Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
41
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 static void free_fs_root(struct btrfs_root *root);
45
46 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
47
48 /*
49  * end_io_wq structs are used to do processing in task context when an IO is
50  * complete.  This is used during reads to verify checksums, and it is used
51  * by writes to insert metadata for new file extents after IO is complete.
52  */
53 struct end_io_wq {
54         struct bio *bio;
55         bio_end_io_t *end_io;
56         void *private;
57         struct btrfs_fs_info *info;
58         int error;
59         int metadata;
60         struct list_head list;
61         struct btrfs_work work;
62 };
63
64 /*
65  * async submit bios are used to offload expensive checksumming
66  * onto the worker threads.  They checksum file and metadata bios
67  * just before they are sent down the IO stack.
68  */
69 struct async_submit_bio {
70         struct inode *inode;
71         struct bio *bio;
72         struct list_head list;
73         extent_submit_bio_hook_t *submit_bio_start;
74         extent_submit_bio_hook_t *submit_bio_done;
75         int rw;
76         int mirror_num;
77         unsigned long bio_flags;
78         struct btrfs_work work;
79 };
80
81 /* These are used to set the lockdep class on the extent buffer locks.
82  * The class is set by the readpage_end_io_hook after the buffer has
83  * passed csum validation but before the pages are unlocked.
84  *
85  * The lockdep class is also set by btrfs_init_new_buffer on freshly
86  * allocated blocks.
87  *
88  * The class is based on the level in the tree block, which allows lockdep
89  * to know that lower nodes nest inside the locks of higher nodes.
90  *
91  * We also add a check to make sure the highest level of the tree is
92  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
93  * code needs update as well.
94  */
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 # if BTRFS_MAX_LEVEL != 8
97 #  error
98 # endif
99 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
100 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
101         /* leaf */
102         "btrfs-extent-00",
103         "btrfs-extent-01",
104         "btrfs-extent-02",
105         "btrfs-extent-03",
106         "btrfs-extent-04",
107         "btrfs-extent-05",
108         "btrfs-extent-06",
109         "btrfs-extent-07",
110         /* highest possible level */
111         "btrfs-extent-08",
112 };
113 #endif
114
115 /*
116  * extents on the btree inode are pretty simple, there's one extent
117  * that covers the entire device
118  */
119 static struct extent_map *btree_get_extent(struct inode *inode,
120                 struct page *page, size_t page_offset, u64 start, u64 len,
121                 int create)
122 {
123         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
124         struct extent_map *em;
125         int ret;
126
127         read_lock(&em_tree->lock);
128         em = lookup_extent_mapping(em_tree, start, len);
129         if (em) {
130                 em->bdev =
131                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
132                 read_unlock(&em_tree->lock);
133                 goto out;
134         }
135         read_unlock(&em_tree->lock);
136
137         em = alloc_extent_map(GFP_NOFS);
138         if (!em) {
139                 em = ERR_PTR(-ENOMEM);
140                 goto out;
141         }
142         em->start = 0;
143         em->len = (u64)-1;
144         em->block_len = (u64)-1;
145         em->block_start = 0;
146         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
147
148         write_lock(&em_tree->lock);
149         ret = add_extent_mapping(em_tree, em);
150         if (ret == -EEXIST) {
151                 u64 failed_start = em->start;
152                 u64 failed_len = em->len;
153
154                 free_extent_map(em);
155                 em = lookup_extent_mapping(em_tree, start, len);
156                 if (em) {
157                         ret = 0;
158                 } else {
159                         em = lookup_extent_mapping(em_tree, failed_start,
160                                                    failed_len);
161                         ret = -EIO;
162                 }
163         } else if (ret) {
164                 free_extent_map(em);
165                 em = NULL;
166         }
167         write_unlock(&em_tree->lock);
168
169         if (ret)
170                 em = ERR_PTR(ret);
171 out:
172         return em;
173 }
174
175 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
176 {
177         return crc32c(seed, data, len);
178 }
179
180 void btrfs_csum_final(u32 crc, char *result)
181 {
182         *(__le32 *)result = ~cpu_to_le32(crc);
183 }
184
185 /*
186  * compute the csum for a btree block, and either verify it or write it
187  * into the csum field of the block.
188  */
189 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
190                            int verify)
191 {
192         u16 csum_size =
193                 btrfs_super_csum_size(&root->fs_info->super_copy);
194         char *result = NULL;
195         unsigned long len;
196         unsigned long cur_len;
197         unsigned long offset = BTRFS_CSUM_SIZE;
198         char *map_token = NULL;
199         char *kaddr;
200         unsigned long map_start;
201         unsigned long map_len;
202         int err;
203         u32 crc = ~(u32)0;
204         unsigned long inline_result;
205
206         len = buf->len - offset;
207         while (len > 0) {
208                 err = map_private_extent_buffer(buf, offset, 32,
209                                         &map_token, &kaddr,
210                                         &map_start, &map_len, KM_USER0);
211                 if (err)
212                         return 1;
213                 cur_len = min(len, map_len - (offset - map_start));
214                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
215                                       crc, cur_len);
216                 len -= cur_len;
217                 offset += cur_len;
218                 unmap_extent_buffer(buf, map_token, KM_USER0);
219         }
220         if (csum_size > sizeof(inline_result)) {
221                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
222                 if (!result)
223                         return 1;
224         } else {
225                 result = (char *)&inline_result;
226         }
227
228         btrfs_csum_final(crc, result);
229
230         if (verify) {
231                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
232                         u32 val;
233                         u32 found = 0;
234                         memcpy(&found, result, csum_size);
235
236                         read_extent_buffer(buf, &val, 0, csum_size);
237                         if (printk_ratelimit()) {
238                                 printk(KERN_INFO "btrfs: %s checksum verify "
239                                        "failed on %llu wanted %X found %X "
240                                        "level %d\n",
241                                        root->fs_info->sb->s_id,
242                                        (unsigned long long)buf->start, val, found,
243                                        btrfs_header_level(buf));
244                         }
245                         if (result != (char *)&inline_result)
246                                 kfree(result);
247                         return 1;
248                 }
249         } else {
250                 write_extent_buffer(buf, result, 0, csum_size);
251         }
252         if (result != (char *)&inline_result)
253                 kfree(result);
254         return 0;
255 }
256
257 /*
258  * we can't consider a given block up to date unless the transid of the
259  * block matches the transid in the parent node's pointer.  This is how we
260  * detect blocks that either didn't get written at all or got written
261  * in the wrong place.
262  */
263 static int verify_parent_transid(struct extent_io_tree *io_tree,
264                                  struct extent_buffer *eb, u64 parent_transid)
265 {
266         int ret;
267
268         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
269                 return 0;
270
271         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
272         if (extent_buffer_uptodate(io_tree, eb) &&
273             btrfs_header_generation(eb) == parent_transid) {
274                 ret = 0;
275                 goto out;
276         }
277         if (printk_ratelimit()) {
278                 printk("parent transid verify failed on %llu wanted %llu "
279                        "found %llu\n",
280                        (unsigned long long)eb->start,
281                        (unsigned long long)parent_transid,
282                        (unsigned long long)btrfs_header_generation(eb));
283         }
284         ret = 1;
285         clear_extent_buffer_uptodate(io_tree, eb);
286 out:
287         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
288                       GFP_NOFS);
289         return ret;
290 }
291
292 /*
293  * helper to read a given tree block, doing retries as required when
294  * the checksums don't match and we have alternate mirrors to try.
