto recovery_tree_root;
3001
3002         fs_info->generation = generation;
3003         fs_info->last_trans_committed = generation;
3004
3005         ret = btrfs_recover_balance(fs_info);
3006         if (ret) {
3007                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3008                 goto fail_block_groups;
3009         }
3010
3011         ret = btrfs_init_dev_stats(fs_info);
3012         if (ret) {
3013                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3014                 goto fail_block_groups;
3015         }
3016
3017         ret = btrfs_init_dev_replace(fs_info);
3018         if (ret) {
3019                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3020                 goto fail_block_groups;
3021         }
3022
3023         btrfs_close_extra_devices(fs_devices, 1);
3024
3025         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3026         if (ret) {
3027                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3028                                 ret);
3029                 goto fail_block_groups;
3030         }
3031
3032         ret = btrfs_sysfs_add_device(fs_devices);
3033         if (ret) {
3034                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3035                                 ret);
3036                 goto fail_fsdev_sysfs;
3037         }
3038
3039         ret = btrfs_sysfs_add_mounted(fs_info);
3040         if (ret) {
3041                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3042                 goto fail_fsdev_sysfs;
3043         }
3044
3045         ret = btrfs_init_space_info(fs_info);
3046         if (ret) {
3047                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3048                 goto fail_sysfs;
3049         }
3050
3051         ret = btrfs_read_block_groups(fs_info->extent_root);
3052         if (ret) {
3053                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3054                 goto fail_sysfs;
3055         }
3056         fs_info->num_tolerated_disk_barrier_failures =
3057                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3058         if (fs_info->fs_devices->missing_devices >
3059              fs_info->num_tolerated_disk_barrier_failures &&
3060             !(sb->s_flags & MS_RDONLY)) {
3061                 btrfs_warn(fs_info,
3062 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3063                         fs_info->fs_devices->missing_devices,
3064                         fs_info->num_tolerated_disk_barrier_failures);
3065                 goto fail_sysfs;
3066         }
3067
3068         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3069                                                "btrfs-cleaner");
3070         if (IS_ERR(fs_info->cleaner_kthread))
3071                 goto fail_sysfs;
3072
3073         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3074                                                    tree_root,
3075                                                    "btrfs-transaction");
3076         if (IS_ERR(fs_info->transaction_kthread))
3077                 goto fail_cleaner;
3078
3079         if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3080             !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3081             !fs_info->fs_devices->rotating) {
3082                 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3083                 btrfs_set_opt(fs_info->mount_opt, SSD);
3084         }
3085
3086         /*
3087          * Mount does not set all options immediately, we can do it now and do
3088          * not have to wait for transaction commit
3089          */
3090         btrfs_apply_pending_changes(fs_info);
3091
3092 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3093         if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3094                 ret = btrfsic_mount(tree_root, fs_devices,
3095                                     btrfs_test_opt(tree_root->fs_info,
3096                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3097                                     1 : 0,
3098                                     fs_info->check_integrity_print_mask);
3099                 if (ret)
3100                         btrfs_warn(fs_info,
3101                                 "failed to initialize integrity check module: %d",
3102                                 ret);
3103         }
3104 #endif
3105         ret = btrfs_read_qgroup_config(fs_info);
3106         if (ret)
3107                 goto fail_trans_kthread;
3108
3109         /* do not make disk changes in broken FS or nologreplay is given */
3110         if (btrfs_super_log_root(disk_super) != 0 &&
3111             !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3112                 ret = btrfs_replay_log(fs_info, fs_devices);
3113                 if (ret) {
3114                         err = ret;
3115                         goto fail_qgroup;
3116                 }
3117         }
3118
3119         ret = btrfs_find_orphan_roots(tree_root);
3120         if (ret)
3121                 goto fail_qgroup;
3122
3123         if (!(sb->s_flags & MS_RDONLY)) {
3124                 ret = btrfs_cleanup_fs_roots(fs_info);
3125                 if (ret)
3126                         goto fail_qgroup;
3127
3128                 mutex_lock(&fs_info->cleaner_mutex);
3129                 ret = btrfs_recover_relocation(tree_root);
3130                 mutex_unlock(&fs_info->cleaner_mutex);
3131                 if (ret < 0) {
3132                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3133                                         ret);
3134                         err = -EINVAL;
3135                         goto fail_qgroup;
3136                 }
3137         }
3138
3139         location.objectid = BTRFS_FS_TREE_OBJECTID;
3140         location.type = BTRFS_ROOT_ITEM_KEY;
3141         location.offset = 0;
3142
3143         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3144         if (IS_ERR(fs_info->fs_root)) {
3145                 err = PTR_ERR(fs_info->fs_root);
3146                 goto fail_qgroup;
3147         }
3148
3149         if (sb->s_flags & MS_RDONLY)
3150                 return 0;
3151
3152         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3153             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3154                 clear_free_space_tree = 1;
3155         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3156                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3157                 btrfs_warn(fs_info, "free space tree is invalid");
3158                 clear_free_space_tree = 1;
3159         }
3160
3161         if (clear_free_space_tree) {
3162                 btrfs_info(fs_info, "clearing free space tree");
3163                 ret = btrfs_clear_free_space_tree(fs_info);
3164                 if (ret) {
3165                         btrfs_warn(fs_info,
3166                                    "failed to clear free space tree: %d", ret);
3167                         close_ctree(tree_root);
3168                         return ret;
3169                 }
3170         }
3171
3172         if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3173             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3174                 btrfs_info(fs_info, "creating free space tree");
3175                 ret = btrfs_create_free_space_tree(fs_info);
3176                 if (ret) {
3177                         btrfs_warn(fs_info,
3178                                 "failed to create free space tree: %d", ret);
3179                         close_ctree(tree_root);
3180                         return ret;
3181                 }
3182         }
3183
3184         down_read(&fs_info->cleanup_work_sem);
3185         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3186             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3187                 up_read(&fs_info->cleanup_work_sem);
3188                 close_ctree(tree_root);
3189                 return ret;
3190         }
3191         up_read(&fs_info->cleanup_work_sem);
