Btrfs: detect corruption when non-root leaf has zero item
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
59                                  BTRFS_HEADER_FLAG_RELOC |\
60                                  BTRFS_SUPER_FLAG_ERROR |\
61                                  BTRFS_SUPER_FLAG_SEEDING |\
62                                  BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68                                     int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71                                       struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74                                         struct extent_io_tree *dirty_pages,
75                                         int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77                                        struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87         struct bio *bio;
88         bio_end_io_t *end_io;
89         void *private;
90         struct btrfs_fs_info *info;
91         int error;
92         enum btrfs_wq_endio_type metadata;
93         struct list_head list;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122         struct inode *inode;
123         struct bio *bio;
124         struct list_head list;
125         extent_submit_bio_hook_t *submit_bio_start;
126         extent_submit_bio_hook_t *submit_bio_done;
127         int rw;
128         int mirror_num;
129         unsigned long bio_flags;
130         /*
131          * bio_offset is optional, can be used if the pages in the bio
132          * can't tell us where in the file the bio should go
133          */
134         u64 bio_offset;
135         struct btrfs_work work;
136         int error;
137 };
138
139 /*
140  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
141  * eb, the lockdep key is determined by the btrfs_root it belongs to and
142  * the level the eb occupies in the tree.
143  *
144  * Different roots are used for different purposes and may nest inside each
145  * other and they require separate keysets.  As lockdep keys should be
146  * static, assign keysets according to the purpose of the root as indicated
147  * by btrfs_root->objectid.  This ensures that all special purpose roots
148  * have separate keysets.
149  *
150  * Lock-nesting across peer nodes is always done with the immediate parent
151  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
152  * subclass to avoid triggering lockdep warning in such cases.
153  *
154  * The key is set by the readpage_end_io_hook after the buffer has passed
155  * csum validation but before the pages are unlocked.  It is also set by
156  * btrfs_init_new_buffer on freshly allocated blocks.
157  *
158  * We also add a check to make sure the highest level of the tree is the
159  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
160  * needs update as well.
161  */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 #  error
165 # endif
166
167 static struct btrfs_lockdep_keyset {
168         u64                     id;             /* root objectid */
169         const char              *name_stem;     /* lock name stem */
170         char                    names[BTRFS_MAX_LEVEL + 1][20];
171         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
174         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
175         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
176         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
177         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
178         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
179         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
180         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
181         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
182         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
183         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
184         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
185         { .id = 0,                              .name_stem = "tree"     },
186 };
187
188 void __init btrfs_init_lockdep(void)
189 {
190         int i, j;
191
192         /* initialize lockdep class names */
193         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197                         snprintf(ks->names[j], sizeof(ks->names[j]),
198                                  "btrfs-%s-%02d", ks->name_stem, j);
199         }
200 }
201
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203                                     int level)
204 {
205         struct btrfs_lockdep_keyset *ks;
206
207         BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209         /* find the matching keyset, id 0 is the default entry */
210         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211                 if (ks->id == objectid)
212                         break;
213
214         lockdep_set_class_and_name(&eb->lock,
215                                    &ks->keys[level], ks->names[level]);
216 }
217
218 #endif
219
220 /*
221  * extents on the btree inode are pretty simple, there's one extent
222  * that covers the entire device
223  */
224 static struct extent_map *btree_get_extent(struct inode *inode,
225                 struct page *page, size_t pg_offset, u64 start, u64 len,
226                 int create)
227 {
228         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229         struct extent_map *em;
230         int ret;
231
232         read_lock(&em_tree->lock);
233         em = lookup_extent_mapping(em_tree, start, len);
234         if (em) {
235                 em->bdev =
236                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
237                 read_unlock(&em_tree->lock);
238                 goto out;
239         }
240         read_unlock(&em_tree->lock);
241
242         em = alloc_extent_map();
243         if (!em) {
244                 em = ERR_PTR(-ENOMEM);
245                 goto out;
246         }
247         em->start = 0;
248         em->len = (u64)-1;
249         em->block_len = (u64)-1;
250         em->block_start = 0;
251         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
252
253         write_lock(&em_tree->lock);
254         ret = add_extent_mapping(em_tree, em, 0);
255         if (ret == -EEXIST) {
256                 free_extent_map(em);
257                 em = lookup_extent_mapping(em_tree, start, len);
258                 if (!em)
259                         em = ERR_PTR(-EIO);
260         } else if (ret) {
261                 free_extent_map(em);
262                 em = ERR_PTR(ret);
263         }
264         write_unlock(&em_tree->lock);
265
266 out:
267         return em;
268 }
269
270 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
271 {
272         return btrfs_crc32c(seed, data, len);
273 }
274
275 void btrfs_csum_final(u32 crc, char *result)
276 {
277         put_unaligned_le32(~crc, result);
278 }
279
280 /*
281  * compute the csum for a btree block, and either verify it or write it
282  * into the csum field of the block.
283  */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285                            struct extent_buffer *buf,
286                            int verify)
287 {
288         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289         char *result = NULL;
290         unsigned long len;
291         unsigned long cur_len;
292         unsigned long offset = BTRFS_CSUM_SIZE;
293         char *kaddr;
294         unsigned long map_start;
295         unsigned long map_len;
296         int err;
297         u32 crc = ~(u32)0;
298         unsigned long inline_result;
299
300         len = buf->len - offset;
301         while (len > 0) {
302                 err = map_private_extent_buffer(buf, offset, 32,
303                                         &kaddr, &map_start, &map_len);
304                 if (err)
305                         return err;
306                 cur_len = min(len, map_len - (offset - map_start));
307                 crc = btrfs_csum_data(kaddr + offset - map_start,
308                                       crc, cur_len);
309                 len -= cur_len;
310                 offset += cur_len;
311         }
312         if (csum_size > sizeof(inline_result)) {
313                 result = kzalloc(csum_size, GFP_NOFS);
314                 if (!result)
315                         return -ENOMEM;
316         } else {
317                 result = (char *)&inline_result;
318         }
319
320         btrfs_csum_final(crc, result);
321
322         if (verify) {
323                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324                         u32 val;
325                         u32 found = 0;
326                         memcpy(&found, result, csum_size);
327
328                         read_extent_buffer(buf, &val, 0, csum_size);
329                         btrfs_warn_rl(fs_info,
330                                 "%s checksum verify failed on %llu wanted %X found %X "
331                                 "level %d",
332                                 fs_info->sb->s_id, buf->start,
333                                 val, found, btrfs_header_level(buf));
334                         if (result != (char *)&inline_result)
335                                 kfree(result);
336                         return -EUCLEAN;
337                 }
338         } else {
339                 write_extent_buffer(buf, result, 0, csum_size);
340         }
341         if (result != (char *)&inline_result)
342                 kfree(result);
343         return 0;
344 }
345
346 /*
347  * we can't consider a given block up to date unless the transid of the
348  * block matches the transid in the parent node's pointer.  This is how we
349  * detect blocks that either didn't get written at all or got written
350  * in the wrong place.
351  */
352 static int verify_parent_transid(struct extent_io_tree *io_tree,
353                                  struct extent_buffer *eb, u64 parent_transid,
354                                  int atomic)
355 {
356         struct extent_state *cached_state = NULL;
357         int ret;
358         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
359
360         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361                 return 0;
362
363         if (atomic)
364                 return -EAGAIN;
365
366         if (need_lock) {
367                 btrfs_tree_read_lock(eb);
368                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369         }
370
371         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
372                          &cached_state);
373         if (extent_buffer_uptodate(eb) &&
374             btrfs_header_generation(eb) == parent_transid) {
375                 ret = 0;
376                 goto out;
377         }
378         btrfs_err_rl(eb->fs_info,
379                 "parent transid verify failed on %llu wanted %llu found %llu",
380                         eb->start,
381                         parent_transid, btrfs_header_generation(eb));
382         ret = 1;
383
384         /*
385          * Things reading via commit roots that don't have normal protection,
386          * like send, can have a really old block in cache that may point at a
387          * block that has been freed and re-allocated.  So don't clear uptodate
388          * if we find an eb that is under IO (dirty/writeback) because we could
389          * end up reading in the stale data and then writing it back out and
390          * making everybody very sad.
391          */
392         if (!extent_buffer_under_io(eb))
393                 clear_extent_buffer_uptodate(eb);
394 out:
395         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396                              &cached_state, GFP_NOFS);
397         if (need_lock)
398                 btrfs_tree_read_unlock_blocking(eb);
399         return ret;
400 }
401
402 /*
403  * Return 0 if the superblock checksum type matches the checksum value of that
404  * algorithm. Pass the raw disk superblock data.
405  */
406 static int btrfs_check_super_csum(char *raw_disk_sb)
407 {
408         struct btrfs_super_block *disk_sb =
409                 (struct btrfs_super_block *)raw_disk_sb;
410         u16 csum_type = btrfs_super_csum_type(disk_sb);
411         int ret = 0;
412
413         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414                 u32 crc = ~(u32)0;
415                 const int csum_size = sizeof(crc);
416                 char result[csum_size];
417
418                 /*
419                  * The super_block structure does not span the whole
420                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421                  * is filled with zeros and is included in the checksum.
422                  */
423                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425                 btrfs_csum_final(crc, result);
426
427                 if (memcmp(raw_disk_sb, result, csum_size))
428                         ret = 1;
429         }
430
431         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
433                                 csum_type);
434                 ret = 1;
435         }
436
437         return ret;
438 }
439
440 /*
441  * helper to read a given tree block, doing retries as required when
442  * the checksums don't match and we have alternate mirrors to try.
443  */
444 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445                                           struct extent_buffer *eb,
446                                           u64 start, u64 parent_transid)
447 {
448         struct extent_io_tree *io_tree;
449         int failed = 0;
450         int ret;
451         int num_copies = 0;
452         int mirror_num = 0;
453         int failed_mirror = 0;
454
455         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457         while (1) {
458                 ret = read_extent_buffer_pages(io_tree, eb, start,
459                                                WAIT_COMPLETE,
460                                                btree_get_extent, mirror_num);
461                 if (!ret) {
462                         if (!verify_parent_transid(io_tree, eb,
463                                                    parent_transid, 0))
464                                 break;
465                         else
466                                 ret = -EIO;
467                 }
468
469                 /*
470                  * This buffer's crc is fine, but its contents are corrupted, so
471                  * there is no reason to read the other copies, they won't be
472                  * any less wrong.
473                  */
474                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
475                         break;
476
477                 num_copies = btrfs_num_copies(root->fs_info,
478                                               eb->start, eb->len);
479                 if (num_copies == 1)
480                         break;
481
482                 if (!failed_mirror) {
483                         failed = 1;
484                         failed_mirror = eb->read_mirror;
485                 }
486
487                 mirror_num++;
488                 if (mirror_num == failed_mirror)
489                         mirror_num++;
490
491                 if (mirror_num > num_copies)
492                         break;
493         }
494
495         if (failed && !ret && failed_mirror)
496                 repair_eb_io_failure(root, eb, failed_mirror);
497
498         return ret;
499 }
500
501 /*
502  * checksum a dirty tree block before IO.  This has extra checks to make sure
503  * we only fill in the checksum field in the first page of a multi-page block
504  */
505
506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
507 {
508         u64 start = page_offset(page);
509         u64 found_start;
510         struct extent_buffer *eb;
511
512         eb = (struct extent_buffer *)page->private;
513         if (page != eb->pages[0])
514                 return 0;
515
516         found_start = btrfs_header_bytenr(eb);
517         /*
518          * Please do not consolidate these warnings into a single if.
519          * It is useful to know what went wrong.
520          */
521         if (WARN_ON(found_start != start))
522                 return -EUCLEAN;
523         if (WARN_ON(!PageUptodate(page)))
524                 return -EUCLEAN;
525
526         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528
529         return csum_tree_block(fs_info, eb, 0);
530 }
531
532 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
533                                  struct extent_buffer *eb)
534 {
535         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
536         u8 fsid[BTRFS_UUID_SIZE];
537         int ret = 1;
538
539         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
540         while (fs_devices) {
541                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542                         ret = 0;
543                         break;
544                 }
545                 fs_devices = fs_devices->seed;
546         }
547         return ret;
548 }
549
550 #define CORRUPT(reason, eb, root, slot)                         \
551         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
552                    "root=%llu, slot=%d", reason,                        \
553                btrfs_header_bytenr(eb), root->objectid, slot)
554
555 static noinline int check_leaf(struct btrfs_root *root,
556                                struct extent_buffer *leaf)
557 {
558         struct btrfs_key key;
559         struct btrfs_key leaf_key;
560         u32 nritems = btrfs_header_nritems(leaf);
561         int slot;
562
563         if (nritems == 0) {
564                 struct btrfs_root *check_root;
565
566                 key.objectid = btrfs_header_owner(leaf);
567                 key.type = BTRFS_ROOT_ITEM_KEY;
568                 key.offset = (u64)-1;
569
570                 check_root = btrfs_get_fs_root(root->fs_info, &key, false);
571                 /*
572                  * The only reason we also check NULL here is that during
573                  * open_ctree() some roots has not yet been set up.
574                  */
575                 if (!IS_ERR_OR_NULL(check_root)) {
576                         /* if leaf is the root, then it's fine */
577                         if (leaf->start !=
578                             btrfs_root_bytenr(&check_root->root_item)) {
579                                 CORRUPT("non-root leaf's nritems is 0",
580                                         leaf, root, 0);
581                                 return -EIO;
582                         }
583                 }
584                 return 0;
585         }
586
587         /* Check the 0 item */
588         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
589             BTRFS_LEAF_DATA_SIZE(root)) {
590                 CORRUPT("invalid item offset size pair", leaf, root, 0);
591                 return -EIO;
592         }
593
594         /*
595          * Check to make sure each items keys are in the correct order and their
596          * offsets make sense.  We only have to loop through nritems-1 because
597          * we check the current slot against the next slot, which verifies the
598          * next slot's offset+size makes sense and that the current's slot
599          * offset is correct.
600          */
601         for (slot = 0; slot < nritems - 1; slot++) {
602                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
603                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
604
605                 /* Make sure the keys are in the right order */
606                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
607                         CORRUPT("bad key order", leaf, root, slot);
608                         return -EIO;
609                 }
610
611                 /*
612                  * Make sure the offset and ends are right, remember that the
613                  * item data starts at the end of the leaf and grows towards the
614                  * front.
615                  */
616                 if (btrfs_item_offset_nr(leaf, slot) !=
617                         btrfs_item_end_nr(leaf, slot + 1)) {
618                         CORRUPT("slot offset bad", leaf, root, slot);
619                         return -EIO;
620                 }
621
622                 /*
623                  * Check to make sure that we don't point outside of the leaf,
624                  * just in case all the items are consistent to each other, but
625                  * all point outside of the leaf.
626                  */
627                 if (btrfs_item_end_nr(leaf, slot) >
628                     BTRFS_LEAF_DATA_SIZE(root)) {
629                         CORRUPT("slot end outside of leaf", leaf, root, slot);
630                         return -EIO;
631                 }
632         }
633
634         return 0;
635 }
636
637 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
638 {
639         unsigned long nr = btrfs_header_nritems(node);
640
641         if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
642                 btrfs_crit(root->fs_info,
643                            "corrupt node: block %llu root %llu nritems %lu",
644                            node->start, root->objectid, nr);
645                 return -EIO;
646         }
647         return 0;
648 }
649
650 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
651                                       u64 phy_offset, struct page *page,
652                                       u64 start, u64 end, int mirror)
653 {
654         u64 found_start;
655         int found_level;
656         struct extent_buffer *eb;
657         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658         struct btrfs_fs_info *fs_info = root->fs_info;
659         int ret = 0;
660         int reads_done;
661
662         if (!page->private)
663                 goto out;
664
665         eb = (struct extent_buffer *)page->private;
666
667         /* the pending IO might have been the only thing that kept this buffer
668          * in memory.  Make sure we have a ref for all this other checks
669          */
670         extent_buffer_get(eb);
671
672         reads_done = atomic_dec_and_test(&eb->io_pages);
673         if (!reads_done)
674                 goto err;
675
676         eb->read_mirror = mirror;
677         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
678                 ret = -EIO;
679                 goto err;
680         }
681
682         found_start = btrfs_header_bytenr(eb);
683         if (found_start != eb->start) {
684                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
685                              found_start, eb->start);
686                 ret = -EIO;
687                 goto err;
688         }
689         if (check_tree_block_fsid(fs_info, eb)) {
690                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
691                              eb->start);
692                 ret = -EIO;
693                 goto err;
694         }
695         found_level = btrfs_header_level(eb);
696         if (found_level >= BTRFS_MAX_LEVEL) {
697                 btrfs_err(fs_info, "bad tree block level %d",
698                           (int)btrfs_header_level(eb));
699                 ret = -EIO;
700                 goto err;
701         }
702
703         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
704                                        eb, found_level);
705
706         ret = csum_tree_block(fs_info, eb, 1);
707         if (ret)
708                 goto err;
709
710         /*
711          * If this is a leaf block and it is corrupt, set the corrupt bit so
712          * that we don't try and read the other copies of this block, just
713          * return -EIO.
