Merge branch 'for-linus-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
59                                  BTRFS_HEADER_FLAG_RELOC |\
60                                  BTRFS_SUPER_FLAG_ERROR |\
61                                  BTRFS_SUPER_FLAG_SEEDING |\
62                                  BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68                                     int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71                                       struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74                                         struct extent_io_tree *dirty_pages,
75                                         int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77                                        struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87         struct bio *bio;
88         bio_end_io_t *end_io;
89         void *private;
90         struct btrfs_fs_info *info;
91         int error;
92         enum btrfs_wq_endio_type metadata;
93         struct list_head list;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122         struct inode *inode;
123         struct bio *bio;
124         struct list_head list;
125         extent_submit_bio_hook_t *submit_bio_start;
126         extent_submit_bio_hook_t *submit_bio_done;
127         int mirror_num;
128         unsigned long bio_flags;
129         /*
130          * bio_offset is optional, can be used if the pages in the bio
131          * can't tell us where in the file the bio should go
132          */
133         u64 bio_offset;
134         struct btrfs_work work;
135         int error;
136 };
137
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167         u64                     id;             /* root objectid */
168         const char              *name_stem;     /* lock name stem */
169         char                    names[BTRFS_MAX_LEVEL + 1][20];
170         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
173         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
174         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
175         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
176         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
177         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
178         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
179         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
180         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
181         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
182         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
183         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184         { .id = 0,                              .name_stem = "tree"     },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189         int i, j;
190
191         /* initialize lockdep class names */
192         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196                         snprintf(ks->names[j], sizeof(ks->names[j]),
197                                  "btrfs-%s-%02d", ks->name_stem, j);
198         }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202                                     int level)
203 {
204         struct btrfs_lockdep_keyset *ks;
205
206         BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208         /* find the matching keyset, id 0 is the default entry */
209         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210                 if (ks->id == objectid)
211                         break;
212
213         lockdep_set_class_and_name(&eb->lock,
214                                    &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224                 struct page *page, size_t pg_offset, u64 start, u64 len,
225                 int create)
226 {
227         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228         struct extent_map *em;
229         int ret;
230
231         read_lock(&em_tree->lock);
232         em = lookup_extent_mapping(em_tree, start, len);
233         if (em) {
234                 em->bdev =
235                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236                 read_unlock(&em_tree->lock);
237                 goto out;
238         }
239         read_unlock(&em_tree->lock);
240
241         em = alloc_extent_map();
242         if (!em) {
243                 em = ERR_PTR(-ENOMEM);
244                 goto out;
245         }
246         em->start = 0;
247         em->len = (u64)-1;
248         em->block_len = (u64)-1;
249         em->block_start = 0;
250         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251
252         write_lock(&em_tree->lock);
253         ret = add_extent_mapping(em_tree, em, 0);
254         if (ret == -EEXIST) {
255                 free_extent_map(em);
256                 em = lookup_extent_mapping(em_tree, start, len);
257                 if (!em)
258                         em = ERR_PTR(-EIO);
259         } else if (ret) {
260                 free_extent_map(em);
261                 em = ERR_PTR(ret);
262         }
263         write_unlock(&em_tree->lock);
264
265 out:
266         return em;
267 }
268
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271         return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276         put_unaligned_le32(~crc, result);
277 }
278
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284                            struct extent_buffer *buf,
285                            int verify)
286 {
287         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288         char *result = NULL;
289         unsigned long len;
290         unsigned long cur_len;
291         unsigned long offset = BTRFS_CSUM_SIZE;
292         char *kaddr;
293         unsigned long map_start;
294         unsigned long map_len;
295         int err;
296         u32 crc = ~(u32)0;
297         unsigned long inline_result;
298
299         len = buf->len - offset;
300         while (len > 0) {
301                 err = map_private_extent_buffer(buf, offset, 32,
302                                         &kaddr, &map_start, &map_len);
303                 if (err)
304                         return err;
305                 cur_len = min(len, map_len - (offset - map_start));
306                 crc = btrfs_csum_data(kaddr + offset - map_start,
307                                       crc, cur_len);
308                 len -= cur_len;
309                 offset += cur_len;
310         }
311         if (csum_size > sizeof(inline_result)) {
312                 result = kzalloc(csum_size, GFP_NOFS);
313                 if (!result)
314                         return -ENOMEM;
315         } else {
316                 result = (char *)&inline_result;
317         }
318
319         btrfs_csum_final(crc, result);
320
321         if (verify) {
322                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323                         u32 val;
324                         u32 found = 0;
325                         memcpy(&found, result, csum_size);
326
327                         read_extent_buffer(buf, &val, 0, csum_size);
328                         btrfs_warn_rl(fs_info,
329                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
330                                 fs_info->sb->s_id, buf->start,
331                                 val, found, btrfs_header_level(buf));
332                         if (result != (char *)&inline_result)
333                                 kfree(result);
334                         return -EUCLEAN;
335                 }
336         } else {
337                 write_extent_buffer(buf, result, 0, csum_size);
338         }
339         if (result != (char *)&inline_result)
340                 kfree(result);
341         return 0;
342 }
343
344 /*
345  * we can't consider a given block up to date unless the transid of the
346  * block matches the transid in the parent node's pointer.  This is how we
347  * detect blocks that either didn't get written at all or got written
348  * in the wrong place.
349  */
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351                                  struct extent_buffer *eb, u64 parent_transid,
352                                  int atomic)
353 {
354         struct extent_state *cached_state = NULL;
355         int ret;
356         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357
358         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359                 return 0;
360
361         if (atomic)
362                 return -EAGAIN;
363
364         if (need_lock) {
365                 btrfs_tree_read_lock(eb);
366                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367         }
368
369         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370                          &cached_state);
371         if (extent_buffer_uptodate(eb) &&
372             btrfs_header_generation(eb) == parent_transid) {
373                 ret = 0;
374                 goto out;
375         }
376         btrfs_err_rl(eb->fs_info,
377                 "parent transid verify failed on %llu wanted %llu found %llu",
378                         eb->start,
379                         parent_transid, btrfs_header_generation(eb));
380         ret = 1;
381
382         /*
383          * Things reading via commit roots that don't have normal protection,
384          * like send, can have a really old block in cache that may point at a
385          * block that has been freed and re-allocated.  So don't clear uptodate
386          * if we find an eb that is under IO (dirty/writeback) because we could
387          * end up reading in the stale data and then writing it back out and
388          * making everybody very sad.
389          */
390         if (!extent_buffer_under_io(eb))
391                 clear_extent_buffer_uptodate(eb);
392 out:
393         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394                              &cached_state, GFP_NOFS);
395         if (need_lock)
396                 btrfs_tree_read_unlock_blocking(eb);
397         return ret;
398 }
399
400 /*
401  * Return 0 if the superblock checksum type matches the checksum value of that
402  * algorithm. Pass the raw disk superblock data.
403  */
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405                                   char *raw_disk_sb)
406 {
407         struct btrfs_super_block *disk_sb =
408                 (struct btrfs_super_block *)raw_disk_sb;
409         u16 csum_type = btrfs_super_csum_type(disk_sb);
410         int ret = 0;
411
412         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413                 u32 crc = ~(u32)0;
414                 const int csum_size = sizeof(crc);
415                 char result[csum_size];
416
417                 /*
418                  * The super_block structure does not span the whole
419                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420                  * is filled with zeros and is included in the checksum.
421                  */
422                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424                 btrfs_csum_final(crc, result);
425
426                 if (memcmp(raw_disk_sb, result, csum_size))
427                         ret = 1;
428         }
429
430         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
432                                 csum_type);
433                 ret = 1;
434         }
435
436         return ret;
437 }
438
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444                                           struct extent_buffer *eb,
445                                           u64 parent_transid)
446 {
447         struct extent_io_tree *io_tree;
448         int failed = 0;
449         int ret;
450         int num_copies = 0;
451         int mirror_num = 0;
452         int failed_mirror = 0;
453
454         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456         while (1) {
457                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458                                                btree_get_extent, mirror_num);
459                 if (!ret) {
460                         if (!verify_parent_transid(io_tree, eb,
461                                                    parent_transid, 0))
462                                 break;
463                         else
464                                 ret = -EIO;
465                 }
466
467                 /*
468                  * This buffer's crc is fine, but its contents are corrupted, so
469                  * there is no reason to read the other copies, they won't be
470                  * any less wrong.
471                  */
472                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473                         break;
474
475                 num_copies = btrfs_num_copies(root->fs_info,
476                                               eb->start, eb->len);
477                 if (num_copies == 1)
478                         break;
479
480                 if (!failed_mirror) {
481                         failed = 1;
482                         failed_mirror = eb->read_mirror;
483                 }
484
485                 mirror_num++;
486                 if (mirror_num == failed_mirror)
487                         mirror_num++;
488
489                 if (mirror_num > num_copies)
490                         break;
491         }
492
493         if (failed && !ret && failed_mirror)
494                 repair_eb_io_failure(root, eb, failed_mirror);
495
496         return ret;
497 }
498
499 /*
500  * checksum a dirty tree block before IO.  This has extra checks to make sure
501  * we only fill in the checksum field in the first page of a multi-page block
502  */
503
504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
505 {
506         u64 start = page_offset(page);
507         u64 found_start;
508         struct extent_buffer *eb;
509
510         eb = (struct extent_buffer *)page->private;
511         if (page != eb->pages[0])
512                 return 0;
513
514         found_start = btrfs_header_bytenr(eb);
515         /*
516          * Please do not consolidate these warnings into a single if.
517          * It is useful to know what went wrong.
518          */
519         if (WARN_ON(found_start != start))
520                 return -EUCLEAN;
521         if (WARN_ON(!PageUptodate(page)))
522                 return -EUCLEAN;
523
524         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526
527         return csum_tree_block(fs_info, eb, 0);
528 }
529
530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531                                  struct extent_buffer *eb)
532 {
533         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534         u8 fsid[BTRFS_UUID_SIZE];
535         int ret = 1;
536
537         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538         while (fs_devices) {
539                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540                         ret = 0;
541                         break;
542                 }
543                 fs_devices = fs_devices->seed;
544         }
545         return ret;
546 }
547
548 #define CORRUPT(reason, eb, root, slot)                         \
549         btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu," \
550                    " root=%llu, slot=%d",                       \
551                    btrfs_header_level(eb) == 0 ? "leaf" : "node",\
552                    reason, btrfs_header_bytenr(eb), root->objectid, slot)
553
554 static noinline int check_leaf(struct btrfs_root *root,
555                                struct extent_buffer *leaf)
556 {
557         struct btrfs_key key;
558         struct btrfs_key leaf_key;
559         u32 nritems = btrfs_header_nritems(leaf);
560         int slot;
561
562         if (nritems == 0) {
563                 struct btrfs_root *check_root;
564
565                 key.objectid = btrfs_header_owner(leaf);
566                 key.type = BTRFS_ROOT_ITEM_KEY;
567                 key.offset = (u64)-1;
568
569                 check_root = btrfs_get_fs_root(root->fs_info, &key, false);
570                 /*
571                  * The only reason we also check NULL here is that during
572                  * open_ctree() some roots has not yet been set up.
573                  */
574                 if (!IS_ERR_OR_NULL(check_root)) {
575                         /* if leaf is the root, then it's fine */
576                         if (leaf->start !=
577                             btrfs_root_bytenr(&check_root->root_item)) {
578                                 CORRUPT("non-root leaf's nritems is 0",
579                                         leaf, root, 0);
580                                 return -EIO;
581                         }
582                 }
583                 return 0;
584         }
585
586         /* Check the 0 item */
587         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
588             BTRFS_LEAF_DATA_SIZE(root)) {
589                 CORRUPT("invalid item offset size pair", leaf, root, 0);
590                 return -EIO;
591         }
592
593         /*
594          * Check to make sure each items keys are in the correct order and their
595          * offsets make sense.  We only have to loop through nritems-1 because
596          * we check the current slot against the next slot, which verifies the
597          * next slot's offset+size makes sense and that the current's slot
598          * offset is correct.
599          */
600         for (slot = 0; slot < nritems - 1; slot++) {
601                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
602                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
603
604                 /* Make sure the keys are in the right order */
605                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
606                         CORRUPT("bad key order", leaf, root, slot);
607                         return -EIO;
608                 }
609
610                 /*
611                  * Make sure the offset and ends are right, remember that the
612                  * item data starts at the end of the leaf and grows towards the
613                  * front.
614                  */
615                 if (btrfs_item_offset_nr(leaf, slot) !=
616                         btrfs_item_end_nr(leaf, slot + 1)) {
617                         CORRUPT("slot offset bad", leaf, root, slot);
618                         return -EIO;
619                 }
620
621                 /*
622                  * Check to make sure that we don't point outside of the leaf,
623                  * just in case all the items are consistent to each other, but
624                  * all point outside of the leaf.
625                  */
626                 if (btrfs_item_end_nr(leaf, slot) >
627                     BTRFS_LEAF_DATA_SIZE(root)) {
628                         CORRUPT("slot end outside of leaf", leaf, root, slot);
629                         return -EIO;
630                 }
631         }
632
633         return 0;
634 }
635
636 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
637 {
638         unsigned long nr = btrfs_header_nritems(node);
639         struct btrfs_key key, next_key;
640         int slot;
641         u64 bytenr;
642         int ret = 0;
643
644         if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
645                 btrfs_crit(root->fs_info,
646                            "corrupt node: block %llu root %llu nritems %lu",
647                            node->start, root->objectid, nr);
648                 return -EIO;
649         }
650
651         for (slot = 0; slot < nr - 1; slot++) {
652                 bytenr = btrfs_node_blockptr(node, slot);
653                 btrfs_node_key_to_cpu(node, &key, slot);
654                 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
655
656                 if (!bytenr) {
657                         CORRUPT("invalid item slot", node, root, slot);
658                         ret = -EIO;
659                         goto out;
660                 }
661
662                 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
663                         CORRUPT("bad key order", node, root, slot);
664                         ret = -EIO;
665                         goto out;
666                 }
667         }
668 out:
669         return ret;
670 }
671
672 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
673                                       u64 phy_offset, struct page *page,
674                                       u64 start, u64 end, int mirror)
675 {
676         u64 found_start;
677         int found_level;
678         struct extent_buffer *eb;
679         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
680         struct btrfs_fs_info *fs_info = root->fs_info;
681         int ret = 0;
682         int reads_done;
683
684         if (!page->private)
685                 goto out;
686
687         eb = (struct extent_buffer *)page->private;
688
689         /* the pending IO might have been the only thing that kept this buffer
690          * in memory.  Make sure we have a ref for all this other checks
691          */
692         extent_buffer_get(eb);
693
694         reads_done = atomic_dec_and_test(&eb->io_pages);
695         if (!reads_done)
696                 goto err;
697
698         eb->read_mirror = mirror;
699         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
700                 ret = -EIO;
701                 goto err;
702         }
703
704         found_start = btrfs_header_bytenr(eb);
705         if (found_start != eb->start) {
706                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
707                              found_start, eb->start);
708                 ret = -EIO;
709                 goto err;
710         }
711         if (check_tree_block_fsid(fs_info, eb)) {
712                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
713                              eb->start);
714                 ret = -EIO;
715                 goto err;
716         }
717         found_level = btrfs_header_level(eb);
718         if (found_level >= BTRFS_MAX_LEVEL) {
719                 btrfs_err(fs_info, "bad tree block level %d",
720                           (int)btrfs_header_level(eb));
721                 ret = -EIO;
722                 goto err;
723         }
724
725         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
726                                        eb, found_level);
727
728         ret = csum_tree_block(fs_info, eb, 1);
729         if (ret)
730                 goto err;
731
732         /*
733          * If this is a leaf block and it is corrupt, set the corrupt bit so
734          * that we don't try and read the other copies of this block, just
735          * return -EIO.