3192
3193         ret = btrfs_resume_balance_async(fs_info);
3194         if (ret) {
3195                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3196                 close_ctree(tree_root);
3197                 return ret;
3198         }
3199
3200         ret = btrfs_resume_dev_replace_async(fs_info);
3201         if (ret) {
3202                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3203                 close_ctree(tree_root);
3204                 return ret;
3205         }
3206
3207         btrfs_qgroup_rescan_resume(fs_info);
3208
3209         if (!fs_info->uuid_root) {
3210                 btrfs_info(fs_info, "creating UUID tree");
3211                 ret = btrfs_create_uuid_tree(fs_info);
3212                 if (ret) {
3213                         btrfs_warn(fs_info,
3214                                 "failed to create the UUID tree: %d", ret);
3215                         close_ctree(tree_root);
3216                         return ret;
3217                 }
3218         } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3219                    fs_info->generation !=
3220                                 btrfs_super_uuid_tree_generation(disk_super)) {
3221                 btrfs_info(fs_info, "checking UUID tree");
3222                 ret = btrfs_check_uuid_tree(fs_info);
3223                 if (ret) {
3224                         btrfs_warn(fs_info,
3225                                 "failed to check the UUID tree: %d", ret);
3226                         close_ctree(tree_root);
3227                         return ret;
3228                 }
3229         } else {
3230                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3231         }
3232         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3233
3234         /*
3235          * backuproot only affect mount behavior, and if open_ctree succeeded,
3236          * no need to keep the flag
3237          */
3238         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3239
3240         return 0;
3241
3242 fail_qgroup:
3243         btrfs_free_qgroup_config(fs_info);
3244 fail_trans_kthread:
3245         kthread_stop(fs_info->transaction_kthread);
3246         btrfs_cleanup_transaction(fs_info->tree_root);
3247         btrfs_free_fs_roots(fs_info);
3248 fail_cleaner:
3249         kthread_stop(fs_info->cleaner_kthread);
3250
3251         /*
3252          * make sure we're done with the btree inode before we stop our
3253          * kthreads
3254          */
3255         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3256
3257 fail_sysfs:
3258         btrfs_sysfs_remove_mounted(fs_info);
3259
3260 fail_fsdev_sysfs:
3261         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3262
3263 fail_block_groups:
3264         btrfs_put_block_group_cache(fs_info);
3265         btrfs_free_block_groups(fs_info);
3266
3267 fail_tree_roots:
3268         free_root_pointers(fs_info, 1);
3269         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3270
3271 fail_sb_buffer:
3272         btrfs_stop_all_workers(fs_info);
3273 fail_alloc:
3274 fail_iput:
3275         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3276
3277         iput(fs_info->btree_inode);
3278 fail_bio_counter:
3279         percpu_counter_destroy(&fs_info->bio_counter);
3280 fail_delalloc_bytes:
3281         percpu_counter_destroy(&fs_info->delalloc_bytes);
3282 fail_dirty_metadata_bytes:
3283         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3284 fail_bdi:
3285         bdi_destroy(&fs_info->bdi);
3286 fail_srcu:
3287         cleanup_srcu_struct(&fs_info->subvol_srcu);
3288 fail:
3289         btrfs_free_stripe_hash_table(fs_info);
3290         btrfs_close_devices(fs_info->fs_devices);
3291         return err;
3292
3293 recovery_tree_root:
3294         if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3295                 goto fail_tree_roots;
3296
3297         free_root_pointers(fs_info, 0);
3298
3299         /* don't use the log in recovery mode, it won't be valid */
3300         btrfs_set_super_log_root(disk_super, 0);
3301
3302         /* we can't trust the free space cache either */
3303         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3304
3305         ret = next_root_backup(fs_info, fs_info->super_copy,
3306                                &num_backups_tried, &backup_index);
3307         if (ret == -1)
3308                 goto fail_block_groups;
3309         goto retry_root_backup;
3310 }
3311
3312 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3313 {
3314         if (uptodate) {
3315                 set_buffer_uptodate(bh);
3316         } else {
3317                 struct btrfs_device *device = (struct btrfs_device *)
3318                         bh->b_private;
3319
3320                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3321                                 "lost page write due to IO error on %s",
3322                                           rcu_str_deref(device->name));
3323                 /* note, we don't set_buffer_write_io_error because we have
3324                  * our own ways of dealing with the IO errors
3325                  */
3326                 clear_buffer_uptodate(bh);
3327                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3328         }
3329         unlock_buffer(bh);
3330         put_bh(bh);
3331 }
3332
3333 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3334                         struct buffer_head **bh_ret)
3335 {
3336         struct buffer_head *bh;
3337         struct btrfs_super_block *super;
3338         u64 bytenr;
3339
3340         bytenr = btrfs_sb_offset(copy_num);
3341         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3342                 return -EINVAL;
3343
3344         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3345         /*
3346          * If we fail to read from the underlying devices, as of now
3347          * the best option we have is to mark it EIO.
3348          */
3349         if (!bh)
3350                 return -EIO;
3351
3352         super = (struct btrfs_super_block *)bh->b_data;
3353         if (btrfs_super_bytenr(super) != bytenr ||
3354                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3355                 brelse(bh);
3356                 return -EINVAL;
3357         }
3358
3359         *bh_ret = bh;
3360         return 0;
3361 }
3362
3363
3364 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3365 {
3366         struct buffer_head *bh;
3367         struct buffer_head *latest = NULL;
3368         struct btrfs_super_block *super;
3369         int i;
3370         u64 transid = 0;
3371         int ret = -EINVAL;
3372
3373         /* we would like to check all the supers, but that would make
3374          * a btrfs mount succeed after a mkfs from a different FS.
3375          * So, we need to add a special mount option to scan for
3376          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3377          */
3378         for (i = 0; i < 1; i++) {
3379                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3380                 if (ret)
3381                         continue;
3382
3383                 super = (struct btrfs_super_block *)bh->b_data;
3384
3385                 if (!latest || btrfs_super_generation(super) > transid) {
3386                         brelse(latest);
3387                         latest = bh;
3388                         transid = btrfs_super_generation(super);
3389                 } else {
3390                         brelse(bh);
3391                 }
3392         }
3393
3394         if (!latest)
3395                 return ERR_PTR(ret);
3396
3397         return latest;
3398 }
3399
3400 /*
3401  * this should be called twice, once with wait == 0 and
3402  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3403  * we write are pinned.
3404  *
3405  * They are released when wait == 1 is done.
3406  * max_mirrors must be the same for both runs, and it indicates how
3407  * many supers on this one device should be written.
3408  *
3409  * max_mirrors == 0 means to write them all.
