x86/pmc_core: Use Intel family name macros for pmc_core driver
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
59                                  BTRFS_HEADER_FLAG_RELOC |\
60                                  BTRFS_SUPER_FLAG_ERROR |\
61                                  BTRFS_SUPER_FLAG_SEEDING |\
62                                  BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68                                     int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71                                       struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74                                         struct extent_io_tree *dirty_pages,
75                                         int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77                                        struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87         struct bio *bio;
88         bio_end_io_t *end_io;
89         void *private;
90         struct btrfs_fs_info *info;
91         int error;
92         enum btrfs_wq_endio_type metadata;
93         struct list_head list;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122         struct inode *inode;
123         struct bio *bio;
124         struct list_head list;
125         extent_submit_bio_hook_t *submit_bio_start;
126         extent_submit_bio_hook_t *submit_bio_done;
127         int rw;
128         int mirror_num;
129         unsigned long bio_flags;
130         /*
131          * bio_offset is optional, can be used if the pages in the bio
132          * can't tell us where in the file the bio should go
133          */
134         u64 bio_offset;
135         struct btrfs_work work;
136         int error;
137 };
138
139 /*
140  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
141  * eb, the lockdep key is determined by the btrfs_root it belongs to and
142  * the level the eb occupies in the tree.
143  *
144  * Different roots are used for different purposes and may nest inside each
145  * other and they require separate keysets.  As lockdep keys should be
146  * static, assign keysets according to the purpose of the root as indicated
147  * by btrfs_root->objectid.  This ensures that all special purpose roots
148  * have separate keysets.
149  *
150  * Lock-nesting across peer nodes is always done with the immediate parent
151  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
152  * subclass to avoid triggering lockdep warning in such cases.
153  *
154  * The key is set by the readpage_end_io_hook after the buffer has passed
155  * csum validation but before the pages are unlocked.  It is also set by
156  * btrfs_init_new_buffer on freshly allocated blocks.
157  *
158  * We also add a check to make sure the highest level of the tree is the
159  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
160  * needs update as well.
161  */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 #  error
165 # endif
166
167 static struct btrfs_lockdep_keyset {
168         u64                     id;             /* root objectid */
169         const char              *name_stem;     /* lock name stem */
170         char                    names[BTRFS_MAX_LEVEL + 1][20];
171         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
174         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
175         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
176         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
177         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
178         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
179         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
180         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
181         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
182         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
183         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
184         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
185         { .id = 0,                              .name_stem = "tree"     },
186 };
187
188 void __init btrfs_init_lockdep(void)
189 {
190         int i, j;
191
192         /* initialize lockdep class names */
193         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197                         snprintf(ks->names[j], sizeof(ks->names[j]),
198                                  "btrfs-%s-%02d", ks->name_stem, j);
199         }
200 }
201
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203                                     int level)
204 {
205         struct btrfs_lockdep_keyset *ks;
206
207         BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209         /* find the matching keyset, id 0 is the default entry */
210         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211                 if (ks->id == objectid)
212                         break;
213
214         lockdep_set_class_and_name(&eb->lock,
215                                    &ks->keys[level], ks->names[level]);
216 }
217
218 #endif
219
220 /*
221  * extents on the btree inode are pretty simple, there's one extent
222  * that covers the entire device
223  */
224 static struct extent_map *btree_get_extent(struct inode *inode,
225                 struct page *page, size_t pg_offset, u64 start, u64 len,
226                 int create)
227 {
228         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229         struct extent_map *em;
230         int ret;
231
232         read_lock(&em_tree->lock);
233         em = lookup_extent_mapping(em_tree, start, len);
234         if (em) {
235                 em->bdev =
236                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
237                 read_unlock(&em_tree->lock);
238                 goto out;
239         }
240         read_unlock(&em_tree->lock);
241
242         em = alloc_extent_map();
243         if (!em) {
244                 em = ERR_PTR(-ENOMEM);
245                 goto out;
246         }
247         em->start = 0;
248         em->len = (u64)-1;
249         em->block_len = (u64)-1;
250         em->block_start = 0;
251         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
252
253         write_lock(&em_tree->lock);
254         ret = add_extent_mapping(em_tree, em, 0);
255         if (ret == -EEXIST) {
256                 free_extent_map(em);
257                 em = lookup_extent_mapping(em_tree, start, len);
258                 if (!em)
259                         em = ERR_PTR(-EIO);
260         } else if (ret) {
261                 free_extent_map(em);
262                 em = ERR_PTR(ret);
263         }
264         write_unlock(&em_tree->lock);
265
266 out:
267         return em;
268 }
269
270 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
271 {
272         return btrfs_crc32c(seed, data, len);
273 }
274
275 void btrfs_csum_final(u32 crc, char *result)
276 {
277         put_unaligned_le32(~crc, result);
278 }
279
280 /*
281  * compute the csum for a btree block, and either verify it or write it
282  * into the csum field of the block.
283  */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285                            struct extent_buffer *buf,
286                            int verify)
287 {
288         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289         char *result = NULL;
290         unsigned long len;
291         unsigned long cur_len;
292         unsigned long offset = BTRFS_CSUM_SIZE;
293         char *kaddr;
294         unsigned long map_start;
295         unsigned long map_len;
296         int err;
297         u32 crc = ~(u32)0;
298         unsigned long inline_result;
299
300         len = buf->len - offset;
301         while (len > 0) {
302                 err = map_private_extent_buffer(buf, offset, 32,
303                                         &kaddr, &map_start, &map_len);
304                 if (err)
305                         return err;
306                 cur_len = min(len, map_len - (offset - map_start));
307                 crc = btrfs_csum_data(kaddr + offset - map_start,
308                                       crc, cur_len);
309                 len -= cur_len;
310                 offset += cur_len;
311         }
312         if (csum_size > sizeof(inline_result)) {
313                 result = kzalloc(csum_size, GFP_NOFS);
314                 if (!result)
315                         return -ENOMEM;
316         } else {
317                 result = (char *)&inline_result;
318         }
319
320         btrfs_csum_final(crc, result);
321
322         if (verify) {
323                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324                         u32 val;
325                         u32 found = 0;
326                         memcpy(&found, result, csum_size);
327
328                         read_extent_buffer(buf, &val, 0, csum_size);
329                         btrfs_warn_rl(fs_info,
330                                 "%s checksum verify failed on %llu wanted %X found %X "
331                                 "level %d",
332                                 fs_info->sb->s_id, buf->start,
333                                 val, found, btrfs_header_level(buf));
334                         if (result != (char *)&inline_result)
335                                 kfree(result);
336                         return -EUCLEAN;
337                 }
338         } else {
339                 write_extent_buffer(buf, result, 0, csum_size);
340         }
341         if (result != (char *)&inline_result)
342                 kfree(result);
343         return 0;
344 }
345
346 /*
347  * we can't consider a given block up to date unless the transid of the
348  * block matches the transid in the parent node's pointer.  This is how we
349  * detect blocks that either didn't get written at all or got written
350  * in the wrong place.
351  */
352 static int verify_parent_transid(struct extent_io_tree *io_tree,
353                                  struct extent_buffer *eb, u64 parent_transid,
354                                  int atomic)
355 {
356         struct extent_state *cached_state = NULL;
357         int ret;
358         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
359
360         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361                 return 0;
362
363         if (atomic)
364                 return -EAGAIN;
365
366         if (need_lock) {
367                 btrfs_tree_read_lock(eb);
368                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369         }
370
371         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
372                          &cached_state);
373         if (extent_buffer_uptodate(eb) &&
374             btrfs_header_generation(eb) == parent_transid) {
375                 ret = 0;
376                 goto out;
377         }
378         btrfs_err_rl(eb->fs_info,
379                 "parent transid verify failed on %llu wanted %llu found %llu",
380                         eb->start,
381                         parent_transid, btrfs_header_generation(eb));
382         ret = 1;
383
384         /*
385          * Things reading via commit roots that don't have normal protection,
386          * like send, can have a really old block in cache that may point at a
387          * block that has been freed and re-allocated.  So don't clear uptodate
388          * if we find an eb that is under IO (dirty/writeback) because we could
389          * end up reading in the stale data and then writing it back out and
390          * making everybody very sad.
391          */
392         if (!extent_buffer_under_io(eb))
393                 clear_extent_buffer_uptodate(eb);
394 out:
395         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396                              &cached_state, GFP_NOFS);
397         if (need_lock)
398                 btrfs_tree_read_unlock_blocking(eb);
399         return ret;
400 }
401
402 /*
403  * Return 0 if the superblock checksum type matches the checksum value of that
404  * algorithm. Pass the raw disk superblock data.
405  */
406 static int btrfs_check_super_csum(char *raw_disk_sb)
407 {
408         struct btrfs_super_block *disk_sb =
409                 (struct btrfs_super_block *)raw_disk_sb;
410         u16 csum_type = btrfs_super_csum_type(disk_sb);
411         int ret = 0;
412
413         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414                 u32 crc = ~(u32)0;
415                 const int csum_size = sizeof(crc);
416                 char result[csum_size];
417
418                 /*
419                  * The super_block structure does not span the whole
420                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421                  * is filled with zeros and is included in the checksum.
422                  */
423                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425                 btrfs_csum_final(crc, result);
426
427                 if (memcmp(raw_disk_sb, result, csum_size))
428                         ret = 1;
429         }
430
431         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
433                                 csum_type);
434                 ret = 1;
435         }
436
437         return ret;
438 }
439
440 /*
441  * helper to read a given tree block, doing retries as required when
442  * the checksums don't match and we have alternate mirrors to try.
443  */
444 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445                                           struct extent_buffer *eb,
446                                           u64 start, u64 parent_transid)
447 {
448         struct extent_io_tree *io_tree;
449         int failed = 0;
450         int ret;
451         int num_copies = 0;
452         int mirror_num = 0;
453         int failed_mirror = 0;
454
455         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457         while (1) {
458                 ret = read_extent_buffer_pages(io_tree, eb, start,
459                                                WAIT_COMPLETE,
460                                                btree_get_extent, mirror_num);
461                 if (!ret) {
462                         if (!verify_parent_transid(io_tree, eb,
463                                                    parent_transid, 0))
464                                 break;
465                         else
466                                 ret = -EIO;
467                 }
468
469                 /*
470                  * This buffer's crc is fine, but its contents are corrupted, so
471                  * there is no reason to read the other copies, they won't be
472                  * any less wrong.
473                  */
474                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
475                         break;
476
477                 num_copies = btrfs_num_copies(root->fs_info,
478                                               eb->start, eb->len);
479                 if (num_copies == 1)
480                         break;
481
482                 if (!failed_mirror) {
483                         failed = 1;
484                         failed_mirror = eb->read_mirror;
485                 }
486
487                 mirror_num++;
488                 if (mirror_num == failed_mirror)
489                         mirror_num++;
490
491                 if (mirror_num > num_copies)
492                         break;
493         }
494
495         if (failed && !ret && failed_mirror)
496                 repair_eb_io_failure(root, eb, failed_mirror);
497
498         return ret;
499 }
500
501 /*
502  * checksum a dirty tree block before IO.  This has extra checks to make sure
503  * we only fill in the checksum field in the first page of a multi-page block
504  */
505
506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
507 {
508         u64 start = page_offset(page);
509         u64 found_start;
510         struct extent_buffer *eb;
511
512         eb = (struct extent_buffer *)page->private;
513         if (page != eb->pages[0])
514                 return 0;
515
516         found_start = btrfs_header_bytenr(eb);
517         /*
518          * Please do not consolidate these warnings into a single if.
519          * It is useful to know what went wrong.
520          */
521         if (WARN_ON(found_start != start))
522                 return -EUCLEAN;
523         if (WARN_ON(!PageUptodate(page)))
524                 return -EUCLEAN;
525
526         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528
529         return csum_tree_block(fs_info, eb, 0);
530 }
531
532 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
533                                  struct extent_buffer *eb)
534 {
535         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
536         u8 fsid[BTRFS_UUID_SIZE];
537         int ret = 1;
538
539         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
540         while (fs_devices) {
541                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542                         ret = 0;
543                         break;
544                 }
545                 fs_devices = fs_devices->seed;
546         }
547         return ret;
548 }
549
550 #define CORRUPT(reason, eb, root, slot)                         \
551         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
552                    "root=%llu, slot=%d", reason,                        \
553                btrfs_header_bytenr(eb), root->objectid, slot)
554
555 static noinline int check_leaf(struct btrfs_root *root,
556                                struct extent_buffer *leaf)
557 {
558         struct btrfs_key key;
559         struct btrfs_key leaf_key;
560         u32 nritems = btrfs_header_nritems(leaf);
561         int slot;
562
563         if (nritems == 0)
564                 return 0;
565
566         /* Check the 0 item */
567         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
568             BTRFS_LEAF_DATA_SIZE(root)) {
569                 CORRUPT("invalid item offset size pair", leaf, root, 0);
570                 return -EIO;
571         }
572
573         /*
574          * Check to make sure each items keys are in the correct order and their
575          * offsets make sense.  We only have to loop through nritems-1 because
576          * we check the current slot against the next slot, which verifies the
577          * next slot's offset+size makes sense and that the current's slot
578          * offset is correct.
579          */
580         for (slot = 0; slot < nritems - 1; slot++) {
581                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
582                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
583
584                 /* Make sure the keys are in the right order */
585                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
586                         CORRUPT("bad key order", leaf, root, slot);
587                         return -EIO;
588                 }
589
590                 /*
591                  * Make sure the offset and ends are right, remember that the
592                  * item data starts at the end of the leaf and grows towards the
593                  * front.
594                  */
595                 if (btrfs_item_offset_nr(leaf, slot) !=
596                         btrfs_item_end_nr(leaf, slot + 1)) {
597                         CORRUPT("slot offset bad", leaf, root, slot);
598                         return -EIO;
599                 }
600
601                 /*
602                  * Check to make sure that we don't point outside of the leaf,
603                  * just in case all the items are consistent to each other, but
604                  * all point outside of the leaf.
605                  */
606                 if (btrfs_item_end_nr(leaf, slot) >
607                     BTRFS_LEAF_DATA_SIZE(root)) {
608                         CORRUPT("slot end outside of leaf", leaf, root, slot);
609                         return -EIO;
610                 }
611         }
612
613         return 0;
614 }
615
616 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
617                                       u64 phy_offset, struct page *page,
618                                       u64 start, u64 end, int mirror)
619 {
620         u64 found_start;
621         int found_level;
622         struct extent_buffer *eb;
623         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
624         struct btrfs_fs_info *fs_info = root->fs_info;
625         int ret = 0;
626         int reads_done;
627
628         if (!page->private)
629                 goto out;
630
631         eb = (struct extent_buffer *)page->private;
632
633         /* the pending IO might have been the only thing that kept this buffer
634          * in memory.  Make sure we have a ref for all this other checks
635          */
636         extent_buffer_get(eb);
637
638         reads_done = atomic_dec_and_test(&eb->io_pages);
639         if (!reads_done)
640                 goto err;
641
642         eb->read_mirror = mirror;
643         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
644                 ret = -EIO;
645                 goto err;
646         }
647
648         found_start = btrfs_header_bytenr(eb);
649         if (found_start != eb->start) {
650                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
651                              found_start, eb->start);
652                 ret = -EIO;
653                 goto err;
654         }
655         if (check_tree_block_fsid(fs_info, eb)) {
656                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
657                              eb->start);
658                 ret = -EIO;
659                 goto err;
660         }
661         found_level = btrfs_header_level(eb);
662         if (found_level >= BTRFS_MAX_LEVEL) {
663                 btrfs_err(fs_info, "bad tree block level %d",
664                           (int)btrfs_header_level(eb));
665                 ret = -EIO;
666                 goto err;
667         }
668
669         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
670                                        eb, found_level);
671
672         ret = csum_tree_block(fs_info, eb, 1);
673         if (ret)
674                 goto err;
675
676         /*
677          * If this is a leaf block and it is corrupt, set the corrupt bit so
678          * that we don't try and read the other copies of this block, just
679          * return -EIO.