714          */
715         if (found_level == 0 && check_leaf(root, eb)) {
716                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
717                 ret = -EIO;
718         }
719
720         if (found_level > 0 && check_node(root, eb))
721                 ret = -EIO;
722
723         if (!ret)
724                 set_extent_buffer_uptodate(eb);
725 err:
726         if (reads_done &&
727             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
728                 btree_readahead_hook(fs_info, eb, eb->start, ret);
729
730         if (ret) {
731                 /*
732                  * our io error hook is going to dec the io pages
733                  * again, we have to make sure it has something
734                  * to decrement
735                  */
736                 atomic_inc(&eb->io_pages);
737                 clear_extent_buffer_uptodate(eb);
738         }
739         free_extent_buffer(eb);
740 out:
741         return ret;
742 }
743
744 static int btree_io_failed_hook(struct page *page, int failed_mirror)
745 {
746         struct extent_buffer *eb;
747
748         eb = (struct extent_buffer *)page->private;
749         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
750         eb->read_mirror = failed_mirror;
751         atomic_dec(&eb->io_pages);
752         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
753                 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
754         return -EIO;    /* we fixed nothing */
755 }
756
757 static void end_workqueue_bio(struct bio *bio)
758 {
759         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
760         struct btrfs_fs_info *fs_info;
761         struct btrfs_workqueue *wq;
762         btrfs_work_func_t func;
763
764         fs_info = end_io_wq->info;
765         end_io_wq->error = bio->bi_error;
766
767         if (bio->bi_rw & REQ_WRITE) {
768                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
769                         wq = fs_info->endio_meta_write_workers;
770                         func = btrfs_endio_meta_write_helper;
771                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
772                         wq = fs_info->endio_freespace_worker;
773                         func = btrfs_freespace_write_helper;
774                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
775                         wq = fs_info->endio_raid56_workers;
776                         func = btrfs_endio_raid56_helper;
777                 } else {
778                         wq = fs_info->endio_write_workers;
779                         func = btrfs_endio_write_helper;
780                 }
781         } else {
782                 if (unlikely(end_io_wq->metadata ==
783                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
784                         wq = fs_info->endio_repair_workers;
785                         func = btrfs_endio_repair_helper;
786                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
787                         wq = fs_info->endio_raid56_workers;
788                         func = btrfs_endio_raid56_helper;
789                 } else if (end_io_wq->metadata) {
790                         wq = fs_info->endio_meta_workers;
791                         func = btrfs_endio_meta_helper;
792                 } else {
793                         wq = fs_info->endio_workers;
794                         func = btrfs_endio_helper;
795                 }
796         }
797
798         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
799         btrfs_queue_work(wq, &end_io_wq->work);
800 }
801
802 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
803                         enum btrfs_wq_endio_type metadata)
804 {
805         struct btrfs_end_io_wq *end_io_wq;
806
807         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
808         if (!end_io_wq)
809                 return -ENOMEM;
810
811         end_io_wq->private = bio->bi_private;
812         end_io_wq->end_io = bio->bi_end_io;
813         end_io_wq->info = info;
814         end_io_wq->error = 0;
815         end_io_wq->bio = bio;
816         end_io_wq->metadata = metadata;
817
818         bio->bi_private = end_io_wq;
819         bio->bi_end_io = end_workqueue_bio;
820         return 0;
821 }
822
823 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
824 {
825         unsigned long limit = min_t(unsigned long,
826                                     info->thread_pool_size,
827                                     info->fs_devices->open_devices);
828         return 256 * limit;
829 }
830
831 static void run_one_async_start(struct btrfs_work *work)
832 {
833         struct async_submit_bio *async;
834         int ret;
835
836         async = container_of(work, struct  async_submit_bio, work);
837         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
838                                       async->mirror_num, async->bio_flags,
839                                       async->bio_offset);
840         if (ret)
841                 async->error = ret;
842 }
843
844 static void run_one_async_done(struct btrfs_work *work)
845 {
846         struct btrfs_fs_info *fs_info;
847         struct async_submit_bio *async;
848         int limit;
849
850         async = container_of(work, struct  async_submit_bio, work);
851         fs_info = BTRFS_I(async->inode)->root->fs_info;
852
853         limit = btrfs_async_submit_limit(fs_info);
854         limit = limit * 2 / 3;
855
856         /*
857          * atomic_dec_return implies a barrier for waitqueue_active
858          */
859         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
860             waitqueue_active(&fs_info->async_submit_wait))
861                 wake_up(&fs_info->async_submit_wait);
862
863         /* If an error occurred we just want to clean up the bio and move on */
864         if (async->error) {
865                 async->bio->bi_error = async->error;
866                 bio_endio(async->bio);
867                 return;
868         }
869
870         async->submit_bio_done(async->inode, async->rw, async->bio,
871                                async->mirror_num, async->bio_flags,
872                                async->bio_offset);
873 }
874
875 static void run_one_async_free(struct btrfs_work *work)
876 {
877         struct async_submit_bio *async;
878
879         async = container_of(work, struct  async_submit_bio, work);
880         kfree(async);
881 }
882
883 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
884                         int rw, struct bio *bio, int mirror_num,
885                         unsigned long bio_flags,
886                         u64 bio_offset,
887                         extent_submit_bio_hook_t *submit_bio_start,
888                         extent_submit_bio_hook_t *submit_bio_done)
889 {
890         struct async_submit_bio *async;
891
892         async = kmalloc(sizeof(*async), GFP_NOFS);
893         if (!async)
894                 return -ENOMEM;
895
896         async->inode = inode;
897         async->rw = rw;
898         async->bio = bio;
899         async->mirror_num = mirror_num;
900         async->submit_bio_start = submit_bio_start;
901         async->submit_bio_done = submit_bio_done;
902
903         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
904                         run_one_async_done, run_one_async_free);
905
906         async->bio_flags = bio_flags;
907         async->bio_offset = bio_offset;
908
909         async->error = 0;
910
911         atomic_inc(&fs_info->nr_async_submits);
912
913         if (rw & REQ_SYNC)
914                 btrfs_set_work_high_priority(&async->work);
915
916         btrfs_queue_work(fs_info->workers, &async->work);
917
918         while (atomic_read(&fs_info->async_submit_draining) &&
919               atomic_read(&fs_info->nr_async_submits)) {
920                 wait_event(fs_info->async_submit_wait,
921                            (atomic_read(&fs_info->nr_async_submits) == 0));
922         }
923
924         return 0;
925 }
926
927 static int btree_csum_one_bio(struct bio *bio)
928 {
929         struct bio_vec *bvec;
930         struct btrfs_root *root;
931         int i, ret = 0;
932
933         bio_for_each_segment_all(bvec, bio, i) {
934                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
935                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
936                 if (ret)
937                         break;
938         }
939
940         return ret;
941 }
942
943 static int __btree_submit_bio_start(struct inode *inode, int rw,
944                                     struct bio *bio, int mirror_num,
945                                     unsigned long bio_flags,
946                                     u64 bio_offset)
947 {
948         /*
949          * when we're called for a write, we're already in the async
950          * submission context.  Just jump into btrfs_map_bio
951          */
952         return btree_csum_one_bio(bio);
953 }
954
955 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
956                                  int mirror_num, unsigned long bio_flags,
957                                  u64 bio_offset)
958 {
959         int ret;
960
961         /*
962          * when we're called for a write, we're already in the async
963          * submission context.  Just jump into btrfs_map_bio
964          */
965         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
966         if (ret) {
967                 bio->bi_error = ret;
968                 bio_endio(bio);
969         }
970         return ret;
971 }
972
973 static int check_async_write(struct inode *inode, unsigned long bio_flags)
974 {
975         if (bio_flags & EXTENT_BIO_TREE_LOG)
976                 return 0;
977 #ifdef CONFIG_X86
978         if (static_cpu_has(X86_FEATURE_XMM4_2))
979                 return 0;
980 #endif
981         return 1;
982 }
983
984 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
985                                  int mirror_num, unsigned long bio_flags,
986                                  u64 bio_offset)
987 {
988         int async = check_async_write(inode, bio_flags);
989         int ret;
990
991         if (!(rw & REQ_WRITE)) {
992                 /*
993                  * called for a read, do the setup so that checksum validation
994                  * can happen in the async kernel threads
995                  */
996                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
997                                           bio, BTRFS_WQ_ENDIO_METADATA);
998                 if (ret)
999                         goto out_w_error;
1000                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
1001                                     mirror_num, 0);
1002         } else if (!async) {
1003                 ret = btree_csum_one_bio(bio);
1004                 if (ret)
1005                         goto out_w_error;
1006                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
1007                                     mirror_num, 0);
1008         } else {
1009                 /*
1010                  * kthread helpers are used to submit writes so that
1011                  * checksumming can happen in parallel across all CPUs
1012                  */
1013                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1014                                           inode, rw, bio, mirror_num, 0,
1015                                           bio_offset,
1016                                           __btree_submit_bio_start,
1017                                           __btree_submit_bio_done);
1018         }
1019
1020         if (ret)
1021                 goto out_w_error;
1022         return 0;
1023
1024 out_w_error:
1025         bio->bi_error = ret;
1026         bio_endio(bio);
1027         return ret;
1028 }
1029
1030 #ifdef CONFIG_MIGRATION
1031 static int btree_migratepage(struct address_space *mapping,
1032                         struct page *newpage, struct page *page,
1033                         enum migrate_mode mode)
1034 {
1035         /*
1036          * we can't safely write a btree page from here,
1037          * we haven't done the locking hook
1038          */
1039         if (PageDirty(page))
1040                 return -EAGAIN;
1041         /*
1042          * Buffers may be managed in a filesystem specific way.
1043          * We must have no buffers or drop them.
1044          */
1045         if (page_has_private(page) &&
1046             !try_to_release_page(page, GFP_KERNEL))
1047                 return -EAGAIN;
1048         return migrate_page(mapping, newpage, page, mode);
1049 }
1050 #endif
1051
1052
1053 static int btree_writepages(struct address_space *mapping,
1054                             struct writeback_control *wbc)
1055 {
1056         struct btrfs_fs_info *fs_info;
1057         int ret;
1058
1059         if (wbc->sync_mode == WB_SYNC_NONE) {
1060
1061                 if (wbc->for_kupdate)
1062                         return 0;
1063
1064                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1065                 /* this is a bit racy, but that's ok */
1066                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1067                                              BTRFS_DIRTY_METADATA_THRESH);
1068                 if (ret < 0)
1069                         return 0;
1070         }
1071         return btree_write_cache_pages(mapping, wbc);
1072 }
1073
1074 static int btree_readpage(struct file *file, struct page *page)
1075 {
1076         struct extent_io_tree *tree;
1077         tree = &BTRFS_I(page->mapping->host)->io_tree;
1078         return extent_read_full_page(tree, page, btree_get_extent, 0);
1079 }
1080
1081 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1082 {
1083         if (PageWriteback(page) || PageDirty(page))
1084                 return 0;
1085
1086         return try_release_extent_buffer(page);
1087 }
1088
1089 static void btree_invalidatepage(struct page *page, unsigned int offset,
1090                                  unsigned int length)
1091 {
1092         struct extent_io_tree *tree;
1093         tree = &BTRFS_I(page->mapping->host)->io_tree;
1094         extent_invalidatepage(tree, page, offset);
1095         btree_releasepage(page, GFP_NOFS);
1096         if (PagePrivate(page)) {
1097                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1098                            "page private not zero on page %llu",
1099                            (unsigned long long)page_offset(page));
1100                 ClearPagePrivate(page);
1101                 set_page_private(page, 0);
1102                 put_page(page);
1103         }
1104 }
1105
1106 static int btree_set_page_dirty(struct page *page)
1107 {
1108 #ifdef DEBUG
1109         struct extent_buffer *eb;
1110
1111         BUG_ON(!PagePrivate(page));
1112         eb = (struct extent_buffer *)page->private;
1113         BUG_ON(!eb);
1114         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1115         BUG_ON(!atomic_read(&eb->refs));
1116         btrfs_assert_tree_locked(eb);
1117 #endif
1118         return __set_page_dirty_nobuffers(page);
1119 }
1120
1121 static const struct address_space_operations btree_aops = {
1122         .readpage       = btree_readpage,
1123         .writepages     = btree_writepages,
1124         .releasepage    = btree_releasepage,
1125         .invalidatepage = btree_invalidatepage,
1126 #ifdef CONFIG_MIGRATION
1127         .migratepage    = btree_migratepage,
1128 #endif
1129         .set_page_dirty = btree_set_page_dirty,
1130 };
1131
1132 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1133 {
1134         struct extent_buffer *buf = NULL;
1135         struct inode *btree_inode = root->fs_info->btree_inode;
1136
1137         buf = btrfs_find_create_tree_block(root, bytenr);
1138         if (IS_ERR(buf))
1139                 return;
1140         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1141                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1142         free_extent_buffer(buf);
1143 }
1144
1145 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1146                          int mirror_num, struct extent_buffer **eb)
1147 {
1148         struct extent_buffer *buf = NULL;
1149         struct inode *btree_inode = root->fs_info->btree_inode;
1150         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1151         int ret;
1152
1153         buf = btrfs_find_create_tree_block(root, bytenr);
1154         if (IS_ERR(buf))
1155                 return 0;
1156
1157         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1158
1159         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1160                                        btree_get_extent, mirror_num);
1161         if (ret) {
1162                 free_extent_buffer(buf);
1163                 return ret;
1164         }
1165
1166         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1167                 free_extent_buffer(buf);
1168                 return -EIO;
1169         } else if (extent_buffer_uptodate(buf)) {
1170                 *eb = buf;
1171         } else {
1172                 free_extent_buffer(buf);
1173         }
1174         return 0;
1175 }
1176
1177 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1178                                             u64 bytenr)
1179 {
1180         return find_extent_buffer(fs_info, bytenr);
1181 }
1182
1183 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1184                                                  u64 bytenr)
1185 {
1186         if (btrfs_is_testing(root->fs_info))
1187                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1188                                 root->nodesize);
1189         return alloc_extent_buffer(root->fs_info, bytenr);
1190 }
1191
1192
1193 int btrfs_write_tree_block(struct extent_buffer *buf)
1194 {
1195         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1196                                         buf->start + buf->len - 1);
1197 }
1198
1199 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1200 {
1201         return filemap_fdatawait_range(buf->pages[0]->mapping,
1202                                        buf->start, buf->start + buf->len - 1);
1203 }
1204
1205 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1206                                       u64 parent_transid)
1207 {
1208         struct extent_buffer *buf = NULL;
1209         int ret;
1210
1211         buf = btrfs_find_create_tree_block(root, bytenr);
1212         if (IS_ERR(buf))
1213                 return buf;
1214
1215         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1216         if (ret) {
1217                 free_extent_buffer(buf);
1218                 return ERR_PTR(ret);
1219         }
1220         return buf;
1221
1222 }
1223
1224 void clean_tree_block(struct btrfs_trans_handle *trans,
1225                       struct btrfs_fs_info *fs_info,
1226                       struct extent_buffer *buf)
1227 {
1228         if (btrfs_header_generation(buf) ==
1229             fs_info->running_transaction->transid) {
1230                 btrfs_assert_tree_locked(buf);
1231
1232                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1233                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1234                                              -buf->len,
1235                                              fs_info->dirty_metadata_batch);
1236                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1237                         btrfs_set_lock_blocking(buf);
1238                         clear_extent_buffer_dirty(buf);
1239                 }
1240         }
1241 }
1242
1243 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1244 {
1245         struct btrfs_subvolume_writers *writers;
1246         int ret;
1247
1248         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1249         if (!writers)
1250                 return ERR_PTR(-ENOMEM);
1251
1252         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1253         if (ret < 0) {
1254                 kfree(writers);
1255                 return ERR_PTR(ret);
1256         }
1257
1258         init_waitqueue_head(&writers->wait);
1259         return writers;
1260 }
1261
1262 static void
1263 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1264 {
1265         percpu_counter_destroy(&writers->counter);
1266         kfree(writers);
1267 }
1268
1269 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1270                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1271                          u64 objectid)
1272 {
1273         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1274         root->node = NULL;
1275         root->commit_root = NULL;
1276         root->sectorsize = sectorsize;
1277         root->nodesize = nodesize;
1278         root->stripesize = stripesize;
1279         root->state = 0;
1280         root->orphan_cleanup_state = 0;
1281
1282         root->objectid = objectid;
1283         root->last_trans = 0;
1284         root->highest_objectid = 0;
1285         root->nr_delalloc_inodes = 0;
1286         root->nr_ordered_extents = 0;
1287         root->name = NULL;
1288         root->inode_tree = RB_ROOT;
1289         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1290         root->block_rsv = NULL;
1291         root->orphan_block_rsv = NULL;
1292
1293         INIT_LIST_HEAD(&root->dirty_list);
1294         INIT_LIST_HEAD(&root->root_list);
1295         INIT_LIST_HEAD(&root->delalloc_inodes);
1296         INIT_LIST_HEAD(&root->delalloc_root);
1297         INIT_LIST_HEAD(&root->ordered_extents);
1298         INIT_LIST_HEAD(&root->ordered_root);
1299         INIT_LIST_HEAD(&root->logged_list[0]);
1300         INIT_LIST_HEAD(&root->logged_list[1]);