3410  */
3411 static int write_dev_supers(struct btrfs_device *device,
3412                             struct btrfs_super_block *sb,
3413                             int do_barriers, int wait, int max_mirrors)
3414 {
3415         struct buffer_head *bh;
3416         int i;
3417         int ret;
3418         int errors = 0;
3419         u32 crc;
3420         u64 bytenr;
3421
3422         if (max_mirrors == 0)
3423                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3424
3425         for (i = 0; i < max_mirrors; i++) {
3426                 bytenr = btrfs_sb_offset(i);
3427                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3428                     device->commit_total_bytes)
3429                         break;
3430
3431                 if (wait) {
3432                         bh = __find_get_block(device->bdev, bytenr / 4096,
3433                                               BTRFS_SUPER_INFO_SIZE);
3434                         if (!bh) {
3435                                 errors++;
3436                                 continue;
3437                         }
3438                         wait_on_buffer(bh);
3439                         if (!buffer_uptodate(bh))
3440                                 errors++;
3441
3442                         /* drop our reference */
3443                         brelse(bh);
3444
3445                         /* drop the reference from the wait == 0 run */
3446                         brelse(bh);
3447                         continue;
3448                 } else {
3449                         btrfs_set_super_bytenr(sb, bytenr);
3450
3451                         crc = ~(u32)0;
3452                         crc = btrfs_csum_data((char *)sb +
3453                                               BTRFS_CSUM_SIZE, crc,
3454                                               BTRFS_SUPER_INFO_SIZE -
3455                                               BTRFS_CSUM_SIZE);
3456                         btrfs_csum_final(crc, sb->csum);
3457
3458                         /*
3459                          * one reference for us, and we leave it for the
3460                          * caller
3461                          */
3462                         bh = __getblk(device->bdev, bytenr / 4096,
3463                                       BTRFS_SUPER_INFO_SIZE);
3464                         if (!bh) {
3465                                 btrfs_err(device->dev_root->fs_info,
3466                                     "couldn't get super buffer head for bytenr %llu",
3467                                     bytenr);
3468                                 errors++;
3469                                 continue;
3470                         }
3471
3472                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3473
3474                         /* one reference for submit_bh */
3475                         get_bh(bh);
3476
3477                         set_buffer_uptodate(bh);
3478                         lock_buffer(bh);
3479                         bh->b_end_io = btrfs_end_buffer_write_sync;
3480                         bh->b_private = device;
3481                 }
3482
3483                 /*
3484                  * we fua the first super.  The others we allow
3485                  * to go down lazy.
3486                  */
3487                 if (i == 0)
3488                         ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3489                 else
3490                         ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3491                 if (ret)
3492                         errors++;
3493         }
3494         return errors < i ? 0 : -1;
3495 }
3496
3497 /*
3498  * endio for the write_dev_flush, this will wake anyone waiting
3499  * for the barrier when it is done
3500  */
3501 static void btrfs_end_empty_barrier(struct bio *bio)
3502 {
3503         if (bio->bi_private)
3504                 complete(bio->bi_private);
3505         bio_put(bio);
3506 }
3507
3508 /*
3509  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3510  * sent down.  With wait == 1, it waits for the previous flush.
3511  *
3512  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3513  * capable
3514  */
3515 static int write_dev_flush(struct btrfs_device *device, int wait)
3516 {
3517         struct bio *bio;
3518         int ret = 0;
3519
3520         if (device->nobarriers)
3521                 return 0;
3522
3523         if (wait) {
3524                 bio = device->flush_bio;
3525                 if (!bio)
3526                         return 0;
3527
3528                 wait_for_completion(&device->flush_wait);
3529
3530                 if (bio->bi_error) {
3531                         ret = bio->bi_error;
3532                         btrfs_dev_stat_inc_and_print(device,
3533                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3534                 }
3535
3536                 /* drop the reference from the wait == 0 run */
3537                 bio_put(bio);
3538                 device->flush_bio = NULL;
3539
3540                 return ret;
3541         }
3542
3543         /*
3544          * one reference for us, and we leave it for the
3545          * caller
3546          */
3547         device->flush_bio = NULL;
3548         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3549         if (!bio)
3550                 return -ENOMEM;
3551
3552         bio->bi_end_io = btrfs_end_empty_barrier;
3553         bio->bi_bdev = device->bdev;
3554         bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3555         init_completion(&device->flush_wait);
3556         bio->bi_private = &device->flush_wait;
3557         device->flush_bio = bio;
3558
3559         bio_get(bio);
3560         btrfsic_submit_bio(bio);
3561
3562         return 0;
3563 }
3564
3565 /*
3566  * send an empty flush down to each device in parallel,
3567  * then wait for them
3568  */
3569 static int barrier_all_devices(struct btrfs_fs_info *info)
3570 {
3571         struct list_head *head;
3572         struct btrfs_device *dev;
3573         int errors_send = 0;
3574         int errors_wait = 0;
3575         int ret;
3576
3577         /* send down all the barriers */
3578         head = &info->fs_devices->devices;
3579         list_for_each_entry_rcu(dev, head, dev_list) {
3580                 if (dev->missing)
3581                         continue;
3582                 if (!dev->bdev) {
3583                         errors_send++;
3584                         continue;
3585                 }
3586                 if (!dev->in_fs_metadata || !dev->writeable)
3587                         continue;
3588
3589                 ret = write_dev_flush(dev, 0);
3590                 if (ret)
3591                         errors_send++;
3592         }
3593
3594         /* wait for all the barriers */
3595         list_for_each_entry_rcu(dev, head, dev_list) {
3596                 if (dev->missing)
3597                         continue;
3598                 if (!dev->bdev) {
3599                         errors_wait++;
3600                         continue;
3601                 }
3602                 if (!dev->in_fs_metadata || !dev->writeable)
3603                         continue;
3604
3605                 ret = write_dev_flush(dev, 1);
3606                 if (ret)
3607                         errors_wait++;
3608         }
3609         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3610             errors_wait > info->num_tolerated_disk_barrier_failures)
3611                 return -EIO;
3612         return 0;
3613 }
3614
3615 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3616 {
3617         int raid_type;
3618         int min_tolerated = INT_MAX;
3619
3620         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3621             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3622                 min_tolerated = min(min_tolerated,
3623                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3624                                     tolerated_failures);
3625
3626         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3627                 if (raid_type == BTRFS_RAID_SINGLE)
3628                         continue;
3629                 if (!(flags & btrfs_raid_group[raid_type]))
3630                         continue;
3631                 min_tolerated = min(min_tolerated,
3632                                     btrfs_raid_array[raid_type].