680          */
681         if (found_level == 0 && check_leaf(root, eb)) {
682                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
683                 ret = -EIO;
684         }
685
686         if (!ret)
687                 set_extent_buffer_uptodate(eb);
688 err:
689         if (reads_done &&
690             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691                 btree_readahead_hook(fs_info, eb, eb->start, ret);
692
693         if (ret) {
694                 /*
695                  * our io error hook is going to dec the io pages
696                  * again, we have to make sure it has something
697                  * to decrement
698                  */
699                 atomic_inc(&eb->io_pages);
700                 clear_extent_buffer_uptodate(eb);
701         }
702         free_extent_buffer(eb);
703 out:
704         return ret;
705 }
706
707 static int btree_io_failed_hook(struct page *page, int failed_mirror)
708 {
709         struct extent_buffer *eb;
710
711         eb = (struct extent_buffer *)page->private;
712         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
713         eb->read_mirror = failed_mirror;
714         atomic_dec(&eb->io_pages);
715         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
716                 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
717         return -EIO;    /* we fixed nothing */
718 }
719
720 static void end_workqueue_bio(struct bio *bio)
721 {
722         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
723         struct btrfs_fs_info *fs_info;
724         struct btrfs_workqueue *wq;
725         btrfs_work_func_t func;
726
727         fs_info = end_io_wq->info;
728         end_io_wq->error = bio->bi_error;
729
730         if (bio->bi_rw & REQ_WRITE) {
731                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
732                         wq = fs_info->endio_meta_write_workers;
733                         func = btrfs_endio_meta_write_helper;
734                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
735                         wq = fs_info->endio_freespace_worker;
736                         func = btrfs_freespace_write_helper;
737                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
738                         wq = fs_info->endio_raid56_workers;
739                         func = btrfs_endio_raid56_helper;
740                 } else {
741                         wq = fs_info->endio_write_workers;
742                         func = btrfs_endio_write_helper;
743                 }
744         } else {
745                 if (unlikely(end_io_wq->metadata ==
746                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
747                         wq = fs_info->endio_repair_workers;
748                         func = btrfs_endio_repair_helper;
749                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
750                         wq = fs_info->endio_raid56_workers;
751                         func = btrfs_endio_raid56_helper;
752                 } else if (end_io_wq->metadata) {
753                         wq = fs_info->endio_meta_workers;
754                         func = btrfs_endio_meta_helper;
755                 } else {
756                         wq = fs_info->endio_workers;
757                         func = btrfs_endio_helper;
758                 }
759         }
760
761         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
762         btrfs_queue_work(wq, &end_io_wq->work);
763 }
764
765 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
766                         enum btrfs_wq_endio_type metadata)
767 {
768         struct btrfs_end_io_wq *end_io_wq;
769
770         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
771         if (!end_io_wq)
772                 return -ENOMEM;
773
774         end_io_wq->private = bio->bi_private;
775         end_io_wq->end_io = bio->bi_end_io;
776         end_io_wq->info = info;
777         end_io_wq->error = 0;
778         end_io_wq->bio = bio;
779         end_io_wq->metadata = metadata;
780
781         bio->bi_private = end_io_wq;
782         bio->bi_end_io = end_workqueue_bio;
783         return 0;
784 }
785
786 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
787 {
788         unsigned long limit = min_t(unsigned long,
789                                     info->thread_pool_size,
790                                     info->fs_devices->open_devices);
791         return 256 * limit;
792 }
793
794 static void run_one_async_start(struct btrfs_work *work)
795 {
796         struct async_submit_bio *async;
797         int ret;
798
799         async = container_of(work, struct  async_submit_bio, work);
800         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
801                                       async->mirror_num, async->bio_flags,
802                                       async->bio_offset);
803         if (ret)
804                 async->error = ret;
805 }
806
807 static void run_one_async_done(struct btrfs_work *work)
808 {
809         struct btrfs_fs_info *fs_info;
810         struct async_submit_bio *async;
811         int limit;
812
813         async = container_of(work, struct  async_submit_bio, work);
814         fs_info = BTRFS_I(async->inode)->root->fs_info;
815
816         limit = btrfs_async_submit_limit(fs_info);
817         limit = limit * 2 / 3;
818
819         /*
820          * atomic_dec_return implies a barrier for waitqueue_active
821          */
822         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
823             waitqueue_active(&fs_info->async_submit_wait))
824                 wake_up(&fs_info->async_submit_wait);
825
826         /* If an error occurred we just want to clean up the bio and move on */
827         if (async->error) {
828                 async->bio->bi_error = async->error;
829                 bio_endio(async->bio);
830                 return;
831         }
832
833         async->submit_bio_done(async->inode, async->rw, async->bio,
834                                async->mirror_num, async->bio_flags,
835                                async->bio_offset);
836 }
837
838 static void run_one_async_free(struct btrfs_work *work)
839 {
840         struct async_submit_bio *async;
841
842         async = container_of(work, struct  async_submit_bio, work);
843         kfree(async);
844 }
845
846 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
847                         int rw, struct bio *bio, int mirror_num,
848                         unsigned long bio_flags,
849                         u64 bio_offset,
850                         extent_submit_bio_hook_t *submit_bio_start,
851                         extent_submit_bio_hook_t *submit_bio_done)
852 {
853         struct async_submit_bio *async;
854
855         async = kmalloc(sizeof(*async), GFP_NOFS);
856         if (!async)
857                 return -ENOMEM;
858
859         async->inode = inode;
860         async->rw = rw;
861         async->bio = bio;
862         async->mirror_num = mirror_num;
863         async->submit_bio_start = submit_bio_start;
864         async->submit_bio_done = submit_bio_done;
865
866         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
867                         run_one_async_done, run_one_async_free);
868
869         async->bio_flags = bio_flags;
870         async->bio_offset = bio_offset;
871
872         async->error = 0;
873
874         atomic_inc(&fs_info->nr_async_submits);
875
876         if (rw & REQ_SYNC)
877                 btrfs_set_work_high_priority(&async->work);
878
879         btrfs_queue_work(fs_info->workers, &async->work);
880
881         while (atomic_read(&fs_info->async_submit_draining) &&
882               atomic_read(&fs_info->nr_async_submits)) {
883                 wait_event(fs_info->async_submit_wait,
884                            (atomic_read(&fs_info->nr_async_submits) == 0));
885         }
886
887         return 0;
888 }
889
890 static int btree_csum_one_bio(struct bio *bio)
891 {
892         struct bio_vec *bvec;
893         struct btrfs_root *root;
894         int i, ret = 0;
895
896         bio_for_each_segment_all(bvec, bio, i) {
897                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
898                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
899                 if (ret)
900                         break;
901         }
902
903         return ret;
904 }
905
906 static int __btree_submit_bio_start(struct inode *inode, int rw,
907                                     struct bio *bio, int mirror_num,
908                                     unsigned long bio_flags,
909                                     u64 bio_offset)
910 {
911         /*
912          * when we're called for a write, we're already in the async
913          * submission context.  Just jump into btrfs_map_bio
914          */
915         return btree_csum_one_bio(bio);
916 }
917
918 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
919                                  int mirror_num, unsigned long bio_flags,
920                                  u64 bio_offset)
921 {
922         int ret;
923
924         /*
925          * when we're called for a write, we're already in the async
926          * submission context.  Just jump into btrfs_map_bio
927          */
928         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
929         if (ret) {
930                 bio->bi_error = ret;
931                 bio_endio(bio);
932         }
933         return ret;
934 }
935
936 static int check_async_write(struct inode *inode, unsigned long bio_flags)
937 {
938         if (bio_flags & EXTENT_BIO_TREE_LOG)
939                 return 0;
940 #ifdef CONFIG_X86
941         if (static_cpu_has(X86_FEATURE_XMM4_2))
942                 return 0;
943 #endif
944         return 1;
945 }
946
947 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
948                                  int mirror_num, unsigned long bio_flags,
949                                  u64 bio_offset)
950 {
951         int async = check_async_write(inode, bio_flags);
952         int ret;
953
954         if (!(rw & REQ_WRITE)) {
955                 /*
956                  * called for a read, do the setup so that checksum validation
957                  * can happen in the async kernel threads
958                  */
959                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
960                                           bio, BTRFS_WQ_ENDIO_METADATA);
961                 if (ret)
962                         goto out_w_error;
963                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
964                                     mirror_num, 0);
965         } else if (!async) {
966                 ret = btree_csum_one_bio(bio);
967                 if (ret)
968                         goto out_w_error;
969                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
970                                     mirror_num, 0);
971         } else {
972                 /*
973                  * kthread helpers are used to submit writes so that
974                  * checksumming can happen in parallel across all CPUs
975                  */
976                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
977                                           inode, rw, bio, mirror_num, 0,
978                                           bio_offset,
979                                           __btree_submit_bio_start,
980                                           __btree_submit_bio_done);
981         }
982
983         if (ret)
984                 goto out_w_error;
985         return 0;
986
987 out_w_error:
988         bio->bi_error = ret;
989         bio_endio(bio);
990         return ret;
991 }
992
993 #ifdef CONFIG_MIGRATION
994 static int btree_migratepage(struct address_space *mapping,
995                         struct page *newpage, struct page *page,
996                         enum migrate_mode mode)
997 {
998         /*
999          * we can't safely write a btree page from here,
1000          * we haven't done the locking hook
1001          */
1002         if (PageDirty(page))
1003                 return -EAGAIN;
1004         /*
1005          * Buffers may be managed in a filesystem specific way.
1006          * We must have no buffers or drop them.
1007          */
1008         if (page_has_private(page) &&
1009             !try_to_release_page(page, GFP_KERNEL))
1010                 return -EAGAIN;
1011         return migrate_page(mapping, newpage, page, mode);
1012 }
1013 #endif
1014
1015
1016 static int btree_writepages(struct address_space *mapping,
1017                             struct writeback_control *wbc)
1018 {
1019         struct btrfs_fs_info *fs_info;
1020         int ret;
1021
1022         if (wbc->sync_mode == WB_SYNC_NONE) {
1023
1024                 if (wbc->for_kupdate)
1025                         return 0;
1026
1027                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028                 /* this is a bit racy, but that's ok */
1029                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030                                              BTRFS_DIRTY_METADATA_THRESH);
1031                 if (ret < 0)
1032                         return 0;
1033         }
1034         return btree_write_cache_pages(mapping, wbc);
1035 }
1036
1037 static int btree_readpage(struct file *file, struct page *page)
1038 {
1039         struct extent_io_tree *tree;
1040         tree = &BTRFS_I(page->mapping->host)->io_tree;
1041         return extent_read_full_page(tree, page, btree_get_extent, 0);
1042 }
1043
1044 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045 {
1046         if (PageWriteback(page) || PageDirty(page))
1047                 return 0;
1048
1049         return try_release_extent_buffer(page);
1050 }
1051
1052 static void btree_invalidatepage(struct page *page, unsigned int offset,
1053                                  unsigned int length)
1054 {
1055         struct extent_io_tree *tree;
1056         tree = &BTRFS_I(page->mapping->host)->io_tree;
1057         extent_invalidatepage(tree, page, offset);
1058         btree_releasepage(page, GFP_NOFS);
1059         if (PagePrivate(page)) {
1060                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061                            "page private not zero on page %llu",
1062                            (unsigned long long)page_offset(page));
1063                 ClearPagePrivate(page);
1064                 set_page_private(page, 0);
1065                 put_page(page);
1066         }
1067 }
1068
1069 static int btree_set_page_dirty(struct page *page)
1070 {
1071 #ifdef DEBUG
1072         struct extent_buffer *eb;
1073
1074         BUG_ON(!PagePrivate(page));
1075         eb = (struct extent_buffer *)page->private;
1076         BUG_ON(!eb);
1077         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078         BUG_ON(!atomic_read(&eb->refs));
1079         btrfs_assert_tree_locked(eb);
1080 #endif
1081         return __set_page_dirty_nobuffers(page);
1082 }
1083
1084 static const struct address_space_operations btree_aops = {
1085         .readpage       = btree_readpage,
1086         .writepages     = btree_writepages,
1087         .releasepage    = btree_releasepage,
1088         .invalidatepage = btree_invalidatepage,
1089 #ifdef CONFIG_MIGRATION
1090         .migratepage    = btree_migratepage,
1091 #endif
1092         .set_page_dirty = btree_set_page_dirty,
1093 };
1094
1095 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096 {
1097         struct extent_buffer *buf = NULL;
1098         struct inode *btree_inode = root->fs_info->btree_inode;
1099
1100         buf = btrfs_find_create_tree_block(root, bytenr);
1101         if (!buf)
1102                 return;
1103         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1105         free_extent_buffer(buf);
1106 }
1107
1108 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109                          int mirror_num, struct extent_buffer **eb)
1110 {
1111         struct extent_buffer *buf = NULL;
1112         struct inode *btree_inode = root->fs_info->btree_inode;
1113         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114         int ret;
1115
1116         buf = btrfs_find_create_tree_block(root, bytenr);
1117         if (!buf)
1118                 return 0;
1119
1120         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123                                        btree_get_extent, mirror_num);
1124         if (ret) {
1125                 free_extent_buffer(buf);
1126                 return ret;
1127         }
1128
1129         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130                 free_extent_buffer(buf);
1131                 return -EIO;
1132         } else if (extent_buffer_uptodate(buf)) {
1133                 *eb = buf;
1134         } else {
1135                 free_extent_buffer(buf);
1136         }
1137         return 0;
1138 }
1139
1140 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141                                             u64 bytenr)
1142 {
1143         return find_extent_buffer(fs_info, bytenr);
1144 }
1145
1146 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147                                                  u64 bytenr)
1148 {
1149         if (btrfs_test_is_dummy_root(root))
1150                 return alloc_test_extent_buffer(root->fs_info, bytenr);
1151         return alloc_extent_buffer(root->fs_info, bytenr);
1152 }
1153
1154
1155 int btrfs_write_tree_block(struct extent_buffer *buf)
1156 {
1157         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1158                                         buf->start + buf->len - 1);
1159 }
1160
1161 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1162 {
1163         return filemap_fdatawait_range(buf->pages[0]->mapping,
1164                                        buf->start, buf->start + buf->len - 1);
1165 }
1166
1167 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1168                                       u64 parent_transid)
1169 {
1170         struct extent_buffer *buf = NULL;
1171         int ret;
1172
1173         buf = btrfs_find_create_tree_block(root, bytenr);
1174         if (!buf)
1175                 return ERR_PTR(-ENOMEM);
1176
1177         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1178         if (ret) {
1179                 free_extent_buffer(buf);
1180                 return ERR_PTR(ret);
1181         }
1182         return buf;
1183
1184 }
1185
1186 void clean_tree_block(struct btrfs_trans_handle *trans,
1187                       struct btrfs_fs_info *fs_info,
1188                       struct extent_buffer *buf)
1189 {
1190         if (btrfs_header_generation(buf) ==
1191             fs_info->running_transaction->transid) {
1192                 btrfs_assert_tree_locked(buf);
1193
1194                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1195                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1196                                              -buf->len,
1197                                              fs_info->dirty_metadata_batch);
1198                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1199                         btrfs_set_lock_blocking(buf);
1200                         clear_extent_buffer_dirty(buf);
1201                 }
1202         }
1203 }
1204
1205 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1206 {
1207         struct btrfs_subvolume_writers *writers;
1208         int ret;
1209
1210         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1211         if (!writers)
1212                 return ERR_PTR(-ENOMEM);
1213
1214         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1215         if (ret < 0) {
1216                 kfree(writers);
1217                 return ERR_PTR(ret);
1218         }
1219
1220         init_waitqueue_head(&writers->wait);
1221         return writers;
1222 }
1223
1224 static void
1225 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1226 {
1227         percpu_counter_destroy(&writers->counter);
1228         kfree(writers);
1229 }
1230
1231 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1232                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1233                          u64 objectid)
1234 {
1235         root->node = NULL;
1236         root->commit_root = NULL;
1237         root->sectorsize = sectorsize;
1238         root->nodesize = nodesize;
1239         root->stripesize = stripesize;
1240         root->state = 0;
1241         root->orphan_cleanup_state = 0;
1242
1243         root->objectid = objectid;
1244         root->last_trans = 0;
1245         root->highest_objectid = 0;
1246         root->nr_delalloc_inodes = 0;
1247         root->nr_ordered_extents = 0;
1248         root->name = NULL;
1249         root->inode_tree = RB_ROOT;
1250         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1251         root->block_rsv = NULL;
1252         root->orphan_block_rsv = NULL;
1253
1254         INIT_LIST_HEAD(&root->dirty_list);
1255         INIT_LIST_HEAD(&root->root_list);
1256         INIT_LIST_HEAD(&root->delalloc_inodes);
1257         INIT_LIST_HEAD(&root->delalloc_root);
1258         INIT_LIST_HEAD(&root->ordered_extents);
1259         INIT_LIST_HEAD(&root->ordered_root);
1260         INIT_LIST_HEAD(&root->logged_list[0]);
1261         INIT_LIST_HEAD(&root->logged_list[1]);
1262         spin_lock_init(&root->orphan_lock);
1263         spin_lock_init(&root->inode_lock);
1264         spin_lock_init(&root->delalloc_lock);
1265         spin_lock_init(&root->ordered_extent_lock);
1266         spin_lock_init(&root->accounting_lock);
1267         spin_lock_init(&root->log_extents_lock[0]);
1268         spin_lock_init(&root->log_extents_lock[1]);
1269         mutex_init(&root->objectid_mutex);
1270         mutex_init(&root->log_mutex);
1271         mutex_init(&root->ordered_extent_mutex);
1272         mutex_init(&root->delalloc_mutex);