1301         spin_lock_init(&root->orphan_lock);
1302         spin_lock_init(&root->inode_lock);
1303         spin_lock_init(&root->delalloc_lock);
1304         spin_lock_init(&root->ordered_extent_lock);
1305         spin_lock_init(&root->accounting_lock);
1306         spin_lock_init(&root->log_extents_lock[0]);
1307         spin_lock_init(&root->log_extents_lock[1]);
1308         mutex_init(&root->objectid_mutex);
1309         mutex_init(&root->log_mutex);
1310         mutex_init(&root->ordered_extent_mutex);
1311         mutex_init(&root->delalloc_mutex);
1312         init_waitqueue_head(&root->log_writer_wait);
1313         init_waitqueue_head(&root->log_commit_wait[0]);
1314         init_waitqueue_head(&root->log_commit_wait[1]);
1315         INIT_LIST_HEAD(&root->log_ctxs[0]);
1316         INIT_LIST_HEAD(&root->log_ctxs[1]);
1317         atomic_set(&root->log_commit[0], 0);
1318         atomic_set(&root->log_commit[1], 0);
1319         atomic_set(&root->log_writers, 0);
1320         atomic_set(&root->log_batch, 0);
1321         atomic_set(&root->orphan_inodes, 0);
1322         atomic_set(&root->refs, 1);
1323         atomic_set(&root->will_be_snapshoted, 0);
1324         atomic_set(&root->qgroup_meta_rsv, 0);
1325         root->log_transid = 0;
1326         root->log_transid_committed = -1;
1327         root->last_log_commit = 0;
1328         if (!dummy)
1329                 extent_io_tree_init(&root->dirty_log_pages,
1330                                      fs_info->btree_inode->i_mapping);
1331
1332         memset(&root->root_key, 0, sizeof(root->root_key));
1333         memset(&root->root_item, 0, sizeof(root->root_item));
1334         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1335         if (!dummy)
1336                 root->defrag_trans_start = fs_info->generation;
1337         else
1338                 root->defrag_trans_start = 0;
1339         root->root_key.objectid = objectid;
1340         root->anon_dev = 0;
1341
1342         spin_lock_init(&root->root_item_lock);
1343 }
1344
1345 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1346                 gfp_t flags)
1347 {
1348         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1349         if (root)
1350                 root->fs_info = fs_info;
1351         return root;
1352 }
1353
1354 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1355 /* Should only be used by the testing infrastructure */
1356 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1357                                           u32 sectorsize, u32 nodesize)
1358 {
1359         struct btrfs_root *root;
1360
1361         if (!fs_info)
1362                 return ERR_PTR(-EINVAL);
1363
1364         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1365         if (!root)
1366                 return ERR_PTR(-ENOMEM);
1367         /* We don't use the stripesize in selftest, set it as sectorsize */
1368         __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1369                         BTRFS_ROOT_TREE_OBJECTID);
1370         root->alloc_bytenr = 0;
1371
1372         return root;
1373 }
1374 #endif
1375
1376 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1377                                      struct btrfs_fs_info *fs_info,
1378                                      u64 objectid)
1379 {
1380         struct extent_buffer *leaf;
1381         struct btrfs_root *tree_root = fs_info->tree_root;
1382         struct btrfs_root *root;
1383         struct btrfs_key key;
1384         int ret = 0;
1385         uuid_le uuid;
1386
1387         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1388         if (!root)
1389                 return ERR_PTR(-ENOMEM);
1390
1391         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1392                 tree_root->stripesize, root, fs_info, objectid);
1393         root->root_key.objectid = objectid;
1394         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1395         root->root_key.offset = 0;
1396
1397         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1398         if (IS_ERR(leaf)) {
1399                 ret = PTR_ERR(leaf);
1400                 leaf = NULL;
1401                 goto fail;
1402         }
1403
1404         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1405         btrfs_set_header_bytenr(leaf, leaf->start);
1406         btrfs_set_header_generation(leaf, trans->transid);
1407         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1408         btrfs_set_header_owner(leaf, objectid);
1409         root->node = leaf;
1410
1411         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1412                             BTRFS_FSID_SIZE);
1413         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1414                             btrfs_header_chunk_tree_uuid(leaf),
1415                             BTRFS_UUID_SIZE);
1416         btrfs_mark_buffer_dirty(leaf);
1417
1418         root->commit_root = btrfs_root_node(root);
1419         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1420
1421         root->root_item.flags = 0;
1422         root->root_item.byte_limit = 0;
1423         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1424         btrfs_set_root_generation(&root->root_item, trans->transid);
1425         btrfs_set_root_level(&root->root_item, 0);
1426         btrfs_set_root_refs(&root->root_item, 1);
1427         btrfs_set_root_used(&root->root_item, leaf->len);
1428         btrfs_set_root_last_snapshot(&root->root_item, 0);
1429         btrfs_set_root_dirid(&root->root_item, 0);
1430         uuid_le_gen(&uuid);
1431         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1432         root->root_item.drop_level = 0;
1433
1434         key.objectid = objectid;
1435         key.type = BTRFS_ROOT_ITEM_KEY;
1436         key.offset = 0;
1437         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1438         if (ret)
1439                 goto fail;
1440
1441         btrfs_tree_unlock(leaf);
1442
1443         return root;
1444
1445 fail:
1446         if (leaf) {
1447                 btrfs_tree_unlock(leaf);
1448                 free_extent_buffer(root->commit_root);
1449                 free_extent_buffer(leaf);
1450         }
1451         kfree(root);
1452
1453         return ERR_PTR(ret);
1454 }
1455
1456 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1457                                          struct btrfs_fs_info *fs_info)
1458 {
1459         struct btrfs_root *root;
1460         struct btrfs_root *tree_root = fs_info->tree_root;
1461         struct extent_buffer *leaf;
1462
1463         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1464         if (!root)
1465                 return ERR_PTR(-ENOMEM);
1466
1467         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1468                      tree_root->stripesize, root, fs_info,
1469                      BTRFS_TREE_LOG_OBJECTID);
1470
1471         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1472         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1473         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1474
1475         /*
1476          * DON'T set REF_COWS for log trees
1477          *
1478          * log trees do not get reference counted because they go away
1479          * before a real commit is actually done.  They do store pointers
1480          * to file data extents, and those reference counts still get
1481          * updated (along with back refs to the log tree).
1482          */
1483
1484         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1485                         NULL, 0, 0, 0);
1486         if (IS_ERR(leaf)) {
1487                 kfree(root);
1488                 return ERR_CAST(leaf);
1489         }
1490
1491         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1492         btrfs_set_header_bytenr(leaf, leaf->start);
1493         btrfs_set_header_generation(leaf, trans->transid);
1494         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1495         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1496         root->node = leaf;
1497
1498         write_extent_buffer(root->node, root->fs_info->fsid,
1499                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1500         btrfs_mark_buffer_dirty(root->node);
1501         btrfs_tree_unlock(root->node);
1502         return root;
1503 }
1504
1505 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1506                              struct btrfs_fs_info *fs_info)
1507 {
1508         struct btrfs_root *log_root;
1509
1510         log_root = alloc_log_tree(trans, fs_info);
1511         if (IS_ERR(log_root))
1512                 return PTR_ERR(log_root);
1513         WARN_ON(fs_info->log_root_tree);
1514         fs_info->log_root_tree = log_root;
1515         return 0;
1516 }
1517
1518 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1519                        struct btrfs_root *root)
1520 {
1521         struct btrfs_root *log_root;
1522         struct btrfs_inode_item *inode_item;
1523
1524         log_root = alloc_log_tree(trans, root->fs_info);
1525         if (IS_ERR(log_root))
1526                 return PTR_ERR(log_root);
1527
1528         log_root->last_trans = trans->transid;
1529         log_root->root_key.offset = root->root_key.objectid;
1530
1531         inode_item = &log_root->root_item.inode;
1532         btrfs_set_stack_inode_generation(inode_item, 1);
1533         btrfs_set_stack_inode_size(inode_item, 3);
1534         btrfs_set_stack_inode_nlink(inode_item, 1);
1535         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1536         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1537
1538         btrfs_set_root_node(&log_root->root_item, log_root->node);
1539
1540         WARN_ON(root->log_root);
1541         root->log_root = log_root;
1542         root->log_transid = 0;
1543         root->log_transid_committed = -1;
1544         root->last_log_commit = 0;
1545         return 0;
1546 }
1547
1548 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1549                                                struct btrfs_key *key)
1550 {
1551         struct btrfs_root *root;
1552         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1553         struct btrfs_path *path;
1554         u64 generation;
1555         int ret;
1556
1557         path = btrfs_alloc_path();
1558         if (!path)
1559                 return ERR_PTR(-ENOMEM);
1560
1561         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1562         if (!root) {
1563                 ret = -ENOMEM;
1564                 goto alloc_fail;
1565         }
1566
1567         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1568                 tree_root->stripesize, root, fs_info, key->objectid);
1569
1570         ret = btrfs_find_root(tree_root, key, path,
1571                               &root->root_item, &root->root_key);
1572         if (ret) {
1573                 if (ret > 0)
1574                         ret = -ENOENT;
1575                 goto find_fail;
1576         }
1577
1578         generation = btrfs_root_generation(&root->root_item);
1579         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1580                                      generation);
1581         if (IS_ERR(root->node)) {
1582                 ret = PTR_ERR(root->node);
1583                 goto find_fail;
1584         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1585                 ret = -EIO;
1586                 free_extent_buffer(root->node);
1587                 goto find_fail;
1588         }
1589         root->commit_root = btrfs_root_node(root);
1590 out:
1591         btrfs_free_path(path);
1592         return root;
1593
1594 find_fail:
1595         kfree(root);
1596 alloc_fail:
1597         root = ERR_PTR(ret);
1598         goto out;
1599 }
1600
1601 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1602                                       struct btrfs_key *location)
1603 {
1604         struct btrfs_root *root;
1605
1606         root = btrfs_read_tree_root(tree_root, location);
1607         if (IS_ERR(root))
1608                 return root;
1609
1610         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1611                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1612                 btrfs_check_and_init_root_item(&root->root_item);
1613         }
1614
1615         return root;
1616 }
1617
1618 int btrfs_init_fs_root(struct btrfs_root *root)
1619 {
1620         int ret;
1621         struct btrfs_subvolume_writers *writers;
1622
1623         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1624         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1625                                         GFP_NOFS);
1626         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1627                 ret = -ENOMEM;
1628                 goto fail;
1629         }
1630
1631         writers = btrfs_alloc_subvolume_writers();
1632         if (IS_ERR(writers)) {
1633                 ret = PTR_ERR(writers);
1634                 goto fail;
1635         }
1636         root->subv_writers = writers;
1637
1638         btrfs_init_free_ino_ctl(root);
1639         spin_lock_init(&root->ino_cache_lock);
1640         init_waitqueue_head(&root->ino_cache_wait);
1641
1642         ret = get_anon_bdev(&root->anon_dev);
1643         if (ret)
1644                 goto fail;
1645
1646         mutex_lock(&root->objectid_mutex);
1647         ret = btrfs_find_highest_objectid(root,
1648                                         &root->highest_objectid);
1649         if (ret) {
1650                 mutex_unlock(&root->objectid_mutex);
1651                 goto fail;
1652         }
1653
1654         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1655
1656         mutex_unlock(&root->objectid_mutex);
1657
1658         return 0;
1659 fail:
1660         /* the caller is responsible to call free_fs_root */
1661         return ret;
1662 }
1663
1664 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1665                                         u64 root_id)
1666 {
1667         struct btrfs_root *root;
1668
1669         spin_lock(&fs_info->fs_roots_radix_lock);
1670         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1671                                  (unsigned long)root_id);
1672         spin_unlock(&fs_info->fs_roots_radix_lock);
1673         return root;
1674 }
1675
1676 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1677                          struct btrfs_root *root)
1678 {
1679         int ret;
1680
1681         ret = radix_tree_preload(GFP_NOFS);
1682         if (ret)
1683                 return ret;
1684
1685         spin_lock(&fs_info->fs_roots_radix_lock);
1686         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1687                                 (unsigned long)root->root_key.objectid,
1688                                 root);
1689         if (ret == 0)
1690                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1691         spin_unlock(&fs_info->fs_roots_radix_lock);
1692         radix_tree_preload_end();
1693
1694         return ret;
1695 }
1696
1697 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1698                                      struct btrfs_key *location,
1699                                      bool check_ref)
1700 {
1701         struct btrfs_root *root;
1702         struct btrfs_path *path;
1703         struct btrfs_key key;
1704         int ret;
1705
1706         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1707                 return fs_info->tree_root;
1708         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1709                 return fs_info->extent_root;
1710         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1711                 return fs_info->chunk_root;
1712         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1713                 return fs_info->dev_root;
1714         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1715                 return fs_info->csum_root;
1716         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1717                 return fs_info->quota_root ? fs_info->quota_root :
1718                                              ERR_PTR(-ENOENT);
1719         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1720                 return fs_info->uuid_root ? fs_info->uuid_root :
1721                                             ERR_PTR(-ENOENT);
1722         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1723                 return fs_info->free_space_root ? fs_info->free_space_root :
1724                                                   ERR_PTR(-ENOENT);
1725 again:
1726         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1727         if (root) {
1728                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1729                         return ERR_PTR(-ENOENT);
1730                 return root;
1731         }
1732
1733         root = btrfs_read_fs_root(fs_info->tree_root, location);
1734         if (IS_ERR(root))
1735                 return root;
1736
1737         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1738                 ret = -ENOENT;
1739                 goto fail;
1740         }
1741
1742         ret = btrfs_init_fs_root(root);
1743         if (ret)
1744                 goto fail;
1745
1746         path = btrfs_alloc_path();
1747         if (!path) {
1748                 ret = -ENOMEM;
1749                 goto fail;
1750         }
1751         key.objectid = BTRFS_ORPHAN_OBJECTID;
1752         key.type = BTRFS_ORPHAN_ITEM_KEY;
1753         key.offset = location->objectid;
1754
1755         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1756         btrfs_free_path(path);
1757         if (ret < 0)
1758                 goto fail;
1759         if (ret == 0)
1760                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1761
1762         ret = btrfs_insert_fs_root(fs_info, root);
1763         if (ret) {
1764                 if (ret == -EEXIST) {
1765                         free_fs_root(root);
1766                         goto again;
1767                 }
1768                 goto fail;
1769         }
1770         return root;
1771 fail:
1772         free_fs_root(root);
1773         return ERR_PTR(ret);
1774 }
1775
1776 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1777 {
1778         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1779         int ret = 0;
1780         struct btrfs_device *device;
1781         struct backing_dev_info *bdi;
1782
1783         rcu_read_lock();
1784         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1785                 if (!device->bdev)
1786                         continue;
1787                 bdi = blk_get_backing_dev_info(device->bdev);
1788                 if (bdi_congested(bdi, bdi_bits)) {
1789                         ret = 1;
1790                         break;
1791                 }
1792         }
1793         rcu_read_unlock();
1794         return ret;
1795 }
1796
1797 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1798 {
1799         int err;
1800
1801         err = bdi_setup_and_register(bdi, "btrfs");
1802         if (err)
1803                 return err;
1804
1805         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1806         bdi->congested_fn       = btrfs_congested_fn;
1807         bdi->congested_data     = info;
1808         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1809         return 0;
1810 }
1811
1812 /*
1813  * called by the kthread helper functions to finally call the bio end_io
1814  * functions.  This is where read checksum verification actually happens
1815  */
1816 static void end_workqueue_fn(struct btrfs_work *work)
1817 {
1818         struct bio *bio;
1819         struct btrfs_end_io_wq *end_io_wq;
1820
1821         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1822         bio = end_io_wq->bio;
1823
1824         bio->bi_error = end_io_wq->error;
1825         bio->bi_private = end_io_wq->private;
1826         bio->bi_end_io = end_io_wq->end_io;
1827         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1828         bio_endio(bio);
1829 }
1830
1831 static int cleaner_kthread(void *arg)
1832 {
1833         struct btrfs_root *root = arg;
1834         int again;
1835         struct btrfs_trans_handle *trans;
1836
1837         do {
1838                 again = 0;
1839
1840                 /* Make the cleaner go to sleep early. */
1841                 if (btrfs_need_cleaner_sleep(root))
1842                         goto sleep;
1843
1844                 /*
1845                  * Do not do anything if we might cause open_ctree() to block
1846                  * before we have finished mounting the filesystem.
1847                  */
1848                 if (!root->fs_info->open)
1849                         goto sleep;
1850
1851                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1852                         goto sleep;
1853
1854                 /*
1855                  * Avoid the problem that we change the status of the fs
1856                  * during the above check and trylock.
1857                  */
1858                 if (btrfs_need_cleaner_sleep(root)) {
1859                         mutex_unlock(&root->fs_info->cleaner_mutex);
1860                         goto sleep;
1861                 }
1862
1863                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1864                 btrfs_run_delayed_iputs(root);
1865                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1866
1867                 again = btrfs_clean_one_deleted_snapshot(root);
1868                 mutex_unlock(&root->fs_info->cleaner_mutex);
1869
1870                 /*
1871                  * The defragger has dealt with the R/O remount and umount,
1872                  * needn't do anything special here.