3633                                     tolerated_failures);
3634         }
3635
3636         if (min_tolerated == INT_MAX) {
3637                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3638                 min_tolerated = 0;
3639         }
3640
3641         return min_tolerated;
3642 }
3643
3644 int btrfs_calc_num_tolerated_disk_barrier_failures(
3645         struct btrfs_fs_info *fs_info)
3646 {
3647         struct btrfs_ioctl_space_info space;
3648         struct btrfs_space_info *sinfo;
3649         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3650                        BTRFS_BLOCK_GROUP_SYSTEM,
3651                        BTRFS_BLOCK_GROUP_METADATA,
3652                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3653         int i;
3654         int c;
3655         int num_tolerated_disk_barrier_failures =
3656                 (int)fs_info->fs_devices->num_devices;
3657
3658         for (i = 0; i < ARRAY_SIZE(types); i++) {
3659                 struct btrfs_space_info *tmp;
3660
3661                 sinfo = NULL;
3662                 rcu_read_lock();
3663                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3664                         if (tmp->flags == types[i]) {
3665                                 sinfo = tmp;
3666                                 break;
3667                         }
3668                 }
3669                 rcu_read_unlock();
3670
3671                 if (!sinfo)
3672                         continue;
3673
3674                 down_read(&sinfo->groups_sem);
3675                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3676                         u64 flags;
3677
3678                         if (list_empty(&sinfo->block_groups[c]))
3679                                 continue;
3680
3681                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3682                                                    &space);
3683                         if (space.total_bytes == 0 || space.used_bytes == 0)
3684                                 continue;
3685                         flags = space.flags;
3686
3687                         num_tolerated_disk_barrier_failures = min(
3688                                 num_tolerated_disk_barrier_failures,
3689                                 btrfs_get_num_tolerated_disk_barrier_failures(
3690                                         flags));
3691                 }
3692                 up_read(&sinfo->groups_sem);
3693         }
3694
3695         return num_tolerated_disk_barrier_failures;
3696 }
3697
3698 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3699 {
3700         struct list_head *head;
3701         struct btrfs_device *dev;
3702         struct btrfs_super_block *sb;
3703         struct btrfs_dev_item *dev_item;
3704         int ret;
3705         int do_barriers;
3706         int max_errors;
3707         int total_errors = 0;
3708         u64 flags;
3709
3710         do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3711         backup_super_roots(root->fs_info);
3712
3713         sb = root->fs_info->super_for_commit;
3714         dev_item = &sb->dev_item;
3715
3716         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3717         head = &root->fs_info->fs_devices->devices;
3718         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3719
3720         if (do_barriers) {
3721                 ret = barrier_all_devices(root->fs_info);
3722                 if (ret) {
3723                         mutex_unlock(
3724                                 &root->fs_info->fs_devices->device_list_mutex);
3725                         btrfs_handle_fs_error(root->fs_info, ret,
3726                                     "errors while submitting device barriers.");
3727                         return ret;
3728                 }
3729         }
3730
3731         list_for_each_entry_rcu(dev, head, dev_list) {
3732                 if (!dev->bdev) {
3733                         total_errors++;
3734                         continue;
3735                 }
3736                 if (!dev->in_fs_metadata || !dev->writeable)
3737                         continue;
3738
3739                 btrfs_set_stack_device_generation(dev_item, 0);
3740                 btrfs_set_stack_device_type(dev_item, dev->type);
3741                 btrfs_set_stack_device_id(dev_item, dev->devid);
3742                 btrfs_set_stack_device_total_bytes(dev_item,
3743                                                    dev->commit_total_bytes);
3744                 btrfs_set_stack_device_bytes_used(dev_item,
3745                                                   dev->commit_bytes_used);
3746                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3747                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3748                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3749                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3750                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3751
3752                 flags = btrfs_super_flags(sb);
3753                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3754
3755                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3756                 if (ret)
3757                         total_errors++;
3758         }
3759         if (total_errors > max_errors) {
3760                 btrfs_err(root->fs_info, "%d errors while writing supers",
3761                        total_errors);
3762                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3763
3764                 /* FUA is masked off if unsupported and can't be the reason */
3765                 btrfs_handle_fs_error(root->fs_info, -EIO,
3766                             "%d errors while writing supers", total_errors);
3767                 return -EIO;
3768         }
3769
3770         total_errors = 0;
3771         list_for_each_entry_rcu(dev, head, dev_list) {
3772                 if (!dev->bdev)
3773                         continue;
3774                 if (!dev->in_fs_metadata || !dev->writeable)
3775                         continue;
3776
3777                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3778                 if (ret)
3779                         total_errors++;
3780         }
3781         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3782         if (total_errors > max_errors) {
3783                 btrfs_handle_fs_error(root->fs_info, -EIO,
3784                             "%d errors while writing supers", total_errors);
3785                 return -EIO;
3786         }
3787         return 0;
3788 }
3789
3790 int write_ctree_super(struct btrfs_trans_handle *trans,
3791                       struct btrfs_root *root, int max_mirrors)
3792 {
3793         return write_all_supers(root, max_mirrors);
3794 }
3795
3796 /* Drop a fs root from the radix tree and free it. */
3797 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3798                                   struct btrfs_root *root)
3799 {
3800         spin_lock(&fs_info->fs_roots_radix_lock);
3801         radix_tree_delete(&fs_info->fs_roots_radix,
3802                           (unsigned long)root->root_key.objectid);
3803         spin_unlock(&fs_info->fs_roots_radix_lock);
3804
3805         if (btrfs_root_refs(&root->root_item) == 0)
3806                 synchronize_srcu(&fs_info->subvol_srcu);
3807
3808         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3809                 btrfs_free_log(NULL, root);
3810                 if (root->reloc_root) {
3811                         free_extent_buffer(root->reloc_root->node);
3812                         free_extent_buffer(root->reloc_root->commit_root);
3813                         btrfs_put_fs_root(root->reloc_root);
3814                         root->reloc_root = NULL;
3815                 }
3816         }
3817
3818         if (root->free_ino_pinned)
3819                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3820         if (root->free_ino_ctl)
3821                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3822         free_fs_root(root);
3823 }
3824
3825 static void free_fs_root(struct btrfs_root *root)
3826 {
3827         iput(root->ino_cache_inode);
3828         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3829         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3830         root->orphan_block_rsv = NULL;
3831         if (root->anon_dev)
3832                 free_anon_bdev(root->anon_dev);
3833         if (root->subv_writers)