1273         init_waitqueue_head(&root->log_writer_wait);
1274         init_waitqueue_head(&root->log_commit_wait[0]);
1275         init_waitqueue_head(&root->log_commit_wait[1]);
1276         INIT_LIST_HEAD(&root->log_ctxs[0]);
1277         INIT_LIST_HEAD(&root->log_ctxs[1]);
1278         atomic_set(&root->log_commit[0], 0);
1279         atomic_set(&root->log_commit[1], 0);
1280         atomic_set(&root->log_writers, 0);
1281         atomic_set(&root->log_batch, 0);
1282         atomic_set(&root->orphan_inodes, 0);
1283         atomic_set(&root->refs, 1);
1284         atomic_set(&root->will_be_snapshoted, 0);
1285         atomic_set(&root->qgroup_meta_rsv, 0);
1286         root->log_transid = 0;
1287         root->log_transid_committed = -1;
1288         root->last_log_commit = 0;
1289         if (fs_info)
1290                 extent_io_tree_init(&root->dirty_log_pages,
1291                                      fs_info->btree_inode->i_mapping);
1292
1293         memset(&root->root_key, 0, sizeof(root->root_key));
1294         memset(&root->root_item, 0, sizeof(root->root_item));
1295         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1296         if (fs_info)
1297                 root->defrag_trans_start = fs_info->generation;
1298         else
1299                 root->defrag_trans_start = 0;
1300         root->root_key.objectid = objectid;
1301         root->anon_dev = 0;
1302
1303         spin_lock_init(&root->root_item_lock);
1304 }
1305
1306 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1307                 gfp_t flags)
1308 {
1309         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1310         if (root)
1311                 root->fs_info = fs_info;
1312         return root;
1313 }
1314
1315 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1316 /* Should only be used by the testing infrastructure */
1317 struct btrfs_root *btrfs_alloc_dummy_root(void)
1318 {
1319         struct btrfs_root *root;
1320
1321         root = btrfs_alloc_root(NULL, GFP_KERNEL);
1322         if (!root)
1323                 return ERR_PTR(-ENOMEM);
1324         __setup_root(4096, 4096, 4096, root, NULL, 1);
1325         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1326         root->alloc_bytenr = 0;
1327
1328         return root;
1329 }
1330 #endif
1331
1332 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1333                                      struct btrfs_fs_info *fs_info,
1334                                      u64 objectid)
1335 {
1336         struct extent_buffer *leaf;
1337         struct btrfs_root *tree_root = fs_info->tree_root;
1338         struct btrfs_root *root;
1339         struct btrfs_key key;
1340         int ret = 0;
1341         uuid_le uuid;
1342
1343         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1344         if (!root)
1345                 return ERR_PTR(-ENOMEM);
1346
1347         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1348                 tree_root->stripesize, root, fs_info, objectid);
1349         root->root_key.objectid = objectid;
1350         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1351         root->root_key.offset = 0;
1352
1353         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1354         if (IS_ERR(leaf)) {
1355                 ret = PTR_ERR(leaf);
1356                 leaf = NULL;
1357                 goto fail;
1358         }
1359
1360         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1361         btrfs_set_header_bytenr(leaf, leaf->start);
1362         btrfs_set_header_generation(leaf, trans->transid);
1363         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1364         btrfs_set_header_owner(leaf, objectid);
1365         root->node = leaf;
1366
1367         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1368                             BTRFS_FSID_SIZE);
1369         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1370                             btrfs_header_chunk_tree_uuid(leaf),
1371                             BTRFS_UUID_SIZE);
1372         btrfs_mark_buffer_dirty(leaf);
1373
1374         root->commit_root = btrfs_root_node(root);
1375         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1376
1377         root->root_item.flags = 0;
1378         root->root_item.byte_limit = 0;
1379         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1380         btrfs_set_root_generation(&root->root_item, trans->transid);
1381         btrfs_set_root_level(&root->root_item, 0);
1382         btrfs_set_root_refs(&root->root_item, 1);
1383         btrfs_set_root_used(&root->root_item, leaf->len);
1384         btrfs_set_root_last_snapshot(&root->root_item, 0);
1385         btrfs_set_root_dirid(&root->root_item, 0);
1386         uuid_le_gen(&uuid);
1387         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1388         root->root_item.drop_level = 0;
1389
1390         key.objectid = objectid;
1391         key.type = BTRFS_ROOT_ITEM_KEY;
1392         key.offset = 0;
1393         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1394         if (ret)
1395                 goto fail;
1396
1397         btrfs_tree_unlock(leaf);
1398
1399         return root;
1400
1401 fail:
1402         if (leaf) {
1403                 btrfs_tree_unlock(leaf);
1404                 free_extent_buffer(root->commit_root);
1405                 free_extent_buffer(leaf);
1406         }
1407         kfree(root);
1408
1409         return ERR_PTR(ret);
1410 }
1411
1412 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1413                                          struct btrfs_fs_info *fs_info)
1414 {
1415         struct btrfs_root *root;
1416         struct btrfs_root *tree_root = fs_info->tree_root;
1417         struct extent_buffer *leaf;
1418
1419         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1420         if (!root)
1421                 return ERR_PTR(-ENOMEM);
1422
1423         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1424                      tree_root->stripesize, root, fs_info,
1425                      BTRFS_TREE_LOG_OBJECTID);
1426
1427         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1428         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1429         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1430
1431         /*
1432          * DON'T set REF_COWS for log trees
1433          *
1434          * log trees do not get reference counted because they go away
1435          * before a real commit is actually done.  They do store pointers
1436          * to file data extents, and those reference counts still get
1437          * updated (along with back refs to the log tree).
1438          */
1439
1440         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1441                         NULL, 0, 0, 0);
1442         if (IS_ERR(leaf)) {
1443                 kfree(root);
1444                 return ERR_CAST(leaf);
1445         }
1446
1447         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1448         btrfs_set_header_bytenr(leaf, leaf->start);
1449         btrfs_set_header_generation(leaf, trans->transid);
1450         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1451         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1452         root->node = leaf;
1453
1454         write_extent_buffer(root->node, root->fs_info->fsid,
1455                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1456         btrfs_mark_buffer_dirty(root->node);
1457         btrfs_tree_unlock(root->node);
1458         return root;
1459 }
1460
1461 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1462                              struct btrfs_fs_info *fs_info)
1463 {
1464         struct btrfs_root *log_root;
1465
1466         log_root = alloc_log_tree(trans, fs_info);
1467         if (IS_ERR(log_root))
1468                 return PTR_ERR(log_root);
1469         WARN_ON(fs_info->log_root_tree);
1470         fs_info->log_root_tree = log_root;
1471         return 0;
1472 }
1473
1474 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1475                        struct btrfs_root *root)
1476 {
1477         struct btrfs_root *log_root;
1478         struct btrfs_inode_item *inode_item;
1479
1480         log_root = alloc_log_tree(trans, root->fs_info);
1481         if (IS_ERR(log_root))
1482                 return PTR_ERR(log_root);
1483
1484         log_root->last_trans = trans->transid;
1485         log_root->root_key.offset = root->root_key.objectid;
1486
1487         inode_item = &log_root->root_item.inode;
1488         btrfs_set_stack_inode_generation(inode_item, 1);
1489         btrfs_set_stack_inode_size(inode_item, 3);
1490         btrfs_set_stack_inode_nlink(inode_item, 1);
1491         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1492         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1493
1494         btrfs_set_root_node(&log_root->root_item, log_root->node);
1495
1496         WARN_ON(root->log_root);
1497         root->log_root = log_root;
1498         root->log_transid = 0;
1499         root->log_transid_committed = -1;
1500         root->last_log_commit = 0;
1501         return 0;
1502 }
1503
1504 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1505                                                struct btrfs_key *key)
1506 {
1507         struct btrfs_root *root;
1508         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1509         struct btrfs_path *path;
1510         u64 generation;
1511         int ret;
1512
1513         path = btrfs_alloc_path();
1514         if (!path)
1515                 return ERR_PTR(-ENOMEM);
1516
1517         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1518         if (!root) {
1519                 ret = -ENOMEM;
1520                 goto alloc_fail;
1521         }
1522
1523         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1524                 tree_root->stripesize, root, fs_info, key->objectid);
1525
1526         ret = btrfs_find_root(tree_root, key, path,
1527                               &root->root_item, &root->root_key);
1528         if (ret) {
1529                 if (ret > 0)
1530                         ret = -ENOENT;
1531                 goto find_fail;
1532         }
1533
1534         generation = btrfs_root_generation(&root->root_item);
1535         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1536                                      generation);
1537         if (IS_ERR(root->node)) {
1538                 ret = PTR_ERR(root->node);
1539                 goto find_fail;
1540         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1541                 ret = -EIO;
1542                 free_extent_buffer(root->node);
1543                 goto find_fail;
1544         }
1545         root->commit_root = btrfs_root_node(root);
1546 out:
1547         btrfs_free_path(path);
1548         return root;
1549
1550 find_fail:
1551         kfree(root);
1552 alloc_fail:
1553         root = ERR_PTR(ret);
1554         goto out;
1555 }
1556
1557 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1558                                       struct btrfs_key *location)
1559 {
1560         struct btrfs_root *root;
1561
1562         root = btrfs_read_tree_root(tree_root, location);
1563         if (IS_ERR(root))
1564                 return root;
1565
1566         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1567                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1568                 btrfs_check_and_init_root_item(&root->root_item);
1569         }
1570
1571         return root;
1572 }
1573
1574 int btrfs_init_fs_root(struct btrfs_root *root)
1575 {
1576         int ret;
1577         struct btrfs_subvolume_writers *writers;
1578
1579         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1580         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1581                                         GFP_NOFS);
1582         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1583                 ret = -ENOMEM;
1584                 goto fail;
1585         }
1586
1587         writers = btrfs_alloc_subvolume_writers();
1588         if (IS_ERR(writers)) {
1589                 ret = PTR_ERR(writers);
1590                 goto fail;
1591         }
1592         root->subv_writers = writers;
1593
1594         btrfs_init_free_ino_ctl(root);
1595         spin_lock_init(&root->ino_cache_lock);
1596         init_waitqueue_head(&root->ino_cache_wait);
1597
1598         ret = get_anon_bdev(&root->anon_dev);
1599         if (ret)
1600                 goto free_writers;
1601
1602         mutex_lock(&root->objectid_mutex);
1603         ret = btrfs_find_highest_objectid(root,
1604                                         &root->highest_objectid);
1605         if (ret) {
1606                 mutex_unlock(&root->objectid_mutex);
1607                 goto free_root_dev;
1608         }
1609
1610         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1611
1612         mutex_unlock(&root->objectid_mutex);
1613
1614         return 0;
1615
1616 free_root_dev:
1617         free_anon_bdev(root->anon_dev);
1618 free_writers:
1619         btrfs_free_subvolume_writers(root->subv_writers);
1620 fail:
1621         kfree(root->free_ino_ctl);
1622         kfree(root->free_ino_pinned);
1623         return ret;
1624 }
1625
1626 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1627                                                u64 root_id)
1628 {
1629         struct btrfs_root *root;
1630
1631         spin_lock(&fs_info->fs_roots_radix_lock);
1632         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1633                                  (unsigned long)root_id);
1634         spin_unlock(&fs_info->fs_roots_radix_lock);
1635         return root;
1636 }
1637
1638 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1639                          struct btrfs_root *root)
1640 {
1641         int ret;
1642
1643         ret = radix_tree_preload(GFP_NOFS);
1644         if (ret)
1645                 return ret;
1646
1647         spin_lock(&fs_info->fs_roots_radix_lock);
1648         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1649                                 (unsigned long)root->root_key.objectid,
1650                                 root);
1651         if (ret == 0)
1652                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1653         spin_unlock(&fs_info->fs_roots_radix_lock);
1654         radix_tree_preload_end();
1655
1656         return ret;
1657 }
1658
1659 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660                                      struct btrfs_key *location,
1661                                      bool check_ref)
1662 {
1663         struct btrfs_root *root;
1664         struct btrfs_path *path;
1665         struct btrfs_key key;
1666         int ret;
1667
1668         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1669                 return fs_info->tree_root;
1670         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1671                 return fs_info->extent_root;
1672         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1673                 return fs_info->chunk_root;
1674         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1675                 return fs_info->dev_root;
1676         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1677                 return fs_info->csum_root;
1678         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1679                 return fs_info->quota_root ? fs_info->quota_root :
1680                                              ERR_PTR(-ENOENT);
1681         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1682                 return fs_info->uuid_root ? fs_info->uuid_root :
1683                                             ERR_PTR(-ENOENT);
1684         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1685                 return fs_info->free_space_root ? fs_info->free_space_root :
1686                                                   ERR_PTR(-ENOENT);
1687 again:
1688         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1689         if (root) {
1690                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1691                         return ERR_PTR(-ENOENT);
1692                 return root;
1693         }
1694
1695         root = btrfs_read_fs_root(fs_info->tree_root, location);
1696         if (IS_ERR(root))
1697                 return root;
1698
1699         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1700                 ret = -ENOENT;
1701                 goto fail;
1702         }
1703
1704         ret = btrfs_init_fs_root(root);
1705         if (ret)
1706                 goto fail;
1707
1708         path = btrfs_alloc_path();
1709         if (!path) {
1710                 ret = -ENOMEM;
1711                 goto fail;
1712         }
1713         key.objectid = BTRFS_ORPHAN_OBJECTID;
1714         key.type = BTRFS_ORPHAN_ITEM_KEY;
1715         key.offset = location->objectid;
1716
1717         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1718         btrfs_free_path(path);
1719         if (ret < 0)
1720                 goto fail;
1721         if (ret == 0)
1722                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1723
1724         ret = btrfs_insert_fs_root(fs_info, root);
1725         if (ret) {
1726                 if (ret == -EEXIST) {
1727                         free_fs_root(root);
1728                         goto again;
1729                 }
1730                 goto fail;
1731         }
1732         return root;
1733 fail:
1734         free_fs_root(root);
1735         return ERR_PTR(ret);
1736 }
1737
1738 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1739 {
1740         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1741         int ret = 0;
1742         struct btrfs_device *device;
1743         struct backing_dev_info *bdi;
1744
1745         rcu_read_lock();
1746         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1747                 if (!device->bdev)
1748                         continue;
1749                 bdi = blk_get_backing_dev_info(device->bdev);
1750                 if (bdi_congested(bdi, bdi_bits)) {
1751                         ret = 1;
1752                         break;
1753                 }
1754         }
1755         rcu_read_unlock();
1756         return ret;
1757 }
1758
1759 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1760 {
1761         int err;
1762
1763         err = bdi_setup_and_register(bdi, "btrfs");
1764         if (err)
1765                 return err;
1766
1767         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1768         bdi->congested_fn       = btrfs_congested_fn;
1769         bdi->congested_data     = info;
1770         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1771         return 0;
1772 }
1773
1774 /*
1775  * called by the kthread helper functions to finally call the bio end_io
1776  * functions.  This is where read checksum verification actually happens
1777  */
1778 static void end_workqueue_fn(struct btrfs_work *work)
1779 {
1780         struct bio *bio;
1781         struct btrfs_end_io_wq *end_io_wq;
1782
1783         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1784         bio = end_io_wq->bio;
1785
1786         bio->bi_error = end_io_wq->error;
1787         bio->bi_private = end_io_wq->private;
1788         bio->bi_end_io = end_io_wq->end_io;
1789         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1790         bio_endio(bio);
1791 }
1792
1793 static int cleaner_kthread(void *arg)
1794 {
1795         struct btrfs_root *root = arg;
1796         int again;
1797         struct btrfs_trans_handle *trans;
1798
1799         do {
1800                 again = 0;
1801
1802                 /* Make the cleaner go to sleep early. */
1803                 if (btrfs_need_cleaner_sleep(root))
1804                         goto sleep;
1805
1806                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1807                         goto sleep;
1808
1809                 /*
1810                  * Avoid the problem that we change the status of the fs
1811                  * during the above check and trylock.
1812                  */
1813                 if (btrfs_need_cleaner_sleep(root)) {
1814                         mutex_unlock(&root->fs_info->cleaner_mutex);
1815                         goto sleep;
1816                 }
1817
1818                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1819                 btrfs_run_delayed_iputs(root);
1820                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1821
1822                 again = btrfs_clean_one_deleted_snapshot(root);
1823                 mutex_unlock(&root->fs_info->cleaner_mutex);
1824
1825                 /*
1826                  * The defragger has dealt with the R/O remount and umount,
1827                  * needn't do anything special here.
1828                  */
1829                 btrfs_run_defrag_inodes(root->fs_info);
1830
1831                 /*
1832                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1833                  * with relocation (btrfs_relocate_chunk) and relocation
1834                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1835                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1836                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1837                  * unused block groups.
1838                  */
1839                 btrfs_delete_unused_bgs(root->fs_info);
1840 sleep:
1841                 if (!again) {
1842                         set_current_state(TASK_INTERRUPTIBLE);
1843                         if (!kthread_should_stop())
1844                                 schedule();
1845                         __set_current_state(TASK_RUNNING);
1846                 }
1847         } while (!kthread_should_stop());
1848
1849         /*
1850          * Transaction kthread is stopped before us and wakes us up.