295  */
296 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
297                                           struct extent_buffer *eb,
298                                           u64 start, u64 parent_transid)
299 {
300         struct extent_io_tree *io_tree;
301         int ret;
302         int num_copies = 0;
303         int mirror_num = 0;
304
305         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
306         while (1) {
307                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
308                                                btree_get_extent, mirror_num);
309                 if (!ret &&
310                     !verify_parent_transid(io_tree, eb, parent_transid))
311                         return ret;
312
313                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
314                                               eb->start, eb->len);
315                 if (num_copies == 1)
316                         return ret;
317
318                 mirror_num++;
319                 if (mirror_num > num_copies)
320                         return ret;
321         }
322         return -EIO;
323 }
324
325 /*
326  * checksum a dirty tree block before IO.  This has extra checks to make sure
327  * we only fill in the checksum field in the first page of a multi-page block
328  */
329
330 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
331 {
332         struct extent_io_tree *tree;
333         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
334         u64 found_start;
335         int found_level;
336         unsigned long len;
337         struct extent_buffer *eb;
338         int ret;
339
340         tree = &BTRFS_I(page->mapping->host)->io_tree;
341
342         if (page->private == EXTENT_PAGE_PRIVATE)
343                 goto out;
344         if (!page->private)
345                 goto out;
346         len = page->private >> 2;
347         WARN_ON(len == 0);
348
349         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
350         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
351                                              btrfs_header_generation(eb));
352         BUG_ON(ret);
353         found_start = btrfs_header_bytenr(eb);
354         if (found_start != start) {
355                 WARN_ON(1);
356                 goto err;
357         }
358         if (eb->first_page != page) {
359                 WARN_ON(1);
360                 goto err;
361         }
362         if (!PageUptodate(page)) {
363                 WARN_ON(1);
364                 goto err;
365         }
366         found_level = btrfs_header_level(eb);
367
368         csum_tree_block(root, eb, 0);
369 err:
370         free_extent_buffer(eb);
371 out:
372         return 0;
373 }
374
375 static int check_tree_block_fsid(struct btrfs_root *root,
376                                  struct extent_buffer *eb)
377 {
378         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
379         u8 fsid[BTRFS_UUID_SIZE];
380         int ret = 1;
381
382         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
383                            BTRFS_FSID_SIZE);
384         while (fs_devices) {
385                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
386                         ret = 0;
387                         break;
388                 }
389                 fs_devices = fs_devices->seed;
390         }
391         return ret;
392 }
393
394 #ifdef CONFIG_DEBUG_LOCK_ALLOC
395 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
396 {
397         lockdep_set_class_and_name(&eb->lock,
398                            &btrfs_eb_class[level],
399                            btrfs_eb_name[level]);
400 }
401 #endif
402
403 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
404                                struct extent_state *state)
405 {
406         struct extent_io_tree *tree;
407         u64 found_start;
408         int found_level;
409         unsigned long len;
410         struct extent_buffer *eb;
411         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
412         int ret = 0;
413
414         tree = &BTRFS_I(page->mapping->host)->io_tree;
415         if (page->private == EXTENT_PAGE_PRIVATE)
416                 goto out;
417         if (!page->private)
418                 goto out;
419
420         len = page->private >> 2;
421         WARN_ON(len == 0);
422
423         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
424
425         found_start = btrfs_header_bytenr(eb);
426         if (found_start != start) {
427                 if (printk_ratelimit()) {
428                         printk(KERN_INFO "btrfs bad tree block start "
429                                "%llu %llu\n",
430                                (unsigned long long)found_start,
431                                (unsigned long long)eb->start);
432                 }
433                 ret = -EIO;
434                 goto err;
435         }
436         if (eb->first_page != page) {
437                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
438                        eb->first_page->index, page->index);
439                 WARN_ON(1);
440                 ret = -EIO;
441                 goto err;
442         }
443         if (check_tree_block_fsid(root, eb)) {
444                 if (printk_ratelimit()) {
445                         printk(KERN_INFO "btrfs bad fsid on block %llu\n",
446                                (unsigned long long)eb->start);
447                 }
448                 ret = -EIO;
449                 goto err;
450         }
451         found_level = btrfs_header_level(eb);
452
453         btrfs_set_buffer_lockdep_class(eb, found_level);
454
455         ret = csum_tree_block(root, eb, 1);
456         if (ret)
457                 ret = -EIO;
458
459         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
460         end = eb->start + end - 1;
461 err:
462         free_extent_buffer(eb);
463 out:
464         return ret;
465 }
466
467 static void end_workqueue_bio(struct bio *bio, int err)
468 {
469         struct end_io_wq *end_io_wq = bio->bi_private;
470         struct btrfs_fs_info *fs_info;
471
472         fs_info = end_io_wq->info;
473         end_io_wq->error = err;
474         end_io_wq->work.func = end_workqueue_fn;
475         end_io_wq->work.flags = 0;
476
477         if (bio->bi_rw & (1 << BIO_RW)) {
478                 if (end_io_wq->metadata)
479                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
480                                            &end_io_wq->work);
481                 else
482                         btrfs_queue_worker(&fs_info->endio_write_workers,
483                                            &end_io_wq->work);
484         } else {
485                 if (end_io_wq->metadata)
486                         btrfs_queue_worker(&fs_info->endio_meta_workers,
487                                            &end_io_wq->work);
488                 else
489                         btrfs_queue_worker(&fs_info->endio_workers,
490                                            &end_io_wq->work);
491         }
492 }
493
494 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
495                         int metadata)
496 {
497         struct end_io_wq *end_io_wq;
498         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
499         if (!end_io_wq)
500                 return -ENOMEM;
501
502         end_io_wq->private = bio->bi_private;
503         end_io_wq->end_io = bio->bi_end_io;
504         end_io_wq->info = info;
505         end_io_wq->error = 0;
506         end_io_wq->bio = bio;
507         end_io_wq->metadata = metadata;
508
509         bio->bi_private = end_io_wq;
510         bio->bi_end_io = end_workqueue_bio;
511         return 0;
512 }
513
514 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
515 {
516         unsigned long limit = min_t(unsigned long,
517                                     info->workers.max_workers,
518                                     info->fs_devices->open_devices);
519         return 256 * limit;
520 }
521
522 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
523 {
524         return atomic_read(&info->nr_async_bios) >
525                 btrfs_async_submit_limit(info);
526 }
527
528 static void run_one_async_start(struct btrfs_work *work)
529 {
530         struct btrfs_fs_info *fs_info;
531         struct async_submit_bio *async;
532
533         async = container_of(work, struct  async_submit_bio, work);
534         fs_info = BTRFS_I(async->inode)->root->fs_info;
535         async->submit_bio_start(async->inode, async->rw, async->bio,
536                                async->mirror_num, async->bio_flags);
537 }
538
539 static void run_one_async_done(struct btrfs_work *work)
540 {
541         struct btrfs_fs_info *fs_info;
542         struct async_submit_bio *async;
543         int limit;
544
545         async = container_of(work, struct  async_submit_bio, work);
546         fs_info = BTRFS_I(async->inode)->root->fs_info;
547
548         limit = btrfs_async_submit_limit(fs_info);
549         limit = limit * 2 / 3;
550
551         atomic_dec(&fs_info->nr_async_submits);
552
553         if (atomic_read(&fs_info->nr_async_submits) < limit &&
554             waitqueue_active(&fs_info->async_submit_wait))
555                 wake_up(&fs_info->async_submit_wait);
556
557         async->submit_bio_done(async->inode, async->rw, async->bio,
558                                async->mirror_num, async->bio_flags);
559 }
560
561 static void run_one_async_free(struct btrfs_work *work)
562 {
563         struct async_submit_bio *async;
564
565         async = container_of(work, struct  async_submit_bio, work);
566         kfree(async);
567 }
568
569 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
570                         int rw, struct bio *bio, int mirror_num,
571                         unsigned long bio_flags,
572                         extent_submit_bio_hook_t *submit_bio_start,
573                         extent_submit_bio_hook_t *submit_bio_done)
574 {
575         struct async_submit_bio *async;
576
577         async = kmalloc(sizeof(*async), GFP_NOFS);
578         if (!async)
579                 return -ENOMEM;
580
581         async->inode = inode;
582         async->rw = rw;
583         async->bio = bio;
584         async->mirror_num = mirror_num;
585         async->submit_bio_start = submit_bio_start;
586         async->submit_bio_done = submit_bio_done;
587
588         async->work.func = run_one_async_start;
589         async->work.ordered_func = run_one_async_done;
590         async->work.ordered_free = run_one_async_free;
591
592         async->work.flags = 0;
593         async->bio_flags = bio_flags;
594
595         atomic_inc(&fs_info->nr_async_submits);
596
597         if (rw & (1 << BIO_RW_SYNCIO))
598                 btrfs_set_work_high_prio(&async->work);
599
600         btrfs_queue_worker(&fs_info->workers, &async->work);
601
602         while (atomic_read(&fs_info->async_submit_draining) &&
603               atomic_read(&fs_info->nr_async_submits)) {
604                 wait_event(fs_info->async_submit_wait,
605                            (atomic_read(&fs_info->nr_async_submits) == 0));
606         }
607
608         return 0;
609 }
610
611 static int btree_csum_one_bio(struct bio *bio)
612 {
613         struct bio_vec *bvec = bio->bi_io_vec;
614         int bio_index = 0;
615         struct btrfs_root *root;
616
617         WARN_ON(bio->bi_vcnt <= 0);
618         while (bio_index < bio->bi_vcnt) {
619                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
620                 csum_dirty_buffer(root, bvec->bv_page);
621                 bio_index++;
622                 bvec++;
623         }
624         return 0;
625 }
626
627 static int __btree_submit_bio_start(struct inode *inode, int rw,
628                                     struct bio *bio, int mirror_num,
629                                     unsigned long bio_flags)
630 {
631         /*
632          * when we're called for a write, we're already in the async
633          * submission context.  Just jump into btrfs_map_bio
634          */
635         btree_csum_one_bio(bio);
636         return 0;
637 }
638
639 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
640                                  int mirror_num, unsigned long bio_flags)
641 {
642         /*
643          * when we're called for a write, we're already in the async
644          * submission context.  Just jump into btrfs_map_bio
645          */
646         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
647 }
648
649 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
650                                  int mirror_num, unsigned long bio_flags)
651 {
652         int ret;
653
654         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
655                                           bio, 1);
656         BUG_ON(ret);
657
658         if (!(rw & (1 << BIO_RW))) {
659                 /*
660                  * called for a read, do the setup so that checksum validation
661                  * can happen in the async kernel threads
662                  */
663                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
664                                      mirror_num, 0);
665         }
666
667         /*
668          * kthread helpers are used to submit writes so that checksumming
669          * can happen in parallel across all CPUs
670          */
671         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
672                                    inode, rw, bio, mirror_num, 0,
673                                    __btree_submit_bio_start,
674                                    __btree_submit_bio_done);
675 }
676