736          */
737         if (found_level == 0 && check_leaf(root, eb)) {
738                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
739                 ret = -EIO;
740         }
741
742         if (found_level > 0 && check_node(root, eb))
743                 ret = -EIO;
744
745         if (!ret)
746                 set_extent_buffer_uptodate(eb);
747 err:
748         if (reads_done &&
749             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
750                 btree_readahead_hook(fs_info, eb, eb->start, ret);
751
752         if (ret) {
753                 /*
754                  * our io error hook is going to dec the io pages
755                  * again, we have to make sure it has something
756                  * to decrement
757                  */
758                 atomic_inc(&eb->io_pages);
759                 clear_extent_buffer_uptodate(eb);
760         }
761         free_extent_buffer(eb);
762 out:
763         return ret;
764 }
765
766 static int btree_io_failed_hook(struct page *page, int failed_mirror)
767 {
768         struct extent_buffer *eb;
769
770         eb = (struct extent_buffer *)page->private;
771         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
772         eb->read_mirror = failed_mirror;
773         atomic_dec(&eb->io_pages);
774         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
775                 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
776         return -EIO;    /* we fixed nothing */
777 }
778
779 static void end_workqueue_bio(struct bio *bio)
780 {
781         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
782         struct btrfs_fs_info *fs_info;
783         struct btrfs_workqueue *wq;
784         btrfs_work_func_t func;
785
786         fs_info = end_io_wq->info;
787         end_io_wq->error = bio->bi_error;
788
789         if (bio_op(bio) == REQ_OP_WRITE) {
790                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
791                         wq = fs_info->endio_meta_write_workers;
792                         func = btrfs_endio_meta_write_helper;
793                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
794                         wq = fs_info->endio_freespace_worker;
795                         func = btrfs_freespace_write_helper;
796                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
797                         wq = fs_info->endio_raid56_workers;
798                         func = btrfs_endio_raid56_helper;
799                 } else {
800                         wq = fs_info->endio_write_workers;
801                         func = btrfs_endio_write_helper;
802                 }
803         } else {
804                 if (unlikely(end_io_wq->metadata ==
805                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
806                         wq = fs_info->endio_repair_workers;
807                         func = btrfs_endio_repair_helper;
808                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
809                         wq = fs_info->endio_raid56_workers;
810                         func = btrfs_endio_raid56_helper;
811                 } else if (end_io_wq->metadata) {
812                         wq = fs_info->endio_meta_workers;
813                         func = btrfs_endio_meta_helper;
814                 } else {
815                         wq = fs_info->endio_workers;
816                         func = btrfs_endio_helper;
817                 }
818         }
819
820         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
821         btrfs_queue_work(wq, &end_io_wq->work);
822 }
823
824 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
825                         enum btrfs_wq_endio_type metadata)
826 {
827         struct btrfs_end_io_wq *end_io_wq;
828
829         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
830         if (!end_io_wq)
831                 return -ENOMEM;
832
833         end_io_wq->private = bio->bi_private;
834         end_io_wq->end_io = bio->bi_end_io;
835         end_io_wq->info = info;
836         end_io_wq->error = 0;
837         end_io_wq->bio = bio;
838         end_io_wq->metadata = metadata;
839
840         bio->bi_private = end_io_wq;
841         bio->bi_end_io = end_workqueue_bio;
842         return 0;
843 }
844
845 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
846 {
847         unsigned long limit = min_t(unsigned long,
848                                     info->thread_pool_size,
849                                     info->fs_devices->open_devices);
850         return 256 * limit;
851 }
852
853 static void run_one_async_start(struct btrfs_work *work)
854 {
855         struct async_submit_bio *async;
856         int ret;
857
858         async = container_of(work, struct  async_submit_bio, work);
859         ret = async->submit_bio_start(async->inode, async->bio,
860                                       async->mirror_num, async->bio_flags,
861                                       async->bio_offset);
862         if (ret)
863                 async->error = ret;
864 }
865
866 static void run_one_async_done(struct btrfs_work *work)
867 {
868         struct btrfs_fs_info *fs_info;
869         struct async_submit_bio *async;
870         int limit;
871
872         async = container_of(work, struct  async_submit_bio, work);
873         fs_info = BTRFS_I(async->inode)->root->fs_info;
874
875         limit = btrfs_async_submit_limit(fs_info);
876         limit = limit * 2 / 3;
877
878         /*
879          * atomic_dec_return implies a barrier for waitqueue_active
880          */
881         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
882             waitqueue_active(&fs_info->async_submit_wait))
883                 wake_up(&fs_info->async_submit_wait);
884
885         /* If an error occurred we just want to clean up the bio and move on */
886         if (async->error) {
887                 async->bio->bi_error = async->error;
888                 bio_endio(async->bio);
889                 return;
890         }
891
892         async->submit_bio_done(async->inode, async->bio, async->mirror_num,
893                                async->bio_flags, async->bio_offset);
894 }
895
896 static void run_one_async_free(struct btrfs_work *work)
897 {
898         struct async_submit_bio *async;
899
900         async = container_of(work, struct  async_submit_bio, work);
901         kfree(async);
902 }
903
904 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
905                         struct bio *bio, int mirror_num,
906                         unsigned long bio_flags,
907                         u64 bio_offset,
908                         extent_submit_bio_hook_t *submit_bio_start,
909                         extent_submit_bio_hook_t *submit_bio_done)
910 {
911         struct async_submit_bio *async;
912
913         async = kmalloc(sizeof(*async), GFP_NOFS);
914         if (!async)
915                 return -ENOMEM;
916
917         async->inode = inode;
918         async->bio = bio;
919         async->mirror_num = mirror_num;
920         async->submit_bio_start = submit_bio_start;
921         async->submit_bio_done = submit_bio_done;
922
923         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
924                         run_one_async_done, run_one_async_free);
925
926         async->bio_flags = bio_flags;
927         async->bio_offset = bio_offset;
928
929         async->error = 0;
930
931         atomic_inc(&fs_info->nr_async_submits);
932
933         if (bio->bi_opf & REQ_SYNC)
934                 btrfs_set_work_high_priority(&async->work);
935
936         btrfs_queue_work(fs_info->workers, &async->work);
937
938         while (atomic_read(&fs_info->async_submit_draining) &&
939               atomic_read(&fs_info->nr_async_submits)) {
940                 wait_event(fs_info->async_submit_wait,
941                            (atomic_read(&fs_info->nr_async_submits) == 0));
942         }
943
944         return 0;
945 }
946
947 static int btree_csum_one_bio(struct bio *bio)
948 {
949         struct bio_vec *bvec;
950         struct btrfs_root *root;
951         int i, ret = 0;
952
953         bio_for_each_segment_all(bvec, bio, i) {
954                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
955                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
956                 if (ret)
957                         break;
958         }
959
960         return ret;
961 }
962
963 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
964                                     int mirror_num, unsigned long bio_flags,
965                                     u64 bio_offset)
966 {
967         /*
968          * when we're called for a write, we're already in the async
969          * submission context.  Just jump into btrfs_map_bio
970          */
971         return btree_csum_one_bio(bio);
972 }
973
974 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
975                                  int mirror_num, unsigned long bio_flags,
976                                  u64 bio_offset)
977 {
978         int ret;
979
980         /*
981          * when we're called for a write, we're already in the async
982          * submission context.  Just jump into btrfs_map_bio
983          */
984         ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
985         if (ret) {
986                 bio->bi_error = ret;
987                 bio_endio(bio);
988         }
989         return ret;
990 }
991
992 static int check_async_write(struct inode *inode, unsigned long bio_flags)
993 {
994         if (bio_flags & EXTENT_BIO_TREE_LOG)
995                 return 0;
996 #ifdef CONFIG_X86
997         if (static_cpu_has(X86_FEATURE_XMM4_2))
998                 return 0;
999 #endif
1000         return 1;
1001 }
1002
1003 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1004                                  int mirror_num, unsigned long bio_flags,
1005                                  u64 bio_offset)
1006 {
1007         int async = check_async_write(inode, bio_flags);
1008         int ret;
1009
1010         if (bio_op(bio) != REQ_OP_WRITE) {
1011                 /*
1012                  * called for a read, do the setup so that checksum validation
1013                  * can happen in the async kernel threads
1014                  */
1015                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
1016                                           bio, BTRFS_WQ_ENDIO_METADATA);
1017                 if (ret)
1018                         goto out_w_error;
1019                 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1020         } else if (!async) {
1021                 ret = btree_csum_one_bio(bio);
1022                 if (ret)
1023                         goto out_w_error;
1024                 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1025         } else {
1026                 /*
1027                  * kthread helpers are used to submit writes so that
1028                  * checksumming can happen in parallel across all CPUs
1029                  */
1030                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1031                                           inode, bio, mirror_num, 0,
1032                                           bio_offset,
1033                                           __btree_submit_bio_start,
1034                                           __btree_submit_bio_done);
1035         }
1036
1037         if (ret)
1038                 goto out_w_error;
1039         return 0;
1040
1041 out_w_error:
1042         bio->bi_error = ret;
1043         bio_endio(bio);
1044         return ret;
1045 }
1046
1047 #ifdef CONFIG_MIGRATION
1048 static int btree_migratepage(struct address_space *mapping,
1049                         struct page *newpage, struct page *page,
1050                         enum migrate_mode mode)
1051 {
1052         /*
1053          * we can't safely write a btree page from here,
1054          * we haven't done the locking hook
1055          */
1056         if (PageDirty(page))
1057                 return -EAGAIN;
1058         /*
1059          * Buffers may be managed in a filesystem specific way.
1060          * We must have no buffers or drop them.
1061          */
1062         if (page_has_private(page) &&
1063             !try_to_release_page(page, GFP_KERNEL))
1064                 return -EAGAIN;
1065         return migrate_page(mapping, newpage, page, mode);
1066 }
1067 #endif
1068
1069
1070 static int btree_writepages(struct address_space *mapping,
1071                             struct writeback_control *wbc)
1072 {
1073         struct btrfs_fs_info *fs_info;
1074         int ret;
1075
1076         if (wbc->sync_mode == WB_SYNC_NONE) {
1077
1078                 if (wbc->for_kupdate)
1079                         return 0;
1080
1081                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1082                 /* this is a bit racy, but that's ok */
1083                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1084                                              BTRFS_DIRTY_METADATA_THRESH);
1085                 if (ret < 0)
1086                         return 0;
1087         }
1088         return btree_write_cache_pages(mapping, wbc);
1089 }
1090
1091 static int btree_readpage(struct file *file, struct page *page)
1092 {
1093         struct extent_io_tree *tree;
1094         tree = &BTRFS_I(page->mapping->host)->io_tree;
1095         return extent_read_full_page(tree, page, btree_get_extent, 0);
1096 }
1097
1098 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1099 {
1100         if (PageWriteback(page) || PageDirty(page))
1101                 return 0;
1102
1103         return try_release_extent_buffer(page);
1104 }
1105
1106 static void btree_invalidatepage(struct page *page, unsigned int offset,
1107                                  unsigned int length)
1108 {
1109         struct extent_io_tree *tree;
1110         tree = &BTRFS_I(page->mapping->host)->io_tree;
1111         extent_invalidatepage(tree, page, offset);
1112         btree_releasepage(page, GFP_NOFS);
1113         if (PagePrivate(page)) {
1114                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1115                            "page private not zero on page %llu",
1116                            (unsigned long long)page_offset(page));
1117                 ClearPagePrivate(page);
1118                 set_page_private(page, 0);
1119                 put_page(page);
1120         }
1121 }
1122
1123 static int btree_set_page_dirty(struct page *page)
1124 {
1125 #ifdef DEBUG
1126         struct extent_buffer *eb;
1127
1128         BUG_ON(!PagePrivate(page));
1129         eb = (struct extent_buffer *)page->private;
1130         BUG_ON(!eb);
1131         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1132         BUG_ON(!atomic_read(&eb->refs));
1133         btrfs_assert_tree_locked(eb);
1134 #endif
1135         return __set_page_dirty_nobuffers(page);
1136 }
1137
1138 static const struct address_space_operations btree_aops = {
1139         .readpage       = btree_readpage,
1140         .writepages     = btree_writepages,
1141         .releasepage    = btree_releasepage,
1142         .invalidatepage = btree_invalidatepage,
1143 #ifdef CONFIG_MIGRATION
1144         .migratepage    = btree_migratepage,
1145 #endif
1146         .set_page_dirty = btree_set_page_dirty,
1147 };
1148
1149 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1150 {
1151         struct extent_buffer *buf = NULL;
1152         struct inode *btree_inode = root->fs_info->btree_inode;
1153
1154         buf = btrfs_find_create_tree_block(root, bytenr);
1155         if (IS_ERR(buf))
1156                 return;
1157         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1158                                  buf, WAIT_NONE, btree_get_extent, 0);
1159         free_extent_buffer(buf);
1160 }
1161
1162 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1163                          int mirror_num, struct extent_buffer **eb)
1164 {
1165         struct extent_buffer *buf = NULL;
1166         struct inode *btree_inode = root->fs_info->btree_inode;
1167         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1168         int ret;
1169
1170         buf = btrfs_find_create_tree_block(root, bytenr);
1171         if (IS_ERR(buf))
1172                 return 0;
1173
1174         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1175
1176         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1177                                        btree_get_extent, mirror_num);
1178         if (ret) {
1179                 free_extent_buffer(buf);
1180                 return ret;
1181         }
1182
1183         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1184                 free_extent_buffer(buf);
1185                 return -EIO;
1186         } else if (extent_buffer_uptodate(buf)) {
1187                 *eb = buf;
1188         } else {
1189                 free_extent_buffer(buf);
1190         }
1191         return 0;
1192 }
1193
1194 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1195                                             u64 bytenr)
1196 {
1197         return find_extent_buffer(fs_info, bytenr);
1198 }
1199
1200 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1201                                                  u64 bytenr)
1202 {
1203         if (btrfs_is_testing(root->fs_info))
1204                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1205                                 root->nodesize);
1206         return alloc_extent_buffer(root->fs_info, bytenr);
1207 }
1208
1209
1210 int btrfs_write_tree_block(struct extent_buffer *buf)
1211 {
1212         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1213                                         buf->start + buf->len - 1);
1214 }
1215
1216 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1217 {
1218         return filemap_fdatawait_range(buf->pages[0]->mapping,
1219                                        buf->start, buf->start + buf->len - 1);
1220 }
1221
1222 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1223                                       u64 parent_transid)
1224 {
1225         struct extent_buffer *buf = NULL;
1226         int ret;
1227
1228         buf = btrfs_find_create_tree_block(root, bytenr);
1229         if (IS_ERR(buf))
1230                 return buf;
1231
1232         ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
1233         if (ret) {
1234                 free_extent_buffer(buf);
1235                 return ERR_PTR(ret);
1236         }
1237         return buf;
1238
1239 }
1240
1241 void clean_tree_block(struct btrfs_trans_handle *trans,
1242                       struct btrfs_fs_info *fs_info,
1243                       struct extent_buffer *buf)
1244 {
1245         if (btrfs_header_generation(buf) ==
1246             fs_info->running_transaction->transid) {
1247                 btrfs_assert_tree_locked(buf);
1248
1249                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1250                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1251                                              -buf->len,
1252                                              fs_info->dirty_metadata_batch);
1253                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1254                         btrfs_set_lock_blocking(buf);
1255                         clear_extent_buffer_dirty(buf);
1256                 }
1257         }
1258 }
1259
1260 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1261 {
1262         struct btrfs_subvolume_writers *writers;
1263         int ret;
1264
1265         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1266         if (!writers)
1267                 return ERR_PTR(-ENOMEM);
1268
1269         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1270         if (ret < 0) {
1271                 kfree(writers);
1272                 return ERR_PTR(ret);
1273         }
1274
1275         init_waitqueue_head(&writers->wait);
1276         return writers;
1277 }
1278
1279 static void
1280 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1281 {
1282         percpu_counter_destroy(&writers->counter);
1283         kfree(writers);
1284 }
1285
1286 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1287                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1288                          u64 objectid)
1289 {
1290         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1291         root->node = NULL;
1292         root->commit_root = NULL;
1293         root->sectorsize = sectorsize;
1294         root->nodesize = nodesize;
1295         root->stripesize = stripesize;
1296         root->state = 0;
1297         root->orphan_cleanup_state = 0;
1298
1299         root->objectid = objectid;
1300         root->last_trans = 0;
1301         root->highest_objectid = 0;
1302         root->nr_delalloc_inodes = 0;
1303         root->nr_ordered_extents = 0;
1304         root->name = NULL;
1305         root->inode_tree = RB_ROOT;
1306         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1307         root->block_rsv = NULL;
1308         root->orphan_block_rsv = NULL;
1309
1310         INIT_LIST_HEAD(&root->dirty_list);
1311         INIT_LIST_HEAD(&root->root_list);
1312         INIT_LIST_HEAD(&root->delalloc_inodes);
1313         INIT_LIST_HEAD(&root->delalloc_root);
1314         INIT_LIST_HEAD(&root->ordered_extents);
1315         INIT_LIST_HEAD(&root->ordered_root);
1316         INIT_LIST_HEAD(&root->logged_list[0]);
1317         INIT_LIST_HEAD(&root->logged_list[1]);
1318         spin_lock_init(&root->orphan_lock);
1319         spin_lock_init(&root->inode_lock);
1320         spin_lock_init(&root->delalloc_lock);
1321         spin_lock_init(&root->ordered_extent_lock);
1322         spin_lock_init(&root->accounting_lock);
1323         spin_lock_init(&root->log_extents_lock[0]);