1873                  */
1874                 btrfs_run_defrag_inodes(root->fs_info);
1875
1876                 /*
1877                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1878                  * with relocation (btrfs_relocate_chunk) and relocation
1879                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1880                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1881                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1882                  * unused block groups.
1883                  */
1884                 btrfs_delete_unused_bgs(root->fs_info);
1885 sleep:
1886                 if (!again) {
1887                         set_current_state(TASK_INTERRUPTIBLE);
1888                         if (!kthread_should_stop())
1889                                 schedule();
1890                         __set_current_state(TASK_RUNNING);
1891                 }
1892         } while (!kthread_should_stop());
1893
1894         /*
1895          * Transaction kthread is stopped before us and wakes us up.
1896          * However we might have started a new transaction and COWed some
1897          * tree blocks when deleting unused block groups for example. So
1898          * make sure we commit the transaction we started to have a clean
1899          * shutdown when evicting the btree inode - if it has dirty pages
1900          * when we do the final iput() on it, eviction will trigger a
1901          * writeback for it which will fail with null pointer dereferences
1902          * since work queues and other resources were already released and
1903          * destroyed by the time the iput/eviction/writeback is made.
1904          */
1905         trans = btrfs_attach_transaction(root);
1906         if (IS_ERR(trans)) {
1907                 if (PTR_ERR(trans) != -ENOENT)
1908                         btrfs_err(root->fs_info,
1909                                   "cleaner transaction attach returned %ld",
1910                                   PTR_ERR(trans));
1911         } else {
1912                 int ret;
1913
1914                 ret = btrfs_commit_transaction(trans, root);
1915                 if (ret)
1916                         btrfs_err(root->fs_info,
1917                                   "cleaner open transaction commit returned %d",
1918                                   ret);
1919         }
1920
1921         return 0;
1922 }
1923
1924 static int transaction_kthread(void *arg)
1925 {
1926         struct btrfs_root *root = arg;
1927         struct btrfs_trans_handle *trans;
1928         struct btrfs_transaction *cur;
1929         u64 transid;
1930         unsigned long now;
1931         unsigned long delay;
1932         bool cannot_commit;
1933
1934         do {
1935                 cannot_commit = false;
1936                 delay = HZ * root->fs_info->commit_interval;
1937                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1938
1939                 spin_lock(&root->fs_info->trans_lock);
1940                 cur = root->fs_info->running_transaction;
1941                 if (!cur) {
1942                         spin_unlock(&root->fs_info->trans_lock);
1943                         goto sleep;
1944                 }
1945
1946                 now = get_seconds();
1947                 if (cur->state < TRANS_STATE_BLOCKED &&
1948                     (now < cur->start_time ||
1949                      now - cur->start_time < root->fs_info->commit_interval)) {
1950                         spin_unlock(&root->fs_info->trans_lock);
1951                         delay = HZ * 5;
1952                         goto sleep;
1953                 }
1954                 transid = cur->transid;
1955                 spin_unlock(&root->fs_info->trans_lock);
1956
1957                 /* If the file system is aborted, this will always fail. */
1958                 trans = btrfs_attach_transaction(root);
1959                 if (IS_ERR(trans)) {
1960                         if (PTR_ERR(trans) != -ENOENT)
1961                                 cannot_commit = true;
1962                         goto sleep;
1963                 }
1964                 if (transid == trans->transid) {
1965                         btrfs_commit_transaction(trans, root);
1966                 } else {
1967                         btrfs_end_transaction(trans, root);
1968                 }
1969 sleep:
1970                 wake_up_process(root->fs_info->cleaner_kthread);
1971                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1972
1973                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1974                                       &root->fs_info->fs_state)))
1975                         btrfs_cleanup_transaction(root);
1976                 set_current_state(TASK_INTERRUPTIBLE);
1977                 if (!kthread_should_stop() &&
1978                                 (!btrfs_transaction_blocked(root->fs_info) ||
1979                                  cannot_commit))
1980                         schedule_timeout(delay);
1981                 __set_current_state(TASK_RUNNING);
1982         } while (!kthread_should_stop());
1983         return 0;
1984 }
1985
1986 /*
1987  * this will find the highest generation in the array of
1988  * root backups.  The index of the highest array is returned,
1989  * or -1 if we can't find anything.
1990  *
1991  * We check to make sure the array is valid by comparing the
1992  * generation of the latest  root in the array with the generation
1993  * in the super block.  If they don't match we pitch it.
1994  */
1995 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1996 {
1997         u64 cur;
1998         int newest_index = -1;
1999         struct btrfs_root_backup *root_backup;
2000         int i;
2001
2002         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2003                 root_backup = info->super_copy->super_roots + i;
2004                 cur = btrfs_backup_tree_root_gen(root_backup);
2005                 if (cur == newest_gen)
2006                         newest_index = i;
2007         }
2008
2009         /* check to see if we actually wrapped around */
2010         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2011                 root_backup = info->super_copy->super_roots;
2012                 cur = btrfs_backup_tree_root_gen(root_backup);
2013                 if (cur == newest_gen)
2014                         newest_index = 0;
2015         }
2016         return newest_index;
2017 }
2018
2019
2020 /*
2021  * find the oldest backup so we know where to store new entries
2022  * in the backup array.  This will set the backup_root_index
2023  * field in the fs_info struct
2024  */
2025 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2026                                      u64 newest_gen)
2027 {
2028         int newest_index = -1;
2029
2030         newest_index = find_newest_super_backup(info, newest_gen);
2031         /* if there was garbage in there, just move along */
2032         if (newest_index == -1) {
2033                 info->backup_root_index = 0;
2034         } else {
2035                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2036         }
2037 }
2038
2039 /*
2040  * copy all the root pointers into the super backup array.
2041  * this will bump the backup pointer by one when it is
2042  * done
2043  */
2044 static void backup_super_roots(struct btrfs_fs_info *info)
2045 {
2046         int next_backup;
2047         struct btrfs_root_backup *root_backup;
2048         int last_backup;
2049
2050         next_backup = info->backup_root_index;
2051         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2052                 BTRFS_NUM_BACKUP_ROOTS;
2053
2054         /*
2055          * just overwrite the last backup if we're at the same generation
2056          * this happens only at umount
2057          */
2058         root_backup = info->super_for_commit->super_roots + last_backup;
2059         if (btrfs_backup_tree_root_gen(root_backup) ==
2060             btrfs_header_generation(info->tree_root->node))
2061                 next_backup = last_backup;
2062
2063         root_backup = info->super_for_commit->super_roots + next_backup;
2064
2065         /*
2066          * make sure all of our padding and empty slots get zero filled
2067          * regardless of which ones we use today
2068          */
2069         memset(root_backup, 0, sizeof(*root_backup));
2070
2071         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2072
2073         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2074         btrfs_set_backup_tree_root_gen(root_backup,
2075                                btrfs_header_generation(info->tree_root->node));
2076
2077         btrfs_set_backup_tree_root_level(root_backup,
2078                                btrfs_header_level(info->tree_root->node));
2079
2080         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2081         btrfs_set_backup_chunk_root_gen(root_backup,
2082                                btrfs_header_generation(info->chunk_root->node));
2083         btrfs_set_backup_chunk_root_level(root_backup,
2084                                btrfs_header_level(info->chunk_root->node));
2085
2086         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2087         btrfs_set_backup_extent_root_gen(root_backup,
2088                                btrfs_header_generation(info->extent_root->node));
2089         btrfs_set_backup_extent_root_level(root_backup,
2090                                btrfs_header_level(info->extent_root->node));
2091
2092         /*
2093          * we might commit during log recovery, which happens before we set
2094          * the fs_root.  Make sure it is valid before we fill it in.
2095          */
2096         if (info->fs_root && info->fs_root->node) {
2097                 btrfs_set_backup_fs_root(root_backup,
2098                                          info->fs_root->node->start);
2099                 btrfs_set_backup_fs_root_gen(root_backup,
2100                                btrfs_header_generation(info->fs_root->node));
2101                 btrfs_set_backup_fs_root_level(root_backup,
2102                                btrfs_header_level(info->fs_root->node));
2103         }
2104
2105         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2106         btrfs_set_backup_dev_root_gen(root_backup,
2107                                btrfs_header_generation(info->dev_root->node));
2108         btrfs_set_backup_dev_root_level(root_backup,
2109                                        btrfs_header_level(info->dev_root->node));
2110
2111         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2112         btrfs_set_backup_csum_root_gen(root_backup,
2113                                btrfs_header_generation(info->csum_root->node));
2114         btrfs_set_backup_csum_root_level(root_backup,
2115                                btrfs_header_level(info->csum_root->node));
2116
2117         btrfs_set_backup_total_bytes(root_backup,
2118                              btrfs_super_total_bytes(info->super_copy));
2119         btrfs_set_backup_bytes_used(root_backup,
2120                              btrfs_super_bytes_used(info->super_copy));
2121         btrfs_set_backup_num_devices(root_backup,
2122                              btrfs_super_num_devices(info->super_copy));
2123
2124         /*
2125          * if we don't copy this out to the super_copy, it won't get remembered
2126          * for the next commit
2127          */
2128         memcpy(&info->super_copy->super_roots,
2129                &info->super_for_commit->super_roots,
2130                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2131 }
2132
2133 /*
2134  * this copies info out of the root backup array and back into
2135  * the in-memory super block.  It is meant to help iterate through
2136  * the array, so you send it the number of backups you've already
2137  * tried and the last backup index you used.
2138  *
2139  * this returns -1 when it has tried all the backups
2140  */
2141 static noinline int next_root_backup(struct btrfs_fs_info *info,
2142                                      struct btrfs_super_block *super,
2143                                      int *num_backups_tried, int *backup_index)
2144 {
2145         struct btrfs_root_backup *root_backup;
2146         int newest = *backup_index;
2147
2148         if (*num_backups_tried == 0) {
2149                 u64 gen = btrfs_super_generation(super);
2150
2151                 newest = find_newest_super_backup(info, gen);
2152                 if (newest == -1)
2153                         return -1;
2154
2155                 *backup_index = newest;
2156                 *num_backups_tried = 1;
2157         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2158                 /* we've tried all the backups, all done */
2159                 return -1;
2160         } else {
2161                 /* jump to the next oldest backup */
2162                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2163                         BTRFS_NUM_BACKUP_ROOTS;
2164                 *backup_index = newest;
2165                 *num_backups_tried += 1;
2166         }
2167         root_backup = super->super_roots + newest;
2168
2169         btrfs_set_super_generation(super,
2170                                    btrfs_backup_tree_root_gen(root_backup));
2171         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2172         btrfs_set_super_root_level(super,
2173                                    btrfs_backup_tree_root_level(root_backup));
2174         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2175
2176         /*
2177          * fixme: the total bytes and num_devices need to match or we should
2178          * need a fsck
2179          */
2180         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2181         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2182         return 0;
2183 }
2184
2185 /* helper to cleanup workers */
2186 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2187 {
2188         btrfs_destroy_workqueue(fs_info->fixup_workers);
2189         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2190         btrfs_destroy_workqueue(fs_info->workers);
2191         btrfs_destroy_workqueue(fs_info->endio_workers);
2192         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2193         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2194         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2195         btrfs_destroy_workqueue(fs_info->rmw_workers);
2196         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2197         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2198         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2199         btrfs_destroy_workqueue(fs_info->submit_workers);
2200         btrfs_destroy_workqueue(fs_info->delayed_workers);
2201         btrfs_destroy_workqueue(fs_info->caching_workers);
2202         btrfs_destroy_workqueue(fs_info->readahead_workers);
2203         btrfs_destroy_workqueue(fs_info->flush_workers);
2204         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2205         btrfs_destroy_workqueue(fs_info->extent_workers);
2206 }
2207
2208 static void free_root_extent_buffers(struct btrfs_root *root)
2209 {
2210         if (root) {
2211                 free_extent_buffer(root->node);
2212                 free_extent_buffer(root->commit_root);
2213                 root->node = NULL;
2214                 root->commit_root = NULL;
2215         }
2216 }
2217
2218 /* helper to cleanup tree roots */
2219 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2220 {
2221         free_root_extent_buffers(info->tree_root);
2222
2223         free_root_extent_buffers(info->dev_root);
2224         free_root_extent_buffers(info->extent_root);
2225         free_root_extent_buffers(info->csum_root);
2226         free_root_extent_buffers(info->quota_root);
2227         free_root_extent_buffers(info->uuid_root);
2228         if (chunk_root)
2229                 free_root_extent_buffers(info->chunk_root);
2230         free_root_extent_buffers(info->free_space_root);
2231 }
2232
2233 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2234 {
2235         int ret;
2236         struct btrfs_root *gang[8];
2237         int i;
2238
2239         while (!list_empty(&fs_info->dead_roots)) {
2240                 gang[0] = list_entry(fs_info->dead_roots.next,
2241                                      struct btrfs_root, root_list);
2242                 list_del(&gang[0]->root_list);
2243
2244                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2245                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2246                 } else {
2247                         free_extent_buffer(gang[0]->node);
2248                         free_extent_buffer(gang[0]->commit_root);
2249                         btrfs_put_fs_root(gang[0]);
2250                 }
2251         }
2252
2253         while (1) {
2254                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2255                                              (void **)gang, 0,
2256                                              ARRAY_SIZE(gang));
2257                 if (!ret)
2258                         break;
2259                 for (i = 0; i < ret; i++)
2260                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2261         }
2262
2263         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2264                 btrfs_free_log_root_tree(NULL, fs_info);
2265                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2266                                             fs_info->pinned_extents);
2267         }
2268 }
2269
2270 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2271 {
2272         mutex_init(&fs_info->scrub_lock);
2273         atomic_set(&fs_info->scrubs_running, 0);
2274         atomic_set(&fs_info->scrub_pause_req, 0);
2275         atomic_set(&fs_info->scrubs_paused, 0);
2276         atomic_set(&fs_info->scrub_cancel_req, 0);
2277         init_waitqueue_head(&fs_info->scrub_pause_wait);
2278         fs_info->scrub_workers_refcnt = 0;
2279 }
2280
2281 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2282 {
2283         spin_lock_init(&fs_info->balance_lock);
2284         mutex_init(&fs_info->balance_mutex);
2285         atomic_set(&fs_info->balance_running, 0);
2286         atomic_set(&fs_info->balance_pause_req, 0);
2287         atomic_set(&fs_info->balance_cancel_req, 0);
2288         fs_info->balance_ctl = NULL;
2289         init_waitqueue_head(&fs_info->balance_wait_q);
2290 }
2291
2292 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2293                                    struct btrfs_root *tree_root)
2294 {
2295         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2296         set_nlink(fs_info->btree_inode, 1);
2297         /*
2298          * we set the i_size on the btree inode to the max possible int.