677 static int btree_writepage(struct page *page, struct writeback_control *wbc)
678 {
679         struct extent_io_tree *tree;
680         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681         struct extent_buffer *eb;
682         int was_dirty;
683
684         tree = &BTRFS_I(page->mapping->host)->io_tree;
685         if (!(current->flags & PF_MEMALLOC)) {
686                 return extent_write_full_page(tree, page,
687                                               btree_get_extent, wbc);
688         }
689
690         redirty_page_for_writepage(wbc, page);
691         eb = btrfs_find_tree_block(root, page_offset(page),
692                                       PAGE_CACHE_SIZE);
693         WARN_ON(!eb);
694
695         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
696         if (!was_dirty) {
697                 spin_lock(&root->fs_info->delalloc_lock);
698                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
699                 spin_unlock(&root->fs_info->delalloc_lock);
700         }
701         free_extent_buffer(eb);
702
703         unlock_page(page);
704         return 0;
705 }
706
707 static int btree_writepages(struct address_space *mapping,
708                             struct writeback_control *wbc)
709 {
710         struct extent_io_tree *tree;
711         tree = &BTRFS_I(mapping->host)->io_tree;
712         if (wbc->sync_mode == WB_SYNC_NONE) {
713                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
714                 u64 num_dirty;
715                 unsigned long thresh = 32 * 1024 * 1024;
716
717                 if (wbc->for_kupdate)
718                         return 0;
719
720                 /* this is a bit racy, but that's ok */
721                 num_dirty = root->fs_info->dirty_metadata_bytes;
722                 if (num_dirty < thresh)
723                         return 0;
724         }
725         return extent_writepages(tree, mapping, btree_get_extent, wbc);
726 }
727
728 static int btree_readpage(struct file *file, struct page *page)
729 {
730         struct extent_io_tree *tree;
731         tree = &BTRFS_I(page->mapping->host)->io_tree;
732         return extent_read_full_page(tree, page, btree_get_extent);
733 }
734
735 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
736 {
737         struct extent_io_tree *tree;
738         struct extent_map_tree *map;
739         int ret;
740
741         if (PageWriteback(page) || PageDirty(page))
742                 return 0;
743
744         tree = &BTRFS_I(page->mapping->host)->io_tree;
745         map = &BTRFS_I(page->mapping->host)->extent_tree;
746
747         ret = try_release_extent_state(map, tree, page, gfp_flags);
748         if (!ret)
749                 return 0;
750
751         ret = try_release_extent_buffer(tree, page);
752         if (ret == 1) {
753                 ClearPagePrivate(page);
754                 set_page_private(page, 0);
755                 page_cache_release(page);
756         }
757
758         return ret;
759 }
760
761 static void btree_invalidatepage(struct page *page, unsigned long offset)
762 {
763         struct extent_io_tree *tree;
764         tree = &BTRFS_I(page->mapping->host)->io_tree;
765         extent_invalidatepage(tree, page, offset);
766         btree_releasepage(page, GFP_NOFS);
767         if (PagePrivate(page)) {
768                 printk(KERN_WARNING "btrfs warning page private not zero "
769                        "on page %llu\n", (unsigned long long)page_offset(page));
770                 ClearPagePrivate(page);
771                 set_page_private(page, 0);
772                 page_cache_release(page);
773         }
774 }
775
776 static const struct address_space_operations btree_aops = {
777         .readpage       = btree_readpage,
778         .writepage      = btree_writepage,
779         .writepages     = btree_writepages,
780         .releasepage    = btree_releasepage,
781         .invalidatepage = btree_invalidatepage,
782         .sync_page      = block_sync_page,
783 };
784
785 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
786                          u64 parent_transid)
787 {
788         struct extent_buffer *buf = NULL;
789         struct inode *btree_inode = root->fs_info->btree_inode;
790         int ret = 0;
791
792         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
793         if (!buf)
794                 return 0;
795         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
796                                  buf, 0, 0, btree_get_extent, 0);
797         free_extent_buffer(buf);
798         return ret;
799 }
800
801 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
802                                             u64 bytenr, u32 blocksize)
803 {
804         struct inode *btree_inode = root->fs_info->btree_inode;
805         struct extent_buffer *eb;
806         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
807                                 bytenr, blocksize, GFP_NOFS);
808         return eb;
809 }
810
811 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
812                                                  u64 bytenr, u32 blocksize)
813 {
814         struct inode *btree_inode = root->fs_info->btree_inode;
815         struct extent_buffer *eb;
816
817         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
818                                  bytenr, blocksize, NULL, GFP_NOFS);
819         return eb;
820 }
821
822
823 int btrfs_write_tree_block(struct extent_buffer *buf)
824 {
825         return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
826                                       buf->start + buf->len - 1, WB_SYNC_ALL);
827 }
828
829 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
830 {
831         return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
832                                   buf->start >> PAGE_CACHE_SHIFT,
833                                   (buf->start + buf->len - 1) >>
834                                    PAGE_CACHE_SHIFT);
835 }
836
837 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
838                                       u32 blocksize, u64 parent_transid)
839 {
840         struct extent_buffer *buf = NULL;
841         struct inode *btree_inode = root->fs_info->btree_inode;
842         struct extent_io_tree *io_tree;
843         int ret;
844
845         io_tree = &BTRFS_I(btree_inode)->io_tree;
846
847         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
848         if (!buf)
849                 return NULL;
850
851         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
852
853         if (ret == 0)
854                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
855         return buf;
856
857 }
858
859 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
860                      struct extent_buffer *buf)
861 {
862         struct inode *btree_inode = root->fs_info->btree_inode;
863         if (btrfs_header_generation(buf) ==
864             root->fs_info->running_transaction->transid) {
865                 btrfs_assert_tree_locked(buf);
866
867                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
868                         spin_lock(&root->fs_info->delalloc_lock);
869                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
870                                 root->fs_info->dirty_metadata_bytes -= buf->len;
871                         else
872                                 WARN_ON(1);
873                         spin_unlock(&root->fs_info->delalloc_lock);
874                 }
875
876                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
877                 btrfs_set_lock_blocking(buf);
878                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
879                                           buf);
880         }
881         return 0;
882 }
883
884 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
885                         u32 stripesize, struct btrfs_root *root,
886                         struct btrfs_fs_info *fs_info,
887                         u64 objectid)
888 {
889         root->node = NULL;
890         root->commit_root = NULL;
891         root->sectorsize = sectorsize;
892         root->nodesize = nodesize;
893         root->leafsize = leafsize;
894         root->stripesize = stripesize;
895         root->ref_cows = 0;
896         root->track_dirty = 0;
897
898         root->fs_info = fs_info;
899         root->objectid = objectid;
900         root->last_trans = 0;
901         root->highest_objectid = 0;
902         root->name = NULL;
903         root->in_sysfs = 0;
904         root->inode_tree.rb_node = NULL;
905
906         INIT_LIST_HEAD(&root->dirty_list);
907         INIT_LIST_HEAD(&root->orphan_list);
908         INIT_LIST_HEAD(&root->root_list);
909         spin_lock_init(&root->node_lock);
910         spin_lock_init(&root->list_lock);
911         spin_lock_init(&root->inode_lock);
912         mutex_init(&root->objectid_mutex);
913         mutex_init(&root->log_mutex);
914         init_waitqueue_head(&root->log_writer_wait);
915         init_waitqueue_head(&root->log_commit_wait[0]);
916         init_waitqueue_head(&root->log_commit_wait[1]);
917         atomic_set(&root->log_commit[0], 0);
918         atomic_set(&root->log_commit[1], 0);
919         atomic_set(&root->log_writers, 0);
920         root->log_batch = 0;
921         root->log_transid = 0;
922         extent_io_tree_init(&root->dirty_log_pages,
923                              fs_info->btree_inode->i_mapping, GFP_NOFS);
924
925         memset(&root->root_key, 0, sizeof(root->root_key));
926         memset(&root->root_item, 0, sizeof(root->root_item));
927         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
928         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
929         root->defrag_trans_start = fs_info->generation;
930         init_completion(&root->kobj_unregister);
931         root->defrag_running = 0;
932         root->defrag_level = 0;
933         root->root_key.objectid = objectid;
934         root->anon_super.s_root = NULL;
935         root->anon_super.s_dev = 0;
936         INIT_LIST_HEAD(&root->anon_super.s_list);
937         INIT_LIST_HEAD(&root->anon_super.s_instances);
938         init_rwsem(&root->anon_super.s_umount);
939
940         return 0;
941 }
942
943 static int find_and_setup_root(struct btrfs_root *tree_root,
944                                struct btrfs_fs_info *fs_info,
945                                u64 objectid,
946                                struct btrfs_root *root)
947 {
948         int ret;
949         u32 blocksize;
950         u64 generation;
951
952         __setup_root(tree_root->nodesize, tree_root->leafsize,
953                      tree_root->sectorsize, tree_root->stripesize,
954                      root, fs_info, objectid);
955         ret = btrfs_find_last_root(tree_root, objectid,
956                                    &root->root_item, &root->root_key);
957         if (ret > 0)
958                 return -ENOENT;
959         BUG_ON(ret);
960
961         generation = btrfs_root_generation(&root->root_item);
962         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
963         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
964                                      blocksize, generation);
965         BUG_ON(!root->node);
966         root->commit_root = btrfs_root_node(root);
967         return 0;
968 }
969
970 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
971                              struct btrfs_fs_info *fs_info)
972 {
973         struct extent_buffer *eb;
974         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
975         u64 start = 0;
976         u64 end = 0;
977         int ret;
978
979         if (!log_root_tree)
980                 return 0;
981
982         while (1) {
983                 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
984                                     0, &start, &end, EXTENT_DIRTY);
985                 if (ret)
986                         break;
987
988                 clear_extent_dirty(&log_root_tree->dirty_log_pages,
989                                    start, end, GFP_NOFS);
990         }
991         eb = fs_info->log_root_tree->node;
992
993         WARN_ON(btrfs_header_level(eb) != 0);
994         WARN_ON(btrfs_header_nritems(eb) != 0);
995
996         ret = btrfs_free_reserved_extent(fs_info->tree_root,
997                                 eb->start, eb->len);
998         BUG_ON(ret);
999
1000         free_extent_buffer(eb);
1001         kfree(fs_info->log_root_tree);
1002         fs_info->log_root_tree = NULL;
1003         return 0;
1004 }
1005
1006 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1007                                          struct btrfs_fs_info *fs_info)
1008 {
1009         struct btrfs_root *root;
1010         struct btrfs_root *tree_root = fs_info->tree_root;
1011         struct extent_buffer *leaf;
1012
1013         root = kzalloc(sizeof(*root), GFP_NOFS);
1014         if (!root)
1015                 return ERR_PTR(-ENOMEM);
1016
1017         __setup_root(tree_root->nodesize, tree_root->leafsize,
1018                      tree_root->sectorsize, tree_root->stripesize,
1019                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1020
1021         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1022         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1023         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1024         /*
1025          * log trees do not get reference counted because they go away
1026          * before a real commit is actually done.  They do store pointers
1027          * to file data extents, and those reference counts still get
1028          * updated (along with back refs to the log tree).