3834                 btrfs_free_subvolume_writers(root->subv_writers);
3835         free_extent_buffer(root->node);
3836         free_extent_buffer(root->commit_root);
3837         kfree(root->free_ino_ctl);
3838         kfree(root->free_ino_pinned);
3839         kfree(root->name);
3840         btrfs_put_fs_root(root);
3841 }
3842
3843 void btrfs_free_fs_root(struct btrfs_root *root)
3844 {
3845         free_fs_root(root);
3846 }
3847
3848 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3849 {
3850         u64 root_objectid = 0;
3851         struct btrfs_root *gang[8];
3852         int i = 0;
3853         int err = 0;
3854         unsigned int ret = 0;
3855         int index;
3856
3857         while (1) {
3858                 index = srcu_read_lock(&fs_info->subvol_srcu);
3859                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3860                                              (void **)gang, root_objectid,
3861                                              ARRAY_SIZE(gang));
3862                 if (!ret) {
3863                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3864                         break;
3865                 }
3866                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3867
3868                 for (i = 0; i < ret; i++) {
3869                         /* Avoid to grab roots in dead_roots */
3870                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3871                                 gang[i] = NULL;
3872                                 continue;
3873                         }
3874                         /* grab all the search result for later use */
3875                         gang[i] = btrfs_grab_fs_root(gang[i]);
3876                 }
3877                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3878
3879                 for (i = 0; i < ret; i++) {
3880                         if (!gang[i])
3881                                 continue;
3882                         root_objectid = gang[i]->root_key.objectid;
3883                         err = btrfs_orphan_cleanup(gang[i]);
3884                         if (err)
3885                                 break;
3886                         btrfs_put_fs_root(gang[i]);
3887                 }
3888                 root_objectid++;
3889         }
3890
3891         /* release the uncleaned roots due to error */
3892         for (; i < ret; i++) {
3893                 if (gang[i])
3894                         btrfs_put_fs_root(gang[i]);
3895         }
3896         return err;
3897 }
3898
3899 int btrfs_commit_super(struct btrfs_root *root)
3900 {
3901         struct btrfs_trans_handle *trans;
3902
3903         mutex_lock(&root->fs_info->cleaner_mutex);
3904         btrfs_run_delayed_iputs(root);
3905         mutex_unlock(&root->fs_info->cleaner_mutex);
3906         wake_up_process(root->fs_info->cleaner_kthread);
3907
3908         /* wait until ongoing cleanup work done */
3909         down_write(&root->fs_info->cleanup_work_sem);
3910         up_write(&root->fs_info->cleanup_work_sem);
3911
3912         trans = btrfs_join_transaction(root);
3913         if (IS_ERR(trans))
3914                 return PTR_ERR(trans);
3915         return btrfs_commit_transaction(trans, root);
3916 }
3917
3918 void close_ctree(struct btrfs_root *root)
3919 {
3920         struct btrfs_fs_info *fs_info = root->fs_info;
3921         int ret;
3922
3923         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3924
3925         /* wait for the qgroup rescan worker to stop */
3926         btrfs_qgroup_wait_for_completion(fs_info, false);
3927
3928         /* wait for the uuid_scan task to finish */
3929         down(&fs_info->uuid_tree_rescan_sem);
3930         /* avoid complains from lockdep et al., set sem back to initial state */
3931         up(&fs_info->uuid_tree_rescan_sem);
3932
3933         /* pause restriper - we want to resume on mount */
3934         btrfs_pause_balance(fs_info);
3935
3936         btrfs_dev_replace_suspend_for_unmount(fs_info);
3937
3938         btrfs_scrub_cancel(fs_info);
3939
3940         /* wait for any defraggers to finish */
3941         wait_event(fs_info->transaction_wait,
3942                    (atomic_read(&fs_info->defrag_running) == 0));
3943
3944         /* clear out the rbtree of defraggable inodes */
3945         btrfs_cleanup_defrag_inodes(fs_info);
3946
3947         cancel_work_sync(&fs_info->async_reclaim_work);
3948
3949         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3950                 /*
3951                  * If the cleaner thread is stopped and there are
3952                  * block groups queued for removal, the deletion will be
3953                  * skipped when we quit the cleaner thread.
3954                  */
3955                 btrfs_delete_unused_bgs(root->fs_info);
3956
3957                 ret = btrfs_commit_super(root);
3958                 if (ret)
3959                         btrfs_err(fs_info, "commit super ret %d", ret);
3960         }
3961
3962         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3963                 btrfs_error_commit_super(root);
3964
3965         kthread_stop(fs_info->transaction_kthread);
3966         kthread_stop(fs_info->cleaner_kthread);
3967
3968         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3969
3970         btrfs_free_qgroup_config(fs_info);
3971
3972         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3973                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3974                        percpu_counter_sum(&fs_info->delalloc_bytes));
3975         }
3976
3977         btrfs_sysfs_remove_mounted(fs_info);
3978         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3979
3980         btrfs_free_fs_roots(fs_info);
3981
3982         btrfs_put_block_group_cache(fs_info);
3983
3984         btrfs_free_block_groups(fs_info);
3985
3986         /*
3987          * we must make sure there is not any read request to
3988          * submit after we stopping all workers.
3989          */
3990         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3991         btrfs_stop_all_workers(fs_info);
3992
3993         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3994         free_root_pointers(fs_info, 1);
3995
3996         iput(fs_info->btree_inode);
3997
3998 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3999         if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
4000                 btrfsic_unmount(root, fs_info->fs_devices);
4001 #endif
4002
4003         btrfs_close_devices(fs_info->fs_devices);
4004         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4005
4006         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4007         percpu_counter_destroy(&fs_info->delalloc_bytes);
4008         percpu_counter_destroy(&fs_info->bio_counter);
4009         bdi_destroy(&fs_info->bdi);
4010         cleanup_srcu_struct(&fs_info->subvol_srcu);
4011
4012         btrfs_free_stripe_hash_table(fs_info);
4013
4014         __btrfs_free_block_rsv(root->orphan_block_rsv);
4015         root->orphan_block_rsv = NULL;
4016
4017         lock_chunks(root);
4018         while (!list_empty(&fs_info->pinned_chunks)) {
4019                 struct extent_map *em;
4020
4021                 em = list_first_entry(&fs_info->pinned_chunks,
4022                                       struct extent_map, list);
4023                 list_del_init(&em->list);
4024                 free_extent_map(em);
4025         }
4026         unlock_chunks(root);
4027 }
4028
4029 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4030                           int atomic)
4031 {
4032         int ret;
4033         struct inode *btree_inode = buf->pages[0]->mapping->host;
4034
4035         ret = extent_buffer_uptodate(buf);
4036         if (!ret)
4037                 return ret;
4038
4039         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4040                                     parent_transid, atomic);
4041         if (ret == -EAGAIN)
4042                 return ret;
4043         return !ret;
4044 }
4045
4046 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4047 {
4048         struct btrfs_root *root;
4049         u64 transid = btrfs_header_generation(buf);
4050         int was_dirty;
4051
4052 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4053         /*
4054          * This is a fast path so only do this check if we have sanity tests
4055          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4056          * outside of the sanity tests.