2299          * the real end of the address space is determined by all of
2300          * the devices in the system
2301          */
2302         fs_info->btree_inode->i_size = OFFSET_MAX;
2303         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2304
2305         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2306         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2307                              fs_info->btree_inode->i_mapping);
2308         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2309         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2310
2311         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2312
2313         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2314         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2315                sizeof(struct btrfs_key));
2316         set_bit(BTRFS_INODE_DUMMY,
2317                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2318         btrfs_insert_inode_hash(fs_info->btree_inode);
2319 }
2320
2321 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2322 {
2323         fs_info->dev_replace.lock_owner = 0;
2324         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2325         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2326         rwlock_init(&fs_info->dev_replace.lock);
2327         atomic_set(&fs_info->dev_replace.read_locks, 0);
2328         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2329         init_waitqueue_head(&fs_info->replace_wait);
2330         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2331 }
2332
2333 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2334 {
2335         spin_lock_init(&fs_info->qgroup_lock);
2336         mutex_init(&fs_info->qgroup_ioctl_lock);
2337         fs_info->qgroup_tree = RB_ROOT;
2338         fs_info->qgroup_op_tree = RB_ROOT;
2339         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2340         fs_info->qgroup_seq = 1;
2341         fs_info->quota_enabled = 0;
2342         fs_info->pending_quota_state = 0;
2343         fs_info->qgroup_ulist = NULL;
2344         fs_info->qgroup_rescan_running = false;
2345         mutex_init(&fs_info->qgroup_rescan_lock);
2346 }
2347
2348 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2349                 struct btrfs_fs_devices *fs_devices)
2350 {
2351         int max_active = fs_info->thread_pool_size;
2352         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2353
2354         fs_info->workers =
2355                 btrfs_alloc_workqueue(fs_info, "worker",
2356                                       flags | WQ_HIGHPRI, max_active, 16);
2357
2358         fs_info->delalloc_workers =
2359                 btrfs_alloc_workqueue(fs_info, "delalloc",
2360                                       flags, max_active, 2);
2361
2362         fs_info->flush_workers =
2363                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2364                                       flags, max_active, 0);
2365
2366         fs_info->caching_workers =
2367                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2368
2369         /*
2370          * a higher idle thresh on the submit workers makes it much more
2371          * likely that bios will be send down in a sane order to the
2372          * devices
2373          */
2374         fs_info->submit_workers =
2375                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2376                                       min_t(u64, fs_devices->num_devices,
2377                                             max_active), 64);
2378
2379         fs_info->fixup_workers =
2380                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2381
2382         /*
2383          * endios are largely parallel and should have a very
2384          * low idle thresh
2385          */
2386         fs_info->endio_workers =
2387                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2388         fs_info->endio_meta_workers =
2389                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2390                                       max_active, 4);
2391         fs_info->endio_meta_write_workers =
2392                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2393                                       max_active, 2);
2394         fs_info->endio_raid56_workers =
2395                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2396                                       max_active, 4);
2397         fs_info->endio_repair_workers =
2398                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2399         fs_info->rmw_workers =
2400                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2401         fs_info->endio_write_workers =
2402                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2403                                       max_active, 2);
2404         fs_info->endio_freespace_worker =
2405                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2406                                       max_active, 0);
2407         fs_info->delayed_workers =
2408                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2409                                       max_active, 0);
2410         fs_info->readahead_workers =
2411                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2412                                       max_active, 2);
2413         fs_info->qgroup_rescan_workers =
2414                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2415         fs_info->extent_workers =
2416                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2417                                       min_t(u64, fs_devices->num_devices,
2418                                             max_active), 8);
2419
2420         if (!(fs_info->workers && fs_info->delalloc_workers &&
2421               fs_info->submit_workers && fs_info->flush_workers &&
2422               fs_info->endio_workers && fs_info->endio_meta_workers &&
2423               fs_info->endio_meta_write_workers &&
2424               fs_info->endio_repair_workers &&
2425               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2426               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2427               fs_info->caching_workers && fs_info->readahead_workers &&
2428               fs_info->fixup_workers && fs_info->delayed_workers &&
2429               fs_info->extent_workers &&
2430               fs_info->qgroup_rescan_workers)) {
2431                 return -ENOMEM;
2432         }
2433
2434         return 0;
2435 }
2436
2437 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2438                             struct btrfs_fs_devices *fs_devices)
2439 {
2440         int ret;
2441         struct btrfs_root *tree_root = fs_info->tree_root;
2442         struct btrfs_root *log_tree_root;
2443         struct btrfs_super_block *disk_super = fs_info->super_copy;
2444         u64 bytenr = btrfs_super_log_root(disk_super);
2445
2446         if (fs_devices->rw_devices == 0) {
2447                 btrfs_warn(fs_info, "log replay required on RO media");
2448                 return -EIO;
2449         }
2450
2451         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2452         if (!log_tree_root)
2453                 return -ENOMEM;
2454
2455         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2456                         tree_root->stripesize, log_tree_root, fs_info,
2457                         BTRFS_TREE_LOG_OBJECTID);
2458
2459         log_tree_root->node = read_tree_block(tree_root, bytenr,
2460                         fs_info->generation + 1);
2461         if (IS_ERR(log_tree_root->node)) {
2462                 btrfs_warn(fs_info, "failed to read log tree");
2463                 ret = PTR_ERR(log_tree_root->node);
2464                 kfree(log_tree_root);
2465                 return ret;
2466         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2467                 btrfs_err(fs_info, "failed to read log tree");
2468                 free_extent_buffer(log_tree_root->node);
2469                 kfree(log_tree_root);
2470                 return -EIO;
2471         }
2472         /* returns with log_tree_root freed on success */
2473         ret = btrfs_recover_log_trees(log_tree_root);
2474         if (ret) {
2475                 btrfs_handle_fs_error(tree_root->fs_info, ret,
2476                             "Failed to recover log tree");
2477                 free_extent_buffer(log_tree_root->node);
2478                 kfree(log_tree_root);
2479                 return ret;
2480         }
2481
2482         if (fs_info->sb->s_flags & MS_RDONLY) {
2483                 ret = btrfs_commit_super(tree_root);
2484                 if (ret)
2485                         return ret;
2486         }
2487
2488         return 0;
2489 }
2490
2491 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2492                             struct btrfs_root *tree_root)
2493 {
2494         struct btrfs_root *root;
2495         struct btrfs_key location;
2496         int ret;
2497
2498         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2499         location.type = BTRFS_ROOT_ITEM_KEY;
2500         location.offset = 0;
2501
2502         root = btrfs_read_tree_root(tree_root, &location);
2503         if (IS_ERR(root))
2504                 return PTR_ERR(root);
2505         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2506         fs_info->extent_root = root;
2507
2508         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2509         root = btrfs_read_tree_root(tree_root, &location);
2510         if (IS_ERR(root))
2511                 return PTR_ERR(root);
2512         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2513         fs_info->dev_root = root;
2514         btrfs_init_devices_late(fs_info);
2515
2516         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2517         root = btrfs_read_tree_root(tree_root, &location);
2518         if (IS_ERR(root))
2519                 return PTR_ERR(root);
2520         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521         fs_info->csum_root = root;
2522
2523         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2524         root = btrfs_read_tree_root(tree_root, &location);
2525         if (!IS_ERR(root)) {
2526                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2527                 fs_info->quota_enabled = 1;
2528                 fs_info->pending_quota_state = 1;
2529                 fs_info->quota_root = root;
2530         }
2531
2532         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2533         root = btrfs_read_tree_root(tree_root, &location);
2534         if (IS_ERR(root)) {
2535                 ret = PTR_ERR(root);
2536                 if (ret != -ENOENT)
2537                         return ret;
2538         } else {
2539                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2540                 fs_info->uuid_root = root;
2541         }
2542
2543         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2544                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2545                 root = btrfs_read_tree_root(tree_root, &location);
2546                 if (IS_ERR(root))
2547                         return PTR_ERR(root);
2548                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2549                 fs_info->free_space_root = root;
2550         }
2551
2552         return 0;
2553 }
2554
2555 int open_ctree(struct super_block *sb,
2556                struct btrfs_fs_devices *fs_devices,
2557                char *options)
2558 {
2559         u32 sectorsize;
2560         u32 nodesize;
2561         u32 stripesize;
2562         u64 generation;
2563         u64 features;
2564         struct btrfs_key location;
2565         struct buffer_head *bh;
2566         struct btrfs_super_block *disk_super;
2567         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2568         struct btrfs_root *tree_root;
2569         struct btrfs_root *chunk_root;
2570         int ret;
2571         int err = -EINVAL;
2572         int num_backups_tried = 0;
2573         int backup_index = 0;
2574         int max_active;
2575
2576         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2577         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2578         if (!tree_root || !chunk_root) {
2579                 err = -ENOMEM;
2580                 goto fail;
2581         }
2582
2583         ret = init_srcu_struct(&fs_info->subvol_srcu);
2584         if (ret) {
2585                 err = ret;
2586                 goto fail;
2587         }
2588
2589         ret = setup_bdi(fs_info, &fs_info->bdi);
2590         if (ret) {
2591                 err = ret;
2592                 goto fail_srcu;
2593         }
2594
2595         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2596         if (ret) {
2597                 err = ret;
2598                 goto fail_bdi;
2599         }
2600         fs_info->dirty_metadata_batch = PAGE_SIZE *
2601                                         (1 + ilog2(nr_cpu_ids));
2602
2603         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2604         if (ret) {
2605                 err = ret;
2606                 goto fail_dirty_metadata_bytes;
2607         }
2608
2609         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2610         if (ret) {
2611                 err = ret;
2612                 goto fail_delalloc_bytes;
2613         }
2614
2615         fs_info->btree_inode = new_inode(sb);
2616         if (!fs_info->btree_inode) {
2617                 err = -ENOMEM;
2618                 goto fail_bio_counter;
2619         }
2620
2621         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2622
2623         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2624         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2625         INIT_LIST_HEAD(&fs_info->trans_list);
2626         INIT_LIST_HEAD(&fs_info->dead_roots);
2627         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2628         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2629         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2630         spin_lock_init(&fs_info->delalloc_root_lock);
2631         spin_lock_init(&fs_info->trans_lock);
2632         spin_lock_init(&fs_info->fs_roots_radix_lock);
2633         spin_lock_init(&fs_info->delayed_iput_lock);
2634         spin_lock_init(&fs_info->defrag_inodes_lock);
2635         spin_lock_init(&fs_info->free_chunk_lock);
2636         spin_lock_init(&fs_info->tree_mod_seq_lock);
2637         spin_lock_init(&fs_info->super_lock);
2638         spin_lock_init(&fs_info->qgroup_op_lock);
2639         spin_lock_init(&fs_info->buffer_lock);
2640         spin_lock_init(&fs_info->unused_bgs_lock);
2641         rwlock_init(&fs_info->tree_mod_log_lock);
2642         mutex_init(&fs_info->unused_bg_unpin_mutex);
2643         mutex_init(&fs_info->delete_unused_bgs_mutex);
2644         mutex_init(&fs_info->reloc_mutex);
2645         mutex_init(&fs_info->delalloc_root_mutex);
2646         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2647         seqlock_init(&fs_info->profiles_lock);
2648
2649         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2650         INIT_LIST_HEAD(&fs_info->space_info);
2651         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2652         INIT_LIST_HEAD(&fs_info->unused_bgs);
2653         btrfs_mapping_init(&fs_info->mapping_tree);
2654         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2655                              BTRFS_BLOCK_RSV_GLOBAL);
2656         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2657                              BTRFS_BLOCK_RSV_DELALLOC);
2658         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2659         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2660         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2661         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2662                              BTRFS_BLOCK_RSV_DELOPS);
2663         atomic_set(&fs_info->nr_async_submits, 0);
2664         atomic_set(&fs_info->async_delalloc_pages, 0);
2665         atomic_set(&fs_info->async_submit_draining, 0);
2666         atomic_set(&fs_info->nr_async_bios, 0);
2667         atomic_set(&fs_info->defrag_running, 0);
2668         atomic_set(&fs_info->qgroup_op_seq, 0);
2669         atomic_set(&fs_info->reada_works_cnt, 0);
2670         atomic64_set(&fs_info->tree_mod_seq, 0);
2671         fs_info->fs_frozen = 0;
2672         fs_info->sb = sb;
2673         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2674         fs_info->metadata_ratio = 0;
2675         fs_info->defrag_inodes = RB_ROOT;
2676         fs_info->free_chunk_space = 0;
2677         fs_info->tree_mod_log = RB_ROOT;
2678         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2679         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2680         /* readahead state */
2681         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2682         spin_lock_init(&fs_info->reada_lock);
2683
2684         fs_info->thread_pool_size = min_t(unsigned long,
2685                                           num_online_cpus() + 2, 8);
2686
2687         INIT_LIST_HEAD(&fs_info->ordered_roots);
2688         spin_lock_init(&fs_info->ordered_root_lock);
2689         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2690                                         GFP_KERNEL);
2691         if (!fs_info->delayed_root) {
2692                 err = -ENOMEM;
2693                 goto fail_iput;
2694         }
2695         btrfs_init_delayed_root(fs_info->delayed_root);
2696
2697         btrfs_init_scrub(fs_info);
2698 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2699         fs_info->check_integrity_print_mask = 0;
2700 #endif
2701         btrfs_init_balance(fs_info);
2702         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2703
2704         sb->s_blocksize = 4096;
2705         sb->s_blocksize_bits = blksize_bits(4096);
2706         sb->s_bdi = &fs_info->bdi;
2707
2708         btrfs_init_btree_inode(fs_info, tree_root);
2709
2710         spin_lock_init(&fs_info->block_group_cache_lock);
2711         fs_info->block_group_cache_tree = RB_ROOT;
2712         fs_info->first_logical_byte = (u64)-1;
2713
2714         extent_io_tree_init(&fs_info->freed_extents[0],
2715                              fs_info->btree_inode->i_mapping);
2716         extent_io_tree_init(&fs_info->freed_extents[1],
2717                              fs_info->btree_inode->i_mapping);
2718         fs_info->pinned_extents = &fs_info->freed_extents[0];
2719         fs_info->do_barriers = 1;
2720
2721
2722         mutex_init(&fs_info->ordered_operations_mutex);
2723         mutex_init(&fs_info->tree_log_mutex);
2724         mutex_init(&fs_info->chunk_mutex);
2725         mutex_init(&fs_info->transaction_kthread_mutex);
2726         mutex_init(&fs_info->cleaner_mutex);
2727         mutex_init(&fs_info->volume_mutex);
2728         mutex_init(&fs_info->ro_block_group_mutex);
2729         init_rwsem(&fs_info->commit_root_sem);
2730         init_rwsem(&fs_info->cleanup_work_sem);
2731         init_rwsem(&fs_info->subvol_sem);
2732         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2733
2734         btrfs_init_dev_replace_locks(fs_info);
2735         btrfs_init_qgroup(fs_info);
2736
2737         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2738         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2739
2740         init_waitqueue_head(&fs_info->transaction_throttle);
2741         init_waitqueue_head(&fs_info->transaction_wait);
2742         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2743         init_waitqueue_head(&fs_info->async_submit_wait);
2744
2745         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2746
2747         ret = btrfs_alloc_stripe_hash_table(fs_info);
2748         if (ret) {
2749                 err = ret;
2750                 goto fail_alloc;
2751         }
2752
2753         __setup_root(4096, 4096, 4096, tree_root,
2754                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2755
2756         invalidate_bdev(fs_devices->latest_bdev);
2757
2758         /*
2759          * Read super block and check the signature bytes only
2760          */
2761         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2762         if (IS_ERR(bh)) {
2763                 err = PTR_ERR(bh);
2764                 goto fail_alloc;
2765         }
2766
2767         /*
2768          * We want to check superblock checksum, the type is stored inside.
2769          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2770          */
2771         if (btrfs_check_super_csum(bh->b_data)) {
2772                 btrfs_err(fs_info, "superblock checksum mismatch");
2773                 err = -EINVAL;
2774                 brelse(bh);
2775                 goto fail_alloc;
2776         }
2777
2778         /*
2779          * super_copy is zeroed at allocation time and we never touch the
2780          * following bytes up to INFO_SIZE, the checksum is calculated from
2781          * the whole block of INFO_SIZE
2782          */
2783         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2784         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2785                sizeof(*fs_info->super_for_commit));
2786         brelse(bh);
2787
2788         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2789
2790         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2791         if (ret) {
2792                 btrfs_err(fs_info, "superblock contains fatal errors");
2793                 err = -EINVAL;
2794                 goto fail_alloc;
2795         }
2796
2797         disk_super = fs_info->super_copy;
2798         if (!btrfs_super_root(disk_super))
2799                 goto fail_alloc;
2800
2801         /* check FS state, whether FS is broken. */
2802         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2803                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2804
2805         /*
2806          * run through our array of backup supers and setup
2807          * our ring pointer to the oldest one
2808          */
2809         generation = btrfs_super_generation(disk_super);
2810         find_oldest_super_backup(fs_info, generation);
2811
2812         /*
2813          * In the long term, we'll store the compression type in the super
2814          * block, and it'll be used for per file compression control.
2815          */
2816         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2817
2818         ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2819         if (ret) {
2820                 err = ret;
2821                 goto fail_alloc;
2822         }
2823
2824         features = btrfs_super_incompat_flags(disk_super) &
2825                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2826         if (features) {
2827                 btrfs_err(fs_info,
2828                     "cannot mount because of unsupported optional features (%llx)",
2829                     features);
2830                 err = -EINVAL;
2831                 goto fail_alloc;
2832         }
2833
2834         features = btrfs_super_incompat_flags(disk_super);
2835         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2836         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2837                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2838
2839         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2840                 btrfs_info(fs_info, "has skinny extents");
2841
2842         /*
2843          * flag our filesystem as having big metadata blocks if
2844          * they are bigger than the page size
2845          */
2846         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2847                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2848                         btrfs_info(fs_info,
2849                                 "flagging fs with big metadata feature");
2850                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2851         }
2852
2853         nodesize = btrfs_super_nodesize(disk_super);
2854         sectorsize = btrfs_super_sectorsize(disk_super);
2855         stripesize = sectorsize;
2856         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2857         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2858
2859         /*
2860          * mixed block groups end up with duplicate but slightly offset
2861          * extent buffers for the same range.  It leads to corruptions
2862          */
2863         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2864             (sectorsize != nodesize)) {
2865                 btrfs_err(fs_info,
2866 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2867                         nodesize, sectorsize);
2868                 goto fail_alloc;
2869         }
2870
2871         /*
2872          * Needn't use the lock because there is no other task which will
2873          * update the flag.