1029          */
1030         root->ref_cows = 0;
1031
1032         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1033                                       BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1034         if (IS_ERR(leaf)) {
1035                 kfree(root);
1036                 return ERR_CAST(leaf);
1037         }
1038
1039         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1040         btrfs_set_header_bytenr(leaf, leaf->start);
1041         btrfs_set_header_generation(leaf, trans->transid);
1042         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1043         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1044         root->node = leaf;
1045
1046         write_extent_buffer(root->node, root->fs_info->fsid,
1047                             (unsigned long)btrfs_header_fsid(root->node),
1048                             BTRFS_FSID_SIZE);
1049         btrfs_mark_buffer_dirty(root->node);
1050         btrfs_tree_unlock(root->node);
1051         return root;
1052 }
1053
1054 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1055                              struct btrfs_fs_info *fs_info)
1056 {
1057         struct btrfs_root *log_root;
1058
1059         log_root = alloc_log_tree(trans, fs_info);
1060         if (IS_ERR(log_root))
1061                 return PTR_ERR(log_root);
1062         WARN_ON(fs_info->log_root_tree);
1063         fs_info->log_root_tree = log_root;
1064         return 0;
1065 }
1066
1067 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1068                        struct btrfs_root *root)
1069 {
1070         struct btrfs_root *log_root;
1071         struct btrfs_inode_item *inode_item;
1072
1073         log_root = alloc_log_tree(trans, root->fs_info);
1074         if (IS_ERR(log_root))
1075                 return PTR_ERR(log_root);
1076
1077         log_root->last_trans = trans->transid;
1078         log_root->root_key.offset = root->root_key.objectid;
1079
1080         inode_item = &log_root->root_item.inode;
1081         inode_item->generation = cpu_to_le64(1);
1082         inode_item->size = cpu_to_le64(3);
1083         inode_item->nlink = cpu_to_le32(1);
1084         inode_item->nbytes = cpu_to_le64(root->leafsize);
1085         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1086
1087         btrfs_set_root_node(&log_root->root_item, log_root->node);
1088
1089         WARN_ON(root->log_root);
1090         root->log_root = log_root;
1091         root->log_transid = 0;
1092         return 0;
1093 }
1094
1095 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1096                                                struct btrfs_key *location)
1097 {
1098         struct btrfs_root *root;
1099         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1100         struct btrfs_path *path;
1101         struct extent_buffer *l;
1102         u64 generation;
1103         u32 blocksize;
1104         int ret = 0;
1105
1106         root = kzalloc(sizeof(*root), GFP_NOFS);
1107         if (!root)
1108                 return ERR_PTR(-ENOMEM);
1109         if (location->offset == (u64)-1) {
1110                 ret = find_and_setup_root(tree_root, fs_info,
1111                                           location->objectid, root);
1112                 if (ret) {
1113                         kfree(root);
1114                         return ERR_PTR(ret);
1115                 }
1116                 goto out;
1117         }
1118
1119         __setup_root(tree_root->nodesize, tree_root->leafsize,
1120                      tree_root->sectorsize, tree_root->stripesize,
1121                      root, fs_info, location->objectid);
1122
1123         path = btrfs_alloc_path();
1124         BUG_ON(!path);
1125         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1126         if (ret == 0) {
1127                 l = path->nodes[0];
1128                 read_extent_buffer(l, &root->root_item,
1129                                 btrfs_item_ptr_offset(l, path->slots[0]),
1130                                 sizeof(root->root_item));
1131                 memcpy(&root->root_key, location, sizeof(*location));
1132         }
1133         btrfs_free_path(path);
1134         if (ret) {
1135                 if (ret > 0)
1136                         ret = -ENOENT;
1137                 return ERR_PTR(ret);
1138         }
1139
1140         generation = btrfs_root_generation(&root->root_item);
1141         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1142         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1143                                      blocksize, generation);
1144         root->commit_root = btrfs_root_node(root);
1145         BUG_ON(!root->node);
1146 out:
1147         if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1148                 root->ref_cows = 1;
1149
1150         return root;
1151 }
1152
1153 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1154                                         u64 root_objectid)
1155 {
1156         struct btrfs_root *root;
1157
1158         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1159                 return fs_info->tree_root;
1160         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1161                 return fs_info->extent_root;
1162
1163         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1164                                  (unsigned long)root_objectid);
1165         return root;
1166 }
1167
1168 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1169                                               struct btrfs_key *location)
1170 {
1171         struct btrfs_root *root;
1172         int ret;
1173
1174         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1175                 return fs_info->tree_root;
1176         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1177                 return fs_info->extent_root;
1178         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1179                 return fs_info->chunk_root;
1180         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1181                 return fs_info->dev_root;
1182         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1183                 return fs_info->csum_root;
1184 again:
1185         spin_lock(&fs_info->fs_roots_radix_lock);
1186         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1187                                  (unsigned long)location->objectid);
1188         spin_unlock(&fs_info->fs_roots_radix_lock);
1189         if (root)
1190                 return root;
1191
1192         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1193         if (ret == 0)
1194                 ret = -ENOENT;
1195         if (ret < 0)
1196                 return ERR_PTR(ret);
1197
1198         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1199         if (IS_ERR(root))
1200                 return root;
1201
1202         WARN_ON(btrfs_root_refs(&root->root_item) == 0);
1203         set_anon_super(&root->anon_super, NULL);
1204
1205         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1206         if (ret)
1207                 goto fail;
1208
1209         spin_lock(&fs_info->fs_roots_radix_lock);
1210         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1211                                 (unsigned long)root->root_key.objectid,
1212                                 root);
1213         if (ret == 0)
1214                 root->in_radix = 1;
1215         spin_unlock(&fs_info->fs_roots_radix_lock);
1216         radix_tree_preload_end();
1217         if (ret) {
1218                 if (ret == -EEXIST) {
1219                         free_fs_root(root);
1220                         goto again;
1221                 }
1222                 goto fail;
1223         }
1224
1225         ret = btrfs_find_dead_roots(fs_info->tree_root,
1226                                     root->root_key.objectid);
1227         WARN_ON(ret);
1228
1229         if (!(fs_info->sb->s_flags & MS_RDONLY))
1230                 btrfs_orphan_cleanup(root);
1231
1232         return root;
1233 fail:
1234         free_fs_root(root);
1235         return ERR_PTR(ret);
1236 }
1237
1238 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1239                                       struct btrfs_key *location,
1240                                       const char *name, int namelen)
1241 {
1242         return btrfs_read_fs_root_no_name(fs_info, location);
1243 #if 0
1244         struct btrfs_root *root;
1245         int ret;
1246
1247         root = btrfs_read_fs_root_no_name(fs_info, location);
1248         if (!root)
1249                 return NULL;
1250
1251         if (root->in_sysfs)
1252                 return root;
1253
1254         ret = btrfs_set_root_name(root, name, namelen);
1255         if (ret) {
1256                 free_extent_buffer(root->node);
1257                 kfree(root);
1258                 return ERR_PTR(ret);
1259         }
1260
1261         ret = btrfs_sysfs_add_root(root);
1262         if (ret) {
1263                 free_extent_buffer(root->node);
1264                 kfree(root->name);
1265                 kfree(root);
1266                 return ERR_PTR(ret);
1267         }
1268         root->in_sysfs = 1;
1269         return root;
1270 #endif
1271 }
1272
1273 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1274 {
1275         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1276         int ret = 0;
1277         struct btrfs_device *device;
1278         struct backing_dev_info *bdi;
1279
1280         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1281                 if (!device->bdev)
1282                         continue;
1283                 bdi = blk_get_backing_dev_info(device->bdev);
1284                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1285                         ret = 1;
1286                         break;
1287                 }
1288         }
1289         return ret;
1290 }
1291
1292 /*
1293  * this unplugs every device on the box, and it is only used when page
1294  * is null
1295  */
1296 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1297 {
1298         struct btrfs_device *device;
1299         struct btrfs_fs_info *info;
1300
1301         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1302         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1303                 if (!device->bdev)
1304                         continue;
1305
1306                 bdi = blk_get_backing_dev_info(device->bdev);
1307                 if (bdi->unplug_io_fn)
1308                         bdi->unplug_io_fn(bdi, page);
1309         }
1310 }
1311
1312 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1313 {
1314         struct inode *inode;
1315         struct extent_map_tree *em_tree;
1316         struct extent_map *em;
1317         struct address_space *mapping;
1318         u64 offset;
1319
1320         /* the generic O_DIRECT read code does this */
1321         if (1 || !page) {
1322                 __unplug_io_fn(bdi, page);
1323                 return;
1324         }
1325
1326         /*
1327          * page->mapping may change at any time.  Get a consistent copy
1328          * and use that for everything below
1329          */
1330         smp_mb();
1331         mapping = page->mapping;
1332         if (!mapping)
1333                 return;
1334
1335         inode = mapping->host;
1336
1337         /*
1338          * don't do the expensive searching for a small number of
1339          * devices
1340          */
1341         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1342                 __unplug_io_fn(bdi, page);
1343                 return;
1344         }
1345
1346         offset = page_offset(page);
1347
1348         em_tree = &BTRFS_I(inode)->extent_tree;
1349         read_lock(&em_tree->lock);
1350         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1351         read_unlock(&em_tree->lock);
1352         if (!em) {
1353                 __unplug_io_fn(bdi, page);
1354                 return;
1355         }
1356
1357         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1358                 free_extent_map(em);
1359                 __unplug_io_fn(bdi, page);
1360                 return;
1361         }
1362         offset = offset - em->start;
1363         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1364                           em->block_start + offset, page);
1365         free_extent_map(em);
1366 }
1367
1368 /*
1369  * If this fails, caller must call bdi_destroy() to get rid of the
1370  * bdi again.