1851          * However we might have started a new transaction and COWed some
1852          * tree blocks when deleting unused block groups for example. So
1853          * make sure we commit the transaction we started to have a clean
1854          * shutdown when evicting the btree inode - if it has dirty pages
1855          * when we do the final iput() on it, eviction will trigger a
1856          * writeback for it which will fail with null pointer dereferences
1857          * since work queues and other resources were already released and
1858          * destroyed by the time the iput/eviction/writeback is made.
1859          */
1860         trans = btrfs_attach_transaction(root);
1861         if (IS_ERR(trans)) {
1862                 if (PTR_ERR(trans) != -ENOENT)
1863                         btrfs_err(root->fs_info,
1864                                   "cleaner transaction attach returned %ld",
1865                                   PTR_ERR(trans));
1866         } else {
1867                 int ret;
1868
1869                 ret = btrfs_commit_transaction(trans, root);
1870                 if (ret)
1871                         btrfs_err(root->fs_info,
1872                                   "cleaner open transaction commit returned %d",
1873                                   ret);
1874         }
1875
1876         return 0;
1877 }
1878
1879 static int transaction_kthread(void *arg)
1880 {
1881         struct btrfs_root *root = arg;
1882         struct btrfs_trans_handle *trans;
1883         struct btrfs_transaction *cur;
1884         u64 transid;
1885         unsigned long now;
1886         unsigned long delay;
1887         bool cannot_commit;
1888
1889         do {
1890                 cannot_commit = false;
1891                 delay = HZ * root->fs_info->commit_interval;
1892                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1893
1894                 spin_lock(&root->fs_info->trans_lock);
1895                 cur = root->fs_info->running_transaction;
1896                 if (!cur) {
1897                         spin_unlock(&root->fs_info->trans_lock);
1898                         goto sleep;
1899                 }
1900
1901                 now = get_seconds();
1902                 if (cur->state < TRANS_STATE_BLOCKED &&
1903                     (now < cur->start_time ||
1904                      now - cur->start_time < root->fs_info->commit_interval)) {
1905                         spin_unlock(&root->fs_info->trans_lock);
1906                         delay = HZ * 5;
1907                         goto sleep;
1908                 }
1909                 transid = cur->transid;
1910                 spin_unlock(&root->fs_info->trans_lock);
1911
1912                 /* If the file system is aborted, this will always fail. */
1913                 trans = btrfs_attach_transaction(root);
1914                 if (IS_ERR(trans)) {
1915                         if (PTR_ERR(trans) != -ENOENT)
1916                                 cannot_commit = true;
1917                         goto sleep;
1918                 }
1919                 if (transid == trans->transid) {
1920                         btrfs_commit_transaction(trans, root);
1921                 } else {
1922                         btrfs_end_transaction(trans, root);
1923                 }
1924 sleep:
1925                 wake_up_process(root->fs_info->cleaner_kthread);
1926                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1927
1928                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1929                                       &root->fs_info->fs_state)))
1930                         btrfs_cleanup_transaction(root);
1931                 set_current_state(TASK_INTERRUPTIBLE);
1932                 if (!kthread_should_stop() &&
1933                                 (!btrfs_transaction_blocked(root->fs_info) ||
1934                                  cannot_commit))
1935                         schedule_timeout(delay);
1936                 __set_current_state(TASK_RUNNING);
1937         } while (!kthread_should_stop());
1938         return 0;
1939 }
1940
1941 /*
1942  * this will find the highest generation in the array of
1943  * root backups.  The index of the highest array is returned,
1944  * or -1 if we can't find anything.
1945  *
1946  * We check to make sure the array is valid by comparing the
1947  * generation of the latest  root in the array with the generation
1948  * in the super block.  If they don't match we pitch it.
1949  */
1950 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1951 {
1952         u64 cur;
1953         int newest_index = -1;
1954         struct btrfs_root_backup *root_backup;
1955         int i;
1956
1957         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1958                 root_backup = info->super_copy->super_roots + i;
1959                 cur = btrfs_backup_tree_root_gen(root_backup);
1960                 if (cur == newest_gen)
1961                         newest_index = i;
1962         }
1963
1964         /* check to see if we actually wrapped around */
1965         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1966                 root_backup = info->super_copy->super_roots;
1967                 cur = btrfs_backup_tree_root_gen(root_backup);
1968                 if (cur == newest_gen)
1969                         newest_index = 0;
1970         }
1971         return newest_index;
1972 }
1973
1974
1975 /*
1976  * find the oldest backup so we know where to store new entries
1977  * in the backup array.  This will set the backup_root_index
1978  * field in the fs_info struct
1979  */
1980 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1981                                      u64 newest_gen)
1982 {
1983         int newest_index = -1;
1984
1985         newest_index = find_newest_super_backup(info, newest_gen);
1986         /* if there was garbage in there, just move along */
1987         if (newest_index == -1) {
1988                 info->backup_root_index = 0;
1989         } else {
1990                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1991         }
1992 }
1993
1994 /*
1995  * copy all the root pointers into the super backup array.
1996  * this will bump the backup pointer by one when it is
1997  * done
1998  */
1999 static void backup_super_roots(struct btrfs_fs_info *info)
2000 {
2001         int next_backup;
2002         struct btrfs_root_backup *root_backup;
2003         int last_backup;
2004
2005         next_backup = info->backup_root_index;
2006         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2007                 BTRFS_NUM_BACKUP_ROOTS;
2008
2009         /*
2010          * just overwrite the last backup if we're at the same generation
2011          * this happens only at umount
2012          */
2013         root_backup = info->super_for_commit->super_roots + last_backup;
2014         if (btrfs_backup_tree_root_gen(root_backup) ==
2015             btrfs_header_generation(info->tree_root->node))
2016                 next_backup = last_backup;
2017
2018         root_backup = info->super_for_commit->super_roots + next_backup;
2019
2020         /*
2021          * make sure all of our padding and empty slots get zero filled
2022          * regardless of which ones we use today
2023          */
2024         memset(root_backup, 0, sizeof(*root_backup));
2025
2026         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2027
2028         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2029         btrfs_set_backup_tree_root_gen(root_backup,
2030                                btrfs_header_generation(info->tree_root->node));
2031
2032         btrfs_set_backup_tree_root_level(root_backup,
2033                                btrfs_header_level(info->tree_root->node));
2034
2035         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2036         btrfs_set_backup_chunk_root_gen(root_backup,
2037                                btrfs_header_generation(info->chunk_root->node));
2038         btrfs_set_backup_chunk_root_level(root_backup,
2039                                btrfs_header_level(info->chunk_root->node));
2040
2041         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2042         btrfs_set_backup_extent_root_gen(root_backup,
2043                                btrfs_header_generation(info->extent_root->node));
2044         btrfs_set_backup_extent_root_level(root_backup,
2045                                btrfs_header_level(info->extent_root->node));
2046
2047         /*
2048          * we might commit during log recovery, which happens before we set
2049          * the fs_root.  Make sure it is valid before we fill it in.
2050          */
2051         if (info->fs_root && info->fs_root->node) {
2052                 btrfs_set_backup_fs_root(root_backup,
2053                                          info->fs_root->node->start);
2054                 btrfs_set_backup_fs_root_gen(root_backup,
2055                                btrfs_header_generation(info->fs_root->node));
2056                 btrfs_set_backup_fs_root_level(root_backup,
2057                                btrfs_header_level(info->fs_root->node));
2058         }
2059
2060         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2061         btrfs_set_backup_dev_root_gen(root_backup,
2062                                btrfs_header_generation(info->dev_root->node));
2063         btrfs_set_backup_dev_root_level(root_backup,
2064                                        btrfs_header_level(info->dev_root->node));
2065
2066         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2067         btrfs_set_backup_csum_root_gen(root_backup,
2068                                btrfs_header_generation(info->csum_root->node));
2069         btrfs_set_backup_csum_root_level(root_backup,
2070                                btrfs_header_level(info->csum_root->node));
2071
2072         btrfs_set_backup_total_bytes(root_backup,
2073                              btrfs_super_total_bytes(info->super_copy));
2074         btrfs_set_backup_bytes_used(root_backup,
2075                              btrfs_super_bytes_used(info->super_copy));
2076         btrfs_set_backup_num_devices(root_backup,
2077                              btrfs_super_num_devices(info->super_copy));
2078
2079         /*
2080          * if we don't copy this out to the super_copy, it won't get remembered
2081          * for the next commit
2082          */
2083         memcpy(&info->super_copy->super_roots,
2084                &info->super_for_commit->super_roots,
2085                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2086 }
2087
2088 /*
2089  * this copies info out of the root backup array and back into
2090  * the in-memory super block.  It is meant to help iterate through
2091  * the array, so you send it the number of backups you've already
2092  * tried and the last backup index you used.
2093  *
2094  * this returns -1 when it has tried all the backups
2095  */
2096 static noinline int next_root_backup(struct btrfs_fs_info *info,
2097                                      struct btrfs_super_block *super,
2098                                      int *num_backups_tried, int *backup_index)
2099 {
2100         struct btrfs_root_backup *root_backup;
2101         int newest = *backup_index;
2102
2103         if (*num_backups_tried == 0) {
2104                 u64 gen = btrfs_super_generation(super);
2105
2106                 newest = find_newest_super_backup(info, gen);
2107                 if (newest == -1)
2108                         return -1;
2109
2110                 *backup_index = newest;
2111                 *num_backups_tried = 1;
2112         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2113                 /* we've tried all the backups, all done */
2114                 return -1;
2115         } else {
2116                 /* jump to the next oldest backup */
2117                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2118                         BTRFS_NUM_BACKUP_ROOTS;
2119                 *backup_index = newest;
2120                 *num_backups_tried += 1;
2121         }
2122         root_backup = super->super_roots + newest;
2123
2124         btrfs_set_super_generation(super,
2125                                    btrfs_backup_tree_root_gen(root_backup));
2126         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2127         btrfs_set_super_root_level(super,
2128                                    btrfs_backup_tree_root_level(root_backup));
2129         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2130
2131         /*
2132          * fixme: the total bytes and num_devices need to match or we should
2133          * need a fsck
2134          */
2135         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2136         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2137         return 0;
2138 }
2139
2140 /* helper to cleanup workers */
2141 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2142 {
2143         btrfs_destroy_workqueue(fs_info->fixup_workers);
2144         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2145         btrfs_destroy_workqueue(fs_info->workers);
2146         btrfs_destroy_workqueue(fs_info->endio_workers);
2147         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2148         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2149         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2150         btrfs_destroy_workqueue(fs_info->rmw_workers);
2151         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2152         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2153         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2154         btrfs_destroy_workqueue(fs_info->submit_workers);
2155         btrfs_destroy_workqueue(fs_info->delayed_workers);
2156         btrfs_destroy_workqueue(fs_info->caching_workers);
2157         btrfs_destroy_workqueue(fs_info->readahead_workers);
2158         btrfs_destroy_workqueue(fs_info->flush_workers);
2159         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2160         btrfs_destroy_workqueue(fs_info->extent_workers);
2161 }
2162
2163 static void free_root_extent_buffers(struct btrfs_root *root)
2164 {
2165         if (root) {
2166                 free_extent_buffer(root->node);
2167                 free_extent_buffer(root->commit_root);
2168                 root->node = NULL;
2169                 root->commit_root = NULL;
2170         }
2171 }
2172
2173 /* helper to cleanup tree roots */
2174 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2175 {
2176         free_root_extent_buffers(info->tree_root);
2177
2178         free_root_extent_buffers(info->dev_root);
2179         free_root_extent_buffers(info->extent_root);
2180         free_root_extent_buffers(info->csum_root);
2181         free_root_extent_buffers(info->quota_root);
2182         free_root_extent_buffers(info->uuid_root);
2183         if (chunk_root)
2184                 free_root_extent_buffers(info->chunk_root);
2185         free_root_extent_buffers(info->free_space_root);
2186 }
2187
2188 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2189 {
2190         int ret;
2191         struct btrfs_root *gang[8];
2192         int i;
2193
2194         while (!list_empty(&fs_info->dead_roots)) {
2195                 gang[0] = list_entry(fs_info->dead_roots.next,
2196                                      struct btrfs_root, root_list);
2197                 list_del(&gang[0]->root_list);
2198
2199                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2200                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2201                 } else {
2202                         free_extent_buffer(gang[0]->node);
2203                         free_extent_buffer(gang[0]->commit_root);
2204                         btrfs_put_fs_root(gang[0]);
2205                 }
2206         }
2207
2208         while (1) {
2209                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2210                                              (void **)gang, 0,
2211                                              ARRAY_SIZE(gang));
2212                 if (!ret)
2213                         break;
2214                 for (i = 0; i < ret; i++)
2215                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2216         }
2217
2218         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2219                 btrfs_free_log_root_tree(NULL, fs_info);
2220                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2221                                             fs_info->pinned_extents);
2222         }
2223 }
2224
2225 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2226 {
2227         mutex_init(&fs_info->scrub_lock);
2228         atomic_set(&fs_info->scrubs_running, 0);
2229         atomic_set(&fs_info->scrub_pause_req, 0);
2230         atomic_set(&fs_info->scrubs_paused, 0);
2231         atomic_set(&fs_info->scrub_cancel_req, 0);
2232         init_waitqueue_head(&fs_info->scrub_pause_wait);
2233         fs_info->scrub_workers_refcnt = 0;
2234 }
2235
2236 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2237 {
2238         spin_lock_init(&fs_info->balance_lock);
2239         mutex_init(&fs_info->balance_mutex);
2240         atomic_set(&fs_info->balance_running, 0);
2241         atomic_set(&fs_info->balance_pause_req, 0);
2242         atomic_set(&fs_info->balance_cancel_req, 0);
2243         fs_info->balance_ctl = NULL;
2244         init_waitqueue_head(&fs_info->balance_wait_q);
2245 }
2246
2247 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2248                                    struct btrfs_root *tree_root)
2249 {
2250         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2251         set_nlink(fs_info->btree_inode, 1);
2252         /*
2253          * we set the i_size on the btree inode to the max possible int.