2874          */
2875         btrfs_set_super_incompat_flags(disk_super, features);
2876
2877         features = btrfs_super_compat_ro_flags(disk_super) &
2878                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2879         if (!(sb->s_flags & MS_RDONLY) && features) {
2880                 btrfs_err(fs_info,
2881         "cannot mount read-write because of unsupported optional features (%llx)",
2882                        features);
2883                 err = -EINVAL;
2884                 goto fail_alloc;
2885         }
2886
2887         max_active = fs_info->thread_pool_size;
2888
2889         ret = btrfs_init_workqueues(fs_info, fs_devices);
2890         if (ret) {
2891                 err = ret;
2892                 goto fail_sb_buffer;
2893         }
2894
2895         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2896         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2897                                     SZ_4M / PAGE_SIZE);
2898
2899         tree_root->nodesize = nodesize;
2900         tree_root->sectorsize = sectorsize;
2901         tree_root->stripesize = stripesize;
2902
2903         sb->s_blocksize = sectorsize;
2904         sb->s_blocksize_bits = blksize_bits(sectorsize);
2905
2906         mutex_lock(&fs_info->chunk_mutex);
2907         ret = btrfs_read_sys_array(tree_root);
2908         mutex_unlock(&fs_info->chunk_mutex);
2909         if (ret) {
2910                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2911                 goto fail_sb_buffer;
2912         }
2913
2914         generation = btrfs_super_chunk_root_generation(disk_super);
2915
2916         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2917                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2918
2919         chunk_root->node = read_tree_block(chunk_root,
2920                                            btrfs_super_chunk_root(disk_super),
2921                                            generation);
2922         if (IS_ERR(chunk_root->node) ||
2923             !extent_buffer_uptodate(chunk_root->node)) {
2924                 btrfs_err(fs_info, "failed to read chunk root");
2925                 if (!IS_ERR(chunk_root->node))
2926                         free_extent_buffer(chunk_root->node);
2927                 chunk_root->node = NULL;
2928                 goto fail_tree_roots;
2929         }
2930         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2931         chunk_root->commit_root = btrfs_root_node(chunk_root);
2932
2933         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2934            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2935
2936         ret = btrfs_read_chunk_tree(chunk_root);
2937         if (ret) {
2938                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2939                 goto fail_tree_roots;
2940         }
2941
2942         /*
2943          * keep the device that is marked to be the target device for the
2944          * dev_replace procedure
2945          */
2946         btrfs_close_extra_devices(fs_devices, 0);
2947
2948         if (!fs_devices->latest_bdev) {
2949                 btrfs_err(fs_info, "failed to read devices");
2950                 goto fail_tree_roots;
2951         }
2952
2953 retry_root_backup:
2954         generation = btrfs_super_generation(disk_super);
2955
2956         tree_root->node = read_tree_block(tree_root,
2957                                           btrfs_super_root(disk_super),
2958                                           generation);
2959         if (IS_ERR(tree_root->node) ||
2960             !extent_buffer_uptodate(tree_root->node)) {
2961                 btrfs_warn(fs_info, "failed to read tree root");
2962                 if (!IS_ERR(tree_root->node))
2963                         free_extent_buffer(tree_root->node);
2964                 tree_root->node = NULL;
2965                 goto recovery_tree_root;
2966         }
2967
2968         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2969         tree_root->commit_root = btrfs_root_node(tree_root);
2970         btrfs_set_root_refs(&tree_root->root_item, 1);
2971
2972         mutex_lock(&tree_root->objectid_mutex);
2973         ret = btrfs_find_highest_objectid(tree_root,
2974                                         &tree_root->highest_objectid);
2975         if (ret) {
2976                 mutex_unlock(&tree_root->objectid_mutex);
2977                 goto recovery_tree_root;
2978         }
2979
2980         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2981
2982         mutex_unlock(&tree_root->objectid_mutex);
2983
2984         ret = btrfs_read_roots(fs_info, tree_root);
2985         if (ret)
2986                 goto recovery_tree_root;
2987
2988         fs_info->generation = generation;
2989         fs_info->last_trans_committed = generation;
2990
2991         ret = btrfs_recover_balance(fs_info);
2992         if (ret) {
2993                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2994                 goto fail_block_groups;
2995         }
2996
2997         ret = btrfs_init_dev_stats(fs_info);
2998         if (ret) {
2999                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3000                 goto fail_block_groups;
3001         }
3002
3003         ret = btrfs_init_dev_replace(fs_info);
3004         if (ret) {
3005                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3006                 goto fail_block_groups;
3007         }
3008
3009         btrfs_close_extra_devices(fs_devices, 1);
3010
3011         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3012         if (ret) {
3013                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3014                                 ret);
3015                 goto fail_block_groups;
3016         }
3017
3018         ret = btrfs_sysfs_add_device(fs_devices);
3019         if (ret) {
3020                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3021                                 ret);
3022                 goto fail_fsdev_sysfs;
3023         }
3024
3025         ret = btrfs_sysfs_add_mounted(fs_info);
3026         if (ret) {
3027                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3028                 goto fail_fsdev_sysfs;
3029         }
3030
3031         ret = btrfs_init_space_info(fs_info);
3032         if (ret) {
3033                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3034                 goto fail_sysfs;
3035         }
3036
3037         ret = btrfs_read_block_groups(fs_info->extent_root);
3038         if (ret) {
3039                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3040                 goto fail_sysfs;
3041         }
3042         fs_info->num_tolerated_disk_barrier_failures =
3043                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3044         if (fs_info->fs_devices->missing_devices >
3045              fs_info->num_tolerated_disk_barrier_failures &&
3046             !(sb->s_flags & MS_RDONLY)) {
3047                 btrfs_warn(fs_info,
3048 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3049                         fs_info->fs_devices->missing_devices,
3050                         fs_info->num_tolerated_disk_barrier_failures);
3051                 goto fail_sysfs;
3052         }
3053
3054         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3055                                                "btrfs-cleaner");
3056         if (IS_ERR(fs_info->cleaner_kthread))
3057                 goto fail_sysfs;
3058
3059         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3060                                                    tree_root,
3061                                                    "btrfs-transaction");
3062         if (IS_ERR(fs_info->transaction_kthread))
3063                 goto fail_cleaner;
3064
3065         if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3066             !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3067             !fs_info->fs_devices->rotating) {
3068                 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3069                 btrfs_set_opt(fs_info->mount_opt, SSD);
3070         }
3071
3072         /*
3073          * Mount does not set all options immediately, we can do it now and do
3074          * not have to wait for transaction commit
3075          */
3076         btrfs_apply_pending_changes(fs_info);
3077
3078 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3079         if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3080                 ret = btrfsic_mount(tree_root, fs_devices,
3081                                     btrfs_test_opt(tree_root->fs_info,
3082                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3083                                     1 : 0,
3084                                     fs_info->check_integrity_print_mask);
3085                 if (ret)
3086                         btrfs_warn(fs_info,
3087                                 "failed to initialize integrity check module: %d",
3088                                 ret);
3089         }
3090 #endif
3091         ret = btrfs_read_qgroup_config(fs_info);
3092         if (ret)
3093                 goto fail_trans_kthread;
3094
3095         /* do not make disk changes in broken FS or nologreplay is given */
3096         if (btrfs_super_log_root(disk_super) != 0 &&
3097             !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3098                 ret = btrfs_replay_log(fs_info, fs_devices);
3099                 if (ret) {
3100                         err = ret;
3101                         goto fail_qgroup;
3102                 }
3103         }
3104
3105         ret = btrfs_find_orphan_roots(tree_root);
3106         if (ret)
3107                 goto fail_qgroup;
3108
3109         if (!(sb->s_flags & MS_RDONLY)) {
3110                 ret = btrfs_cleanup_fs_roots(fs_info);
3111                 if (ret)
3112                         goto fail_qgroup;
3113
3114                 mutex_lock(&fs_info->cleaner_mutex);
3115                 ret = btrfs_recover_relocation(tree_root);
3116                 mutex_unlock(&fs_info->cleaner_mutex);
3117                 if (ret < 0) {
3118                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3119                                         ret);
3120                         err = -EINVAL;
3121                         goto fail_qgroup;
3122                 }
3123         }
3124
3125         location.objectid = BTRFS_FS_TREE_OBJECTID;
3126         location.type = BTRFS_ROOT_ITEM_KEY;
3127         location.offset = 0;
3128
3129         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3130         if (IS_ERR(fs_info->fs_root)) {
3131                 err = PTR_ERR(fs_info->fs_root);
3132                 goto fail_qgroup;
3133         }
3134
3135         if (sb->s_flags & MS_RDONLY)
3136                 return 0;
3137
3138         if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3139             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3140                 btrfs_info(fs_info, "creating free space tree");
3141                 ret = btrfs_create_free_space_tree(fs_info);
3142                 if (ret) {
3143                         btrfs_warn(fs_info,
3144                                 "failed to create free space tree: %d", ret);
3145                         close_ctree(tree_root);
3146                         return ret;
3147                 }
3148         }
3149
3150         down_read(&fs_info->cleanup_work_sem);
3151         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3152             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3153                 up_read(&fs_info->cleanup_work_sem);
3154                 close_ctree(tree_root);
3155                 return ret;
3156         }
3157         up_read(&fs_info->cleanup_work_sem);
3158
3159         ret = btrfs_resume_balance_async(fs_info);
3160         if (ret) {
3161                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3162                 close_ctree(tree_root);
3163                 return ret;
3164         }
3165
3166         ret = btrfs_resume_dev_replace_async(fs_info);
3167         if (ret) {
3168                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3169                 close_ctree(tree_root);
3170                 return ret;
3171         }
3172
3173         btrfs_qgroup_rescan_resume(fs_info);
3174
3175         if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
3176             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3177                 btrfs_info(fs_info, "clearing free space tree");
3178                 ret = btrfs_clear_free_space_tree(fs_info);
3179                 if (ret) {
3180                         btrfs_warn(fs_info,
3181                                 "failed to clear free space tree: %d", ret);
3182                         close_ctree(tree_root);
3183                         return ret;
3184                 }
3185         }
3186
3187         if (!fs_info->uuid_root) {
3188                 btrfs_info(fs_info, "creating UUID tree");
3189                 ret = btrfs_create_uuid_tree(fs_info);
3190                 if (ret) {
3191                         btrfs_warn(fs_info,
3192                                 "failed to create the UUID tree: %d", ret);
3193                         close_ctree(tree_root);
3194                         return ret;
3195                 }
3196         } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3197                    fs_info->generation !=
3198                                 btrfs_super_uuid_tree_generation(disk_super)) {
3199                 btrfs_info(fs_info, "checking UUID tree");
3200                 ret = btrfs_check_uuid_tree(fs_info);
3201                 if (ret) {
3202                         btrfs_warn(fs_info,
3203                                 "failed to check the UUID tree: %d", ret);
3204                         close_ctree(tree_root);
3205                         return ret;
3206                 }
3207         } else {
3208                 fs_info->update_uuid_tree_gen = 1;
3209         }
3210
3211         fs_info->open = 1;
3212
3213         /*
3214          * backuproot only affect mount behavior, and if open_ctree succeeded,
3215          * no need to keep the flag
3216          */
3217         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3218
3219         return 0;
3220
3221 fail_qgroup:
3222         btrfs_free_qgroup_config(fs_info);
3223 fail_trans_kthread:
3224         kthread_stop(fs_info->transaction_kthread);
3225         btrfs_cleanup_transaction(fs_info->tree_root);
3226         btrfs_free_fs_roots(fs_info);
3227 fail_cleaner:
3228         kthread_stop(fs_info->cleaner_kthread);
3229
3230         /*
3231          * make sure we're done with the btree inode before we stop our
3232          * kthreads
3233          */
3234         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3235
3236 fail_sysfs:
3237         btrfs_sysfs_remove_mounted(fs_info);
3238
3239 fail_fsdev_sysfs:
3240         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3241
3242 fail_block_groups:
3243         btrfs_put_block_group_cache(fs_info);
3244         btrfs_free_block_groups(fs_info);
3245
3246 fail_tree_roots:
3247         free_root_pointers(fs_info, 1);
3248         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3249
3250 fail_sb_buffer:
3251         btrfs_stop_all_workers(fs_info);
3252 fail_alloc:
3253 fail_iput:
3254         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3255
3256         iput(fs_info->btree_inode);
3257 fail_bio_counter:
3258         percpu_counter_destroy(&fs_info->bio_counter);
3259 fail_delalloc_bytes:
3260         percpu_counter_destroy(&fs_info->delalloc_bytes);
3261 fail_dirty_metadata_bytes:
3262         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3263 fail_bdi:
3264         bdi_destroy(&fs_info->bdi);
3265 fail_srcu:
3266         cleanup_srcu_struct(&fs_info->subvol_srcu);
3267 fail:
3268         btrfs_free_stripe_hash_table(fs_info);
3269         btrfs_close_devices(fs_info->fs_devices);
3270         return err;
3271
3272 recovery_tree_root:
3273         if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3274                 goto fail_tree_roots;
3275
3276         free_root_pointers(fs_info, 0);
3277
3278         /* don't use the log in recovery mode, it won't be valid */
3279         btrfs_set_super_log_root(disk_super, 0);
3280
3281         /* we can't trust the free space cache either */
3282         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3283
3284         ret = next_root_backup(fs_info, fs_info->super_copy,
3285                                &num_backups_tried, &backup_index);
3286         if (ret == -1)
3287                 goto fail_block_groups;
3288         goto retry_root_backup;
3289 }
3290
3291 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3292 {
3293         if (uptodate) {
3294                 set_buffer_uptodate(bh);
3295         } else {
3296                 struct btrfs_device *device = (struct btrfs_device *)
3297                         bh->b_private;
3298
3299                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3300                                 "lost page write due to IO error on %s",
3301                                           rcu_str_deref(device->name));
3302                 /* note, we don't set_buffer_write_io_error because we have
3303                  * our own ways of dealing with the IO errors
3304                  */
3305                 clear_buffer_uptodate(bh);
3306                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3307         }
3308         unlock_buffer(bh);
3309         put_bh(bh);
3310 }
3311
3312 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3313                         struct buffer_head **bh_ret)
3314 {
3315         struct buffer_head *bh;
3316         struct btrfs_super_block *super;
3317         u64 bytenr;
3318
3319         bytenr = btrfs_sb_offset(copy_num);
3320         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3321                 return -EINVAL;
3322
3323         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3324         /*
3325          * If we fail to read from the underlying devices, as of now
3326          * the best option we have is to mark it EIO.
3327          */
3328         if (!bh)
3329                 return -EIO;
3330
3331         super = (struct btrfs_super_block *)bh->b_data;
3332         if (btrfs_super_bytenr(super) != bytenr ||
3333                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3334                 brelse(bh);
3335                 return -EINVAL;
3336         }
3337
3338         *bh_ret = bh;
3339         return 0;
3340 }
3341
3342
3343 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3344 {
3345         struct buffer_head *bh;
3346         struct buffer_head *latest = NULL;
3347         struct btrfs_super_block *super;
3348         int i;
3349         u64 transid = 0;
3350         int ret = -EINVAL;
3351
3352         /* we would like to check all the supers, but that would make
3353          * a btrfs mount succeed after a mkfs from a different FS.
3354          * So, we need to add a special mount option to scan for
3355          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3356          */
3357         for (i = 0; i < 1; i++) {
3358                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3359                 if (ret)
3360                         continue;
3361
3362                 super = (struct btrfs_super_block *)bh->b_data;
3363
3364                 if (!latest || btrfs_super_generation(super) > transid) {
3365                         brelse(latest);
3366                         latest = bh;
3367                         transid = btrfs_super_generation(super);
3368                 } else {
3369                         brelse(bh);
3370                 }
3371         }
3372
3373         if (!latest)
3374                 return ERR_PTR(ret);
3375
3376         return latest;
3377 }
3378
3379 /*
3380  * this should be called twice, once with wait == 0 and
3381  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3382  * we write are pinned.
3383  *
3384  * They are released when wait == 1 is done.
3385  * max_mirrors must be the same for both runs, and it indicates how
3386  * many supers on this one device should be written.
3387  *
3388  * max_mirrors == 0 means to write them all.
3389  */
3390 static int write_dev_supers(struct btrfs_device *device,
3391                             struct btrfs_super_block *sb,
3392                             int do_barriers, int wait, int max_mirrors)
3393 {
3394         struct buffer_head *bh;
3395         int i;
3396         int ret;
3397         int errors = 0;
3398         u32 crc;
3399         u64 bytenr;
3400
3401         if (max_mirrors == 0)
3402                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3403
3404         for (i = 0; i < max_mirrors; i++) {
3405                 bytenr = btrfs_sb_offset(i);
3406                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3407                     device->commit_total_bytes)
3408                         break;
3409
3410                 if (wait) {
3411                         bh = __find_get_block(device->bdev, bytenr / 4096,
3412                                               BTRFS_SUPER_INFO_SIZE);
3413                         if (!bh) {
3414                                 errors++;
3415                                 continue;
3416                         }
3417                         wait_on_buffer(bh);
3418                         if (!buffer_uptodate(bh))
3419                                 errors++;
3420
3421                         /* drop our reference */
3422                         brelse(bh);
3423
3424                         /* drop the reference from the wait == 0 run */
3425                         brelse(bh);
3426                         continue;
3427                 } else {
3428                         btrfs_set_super_bytenr(sb, bytenr);
3429
3430                         crc = ~(u32)0;
3431                         crc = btrfs_csum_data((char *)sb +
3432                                               BTRFS_CSUM_SIZE, crc,
3433                                               BTRFS_SUPER_INFO_SIZE -
3434                                               BTRFS_CSUM_SIZE);
3435                         btrfs_csum_final(crc, sb->csum);
3436
3437                         /*
3438                          * one reference for us, and we leave it for the
3439                          * caller
3440                          */
3441                         bh = __getblk(device->bdev, bytenr / 4096,
3442                                       BTRFS_SUPER_INFO_SIZE);
3443                         if (!bh) {
3444                                 btrfs_err(device->dev_root->fs_info,
3445                                     "couldn't get super buffer head for bytenr %llu",
3446                                     bytenr);
3447                                 errors++;
3448                                 continue;
3449                         }
3450
3451                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3452
3453                         /* one reference for submit_bh */
3454                         get_bh(bh);
3455
3456                         set_buffer_uptodate(bh);
3457                         lock_buffer(bh);
3458                         bh->b_end_io = btrfs_end_buffer_write_sync;
3459                         bh->b_private = device;
3460                 }
3461
3462                 /*
3463                  * we fua the first super.  The others we allow
3464                  * to go down lazy.