1371  */
1372 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1373 {
1374         int err;
1375
1376         bdi->name = "btrfs";
1377         bdi->capabilities = BDI_CAP_MAP_COPY;
1378         err = bdi_init(bdi);
1379         if (err)
1380                 return err;
1381
1382         err = bdi_register(bdi, NULL, "btrfs-%d",
1383                                 atomic_inc_return(&btrfs_bdi_num));
1384         if (err) {
1385                 bdi_destroy(bdi);
1386                 return err;
1387         }
1388
1389         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1390         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1391         bdi->unplug_io_data     = info;
1392         bdi->congested_fn       = btrfs_congested_fn;
1393         bdi->congested_data     = info;
1394         return 0;
1395 }
1396
1397 static int bio_ready_for_csum(struct bio *bio)
1398 {
1399         u64 length = 0;
1400         u64 buf_len = 0;
1401         u64 start = 0;
1402         struct page *page;
1403         struct extent_io_tree *io_tree = NULL;
1404         struct btrfs_fs_info *info = NULL;
1405         struct bio_vec *bvec;
1406         int i;
1407         int ret;
1408
1409         bio_for_each_segment(bvec, bio, i) {
1410                 page = bvec->bv_page;
1411                 if (page->private == EXTENT_PAGE_PRIVATE) {
1412                         length += bvec->bv_len;
1413                         continue;
1414                 }
1415                 if (!page->private) {
1416                         length += bvec->bv_len;
1417                         continue;
1418                 }
1419                 length = bvec->bv_len;
1420                 buf_len = page->private >> 2;
1421                 start = page_offset(page) + bvec->bv_offset;
1422                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1423                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1424         }
1425         /* are we fully contained in this bio? */
1426         if (buf_len <= length)
1427                 return 1;
1428
1429         ret = extent_range_uptodate(io_tree, start + length,
1430                                     start + buf_len - 1);
1431         return ret;
1432 }
1433
1434 /*
1435  * called by the kthread helper functions to finally call the bio end_io
1436  * functions.  This is where read checksum verification actually happens
1437  */
1438 static void end_workqueue_fn(struct btrfs_work *work)
1439 {
1440         struct bio *bio;
1441         struct end_io_wq *end_io_wq;
1442         struct btrfs_fs_info *fs_info;
1443         int error;
1444
1445         end_io_wq = container_of(work, struct end_io_wq, work);
1446         bio = end_io_wq->bio;
1447         fs_info = end_io_wq->info;
1448
1449         /* metadata bio reads are special because the whole tree block must
1450          * be checksummed at once.  This makes sure the entire block is in
1451          * ram and up to date before trying to verify things.  For
1452          * blocksize <= pagesize, it is basically a noop
1453          */
1454         if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1455             !bio_ready_for_csum(bio)) {
1456                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1457                                    &end_io_wq->work);
1458                 return;
1459         }
1460         error = end_io_wq->error;
1461         bio->bi_private = end_io_wq->private;
1462         bio->bi_end_io = end_io_wq->end_io;
1463         kfree(end_io_wq);
1464         bio_endio(bio, error);
1465 }
1466
1467 static int cleaner_kthread(void *arg)
1468 {
1469         struct btrfs_root *root = arg;
1470
1471         do {
1472                 smp_mb();
1473                 if (root->fs_info->closing)
1474                         break;
1475
1476                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1477
1478                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1479                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1480                         btrfs_clean_old_snapshots(root);
1481                         mutex_unlock(&root->fs_info->cleaner_mutex);
1482                 }
1483
1484                 if (freezing(current)) {
1485                         refrigerator();
1486                 } else {
1487                         smp_mb();
1488                         if (root->fs_info->closing)
1489                                 break;
1490                         set_current_state(TASK_INTERRUPTIBLE);
1491                         schedule();
1492                         __set_current_state(TASK_RUNNING);
1493                 }
1494         } while (!kthread_should_stop());
1495         return 0;
1496 }
1497
1498 static int transaction_kthread(void *arg)
1499 {
1500         struct btrfs_root *root = arg;
1501         struct btrfs_trans_handle *trans;
1502         struct btrfs_transaction *cur;
1503         unsigned long now;
1504         unsigned long delay;
1505         int ret;
1506
1507         do {
1508                 smp_mb();
1509                 if (root->fs_info->closing)
1510                         break;
1511
1512                 delay = HZ * 30;
1513                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1514                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1515
1516                 mutex_lock(&root->fs_info->trans_mutex);
1517                 cur = root->fs_info->running_transaction;
1518                 if (!cur) {
1519                         mutex_unlock(&root->fs_info->trans_mutex);
1520                         goto sleep;
1521                 }
1522
1523                 now = get_seconds();
1524                 if (now < cur->start_time || now - cur->start_time < 30) {
1525                         mutex_unlock(&root->fs_info->trans_mutex);
1526                         delay = HZ * 5;
1527                         goto sleep;
1528                 }
1529                 mutex_unlock(&root->fs_info->trans_mutex);
1530                 trans = btrfs_start_transaction(root, 1);
1531                 ret = btrfs_commit_transaction(trans, root);
1532
1533 sleep:
1534                 wake_up_process(root->fs_info->cleaner_kthread);
1535                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1536
1537                 if (freezing(current)) {
1538                         refrigerator();
1539                 } else {
1540                         if (root->fs_info->closing)
1541                                 break;
1542                         set_current_state(TASK_INTERRUPTIBLE);
1543                         schedule_timeout(delay);
1544                         __set_current_state(TASK_RUNNING);
1545                 }
1546         } while (!kthread_should_stop());
1547         return 0;
1548 }
1549
1550 struct btrfs_root *open_ctree(struct super_block *sb,
1551                               struct btrfs_fs_devices *fs_devices,
1552                               char *options)
1553 {
1554         u32 sectorsize;
1555         u32 nodesize;
1556         u32 leafsize;
1557         u32 blocksize;
1558         u32 stripesize;
1559         u64 generation;
1560         u64 features;
1561         struct btrfs_key location;
1562         struct buffer_head *bh;
1563         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1564                                                  GFP_NOFS);
1565         struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1566                                                  GFP_NOFS);
1567         struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1568                                                GFP_NOFS);
1569         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1570                                                 GFP_NOFS);
1571         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1572                                                 GFP_NOFS);
1573         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1574                                               GFP_NOFS);
1575         struct btrfs_root *log_tree_root;
1576
1577         int ret;
1578         int err = -EINVAL;
1579
1580         struct btrfs_super_block *disk_super;
1581
1582         if (!extent_root || !tree_root || !fs_info ||
1583             !chunk_root || !dev_root || !csum_root) {
1584                 err = -ENOMEM;
1585                 goto fail;
1586         }
1587
1588         ret = init_srcu_struct(&fs_info->subvol_srcu);
1589         if (ret) {
1590                 err = ret;
1591                 goto fail;
1592         }
1593
1594         ret = setup_bdi(fs_info, &fs_info->bdi);
1595         if (ret) {
1596                 err = ret;
1597                 goto fail_srcu;
1598         }
1599
1600         fs_info->btree_inode = new_inode(sb);
1601         if (!fs_info->btree_inode) {
1602                 err = -ENOMEM;
1603                 goto fail_bdi;
1604         }
1605
1606         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1607         INIT_LIST_HEAD(&fs_info->trans_list);
1608         INIT_LIST_HEAD(&fs_info->dead_roots);
1609         INIT_LIST_HEAD(&fs_info->hashers);
1610         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1611         INIT_LIST_HEAD(&fs_info->ordered_operations);
1612         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1613         spin_lock_init(&fs_info->delalloc_lock);
1614         spin_lock_init(&fs_info->new_trans_lock);
1615         spin_lock_init(&fs_info->ref_cache_lock);
1616         spin_lock_init(&fs_info->fs_roots_radix_lock);
1617
1618         init_completion(&fs_info->kobj_unregister);
1619         fs_info->tree_root = tree_root;
1620         fs_info->extent_root = extent_root;
1621         fs_info->csum_root = csum_root;
1622         fs_info->chunk_root = chunk_root;
1623         fs_info->dev_root = dev_root;
1624         fs_info->fs_devices = fs_devices;
1625         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1626         INIT_LIST_HEAD(&fs_info->space_info);
1627         btrfs_mapping_init(&fs_info->mapping_tree);
1628         atomic_set(&fs_info->nr_async_submits, 0);
1629         atomic_set(&fs_info->async_delalloc_pages, 0);
1630         atomic_set(&fs_info->async_submit_draining, 0);
1631         atomic_set(&fs_info->nr_async_bios, 0);
1632         fs_info->sb = sb;
1633         fs_info->max_extent = (u64)-1;
1634         fs_info->max_inline = 8192 * 1024;
1635         fs_info->metadata_ratio = 0;
1636
1637         fs_info->thread_pool_size = min_t(unsigned long,
1638                                           num_online_cpus() + 2, 8);
1639
1640         INIT_LIST_HEAD(&fs_info->ordered_extents);
1641         spin_lock_init(&fs_info->ordered_extent_lock);
1642
1643         sb->s_blocksize = 4096;
1644         sb->s_blocksize_bits = blksize_bits(4096);
1645         sb->s_bdi = &fs_info->bdi;
1646
1647         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1648         fs_info->btree_inode->i_nlink = 1;
1649         /*
1650          * we set the i_size on the btree inode to the max possible int.