1324         spin_lock_init(&root->log_extents_lock[1]);
1325         mutex_init(&root->objectid_mutex);
1326         mutex_init(&root->log_mutex);
1327         mutex_init(&root->ordered_extent_mutex);
1328         mutex_init(&root->delalloc_mutex);
1329         init_waitqueue_head(&root->log_writer_wait);
1330         init_waitqueue_head(&root->log_commit_wait[0]);
1331         init_waitqueue_head(&root->log_commit_wait[1]);
1332         INIT_LIST_HEAD(&root->log_ctxs[0]);
1333         INIT_LIST_HEAD(&root->log_ctxs[1]);
1334         atomic_set(&root->log_commit[0], 0);
1335         atomic_set(&root->log_commit[1], 0);
1336         atomic_set(&root->log_writers, 0);
1337         atomic_set(&root->log_batch, 0);
1338         atomic_set(&root->orphan_inodes, 0);
1339         atomic_set(&root->refs, 1);
1340         atomic_set(&root->will_be_snapshoted, 0);
1341         atomic_set(&root->qgroup_meta_rsv, 0);
1342         root->log_transid = 0;
1343         root->log_transid_committed = -1;
1344         root->last_log_commit = 0;
1345         if (!dummy)
1346                 extent_io_tree_init(&root->dirty_log_pages,
1347                                      fs_info->btree_inode->i_mapping);
1348
1349         memset(&root->root_key, 0, sizeof(root->root_key));
1350         memset(&root->root_item, 0, sizeof(root->root_item));
1351         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1352         if (!dummy)
1353                 root->defrag_trans_start = fs_info->generation;
1354         else
1355                 root->defrag_trans_start = 0;
1356         root->root_key.objectid = objectid;
1357         root->anon_dev = 0;
1358
1359         spin_lock_init(&root->root_item_lock);
1360 }
1361
1362 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1363                 gfp_t flags)
1364 {
1365         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1366         if (root)
1367                 root->fs_info = fs_info;
1368         return root;
1369 }
1370
1371 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1372 /* Should only be used by the testing infrastructure */
1373 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1374                                           u32 sectorsize, u32 nodesize)
1375 {
1376         struct btrfs_root *root;
1377
1378         if (!fs_info)
1379                 return ERR_PTR(-EINVAL);
1380
1381         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1382         if (!root)
1383                 return ERR_PTR(-ENOMEM);
1384         /* We don't use the stripesize in selftest, set it as sectorsize */
1385         __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1386                         BTRFS_ROOT_TREE_OBJECTID);
1387         root->alloc_bytenr = 0;
1388
1389         return root;
1390 }
1391 #endif
1392
1393 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1394                                      struct btrfs_fs_info *fs_info,
1395                                      u64 objectid)
1396 {
1397         struct extent_buffer *leaf;
1398         struct btrfs_root *tree_root = fs_info->tree_root;
1399         struct btrfs_root *root;
1400         struct btrfs_key key;
1401         int ret = 0;
1402         uuid_le uuid;
1403
1404         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1405         if (!root)
1406                 return ERR_PTR(-ENOMEM);
1407
1408         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1409                 tree_root->stripesize, root, fs_info, objectid);
1410         root->root_key.objectid = objectid;
1411         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1412         root->root_key.offset = 0;
1413
1414         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1415         if (IS_ERR(leaf)) {
1416                 ret = PTR_ERR(leaf);
1417                 leaf = NULL;
1418                 goto fail;
1419         }
1420
1421         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1422         btrfs_set_header_bytenr(leaf, leaf->start);
1423         btrfs_set_header_generation(leaf, trans->transid);
1424         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1425         btrfs_set_header_owner(leaf, objectid);
1426         root->node = leaf;
1427
1428         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1429                             BTRFS_FSID_SIZE);
1430         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1431                             btrfs_header_chunk_tree_uuid(leaf),
1432                             BTRFS_UUID_SIZE);
1433         btrfs_mark_buffer_dirty(leaf);
1434
1435         root->commit_root = btrfs_root_node(root);
1436         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1437
1438         root->root_item.flags = 0;
1439         root->root_item.byte_limit = 0;
1440         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1441         btrfs_set_root_generation(&root->root_item, trans->transid);
1442         btrfs_set_root_level(&root->root_item, 0);
1443         btrfs_set_root_refs(&root->root_item, 1);
1444         btrfs_set_root_used(&root->root_item, leaf->len);
1445         btrfs_set_root_last_snapshot(&root->root_item, 0);
1446         btrfs_set_root_dirid(&root->root_item, 0);
1447         uuid_le_gen(&uuid);
1448         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1449         root->root_item.drop_level = 0;
1450
1451         key.objectid = objectid;
1452         key.type = BTRFS_ROOT_ITEM_KEY;
1453         key.offset = 0;
1454         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1455         if (ret)
1456                 goto fail;
1457
1458         btrfs_tree_unlock(leaf);
1459
1460         return root;
1461
1462 fail:
1463         if (leaf) {
1464                 btrfs_tree_unlock(leaf);
1465                 free_extent_buffer(root->commit_root);
1466                 free_extent_buffer(leaf);
1467         }
1468         kfree(root);
1469
1470         return ERR_PTR(ret);
1471 }
1472
1473 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1474                                          struct btrfs_fs_info *fs_info)
1475 {
1476         struct btrfs_root *root;
1477         struct btrfs_root *tree_root = fs_info->tree_root;
1478         struct extent_buffer *leaf;
1479
1480         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1481         if (!root)
1482                 return ERR_PTR(-ENOMEM);
1483
1484         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1485                      tree_root->stripesize, root, fs_info,
1486                      BTRFS_TREE_LOG_OBJECTID);
1487
1488         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1489         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1490         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1491
1492         /*
1493          * DON'T set REF_COWS for log trees
1494          *
1495          * log trees do not get reference counted because they go away
1496          * before a real commit is actually done.  They do store pointers
1497          * to file data extents, and those reference counts still get
1498          * updated (along with back refs to the log tree).
1499          */
1500
1501         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1502                         NULL, 0, 0, 0);
1503         if (IS_ERR(leaf)) {
1504                 kfree(root);
1505                 return ERR_CAST(leaf);
1506         }
1507
1508         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1509         btrfs_set_header_bytenr(leaf, leaf->start);
1510         btrfs_set_header_generation(leaf, trans->transid);
1511         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1512         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1513         root->node = leaf;
1514
1515         write_extent_buffer(root->node, root->fs_info->fsid,
1516                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1517         btrfs_mark_buffer_dirty(root->node);
1518         btrfs_tree_unlock(root->node);
1519         return root;
1520 }
1521
1522 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1523                              struct btrfs_fs_info *fs_info)
1524 {
1525         struct btrfs_root *log_root;
1526
1527         log_root = alloc_log_tree(trans, fs_info);
1528         if (IS_ERR(log_root))
1529                 return PTR_ERR(log_root);
1530         WARN_ON(fs_info->log_root_tree);
1531         fs_info->log_root_tree = log_root;
1532         return 0;
1533 }
1534
1535 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1536                        struct btrfs_root *root)
1537 {
1538         struct btrfs_root *log_root;
1539         struct btrfs_inode_item *inode_item;
1540
1541         log_root = alloc_log_tree(trans, root->fs_info);
1542         if (IS_ERR(log_root))
1543                 return PTR_ERR(log_root);
1544
1545         log_root->last_trans = trans->transid;
1546         log_root->root_key.offset = root->root_key.objectid;
1547
1548         inode_item = &log_root->root_item.inode;
1549         btrfs_set_stack_inode_generation(inode_item, 1);
1550         btrfs_set_stack_inode_size(inode_item, 3);
1551         btrfs_set_stack_inode_nlink(inode_item, 1);
1552         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1553         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1554
1555         btrfs_set_root_node(&log_root->root_item, log_root->node);
1556
1557         WARN_ON(root->log_root);
1558         root->log_root = log_root;
1559         root->log_transid = 0;
1560         root->log_transid_committed = -1;
1561         root->last_log_commit = 0;
1562         return 0;
1563 }
1564
1565 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1566                                                struct btrfs_key *key)
1567 {
1568         struct btrfs_root *root;
1569         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1570         struct btrfs_path *path;
1571         u64 generation;
1572         int ret;
1573
1574         path = btrfs_alloc_path();
1575         if (!path)
1576                 return ERR_PTR(-ENOMEM);
1577
1578         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1579         if (!root) {
1580                 ret = -ENOMEM;
1581                 goto alloc_fail;
1582         }
1583
1584         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1585                 tree_root->stripesize, root, fs_info, key->objectid);
1586
1587         ret = btrfs_find_root(tree_root, key, path,
1588                               &root->root_item, &root->root_key);
1589         if (ret) {
1590                 if (ret > 0)
1591                         ret = -ENOENT;
1592                 goto find_fail;
1593         }
1594
1595         generation = btrfs_root_generation(&root->root_item);
1596         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1597                                      generation);
1598         if (IS_ERR(root->node)) {
1599                 ret = PTR_ERR(root->node);
1600                 goto find_fail;
1601         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1602                 ret = -EIO;
1603                 free_extent_buffer(root->node);
1604                 goto find_fail;
1605         }
1606         root->commit_root = btrfs_root_node(root);
1607 out:
1608         btrfs_free_path(path);
1609         return root;
1610
1611 find_fail:
1612         kfree(root);
1613 alloc_fail:
1614         root = ERR_PTR(ret);
1615         goto out;
1616 }
1617
1618 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1619                                       struct btrfs_key *location)
1620 {
1621         struct btrfs_root *root;
1622
1623         root = btrfs_read_tree_root(tree_root, location);
1624         if (IS_ERR(root))
1625                 return root;
1626
1627         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1628                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1629                 btrfs_check_and_init_root_item(&root->root_item);
1630         }
1631
1632         return root;
1633 }
1634
1635 int btrfs_init_fs_root(struct btrfs_root *root)
1636 {
1637         int ret;
1638         struct btrfs_subvolume_writers *writers;
1639
1640         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1641         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1642                                         GFP_NOFS);
1643         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1644                 ret = -ENOMEM;
1645                 goto fail;
1646         }
1647
1648         writers = btrfs_alloc_subvolume_writers();
1649         if (IS_ERR(writers)) {
1650                 ret = PTR_ERR(writers);
1651                 goto fail;
1652         }
1653         root->subv_writers = writers;
1654
1655         btrfs_init_free_ino_ctl(root);
1656         spin_lock_init(&root->ino_cache_lock);
1657         init_waitqueue_head(&root->ino_cache_wait);
1658
1659         ret = get_anon_bdev(&root->anon_dev);
1660         if (ret)
1661                 goto fail;
1662
1663         mutex_lock(&root->objectid_mutex);
1664         ret = btrfs_find_highest_objectid(root,
1665                                         &root->highest_objectid);
1666         if (ret) {
1667                 mutex_unlock(&root->objectid_mutex);
1668                 goto fail;
1669         }
1670
1671         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1672
1673         mutex_unlock(&root->objectid_mutex);
1674
1675         return 0;
1676 fail:
1677         /* the caller is responsible to call free_fs_root */
1678         return ret;
1679 }
1680
1681 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1682                                         u64 root_id)
1683 {
1684         struct btrfs_root *root;
1685
1686         spin_lock(&fs_info->fs_roots_radix_lock);
1687         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1688                                  (unsigned long)root_id);
1689         spin_unlock(&fs_info->fs_roots_radix_lock);
1690         return root;
1691 }
1692
1693 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1694                          struct btrfs_root *root)
1695 {
1696         int ret;
1697
1698         ret = radix_tree_preload(GFP_NOFS);
1699         if (ret)
1700                 return ret;
1701
1702         spin_lock(&fs_info->fs_roots_radix_lock);
1703         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1704                                 (unsigned long)root->root_key.objectid,
1705                                 root);
1706         if (ret == 0)
1707                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1708         spin_unlock(&fs_info->fs_roots_radix_lock);
1709         radix_tree_preload_end();
1710
1711         return ret;
1712 }
1713
1714 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1715                                      struct btrfs_key *location,
1716                                      bool check_ref)
1717 {
1718         struct btrfs_root *root;
1719         struct btrfs_path *path;
1720         struct btrfs_key key;
1721         int ret;
1722
1723         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1724                 return fs_info->tree_root;
1725         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1726                 return fs_info->extent_root;
1727         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1728                 return fs_info->chunk_root;
1729         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1730                 return fs_info->dev_root;
1731         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1732                 return fs_info->csum_root;
1733         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1734                 return fs_info->quota_root ? fs_info->quota_root :
1735                                              ERR_PTR(-ENOENT);
1736         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1737                 return fs_info->uuid_root ? fs_info->uuid_root :
1738                                             ERR_PTR(-ENOENT);
1739         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1740                 return fs_info->free_space_root ? fs_info->free_space_root :
1741                                                   ERR_PTR(-ENOENT);
1742 again:
1743         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1744         if (root) {
1745                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1746                         return ERR_PTR(-ENOENT);
1747                 return root;
1748         }
1749
1750         root = btrfs_read_fs_root(fs_info->tree_root, location);
1751         if (IS_ERR(root))
1752                 return root;
1753
1754         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1755                 ret = -ENOENT;
1756                 goto fail;
1757         }
1758
1759         ret = btrfs_init_fs_root(root);
1760         if (ret)
1761                 goto fail;
1762
1763         path = btrfs_alloc_path();
1764         if (!path) {
1765                 ret = -ENOMEM;
1766                 goto fail;
1767         }
1768         key.objectid = BTRFS_ORPHAN_OBJECTID;
1769         key.type = BTRFS_ORPHAN_ITEM_KEY;
1770         key.offset = location->objectid;
1771
1772         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1773         btrfs_free_path(path);
1774         if (ret < 0)
1775                 goto fail;
1776         if (ret == 0)
1777                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1778
1779         ret = btrfs_insert_fs_root(fs_info, root);
1780         if (ret) {
1781                 if (ret == -EEXIST) {
1782                         free_fs_root(root);
1783                         goto again;
1784                 }
1785                 goto fail;
1786         }
1787         return root;
1788 fail:
1789         free_fs_root(root);
1790         return ERR_PTR(ret);
1791 }
1792
1793 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1794 {
1795         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1796         int ret = 0;
1797         struct btrfs_device *device;
1798         struct backing_dev_info *bdi;
1799
1800         rcu_read_lock();
1801         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1802                 if (!device->bdev)
1803                         continue;
1804                 bdi = blk_get_backing_dev_info(device->bdev);
1805                 if (bdi_congested(bdi, bdi_bits)) {
1806                         ret = 1;
1807                         break;
1808                 }
1809         }
1810         rcu_read_unlock();
1811         return ret;
1812 }
1813
1814 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1815 {
1816         int err;
1817
1818         err = bdi_setup_and_register(bdi, "btrfs");
1819         if (err)
1820                 return err;
1821
1822         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1823         bdi->congested_fn       = btrfs_congested_fn;
1824         bdi->congested_data     = info;
1825         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1826         return 0;
1827 }
1828
1829 /*
1830  * called by the kthread helper functions to finally call the bio end_io
1831  * functions.  This is where read checksum verification actually happens
1832  */
1833 static void end_workqueue_fn(struct btrfs_work *work)
1834 {
1835         struct bio *bio;
1836         struct btrfs_end_io_wq *end_io_wq;
1837
1838         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1839         bio = end_io_wq->bio;
1840
1841         bio->bi_error = end_io_wq->error;
1842         bio->bi_private = end_io_wq->private;
1843         bio->bi_end_io = end_io_wq->end_io;
1844         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1845         bio_endio(bio);
1846 }
1847
1848 static int cleaner_kthread(void *arg)
1849 {
1850         struct btrfs_root *root = arg;
1851         int again;
1852         struct btrfs_trans_handle *trans;
1853
1854         do {
1855                 again = 0;
1856
1857                 /* Make the cleaner go to sleep early. */
1858                 if (btrfs_need_cleaner_sleep(root))
1859                         goto sleep;
1860
1861                 /*
1862                  * Do not do anything if we might cause open_ctree() to block
1863                  * before we have finished mounting the filesystem.
1864                  */
1865                 if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
1866                         goto sleep;
1867
1868                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1869                         goto sleep;
1870
1871                 /*
1872                  * Avoid the problem that we change the status of the fs
1873                  * during the above check and trylock.
1874                  */
1875                 if (btrfs_need_cleaner_sleep(root)) {
1876                         mutex_unlock(&root->fs_info->cleaner_mutex);
1877                         goto sleep;
1878                 }
1879
1880                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1881                 btrfs_run_delayed_iputs(root);
1882                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1883
1884                 again = btrfs_clean_one_deleted_snapshot(root);
1885                 mutex_unlock(&root->fs_info->cleaner_mutex);
1886
1887                 /*
1888                  * The defragger has dealt with the R/O remount and umount,
1889                  * needn't do anything special here.
1890                  */
1891                 btrfs_run_defrag_inodes(root->fs_info);
1892
1893                 /*
1894                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895                  * with relocation (btrfs_relocate_chunk) and relocation
1896                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899                  * unused block groups.