3465                  */
3466                 if (i == 0)
3467                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3468                 else
3469                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3470                 if (ret)
3471                         errors++;
3472         }
3473         return errors < i ? 0 : -1;
3474 }
3475
3476 /*
3477  * endio for the write_dev_flush, this will wake anyone waiting
3478  * for the barrier when it is done
3479  */
3480 static void btrfs_end_empty_barrier(struct bio *bio)
3481 {
3482         if (bio->bi_private)
3483                 complete(bio->bi_private);
3484         bio_put(bio);
3485 }
3486
3487 /*
3488  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3489  * sent down.  With wait == 1, it waits for the previous flush.
3490  *
3491  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3492  * capable
3493  */
3494 static int write_dev_flush(struct btrfs_device *device, int wait)
3495 {
3496         struct bio *bio;
3497         int ret = 0;
3498
3499         if (device->nobarriers)
3500                 return 0;
3501
3502         if (wait) {
3503                 bio = device->flush_bio;
3504                 if (!bio)
3505                         return 0;
3506
3507                 wait_for_completion(&device->flush_wait);
3508
3509                 if (bio->bi_error) {
3510                         ret = bio->bi_error;
3511                         btrfs_dev_stat_inc_and_print(device,
3512                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3513                 }
3514
3515                 /* drop the reference from the wait == 0 run */
3516                 bio_put(bio);
3517                 device->flush_bio = NULL;
3518
3519                 return ret;
3520         }
3521
3522         /*
3523          * one reference for us, and we leave it for the
3524          * caller
3525          */
3526         device->flush_bio = NULL;
3527         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3528         if (!bio)
3529                 return -ENOMEM;
3530
3531         bio->bi_end_io = btrfs_end_empty_barrier;
3532         bio->bi_bdev = device->bdev;
3533         init_completion(&device->flush_wait);
3534         bio->bi_private = &device->flush_wait;
3535         device->flush_bio = bio;
3536
3537         bio_get(bio);
3538         btrfsic_submit_bio(WRITE_FLUSH, bio);
3539
3540         return 0;
3541 }
3542
3543 /*
3544  * send an empty flush down to each device in parallel,
3545  * then wait for them
3546  */
3547 static int barrier_all_devices(struct btrfs_fs_info *info)
3548 {
3549         struct list_head *head;
3550         struct btrfs_device *dev;
3551         int errors_send = 0;
3552         int errors_wait = 0;
3553         int ret;
3554
3555         /* send down all the barriers */
3556         head = &info->fs_devices->devices;
3557         list_for_each_entry_rcu(dev, head, dev_list) {
3558                 if (dev->missing)
3559                         continue;
3560                 if (!dev->bdev) {
3561                         errors_send++;
3562                         continue;
3563                 }
3564                 if (!dev->in_fs_metadata || !dev->writeable)
3565                         continue;
3566
3567                 ret = write_dev_flush(dev, 0);
3568                 if (ret)
3569                         errors_send++;
3570         }
3571
3572         /* wait for all the barriers */
3573         list_for_each_entry_rcu(dev, head, dev_list) {
3574                 if (dev->missing)
3575                         continue;
3576                 if (!dev->bdev) {
3577                         errors_wait++;
3578                         continue;
3579                 }
3580                 if (!dev->in_fs_metadata || !dev->writeable)
3581                         continue;
3582
3583                 ret = write_dev_flush(dev, 1);
3584                 if (ret)
3585                         errors_wait++;
3586         }
3587         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3588             errors_wait > info->num_tolerated_disk_barrier_failures)
3589                 return -EIO;
3590         return 0;
3591 }
3592
3593 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3594 {
3595         int raid_type;
3596         int min_tolerated = INT_MAX;
3597
3598         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3599             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3600                 min_tolerated = min(min_tolerated,
3601                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3602                                     tolerated_failures);
3603
3604         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3605                 if (raid_type == BTRFS_RAID_SINGLE)
3606                         continue;
3607                 if (!(flags & btrfs_raid_group[raid_type]))
3608                         continue;
3609                 min_tolerated = min(min_tolerated,
3610                                     btrfs_raid_array[raid_type].
3611                                     tolerated_failures);
3612         }
3613
3614         if (min_tolerated == INT_MAX) {
3615                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3616                 min_tolerated = 0;
3617         }
3618
3619         return min_tolerated;
3620 }
3621
3622 int btrfs_calc_num_tolerated_disk_barrier_failures(
3623         struct btrfs_fs_info *fs_info)
3624 {
3625         struct btrfs_ioctl_space_info space;
3626         struct btrfs_space_info *sinfo;
3627         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3628                        BTRFS_BLOCK_GROUP_SYSTEM,
3629                        BTRFS_BLOCK_GROUP_METADATA,
3630                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3631         int i;
3632         int c;
3633         int num_tolerated_disk_barrier_failures =
3634                 (int)fs_info->fs_devices->num_devices;
3635
3636         for (i = 0; i < ARRAY_SIZE(types); i++) {
3637                 struct btrfs_space_info *tmp;
3638
3639                 sinfo = NULL;
3640                 rcu_read_lock();
3641                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3642                         if (tmp->flags == types[i]) {
3643                                 sinfo = tmp;
3644                                 break;
3645                         }
3646                 }
3647                 rcu_read_unlock();
3648
3649                 if (!sinfo)
3650                         continue;
3651
3652                 down_read(&sinfo->groups_sem);
3653                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3654                         u64 flags;
3655
3656                         if (list_empty(&sinfo->block_groups[c]))
3657                                 continue;
3658
3659                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3660                                                    &space);
3661                         if (space.total_bytes == 0 || space.used_bytes == 0)
3662                                 continue;
3663                         flags = space.flags;
3664
3665                         num_tolerated_disk_barrier_failures = min(
3666                                 num_tolerated_disk_barrier_failures,
3667                                 btrfs_get_num_tolerated_disk_barrier_failures(
3668                                         flags));
3669                 }
3670                 up_read(&sinfo->groups_sem);
3671         }
3672
3673         return num_tolerated_disk_barrier_failures;
3674 }
3675
3676 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3677 {
3678         struct list_head *head;
3679         struct btrfs_device *dev;
3680         struct btrfs_super_block *sb;
3681         struct btrfs_dev_item *dev_item;
3682         int ret;
3683         int do_barriers;
3684         int max_errors;
3685         int total_errors = 0;
3686         u64 flags;
3687
3688         do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3689         backup_super_roots(root->fs_info);
3690
3691         sb = root->fs_info->super_for_commit;
3692         dev_item = &sb->dev_item;
3693
3694         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3695         head = &root->fs_info->fs_devices->devices;
3696         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3697
3698         if (do_barriers) {
3699                 ret = barrier_all_devices(root->fs_info);
3700                 if (ret) {
3701                         mutex_unlock(
3702                                 &root->fs_info->fs_devices->device_list_mutex);
3703                         btrfs_handle_fs_error(root->fs_info, ret,
3704                                     "errors while submitting device barriers.");
3705                         return ret;
3706                 }
3707         }
3708
3709         list_for_each_entry_rcu(dev, head, dev_list) {
3710                 if (!dev->bdev) {
3711                         total_errors++;
3712                         continue;
3713                 }
3714                 if (!dev->in_fs_metadata || !dev->writeable)
3715                         continue;
3716
3717                 btrfs_set_stack_device_generation(dev_item, 0);
3718                 btrfs_set_stack_device_type(dev_item, dev->type);
3719                 btrfs_set_stack_device_id(dev_item, dev->devid);
3720                 btrfs_set_stack_device_total_bytes(dev_item,
3721                                                    dev->commit_total_bytes);
3722                 btrfs_set_stack_device_bytes_used(dev_item,
3723                                                   dev->commit_bytes_used);
3724                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3725                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3726                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3727                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3728                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3729
3730                 flags = btrfs_super_flags(sb);
3731                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3732
3733                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3734                 if (ret)
3735                         total_errors++;
3736         }
3737         if (total_errors > max_errors) {
3738                 btrfs_err(root->fs_info, "%d errors while writing supers",
3739                        total_errors);
3740                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3741
3742                 /* FUA is masked off if unsupported and can't be the reason */
3743                 btrfs_handle_fs_error(root->fs_info, -EIO,
3744                             "%d errors while writing supers", total_errors);
3745                 return -EIO;
3746         }
3747
3748         total_errors = 0;
3749         list_for_each_entry_rcu(dev, head, dev_list) {
3750                 if (!dev->bdev)
3751                         continue;
3752                 if (!dev->in_fs_metadata || !dev->writeable)
3753                         continue;
3754
3755                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3756                 if (ret)
3757                         total_errors++;
3758         }
3759         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3760         if (total_errors > max_errors) {
3761                 btrfs_handle_fs_error(root->fs_info, -EIO,
3762                             "%d errors while writing supers", total_errors);
3763                 return -EIO;
3764         }
3765         return 0;
3766 }
3767
3768 int write_ctree_super(struct btrfs_trans_handle *trans,
3769                       struct btrfs_root *root, int max_mirrors)
3770 {
3771         return write_all_supers(root, max_mirrors);
3772 }
3773
3774 /* Drop a fs root from the radix tree and free it. */
3775 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3776                                   struct btrfs_root *root)
3777 {
3778         spin_lock(&fs_info->fs_roots_radix_lock);
3779         radix_tree_delete(&fs_info->fs_roots_radix,
3780                           (unsigned long)root->root_key.objectid);
3781         spin_unlock(&fs_info->fs_roots_radix_lock);
3782
3783         if (btrfs_root_refs(&root->root_item) == 0)
3784                 synchronize_srcu(&fs_info->subvol_srcu);
3785
3786         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3787                 btrfs_free_log(NULL, root);
3788                 if (root->reloc_root) {
3789                         free_extent_buffer(root->reloc_root->node);
3790                         free_extent_buffer(root->reloc_root->commit_root);
3791                         btrfs_put_fs_root(root->reloc_root);
3792                         root->reloc_root = NULL;
3793                 }
3794         }
3795
3796         if (root->free_ino_pinned)
3797                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3798         if (root->free_ino_ctl)
3799                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3800         free_fs_root(root);
3801 }
3802
3803 static void free_fs_root(struct btrfs_root *root)
3804 {
3805         iput(root->ino_cache_inode);
3806         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3807         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3808         root->orphan_block_rsv = NULL;
3809         if (root->anon_dev)
3810                 free_anon_bdev(root->anon_dev);
3811         if (root->subv_writers)
3812                 btrfs_free_subvolume_writers(root->subv_writers);
3813         free_extent_buffer(root->node);
3814         free_extent_buffer(root->commit_root);
3815         kfree(root->free_ino_ctl);
3816         kfree(root->free_ino_pinned);
3817         kfree(root->name);
3818         btrfs_put_fs_root(root);
3819 }
3820
3821 void btrfs_free_fs_root(struct btrfs_root *root)
3822 {
3823         free_fs_root(root);
3824 }
3825
3826 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3827 {
3828         u64 root_objectid = 0;
3829         struct btrfs_root *gang[8];
3830         int i = 0;
3831         int err = 0;
3832         unsigned int ret = 0;
3833         int index;
3834
3835         while (1) {
3836                 index = srcu_read_lock(&fs_info->subvol_srcu);
3837                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3838                                              (void **)gang, root_objectid,
3839                                              ARRAY_SIZE(gang));
3840                 if (!ret) {
3841                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3842                         break;
3843                 }
3844                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3845
3846                 for (i = 0; i < ret; i++) {
3847                         /* Avoid to grab roots in dead_roots */
3848                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3849                                 gang[i] = NULL;
3850                                 continue;
3851                         }
3852                         /* grab all the search result for later use */
3853                         gang[i] = btrfs_grab_fs_root(gang[i]);
3854                 }
3855                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3856
3857                 for (i = 0; i < ret; i++) {
3858                         if (!gang[i])
3859                                 continue;
3860                         root_objectid = gang[i]->root_key.objectid;
3861                         err = btrfs_orphan_cleanup(gang[i]);
3862                         if (err)
3863                                 break;
3864                         btrfs_put_fs_root(gang[i]);
3865                 }
3866                 root_objectid++;
3867         }
3868
3869         /* release the uncleaned roots due to error */
3870         for (; i < ret; i++) {
3871                 if (gang[i])
3872                         btrfs_put_fs_root(gang[i]);
3873         }
3874         return err;
3875 }
3876
3877 int btrfs_commit_super(struct btrfs_root *root)
3878 {
3879         struct btrfs_trans_handle *trans;
3880
3881         mutex_lock(&root->fs_info->cleaner_mutex);
3882         btrfs_run_delayed_iputs(root);
3883         mutex_unlock(&root->fs_info->cleaner_mutex);
3884         wake_up_process(root->fs_info->cleaner_kthread);
3885
3886         /* wait until ongoing cleanup work done */
3887         down_write(&root->fs_info->cleanup_work_sem);
3888         up_write(&root->fs_info->cleanup_work_sem);
3889
3890         trans = btrfs_join_transaction(root);
3891         if (IS_ERR(trans))
3892                 return PTR_ERR(trans);
3893         return btrfs_commit_transaction(trans, root);
3894 }
3895
3896 void close_ctree(struct btrfs_root *root)
3897 {
3898         struct btrfs_fs_info *fs_info = root->fs_info;
3899         int ret;
3900
3901         fs_info->closing = 1;
3902         smp_mb();
3903
3904         /* wait for the qgroup rescan worker to stop */
3905         btrfs_qgroup_wait_for_completion(fs_info, false);
3906
3907         /* wait for the uuid_scan task to finish */
3908         down(&fs_info->uuid_tree_rescan_sem);
3909         /* avoid complains from lockdep et al., set sem back to initial state */
3910         up(&fs_info->uuid_tree_rescan_sem);
3911
3912         /* pause restriper - we want to resume on mount */
3913         btrfs_pause_balance(fs_info);
3914
3915         btrfs_dev_replace_suspend_for_unmount(fs_info);
3916
3917         btrfs_scrub_cancel(fs_info);
3918
3919         /* wait for any defraggers to finish */
3920         wait_event(fs_info->transaction_wait,
3921                    (atomic_read(&fs_info->defrag_running) == 0));
3922
3923         /* clear out the rbtree of defraggable inodes */
3924         btrfs_cleanup_defrag_inodes(fs_info);
3925
3926         cancel_work_sync(&fs_info->async_reclaim_work);
3927
3928         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3929                 /*
3930                  * If the cleaner thread is stopped and there are
3931                  * block groups queued for removal, the deletion will be
3932                  * skipped when we quit the cleaner thread.
3933                  */
3934                 btrfs_delete_unused_bgs(root->fs_info);
3935
3936                 ret = btrfs_commit_super(root);
3937                 if (ret)
3938                         btrfs_err(fs_info, "commit super ret %d", ret);
3939         }
3940
3941         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3942                 btrfs_error_commit_super(root);
3943
3944         kthread_stop(fs_info->transaction_kthread);
3945         kthread_stop(fs_info->cleaner_kthread);
3946
3947         fs_info->closing = 2;
3948         smp_mb();
3949
3950         btrfs_free_qgroup_config(fs_info);
3951
3952         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3953                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3954                        percpu_counter_sum(&fs_info->delalloc_bytes));
3955         }
3956
3957         btrfs_sysfs_remove_mounted(fs_info);
3958         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3959
3960         btrfs_free_fs_roots(fs_info);
3961
3962         btrfs_put_block_group_cache(fs_info);
3963
3964         btrfs_free_block_groups(fs_info);
3965
3966         /*
3967          * we must make sure there is not any read request to
3968          * submit after we stopping all workers.
3969          */
3970         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3971         btrfs_stop_all_workers(fs_info);
3972
3973         fs_info->open = 0;
3974         free_root_pointers(fs_info, 1);
3975
3976         iput(fs_info->btree_inode);
3977
3978 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3979         if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3980                 btrfsic_unmount(root, fs_info->fs_devices);
3981 #endif
3982
3983         btrfs_close_devices(fs_info->fs_devices);
3984         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3985
3986         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3987         percpu_counter_destroy(&fs_info->delalloc_bytes);
3988         percpu_counter_destroy(&fs_info->bio_counter);
3989         bdi_destroy(&fs_info->bdi);
3990         cleanup_srcu_struct(&fs_info->subvol_srcu);
3991
3992         btrfs_free_stripe_hash_table(fs_info);
3993
3994         __btrfs_free_block_rsv(root->orphan_block_rsv);
3995         root->orphan_block_rsv = NULL;
3996
3997         lock_chunks(root);
3998         while (!list_empty(&fs_info->pinned_chunks)) {
3999                 struct extent_map *em;
4000
4001                 em = list_first_entry(&fs_info->pinned_chunks,
4002                                       struct extent_map, list);
4003                 list_del_init(&em->list);
4004                 free_extent_map(em);
4005         }
4006         unlock_chunks(root);
4007 }
4008
4009 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4010                           int atomic)
4011 {
4012         int ret;
4013         struct inode *btree_inode = buf->pages[0]->mapping->host;
4014
4015         ret = extent_buffer_uptodate(buf);
4016         if (!ret)
4017                 return ret;
4018
4019         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4020                                     parent_transid, atomic);
4021         if (ret == -EAGAIN)
4022                 return ret;
4023         return !ret;
4024 }
4025
4026 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4027 {
4028         struct btrfs_root *root;
4029         u64 transid = btrfs_header_generation(buf);
4030         int was_dirty;
4031
4032 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4033         /*
4034          * This is a fast path so only do this check if we have sanity tests
4035          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4036          * outside of the sanity tests.