1651          * the real end of the address space is determined by all of
1652          * the devices in the system
1653          */
1654         fs_info->btree_inode->i_size = OFFSET_MAX;
1655         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1656         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1657
1658         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1659         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1660                              fs_info->btree_inode->i_mapping,
1661                              GFP_NOFS);
1662         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1663                              GFP_NOFS);
1664
1665         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1666
1667         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1668         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1669                sizeof(struct btrfs_key));
1670         BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1671         insert_inode_hash(fs_info->btree_inode);
1672
1673         spin_lock_init(&fs_info->block_group_cache_lock);
1674         fs_info->block_group_cache_tree.rb_node = NULL;
1675
1676         extent_io_tree_init(&fs_info->freed_extents[0],
1677                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1678         extent_io_tree_init(&fs_info->freed_extents[1],
1679                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1680         fs_info->pinned_extents = &fs_info->freed_extents[0];
1681         fs_info->do_barriers = 1;
1682
1683
1684         mutex_init(&fs_info->trans_mutex);
1685         mutex_init(&fs_info->ordered_operations_mutex);
1686         mutex_init(&fs_info->tree_log_mutex);
1687         mutex_init(&fs_info->chunk_mutex);
1688         mutex_init(&fs_info->transaction_kthread_mutex);
1689         mutex_init(&fs_info->cleaner_mutex);
1690         mutex_init(&fs_info->volume_mutex);
1691         init_rwsem(&fs_info->extent_commit_sem);
1692         init_rwsem(&fs_info->subvol_sem);
1693
1694         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1695         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1696
1697         init_waitqueue_head(&fs_info->transaction_throttle);
1698         init_waitqueue_head(&fs_info->transaction_wait);
1699         init_waitqueue_head(&fs_info->async_submit_wait);
1700
1701         __setup_root(4096, 4096, 4096, 4096, tree_root,
1702                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1703
1704
1705         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1706         if (!bh)
1707                 goto fail_iput;
1708
1709         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1710         memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1711                sizeof(fs_info->super_for_commit));
1712         brelse(bh);
1713
1714         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1715
1716         disk_super = &fs_info->super_copy;
1717         if (!btrfs_super_root(disk_super))
1718                 goto fail_iput;
1719
1720         ret = btrfs_parse_options(tree_root, options);
1721         if (ret) {
1722                 err = ret;
1723                 goto fail_iput;
1724         }
1725
1726         features = btrfs_super_incompat_flags(disk_super) &
1727                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1728         if (features) {
1729                 printk(KERN_ERR "BTRFS: couldn't mount because of "
1730                        "unsupported optional features (%Lx).\n",
1731                        (unsigned long long)features);
1732                 err = -EINVAL;
1733                 goto fail_iput;
1734         }
1735
1736         features = btrfs_super_incompat_flags(disk_super);
1737         if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1738                 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1739                 btrfs_set_super_incompat_flags(disk_super, features);
1740         }
1741
1742         features = btrfs_super_compat_ro_flags(disk_super) &
1743                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1744         if (!(sb->s_flags & MS_RDONLY) && features) {
1745                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1746                        "unsupported option features (%Lx).\n",
1747                        (unsigned long long)features);
1748                 err = -EINVAL;
1749                 goto fail_iput;
1750         }
1751 printk("thread pool is %d\n", fs_info->thread_pool_size);
1752         /*
1753          * we need to start all the end_io workers up front because the
1754          * queue work function gets called at interrupt time, and so it
1755          * cannot dynamically grow.
1756          */
1757         btrfs_init_workers(&fs_info->workers, "worker",
1758                            fs_info->thread_pool_size);
1759
1760         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1761                            fs_info->thread_pool_size);
1762
1763         btrfs_init_workers(&fs_info->submit_workers, "submit",
1764                            min_t(u64, fs_devices->num_devices,
1765                            fs_info->thread_pool_size));
1766
1767         /* a higher idle thresh on the submit workers makes it much more
1768          * likely that bios will be send down in a sane order to the
1769          * devices
1770          */
1771         fs_info->submit_workers.idle_thresh = 64;
1772
1773         fs_info->workers.idle_thresh = 16;
1774         fs_info->workers.ordered = 1;
1775
1776         fs_info->delalloc_workers.idle_thresh = 2;
1777         fs_info->delalloc_workers.ordered = 1;
1778
1779         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1780         btrfs_init_workers(&fs_info->endio_workers, "endio",
1781                            fs_info->thread_pool_size);
1782         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1783                            fs_info->thread_pool_size);
1784         btrfs_init_workers(&fs_info->endio_meta_write_workers,
1785                            "endio-meta-write", fs_info->thread_pool_size);
1786         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1787                            fs_info->thread_pool_size);
1788
1789         /*
1790          * endios are largely parallel and should have a very
1791          * low idle thresh
1792          */
1793         fs_info->endio_workers.idle_thresh = 4;
1794         fs_info->endio_meta_workers.idle_thresh = 4;
1795
1796         fs_info->endio_write_workers.idle_thresh = 2;
1797         fs_info->endio_meta_write_workers.idle_thresh = 2;
1798
1799         fs_info->endio_workers.atomic_worker_start = 1;
1800         fs_info->endio_meta_workers.atomic_worker_start = 1;
1801         fs_info->endio_write_workers.atomic_worker_start = 1;
1802         fs_info->endio_meta_write_workers.atomic_worker_start = 1;
1803
1804         btrfs_start_workers(&fs_info->workers, 1);
1805         btrfs_start_workers(&fs_info->submit_workers, 1);
1806         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1807         btrfs_start_workers(&fs_info->fixup_workers, 1);
1808         btrfs_start_workers(&fs_info->endio_workers, 1);
1809         btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1810         btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1811         btrfs_start_workers(&fs_info->endio_write_workers, 1);
1812
1813         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1814         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1815                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1816
1817         nodesize = btrfs_super_nodesize(disk_super);
1818         leafsize = btrfs_super_leafsize(disk_super);
1819         sectorsize = btrfs_super_sectorsize(disk_super);
1820         stripesize = btrfs_super_stripesize(disk_super);
1821         tree_root->nodesize = nodesize;
1822         tree_root->leafsize = leafsize;
1823         tree_root->sectorsize = sectorsize;
1824         tree_root->stripesize = stripesize;
1825
1826         sb->s_blocksize = sectorsize;
1827         sb->s_blocksize_bits = blksize_bits(sectorsize);
1828
1829         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1830                     sizeof(disk_super->magic))) {
1831                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1832                 goto fail_sb_buffer;
1833         }
1834
1835         mutex_lock(&fs_info->chunk_mutex);
1836         ret = btrfs_read_sys_array(tree_root);
1837         mutex_unlock(&fs_info->chunk_mutex);
1838         if (ret) {
1839                 printk(KERN_WARNING "btrfs: failed to read the system "
1840                        "array on %s\n", sb->s_id);
1841                 goto fail_sb_buffer;
1842         }
1843
1844         blocksize = btrfs_level_size(tree_root,
1845                                      btrfs_super_chunk_root_level(disk_super));
1846         generation = btrfs_super_chunk_root_generation(disk_super);
1847
1848         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1849                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1850
1851         chunk_root->node = read_tree_block(chunk_root,
1852                                            btrfs_super_chunk_root(disk_super),
1853                                            blocksize, generation);
1854         BUG_ON(!chunk_root->node);
1855         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1856                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1857                        sb->s_id);
1858                 goto fail_chunk_root;
1859         }
1860         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1861         chunk_root->commit_root = btrfs_root_node(chunk_root);
1862
1863         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1864            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1865            BTRFS_UUID_SIZE);
1866
1867         mutex_lock(&fs_info->chunk_mutex);
1868         ret = btrfs_read_chunk_tree(chunk_root);
1869         mutex_unlock(&fs_info->chunk_mutex);
1870         if (ret) {
1871                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1872                        sb->s_id);
1873                 goto fail_chunk_root;
1874         }
1875
1876         btrfs_close_extra_devices(fs_devices);
1877
1878         blocksize = btrfs_level_size(tree_root,
1879                                      btrfs_super_root_level(disk_super));
1880         generation = btrfs_super_generation(disk_super);
1881
1882         tree_root->node = read_tree_block(tree_root,
1883                                           btrfs_super_root(disk_super),
1884                                           blocksize, generation);
1885         if (!tree_root->node)
1886                 goto fail_chunk_root;
1887         if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1888                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1889                        sb->s_id);
1890                 goto fail_tree_root;
1891         }
1892         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1893         tree_root->commit_root = btrfs_root_node(tree_root);
1894
1895         ret = find_and_setup_root(tree_root, fs_info,
1896                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1897         if (ret)
1898                 goto fail_tree_root;
1899         extent_root->track_dirty = 1;
1900
1901         ret = find_and_setup_root(tree_root, fs_info,
1902                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1903         if (ret)
1904                 goto fail_extent_root;
1905         dev_root->track_dirty = 1;
1906
1907         ret = find_and_setup_root(tree_root, fs_info,
1908                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
1909         if (ret)
1910                 goto fail_dev_root;
1911
1912         csum_root->track_dirty = 1;
1913
1914         btrfs_read_block_groups(extent_root);
1915
1916         fs_info->generation = generation;
1917         fs_info->last_trans_committed = generation;
1918         fs_info->data_alloc_profile = (u64)-1;
1919         fs_info->metadata_alloc_profile = (u64)-1;
1920         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1921         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1922                                                "btrfs-cleaner");
1923         if (IS_ERR(fs_info->cleaner_kthread))
1924                 goto fail_csum_root;
1925
1926         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1927                                                    tree_root,
1928                                                    "btrfs-transaction");
1929         if (IS_ERR(fs_info->transaction_kthread))
1930                 goto fail_cleaner;
1931
1932         if (!btrfs_test_opt(tree_root, SSD) &&
1933             !btrfs_test_opt(tree_root, NOSSD) &&