1900                  */
1901                 btrfs_delete_unused_bgs(root->fs_info);
1902 sleep:
1903                 if (!again) {
1904                         set_current_state(TASK_INTERRUPTIBLE);
1905                         if (!kthread_should_stop())
1906                                 schedule();
1907                         __set_current_state(TASK_RUNNING);
1908                 }
1909         } while (!kthread_should_stop());
1910
1911         /*
1912          * Transaction kthread is stopped before us and wakes us up.
1913          * However we might have started a new transaction and COWed some
1914          * tree blocks when deleting unused block groups for example. So
1915          * make sure we commit the transaction we started to have a clean
1916          * shutdown when evicting the btree inode - if it has dirty pages
1917          * when we do the final iput() on it, eviction will trigger a
1918          * writeback for it which will fail with null pointer dereferences
1919          * since work queues and other resources were already released and
1920          * destroyed by the time the iput/eviction/writeback is made.
1921          */
1922         trans = btrfs_attach_transaction(root);
1923         if (IS_ERR(trans)) {
1924                 if (PTR_ERR(trans) != -ENOENT)
1925                         btrfs_err(root->fs_info,
1926                                   "cleaner transaction attach returned %ld",
1927                                   PTR_ERR(trans));
1928         } else {
1929                 int ret;
1930
1931                 ret = btrfs_commit_transaction(trans, root);
1932                 if (ret)
1933                         btrfs_err(root->fs_info,
1934                                   "cleaner open transaction commit returned %d",
1935                                   ret);
1936         }
1937
1938         return 0;
1939 }
1940
1941 static int transaction_kthread(void *arg)
1942 {
1943         struct btrfs_root *root = arg;
1944         struct btrfs_trans_handle *trans;
1945         struct btrfs_transaction *cur;
1946         u64 transid;
1947         unsigned long now;
1948         unsigned long delay;
1949         bool cannot_commit;
1950
1951         do {
1952                 cannot_commit = false;
1953                 delay = HZ * root->fs_info->commit_interval;
1954                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1955
1956                 spin_lock(&root->fs_info->trans_lock);
1957                 cur = root->fs_info->running_transaction;
1958                 if (!cur) {
1959                         spin_unlock(&root->fs_info->trans_lock);
1960                         goto sleep;
1961                 }
1962
1963                 now = get_seconds();
1964                 if (cur->state < TRANS_STATE_BLOCKED &&
1965                     (now < cur->start_time ||
1966                      now - cur->start_time < root->fs_info->commit_interval)) {
1967                         spin_unlock(&root->fs_info->trans_lock);
1968                         delay = HZ * 5;
1969                         goto sleep;
1970                 }
1971                 transid = cur->transid;
1972                 spin_unlock(&root->fs_info->trans_lock);
1973
1974                 /* If the file system is aborted, this will always fail. */
1975                 trans = btrfs_attach_transaction(root);
1976                 if (IS_ERR(trans)) {
1977                         if (PTR_ERR(trans) != -ENOENT)
1978                                 cannot_commit = true;
1979                         goto sleep;
1980                 }
1981                 if (transid == trans->transid) {
1982                         btrfs_commit_transaction(trans, root);
1983                 } else {
1984                         btrfs_end_transaction(trans, root);
1985                 }
1986 sleep:
1987                 wake_up_process(root->fs_info->cleaner_kthread);
1988                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1989
1990                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1991                                       &root->fs_info->fs_state)))
1992                         btrfs_cleanup_transaction(root);
1993                 set_current_state(TASK_INTERRUPTIBLE);
1994                 if (!kthread_should_stop() &&
1995                                 (!btrfs_transaction_blocked(root->fs_info) ||
1996                                  cannot_commit))
1997                         schedule_timeout(delay);
1998                 __set_current_state(TASK_RUNNING);
1999         } while (!kthread_should_stop());
2000         return 0;
2001 }
2002
2003 /*
2004  * this will find the highest generation in the array of
2005  * root backups.  The index of the highest array is returned,
2006  * or -1 if we can't find anything.
2007  *
2008  * We check to make sure the array is valid by comparing the
2009  * generation of the latest  root in the array with the generation
2010  * in the super block.  If they don't match we pitch it.
2011  */
2012 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2013 {
2014         u64 cur;
2015         int newest_index = -1;
2016         struct btrfs_root_backup *root_backup;
2017         int i;
2018
2019         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2020                 root_backup = info->super_copy->super_roots + i;
2021                 cur = btrfs_backup_tree_root_gen(root_backup);
2022                 if (cur == newest_gen)
2023                         newest_index = i;
2024         }
2025
2026         /* check to see if we actually wrapped around */
2027         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2028                 root_backup = info->super_copy->super_roots;
2029                 cur = btrfs_backup_tree_root_gen(root_backup);
2030                 if (cur == newest_gen)
2031                         newest_index = 0;
2032         }
2033         return newest_index;
2034 }
2035
2036
2037 /*
2038  * find the oldest backup so we know where to store new entries
2039  * in the backup array.  This will set the backup_root_index
2040  * field in the fs_info struct
2041  */
2042 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2043                                      u64 newest_gen)
2044 {
2045         int newest_index = -1;
2046
2047         newest_index = find_newest_super_backup(info, newest_gen);
2048         /* if there was garbage in there, just move along */
2049         if (newest_index == -1) {
2050                 info->backup_root_index = 0;
2051         } else {
2052                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2053         }
2054 }
2055
2056 /*
2057  * copy all the root pointers into the super backup array.
2058  * this will bump the backup pointer by one when it is
2059  * done
2060  */
2061 static void backup_super_roots(struct btrfs_fs_info *info)
2062 {
2063         int next_backup;
2064         struct btrfs_root_backup *root_backup;
2065         int last_backup;
2066
2067         next_backup = info->backup_root_index;
2068         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2069                 BTRFS_NUM_BACKUP_ROOTS;
2070
2071         /*
2072          * just overwrite the last backup if we're at the same generation
2073          * this happens only at umount
2074          */
2075         root_backup = info->super_for_commit->super_roots + last_backup;
2076         if (btrfs_backup_tree_root_gen(root_backup) ==
2077             btrfs_header_generation(info->tree_root->node))
2078                 next_backup = last_backup;
2079
2080         root_backup = info->super_for_commit->super_roots + next_backup;
2081
2082         /*
2083          * make sure all of our padding and empty slots get zero filled
2084          * regardless of which ones we use today
2085          */
2086         memset(root_backup, 0, sizeof(*root_backup));
2087
2088         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2089
2090         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2091         btrfs_set_backup_tree_root_gen(root_backup,
2092                                btrfs_header_generation(info->tree_root->node));
2093
2094         btrfs_set_backup_tree_root_level(root_backup,
2095                                btrfs_header_level(info->tree_root->node));
2096
2097         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2098         btrfs_set_backup_chunk_root_gen(root_backup,
2099                                btrfs_header_generation(info->chunk_root->node));
2100         btrfs_set_backup_chunk_root_level(root_backup,
2101                                btrfs_header_level(info->chunk_root->node));
2102
2103         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2104         btrfs_set_backup_extent_root_gen(root_backup,
2105                                btrfs_header_generation(info->extent_root->node));
2106         btrfs_set_backup_extent_root_level(root_backup,
2107                                btrfs_header_level(info->extent_root->node));
2108
2109         /*
2110          * we might commit during log recovery, which happens before we set
2111          * the fs_root.  Make sure it is valid before we fill it in.
2112          */
2113         if (info->fs_root && info->fs_root->node) {
2114                 btrfs_set_backup_fs_root(root_backup,
2115                                          info->fs_root->node->start);
2116                 btrfs_set_backup_fs_root_gen(root_backup,
2117                                btrfs_header_generation(info->fs_root->node));
2118                 btrfs_set_backup_fs_root_level(root_backup,
2119                                btrfs_header_level(info->fs_root->node));
2120         }
2121
2122         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2123         btrfs_set_backup_dev_root_gen(root_backup,
2124                                btrfs_header_generation(info->dev_root->node));
2125         btrfs_set_backup_dev_root_level(root_backup,
2126                                        btrfs_header_level(info->dev_root->node));
2127
2128         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2129         btrfs_set_backup_csum_root_gen(root_backup,
2130                                btrfs_header_generation(info->csum_root->node));
2131         btrfs_set_backup_csum_root_level(root_backup,
2132                                btrfs_header_level(info->csum_root->node));
2133
2134         btrfs_set_backup_total_bytes(root_backup,
2135                              btrfs_super_total_bytes(info->super_copy));
2136         btrfs_set_backup_bytes_used(root_backup,
2137                              btrfs_super_bytes_used(info->super_copy));
2138         btrfs_set_backup_num_devices(root_backup,
2139                              btrfs_super_num_devices(info->super_copy));
2140
2141         /*
2142          * if we don't copy this out to the super_copy, it won't get remembered
2143          * for the next commit
2144          */
2145         memcpy(&info->super_copy->super_roots,
2146                &info->super_for_commit->super_roots,
2147                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2148 }
2149
2150 /*
2151  * this copies info out of the root backup array and back into
2152  * the in-memory super block.  It is meant to help iterate through
2153  * the array, so you send it the number of backups you've already
2154  * tried and the last backup index you used.
2155  *
2156  * this returns -1 when it has tried all the backups
2157  */
2158 static noinline int next_root_backup(struct btrfs_fs_info *info,
2159                                      struct btrfs_super_block *super,
2160                                      int *num_backups_tried, int *backup_index)
2161 {
2162         struct btrfs_root_backup *root_backup;
2163         int newest = *backup_index;
2164
2165         if (*num_backups_tried == 0) {
2166                 u64 gen = btrfs_super_generation(super);
2167
2168                 newest = find_newest_super_backup(info, gen);
2169                 if (newest == -1)
2170                         return -1;
2171
2172                 *backup_index = newest;
2173                 *num_backups_tried = 1;
2174         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2175                 /* we've tried all the backups, all done */
2176                 return -1;
2177         } else {
2178                 /* jump to the next oldest backup */
2179                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2180                         BTRFS_NUM_BACKUP_ROOTS;
2181                 *backup_index = newest;
2182                 *num_backups_tried += 1;
2183         }
2184         root_backup = super->super_roots + newest;
2185
2186         btrfs_set_super_generation(super,
2187                                    btrfs_backup_tree_root_gen(root_backup));
2188         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2189         btrfs_set_super_root_level(super,
2190                                    btrfs_backup_tree_root_level(root_backup));
2191         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2192
2193         /*
2194          * fixme: the total bytes and num_devices need to match or we should
2195          * need a fsck
2196          */
2197         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2198         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2199         return 0;
2200 }
2201
2202 /* helper to cleanup workers */
2203 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2204 {
2205         btrfs_destroy_workqueue(fs_info->fixup_workers);
2206         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2207         btrfs_destroy_workqueue(fs_info->workers);
2208         btrfs_destroy_workqueue(fs_info->endio_workers);
2209         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2210         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2211         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2212         btrfs_destroy_workqueue(fs_info->rmw_workers);
2213         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2214         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2215         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2216         btrfs_destroy_workqueue(fs_info->submit_workers);
2217         btrfs_destroy_workqueue(fs_info->delayed_workers);
2218         btrfs_destroy_workqueue(fs_info->caching_workers);
2219         btrfs_destroy_workqueue(fs_info->readahead_workers);
2220         btrfs_destroy_workqueue(fs_info->flush_workers);
2221         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2222         btrfs_destroy_workqueue(fs_info->extent_workers);
2223 }
2224
2225 static void free_root_extent_buffers(struct btrfs_root *root)
2226 {
2227         if (root) {
2228                 free_extent_buffer(root->node);
2229                 free_extent_buffer(root->commit_root);
2230                 root->node = NULL;
2231                 root->commit_root = NULL;
2232         }
2233 }
2234
2235 /* helper to cleanup tree roots */
2236 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2237 {
2238         free_root_extent_buffers(info->tree_root);
2239
2240         free_root_extent_buffers(info->dev_root);
2241         free_root_extent_buffers(info->extent_root);
2242         free_root_extent_buffers(info->csum_root);
2243         free_root_extent_buffers(info->quota_root);
2244         free_root_extent_buffers(info->uuid_root);
2245         if (chunk_root)
2246                 free_root_extent_buffers(info->chunk_root);
2247         free_root_extent_buffers(info->free_space_root);
2248 }
2249
2250 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2251 {
2252         int ret;
2253         struct btrfs_root *gang[8];
2254         int i;
2255
2256         while (!list_empty(&fs_info->dead_roots)) {
2257                 gang[0] = list_entry(fs_info->dead_roots.next,
2258                                      struct btrfs_root, root_list);
2259                 list_del(&gang[0]->root_list);
2260
2261                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2262                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2263                 } else {
2264                         free_extent_buffer(gang[0]->node);
2265                         free_extent_buffer(gang[0]->commit_root);
2266                         btrfs_put_fs_root(gang[0]);
2267                 }
2268         }
2269
2270         while (1) {
2271                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2272                                              (void **)gang, 0,
2273                                              ARRAY_SIZE(gang));
2274                 if (!ret)
2275                         break;
2276                 for (i = 0; i < ret; i++)
2277                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2278         }
2279
2280         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2281                 btrfs_free_log_root_tree(NULL, fs_info);
2282                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2283                                             fs_info->pinned_extents);
2284         }
2285 }
2286
2287 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2288 {
2289         mutex_init(&fs_info->scrub_lock);
2290         atomic_set(&fs_info->scrubs_running, 0);
2291         atomic_set(&fs_info->scrub_pause_req, 0);
2292         atomic_set(&fs_info->scrubs_paused, 0);
2293         atomic_set(&fs_info->scrub_cancel_req, 0);
2294         init_waitqueue_head(&fs_info->scrub_pause_wait);
2295         fs_info->scrub_workers_refcnt = 0;
2296 }
2297
2298 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2299 {
2300         spin_lock_init(&fs_info->balance_lock);
2301         mutex_init(&fs_info->balance_mutex);
2302         atomic_set(&fs_info->balance_running, 0);
2303         atomic_set(&fs_info->balance_pause_req, 0);
2304         atomic_set(&fs_info->balance_cancel_req, 0);
2305         fs_info->balance_ctl = NULL;
2306         init_waitqueue_head(&fs_info->balance_wait_q);
2307 }
2308
2309 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2310                                    struct btrfs_root *tree_root)
2311 {
2312         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2313         set_nlink(fs_info->btree_inode, 1);
2314         /*
2315          * we set the i_size on the btree inode to the max possible int.