4037          */
4038         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4039                 return;
4040 #endif
4041         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4042         btrfs_assert_tree_locked(buf);
4043         if (transid != root->fs_info->generation)
4044                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
4045                        "found %llu running %llu\n",
4046                         buf->start, transid, root->fs_info->generation);
4047         was_dirty = set_extent_buffer_dirty(buf);
4048         if (!was_dirty)
4049                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4050                                      buf->len,
4051                                      root->fs_info->dirty_metadata_batch);
4052 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4053         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4054                 btrfs_print_leaf(root, buf);
4055                 ASSERT(0);
4056         }
4057 #endif
4058 }
4059
4060 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4061                                         int flush_delayed)
4062 {
4063         /*
4064          * looks as though older kernels can get into trouble with
4065          * this code, they end up stuck in balance_dirty_pages forever
4066          */
4067         int ret;
4068
4069         if (current->flags & PF_MEMALLOC)
4070                 return;
4071
4072         if (flush_delayed)
4073                 btrfs_balance_delayed_items(root);
4074
4075         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4076                                      BTRFS_DIRTY_METADATA_THRESH);
4077         if (ret > 0) {
4078                 balance_dirty_pages_ratelimited(
4079                                    root->fs_info->btree_inode->i_mapping);
4080         }
4081 }
4082
4083 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4084 {
4085         __btrfs_btree_balance_dirty(root, 1);
4086 }
4087
4088 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4089 {
4090         __btrfs_btree_balance_dirty(root, 0);
4091 }
4092
4093 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4094 {
4095         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4096         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4097 }
4098
4099 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4100                               int read_only)
4101 {
4102         struct btrfs_super_block *sb = fs_info->super_copy;
4103         u64 nodesize = btrfs_super_nodesize(sb);
4104         u64 sectorsize = btrfs_super_sectorsize(sb);
4105         int ret = 0;
4106
4107         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4108                 printk(KERN_ERR "BTRFS: no valid FS found\n");
4109                 ret = -EINVAL;
4110         }
4111         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4112                 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4113                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4114         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4115                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4116                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4117                 ret = -EINVAL;
4118         }
4119         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4120                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4121                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4122                 ret = -EINVAL;
4123         }
4124         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4125                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4126                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4127                 ret = -EINVAL;
4128         }
4129
4130         /*
4131          * Check sectorsize and nodesize first, other check will need it.
4132          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4133          */
4134         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4135             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4136                 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4137                 ret = -EINVAL;
4138         }
4139         /* Only PAGE SIZE is supported yet */
4140         if (sectorsize != PAGE_SIZE) {
4141                 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4142                                 sectorsize, PAGE_SIZE);
4143                 ret = -EINVAL;
4144         }
4145         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4146             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4147                 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4148                 ret = -EINVAL;
4149         }
4150         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4151                 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4152                                 le32_to_cpu(sb->__unused_leafsize),
4153                                 nodesize);
4154                 ret = -EINVAL;
4155         }
4156
4157         /* Root alignment check */
4158         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4159                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4160                                 btrfs_super_root(sb));
4161                 ret = -EINVAL;
4162         }
4163         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4164                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4165                                 btrfs_super_chunk_root(sb));
4166                 ret = -EINVAL;
4167         }
4168         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4169                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4170                                 btrfs_super_log_root(sb));
4171                 ret = -EINVAL;
4172         }
4173
4174         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4175                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4176                                 fs_info->fsid, sb->dev_item.fsid);
4177                 ret = -EINVAL;
4178         }
4179
4180         /*
4181          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4182          * done later
4183          */
4184         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4185                 btrfs_err(fs_info, "bytes_used is too small %llu",
4186                        btrfs_super_bytes_used(sb));
4187                 ret = -EINVAL;
4188         }
4189         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4190                 btrfs_err(fs_info, "invalid stripesize %u",
4191                        btrfs_super_stripesize(sb));
4192                 ret = -EINVAL;
4193         }
4194         if (btrfs_super_num_devices(sb) > (1UL << 31))
4195                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4196                                 btrfs_super_num_devices(sb));
4197         if (btrfs_super_num_devices(sb) == 0) {
4198                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4199                 ret = -EINVAL;
4200         }
4201
4202         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4203                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4204                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4205                 ret = -EINVAL;
4206         }
4207
4208         /*
4209          * Obvious sys_chunk_array corruptions, it must hold at least one key
4210          * and one chunk
4211          */
4212         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4213                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4214                                 btrfs_super_sys_array_size(sb),
4215                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4216                 ret = -EINVAL;
4217         }
4218         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4219                         + sizeof(struct btrfs_chunk)) {
4220                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4221                                 btrfs_super_sys_array_size(sb),
4222                                 sizeof(struct btrfs_disk_key)
4223                                 + sizeof(struct btrfs_chunk));
4224                 ret = -EINVAL;
4225         }
4226
4227         /*
4228          * The generation is a global counter, we'll trust it more than the others
4229          * but it's still possible that it's the one that's wrong.
4230          */
4231         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4232                 printk(KERN_WARNING
4233                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4234                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4235         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4236             && btrfs_super_cache_generation(sb) != (u64)-1)
4237                 printk(KERN_WARNING
4238                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4239                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4240
4241         return ret;
4242 }
4243
4244 static void btrfs_error_commit_super(struct btrfs_root *root)
4245 {
4246         mutex_lock(&root->fs_info->cleaner_mutex);
4247         btrfs_run_delayed_iputs(root);
4248         mutex_unlock(&root->fs_info->cleaner_mutex);
4249
4250         down_write(&root->fs_info->cleanup_work_sem);
4251         up_write(&root->fs_info->cleanup_work_sem);
4252
4253         /* cleanup FS via transaction */
4254         btrfs_cleanup_transaction(root);
4255 }
4256
4257 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4258 {
4259         struct btrfs_ordered_extent *ordered;
4260
4261         spin_lock(&root->ordered_extent_lock);
4262         /*
4263          * This will just short circuit the ordered completion stuff which will
4264          * make sure the ordered extent gets properly cleaned up.
4265          */
4266         list_for_each_entry(ordered, &root->ordered_extents,
4267                             root_extent_list)
4268                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4269         spin_unlock(&root->ordered_extent_lock);
4270 }
4271
4272 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4273 {
4274         struct btrfs_root *root;
4275         struct list_head splice;
4276
4277         INIT_LIST_HEAD(&splice);
4278
4279         spin_lock(&fs_info->ordered_root_lock);
4280         list_splice_init(&fs_info->ordered_roots, &splice);
4281         while (!list_empty(&splice)) {
4282                 root = list_first_entry(&splice, struct btrfs_root,
4283                                         ordered_root);
4284                 list_move_tail(&root->ordered_root,
4285                                &fs_info->ordered_roots);
4286
4287                 spin_unlock(&fs_info->ordered_root_lock);
4288                 btrfs_destroy_ordered_extents(root);
4289
4290                 cond_resched();
4291                 spin_lock(&fs_info->ordered_root_lock);
4292         }
4293         spin_unlock(&fs_info->ordered_root_lock);
4294 }
4295
4296 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4297                                       struct btrfs_root *root)
4298 {
4299         struct rb_node *node;
4300         struct btrfs_delayed_ref_root *delayed_refs;
4301         struct btrfs_delayed_ref_node *ref;
4302         int ret = 0;
4303
4304         delayed_refs = &trans->delayed_refs;
4305
4306         spin_lock(&delayed_refs->lock);
4307         if (atomic_read(&delayed_refs->num_entries) == 0) {
4308                 spin_unlock(&delayed_refs->lock);
4309                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4310                 return ret;
4311         }
4312
4313         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4314                 struct btrfs_delayed_ref_head *head;
4315                 struct btrfs_delayed_ref_node *tmp;
4316                 bool pin_bytes = false;
4317
4318                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4319                                 href_node);
4320                 if (!mutex_trylock(&head->mutex)) {
4321                         atomic_inc(&head->node.refs);
4322                         spin_unlock(&delayed_refs->lock);
4323
4324                         mutex_lock(&head->mutex);
4325                         mutex_unlock(&head->mutex);
4326                         btrfs_put_delayed_ref(&head->node);
4327                         spin_lock(&delayed_refs->lock);
4328                         continue;
4329                 }
4330                 spin_lock(&head->lock);
4331                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4332                                                  list) {
4333                         ref->in_tree = 0;
4334                         list_del(&ref->list);
4335                         atomic_dec(&delayed_refs->num_entries);
4336                         btrfs_put_delayed_ref(ref);
4337                 }
4338                 if (head->must_insert_reserved)
4339                         pin_bytes = true;
4340                 btrfs_free_delayed_extent_op(head->extent_op);
4341                 delayed_refs->num_heads--;
4342                 if (head->processing == 0)
4343                         delayed_refs->num_heads_ready--;
4344                 atomic_dec(&delayed_refs->num_entries);
4345                 head->node.in_tree = 0;
4346                 rb_erase(&head->href_node, &delayed_refs->href_root);
4347                 spin_unlock(&head->lock);
4348                 spin_unlock(&delayed_refs->lock);
4349                 mutex_unlock(&head->mutex);
4350
4351                 if (pin_bytes)
4352                         btrfs_pin_extent(root, head->node.bytenr,
4353                                          head->node.num_bytes, 1);
4354                 btrfs_put_delayed_ref(&head->node);
4355                 cond_resched();
4356                 spin_lock(&delayed_refs->lock);
4357         }
4358
4359         spin_unlock(&delayed_refs->lock);
4360
4361         return ret;
4362 }
4363
4364 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4365 {
4366         struct btrfs_inode *btrfs_inode;
4367         struct list_head splice;
4368
4369         INIT_LIST_HEAD(&splice);
4370
4371         spin_lock(&root->delalloc_lock);
4372         list_splice_init(&root->delalloc_inodes, &splice);
4373
4374         while (!list_empty(&splice)) {
4375                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4376                                                delalloc_inodes);
4377
4378                 list_del_init(&btrfs_inode->delalloc_inodes);
4379                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4380                           &btrfs_inode->runtime_flags);
4381                 spin_unlock(&root->delalloc_lock);
4382
4383                 btrfs_invalidate_inodes(btrfs_inode->root);
4384
4385                 spin_lock(&root->delalloc_lock);
4386         }
4387
4388         spin_unlock(&root->delalloc_lock);
4389 }
4390
4391 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4392 {
4393         struct btrfs_root *root;
4394         struct list_head splice;
4395
4396         INIT_LIST_HEAD(&splice);
4397
4398         spin_lock(&fs_info->delalloc_root_lock);
4399         list_splice_init(&fs_info->delalloc_roots, &splice);
4400         while (!list_empty(&splice)) {
4401                 root = list_first_entry(&splice, struct btrfs_root,
4402                                          delalloc_root);
4403                 list_del_init(&root->delalloc_root);
4404                 root = btrfs_grab_fs_root(root);
4405                 BUG_ON(!root);
4406                 spin_unlock(&fs_info->delalloc_root_lock);
4407
4408                 btrfs_destroy_delalloc_inodes(root);
4409                 btrfs_put_fs_root(root);
4410
4411                 spin_lock(&fs_info->delalloc_root_lock);
4412         }
4413         spin_unlock(&fs_info->delalloc_root_lock);
4414 }
4415
4416 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4417                                         struct extent_io_tree *dirty_pages,
4418                                         int mark)
4419 {
4420         int ret;
4421         struct extent_buffer *eb;
4422         u64 start = 0;
4423         u64 end;
4424
4425         while (1) {
4426                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4427                                             mark, NULL);
4428                 if (ret)
4429                         break;
4430
4431                 clear_extent_bits(dirty_pages, start, end, mark);
4432                 while (start <= end) {
4433                         eb = btrfs_find_tree_block(root->fs_info, start);
4434                         start += root->nodesize;
4435                         if (!eb)
4436                                 continue;
4437                         wait_on_extent_buffer_writeback(eb);
4438
4439                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4440                                                &eb->bflags))
4441                                 clear_extent_buffer_dirty(eb);
4442                         free_extent_buffer_stale(eb);
4443                 }
4444         }
4445
4446         return ret;
4447 }
4448
4449 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4450                                        struct extent_io_tree *pinned_extents)
4451 {
4452         struct extent_io_tree *unpin;
4453         u64 start;
4454         u64 end;
4455         int ret;
4456         bool loop = true;
4457
4458         unpin = pinned_extents;
4459 again:
4460         while (1) {
4461                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4462                                             EXTENT_DIRTY, NULL);
4463                 if (ret)
4464                         break;
4465
4466                 clear_extent_dirty(unpin, start, end);
4467                 btrfs_error_unpin_extent_range(root, start, end);
4468                 cond_resched();
4469         }
4470
4471         if (loop) {
4472                 if (unpin == &root->fs_info->freed_extents[0])
4473                         unpin = &root->fs_info->freed_extents[1];
4474                 else
4475                         unpin = &root->fs_info->freed_extents[0];
4476                 loop = false;
4477                 goto again;
4478         }
4479
4480         return 0;
4481 }
4482
4483 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4484                                    struct btrfs_root *root)
4485 {
4486         btrfs_destroy_delayed_refs(cur_trans, root);
4487
4488         cur_trans->state = TRANS_STATE_COMMIT_START;
4489         wake_up(&root->fs_info->transaction_blocked_wait);
4490
4491         cur_trans->state = TRANS_STATE_UNBLOCKED;
4492         wake_up(&root->fs_info->transaction_wait);
4493
4494         btrfs_destroy_delayed_inodes(root);
4495         btrfs_assert_delayed_root_empty(root);
4496
4497         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4498                                      EXTENT_DIRTY);
4499         btrfs_destroy_pinned_extent(root,
4500                                     root->fs_info->pinned_extents);
4501
4502         cur_trans->state =TRANS_STATE_COMPLETED;
4503         wake_up(&cur_trans->commit_wait);
4504
4505         /*
4506         memset(cur_trans, 0, sizeof(*cur_trans));
4507         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4508         */
4509 }
4510
4511 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4512 {
4513         struct btrfs_transaction *t;
4514
4515         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4516
4517         spin_lock(&root->fs_info->trans_lock);
4518         while (!list_empty(&root->fs_info->trans_list)) {
4519                 t = list_first_entry(&root->fs_info->trans_list,
4520                                      struct btrfs_transaction, list);
4521                 if (t->state >= TRANS_STATE_COMMIT_START) {
4522                         atomic_inc(&t->use_count);
4523                         spin_unlock(&root->fs_info->trans_lock);
4524                         btrfs_wait_for_commit(root, t->transid);
4525                         btrfs_put_transaction(t);
4526                         spin_lock(&root->fs_info->trans_lock);
4527                         continue;
4528                 }
4529                 if (t == root->fs_info->running_transaction) {
4530                         t->state = TRANS_STATE_COMMIT_DOING;
4531                         spin_unlock(&root->fs_info->trans_lock);
4532                         /*
4533                          * We wait for 0 num_writers since we don't hold a trans
4534                          * handle open currently for this transaction.
4535                          */
4536                         wait_event(t->writer_wait,
4537                                    atomic_read(&t->num_writers) == 0);
4538                 } else {
4539                         spin_unlock(&root->fs_info->trans_lock);
4540                 }
4541                 btrfs_cleanup_one_transaction(t, root);
4542
4543                 spin_lock(&root->fs_info->trans_lock);
4544                 if (t == root->fs_info->running_transaction)
4545                         root->fs_info->running_transaction = NULL;
4546                 list_del_init(&t->list);
4547                 spin_unlock(&root->fs_info->trans_lock);
4548
4549                 btrfs_put_transaction(t);
4550                 trace_btrfs_transaction_commit(root);
4551                 spin_lock(&root->fs_info->trans_lock);
4552         }
4553         spin_unlock(&root->fs_info->trans_lock);
4554         btrfs_destroy_all_ordered_extents(root->fs_info);
4555         btrfs_destroy_delayed_inodes(root);
4556         btrfs_assert_delayed_root_empty(root);
4557         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4558         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4559         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4560
4561         return 0;
4562 }
4563
4564 static const struct extent_io_ops btree_extent_io_ops = {
4565         .readpage_end_io_hook = btree_readpage_end_io_hook,
4566         .readpage_io_failed_hook = btree_io_failed_hook,
4567         .submit_bio_hook = btree_submit_bio_hook,
4568         /* note we're sharing with inode.c for the merge bio hook */
4569         .merge_bio_hook = btrfs_merge_bio_hook,
4570 };