2254          * the real end of the address space is determined by all of
2255          * the devices in the system
2256          */
2257         fs_info->btree_inode->i_size = OFFSET_MAX;
2258         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2259
2260         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2261         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2262                              fs_info->btree_inode->i_mapping);
2263         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2264         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2265
2266         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2267
2268         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2269         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2270                sizeof(struct btrfs_key));
2271         set_bit(BTRFS_INODE_DUMMY,
2272                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2273         btrfs_insert_inode_hash(fs_info->btree_inode);
2274 }
2275
2276 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2277 {
2278         fs_info->dev_replace.lock_owner = 0;
2279         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2280         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2281         rwlock_init(&fs_info->dev_replace.lock);
2282         atomic_set(&fs_info->dev_replace.read_locks, 0);
2283         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2284         init_waitqueue_head(&fs_info->replace_wait);
2285         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2286 }
2287
2288 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2289 {
2290         spin_lock_init(&fs_info->qgroup_lock);
2291         mutex_init(&fs_info->qgroup_ioctl_lock);
2292         fs_info->qgroup_tree = RB_ROOT;
2293         fs_info->qgroup_op_tree = RB_ROOT;
2294         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2295         fs_info->qgroup_seq = 1;
2296         fs_info->quota_enabled = 0;
2297         fs_info->pending_quota_state = 0;
2298         fs_info->qgroup_ulist = NULL;
2299         mutex_init(&fs_info->qgroup_rescan_lock);
2300 }
2301
2302 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2303                 struct btrfs_fs_devices *fs_devices)
2304 {
2305         int max_active = fs_info->thread_pool_size;
2306         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2307
2308         fs_info->workers =
2309                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2310                                       max_active, 16);
2311
2312         fs_info->delalloc_workers =
2313                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2314
2315         fs_info->flush_workers =
2316                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2317
2318         fs_info->caching_workers =
2319                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2320
2321         /*
2322          * a higher idle thresh on the submit workers makes it much more
2323          * likely that bios will be send down in a sane order to the
2324          * devices
2325          */
2326         fs_info->submit_workers =
2327                 btrfs_alloc_workqueue("submit", flags,
2328                                       min_t(u64, fs_devices->num_devices,
2329                                             max_active), 64);
2330
2331         fs_info->fixup_workers =
2332                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2333
2334         /*
2335          * endios are largely parallel and should have a very
2336          * low idle thresh
2337          */
2338         fs_info->endio_workers =
2339                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2340         fs_info->endio_meta_workers =
2341                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2342         fs_info->endio_meta_write_workers =
2343                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2344         fs_info->endio_raid56_workers =
2345                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2346         fs_info->endio_repair_workers =
2347                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2348         fs_info->rmw_workers =
2349                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2350         fs_info->endio_write_workers =
2351                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2352         fs_info->endio_freespace_worker =
2353                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2354         fs_info->delayed_workers =
2355                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2356         fs_info->readahead_workers =
2357                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2358         fs_info->qgroup_rescan_workers =
2359                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2360         fs_info->extent_workers =
2361                 btrfs_alloc_workqueue("extent-refs", flags,
2362                                       min_t(u64, fs_devices->num_devices,
2363                                             max_active), 8);
2364
2365         if (!(fs_info->workers && fs_info->delalloc_workers &&
2366               fs_info->submit_workers && fs_info->flush_workers &&
2367               fs_info->endio_workers && fs_info->endio_meta_workers &&
2368               fs_info->endio_meta_write_workers &&
2369               fs_info->endio_repair_workers &&
2370               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2371               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2372               fs_info->caching_workers && fs_info->readahead_workers &&
2373               fs_info->fixup_workers && fs_info->delayed_workers &&
2374               fs_info->extent_workers &&
2375               fs_info->qgroup_rescan_workers)) {
2376                 return -ENOMEM;
2377         }
2378
2379         return 0;
2380 }
2381
2382 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2383                             struct btrfs_fs_devices *fs_devices)
2384 {
2385         int ret;
2386         struct btrfs_root *tree_root = fs_info->tree_root;
2387         struct btrfs_root *log_tree_root;
2388         struct btrfs_super_block *disk_super = fs_info->super_copy;
2389         u64 bytenr = btrfs_super_log_root(disk_super);
2390
2391         if (fs_devices->rw_devices == 0) {
2392                 btrfs_warn(fs_info, "log replay required on RO media");
2393                 return -EIO;
2394         }
2395
2396         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2397         if (!log_tree_root)
2398                 return -ENOMEM;
2399
2400         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2401                         tree_root->stripesize, log_tree_root, fs_info,
2402                         BTRFS_TREE_LOG_OBJECTID);
2403
2404         log_tree_root->node = read_tree_block(tree_root, bytenr,
2405                         fs_info->generation + 1);
2406         if (IS_ERR(log_tree_root->node)) {
2407                 btrfs_warn(fs_info, "failed to read log tree");
2408                 ret = PTR_ERR(log_tree_root->node);
2409                 kfree(log_tree_root);
2410                 return ret;
2411         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2412                 btrfs_err(fs_info, "failed to read log tree");
2413                 free_extent_buffer(log_tree_root->node);
2414                 kfree(log_tree_root);
2415                 return -EIO;
2416         }
2417         /* returns with log_tree_root freed on success */
2418         ret = btrfs_recover_log_trees(log_tree_root);
2419         if (ret) {
2420                 btrfs_handle_fs_error(tree_root->fs_info, ret,
2421                             "Failed to recover log tree");
2422                 free_extent_buffer(log_tree_root->node);
2423                 kfree(log_tree_root);
2424                 return ret;
2425         }
2426
2427         if (fs_info->sb->s_flags & MS_RDONLY) {
2428                 ret = btrfs_commit_super(tree_root);
2429                 if (ret)
2430                         return ret;
2431         }
2432
2433         return 0;
2434 }
2435
2436 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2437                             struct btrfs_root *tree_root)
2438 {
2439         struct btrfs_root *root;
2440         struct btrfs_key location;
2441         int ret;
2442
2443         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2444         location.type = BTRFS_ROOT_ITEM_KEY;
2445         location.offset = 0;
2446
2447         root = btrfs_read_tree_root(tree_root, &location);
2448         if (IS_ERR(root))
2449                 return PTR_ERR(root);
2450         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2451         fs_info->extent_root = root;
2452
2453         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2454         root = btrfs_read_tree_root(tree_root, &location);
2455         if (IS_ERR(root))
2456                 return PTR_ERR(root);
2457         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2458         fs_info->dev_root = root;
2459         btrfs_init_devices_late(fs_info);
2460
2461         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2462         root = btrfs_read_tree_root(tree_root, &location);
2463         if (IS_ERR(root))
2464                 return PTR_ERR(root);
2465         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2466         fs_info->csum_root = root;
2467
2468         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2469         root = btrfs_read_tree_root(tree_root, &location);
2470         if (!IS_ERR(root)) {
2471                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2472                 fs_info->quota_enabled = 1;
2473                 fs_info->pending_quota_state = 1;
2474                 fs_info->quota_root = root;
2475         }
2476
2477         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2478         root = btrfs_read_tree_root(tree_root, &location);
2479         if (IS_ERR(root)) {
2480                 ret = PTR_ERR(root);
2481                 if (ret != -ENOENT)
2482                         return ret;
2483         } else {
2484                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2485                 fs_info->uuid_root = root;
2486         }
2487
2488         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2489                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2490                 root = btrfs_read_tree_root(tree_root, &location);
2491                 if (IS_ERR(root))
2492                         return PTR_ERR(root);
2493                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2494                 fs_info->free_space_root = root;
2495         }
2496
2497         return 0;
2498 }
2499
2500 int open_ctree(struct super_block *sb,
2501                struct btrfs_fs_devices *fs_devices,
2502                char *options)
2503 {
2504         u32 sectorsize;
2505         u32 nodesize;
2506         u32 stripesize;
2507         u64 generation;
2508         u64 features;
2509         struct btrfs_key location;
2510         struct buffer_head *bh;
2511         struct btrfs_super_block *disk_super;
2512         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2513         struct btrfs_root *tree_root;
2514         struct btrfs_root *chunk_root;
2515         int ret;
2516         int err = -EINVAL;
2517         int num_backups_tried = 0;
2518         int backup_index = 0;
2519         int max_active;
2520         bool cleaner_mutex_locked = false;
2521
2522         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2523         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2524         if (!tree_root || !chunk_root) {
2525                 err = -ENOMEM;
2526                 goto fail;
2527         }
2528
2529         ret = init_srcu_struct(&fs_info->subvol_srcu);
2530         if (ret) {
2531                 err = ret;
2532                 goto fail;
2533         }
2534
2535         ret = setup_bdi(fs_info, &fs_info->bdi);
2536         if (ret) {
2537                 err = ret;
2538                 goto fail_srcu;
2539         }
2540
2541         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2542         if (ret) {
2543                 err = ret;
2544                 goto fail_bdi;
2545         }
2546         fs_info->dirty_metadata_batch = PAGE_SIZE *
2547                                         (1 + ilog2(nr_cpu_ids));
2548
2549         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2550         if (ret) {
2551                 err = ret;
2552                 goto fail_dirty_metadata_bytes;
2553         }
2554
2555         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2556         if (ret) {
2557                 err = ret;
2558                 goto fail_delalloc_bytes;
2559         }
2560
2561         fs_info->btree_inode = new_inode(sb);
2562         if (!fs_info->btree_inode) {
2563                 err = -ENOMEM;
2564                 goto fail_bio_counter;
2565         }
2566
2567         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2568
2569         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2570         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2571         INIT_LIST_HEAD(&fs_info->trans_list);
2572         INIT_LIST_HEAD(&fs_info->dead_roots);
2573         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2574         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2575         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2576         spin_lock_init(&fs_info->delalloc_root_lock);
2577         spin_lock_init(&fs_info->trans_lock);
2578         spin_lock_init(&fs_info->fs_roots_radix_lock);
2579         spin_lock_init(&fs_info->delayed_iput_lock);
2580         spin_lock_init(&fs_info->defrag_inodes_lock);
2581         spin_lock_init(&fs_info->free_chunk_lock);
2582         spin_lock_init(&fs_info->tree_mod_seq_lock);
2583         spin_lock_init(&fs_info->super_lock);
2584         spin_lock_init(&fs_info->qgroup_op_lock);
2585         spin_lock_init(&fs_info->buffer_lock);
2586         spin_lock_init(&fs_info->unused_bgs_lock);
2587         rwlock_init(&fs_info->tree_mod_log_lock);
2588         mutex_init(&fs_info->unused_bg_unpin_mutex);
2589         mutex_init(&fs_info->delete_unused_bgs_mutex);
2590         mutex_init(&fs_info->reloc_mutex);
2591         mutex_init(&fs_info->delalloc_root_mutex);
2592         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2593         seqlock_init(&fs_info->profiles_lock);
2594
2595         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2596         INIT_LIST_HEAD(&fs_info->space_info);
2597         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2598         INIT_LIST_HEAD(&fs_info->unused_bgs);
2599         btrfs_mapping_init(&fs_info->mapping_tree);
2600         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2601                              BTRFS_BLOCK_RSV_GLOBAL);
2602         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2603                              BTRFS_BLOCK_RSV_DELALLOC);
2604         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2605         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2606         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2607         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2608                              BTRFS_BLOCK_RSV_DELOPS);
2609         atomic_set(&fs_info->nr_async_submits, 0);
2610         atomic_set(&fs_info->async_delalloc_pages, 0);
2611         atomic_set(&fs_info->async_submit_draining, 0);
2612         atomic_set(&fs_info->nr_async_bios, 0);
2613         atomic_set(&fs_info->defrag_running, 0);
2614         atomic_set(&fs_info->qgroup_op_seq, 0);
2615         atomic_set(&fs_info->reada_works_cnt, 0);
2616         atomic64_set(&fs_info->tree_mod_seq, 0);
2617         fs_info->sb = sb;
2618         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2619         fs_info->metadata_ratio = 0;
2620         fs_info->defrag_inodes = RB_ROOT;
2621         fs_info->free_chunk_space = 0;
2622         fs_info->tree_mod_log = RB_ROOT;
2623         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2624         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2625         /* readahead state */
2626         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2627         spin_lock_init(&fs_info->reada_lock);
2628
2629         fs_info->thread_pool_size = min_t(unsigned long,
2630                                           num_online_cpus() + 2, 8);
2631
2632         INIT_LIST_HEAD(&fs_info->ordered_roots);
2633         spin_lock_init(&fs_info->ordered_root_lock);
2634         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2635                                         GFP_KERNEL);
2636         if (!fs_info->delayed_root) {
2637                 err = -ENOMEM;
2638                 goto fail_iput;
2639         }
2640         btrfs_init_delayed_root(fs_info->delayed_root);
2641
2642         btrfs_init_scrub(fs_info);
2643 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2644         fs_info->check_integrity_print_mask = 0;
2645 #endif
2646         btrfs_init_balance(fs_info);
2647         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2648
2649         sb->s_blocksize = 4096;
2650         sb->s_blocksize_bits = blksize_bits(4096);
2651         sb->s_bdi = &fs_info->bdi;
2652
2653         btrfs_init_btree_inode(fs_info, tree_root);
2654
2655         spin_lock_init(&fs_info->block_group_cache_lock);
2656         fs_info->block_group_cache_tree = RB_ROOT;
2657         fs_info->first_logical_byte = (u64)-1;
2658
2659         extent_io_tree_init(&fs_info->freed_extents[0],
2660                              fs_info->btree_inode->i_mapping);
2661         extent_io_tree_init(&fs_info->freed_extents[1],
2662                              fs_info->btree_inode->i_mapping);
2663         fs_info->pinned_extents = &fs_info->freed_extents[0];
2664         fs_info->do_barriers = 1;
2665
2666
2667         mutex_init(&fs_info->ordered_operations_mutex);
2668         mutex_init(&fs_info->tree_log_mutex);
2669         mutex_init(&fs_info->chunk_mutex);
2670         mutex_init(&fs_info->transaction_kthread_mutex);
2671         mutex_init(&fs_info->cleaner_mutex);
2672         mutex_init(&fs_info->volume_mutex);
2673         mutex_init(&fs_info->ro_block_group_mutex);
2674         init_rwsem(&fs_info->commit_root_sem);
2675         init_rwsem(&fs_info->cleanup_work_sem);
2676         init_rwsem(&fs_info->subvol_sem);
2677         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2678
2679         btrfs_init_dev_replace_locks(fs_info);
2680         btrfs_init_qgroup(fs_info);
2681
2682         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2683         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2684
2685         init_waitqueue_head(&fs_info->transaction_throttle);
2686         init_waitqueue_head(&fs_info->transaction_wait);
2687         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2688         init_waitqueue_head(&fs_info->async_submit_wait);
2689
2690         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2691
2692         ret = btrfs_alloc_stripe_hash_table(fs_info);
2693         if (ret) {
2694                 err = ret;
2695                 goto fail_alloc;
2696         }
2697
2698         __setup_root(4096, 4096, 4096, tree_root,
2699                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2700
2701         invalidate_bdev(fs_devices->latest_bdev);
2702
2703         /*
2704          * Read super block and check the signature bytes only
2705          */
2706         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2707         if (IS_ERR(bh)) {
2708                 err = PTR_ERR(bh);
2709                 goto fail_alloc;
2710         }
2711
2712         /*
2713          * We want to check superblock checksum, the type is stored inside.
2714          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2715          */
2716         if (btrfs_check_super_csum(bh->b_data)) {
2717                 btrfs_err(fs_info, "superblock checksum mismatch");
2718                 err = -EINVAL;
2719                 brelse(bh);
2720                 goto fail_alloc;
2721         }
2722
2723         /*
2724          * super_copy is zeroed at allocation time and we never touch the
2725          * following bytes up to INFO_SIZE, the checksum is calculated from
2726          * the whole block of INFO_SIZE
2727          */
2728         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2729         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2730                sizeof(*fs_info->super_for_commit));
2731         brelse(bh);
2732
2733         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2734
2735         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2736         if (ret) {
2737                 btrfs_err(fs_info, "superblock contains fatal errors");
2738                 err = -EINVAL;
2739                 goto fail_alloc;
2740         }
2741
2742         disk_super = fs_info->super_copy;
2743         if (!btrfs_super_root(disk_super))
2744                 goto fail_alloc;
2745
2746         /* check FS state, whether FS is broken. */
2747         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2748                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2749
2750         /*
2751          * run through our array of backup supers and setup
2752          * our ring pointer to the oldest one
2753          */
2754         generation = btrfs_super_generation(disk_super);
2755         find_oldest_super_backup(fs_info, generation);
2756
2757         /*
2758          * In the long term, we'll store the compression type in the super
2759          * block, and it'll be used for per file compression control.
2760          */
2761         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2762
2763         ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2764         if (ret) {
2765                 err = ret;
2766                 goto fail_alloc;
2767         }
2768
2769         features = btrfs_super_incompat_flags(disk_super) &
2770                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2771         if (features) {
2772                 btrfs_err(fs_info,
2773                     "cannot mount because of unsupported optional features (%llx)",
2774                     features);
2775                 err = -EINVAL;
2776                 goto fail_alloc;
2777         }
2778
2779         features = btrfs_super_incompat_flags(disk_super);
2780         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2781         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2782                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2783
2784         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2785                 btrfs_info(fs_info, "has skinny extents");
2786
2787         /*
2788          * flag our filesystem as having big metadata blocks if
2789          * they are bigger than the page size
2790          */
2791         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2792                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2793                         btrfs_info(fs_info,
2794                                 "flagging fs with big metadata feature");
2795                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2796         }
2797
2798         nodesize = btrfs_super_nodesize(disk_super);
2799         sectorsize = btrfs_super_sectorsize(disk_super);
2800         stripesize = btrfs_super_stripesize(disk_super);
2801         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2802         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2803
2804         /*
2805          * mixed block groups end up with duplicate but slightly offset
2806          * extent buffers for the same range.  It leads to corruptions
2807          */
2808         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2809             (sectorsize != nodesize)) {
2810                 btrfs_err(fs_info,
2811 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2812                         nodesize, sectorsize);
2813                 goto fail_alloc;
2814         }
2815
2816         /*
2817          * Needn't use the lock because there is no other task which will
2818          * update the flag.