2316          * the real end of the address space is determined by all of
2317          * the devices in the system
2318          */
2319         fs_info->btree_inode->i_size = OFFSET_MAX;
2320         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2321
2322         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2323         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2324                              fs_info->btree_inode->i_mapping);
2325         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2326         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2327
2328         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2329
2330         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2331         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2332                sizeof(struct btrfs_key));
2333         set_bit(BTRFS_INODE_DUMMY,
2334                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2335         btrfs_insert_inode_hash(fs_info->btree_inode);
2336 }
2337
2338 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2339 {
2340         fs_info->dev_replace.lock_owner = 0;
2341         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2342         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2343         rwlock_init(&fs_info->dev_replace.lock);
2344         atomic_set(&fs_info->dev_replace.read_locks, 0);
2345         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2346         init_waitqueue_head(&fs_info->replace_wait);
2347         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2348 }
2349
2350 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2351 {
2352         spin_lock_init(&fs_info->qgroup_lock);
2353         mutex_init(&fs_info->qgroup_ioctl_lock);
2354         fs_info->qgroup_tree = RB_ROOT;
2355         fs_info->qgroup_op_tree = RB_ROOT;
2356         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2357         fs_info->qgroup_seq = 1;
2358         fs_info->qgroup_ulist = NULL;
2359         fs_info->qgroup_rescan_running = false;
2360         mutex_init(&fs_info->qgroup_rescan_lock);
2361 }
2362
2363 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2364                 struct btrfs_fs_devices *fs_devices)
2365 {
2366         int max_active = fs_info->thread_pool_size;
2367         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2368
2369         fs_info->workers =
2370                 btrfs_alloc_workqueue(fs_info, "worker",
2371                                       flags | WQ_HIGHPRI, max_active, 16);
2372
2373         fs_info->delalloc_workers =
2374                 btrfs_alloc_workqueue(fs_info, "delalloc",
2375                                       flags, max_active, 2);
2376
2377         fs_info->flush_workers =
2378                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2379                                       flags, max_active, 0);
2380
2381         fs_info->caching_workers =
2382                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2383
2384         /*
2385          * a higher idle thresh on the submit workers makes it much more
2386          * likely that bios will be send down in a sane order to the
2387          * devices
2388          */
2389         fs_info->submit_workers =
2390                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2391                                       min_t(u64, fs_devices->num_devices,
2392                                             max_active), 64);
2393
2394         fs_info->fixup_workers =
2395                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2396
2397         /*
2398          * endios are largely parallel and should have a very
2399          * low idle thresh
2400          */
2401         fs_info->endio_workers =
2402                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2403         fs_info->endio_meta_workers =
2404                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2405                                       max_active, 4);
2406         fs_info->endio_meta_write_workers =
2407                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2408                                       max_active, 2);
2409         fs_info->endio_raid56_workers =
2410                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2411                                       max_active, 4);
2412         fs_info->endio_repair_workers =
2413                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2414         fs_info->rmw_workers =
2415                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2416         fs_info->endio_write_workers =
2417                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2418                                       max_active, 2);
2419         fs_info->endio_freespace_worker =
2420                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2421                                       max_active, 0);
2422         fs_info->delayed_workers =
2423                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2424                                       max_active, 0);
2425         fs_info->readahead_workers =
2426                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2427                                       max_active, 2);
2428         fs_info->qgroup_rescan_workers =
2429                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2430         fs_info->extent_workers =
2431                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2432                                       min_t(u64, fs_devices->num_devices,
2433                                             max_active), 8);
2434
2435         if (!(fs_info->workers && fs_info->delalloc_workers &&
2436               fs_info->submit_workers && fs_info->flush_workers &&
2437               fs_info->endio_workers && fs_info->endio_meta_workers &&
2438               fs_info->endio_meta_write_workers &&
2439               fs_info->endio_repair_workers &&
2440               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2441               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2442               fs_info->caching_workers && fs_info->readahead_workers &&
2443               fs_info->fixup_workers && fs_info->delayed_workers &&
2444               fs_info->extent_workers &&
2445               fs_info->qgroup_rescan_workers)) {
2446                 return -ENOMEM;
2447         }
2448
2449         return 0;
2450 }
2451
2452 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2453                             struct btrfs_fs_devices *fs_devices)
2454 {
2455         int ret;
2456         struct btrfs_root *tree_root = fs_info->tree_root;
2457         struct btrfs_root *log_tree_root;
2458         struct btrfs_super_block *disk_super = fs_info->super_copy;
2459         u64 bytenr = btrfs_super_log_root(disk_super);
2460
2461         if (fs_devices->rw_devices == 0) {
2462                 btrfs_warn(fs_info, "log replay required on RO media");
2463                 return -EIO;
2464         }
2465
2466         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2467         if (!log_tree_root)
2468                 return -ENOMEM;
2469
2470         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2471                         tree_root->stripesize, log_tree_root, fs_info,
2472                         BTRFS_TREE_LOG_OBJECTID);
2473
2474         log_tree_root->node = read_tree_block(tree_root, bytenr,
2475                         fs_info->generation + 1);
2476         if (IS_ERR(log_tree_root->node)) {
2477                 btrfs_warn(fs_info, "failed to read log tree");
2478                 ret = PTR_ERR(log_tree_root->node);
2479                 kfree(log_tree_root);
2480                 return ret;
2481         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2482                 btrfs_err(fs_info, "failed to read log tree");
2483                 free_extent_buffer(log_tree_root->node);
2484                 kfree(log_tree_root);
2485                 return -EIO;
2486         }
2487         /* returns with log_tree_root freed on success */
2488         ret = btrfs_recover_log_trees(log_tree_root);
2489         if (ret) {
2490                 btrfs_handle_fs_error(tree_root->fs_info, ret,
2491                             "Failed to recover log tree");
2492                 free_extent_buffer(log_tree_root->node);
2493                 kfree(log_tree_root);
2494                 return ret;
2495         }
2496
2497         if (fs_info->sb->s_flags & MS_RDONLY) {
2498                 ret = btrfs_commit_super(tree_root);
2499                 if (ret)
2500                         return ret;
2501         }
2502
2503         return 0;
2504 }
2505
2506 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2507                             struct btrfs_root *tree_root)
2508 {
2509         struct btrfs_root *root;
2510         struct btrfs_key location;
2511         int ret;
2512
2513         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2514         location.type = BTRFS_ROOT_ITEM_KEY;
2515         location.offset = 0;
2516
2517         root = btrfs_read_tree_root(tree_root, &location);
2518         if (IS_ERR(root))
2519                 return PTR_ERR(root);
2520         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521         fs_info->extent_root = root;
2522
2523         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2524         root = btrfs_read_tree_root(tree_root, &location);
2525         if (IS_ERR(root))
2526                 return PTR_ERR(root);
2527         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2528         fs_info->dev_root = root;
2529         btrfs_init_devices_late(fs_info);
2530
2531         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2532         root = btrfs_read_tree_root(tree_root, &location);
2533         if (IS_ERR(root))
2534                 return PTR_ERR(root);
2535         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2536         fs_info->csum_root = root;
2537
2538         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2539         root = btrfs_read_tree_root(tree_root, &location);
2540         if (!IS_ERR(root)) {
2541                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2542                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2543                 fs_info->quota_root = root;
2544         }
2545
2546         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2547         root = btrfs_read_tree_root(tree_root, &location);
2548         if (IS_ERR(root)) {
2549                 ret = PTR_ERR(root);
2550                 if (ret != -ENOENT)
2551                         return ret;
2552         } else {
2553                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2554                 fs_info->uuid_root = root;
2555         }
2556
2557         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2558                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2559                 root = btrfs_read_tree_root(tree_root, &location);
2560                 if (IS_ERR(root))
2561                         return PTR_ERR(root);
2562                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2563                 fs_info->free_space_root = root;
2564         }
2565
2566         return 0;
2567 }
2568
2569 int open_ctree(struct super_block *sb,
2570                struct btrfs_fs_devices *fs_devices,
2571                char *options)
2572 {
2573         u32 sectorsize;
2574         u32 nodesize;
2575         u32 stripesize;
2576         u64 generation;
2577         u64 features;
2578         struct btrfs_key location;
2579         struct buffer_head *bh;
2580         struct btrfs_super_block *disk_super;
2581         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2582         struct btrfs_root *tree_root;
2583         struct btrfs_root *chunk_root;
2584         int ret;
2585         int err = -EINVAL;
2586         int num_backups_tried = 0;
2587         int backup_index = 0;
2588         int max_active;
2589
2590         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2591         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2592         if (!tree_root || !chunk_root) {
2593                 err = -ENOMEM;
2594                 goto fail;
2595         }
2596
2597         ret = init_srcu_struct(&fs_info->subvol_srcu);
2598         if (ret) {
2599                 err = ret;
2600                 goto fail;
2601         }
2602
2603         ret = setup_bdi(fs_info, &fs_info->bdi);
2604         if (ret) {
2605                 err = ret;
2606                 goto fail_srcu;
2607         }
2608
2609         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2610         if (ret) {
2611                 err = ret;
2612                 goto fail_bdi;
2613         }
2614         fs_info->dirty_metadata_batch = PAGE_SIZE *
2615                                         (1 + ilog2(nr_cpu_ids));
2616
2617         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2618         if (ret) {
2619                 err = ret;
2620                 goto fail_dirty_metadata_bytes;
2621         }
2622
2623         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2624         if (ret) {
2625                 err = ret;
2626                 goto fail_delalloc_bytes;
2627         }
2628
2629         fs_info->btree_inode = new_inode(sb);
2630         if (!fs_info->btree_inode) {
2631                 err = -ENOMEM;
2632                 goto fail_bio_counter;
2633         }
2634
2635         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2636
2637         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2638         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2639         INIT_LIST_HEAD(&fs_info->trans_list);
2640         INIT_LIST_HEAD(&fs_info->dead_roots);
2641         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2642         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2643         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2644         spin_lock_init(&fs_info->delalloc_root_lock);
2645         spin_lock_init(&fs_info->trans_lock);
2646         spin_lock_init(&fs_info->fs_roots_radix_lock);
2647         spin_lock_init(&fs_info->delayed_iput_lock);
2648         spin_lock_init(&fs_info->defrag_inodes_lock);
2649         spin_lock_init(&fs_info->free_chunk_lock);
2650         spin_lock_init(&fs_info->tree_mod_seq_lock);
2651         spin_lock_init(&fs_info->super_lock);
2652         spin_lock_init(&fs_info->qgroup_op_lock);
2653         spin_lock_init(&fs_info->buffer_lock);
2654         spin_lock_init(&fs_info->unused_bgs_lock);
2655         rwlock_init(&fs_info->tree_mod_log_lock);
2656         mutex_init(&fs_info->unused_bg_unpin_mutex);
2657         mutex_init(&fs_info->delete_unused_bgs_mutex);
2658         mutex_init(&fs_info->reloc_mutex);
2659         mutex_init(&fs_info->delalloc_root_mutex);
2660         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2661         seqlock_init(&fs_info->profiles_lock);
2662
2663         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2664         INIT_LIST_HEAD(&fs_info->space_info);
2665         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2666         INIT_LIST_HEAD(&fs_info->unused_bgs);
2667         btrfs_mapping_init(&fs_info->mapping_tree);
2668         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2669                              BTRFS_BLOCK_RSV_GLOBAL);
2670         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2671                              BTRFS_BLOCK_RSV_DELALLOC);
2672         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2673         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2674         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2675         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2676                              BTRFS_BLOCK_RSV_DELOPS);
2677         atomic_set(&fs_info->nr_async_submits, 0);
2678         atomic_set(&fs_info->async_delalloc_pages, 0);
2679         atomic_set(&fs_info->async_submit_draining, 0);
2680         atomic_set(&fs_info->nr_async_bios, 0);
2681         atomic_set(&fs_info->defrag_running, 0);
2682         atomic_set(&fs_info->qgroup_op_seq, 0);
2683         atomic_set(&fs_info->reada_works_cnt, 0);
2684         atomic64_set(&fs_info->tree_mod_seq, 0);
2685         fs_info->fs_frozen = 0;
2686         fs_info->sb = sb;
2687         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2688         fs_info->metadata_ratio = 0;
2689         fs_info->defrag_inodes = RB_ROOT;
2690         fs_info->free_chunk_space = 0;
2691         fs_info->tree_mod_log = RB_ROOT;
2692         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2693         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2694         /* readahead state */
2695         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2696         spin_lock_init(&fs_info->reada_lock);
2697
2698         fs_info->thread_pool_size = min_t(unsigned long,
2699                                           num_online_cpus() + 2, 8);
2700
2701         INIT_LIST_HEAD(&fs_info->ordered_roots);
2702         spin_lock_init(&fs_info->ordered_root_lock);
2703         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2704                                         GFP_KERNEL);
2705         if (!fs_info->delayed_root) {
2706                 err = -ENOMEM;
2707                 goto fail_iput;
2708         }
2709         btrfs_init_delayed_root(fs_info->delayed_root);
2710
2711         btrfs_init_scrub(fs_info);
2712 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2713         fs_info->check_integrity_print_mask = 0;
2714 #endif
2715         btrfs_init_balance(fs_info);
2716         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2717
2718         sb->s_blocksize = 4096;
2719         sb->s_blocksize_bits = blksize_bits(4096);
2720         sb->s_bdi = &fs_info->bdi;
2721
2722         btrfs_init_btree_inode(fs_info, tree_root);
2723
2724         spin_lock_init(&fs_info->block_group_cache_lock);
2725         fs_info->block_group_cache_tree = RB_ROOT;
2726         fs_info->first_logical_byte = (u64)-1;
2727
2728         extent_io_tree_init(&fs_info->freed_extents[0],
2729                              fs_info->btree_inode->i_mapping);
2730         extent_io_tree_init(&fs_info->freed_extents[1],
2731                              fs_info->btree_inode->i_mapping);
2732         fs_info->pinned_extents = &fs_info->freed_extents[0];
2733         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2734
2735         mutex_init(&fs_info->ordered_operations_mutex);
2736         mutex_init(&fs_info->tree_log_mutex);
2737         mutex_init(&fs_info->chunk_mutex);
2738         mutex_init(&fs_info->transaction_kthread_mutex);
2739         mutex_init(&fs_info->cleaner_mutex);
2740         mutex_init(&fs_info->volume_mutex);
2741         mutex_init(&fs_info->ro_block_group_mutex);
2742         init_rwsem(&fs_info->commit_root_sem);
2743         init_rwsem(&fs_info->cleanup_work_sem);
2744         init_rwsem(&fs_info->subvol_sem);
2745         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2746
2747         btrfs_init_dev_replace_locks(fs_info);
2748         btrfs_init_qgroup(fs_info);
2749
2750         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2751         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2752
2753         init_waitqueue_head(&fs_info->transaction_throttle);
2754         init_waitqueue_head(&fs_info->transaction_wait);
2755         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2756         init_waitqueue_head(&fs_info->async_submit_wait);
2757
2758         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2759
2760         ret = btrfs_alloc_stripe_hash_table(fs_info);
2761         if (ret) {
2762                 err = ret;
2763                 goto fail_alloc;
2764         }
2765
2766         __setup_root(4096, 4096, 4096, tree_root,
2767                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2768
2769         invalidate_bdev(fs_devices->latest_bdev);
2770
2771         /*
2772          * Read super block and check the signature bytes only
2773          */
2774         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2775         if (IS_ERR(bh)) {
2776                 err = PTR_ERR(bh);
2777                 goto fail_alloc;
2778         }
2779
2780         /*
2781          * We want to check superblock checksum, the type is stored inside.
2782          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2783          */
2784         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2785                 btrfs_err(fs_info, "superblock checksum mismatch");
2786                 err = -EINVAL;
2787                 brelse(bh);
2788                 goto fail_alloc;
2789         }
2790
2791         /*
2792          * super_copy is zeroed at allocation time and we never touch the
2793          * following bytes up to INFO_SIZE, the checksum is calculated from
2794          * the whole block of INFO_SIZE
2795          */
2796         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2797         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2798                sizeof(*fs_info->super_for_commit));
2799         brelse(bh);
2800
2801         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2802
2803         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2804         if (ret) {
2805                 btrfs_err(fs_info, "superblock contains fatal errors");
2806                 err = -EINVAL;
2807                 goto fail_alloc;
2808         }
2809
2810         disk_super = fs_info->super_copy;
2811         if (!btrfs_super_root(disk_super))
2812                 goto fail_alloc;
2813
2814         /* check FS state, whether FS is broken. */
2815         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2816                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2817
2818         /*
2819          * run through our array of backup supers and setup
2820          * our ring pointer to the oldest one
2821          */
2822         generation = btrfs_super_generation(disk_super);
2823         find_oldest_super_backup(fs_info, generation);
2824
2825         /*
2826          * In the long term, we'll store the compression type in the super
2827          * block, and it'll be used for per file compression control.
2828          */
2829         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2830
2831         ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2832         if (ret) {
2833                 err = ret;
2834                 goto fail_alloc;
2835         }
2836
2837         features = btrfs_super_incompat_flags(disk_super) &
2838                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2839         if (features) {
2840                 btrfs_err(fs_info,
2841                     "cannot mount because of unsupported optional features (%llx)",
2842                     features);
2843                 err = -EINVAL;
2844                 goto fail_alloc;
2845         }
2846
2847         features = btrfs_super_incompat_flags(disk_super);
2848         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2849         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2850                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2851
2852         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2853                 btrfs_info(fs_info, "has skinny extents");
2854
2855         /*
2856          * flag our filesystem as having big metadata blocks if
2857          * they are bigger than the page size
2858          */
2859         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2860                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2861                         btrfs_info(fs_info,
2862                                 "flagging fs with big metadata feature");
2863                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2864         }
2865
2866         nodesize = btrfs_super_nodesize(disk_super);
2867         sectorsize = btrfs_super_sectorsize(disk_super);
2868         stripesize = sectorsize;
2869         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2870         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2871
2872         /*
2873          * mixed block groups end up with duplicate but slightly offset
2874          * extent buffers for the same range.  It leads to corruptions
2875          */
2876         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2877             (sectorsize != nodesize)) {
2878                 btrfs_err(fs_info,
2879 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2880                         nodesize, sectorsize);
2881                 goto fail_alloc;
2882         }
2883
2884         /*
2885          * Needn't use the lock because there is no other task which will
2886          * update the flag.