4057          */
4058         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4059                 return;
4060 #endif
4061         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4062         btrfs_assert_tree_locked(buf);
4063         if (transid != root->fs_info->generation)
4064                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4065                         buf->start, transid, root->fs_info->generation);
4066         was_dirty = set_extent_buffer_dirty(buf);
4067         if (!was_dirty)
4068                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4069                                      buf->len,
4070                                      root->fs_info->dirty_metadata_batch);
4071 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4072         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4073                 btrfs_print_leaf(root, buf);
4074                 ASSERT(0);
4075         }
4076 #endif
4077 }
4078
4079 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4080                                         int flush_delayed)
4081 {
4082         /*
4083          * looks as though older kernels can get into trouble with
4084          * this code, they end up stuck in balance_dirty_pages forever
4085          */
4086         int ret;
4087
4088         if (current->flags & PF_MEMALLOC)
4089                 return;
4090
4091         if (flush_delayed)
4092                 btrfs_balance_delayed_items(root);
4093
4094         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4095                                      BTRFS_DIRTY_METADATA_THRESH);
4096         if (ret > 0) {
4097                 balance_dirty_pages_ratelimited(
4098                                    root->fs_info->btree_inode->i_mapping);
4099         }
4100 }
4101
4102 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4103 {
4104         __btrfs_btree_balance_dirty(root, 1);
4105 }
4106
4107 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4108 {
4109         __btrfs_btree_balance_dirty(root, 0);
4110 }
4111
4112 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4113 {
4114         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4115         return btree_read_extent_buffer_pages(root, buf, parent_transid);
4116 }
4117
4118 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4119                               int read_only)
4120 {
4121         struct btrfs_super_block *sb = fs_info->super_copy;
4122         u64 nodesize = btrfs_super_nodesize(sb);
4123         u64 sectorsize = btrfs_super_sectorsize(sb);
4124         int ret = 0;
4125
4126         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4127                 btrfs_err(fs_info, "no valid FS found");
4128                 ret = -EINVAL;
4129         }
4130         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4131                 btrfs_warn(fs_info, "unrecognized super flag: %llu",
4132                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4133         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4134                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4135                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4136                 ret = -EINVAL;
4137         }
4138         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4139                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4140                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4141                 ret = -EINVAL;
4142         }
4143         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4144                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4145                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4146                 ret = -EINVAL;
4147         }
4148
4149         /*
4150          * Check sectorsize and nodesize first, other check will need it.
4151          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4152          */
4153         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4154             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4155                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4156                 ret = -EINVAL;
4157         }
4158         /* Only PAGE SIZE is supported yet */
4159         if (sectorsize != PAGE_SIZE) {
4160                 btrfs_err(fs_info,
4161                         "sectorsize %llu not supported yet, only support %lu",
4162                         sectorsize, PAGE_SIZE);
4163                 ret = -EINVAL;
4164         }
4165         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4166             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4167                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4168                 ret = -EINVAL;
4169         }
4170         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4171                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4172                           le32_to_cpu(sb->__unused_leafsize), nodesize);
4173                 ret = -EINVAL;
4174         }
4175
4176         /* Root alignment check */
4177         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4178                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4179                            btrfs_super_root(sb));
4180                 ret = -EINVAL;
4181         }
4182         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4183                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4184                            btrfs_super_chunk_root(sb));
4185                 ret = -EINVAL;
4186         }
4187         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4188                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4189                            btrfs_super_log_root(sb));
4190                 ret = -EINVAL;
4191         }
4192
4193         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4194                 btrfs_err(fs_info,
4195                            "dev_item UUID does not match fsid: %pU != %pU",
4196                            fs_info->fsid, sb->dev_item.fsid);
4197                 ret = -EINVAL;
4198         }
4199
4200         /*
4201          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4202          * done later
4203          */
4204         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4205                 btrfs_err(fs_info, "bytes_used is too small %llu",
4206                           btrfs_super_bytes_used(sb));
4207                 ret = -EINVAL;
4208         }
4209         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4210                 btrfs_err(fs_info, "invalid stripesize %u",
4211                           btrfs_super_stripesize(sb));
4212                 ret = -EINVAL;
4213         }
4214         if (btrfs_super_num_devices(sb) > (1UL << 31))
4215                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4216                            btrfs_super_num_devices(sb));
4217         if (btrfs_super_num_devices(sb) == 0) {
4218                 btrfs_err(fs_info, "number of devices is 0");
4219                 ret = -EINVAL;
4220         }
4221
4222         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4223                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4224                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4225                 ret = -EINVAL;
4226         }
4227
4228         /*
4229          * Obvious sys_chunk_array corruptions, it must hold at least one key
4230          * and one chunk
4231          */
4232         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4233                 btrfs_err(fs_info, "system chunk array too big %u > %u",
4234                           btrfs_super_sys_array_size(sb),
4235                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4236                 ret = -EINVAL;
4237         }
4238         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4239                         + sizeof(struct btrfs_chunk)) {
4240                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4241                           btrfs_super_sys_array_size(sb),
4242                           sizeof(struct btrfs_disk_key)
4243                           + sizeof(struct btrfs_chunk));
4244                 ret = -EINVAL;
4245         }
4246
4247         /*
4248          * The generation is a global counter, we'll trust it more than the others
4249          * but it's still possible that it's the one that's wrong.
4250          */
4251         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4252                 btrfs_warn(fs_info,
4253                         "suspicious: generation < chunk_root_generation: %llu < %llu",
4254                         btrfs_super_generation(sb),
4255                         btrfs_super_chunk_root_generation(sb));
4256         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4257             && btrfs_super_cache_generation(sb) != (u64)-1)
4258                 btrfs_warn(fs_info,
4259                         "suspicious: generation < cache_generation: %llu < %llu",
4260                         btrfs_super_generation(sb),
4261                         btrfs_super_cache_generation(sb));
4262
4263         return ret;
4264 }
4265
4266 static void btrfs_error_commit_super(struct btrfs_root *root)
4267 {
4268         mutex_lock(&root->fs_info->cleaner_mutex);
4269         btrfs_run_delayed_iputs(root);
4270         mutex_unlock(&root->fs_info->cleaner_mutex);
4271
4272         down_write(&root->fs_info->cleanup_work_sem);
4273         up_write(&root->fs_info->cleanup_work_sem);
4274
4275         /* cleanup FS via transaction */
4276         btrfs_cleanup_transaction(root);
4277 }
4278
4279 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4280 {
4281         struct btrfs_ordered_extent *ordered;
4282
4283         spin_lock(&root->ordered_extent_lock);
4284         /*
4285          * This will just short circuit the ordered completion stuff which will
4286          * make sure the ordered extent gets properly cleaned up.