1934             !fs_info->fs_devices->rotating) {
1935                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1936                        "mode\n");
1937                 btrfs_set_opt(fs_info->mount_opt, SSD);
1938         }
1939
1940         if (btrfs_super_log_root(disk_super) != 0) {
1941                 u64 bytenr = btrfs_super_log_root(disk_super);
1942
1943                 if (fs_devices->rw_devices == 0) {
1944                         printk(KERN_WARNING "Btrfs log replay required "
1945                                "on RO media\n");
1946                         err = -EIO;
1947                         goto fail_trans_kthread;
1948                 }
1949                 blocksize =
1950                      btrfs_level_size(tree_root,
1951                                       btrfs_super_log_root_level(disk_super));
1952
1953                 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1954                                                       GFP_NOFS);
1955
1956                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1957                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1958
1959                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1960                                                       blocksize,
1961                                                       generation + 1);
1962                 ret = btrfs_recover_log_trees(log_tree_root);
1963                 BUG_ON(ret);
1964
1965                 if (sb->s_flags & MS_RDONLY) {
1966                         ret =  btrfs_commit_super(tree_root);
1967                         BUG_ON(ret);
1968                 }
1969         }
1970
1971         ret = btrfs_find_orphan_roots(tree_root);
1972         BUG_ON(ret);
1973
1974         if (!(sb->s_flags & MS_RDONLY)) {
1975                 ret = btrfs_recover_relocation(tree_root);
1976                 BUG_ON(ret);
1977         }
1978
1979         location.objectid = BTRFS_FS_TREE_OBJECTID;
1980         location.type = BTRFS_ROOT_ITEM_KEY;
1981         location.offset = (u64)-1;
1982
1983         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1984         if (!fs_info->fs_root)
1985                 goto fail_trans_kthread;
1986
1987         return tree_root;
1988
1989 fail_trans_kthread:
1990         kthread_stop(fs_info->transaction_kthread);
1991 fail_cleaner:
1992         kthread_stop(fs_info->cleaner_kthread);
1993
1994         /*
1995          * make sure we're done with the btree inode before we stop our
1996          * kthreads
1997          */
1998         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1999         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2000
2001 fail_csum_root:
2002         free_extent_buffer(csum_root->node);
2003         free_extent_buffer(csum_root->commit_root);
2004 fail_dev_root:
2005         free_extent_buffer(dev_root->node);
2006         free_extent_buffer(dev_root->commit_root);
2007 fail_extent_root:
2008         free_extent_buffer(extent_root->node);
2009         free_extent_buffer(extent_root->commit_root);
2010 fail_tree_root:
2011         free_extent_buffer(tree_root->node);
2012         free_extent_buffer(tree_root->commit_root);
2013 fail_chunk_root:
2014         free_extent_buffer(chunk_root->node);
2015         free_extent_buffer(chunk_root->commit_root);
2016 fail_sb_buffer:
2017         btrfs_stop_workers(&fs_info->fixup_workers);
2018         btrfs_stop_workers(&fs_info->delalloc_workers);
2019         btrfs_stop_workers(&fs_info->workers);
2020         btrfs_stop_workers(&fs_info->endio_workers);
2021         btrfs_stop_workers(&fs_info->endio_meta_workers);
2022         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2023         btrfs_stop_workers(&fs_info->endio_write_workers);
2024         btrfs_stop_workers(&fs_info->submit_workers);
2025 fail_iput:
2026         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2027         iput(fs_info->btree_inode);
2028
2029         btrfs_close_devices(fs_info->fs_devices);
2030         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2031 fail_bdi:
2032         bdi_destroy(&fs_info->bdi);
2033 fail_srcu:
2034         cleanup_srcu_struct(&fs_info->subvol_srcu);
2035 fail:
2036         kfree(extent_root);
2037         kfree(tree_root);
2038         kfree(fs_info);
2039         kfree(chunk_root);
2040         kfree(dev_root);
2041         kfree(csum_root);
2042         return ERR_PTR(err);
2043 }
2044
2045 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2046 {
2047         char b[BDEVNAME_SIZE];
2048
2049         if (uptodate) {
2050                 set_buffer_uptodate(bh);
2051         } else {
2052                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2053                         printk(KERN_WARNING "lost page write due to "
2054                                         "I/O error on %s\n",
2055                                        bdevname(bh->b_bdev, b));
2056                 }
2057                 /* note, we dont' set_buffer_write_io_error because we have
2058                  * our own ways of dealing with the IO errors
2059                  */
2060                 clear_buffer_uptodate(bh);
2061         }
2062         unlock_buffer(bh);
2063         put_bh(bh);
2064 }
2065
2066 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2067 {
2068         struct buffer_head *bh;
2069         struct buffer_head *latest = NULL;
2070         struct btrfs_super_block *super;
2071         int i;
2072         u64 transid = 0;
2073         u64 bytenr;
2074
2075         /* we would like to check all the supers, but that would make
2076          * a btrfs mount succeed after a mkfs from a different FS.
2077          * So, we need to add a special mount option to scan for
2078          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2079          */
2080         for (i = 0; i < 1; i++) {
2081                 bytenr = btrfs_sb_offset(i);
2082                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2083                         break;
2084                 bh = __bread(bdev, bytenr / 4096, 4096);
2085                 if (!bh)
2086                         continue;
2087
2088                 super = (struct btrfs_super_block *)bh->b_data;
2089                 if (btrfs_super_bytenr(super) != bytenr ||
2090                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2091                             sizeof(super->magic))) {
2092                         brelse(bh);
2093                         continue;
2094                 }
2095
2096                 if (!latest || btrfs_super_generation(super) > transid) {
2097                         brelse(latest);
2098                         latest = bh;
2099                         transid = btrfs_super_generation(super);
2100                 } else {
2101                         brelse(bh);
2102                 }
2103         }
2104         return latest;
2105 }
2106
2107 /*
2108  * this should be called twice, once with wait == 0 and
2109  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2110  * we write are pinned.
2111  *
2112  * They are released when wait == 1 is done.
2113  * max_mirrors must be the same for both runs, and it indicates how
2114  * many supers on this one device should be written.
2115  *
2116  * max_mirrors == 0 means to write them all.
2117  */
2118 static int write_dev_supers(struct btrfs_device *device,
2119                             struct btrfs_super_block *sb,
2120                             int do_barriers, int wait, int max_mirrors)
2121 {
2122         struct buffer_head *bh;
2123         int i;
2124         int ret;
2125         int errors = 0;
2126         u32 crc;
2127         u64 bytenr;
2128         int last_barrier = 0;
2129
2130         if (max_mirrors == 0)
2131                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2132
2133         /* make sure only the last submit_bh does a barrier */
2134         if (do_barriers) {
2135                 for (i = 0; i < max_mirrors; i++) {
2136                         bytenr = btrfs_sb_offset(i);
2137                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2138                             device->total_bytes)
2139                                 break;
2140                         last_barrier = i;
2141                 }
2142         }
2143
2144         for (i = 0; i < max_mirrors; i++) {
2145                 bytenr = btrfs_sb_offset(i);
2146                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2147                         break;
2148
2149                 if (wait) {
2150                         bh = __find_get_block(device->bdev, bytenr / 4096,
2151                                               BTRFS_SUPER_INFO_SIZE);
2152                         BUG_ON(!bh);
2153                         wait_on_buffer(bh);
2154                         if (!buffer_uptodate(bh))
2155                                 errors++;
2156
2157                         /* drop our reference */
2158                         brelse(bh);
2159
2160                         /* drop the reference from the wait == 0 run */
2161                         brelse(bh);
2162                         continue;
2163                 } else {
2164                         btrfs_set_super_bytenr(sb, bytenr);
2165
2166                         crc = ~(u32)0;
2167                         crc = btrfs_csum_data(NULL, (char *)sb +
2168                                               BTRFS_CSUM_SIZE, crc,
2169                                               BTRFS_SUPER_INFO_SIZE -
2170                                               BTRFS_CSUM_SIZE);
2171                         btrfs_csum_final(crc, sb->csum);
2172
2173                         /*
2174                          * one reference for us, and we leave it for the
2175                          * caller
2176                          */
2177                         bh = __getblk(device->bdev, bytenr / 4096,
2178                                       BTRFS_SUPER_INFO_SIZE);
2179                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2180
2181                         /* one reference for submit_bh */
2182                         get_bh(bh);
2183
2184                         set_buffer_uptodate(bh);
2185                         lock_buffer(bh);
2186                         bh->b_end_io = btrfs_end_buffer_write_sync;
2187                 }
2188
2189                 if (i == last_barrier && do_barriers && device->barriers) {
2190                         ret = submit_bh(WRITE_BARRIER, bh);
2191                         if (ret == -EOPNOTSUPP) {
2192                                 printk("btrfs: disabling barriers on dev %s\n",
2193                                        device->name);
2194                                 set_buffer_uptodate(bh);
2195                                 device->barriers = 0;
2196                                 /* one reference for submit_bh */
2197                                 get_bh(bh);
2198                                 lock_buffer(bh);
2199                                 ret = submit_bh(WRITE_SYNC, bh);
2200                         }
2201                 } else {
2202                         ret = submit_bh(WRITE_SYNC, bh);
2203                 }
2204
2205                 if (ret)
2206                         errors++;
2207         }
2208         return errors < i ? 0 : -1;
2209 }
2210
2211 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2212 {
2213         struct list_head *head;
2214         struct btrfs_device *dev;
2215         struct btrfs_super_block *sb;
2216         struct btrfs_dev_item *dev_item;
2217         int ret;
2218         int do_barriers;
2219         int max_errors;
2220         int total_errors = 0;
2221         u64 flags;
2222
2223         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2224         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2225
2226         sb = &root->fs_info->super_for_commit;
2227         dev_item = &sb->dev_item;
2228
2229         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2230         head = &root->fs_info->fs_devices->devices;
2231         list_for_each_entry(dev, head, dev_list) {
2232                 if (!dev->bdev) {
2233                         total_errors++;
2234                         continue;
2235                 }
2236                 if (!dev->in_fs_metadata || !dev->writeable)
2237                         continue;
2238
2239                 btrfs_set_stack_device_generation(dev_item, 0);
2240                 btrfs_set_stack_device_type(dev_item, dev->type);
2241                 btrfs_set_stack_device_id(dev_item, dev->devid);
2242                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2243                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2244                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2245                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2246                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2247                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2248                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2249