2887          */
2888         btrfs_set_super_incompat_flags(disk_super, features);
2889
2890         features = btrfs_super_compat_ro_flags(disk_super) &
2891                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2892         if (!(sb->s_flags & MS_RDONLY) && features) {
2893                 btrfs_err(fs_info,
2894         "cannot mount read-write because of unsupported optional features (%llx)",
2895                        features);
2896                 err = -EINVAL;
2897                 goto fail_alloc;
2898         }
2899
2900         max_active = fs_info->thread_pool_size;
2901
2902         ret = btrfs_init_workqueues(fs_info, fs_devices);
2903         if (ret) {
2904                 err = ret;
2905                 goto fail_sb_buffer;
2906         }
2907
2908         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2909         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2910                                     SZ_4M / PAGE_SIZE);
2911
2912         tree_root->nodesize = nodesize;
2913         tree_root->sectorsize = sectorsize;
2914         tree_root->stripesize = stripesize;
2915
2916         sb->s_blocksize = sectorsize;
2917         sb->s_blocksize_bits = blksize_bits(sectorsize);
2918
2919         mutex_lock(&fs_info->chunk_mutex);
2920         ret = btrfs_read_sys_array(tree_root);
2921         mutex_unlock(&fs_info->chunk_mutex);
2922         if (ret) {
2923                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2924                 goto fail_sb_buffer;
2925         }
2926
2927         generation = btrfs_super_chunk_root_generation(disk_super);
2928
2929         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2930                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2931
2932         chunk_root->node = read_tree_block(chunk_root,
2933                                            btrfs_super_chunk_root(disk_super),
2934                                            generation);
2935         if (IS_ERR(chunk_root->node) ||
2936             !extent_buffer_uptodate(chunk_root->node)) {
2937                 btrfs_err(fs_info, "failed to read chunk root");
2938                 if (!IS_ERR(chunk_root->node))
2939                         free_extent_buffer(chunk_root->node);
2940                 chunk_root->node = NULL;
2941                 goto fail_tree_roots;
2942         }
2943         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2944         chunk_root->commit_root = btrfs_root_node(chunk_root);
2945
2946         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2947            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2948
2949         ret = btrfs_read_chunk_tree(chunk_root);
2950         if (ret) {
2951                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2952                 goto fail_tree_roots;
2953         }
2954
2955         /*
2956          * keep the device that is marked to be the target device for the
2957          * dev_replace procedure
2958          */
2959         btrfs_close_extra_devices(fs_devices, 0);
2960
2961         if (!fs_devices->latest_bdev) {
2962                 btrfs_err(fs_info, "failed to read devices");
2963                 goto fail_tree_roots;
2964         }
2965
2966 retry_root_backup:
2967         generation = btrfs_super_generation(disk_super);
2968
2969         tree_root->node = read_tree_block(tree_root,
2970                                           btrfs_super_root(disk_super),
2971                                           generation);
2972         if (IS_ERR(tree_root->node) ||
2973             !extent_buffer_uptodate(tree_root->node)) {
2974                 btrfs_warn(fs_info, "failed to read tree root");
2975                 if (!IS_ERR(tree_root->node))
2976                         free_extent_buffer(tree_root->node);
2977                 tree_root->node = NULL;
2978                 goto recovery_tree_root;
2979         }
2980
2981         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2982         tree_root->commit_root = btrfs_root_node(tree_root);
2983         btrfs_set_root_refs(&tree_root->root_item, 1);
2984
2985         mutex_lock(&tree_root->objectid_mutex);
2986         ret = btrfs_find_highest_objectid(tree_root,
2987                                         &tree_root->highest_objectid);
2988         if (ret) {
2989                 mutex_unlock(&tree_root->objectid_mutex);
2990                 goto recovery_tree_root;
2991         }
2992
2993         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2994
2995         mutex_unlock(&tree_root->objectid_mutex);
2996
2997         ret = btrfs_read_roots(fs_info, tree_root);
2998         if (ret)
2999                 goto recovery_tree_root;
3000
3001         fs_info->generation = generation;
3002         fs_info->last_trans_committed = generation;
3003
3004         ret = btrfs_recover_balance(fs_info);
3005         if (ret) {
3006                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3007                 goto fail_block_groups;
3008         }
3009
3010         ret = btrfs_init_dev_stats(fs_info);
3011         if (ret) {
3012                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3013                 goto fail_block_groups;
3014         }
3015
3016         ret = btrfs_init_dev_replace(fs_info);
3017         if (ret) {
3018                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3019                 goto fail_block_groups;
3020         }
3021
3022         btrfs_close_extra_devices(fs_devices, 1);
3023
3024         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3025         if (ret) {
3026                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3027                                 ret);
3028                 goto fail_block_groups;
3029         }
3030
3031         ret = btrfs_sysfs_add_device(fs_devices);
3032         if (ret) {
3033                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3034                                 ret);
3035                 goto fail_fsdev_sysfs;
3036         }
3037
3038         ret = btrfs_sysfs_add_mounted(fs_info);
3039         if (ret) {
3040                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3041                 goto fail_fsdev_sysfs;
3042         }
3043
3044         ret = btrfs_init_space_info(fs_info);
3045         if (ret) {
3046                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3047                 goto fail_sysfs;
3048         }
3049
3050         ret = btrfs_read_block_groups(fs_info->extent_root);
3051         if (ret) {
3052                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3053                 goto fail_sysfs;
3054         }
3055         fs_info->num_tolerated_disk_barrier_failures =
3056                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3057         if (fs_info->fs_devices->missing_devices >
3058              fs_info->num_tolerated_disk_barrier_failures &&
3059             !(sb->s_flags & MS_RDONLY)) {
3060                 btrfs_warn(fs_info,
3061 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3062                         fs_info->fs_devices->missing_devices,
3063                         fs_info->num_tolerated_disk_barrier_failures);
3064                 goto fail_sysfs;
3065         }
3066
3067         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3068                                                "btrfs-cleaner");
3069         if (IS_ERR(fs_info->cleaner_kthread))
3070                 goto fail_sysfs;
3071
3072         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3073                                                    tree_root,
3074                                                    "btrfs-transaction");
3075         if (IS_ERR(fs_info->transaction_kthread))
3076                 goto fail_cleaner;
3077
3078         if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3079             !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3080             !fs_info->fs_devices->rotating) {
3081                 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3082                 btrfs_set_opt(fs_info->mount_opt, SSD);
3083         }
3084
3085         /*
3086          * Mount does not set all options immediately, we can do it now and do
3087          * not have to wait for transaction commit
3088          */
3089         btrfs_apply_pending_changes(fs_info);
3090
3091 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3092         if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3093                 ret = btrfsic_mount(tree_root, fs_devices,
3094                                     btrfs_test_opt(tree_root->fs_info,
3095                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3096                                     1 : 0,
3097                                     fs_info->check_integrity_print_mask);
3098                 if (ret)
3099                         btrfs_warn(fs_info,
3100                                 "failed to initialize integrity check module: %d",
3101                                 ret);
3102         }
3103 #endif
3104         ret = btrfs_read_qgroup_config(fs_info);
3105         if (ret)
3106                 goto fail_trans_kthread;
3107
3108         /* do not make disk changes in broken FS or nologreplay is given */
3109         if (btrfs_super_log_root(disk_super) != 0 &&
3110             !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3111                 ret = btrfs_replay_log(fs_info, fs_devices);
3112                 if (ret) {
3113                         err = ret;
3114                         goto fail_qgroup;
3115                 }
3116         }
3117
3118         ret = btrfs_find_orphan_roots(tree_root);
3119         if (ret)
3120                 goto fail_qgroup;
3121
3122         if (!(sb->s_flags & MS_RDONLY)) {
3123                 ret = btrfs_cleanup_fs_roots(fs_info);
3124                 if (ret)
3125                         goto fail_qgroup;
3126
3127                 mutex_lock(&fs_info->cleaner_mutex);
3128                 ret = btrfs_recover_relocation(tree_root);
3129                 mutex_unlock(&fs_info->cleaner_mutex);
3130                 if (ret < 0) {
3131                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3132                                         ret);
3133                         err = -EINVAL;
3134                         goto fail_qgroup;
3135                 }
3136         }
3137
3138         location.objectid = BTRFS_FS_TREE_OBJECTID;
3139         location.type = BTRFS_ROOT_ITEM_KEY;
3140         location.offset = 0;
3141
3142         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3143         if (IS_ERR(fs_info->fs_root)) {
3144                 err = PTR_ERR(fs_info->fs_root);
3145                 goto fail_qgroup;
3146         }
3147
3148         if (sb->s_flags & MS_RDONLY)
3149                 return 0;
3150
3151         if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3152             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3153                 btrfs_info(fs_info, "creating free space tree");
3154                 ret = btrfs_create_free_space_tree(fs_info);
3155                 if (ret) {
3156                         btrfs_warn(fs_info,
3157                                 "failed to create free space tree: %d", ret);
3158                         close_ctree(tree_root);
3159                         return ret;
3160                 }
3161         }
3162
3163         down_read(&fs_info->cleanup_work_sem);
3164         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3165             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3166                 up_read(&fs_info->cleanup_work_sem);
3167                 close_ctree(tree_root);
3168                 return ret;
3169         }
3170         up_read(&fs_info->cleanup_work_sem);
3171
3172         ret = btrfs_resume_balance_async(fs_info);
3173         if (ret) {
3174                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3175                 close_ctree(tree_root);
3176                 return ret;
3177         }
3178
3179         ret = btrfs_resume_dev_replace_async(fs_info);
3180         if (ret) {
3181                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3182                 close_ctree(tree_root);
3183                 return ret;
3184         }
3185
3186         btrfs_qgroup_rescan_resume(fs_info);
3187
3188         if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
3189             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3190                 btrfs_info(fs_info, "clearing free space tree");
3191                 ret = btrfs_clear_free_space_tree(fs_info);
3192                 if (ret) {
3193                         btrfs_warn(fs_info,
3194                                 "failed to clear free space tree: %d", ret);
3195                         close_ctree(tree_root);
3196                         return ret;
3197                 }
3198         }
3199
3200         if (!fs_info->uuid_root) {
3201                 btrfs_info(fs_info, "creating UUID tree");
3202                 ret = btrfs_create_uuid_tree(fs_info);
3203                 if (ret) {
3204                         btrfs_warn(fs_info,
3205                                 "failed to create the UUID tree: %d", ret);
3206                         close_ctree(tree_root);
3207                         return ret;
3208                 }
3209         } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3210                    fs_info->generation !=
3211                                 btrfs_super_uuid_tree_generation(disk_super)) {
3212                 btrfs_info(fs_info, "checking UUID tree");
3213                 ret = btrfs_check_uuid_tree(fs_info);
3214                 if (ret) {
3215                         btrfs_warn(fs_info,
3216                                 "failed to check the UUID tree: %d", ret);
3217                         close_ctree(tree_root);
3218                         return ret;
3219                 }
3220         } else {
3221                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3222         }
3223         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3224
3225         /*
3226          * backuproot only affect mount behavior, and if open_ctree succeeded,
3227          * no need to keep the flag
3228          */
3229         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3230
3231         return 0;
3232
3233 fail_qgroup:
3234         btrfs_free_qgroup_config(fs_info);
3235 fail_trans_kthread:
3236         kthread_stop(fs_info->transaction_kthread);
3237         btrfs_cleanup_transaction(fs_info->tree_root);
3238         btrfs_free_fs_roots(fs_info);
3239 fail_cleaner:
3240         kthread_stop(fs_info->cleaner_kthread);
3241
3242         /*
3243          * make sure we're done with the btree inode before we stop our
3244          * kthreads
3245          */
3246         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3247
3248 fail_sysfs:
3249         btrfs_sysfs_remove_mounted(fs_info);
3250
3251 fail_fsdev_sysfs:
3252         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3253
3254 fail_block_groups:
3255         btrfs_put_block_group_cache(fs_info);
3256         btrfs_free_block_groups(fs_info);
3257
3258 fail_tree_roots:
3259         free_root_pointers(fs_info, 1);
3260         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3261
3262 fail_sb_buffer:
3263         btrfs_stop_all_workers(fs_info);
3264 fail_alloc:
3265 fail_iput:
3266         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3267
3268         iput(fs_info->btree_inode);
3269 fail_bio_counter:
3270         percpu_counter_destroy(&fs_info->bio_counter);
3271 fail_delalloc_bytes:
3272         percpu_counter_destroy(&fs_info->delalloc_bytes);
3273 fail_dirty_metadata_bytes:
3274         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3275 fail_bdi:
3276         bdi_destroy(&fs_info->bdi);
3277 fail_srcu:
3278         cleanup_srcu_struct(&fs_info->subvol_srcu);
3279 fail:
3280         btrfs_free_stripe_hash_table(fs_info);
3281         btrfs_close_devices(fs_info->fs_devices);
3282         return err;
3283
3284 recovery_tree_root:
3285         if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3286                 goto fail_tree_roots;
3287
3288         free_root_pointers(fs_info, 0);
3289
3290         /* don't use the log in recovery mode, it won't be valid */
3291         btrfs_set_super_log_root(disk_super, 0);
3292
3293         /* we can't trust the free space cache either */
3294         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3295
3296         ret = next_root_backup(fs_info, fs_info->super_copy,
3297                                &num_backups_tried, &backup_index);
3298         if (ret == -1)
3299                 goto fail_block_groups;
3300         goto retry_root_backup;
3301 }
3302
3303 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3304 {
3305         if (uptodate) {
3306                 set_buffer_uptodate(bh);
3307         } else {
3308                 struct btrfs_device *device = (struct btrfs_device *)
3309                         bh->b_private;
3310
3311                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3312                                 "lost page write due to IO error on %s",
3313                                           rcu_str_deref(device->name));
3314                 /* note, we don't set_buffer_write_io_error because we have
3315                  * our own ways of dealing with the IO errors
3316                  */
3317                 clear_buffer_uptodate(bh);
3318                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3319         }
3320         unlock_buffer(bh);
3321         put_bh(bh);
3322 }
3323
3324 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3325                         struct buffer_head **bh_ret)
3326 {
3327         struct buffer_head *bh;
3328         struct btrfs_super_block *super;
3329         u64 bytenr;
3330
3331         bytenr = btrfs_sb_offset(copy_num);
3332         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3333                 return -EINVAL;
3334
3335         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3336         /*
3337          * If we fail to read from the underlying devices, as of now
3338          * the best option we have is to mark it EIO.
3339          */
3340         if (!bh)
3341                 return -EIO;
3342
3343         super = (struct btrfs_super_block *)bh->b_data;
3344         if (btrfs_super_bytenr(super) != bytenr ||
3345                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3346                 brelse(bh);
3347                 return -EINVAL;
3348         }
3349
3350         *bh_ret = bh;
3351         return 0;
3352 }
3353
3354
3355 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3356 {
3357         struct buffer_head *bh;
3358         struct buffer_head *latest = NULL;
3359         struct btrfs_super_block *super;
3360         int i;
3361         u64 transid = 0;
3362         int ret = -EINVAL;
3363
3364         /* we would like to check all the supers, but that would make
3365          * a btrfs mount succeed after a mkfs from a different FS.
3366          * So, we need to add a special mount option to scan for
3367          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3368          */
3369         for (i = 0; i < 1; i++) {
3370                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3371                 if (ret)
3372                         continue;
3373
3374                 super = (struct btrfs_super_block *)bh->b_data;
3375
3376                 if (!latest || btrfs_super_generation(super) > transid) {
3377                         brelse(latest);
3378                         latest = bh;
3379                         transid = btrfs_super_generation(super);
3380                 } else {
3381                         brelse(bh);
3382                 }
3383         }
3384
3385         if (!latest)
3386                 return ERR_PTR(ret);
3387
3388         return latest;
3389 }
3390
3391 /*
3392  * this should be called twice, once with wait == 0 and
3393  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3394  * we write are pinned.
3395  *
3396  * They are released when wait == 1 is done.
3397  * max_mirrors must be the same for both runs, and it indicates how
3398  * many supers on this one device should be written.
3399  *
3400  * max_mirrors == 0 means to write them all.
3401  */
3402 static int write_dev_supers(struct btrfs_device *device,
3403                             struct btrfs_super_block *sb,
3404                             int do_barriers, int wait, int max_mirrors)
3405 {
3406         struct buffer_head *bh;
3407         int i;
3408         int ret;
3409         int errors = 0;
3410         u32 crc;
3411         u64 bytenr;
3412
3413         if (max_mirrors == 0)
3414                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3415
3416         for (i = 0; i < max_mirrors; i++) {
3417                 bytenr = btrfs_sb_offset(i);
3418                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3419                     device->commit_total_bytes)
3420                         break;
3421
3422                 if (wait) {
3423                         bh = __find_get_block(device->bdev, bytenr / 4096,
3424                                               BTRFS_SUPER_INFO_SIZE);
3425                         if (!bh) {
3426                                 errors++;
3427                                 continue;
3428                         }
3429                         wait_on_buffer(bh);
3430                         if (!buffer_uptodate(bh))
3431                                 errors++;
3432
3433                         /* drop our reference */
3434                         brelse(bh);
3435
3436                         /* drop the reference from the wait == 0 run */
3437                         brelse(bh);
3438                         continue;
3439                 } else {
3440                         btrfs_set_super_bytenr(sb, bytenr);
3441
3442                         crc = ~(u32)0;
3443                         crc = btrfs_csum_data((char *)sb +
3444                                               BTRFS_CSUM_SIZE, crc,
3445                                               BTRFS_SUPER_INFO_SIZE -
3446                                               BTRFS_CSUM_SIZE);
3447                         btrfs_csum_final(crc, sb->csum);
3448
3449                         /*
3450                          * one reference for us, and we leave it for the
3451                          * caller
3452                          */
3453                         bh = __getblk(device->bdev, bytenr / 4096,
3454                                       BTRFS_SUPER_INFO_SIZE);
3455                         if (!bh) {
3456                                 btrfs_err(device->dev_root->fs_info,
3457                                     "couldn't get super buffer head for bytenr %llu",
3458                                     bytenr);
3459                                 errors++;
3460                                 continue;
3461                         }
3462
3463                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3464
3465                         /* one reference for submit_bh */
3466                         get_bh(bh);
3467
3468                         set_buffer_uptodate(bh);
3469                         lock_buffer(bh);
3470                         bh->b_end_io = btrfs_end_buffer_write_sync;
3471                         bh->b_private = device;
3472                 }
3473
3474                 /*
3475                  * we fua the first super.  The others we allow
3476                  * to go down lazy.