2819          */
2820         btrfs_set_super_incompat_flags(disk_super, features);
2821
2822         features = btrfs_super_compat_ro_flags(disk_super) &
2823                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2824         if (!(sb->s_flags & MS_RDONLY) && features) {
2825                 btrfs_err(fs_info,
2826         "cannot mount read-write because of unsupported optional features (%llx)",
2827                        features);
2828                 err = -EINVAL;
2829                 goto fail_alloc;
2830         }
2831
2832         max_active = fs_info->thread_pool_size;
2833
2834         ret = btrfs_init_workqueues(fs_info, fs_devices);
2835         if (ret) {
2836                 err = ret;
2837                 goto fail_sb_buffer;
2838         }
2839
2840         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2841         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2842                                     SZ_4M / PAGE_SIZE);
2843
2844         tree_root->nodesize = nodesize;
2845         tree_root->sectorsize = sectorsize;
2846         tree_root->stripesize = stripesize;
2847
2848         sb->s_blocksize = sectorsize;
2849         sb->s_blocksize_bits = blksize_bits(sectorsize);
2850
2851         mutex_lock(&fs_info->chunk_mutex);
2852         ret = btrfs_read_sys_array(tree_root);
2853         mutex_unlock(&fs_info->chunk_mutex);
2854         if (ret) {
2855                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2856                 goto fail_sb_buffer;
2857         }
2858
2859         generation = btrfs_super_chunk_root_generation(disk_super);
2860
2861         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2862                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2863
2864         chunk_root->node = read_tree_block(chunk_root,
2865                                            btrfs_super_chunk_root(disk_super),
2866                                            generation);
2867         if (IS_ERR(chunk_root->node) ||
2868             !extent_buffer_uptodate(chunk_root->node)) {
2869                 btrfs_err(fs_info, "failed to read chunk root");
2870                 if (!IS_ERR(chunk_root->node))
2871                         free_extent_buffer(chunk_root->node);
2872                 chunk_root->node = NULL;
2873                 goto fail_tree_roots;
2874         }
2875         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2876         chunk_root->commit_root = btrfs_root_node(chunk_root);
2877
2878         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2879            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2880
2881         ret = btrfs_read_chunk_tree(chunk_root);
2882         if (ret) {
2883                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2884                 goto fail_tree_roots;
2885         }
2886
2887         /*
2888          * keep the device that is marked to be the target device for the
2889          * dev_replace procedure
2890          */
2891         btrfs_close_extra_devices(fs_devices, 0);
2892
2893         if (!fs_devices->latest_bdev) {
2894                 btrfs_err(fs_info, "failed to read devices");
2895                 goto fail_tree_roots;
2896         }
2897
2898 retry_root_backup:
2899         generation = btrfs_super_generation(disk_super);
2900
2901         tree_root->node = read_tree_block(tree_root,
2902                                           btrfs_super_root(disk_super),
2903                                           generation);
2904         if (IS_ERR(tree_root->node) ||
2905             !extent_buffer_uptodate(tree_root->node)) {
2906                 btrfs_warn(fs_info, "failed to read tree root");
2907                 if (!IS_ERR(tree_root->node))
2908                         free_extent_buffer(tree_root->node);
2909                 tree_root->node = NULL;
2910                 goto recovery_tree_root;
2911         }
2912
2913         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2914         tree_root->commit_root = btrfs_root_node(tree_root);
2915         btrfs_set_root_refs(&tree_root->root_item, 1);
2916
2917         mutex_lock(&tree_root->objectid_mutex);
2918         ret = btrfs_find_highest_objectid(tree_root,
2919                                         &tree_root->highest_objectid);
2920         if (ret) {
2921                 mutex_unlock(&tree_root->objectid_mutex);
2922                 goto recovery_tree_root;
2923         }
2924
2925         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2926
2927         mutex_unlock(&tree_root->objectid_mutex);
2928
2929         ret = btrfs_read_roots(fs_info, tree_root);
2930         if (ret)
2931                 goto recovery_tree_root;
2932
2933         fs_info->generation = generation;
2934         fs_info->last_trans_committed = generation;
2935
2936         ret = btrfs_recover_balance(fs_info);
2937         if (ret) {
2938                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2939                 goto fail_block_groups;
2940         }
2941
2942         ret = btrfs_init_dev_stats(fs_info);
2943         if (ret) {
2944                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2945                 goto fail_block_groups;
2946         }
2947
2948         ret = btrfs_init_dev_replace(fs_info);
2949         if (ret) {
2950                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2951                 goto fail_block_groups;
2952         }
2953
2954         btrfs_close_extra_devices(fs_devices, 1);
2955
2956         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2957         if (ret) {
2958                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2959                                 ret);
2960                 goto fail_block_groups;
2961         }
2962
2963         ret = btrfs_sysfs_add_device(fs_devices);
2964         if (ret) {
2965                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2966                                 ret);
2967                 goto fail_fsdev_sysfs;
2968         }
2969
2970         ret = btrfs_sysfs_add_mounted(fs_info);
2971         if (ret) {
2972                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2973                 goto fail_fsdev_sysfs;
2974         }
2975
2976         ret = btrfs_init_space_info(fs_info);
2977         if (ret) {
2978                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2979                 goto fail_sysfs;
2980         }
2981
2982         ret = btrfs_read_block_groups(fs_info->extent_root);
2983         if (ret) {
2984                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2985                 goto fail_sysfs;
2986         }
2987         fs_info->num_tolerated_disk_barrier_failures =
2988                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2989         if (fs_info->fs_devices->missing_devices >
2990              fs_info->num_tolerated_disk_barrier_failures &&
2991             !(sb->s_flags & MS_RDONLY)) {
2992                 btrfs_warn(fs_info,
2993 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
2994                         fs_info->fs_devices->missing_devices,
2995                         fs_info->num_tolerated_disk_barrier_failures);
2996                 goto fail_sysfs;
2997         }
2998
2999         /*
3000          * Hold the cleaner_mutex thread here so that we don't block
3001          * for a long time on btrfs_recover_relocation.  cleaner_kthread
3002          * will wait for us to finish mounting the filesystem.
3003          */
3004         mutex_lock(&fs_info->cleaner_mutex);
3005         cleaner_mutex_locked = true;
3006         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3007                                                "btrfs-cleaner");
3008         if (IS_ERR(fs_info->cleaner_kthread))
3009                 goto fail_sysfs;
3010
3011         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3012                                                    tree_root,
3013                                                    "btrfs-transaction");
3014         if (IS_ERR(fs_info->transaction_kthread))
3015                 goto fail_cleaner;
3016
3017         if (!btrfs_test_opt(tree_root, SSD) &&
3018             !btrfs_test_opt(tree_root, NOSSD) &&
3019             !fs_info->fs_devices->rotating) {
3020                 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3021                 btrfs_set_opt(fs_info->mount_opt, SSD);
3022         }
3023
3024         /*
3025          * Mount does not set all options immediately, we can do it now and do
3026          * not have to wait for transaction commit
3027          */
3028         btrfs_apply_pending_changes(fs_info);
3029
3030 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3031         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3032                 ret = btrfsic_mount(tree_root, fs_devices,
3033                                     btrfs_test_opt(tree_root,
3034                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3035                                     1 : 0,
3036                                     fs_info->check_integrity_print_mask);
3037                 if (ret)
3038                         btrfs_warn(fs_info,
3039                                 "failed to initialize integrity check module: %d",
3040                                 ret);
3041         }
3042 #endif
3043         ret = btrfs_read_qgroup_config(fs_info);
3044         if (ret)
3045                 goto fail_trans_kthread;
3046
3047         /* do not make disk changes in broken FS or nologreplay is given */
3048         if (btrfs_super_log_root(disk_super) != 0 &&
3049             !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3050                 ret = btrfs_replay_log(fs_info, fs_devices);
3051                 if (ret) {
3052                         err = ret;
3053                         goto fail_qgroup;
3054                 }
3055         }
3056
3057         ret = btrfs_find_orphan_roots(tree_root);
3058         if (ret)
3059                 goto fail_qgroup;
3060
3061         if (!(sb->s_flags & MS_RDONLY)) {
3062                 ret = btrfs_cleanup_fs_roots(fs_info);
3063                 if (ret)
3064                         goto fail_qgroup;
3065                 /* We locked cleaner_mutex before creating cleaner_kthread. */
3066                 ret = btrfs_recover_relocation(tree_root);
3067                 if (ret < 0) {
3068                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3069                                         ret);
3070                         err = -EINVAL;
3071                         goto fail_qgroup;
3072                 }
3073         }
3074         mutex_unlock(&fs_info->cleaner_mutex);
3075         cleaner_mutex_locked = false;
3076
3077         location.objectid = BTRFS_FS_TREE_OBJECTID;
3078         location.type = BTRFS_ROOT_ITEM_KEY;
3079         location.offset = 0;
3080
3081         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3082         if (IS_ERR(fs_info->fs_root)) {
3083                 err = PTR_ERR(fs_info->fs_root);
3084                 goto fail_qgroup;
3085         }
3086
3087         if (sb->s_flags & MS_RDONLY)
3088                 return 0;
3089
3090         if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3091             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3092                 btrfs_info(fs_info, "creating free space tree");
3093                 ret = btrfs_create_free_space_tree(fs_info);
3094                 if (ret) {
3095                         btrfs_warn(fs_info,
3096                                 "failed to create free space tree: %d", ret);
3097                         close_ctree(tree_root);
3098                         return ret;
3099                 }
3100         }
3101
3102         down_read(&fs_info->cleanup_work_sem);
3103         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3104             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3105                 up_read(&fs_info->cleanup_work_sem);
3106                 close_ctree(tree_root);
3107                 return ret;
3108         }
3109         up_read(&fs_info->cleanup_work_sem);
3110
3111         ret = btrfs_resume_balance_async(fs_info);
3112         if (ret) {
3113                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3114                 close_ctree(tree_root);
3115                 return ret;
3116         }
3117
3118         ret = btrfs_resume_dev_replace_async(fs_info);
3119         if (ret) {
3120                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3121                 close_ctree(tree_root);
3122                 return ret;
3123         }
3124
3125         btrfs_qgroup_rescan_resume(fs_info);
3126
3127         if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3128             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3129                 btrfs_info(fs_info, "clearing free space tree");
3130                 ret = btrfs_clear_free_space_tree(fs_info);
3131                 if (ret) {
3132                         btrfs_warn(fs_info,
3133                                 "failed to clear free space tree: %d", ret);
3134                         close_ctree(tree_root);
3135                         return ret;
3136                 }
3137         }
3138
3139         if (!fs_info->uuid_root) {
3140                 btrfs_info(fs_info, "creating UUID tree");
3141                 ret = btrfs_create_uuid_tree(fs_info);
3142                 if (ret) {
3143                         btrfs_warn(fs_info,
3144                                 "failed to create the UUID tree: %d", ret);
3145                         close_ctree(tree_root);
3146                         return ret;
3147                 }
3148         } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3149                    fs_info->generation !=
3150                                 btrfs_super_uuid_tree_generation(disk_super)) {
3151                 btrfs_info(fs_info, "checking UUID tree");
3152                 ret = btrfs_check_uuid_tree(fs_info);
3153                 if (ret) {
3154                         btrfs_warn(fs_info,
3155                                 "failed to check the UUID tree: %d", ret);
3156                         close_ctree(tree_root);
3157                         return ret;
3158                 }
3159         } else {
3160                 fs_info->update_uuid_tree_gen = 1;
3161         }
3162
3163         fs_info->open = 1;
3164
3165         /*
3166          * backuproot only affect mount behavior, and if open_ctree succeeded,
3167          * no need to keep the flag
3168          */
3169         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3170
3171         return 0;
3172
3173 fail_qgroup:
3174         btrfs_free_qgroup_config(fs_info);
3175 fail_trans_kthread:
3176         kthread_stop(fs_info->transaction_kthread);
3177         btrfs_cleanup_transaction(fs_info->tree_root);
3178         btrfs_free_fs_roots(fs_info);
3179 fail_cleaner:
3180         kthread_stop(fs_info->cleaner_kthread);
3181
3182         /*
3183          * make sure we're done with the btree inode before we stop our
3184          * kthreads
3185          */
3186         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3187
3188 fail_sysfs:
3189         if (cleaner_mutex_locked) {
3190                 mutex_unlock(&fs_info->cleaner_mutex);
3191                 cleaner_mutex_locked = false;
3192         }
3193         btrfs_sysfs_remove_mounted(fs_info);
3194
3195 fail_fsdev_sysfs:
3196         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3197
3198 fail_block_groups:
3199         btrfs_put_block_group_cache(fs_info);
3200         btrfs_free_block_groups(fs_info);
3201
3202 fail_tree_roots:
3203         free_root_pointers(fs_info, 1);
3204         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3205
3206 fail_sb_buffer:
3207         btrfs_stop_all_workers(fs_info);
3208 fail_alloc:
3209 fail_iput:
3210         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3211
3212         iput(fs_info->btree_inode);
3213 fail_bio_counter:
3214         percpu_counter_destroy(&fs_info->bio_counter);
3215 fail_delalloc_bytes:
3216         percpu_counter_destroy(&fs_info->delalloc_bytes);
3217 fail_dirty_metadata_bytes:
3218         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3219 fail_bdi:
3220         bdi_destroy(&fs_info->bdi);
3221 fail_srcu:
3222         cleanup_srcu_struct(&fs_info->subvol_srcu);
3223 fail:
3224         btrfs_free_stripe_hash_table(fs_info);
3225         btrfs_close_devices(fs_info->fs_devices);
3226         return err;
3227
3228 recovery_tree_root:
3229         if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3230                 goto fail_tree_roots;
3231
3232         free_root_pointers(fs_info, 0);
3233
3234         /* don't use the log in recovery mode, it won't be valid */
3235         btrfs_set_super_log_root(disk_super, 0);
3236
3237         /* we can't trust the free space cache either */
3238         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3239
3240         ret = next_root_backup(fs_info, fs_info->super_copy,
3241                                &num_backups_tried, &backup_index);
3242         if (ret == -1)
3243                 goto fail_block_groups;
3244         goto retry_root_backup;
3245 }
3246
3247 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3248 {
3249         if (uptodate) {
3250                 set_buffer_uptodate(bh);
3251         } else {
3252                 struct btrfs_device *device = (struct btrfs_device *)
3253                         bh->b_private;
3254
3255                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3256                                 "lost page write due to IO error on %s",
3257                                           rcu_str_deref(device->name));
3258                 /* note, we don't set_buffer_write_io_error because we have
3259                  * our own ways of dealing with the IO errors
3260                  */
3261                 clear_buffer_uptodate(bh);
3262                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3263         }
3264         unlock_buffer(bh);
3265         put_bh(bh);
3266 }
3267
3268 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3269                         struct buffer_head **bh_ret)
3270 {
3271         struct buffer_head *bh;
3272         struct btrfs_super_block *super;
3273         u64 bytenr;
3274
3275         bytenr = btrfs_sb_offset(copy_num);
3276         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3277                 return -EINVAL;
3278
3279         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3280         /*
3281          * If we fail to read from the underlying devices, as of now
3282          * the best option we have is to mark it EIO.
3283          */
3284         if (!bh)
3285                 return -EIO;
3286
3287         super = (struct btrfs_super_block *)bh->b_data;
3288         if (btrfs_super_bytenr(super) != bytenr ||
3289                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3290                 brelse(bh);
3291                 return -EINVAL;
3292         }
3293
3294         *bh_ret = bh;
3295         return 0;
3296 }
3297
3298
3299 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3300 {
3301         struct buffer_head *bh;
3302         struct buffer_head *latest = NULL;
3303         struct btrfs_super_block *super;
3304         int i;
3305         u64 transid = 0;
3306         int ret = -EINVAL;
3307
3308         /* we would like to check all the supers, but that would make
3309          * a btrfs mount succeed after a mkfs from a different FS.
3310          * So, we need to add a special mount option to scan for
3311          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3312          */
3313         for (i = 0; i < 1; i++) {
3314                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3315                 if (ret)
3316                         continue;
3317
3318                 super = (struct btrfs_super_block *)bh->b_data;
3319
3320                 if (!latest || btrfs_super_generation(super) > transid) {
3321                         brelse(latest);
3322                         latest = bh;
3323                         transid = btrfs_super_generation(super);
3324                 } else {
3325                         brelse(bh);
3326                 }
3327         }
3328
3329         if (!latest)
3330                 return ERR_PTR(ret);
3331
3332         return latest;
3333 }
3334
3335 /*
3336  * this should be called twice, once with wait == 0 and
3337  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3338  * we write are pinned.
3339  *
3340  * They are released when wait == 1 is done.
3341  * max_mirrors must be the same for both runs, and it indicates how
3342  * many supers on this one device should be written.
3343  *
3344  * max_mirrors == 0 means to write them all.
3345  */
3346 static int write_dev_supers(struct btrfs_device *device,
3347                             struct btrfs_super_block *sb,
3348                             int do_barriers, int wait, int max_mirrors)
3349 {
3350         struct buffer_head *bh;
3351         int i;
3352         int ret;
3353         int errors = 0;
3354         u32 crc;
3355         u64 bytenr;
3356
3357         if (max_mirrors == 0)
3358                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3359
3360         for (i = 0; i < max_mirrors; i++) {
3361                 bytenr = btrfs_sb_offset(i);
3362                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3363                     device->commit_total_bytes)
3364                         break;
3365
3366                 if (wait) {
3367                         bh = __find_get_block(device->bdev, bytenr / 4096,
3368                                               BTRFS_SUPER_INFO_SIZE);
3369                         if (!bh) {
3370                                 errors++;
3371                                 continue;
3372                         }
3373                         wait_on_buffer(bh);
3374                         if (!buffer_uptodate(bh))
3375                                 errors++;
3376
3377                         /* drop our reference */
3378                         brelse(bh);
3379
3380                         /* drop the reference from the wait == 0 run */
3381                         brelse(bh);
3382                         continue;
3383                 } else {
3384                         btrfs_set_super_bytenr(sb, bytenr);
3385
3386                         crc = ~(u32)0;
3387                         crc = btrfs_csum_data((char *)sb +
3388                                               BTRFS_CSUM_SIZE, crc,
3389                                               BTRFS_SUPER_INFO_SIZE -
3390                                               BTRFS_CSUM_SIZE);
3391                         btrfs_csum_final(crc, sb->csum);
3392
3393                         /*
3394                          * one reference for us, and we leave it for the
3395                          * caller
3396                          */
3397                         bh = __getblk(device->bdev, bytenr / 4096,
3398                                       BTRFS_SUPER_INFO_SIZE);
3399                         if (!bh) {
3400                                 btrfs_err(device->dev_root->fs_info,
3401                                     "couldn't get super buffer head for bytenr %llu",
3402                                     bytenr);
3403                                 errors++;
3404                                 continue;
3405                         }
3406
3407                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3408
3409                         /* one reference for submit_bh */
3410                         get_bh(bh);
3411
3412                         set_buffer_uptodate(bh);
3413                         lock_buffer(bh);
3414                         bh->b_end_io = btrfs_end_buffer_write_sync;
3415                         bh->b_private = device;
3416                 }
3417
3418                 /*
3419                  * we fua the first super.  The others we allow
3420                  * to go down lazy.