4287          */
4288         list_for_each_entry(ordered, &root->ordered_extents,
4289                             root_extent_list)
4290                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4291         spin_unlock(&root->ordered_extent_lock);
4292 }
4293
4294 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4295 {
4296         struct btrfs_root *root;
4297         struct list_head splice;
4298
4299         INIT_LIST_HEAD(&splice);
4300
4301         spin_lock(&fs_info->ordered_root_lock);
4302         list_splice_init(&fs_info->ordered_roots, &splice);
4303         while (!list_empty(&splice)) {
4304                 root = list_first_entry(&splice, struct btrfs_root,
4305                                         ordered_root);
4306                 list_move_tail(&root->ordered_root,
4307                                &fs_info->ordered_roots);
4308
4309                 spin_unlock(&fs_info->ordered_root_lock);
4310                 btrfs_destroy_ordered_extents(root);
4311
4312                 cond_resched();
4313                 spin_lock(&fs_info->ordered_root_lock);
4314         }
4315         spin_unlock(&fs_info->ordered_root_lock);
4316 }
4317
4318 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4319                                       struct btrfs_root *root)
4320 {
4321         struct rb_node *node;
4322         struct btrfs_delayed_ref_root *delayed_refs;
4323         struct btrfs_delayed_ref_node *ref;
4324         int ret = 0;
4325
4326         delayed_refs = &trans->delayed_refs;
4327
4328         spin_lock(&delayed_refs->lock);
4329         if (atomic_read(&delayed_refs->num_entries) == 0) {
4330                 spin_unlock(&delayed_refs->lock);
4331                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4332                 return ret;
4333         }
4334
4335         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4336                 struct btrfs_delayed_ref_head *head;
4337                 struct btrfs_delayed_ref_node *tmp;
4338                 bool pin_bytes = false;
4339
4340                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4341                                 href_node);
4342                 if (!mutex_trylock(&head->mutex)) {
4343                         atomic_inc(&head->node.refs);
4344                         spin_unlock(&delayed_refs->lock);
4345
4346                         mutex_lock(&head->mutex);
4347                         mutex_unlock(&head->mutex);
4348                         btrfs_put_delayed_ref(&head->node);
4349                         spin_lock(&delayed_refs->lock);
4350                         continue;
4351                 }
4352                 spin_lock(&head->lock);
4353                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4354                                                  list) {
4355                         ref->in_tree = 0;
4356                         list_del(&ref->list);
4357                         atomic_dec(&delayed_refs->num_entries);
4358                         btrfs_put_delayed_ref(ref);
4359                 }
4360                 if (head->must_insert_reserved)
4361                         pin_bytes = true;
4362                 btrfs_free_delayed_extent_op(head->extent_op);
4363                 delayed_refs->num_heads--;
4364                 if (head->processing == 0)
4365                         delayed_refs->num_heads_ready--;
4366                 atomic_dec(&delayed_refs->num_entries);
4367                 head->node.in_tree = 0;
4368                 rb_erase(&head->href_node, &delayed_refs->href_root);
4369                 spin_unlock(&head->lock);
4370                 spin_unlock(&delayed_refs->lock);
4371                 mutex_unlock(&head->mutex);
4372
4373                 if (pin_bytes)
4374                         btrfs_pin_extent(root, head->node.bytenr,
4375                                          head->node.num_bytes, 1);
4376                 btrfs_put_delayed_ref(&head->node);
4377                 cond_resched();
4378                 spin_lock(&delayed_refs->lock);
4379         }
4380
4381         spin_unlock(&delayed_refs->lock);
4382
4383         return ret;
4384 }
4385
4386 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4387 {
4388         struct btrfs_inode *btrfs_inode;
4389         struct list_head splice;
4390
4391         INIT_LIST_HEAD(&splice);
4392
4393         spin_lock(&root->delalloc_lock);
4394         list_splice_init(&root->delalloc_inodes, &splice);
4395
4396         while (!list_empty(&splice)) {
4397                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4398                                                delalloc_inodes);
4399
4400                 list_del_init(&btrfs_inode->delalloc_inodes);
4401                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4402                           &btrfs_inode->runtime_flags);
4403                 spin_unlock(&root->delalloc_lock);
4404
4405                 btrfs_invalidate_inodes(btrfs_inode->root);
4406
4407                 spin_lock(&root->delalloc_lock);
4408         }
4409
4410         spin_unlock(&root->delalloc_lock);
4411 }
4412
4413 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4414 {
4415         struct btrfs_root *root;
4416         struct list_head splice;
4417
4418         INIT_LIST_HEAD(&splice);
4419
4420         spin_lock(&fs_info->delalloc_root_lock);
4421         list_splice_init(&fs_info->delalloc_roots, &splice);
4422         while (!list_empty(&splice)) {
4423                 root = list_first_entry(&splice, struct btrfs_root,
4424                                          delalloc_root);
4425                 list_del_init(&root->delalloc_root);
4426                 root = btrfs_grab_fs_root(root);
4427                 BUG_ON(!root);
4428                 spin_unlock(&fs_info->delalloc_root_lock);
4429
4430                 btrfs_destroy_delalloc_inodes(root);
4431                 btrfs_put_fs_root(root);
4432
4433                 spin_lock(&fs_info->delalloc_root_lock);
4434         }
4435         spin_unlock(&fs_info->delalloc_root_lock);
4436 }
4437
4438 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4439                                         struct extent_io_tree *dirty_pages,
4440                                         int mark)
4441 {
4442         int ret;
4443         struct extent_buffer *eb;
4444         u64 start = 0;
4445         u64 end;
4446
4447         while (1) {
4448                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4449                                             mark, NULL);
4450                 if (ret)
4451                         break;
4452
4453                 clear_extent_bits(dirty_pages, start, end, mark);
4454                 while (start <= end) {
4455                         eb = btrfs_find_tree_block(root->fs_info, start);
4456                         start += root->nodesize;
4457                         if (!eb)
4458                                 continue;
4459                         wait_on_extent_buffer_writeback(eb);
4460
4461                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4462                                                &eb->bflags))
4463                                 clear_extent_buffer_dirty(eb);
4464                         free_extent_buffer_stale(eb);
4465                 }
4466         }
4467
4468         return ret;
4469 }
4470
4471 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4472                                        struct extent_io_tree *pinned_extents)
4473 {
4474         struct extent_io_tree *unpin;
4475         u64 start;
4476         u64 end;
4477         int ret;
4478         bool loop = true;
4479
4480         unpin = pinned_extents;
4481 again:
4482         while (1) {