3477                  */
3478                 if (i == 0)
3479                         ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3480                 else
3481                         ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3482                 if (ret)
3483                         errors++;
3484         }
3485         return errors < i ? 0 : -1;
3486 }
3487
3488 /*
3489  * endio for the write_dev_flush, this will wake anyone waiting
3490  * for the barrier when it is done
3491  */
3492 static void btrfs_end_empty_barrier(struct bio *bio)
3493 {
3494         if (bio->bi_private)
3495                 complete(bio->bi_private);
3496         bio_put(bio);
3497 }
3498
3499 /*
3500  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3501  * sent down.  With wait == 1, it waits for the previous flush.
3502  *
3503  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3504  * capable
3505  */
3506 static int write_dev_flush(struct btrfs_device *device, int wait)
3507 {
3508         struct bio *bio;
3509         int ret = 0;
3510
3511         if (device->nobarriers)
3512                 return 0;
3513
3514         if (wait) {
3515                 bio = device->flush_bio;
3516                 if (!bio)
3517                         return 0;
3518
3519                 wait_for_completion(&device->flush_wait);
3520
3521                 if (bio->bi_error) {
3522                         ret = bio->bi_error;
3523                         btrfs_dev_stat_inc_and_print(device,
3524                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3525                 }
3526
3527                 /* drop the reference from the wait == 0 run */
3528                 bio_put(bio);
3529                 device->flush_bio = NULL;
3530
3531                 return ret;
3532         }
3533
3534         /*
3535          * one reference for us, and we leave it for the
3536          * caller
3537          */
3538         device->flush_bio = NULL;
3539         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3540         if (!bio)
3541                 return -ENOMEM;
3542
3543         bio->bi_end_io = btrfs_end_empty_barrier;
3544         bio->bi_bdev = device->bdev;
3545         bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3546         init_completion(&device->flush_wait);
3547         bio->bi_private = &device->flush_wait;
3548         device->flush_bio = bio;
3549
3550         bio_get(bio);
3551         btrfsic_submit_bio(bio);
3552
3553         return 0;
3554 }
3555
3556 /*
3557  * send an empty flush down to each device in parallel,
3558  * then wait for them
3559  */
3560 static int barrier_all_devices(struct btrfs_fs_info *info)
3561 {
3562         struct list_head *head;
3563         struct btrfs_device *dev;
3564         int errors_send = 0;
3565         int errors_wait = 0;
3566         int ret;
3567
3568         /* send down all the barriers */
3569         head = &info->fs_devices->devices;
3570         list_for_each_entry_rcu(dev, head, dev_list) {
3571                 if (dev->missing)
3572                         continue;
3573                 if (!dev->bdev) {
3574                         errors_send++;
3575                         continue;
3576                 }
3577                 if (!dev->in_fs_metadata || !dev->writeable)
3578                         continue;
3579
3580                 ret = write_dev_flush(dev, 0);
3581                 if (ret)
3582                         errors_send++;
3583         }
3584
3585         /* wait for all the barriers */
3586         list_for_each_entry_rcu(dev, head, dev_list) {
3587                 if (dev->missing)
3588                         continue;
3589                 if (!dev->bdev) {
3590                         errors_wait++;
3591                         continue;
3592                 }
3593                 if (!dev->in_fs_metadata || !dev->writeable)
3594                         continue;
3595
3596                 ret = write_dev_flush(dev, 1);
3597                 if (ret)
3598                         errors_wait++;
3599         }
3600         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3601             errors_wait > info->num_tolerated_disk_barrier_failures)
3602                 return -EIO;
3603         return 0;
3604 }
3605
3606 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3607 {
3608         int raid_type;
3609         int min_tolerated = INT_MAX;
3610
3611         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3612             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3613                 min_tolerated = min(min_tolerated,
3614                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3615                                     tolerated_failures);
3616
3617         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3618                 if (raid_type == BTRFS_RAID_SINGLE)
3619                         continue;
3620                 if (!(flags & btrfs_raid_group[raid_type]))
3621                         continue;
3622                 min_tolerated = min(min_tolerated,
3623                                     btrfs_raid_array[raid_type].
3624                                     tolerated_failures);
3625         }
3626
3627         if (min_tolerated == INT_MAX) {
3628                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3629                 min_tolerated = 0;
3630         }
3631
3632         return min_tolerated;
3633 }
3634
3635 int btrfs_calc_num_tolerated_disk_barrier_failures(
3636         struct btrfs_fs_info *fs_info)
3637 {
3638         struct btrfs_ioctl_space_info space;
3639         struct btrfs_space_info *sinfo;
3640         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3641                        BTRFS_BLOCK_GROUP_SYSTEM,
3642                        BTRFS_BLOCK_GROUP_METADATA,
3643                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3644         int i;
3645         int c;
3646         int num_tolerated_disk_barrier_failures =
3647                 (int)fs_info->fs_devices->num_devices;
3648
3649         for (i = 0; i < ARRAY_SIZE(types); i++) {
3650                 struct btrfs_space_info *tmp;
3651
3652                 sinfo = NULL;
3653                 rcu_read_lock();
3654                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3655                         if (tmp->flags == types[i]) {
3656                                 sinfo = tmp;
3657                                 break;
3658                         }
3659                 }
3660                 rcu_read_unlock();
3661
3662                 if (!sinfo)
3663                         continue;
3664
3665                 down_read(&sinfo->groups_sem);
3666                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3667                         u64 flags;
3668
3669                         if (list_empty(&sinfo->block_groups[c]))
3670                                 continue;
3671
3672                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3673                                                    &space);
3674                         if (space.total_bytes == 0 || space.used_bytes == 0)
3675                                 continue;
3676                         flags = space.flags;
3677
3678                         num_tolerated_disk_barrier_failures = min(
3679                                 num_tolerated_disk_barrier_failures,
3680                                 btrfs_get_num_tolerated_disk_barrier_failures(
3681                                         flags));
3682                 }
3683                 up_read(&sinfo->groups_sem);
3684         }
3685
3686         return num_tolerated_disk_barrier_failures;
3687 }
3688
3689 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3690 {
3691         struct list_head *head;
3692         struct btrfs_device *dev;
3693         struct btrfs_super_block *sb;
3694         struct btrfs_dev_item *dev_item;
3695         int ret;
3696         int do_barriers;
3697         int max_errors;
3698         int total_errors = 0;
3699         u64 flags;
3700
3701         do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3702         backup_super_roots(root->fs_info);
3703
3704         sb = root->fs_info->super_for_commit;
3705         dev_item = &sb->dev_item;
3706
3707         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3708         head = &root->fs_info->fs_devices->devices;
3709         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3710
3711         if (do_barriers) {
3712                 ret = barrier_all_devices(root->fs_info);
3713                 if (ret) {
3714                         mutex_unlock(
3715                                 &root->fs_info->fs_devices->device_list_mutex);
3716                         btrfs_handle_fs_error(root->fs_info, ret,
3717                                     "errors while submitting device barriers.");
3718                         return ret;
3719                 }
3720         }
3721
3722         list_for_each_entry_rcu(dev, head, dev_list) {
3723                 if (!dev->bdev) {
3724                         total_errors++;
3725                         continue;
3726                 }
3727                 if (!dev->in_fs_metadata || !dev->writeable)
3728                         continue;
3729
3730                 btrfs_set_stack_device_generation(dev_item, 0);
3731                 btrfs_set_stack_device_type(dev_item, dev->type);
3732                 btrfs_set_stack_device_id(dev_item, dev->devid);
3733                 btrfs_set_stack_device_total_bytes(dev_item,
3734                                                    dev->commit_total_bytes);
3735                 btrfs_set_stack_device_bytes_used(dev_item,
3736                                                   dev->commit_bytes_used);
3737                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3738                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3739                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3740                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3741                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3742
3743                 flags = btrfs_super_flags(sb);
3744                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3745
3746                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3747                 if (ret)
3748                         total_errors++;
3749         }
3750         if (total_errors > max_errors) {
3751                 btrfs_err(root->fs_info, "%d errors while writing supers",
3752                        total_errors);
3753                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3754
3755                 /* FUA is masked off if unsupported and can't be the reason */
3756                 btrfs_handle_fs_error(root->fs_info, -EIO,
3757                             "%d errors while writing supers", total_errors);
3758                 return -EIO;
3759         }
3760
3761         total_errors = 0;
3762         list_for_each_entry_rcu(dev, head, dev_list) {
3763                 if (!dev->bdev)
3764                         continue;
3765                 if (!dev->in_fs_metadata || !dev->writeable)
3766                         continue;
3767
3768                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3769                 if (ret)
3770                         total_errors++;
3771         }
3772         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3773         if (total_errors > max_errors) {
3774                 btrfs_handle_fs_error(root->fs_info, -EIO,
3775                             "%d errors while writing supers", total_errors);
3776                 return -EIO;
3777         }
3778         return 0;
3779 }
3780
3781 int write_ctree_super(struct btrfs_trans_handle *trans,
3782                       struct btrfs_root *root, int max_mirrors)
3783 {
3784         return write_all_supers(root, max_mirrors);
3785 }
3786
3787 /* Drop a fs root from the radix tree and free it. */
3788 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3789                                   struct btrfs_root *root)
3790 {
3791         spin_lock(&fs_info->fs_roots_radix_lock);
3792         radix_tree_delete(&fs_info->fs_roots_radix,
3793                           (unsigned long)root->root_key.objectid);
3794         spin_unlock(&fs_info->fs_roots_radix_lock);
3795
3796         if (btrfs_root_refs(&root->root_item) == 0)
3797                 synchronize_srcu(&fs_info->subvol_srcu);
3798
3799         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3800                 btrfs_free_log(NULL, root);
3801                 if (root->reloc_root) {
3802                         free_extent_buffer(root->reloc_root->node);
3803                         free_extent_buffer(root->reloc_root->commit_root);
3804                         btrfs_put_fs_root(root->reloc_root);
3805                         root->reloc_root = NULL;
3806                 }
3807         }
3808
3809         if (root->free_ino_pinned)
3810                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3811         if (root->free_ino_ctl)
3812                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3813         free_fs_root(root);
3814 }
3815
3816 static void free_fs_root(struct btrfs_root *root)
3817 {
3818         iput(root->ino_cache_inode);
3819         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3820         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3821         root->orphan_block_rsv = NULL;
3822         if (root->anon_dev)
3823                 free_anon_bdev(root->anon_dev);
3824         if (root->subv_writers)
3825                 btrfs_free_subvolume_writers(root->subv_writers);
3826         free_extent_buffer(root->node);
3827         free_extent_buffer(root->commit_root);
3828         kfree(root->free_ino_ctl);
3829         kfree(root->free_ino_pinned);
3830         kfree(root->name);
3831         btrfs_put_fs_root(root);
3832 }
3833
3834 void btrfs_free_fs_root(struct btrfs_root *root)
3835 {
3836         free_fs_root(root);
3837 }
3838
3839 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3840 {
3841         u64 root_objectid = 0;
3842         struct btrfs_root *gang[8];
3843         int i = 0;
3844         int err = 0;
3845         unsigned int ret = 0;
3846         int index;
3847
3848         while (1) {
3849                 index = srcu_read_lock(&fs_info->subvol_srcu);
3850                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3851                                              (void **)gang, root_objectid,
3852                                              ARRAY_SIZE(gang));
3853                 if (!ret) {
3854                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3855                         break;
3856                 }
3857                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3858
3859                 for (i = 0; i < ret; i++) {
3860                         /* Avoid to grab roots in dead_roots */
3861                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3862                                 gang[i] = NULL;
3863                                 continue;
3864                         }
3865                         /* grab all the search result for later use */
3866                         gang[i] = btrfs_grab_fs_root(gang[i]);
3867                 }
3868                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3869
3870                 for (i = 0; i < ret; i++) {
3871                         if (!gang[i])
3872                                 continue;
3873                         root_objectid = gang[i]->root_key.objectid;
3874                         err = btrfs_orphan_cleanup(gang[i]);
3875                         if (err)
3876                                 break;
3877                         btrfs_put_fs_root(gang[i]);
3878                 }
3879                 root_objectid++;
3880         }
3881
3882         /* release the uncleaned roots due to error */
3883         for (; i < ret; i++) {
3884                 if (gang[i])
3885                         btrfs_put_fs_root(gang[i]);
3886         }
3887         return err;
3888 }
3889
3890 int btrfs_commit_super(struct btrfs_root *root)
3891 {
3892         struct btrfs_trans_handle *trans;
3893
3894         mutex_lock(&root->fs_info->cleaner_mutex);
3895         btrfs_run_delayed_iputs(root);
3896         mutex_unlock(&root->fs_info->cleaner_mutex);
3897         wake_up_process(root->fs_info->cleaner_kthread);
3898
3899         /* wait until ongoing cleanup work done */
3900         down_write(&root->fs_info->cleanup_work_sem);
3901         up_write(&root->fs_info->cleanup_work_sem);
3902
3903         trans = btrfs_join_transaction(root);
3904         if (IS_ERR(trans))
3905                 return PTR_ERR(trans);
3906         return btrfs_commit_transaction(trans, root);
3907 }
3908
3909 void close_ctree(struct btrfs_root *root)
3910 {
3911         struct btrfs_fs_info *fs_info = root->fs_info;
3912         int ret;
3913
3914         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3915
3916         /* wait for the qgroup rescan worker to stop */
3917         btrfs_qgroup_wait_for_completion(fs_info, false);
3918
3919         /* wait for the uuid_scan task to finish */
3920         down(&fs_info->uuid_tree_rescan_sem);
3921         /* avoid complains from lockdep et al., set sem back to initial state */
3922         up(&fs_info->uuid_tree_rescan_sem);
3923
3924         /* pause restriper - we want to resume on mount */
3925         btrfs_pause_balance(fs_info);
3926
3927         btrfs_dev_replace_suspend_for_unmount(fs_info);
3928
3929         btrfs_scrub_cancel(fs_info);
3930
3931         /* wait for any defraggers to finish */
3932         wait_event(fs_info->transaction_wait,
3933                    (atomic_read(&fs_info->defrag_running) == 0));
3934
3935         /* clear out the rbtree of defraggable inodes */
3936         btrfs_cleanup_defrag_inodes(fs_info);
3937
3938         cancel_work_sync(&fs_info->async_reclaim_work);
3939
3940         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3941                 /*
3942                  * If the cleaner thread is stopped and there are
3943                  * block groups queued for removal, the deletion will be
3944                  * skipped when we quit the cleaner thread.
3945                  */
3946                 btrfs_delete_unused_bgs(root->fs_info);
3947
3948                 ret = btrfs_commit_super(root);
3949                 if (ret)
3950                         btrfs_err(fs_info, "commit super ret %d", ret);
3951         }
3952
3953         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3954                 btrfs_error_commit_super(root);
3955
3956         kthread_stop(fs_info->transaction_kthread);
3957         kthread_stop(fs_info->cleaner_kthread);
3958
3959         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3960
3961         btrfs_free_qgroup_config(fs_info);
3962
3963         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3964                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3965                        percpu_counter_sum(&fs_info->delalloc_bytes));
3966         }
3967
3968         btrfs_sysfs_remove_mounted(fs_info);
3969         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3970
3971         btrfs_free_fs_roots(fs_info);
3972
3973         btrfs_put_block_group_cache(fs_info);
3974
3975         btrfs_free_block_groups(fs_info);
3976
3977         /*
3978          * we must make sure there is not any read request to
3979          * submit after we stopping all workers.