2250                 flags = btrfs_super_flags(sb);
2251                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2252
2253                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2254                 if (ret)
2255                         total_errors++;
2256         }
2257         if (total_errors > max_errors) {
2258                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2259                        total_errors);
2260                 BUG();
2261         }
2262
2263         total_errors = 0;
2264         list_for_each_entry(dev, head, dev_list) {
2265                 if (!dev->bdev)
2266                         continue;
2267                 if (!dev->in_fs_metadata || !dev->writeable)
2268                         continue;
2269
2270                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2271                 if (ret)
2272                         total_errors++;
2273         }
2274         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2275         if (total_errors > max_errors) {
2276                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2277                        total_errors);
2278                 BUG();
2279         }
2280         return 0;
2281 }
2282
2283 int write_ctree_super(struct btrfs_trans_handle *trans,
2284                       struct btrfs_root *root, int max_mirrors)
2285 {
2286         int ret;
2287
2288         ret = write_all_supers(root, max_mirrors);
2289         return ret;
2290 }
2291
2292 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2293 {
2294         spin_lock(&fs_info->fs_roots_radix_lock);
2295         radix_tree_delete(&fs_info->fs_roots_radix,
2296                           (unsigned long)root->root_key.objectid);
2297         spin_unlock(&fs_info->fs_roots_radix_lock);
2298
2299         if (btrfs_root_refs(&root->root_item) == 0)
2300                 synchronize_srcu(&fs_info->subvol_srcu);
2301
2302         free_fs_root(root);
2303         return 0;
2304 }
2305
2306 static void free_fs_root(struct btrfs_root *root)
2307 {
2308         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2309         if (root->anon_super.s_dev) {
2310                 down_write(&root->anon_super.s_umount);
2311                 kill_anon_super(&root->anon_super);
2312         }
2313         free_extent_buffer(root->node);
2314         free_extent_buffer(root->commit_root);
2315         kfree(root->name);
2316         kfree(root);
2317 }
2318
2319 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2320 {
2321         int ret;
2322         struct btrfs_root *gang[8];
2323         int i;
2324
2325         while (!list_empty(&fs_info->dead_roots)) {
2326                 gang[0] = list_entry(fs_info->dead_roots.next,
2327                                      struct btrfs_root, root_list);
2328                 list_del(&gang[0]->root_list);
2329
2330                 if (gang[0]->in_radix) {
2331                         btrfs_free_fs_root(fs_info, gang[0]);
2332                 } else {
2333                         free_extent_buffer(gang[0]->node);
2334                         free_extent_buffer(gang[0]->commit_root);
2335                         kfree(gang[0]);
2336                 }
2337         }
2338
2339         while (1) {
2340                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2341                                              (void **)gang, 0,
2342                                              ARRAY_SIZE(gang));
2343                 if (!ret)
2344                         break;
2345                 for (i = 0; i < ret; i++)
2346                         btrfs_free_fs_root(fs_info, gang[i]);
2347         }
2348         return 0;
2349 }
2350
2351 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2352 {
2353         u64 root_objectid = 0;
2354         struct btrfs_root *gang[8];
2355         int i;
2356         int ret;
2357
2358         while (1) {
2359                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2360                                              (void **)gang, root_objectid,
2361                                              ARRAY_SIZE(gang));
2362                 if (!ret)
2363                         break;
2364
2365                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2366                 for (i = 0; i < ret; i++) {
2367                         root_objectid = gang[i]->root_key.objectid;
2368                         btrfs_orphan_cleanup(gang[i]);
2369                 }
2370                 root_objectid++;
2371         }
2372         return 0;
2373 }
2374
2375 int btrfs_commit_super(struct btrfs_root *root)
2376 {
2377         struct btrfs_trans_handle *trans;
2378         int ret;
2379
2380         mutex_lock(&root->fs_info->cleaner_mutex);
2381         btrfs_clean_old_snapshots(root);
2382         mutex_unlock(&root->fs_info->cleaner_mutex);
2383         trans = btrfs_start_transaction(root, 1);
2384         ret = btrfs_commit_transaction(trans, root);
2385         BUG_ON(ret);
2386         /* run commit again to drop the original snapshot */
2387         trans = btrfs_start_transaction(root, 1);
2388         btrfs_commit_transaction(trans, root);
2389         ret = btrfs_write_and_wait_transaction(NULL, root);
2390         BUG_ON(ret);
2391
2392         ret = write_ctree_super(NULL, root, 0);
2393         return ret;
2394 }
2395
2396 int close_ctree(struct btrfs_root *root)
2397 {
2398         struct btrfs_fs_info *fs_info = root->fs_info;
2399         int ret;
2400
2401         fs_info->closing = 1;
2402         smp_mb();
2403
2404         kthread_stop(root->fs_info->transaction_kthread);
2405         kthread_stop(root->fs_info->cleaner_kthread);
2406
2407         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2408                 ret =  btrfs_commit_super(root);
2409                 if (ret)
2410                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2411         }
2412
2413         fs_info->closing = 2;
2414         smp_mb();
2415
2416         if (fs_info->delalloc_bytes) {
2417                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2418                        (unsigned long long)fs_info->delalloc_bytes);
2419         }
2420         if (fs_info->total_ref_cache_size) {
2421                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2422                        (unsigned long long)fs_info->total_ref_cache_size);
2423         }
2424
2425         free_extent_buffer(fs_info->extent_root->node);
2426         free_extent_buffer(fs_info->extent_root->commit_root);
2427         free_extent_buffer(fs_info->tree_root->node);
2428         free_extent_buffer(fs_info->tree_root->commit_root);
2429         free_extent_buffer(root->fs_info->chunk_root->node);
2430         free_extent_buffer(root->fs_info->chunk_root->commit_root);
2431         free_extent_buffer(root->fs_info->dev_root->node);
2432         free_extent_buffer(root->fs_info->dev_root->commit_root);
2433         free_extent_buffer(root->fs_info->csum_root->node);
2434         free_extent_buffer(root->fs_info->csum_root->commit_root);
2435
2436         btrfs_free_block_groups(root->fs_info);
2437
2438         del_fs_roots(fs_info);
2439
2440         iput(fs_info->btree_inode);
2441
2442         btrfs_stop_workers(&fs_info->fixup_workers);
2443         btrfs_stop_workers(&fs_info->delalloc_workers);
2444         btrfs_stop_workers(&fs_info->workers);
2445         btrfs_stop_workers(&fs_info->endio_workers);
2446         btrfs_stop_workers(&fs_info->endio_meta_workers);
2447         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2448         btrfs_stop_workers(&fs_info->endio_write_workers);
2449         btrfs_stop_workers(&fs_info->submit_workers);
2450
2451         btrfs_close_devices(fs_info->fs_devices);
2452         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2453
2454         bdi_destroy(&fs_info->bdi);
2455         cleanup_srcu_struct(&fs_info->subvol_srcu);
2456
2457         kfree(fs_info->extent_root);
2458         kfree(fs_info->tree_root);
2459         kfree(fs_info->chunk_root);
2460         kfree(fs_info->dev_root);
2461         kfree(fs_info->csum_root);
2462         return 0;
2463 }
2464
2465 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2466 {
2467         int ret;
2468         struct inode *btree_inode = buf->first_page->mapping->host;
2469
2470         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2471         if (!ret)
2472                 return ret;
2473
2474         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2475                                     parent_transid);
2476         return !ret;
2477 }
2478
2479 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2480 {
2481         struct inode *btree_inode = buf->first_page->mapping->host;
2482         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2483                                           buf);
2484 }
2485
2486 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2487 {
2488         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2489         u64 transid = btrfs_header_generation(buf);
2490         struct inode *btree_inode = root->fs_info->btree_inode;
2491         int was_dirty;
2492
2493         btrfs_assert_tree_locked(buf);
2494         if (transid != root->fs_info->generation) {
2495                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2496                        "found %llu running %llu\n",
2497                         (unsigned long long)buf->start,
2498                         (unsigned long long)transid,
2499                         (unsigned long long)root->fs_info->generation);
2500                 WARN_ON(1);
2501         }
2502         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2503                                             buf);
2504         if (!was_dirty) {
2505                 spin_lock(&root->fs_info->delalloc_lock);
2506                 root->fs_info->dirty_metadata_bytes += buf->len;
2507                 spin_unlock(&root->fs_info->delalloc_lock);
2508         }
2509 }
2510
2511 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2512 {
2513         /*
2514          * looks as though older kernels can get into trouble with
2515          * this code, they end up stuck in balance_dirty_pages forever
2516          */
2517         u64 num_dirty;
2518         unsigned long thresh = 32 * 1024 * 1024;
2519
2520         if (current->flags & PF_MEMALLOC)
2521                 return;
2522
2523         num_dirty = root->fs_info->dirty_metadata_bytes;
2524
2525         if (num_dirty > thresh) {
2526                 balance_dirty_pages_ratelimited_nr(
2527                                    root->fs_info->btree_inode->i_mapping, 1);
2528         }
2529         return;
2530 }
2531
2532 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2533 {
2534         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2535         int ret;
2536         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2537         if (ret == 0)
2538                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2539         return ret;
2540 }
2541
2542 int btree_lock_page_hook(struct page *page)
2543 {
2544         struct inode *inode = page->mapping->host;
2545         struct btrfs_root *root = BTRFS_I(inode)->root;
2546         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2547         struct extent_buffer *eb;
2548         unsigned long len;
2549         u64 bytenr = page_offset(page);
2550
2551         if (page->private == EXTENT_PAGE_PRIVATE)
2552                 goto out;
2553
2554         len = page->private >> 2;
2555         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2556         if (!eb)
2557                 goto out;
2558
2559         btrfs_tree_lock(eb);
2560         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2561
2562         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2563                 spin_lock(&root->fs_info->delalloc_lock);
2564                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2565                         root->fs_info->dirty_metadata_bytes -= eb->len;
2566                 else
2567                         WARN_ON(1);
2568                 spin_unlock(&root->fs_info->delalloc_lock);
2569         }
2570
2571         btrfs_tree_unlock(eb);
2572         free_extent_buffer(eb);
2573 out:
2574         lock_page(page);
2575         return 0;
2576 }
2577
2578 static struct extent_io_ops btree_extent_io_ops = {
2579         .write_cache_pages_lock_hook = btree_lock_page_hook,
2580         .readpage_end_io_hook = btree_readpage_end_io_hook,
2581         .submit_bio_hook = btree_submit_bio_hook,
2582         /* note we're sharing with inode.c for the merge bio hook */
2583         .merge_bio_hook = btrfs_merge_bio_hook,
2584 };