4483                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4484                                             EXTENT_DIRTY, NULL);
4485                 if (ret)
4486                         break;
4487
4488                 clear_extent_dirty(unpin, start, end);
4489                 btrfs_error_unpin_extent_range(root, start, end);
4490                 cond_resched();
4491         }
4492
4493         if (loop) {
4494                 if (unpin == &root->fs_info->freed_extents[0])
4495                         unpin = &root->fs_info->freed_extents[1];
4496                 else
4497                         unpin = &root->fs_info->freed_extents[0];
4498                 loop = false;
4499                 goto again;
4500         }
4501
4502         return 0;
4503 }
4504
4505 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4506 {
4507         struct inode *inode;
4508
4509         inode = cache->io_ctl.inode;
4510         if (inode) {
4511                 invalidate_inode_pages2(inode->i_mapping);
4512                 BTRFS_I(inode)->generation = 0;
4513                 cache->io_ctl.inode = NULL;
4514                 iput(inode);
4515         }
4516         btrfs_put_block_group(cache);
4517 }
4518
4519 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4520                              struct btrfs_root *root)
4521 {
4522         struct btrfs_block_group_cache *cache;
4523
4524         spin_lock(&cur_trans->dirty_bgs_lock);
4525         while (!list_empty(&cur_trans->dirty_bgs)) {
4526                 cache = list_first_entry(&cur_trans->dirty_bgs,
4527                                          struct btrfs_block_group_cache,
4528                                          dirty_list);
4529                 if (!cache) {
4530                         btrfs_err(root->fs_info,
4531                                   "orphan block group dirty_bgs list");
4532                         spin_unlock(&cur_trans->dirty_bgs_lock);
4533                         return;
4534                 }
4535
4536                 if (!list_empty(&cache->io_list)) {
4537                         spin_unlock(&cur_trans->dirty_bgs_lock);
4538                         list_del_init(&cache->io_list);
4539                         btrfs_cleanup_bg_io(cache);
4540                         spin_lock(&cur_trans->dirty_bgs_lock);
4541                 }
4542
4543                 list_del_init(&cache->dirty_list);
4544                 spin_lock(&cache->lock);
4545                 cache->disk_cache_state = BTRFS_DC_ERROR;
4546                 spin_unlock(&cache->lock);
4547
4548                 spin_unlock(&cur_trans->dirty_bgs_lock);
4549                 btrfs_put_block_group(cache);
4550                 spin_lock(&cur_trans->dirty_bgs_lock);
4551         }
4552         spin_unlock(&cur_trans->dirty_bgs_lock);
4553
4554         while (!list_empty(&cur_trans->io_bgs)) {
4555                 cache = list_first_entry(&cur_trans->io_bgs,
4556                                          struct btrfs_block_group_cache,
4557                                          io_list);
4558                 if (!cache) {
4559                         btrfs_err(root->fs_info,
4560                                   "orphan block group on io_bgs list");
4561                         return;
4562                 }
4563
4564                 list_del_init(&cache->io_list);
4565                 spin_lock(&cache->lock);
4566                 cache->disk_cache_state = BTRFS_DC_ERROR;
4567                 spin_unlock(&cache->lock);
4568                 btrfs_cleanup_bg_io(cache);
4569         }
4570 }
4571
4572 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4573                                    struct btrfs_root *root)
4574 {
4575         btrfs_cleanup_dirty_bgs(cur_trans, root);
4576         ASSERT(list_empty(&cur_trans->dirty_bgs));
4577         ASSERT(list_empty(&cur_trans->io_bgs));
4578
4579         btrfs_destroy_delayed_refs(cur_trans, root);
4580
4581         cur_trans->state = TRANS_STATE_COMMIT_START;
4582         wake_up(&root->fs_info->transaction_blocked_wait);
4583
4584         cur_trans->state = TRANS_STATE_UNBLOCKED;
4585         wake_up(&root->fs_info->transaction_wait);
4586
4587         btrfs_destroy_delayed_inodes(root);
4588         btrfs_assert_delayed_root_empty(root);
4589
4590         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4591                                      EXTENT_DIRTY);
4592         btrfs_destroy_pinned_extent(root,
4593                                     root->fs_info->pinned_extents);
4594
4595         cur_trans->state =TRANS_STATE_COMPLETED;
4596         wake_up(&cur_trans->commit_wait);
4597
4598         /*
4599         memset(cur_trans, 0, sizeof(*cur_trans));
4600         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4601         */
4602 }
4603
4604 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4605 {
4606         struct btrfs_transaction *t;
4607
4608         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4609
4610         spin_lock(&root->fs_info->trans_lock);
4611         while (!list_empty(&root->fs_info->trans_list)) {
4612                 t = list_first_entry(&root->fs_info->trans_list,
4613                                      struct btrfs_transaction, list);
4614                 if (t->state >= TRANS_STATE_COMMIT_START) {
4615                         atomic_inc(&t->use_count);
4616                         spin_unlock(&root->fs_info->trans_lock);
4617                         btrfs_wait_for_commit(root, t->transid);
4618                         btrfs_put_transaction(t);
4619                         spin_lock(&root->fs_info->trans_lock);
4620                         continue;
4621                 }
4622                 if (t == root->fs_info->running_transaction) {
4623                         t->state = TRANS_STATE_COMMIT_DOING;
4624                         spin_unlock(&root->fs_info->trans_lock);
4625                         /*
4626                          * We wait for 0 num_writers since we don't hold a trans
4627                          * handle open currently for this transaction.
4628                          */
4629                         wait_event(t->writer_wait,
4630                                    atomic_read(&t->num_writers) == 0);
4631                 } else {
4632                         spin_unlock(&root->fs_info->trans_lock);
4633                 }
4634                 btrfs_cleanup_one_transaction(t, root);
4635
4636                 spin_lock(&root->fs_info->trans_lock);
4637                 if (t == root->fs_info->running_transaction)
4638                         root->fs_info->running_transaction = NULL;
4639                 list_del_init(&t->list);
4640                 spin_unlock(&root->fs_info->trans_lock);
4641
4642                 btrfs_put_transaction(t);
4643                 trace_btrfs_transaction_commit(root);
4644                 spin_lock(&root->fs_info->trans_lock);
4645         }
4646         spin_unlock(&root->fs_info->trans_lock);
4647         btrfs_destroy_all_ordered_extents(root->fs_info);
4648         btrfs_destroy_delayed_inodes(root);
4649         btrfs_assert_delayed_root_empty(root);
4650         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4651         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4652         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4653
4654         return 0;
4655 }
4656
4657 static const struct extent_io_ops btree_extent_io_ops = {
4658         .readpage_end_io_hook = btree_readpage_end_io_hook,
4659         .readpage_io_failed_hook = btree_io_failed_hook,
4660         .submit_bio_hook = btree_submit_bio_hook,
4661         /* note we're sharing with inode.c for the merge bio hook */
4662         .merge_bio_hook = btrfs_merge_bio_hook,
4663 };