3421                  */
3422                 if (i == 0)
3423                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3424                 else
3425                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3426                 if (ret)
3427                         errors++;
3428         }
3429         return errors < i ? 0 : -1;
3430 }
3431
3432 /*
3433  * endio for the write_dev_flush, this will wake anyone waiting
3434  * for the barrier when it is done
3435  */
3436 static void btrfs_end_empty_barrier(struct bio *bio)
3437 {
3438         if (bio->bi_private)
3439                 complete(bio->bi_private);
3440         bio_put(bio);
3441 }
3442
3443 /*
3444  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3445  * sent down.  With wait == 1, it waits for the previous flush.
3446  *
3447  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3448  * capable
3449  */
3450 static int write_dev_flush(struct btrfs_device *device, int wait)
3451 {
3452         struct bio *bio;
3453         int ret = 0;
3454
3455         if (device->nobarriers)
3456                 return 0;
3457
3458         if (wait) {
3459                 bio = device->flush_bio;
3460                 if (!bio)
3461                         return 0;
3462
3463                 wait_for_completion(&device->flush_wait);
3464
3465                 if (bio->bi_error) {
3466                         ret = bio->bi_error;
3467                         btrfs_dev_stat_inc_and_print(device,
3468                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3469                 }
3470
3471                 /* drop the reference from the wait == 0 run */
3472                 bio_put(bio);
3473                 device->flush_bio = NULL;
3474
3475                 return ret;
3476         }
3477
3478         /*
3479          * one reference for us, and we leave it for the
3480          * caller
3481          */
3482         device->flush_bio = NULL;
3483         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3484         if (!bio)
3485                 return -ENOMEM;
3486
3487         bio->bi_end_io = btrfs_end_empty_barrier;
3488         bio->bi_bdev = device->bdev;
3489         init_completion(&device->flush_wait);
3490         bio->bi_private = &device->flush_wait;
3491         device->flush_bio = bio;
3492
3493         bio_get(bio);
3494         btrfsic_submit_bio(WRITE_FLUSH, bio);
3495
3496         return 0;
3497 }
3498
3499 /*
3500  * send an empty flush down to each device in parallel,
3501  * then wait for them
3502  */
3503 static int barrier_all_devices(struct btrfs_fs_info *info)
3504 {
3505         struct list_head *head;
3506         struct btrfs_device *dev;
3507         int errors_send = 0;
3508         int errors_wait = 0;
3509         int ret;
3510
3511         /* send down all the barriers */
3512         head = &info->fs_devices->devices;
3513         list_for_each_entry_rcu(dev, head, dev_list) {
3514                 if (dev->missing)
3515                         continue;
3516                 if (!dev->bdev) {
3517                         errors_send++;
3518                         continue;
3519                 }
3520                 if (!dev->in_fs_metadata || !dev->writeable)
3521                         continue;
3522
3523                 ret = write_dev_flush(dev, 0);
3524                 if (ret)
3525                         errors_send++;
3526         }
3527
3528         /* wait for all the barriers */
3529         list_for_each_entry_rcu(dev, head, dev_list) {
3530                 if (dev->missing)
3531                         continue;
3532                 if (!dev->bdev) {
3533                         errors_wait++;
3534                         continue;
3535                 }
3536                 if (!dev->in_fs_metadata || !dev->writeable)
3537                         continue;
3538
3539                 ret = write_dev_flush(dev, 1);
3540                 if (ret)
3541                         errors_wait++;
3542         }
3543         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3544             errors_wait > info->num_tolerated_disk_barrier_failures)
3545                 return -EIO;
3546         return 0;
3547 }
3548
3549 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3550 {
3551         int raid_type;
3552         int min_tolerated = INT_MAX;
3553
3554         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3555             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3556                 min_tolerated = min(min_tolerated,
3557                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3558                                     tolerated_failures);
3559
3560         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3561                 if (raid_type == BTRFS_RAID_SINGLE)
3562                         continue;
3563                 if (!(flags & btrfs_raid_group[raid_type]))
3564                         continue;
3565                 min_tolerated = min(min_tolerated,
3566                                     btrfs_raid_array[raid_type].
3567                                     tolerated_failures);
3568         }
3569
3570         if (min_tolerated == INT_MAX) {
3571                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3572                 min_tolerated = 0;
3573         }
3574
3575         return min_tolerated;
3576 }
3577
3578 int btrfs_calc_num_tolerated_disk_barrier_failures(
3579         struct btrfs_fs_info *fs_info)
3580 {
3581         struct btrfs_ioctl_space_info space;
3582         struct btrfs_space_info *sinfo;
3583         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3584                        BTRFS_BLOCK_GROUP_SYSTEM,
3585                        BTRFS_BLOCK_GROUP_METADATA,
3586                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3587         int i;
3588         int c;
3589         int num_tolerated_disk_barrier_failures =
3590                 (int)fs_info->fs_devices->num_devices;
3591
3592         for (i = 0; i < ARRAY_SIZE(types); i++) {
3593                 struct btrfs_space_info *tmp;
3594
3595                 sinfo = NULL;
3596                 rcu_read_lock();
3597                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3598                         if (tmp->flags == types[i]) {
3599                                 sinfo = tmp;
3600                                 break;
3601                         }
3602                 }
3603                 rcu_read_unlock();
3604
3605                 if (!sinfo)
3606                         continue;
3607
3608                 down_read(&sinfo->groups_sem);
3609                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3610                         u64 flags;
3611
3612                         if (list_empty(&sinfo->block_groups[c]))
3613                                 continue;
3614
3615                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3616                                                    &space);
3617                         if (space.total_bytes == 0 || space.used_bytes == 0)
3618                                 continue;
3619                         flags = space.flags;
3620
3621                         num_tolerated_disk_barrier_failures = min(
3622                                 num_tolerated_disk_barrier_failures,
3623                                 btrfs_get_num_tolerated_disk_barrier_failures(
3624                                         flags));
3625                 }
3626                 up_read(&sinfo->groups_sem);
3627         }
3628
3629         return num_tolerated_disk_barrier_failures;
3630 }
3631
3632 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3633 {
3634         struct list_head *head;
3635         struct btrfs_device *dev;
3636         struct btrfs_super_block *sb;
3637         struct btrfs_dev_item *dev_item;
3638         int ret;
3639         int do_barriers;
3640         int max_errors;
3641         int total_errors = 0;
3642         u64 flags;
3643
3644         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3645         backup_super_roots(root->fs_info);
3646
3647         sb = root->fs_info->super_for_commit;
3648         dev_item = &sb->dev_item;
3649
3650         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3651         head = &root->fs_info->fs_devices->devices;
3652         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3653
3654         if (do_barriers) {
3655                 ret = barrier_all_devices(root->fs_info);
3656                 if (ret) {
3657                         mutex_unlock(
3658                                 &root->fs_info->fs_devices->device_list_mutex);
3659                         btrfs_handle_fs_error(root->fs_info, ret,
3660                                     "errors while submitting device barriers.");
3661                         return ret;
3662                 }
3663         }
3664
3665         list_for_each_entry_rcu(dev, head, dev_list) {
3666                 if (!dev->bdev) {
3667                         total_errors++;
3668                         continue;
3669                 }
3670                 if (!dev->in_fs_metadata || !dev->writeable)
3671                         continue;
3672
3673                 btrfs_set_stack_device_generation(dev_item, 0);
3674                 btrfs_set_stack_device_type(dev_item, dev->type);
3675                 btrfs_set_stack_device_id(dev_item, dev->devid);
3676                 btrfs_set_stack_device_total_bytes(dev_item,
3677                                                    dev->commit_total_bytes);
3678                 btrfs_set_stack_device_bytes_used(dev_item,
3679                                                   dev->commit_bytes_used);
3680                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3681                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3682                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3683                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3684                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3685
3686                 flags = btrfs_super_flags(sb);
3687                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3688
3689                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3690                 if (ret)
3691                         total_errors++;
3692         }
3693         if (total_errors > max_errors) {
3694                 btrfs_err(root->fs_info, "%d errors while writing supers",
3695                        total_errors);
3696                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3697
3698                 /* FUA is masked off if unsupported and can't be the reason */
3699                 btrfs_handle_fs_error(root->fs_info, -EIO,
3700                             "%d errors while writing supers", total_errors);
3701                 return -EIO;
3702         }
3703
3704         total_errors = 0;
3705         list_for_each_entry_rcu(dev, head, dev_list) {
3706                 if (!dev->bdev)
3707                         continue;
3708                 if (!dev->in_fs_metadata || !dev->writeable)
3709                         continue;
3710
3711                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3712                 if (ret)
3713                         total_errors++;
3714         }
3715         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3716         if (total_errors > max_errors) {
3717                 btrfs_handle_fs_error(root->fs_info, -EIO,
3718                             "%d errors while writing supers", total_errors);
3719                 return -EIO;
3720         }
3721         return 0;
3722 }
3723
3724 int write_ctree_super(struct btrfs_trans_handle *trans,
3725                       struct btrfs_root *root, int max_mirrors)
3726 {
3727         return write_all_supers(root, max_mirrors);
3728 }
3729
3730 /* Drop a fs root from the radix tree and free it. */
3731 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3732                                   struct btrfs_root *root)
3733 {
3734         spin_lock(&fs_info->fs_roots_radix_lock);
3735         radix_tree_delete(&fs_info->fs_roots_radix,
3736                           (unsigned long)root->root_key.objectid);
3737         spin_unlock(&fs_info->fs_roots_radix_lock);
3738
3739         if (btrfs_root_refs(&root->root_item) == 0)
3740                 synchronize_srcu(&fs_info->subvol_srcu);
3741
3742         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3743                 btrfs_free_log(NULL, root);
3744
3745         if (root->free_ino_pinned)
3746                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3747         if (root->free_ino_ctl)
3748                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3749         free_fs_root(root);
3750 }
3751
3752 static void free_fs_root(struct btrfs_root *root)
3753 {
3754         iput(root->ino_cache_inode);
3755         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3756         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3757         root->orphan_block_rsv = NULL;
3758         if (root->anon_dev)
3759                 free_anon_bdev(root->anon_dev);
3760         if (root->subv_writers)
3761                 btrfs_free_subvolume_writers(root->subv_writers);
3762         free_extent_buffer(root->node);
3763         free_extent_buffer(root->commit_root);
3764         kfree(root->free_ino_ctl);
3765         kfree(root->free_ino_pinned);
3766         kfree(root->name);
3767         btrfs_put_fs_root(root);
3768 }
3769
3770 void btrfs_free_fs_root(struct btrfs_root *root)
3771 {
3772         free_fs_root(root);
3773 }
3774
3775 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3776 {
3777         u64 root_objectid = 0;
3778         struct btrfs_root *gang[8];
3779         int i = 0;
3780         int err = 0;
3781         unsigned int ret = 0;
3782         int index;
3783
3784         while (1) {
3785                 index = srcu_read_lock(&fs_info->subvol_srcu);
3786                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3787                                              (void **)gang, root_objectid,
3788                                              ARRAY_SIZE(gang));
3789                 if (!ret) {
3790                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3791                         break;
3792                 }
3793                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3794
3795                 for (i = 0; i < ret; i++) {
3796                         /* Avoid to grab roots in dead_roots */
3797                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3798                                 gang[i] = NULL;
3799                                 continue;
3800                         }
3801                         /* grab all the search result for later use */
3802                         gang[i] = btrfs_grab_fs_root(gang[i]);
3803                 }
3804                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3805
3806                 for (i = 0; i < ret; i++) {
3807                         if (!gang[i])
3808                                 continue;
3809                         root_objectid = gang[i]->root_key.objectid;
3810                         err = btrfs_orphan_cleanup(gang[i]);
3811                         if (err)
3812                                 break;
3813                         btrfs_put_fs_root(gang[i]);
3814                 }
3815                 root_objectid++;
3816         }
3817
3818         /* release the uncleaned roots due to error */
3819         for (; i < ret; i++) {
3820                 if (gang[i])
3821                         btrfs_put_fs_root(gang[i]);
3822         }
3823         return err;
3824 }
3825
3826 int btrfs_commit_super(struct btrfs_root *root)
3827 {
3828         struct btrfs_trans_handle *trans;
3829
3830         mutex_lock(&root->fs_info->cleaner_mutex);
3831         btrfs_run_delayed_iputs(root);
3832         mutex_unlock(&root->fs_info->cleaner_mutex);
3833         wake_up_process(root->fs_info->cleaner_kthread);
3834
3835         /* wait until ongoing cleanup work done */
3836         down_write(&root->fs_info->cleanup_work_sem);
3837         up_write(&root->fs_info->cleanup_work_sem);
3838
3839         trans = btrfs_join_transaction(root);
3840         if (IS_ERR(trans))
3841                 return PTR_ERR(trans);
3842         return btrfs_commit_transaction(trans, root);
3843 }
3844
3845 void close_ctree(struct btrfs_root *root)
3846 {
3847         struct btrfs_fs_info *fs_info = root->fs_info;
3848         int ret;
3849
3850         fs_info->closing = 1;
3851         smp_mb();
3852
3853         /* wait for the qgroup rescan worker to stop */
3854         btrfs_qgroup_wait_for_completion(fs_info);
3855
3856         /* wait for the uuid_scan task to finish */
3857         down(&fs_info->uuid_tree_rescan_sem);
3858         /* avoid complains from lockdep et al., set sem back to initial state */
3859         up(&fs_info->uuid_tree_rescan_sem);
3860
3861         /* pause restriper - we want to resume on mount */
3862         btrfs_pause_balance(fs_info);
3863
3864         btrfs_dev_replace_suspend_for_unmount(fs_info);
3865
3866         btrfs_scrub_cancel(fs_info);
3867
3868         /* wait for any defraggers to finish */
3869         wait_event(fs_info->transaction_wait,
3870                    (atomic_read(&fs_info->defrag_running) == 0));
3871
3872         /* clear out the rbtree of defraggable inodes */
3873         btrfs_cleanup_defrag_inodes(fs_info);
3874
3875         cancel_work_sync(&fs_info->async_reclaim_work);
3876
3877         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3878                 /*
3879                  * If the cleaner thread is stopped and there are
3880                  * block groups queued for removal, the deletion will be
3881                  * skipped when we quit the cleaner thread.
3882                  */
3883                 btrfs_delete_unused_bgs(root->fs_info);
3884
3885                 ret = btrfs_commit_super(root);
3886                 if (ret)
3887                         btrfs_err(fs_info, "commit super ret %d", ret);
3888         }
3889
3890         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3891                 btrfs_error_commit_super(root);
3892
3893         kthread_stop(fs_info->transaction_kthread);
3894         kthread_stop(fs_info->cleaner_kthread);
3895
3896         fs_info->closing = 2;
3897         smp_mb();
3898
3899         btrfs_free_qgroup_config(fs_info);
3900
3901         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3902                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3903                        percpu_counter_sum(&fs_info->delalloc_bytes));
3904         }
3905
3906         btrfs_sysfs_remove_mounted(fs_info);
3907         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3908
3909         btrfs_free_fs_roots(fs_info);
3910
3911         btrfs_put_block_group_cache(fs_info);
3912
3913         btrfs_free_block_groups(fs_info);
3914
3915         /*
3916          * we must make sure there is not any read request to
3917          * submit after we stopping all workers.
3918          */
3919         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3920         btrfs_stop_all_workers(fs_info);
3921
3922         fs_info->open = 0;
3923         free_root_pointers(fs_info, 1);
3924
3925         iput(fs_info->btree_inode);
3926
3927 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3928         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3929                 btrfsic_unmount(root, fs_info->fs_devices);
3930 #endif
3931
3932         btrfs_close_devices(fs_info->fs_devices);
3933         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3934
3935         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3936         percpu_counter_destroy(&fs_info->delalloc_bytes);
3937         percpu_counter_destroy(&fs_info->bio_counter);
3938         bdi_destroy(&fs_info->bdi);
3939         cleanup_srcu_struct(&fs_info->subvol_srcu);
3940
3941         btrfs_free_stripe_hash_table(fs_info);
3942
3943         __btrfs_free_block_rsv(root->orphan_block_rsv);
3944         root->orphan_block_rsv = NULL;
3945
3946         lock_chunks(root);
3947         while (!list_empty(&fs_info->pinned_chunks)) {
3948                 struct extent_map *em;
3949
3950                 em = list_first_entry(&fs_info->pinned_chunks,
3951                                       struct extent_map, list);
3952                 list_del_init(&em->list);
3953                 free_extent_map(em);
3954         }
3955         unlock_chunks(root);
3956 }
3957
3958 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3959                           int atomic)
3960 {
3961         int ret;
3962         struct inode *btree_inode = buf->pages[0]->mapping->host;
3963
3964         ret = extent_buffer_uptodate(buf);
3965         if (!ret)
3966                 return ret;
3967
3968         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3969                                     parent_transid, atomic);
3970         if (ret == -EAGAIN)
3971                 return ret;
3972         return !ret;
3973 }
3974
3975 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3976 {
3977         struct btrfs_root *root;
3978         u64 transid = btrfs_header_generation(buf);
3979         int was_dirty;
3980
3981 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3982         /*
3983          * This is a fast path so only do this check if we have sanity tests
3984          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3985          * outside of the sanity tests.
3986          */
3987         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3988                 return;
3989 #endif
3990         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3991         btrfs_assert_tree_locked(buf);
3992         if (transid != root->fs_info->generation)
3993                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3994                        "found %llu running %llu\n",
3995                         buf->start, transid, root->fs_info->generation);
3996         was_dirty = set_extent_buffer_dirty(buf);
3997         if (!was_dirty)
3998                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3999                                      buf->len,
4000                                      root->fs_info->dirty_metadata_batch);
4001 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4002         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4003                 btrfs_print_leaf(root, buf);
4004                 ASSERT(0);
4005         }
4006 #endif
4007 }
4008
4009 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4010                                         int flush_delayed)
4011 {
4012         /*
4013          * looks as though older kernels can get into trouble with
4014          * this code, they end up stuck in balance_dirty_pages forever
4015          */
4016         int ret;
4017
4018         if (current->flags & PF_MEMALLOC)
4019                 return;
4020
4021         if (flush_delayed)
4022                 btrfs_balance_delayed_items(root);
4023
4024         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4025                                      BTRFS_DIRTY_METADATA_THRESH);
4026         if (ret > 0) {
4027                 balance_dirty_pages_ratelimited(
4028                                    root->fs_info->btree_inode->i_mapping);
4029         }
4030 }
4031
4032 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4033 {
4034         __btrfs_btree_balance_dirty(root, 1);
4035 }
4036
4037 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4038 {
4039         __btrfs_btree_balance_dirty(root, 0);
4040 }
4041
4042 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4043 {
4044         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4045         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4046 }
4047
4048 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4049                               int read_only)
4050 {
4051         struct btrfs_super_block *sb = fs_info->super_copy;
4052         u64 nodesize = btrfs_super_nodesize(sb);
4053         u64 sectorsize = btrfs_super_sectorsize(sb);
4054         int ret = 0;
4055
4056         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4057                 printk(KERN_ERR "BTRFS: no valid FS found\n");
4058                 ret = -EINVAL;
4059         }
4060         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4061                 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4062                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4063         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4064                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4065                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4066                 ret = -EINVAL;
4067         }
4068         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4069                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4070                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4071                 ret = -EINVAL;
4072         }
4073         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4074                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4075                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4076                 ret = -EINVAL;
4077         }
4078
4079         /*
4080          * Check sectorsize and nodesize first, other check will need it.
4081          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4082          */
4083         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4084             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4085                 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4086                 ret = -EINVAL;
4087         }
4088         /* Only PAGE SIZE is supported yet */
4089         if (sectorsize != PAGE_SIZE) {
4090                 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4091                                 sectorsize, PAGE_SIZE);
4092                 ret = -EINVAL;
4093         }
4094         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4095             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4096                 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4097                 ret = -EINVAL;
4098         }
4099         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4100                 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4101                                 le32_to_cpu(sb->__unused_leafsize),
4102                                 nodesize);
4103                 ret = -EINVAL;
4104         }
4105
4106         /* Root alignment check */
4107         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4108                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4109                                 btrfs_super_root(sb));
4110                 ret = -EINVAL;
4111         }
4112         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4113                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4114                                 btrfs_super_chunk_root(sb));
4115                 ret = -EINVAL;
4116         }
4117         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4118                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4119                                 btrfs_super_log_root(sb));
4120                 ret = -EINVAL;
4121         }
4122
4123         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4124                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4125                                 fs_info->fsid, sb->dev_item.fsid);
4126                 ret = -EINVAL;
4127         }
4128
4129         /*
4130          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4131          * done later
4132          */
4133         if (btrfs_super_num_devices(sb) > (1UL << 31))
4134                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4135                                 btrfs_super_num_devices(sb));
4136         if (btrfs_super_num_devices(sb) == 0) {
4137                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4138                 ret = -EINVAL;
4139         }
4140
4141         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4142                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4143                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4144                 ret = -EINVAL;
4145         }
4146
4147         /*
4148          * Obvious sys_chunk_array corruptions, it must hold at least one key
4149          * and one chunk
4150          */
4151         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4152                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4153                                 btrfs_super_sys_array_size(sb),
4154                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4155                 ret = -EINVAL;
4156         }
4157         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4158                         + sizeof(struct btrfs_chunk)) {
4159                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4160                                 btrfs_super_sys_array_size(sb),
4161                                 sizeof(struct btrfs_disk_key)
4162                                 + sizeof(struct btrfs_chunk));
4163                 ret = -EINVAL;
4164         }
4165
4166         /*
4167          * The generation is a global counter, we'll trust it more than the others
4168          * but it's still possible that it's the one that's wrong.
4169          */
4170         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4171                 printk(KERN_WARNING
4172                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4173                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4174         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4175             && btrfs_super_cache_generation(sb) != (u64)-1)
4176                 printk(KERN_WARNING
4177                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4178                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4179
4180         return ret;
4181 }
4182
4183 static void btrfs_error_commit_super(struct btrfs_root *root)
4184 {
4185         mutex_lock(&root->fs_info->cleaner_mutex);
4186         btrfs_run_delayed_iputs(root);
4187         mutex_unlock(&root->fs_info->cleaner_mutex);
4188
4189         down_write(&root->fs_info->cleanup_work_sem);
4190         up_write(&root->fs_info->cleanup_work_sem);
4191
4192         /* cleanup FS via transaction */
4193         btrfs_cleanup_transaction(root);
4194 }
4195
4196 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4197 {
4198         struct btrfs_ordered_extent *ordered;
4199
4200         spin_lock(&root->ordered_extent_lock);
4201         /*
4202          * This will just short circuit the ordered completion stuff which will
4203          * make sure the ordered extent gets properly cleaned up.
4204          */
4205         list_for_each_entry(ordered, &root->ordered_extents,
4206                             root_extent_list)
4207                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4208         spin_unlock(&root->ordered_extent_lock);
4209 }
4210
4211 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4212 {
4213         struct btrfs_root *root;
4214         struct list_head splice;
4215
4216         INIT_LIST_HEAD(&splice);
4217
4218         spin_lock(&fs_info->ordered_root_lock);
4219         list_splice_init(&fs_info->ordered_roots, &splice);
4220         while (!list_empty(&splice)) {
4221                 root = list_first_entry(&splice, struct btrfs_root,
4222                                         ordered_root);
4223                 list_move_tail(&root->ordered_root,
4224                                &fs_info->ordered_roots);
4225
4226                 spin_unlock(&fs_info->ordered_root_lock);
4227                 btrfs_destroy_ordered_extents(root);
4228
4229                 cond_resched();
4230                 spin_lock(&fs_info->ordered_root_lock);
4231         }
4232         spin_unlock(&fs_info->ordered_root_lock);
4233 }
4234
4235 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4236                                       struct btrfs_root *root)
4237 {
4238         struct rb_node *node;
4239         struct btrfs_delayed_ref_root *delayed_refs;
4240         struct btrfs_delayed_ref_node *ref;
4241         int ret = 0;
4242
4243         delayed_refs = &trans->delayed_refs;
4244
4245         spin_lock(&delayed_refs->lock);
4246         if (atomic_read(&delayed_refs->num_entries) == 0) {
4247                 spin_unlock(&delayed_refs->lock);
4248                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4249                 return ret;
4250         }
4251
4252         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4253                 struct btrfs_delayed_ref_head *head;
4254                 struct btrfs_delayed_ref_node *tmp;
4255                 bool pin_bytes = false;
4256
4257                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4258                                 href_node);
4259                 if (!mutex_trylock(&head->mutex)) {
4260                         atomic_inc(&head->node.refs);
4261                         spin_unlock(&delayed_refs->lock);
4262
4263                         mutex_lock(&head->mutex);
4264                         mutex_unlock(&head->mutex);
4265                         btrfs_put_delayed_ref(&head->node);
4266                         spin_lock(&delayed_refs->lock);
4267                         continue;
4268                 }
4269                 spin_lock(&head->lock);
4270                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4271                                                  list) {
4272                         ref->in_tree = 0;
4273                         list_del(&ref->list);
4274                         atomic_dec(&delayed_refs->num_entries);
4275                         btrfs_put_delayed_ref(ref);
4276                 }
4277                 if (head->must_insert_reserved)
4278                         pin_bytes = true;
4279                 btrfs_free_delayed_extent_op(head->extent_op);
4280                 delayed_refs->num_heads--;
4281                 if (head->processing == 0)
4282                         delayed_refs->num_heads_ready--;
4283                 atomic_dec(&delayed_refs->num_entries);
4284                 head->node.in_tree = 0;
4285                 rb_erase(&head->href_node, &delayed_refs->href_root);
4286                 spin_unlock(&head->lock);
4287                 spin_unlock(&delayed_refs->lock);
4288                 mutex_unlock(&head->mutex);
4289
4290                 if (pin_bytes)
4291                         btrfs_pin_extent(root, head->node.bytenr,
4292                                          head->node.num_bytes, 1);
4293                 btrfs_put_delayed_ref(&head->node);
4294                 cond_resched();
4295                 spin_lock(&delayed_refs->lock);
4296         }
4297
4298         spin_unlock(&delayed_refs->lock);
4299
4300         return ret;
4301 }
4302
4303 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4304 {
4305         struct btrfs_inode *btrfs_inode;
4306         struct list_head splice;
4307
4308         INIT_LIST_HEAD(&splice);
4309
4310         spin_lock(&root->delalloc_lock);
4311         list_splice_init(&root->delalloc_inodes, &splice);
4312
4313         while (!list_empty(&splice)) {
4314                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4315                                                delalloc_inodes);
4316
4317                 list_del_init(&btrfs_inode->delalloc_inodes);
4318                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4319                           &btrfs_inode->runtime_flags);
4320                 spin_unlock(&root->delalloc_lock);
4321
4322                 btrfs_invalidate_inodes(btrfs_inode->root);
4323
4324                 spin_lock(&root->delalloc_lock);
4325         }
4326
4327         spin_unlock(&root->delalloc_lock);
4328 }
4329
4330 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4331 {
4332         struct btrfs_root *root;
4333         struct list_head splice;
4334
4335         INIT_LIST_HEAD(&splice);
4336
4337         spin_lock(&fs_info->delalloc_root_lock);
4338         list_splice_init(&fs_info->delalloc_roots, &splice);
4339         while (!list_empty(&splice)) {
4340                 root = list_first_entry(&splice, struct btrfs_root,
4341                                          delalloc_root);
4342                 list_del_init(&root->delalloc_root);
4343                 root = btrfs_grab_fs_root(root);
4344                 BUG_ON(!root);
4345                 spin_unlock(&fs_info->delalloc_root_lock);
4346
4347                 btrfs_destroy_delalloc_inodes(root);
4348                 btrfs_put_fs_root(root);
4349
4350                 spin_lock(&fs_info->delalloc_root_lock);
4351         }
4352         spin_unlock(&fs_info->delalloc_root_lock);
4353 }
4354
4355 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4356                                         struct extent_io_tree *dirty_pages,
4357                                         int mark)
4358 {
4359         int ret;
4360         struct extent_buffer *eb;
4361         u64 start = 0;
4362         u64 end;
4363
4364         while (1) {
4365                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4366                                             mark, NULL);
4367                 if (ret)
4368                         break;
4369
4370                 clear_extent_bits(dirty_pages, start, end, mark);
4371                 while (start <= end) {
4372                         eb = btrfs_find_tree_block(root->fs_info, start);
4373                         start += root->nodesize;
4374                         if (!eb)
4375                                 continue;
4376                         wait_on_extent_buffer_writeback(eb);
4377
4378                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4379                                                &eb->bflags))
4380                                 clear_extent_buffer_dirty(eb);
4381                         free_extent_buffer_stale(eb);
4382                 }
4383         }
4384
4385         return ret;
4386 }
4387
4388 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4389                                        struct extent_io_tree *pinned_extents)
4390 {
4391         struct extent_io_tree *unpin;
4392         u64 start;
4393         u64 end;
4394         int ret;
4395         bool loop = true;
4396
4397         unpin = pinned_extents;
4398 again:
4399         while (1) {
4400                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4401                                             EXTENT_DIRTY, NULL);
4402                 if (ret)
4403                         break;
4404
4405                 clear_extent_dirty(unpin, start, end);
4406                 btrfs_error_unpin_extent_range(root, start, end);
4407                 cond_resched();
4408         }
4409
4410         if (loop) {
4411                 if (unpin == &root->fs_info->freed_extents[0])
4412                         unpin = &root->fs_info->freed_extents[1];
4413                 else
4414                         unpin = &root->fs_info->freed_extents[0];
4415                 loop = false;
4416                 goto again;
4417         }
4418
4419         return 0;
4420 }
4421
4422 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4423                                    struct btrfs_root *root)
4424 {
4425         btrfs_destroy_delayed_refs(cur_trans, root);
4426
4427         cur_trans->state = TRANS_STATE_COMMIT_START;
4428         wake_up(&root->fs_info->transaction_blocked_wait);
4429
4430         cur_trans->state = TRANS_STATE_UNBLOCKED;
4431         wake_up(&root->fs_info->transaction_wait);
4432
4433         btrfs_destroy_delayed_inodes(root);
4434         btrfs_assert_delayed_root_empty(root);
4435
4436         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4437                                      EXTENT_DIRTY);
4438         btrfs_destroy_pinned_extent(root,
4439                                     root->fs_info->pinned_extents);
4440
4441         cur_trans->state =TRANS_STATE_COMPLETED;
4442         wake_up(&cur_trans->commit_wait);
4443
4444         /*
4445         memset(cur_trans, 0, sizeof(*cur_trans));
4446         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4447         */
4448 }
4449
4450 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4451 {
4452         struct btrfs_transaction *t;
4453
4454         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4455
4456         spin_lock(&root->fs_info->trans_lock);
4457         while (!list_empty(&root->fs_info->trans_list)) {
4458                 t = list_first_entry(&root->fs_info->trans_list,
4459                                      struct btrfs_transaction, list);
4460                 if (t->state >= TRANS_STATE_COMMIT_START) {
4461                         atomic_inc(&t->use_count);
4462                         spin_unlock(&root->fs_info->trans_lock);
4463                         btrfs_wait_for_commit(root, t->transid);
4464                         btrfs_put_transaction(t);
4465                         spin_lock(&root->fs_info->trans_lock);
4466                         continue;
4467                 }
4468                 if (t == root->fs_info->running_transaction) {
4469                         t->state = TRANS_STATE_COMMIT_DOING;
4470                         spin_unlock(&root->fs_info->trans_lock);
4471                         /*
4472                          * We wait for 0 num_writers since we don't hold a trans
4473                          * handle open currently for this transaction.
4474                          */
4475                         wait_event(t->writer_wait,
4476                                    atomic_read(&t->num_writers) == 0);
4477                 } else {
4478                         spin_unlock(&root->fs_info->trans_lock);
4479                 }
4480                 btrfs_cleanup_one_transaction(t, root);
4481
4482                 spin_lock(&root->fs_info->trans_lock);
4483                 if (t == root->fs_info->running_transaction)
4484                         root->fs_info->running_transaction = NULL;
4485                 list_del_init(&t->list);
4486                 spin_unlock(&root->fs_info->trans_lock);
4487
4488                 btrfs_put_transaction(t);
4489                 trace_btrfs_transaction_commit(root);
4490                 spin_lock(&root->fs_info->trans_lock);
4491         }
4492         spin_unlock(&root->fs_info->trans_lock);
4493         btrfs_destroy_all_ordered_extents(root->fs_info);
4494         btrfs_destroy_delayed_inodes(root);
4495         btrfs_assert_delayed_root_empty(root);
4496         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4497         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4498         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4499
4500         return 0;
4501 }
4502
4503 static const struct extent_io_ops btree_extent_io_ops = {
4504         .readpage_end_io_hook = btree_readpage_end_io_hook,
4505         .readpage_io_failed_hook = btree_io_failed_hook,
4506         .submit_bio_hook = btree_submit_bio_hook,
4507         /* note we're sharing with inode.c for the merge bio hook */
4508         .merge_bio_hook = btrfs_merge_bio_hook,
4509 };