3980          */
3981         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3982         btrfs_stop_all_workers(fs_info);
3983
3984         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3985         free_root_pointers(fs_info, 1);
3986
3987         iput(fs_info->btree_inode);
3988
3989 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3990         if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3991                 btrfsic_unmount(root, fs_info->fs_devices);
3992 #endif
3993
3994         btrfs_close_devices(fs_info->fs_devices);
3995         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3996
3997         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3998         percpu_counter_destroy(&fs_info->delalloc_bytes);
3999         percpu_counter_destroy(&fs_info->bio_counter);
4000         bdi_destroy(&fs_info->bdi);
4001         cleanup_srcu_struct(&fs_info->subvol_srcu);
4002
4003         btrfs_free_stripe_hash_table(fs_info);
4004
4005         __btrfs_free_block_rsv(root->orphan_block_rsv);
4006         root->orphan_block_rsv = NULL;
4007
4008         lock_chunks(root);
4009         while (!list_empty(&fs_info->pinned_chunks)) {
4010                 struct extent_map *em;
4011
4012                 em = list_first_entry(&fs_info->pinned_chunks,
4013                                       struct extent_map, list);
4014                 list_del_init(&em->list);
4015                 free_extent_map(em);
4016         }
4017         unlock_chunks(root);
4018 }
4019
4020 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4021                           int atomic)
4022 {
4023         int ret;
4024         struct inode *btree_inode = buf->pages[0]->mapping->host;
4025
4026         ret = extent_buffer_uptodate(buf);
4027         if (!ret)
4028                 return ret;
4029
4030         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4031                                     parent_transid, atomic);
4032         if (ret == -EAGAIN)
4033                 return ret;
4034         return !ret;
4035 }
4036
4037 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4038 {
4039         struct btrfs_root *root;
4040         u64 transid = btrfs_header_generation(buf);
4041         int was_dirty;
4042
4043 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4044         /*
4045          * This is a fast path so only do this check if we have sanity tests
4046          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4047          * outside of the sanity tests.
4048          */
4049         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4050                 return;
4051 #endif
4052         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4053         btrfs_assert_tree_locked(buf);
4054         if (transid != root->fs_info->generation)
4055                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4056                         buf->start, transid, root->fs_info->generation);
4057         was_dirty = set_extent_buffer_dirty(buf);
4058         if (!was_dirty)
4059                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4060                                      buf->len,
4061                                      root->fs_info->dirty_metadata_batch);
4062 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4063         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4064                 btrfs_print_leaf(root, buf);
4065                 ASSERT(0);
4066         }
4067 #endif
4068 }
4069
4070 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4071                                         int flush_delayed)
4072 {
4073         /*
4074          * looks as though older kernels can get into trouble with
4075          * this code, they end up stuck in balance_dirty_pages forever
4076          */
4077         int ret;
4078
4079         if (current->flags & PF_MEMALLOC)
4080                 return;
4081
4082         if (flush_delayed)
4083                 btrfs_balance_delayed_items(root);
4084
4085         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4086                                      BTRFS_DIRTY_METADATA_THRESH);
4087         if (ret > 0) {
4088                 balance_dirty_pages_ratelimited(
4089                                    root->fs_info->btree_inode->i_mapping);
4090         }
4091 }
4092
4093 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4094 {
4095         __btrfs_btree_balance_dirty(root, 1);
4096 }
4097
4098 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4099 {
4100         __btrfs_btree_balance_dirty(root, 0);
4101 }
4102
4103 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4104 {
4105         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4106         return btree_read_extent_buffer_pages(root, buf, parent_transid);
4107 }
4108
4109 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4110                               int read_only)
4111 {
4112         struct btrfs_super_block *sb = fs_info->super_copy;
4113         u64 nodesize = btrfs_super_nodesize(sb);
4114         u64 sectorsize = btrfs_super_sectorsize(sb);
4115         int ret = 0;
4116
4117         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4118                 btrfs_err(fs_info, "no valid FS found");
4119                 ret = -EINVAL;
4120         }
4121         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4122                 btrfs_warn(fs_info, "unrecognized super flag: %llu",
4123                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4124         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4125                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4126                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4127                 ret = -EINVAL;
4128         }
4129         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4130                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4131                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4132                 ret = -EINVAL;
4133         }
4134         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4135                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4136                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4137                 ret = -EINVAL;
4138         }
4139
4140         /*
4141          * Check sectorsize and nodesize first, other check will need it.
4142          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4143          */
4144         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4145             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4146                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4147                 ret = -EINVAL;
4148         }
4149         /* Only PAGE SIZE is supported yet */
4150         if (sectorsize != PAGE_SIZE) {
4151                 btrfs_err(fs_info,
4152                         "sectorsize %llu not supported yet, only support %lu",
4153                         sectorsize, PAGE_SIZE);
4154                 ret = -EINVAL;
4155         }
4156         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4157             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4158                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4159                 ret = -EINVAL;
4160         }
4161         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4162                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4163                           le32_to_cpu(sb->__unused_leafsize), nodesize);
4164                 ret = -EINVAL;
4165         }
4166
4167         /* Root alignment check */
4168         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4169                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4170                            btrfs_super_root(sb));
4171                 ret = -EINVAL;
4172         }
4173         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4174                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4175                            btrfs_super_chunk_root(sb));
4176                 ret = -EINVAL;
4177         }
4178         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4179                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4180                            btrfs_super_log_root(sb));
4181                 ret = -EINVAL;
4182         }
4183
4184         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4185                 btrfs_err(fs_info,
4186                            "dev_item UUID does not match fsid: %pU != %pU",
4187                            fs_info->fsid, sb->dev_item.fsid);
4188                 ret = -EINVAL;
4189         }
4190
4191         /*
4192          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4193          * done later
4194          */
4195         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4196                 btrfs_err(fs_info, "bytes_used is too small %llu",
4197                           btrfs_super_bytes_used(sb));
4198                 ret = -EINVAL;
4199         }
4200         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4201                 btrfs_err(fs_info, "invalid stripesize %u",
4202                           btrfs_super_stripesize(sb));
4203                 ret = -EINVAL;
4204         }
4205         if (btrfs_super_num_devices(sb) > (1UL << 31))
4206                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4207                            btrfs_super_num_devices(sb));
4208         if (btrfs_super_num_devices(sb) == 0) {
4209                 btrfs_err(fs_info, "number of devices is 0");
4210                 ret = -EINVAL;
4211         }
4212
4213         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4214                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4215                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4216                 ret = -EINVAL;
4217         }
4218
4219         /*
4220          * Obvious sys_chunk_array corruptions, it must hold at least one key
4221          * and one chunk
4222          */
4223         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4224                 btrfs_err(fs_info, "system chunk array too big %u > %u",
4225                           btrfs_super_sys_array_size(sb),
4226                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4227                 ret = -EINVAL;
4228         }
4229         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4230                         + sizeof(struct btrfs_chunk)) {
4231                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4232                           btrfs_super_sys_array_size(sb),
4233                           sizeof(struct btrfs_disk_key)
4234                           + sizeof(struct btrfs_chunk));
4235                 ret = -EINVAL;
4236         }
4237
4238         /*
4239          * The generation is a global counter, we'll trust it more than the others
4240          * but it's still possible that it's the one that's wrong.
4241          */
4242         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4243                 btrfs_warn(fs_info,
4244                         "suspicious: generation < chunk_root_generation: %llu < %llu",
4245                         btrfs_super_generation(sb),
4246                         btrfs_super_chunk_root_generation(sb));
4247         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4248             && btrfs_super_cache_generation(sb) != (u64)-1)
4249                 btrfs_warn(fs_info,
4250                         "suspicious: generation < cache_generation: %llu < %llu",
4251                         btrfs_super_generation(sb),
4252                         btrfs_super_cache_generation(sb));
4253
4254         return ret;
4255 }
4256
4257 static void btrfs_error_commit_super(struct btrfs_root *root)
4258 {
4259         mutex_lock(&root->fs_info->cleaner_mutex);
4260         btrfs_run_delayed_iputs(root);
4261         mutex_unlock(&root->fs_info->cleaner_mutex);
4262
4263         down_write(&root->fs_info->cleanup_work_sem);
4264         up_write(&root->fs_info->cleanup_work_sem);
4265
4266         /* cleanup FS via transaction */
4267         btrfs_cleanup_transaction(root);
4268 }
4269
4270 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4271 {
4272         struct btrfs_ordered_extent *ordered;
4273
4274         spin_lock(&root->ordered_extent_lock);
4275         /*
4276          * This will just short circuit the ordered completion stuff which will
4277          * make sure the ordered extent gets properly cleaned up.
4278          */
4279         list_for_each_entry(ordered, &root->ordered_extents,
4280                             root_extent_list)
4281                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4282         spin_unlock(&root->ordered_extent_lock);
4283 }
4284
4285 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4286 {
4287         struct btrfs_root *root;
4288         struct list_head splice;
4289
4290         INIT_LIST_HEAD(&splice);
4291
4292         spin_lock(&fs_info->ordered_root_lock);
4293         list_splice_init(&fs_info->ordered_roots, &splice);
4294         while (!list_empty(&splice)) {
4295                 root = list_first_entry(&splice, struct btrfs_root,
4296                                         ordered_root);
4297                 list_move_tail(&root->ordered_root,
4298                                &fs_info->ordered_roots);
4299
4300                 spin_unlock(&fs_info->ordered_root_lock);
4301                 btrfs_destroy_ordered_extents(root);
4302
4303                 cond_resched();
4304                 spin_lock(&fs_info->ordered_root_lock);
4305         }
4306         spin_unlock(&fs_info->ordered_root_lock);
4307 }
4308
4309 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4310                                       struct btrfs_root *root)
4311 {
4312         struct rb_node *node;
4313         struct btrfs_delayed_ref_root *delayed_refs;
4314         struct btrfs_delayed_ref_node *ref;
4315         int ret = 0;
4316
4317         delayed_refs = &trans->delayed_refs;
4318
4319         spin_lock(&delayed_refs->lock);
4320         if (atomic_read(&delayed_refs->num_entries) == 0) {
4321                 spin_unlock(&delayed_refs->lock);
4322                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4323                 return ret;
4324         }
4325
4326         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4327                 struct btrfs_delayed_ref_head *head;
4328                 struct btrfs_delayed_ref_node *tmp;
4329                 bool pin_bytes = false;
4330
4331                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4332                                 href_node);
4333                 if (!mutex_trylock(&head->mutex)) {
4334                         atomic_inc(&head->node.refs);
4335                         spin_unlock(&delayed_refs->lock);
4336
4337                         mutex_lock(&head->mutex);
4338                         mutex_unlock(&head->mutex);
4339                         btrfs_put_delayed_ref(&head->node);
4340                         spin_lock(&delayed_refs->lock);
4341                         continue;
4342                 }
4343                 spin_lock(&head->lock);
4344                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4345                                                  list) {
4346                         ref->in_tree = 0;
4347                         list_del(&ref->list);
4348                         atomic_dec(&delayed_refs->num_entries);
4349                         btrfs_put_delayed_ref(ref);
4350                 }
4351                 if (head->must_insert_reserved)
4352                         pin_bytes = true;
4353                 btrfs_free_delayed_extent_op(head->extent_op);
4354                 delayed_refs->num_heads--;
4355                 if (head->processing == 0)
4356                         delayed_refs->num_heads_ready--;
4357                 atomic_dec(&delayed_refs->num_entries);
4358                 head->node.in_tree = 0;
4359                 rb_erase(&head->href_node, &delayed_refs->href_root);
4360                 spin_unlock(&head->lock);
4361                 spin_unlock(&delayed_refs->lock);
4362                 mutex_unlock(&head->mutex);
4363
4364                 if (pin_bytes)
4365                         btrfs_pin_extent(root, head->node.bytenr,
4366                                          head->node.num_bytes, 1);
4367                 btrfs_put_delayed_ref(&head->node);
4368                 cond_resched();
4369                 spin_lock(&delayed_refs->lock);
4370         }
4371
4372         spin_unlock(&delayed_refs->lock);
4373
4374         return ret;
4375 }
4376
4377 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4378 {
4379         struct btrfs_inode *btrfs_inode;
4380         struct list_head splice;
4381
4382         INIT_LIST_HEAD(&splice);
4383
4384         spin_lock(&root->delalloc_lock);
4385         list_splice_init(&root->delalloc_inodes, &splice);
4386
4387         while (!list_empty(&splice)) {
4388                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4389                                                delalloc_inodes);
4390
4391                 list_del_init(&btrfs_inode->delalloc_inodes);
4392                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4393                           &btrfs_inode->runtime_flags);
4394                 spin_unlock(&root->delalloc_lock);
4395
4396                 btrfs_invalidate_inodes(btrfs_inode->root);
4397
4398                 spin_lock(&root->delalloc_lock);
4399         }
4400
4401         spin_unlock(&root->delalloc_lock);
4402 }
4403
4404 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4405 {
4406         struct btrfs_root *root;
4407         struct list_head splice;
4408
4409         INIT_LIST_HEAD(&splice);
4410
4411         spin_lock(&fs_info->delalloc_root_lock);
4412         list_splice_init(&fs_info->delalloc_roots, &splice);
4413         while (!list_empty(&splice)) {
4414                 root = list_first_entry(&splice, struct btrfs_root,
4415                                          delalloc_root);
4416                 list_del_init(&root->delalloc_root);
4417                 root = btrfs_grab_fs_root(root);
4418                 BUG_ON(!root);
4419                 spin_unlock(&fs_info->delalloc_root_lock);
4420
4421                 btrfs_destroy_delalloc_inodes(root);
4422                 btrfs_put_fs_root(root);
4423
4424                 spin_lock(&fs_info->delalloc_root_lock);
4425         }
4426         spin_unlock(&fs_info->delalloc_root_lock);
4427 }
4428
4429 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4430                                         struct extent_io_tree *dirty_pages,
4431                                         int mark)
4432 {
4433         int ret;
4434         struct extent_buffer *eb;
4435         u64 start = 0;
4436         u64 end;
4437
4438         while (1) {
4439                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4440                                             mark, NULL);
4441                 if (ret)
4442                         break;
4443
4444                 clear_extent_bits(dirty_pages, start, end, mark);
4445                 while (start <= end) {
4446                         eb = btrfs_find_tree_block(root->fs_info, start);
4447                         start += root->nodesize;
4448                         if (!eb)
4449                                 continue;
4450                         wait_on_extent_buffer_writeback(eb);
4451
4452                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4453                                                &eb->bflags))
4454                                 clear_extent_buffer_dirty(eb);
4455                         free_extent_buffer_stale(eb);
4456                 }
4457         }
4458
4459         return ret;
4460 }
4461
4462 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4463                                        struct extent_io_tree *pinned_extents)
4464 {
4465         struct extent_io_tree *unpin;
4466         u64 start;
4467         u64 end;
4468         int ret;
4469         bool loop = true;
4470
4471         unpin = pinned_extents;
4472 again:
4473         while (1) {
4474                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4475                                             EXTENT_DIRTY, NULL);
4476                 if (ret)
4477                         break;
4478
4479                 clear_extent_dirty(unpin, start, end);
4480                 btrfs_error_unpin_extent_range(root, start, end);
4481                 cond_resched();
4482         }
4483
4484         if (loop) {
4485                 if (unpin == &root->fs_info->freed_extents[0])
4486                         unpin = &root->fs_info->freed_extents[1];
4487                 else
4488                         unpin = &root->fs_info->freed_extents[0];
4489                 loop = false;
4490                 goto again;
4491         }
4492
4493         return 0;
4494 }
4495
4496 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4497 {
4498         struct inode *inode;
4499
4500         inode = cache->io_ctl.inode;
4501         if (inode) {
4502                 invalidate_inode_pages2(inode->i_mapping);
4503                 BTRFS_I(inode)->generation = 0;
4504                 cache->io_ctl.inode = NULL;
4505                 iput(inode);
4506         }
4507         btrfs_put_block_group(cache);
4508 }
4509
4510 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4511                              struct btrfs_root *root)
4512 {
4513         struct btrfs_block_group_cache *cache;
4514
4515         spin_lock(&cur_trans->dirty_bgs_lock);
4516         while (!list_empty(&cur_trans->dirty_bgs)) {
4517                 cache = list_first_entry(&cur_trans->dirty_bgs,
4518                                          struct btrfs_block_group_cache,
4519                                          dirty_list);
4520                 if (!cache) {
4521                         btrfs_err(root->fs_info,
4522                                   "orphan block group dirty_bgs list");
4523                         spin_unlock(&cur_trans->dirty_bgs_lock);
4524                         return;
4525                 }
4526
4527                 if (!list_empty(&cache->io_list)) {
4528                         spin_unlock(&cur_trans->dirty_bgs_lock);
4529                         list_del_init(&cache->io_list);
4530                         btrfs_cleanup_bg_io(cache);
4531                         spin_lock(&cur_trans->dirty_bgs_lock);
4532                 }
4533
4534                 list_del_init(&cache->dirty_list);
4535                 spin_lock(&cache->lock);
4536                 cache->disk_cache_state = BTRFS_DC_ERROR;
4537                 spin_unlock(&cache->lock);
4538
4539                 spin_unlock(&cur_trans->dirty_bgs_lock);
4540                 btrfs_put_block_group(cache);
4541                 spin_lock(&cur_trans->dirty_bgs_lock);
4542         }
4543         spin_unlock(&cur_trans->dirty_bgs_lock);
4544
4545         while (!list_empty(&cur_trans->io_bgs)) {
4546                 cache = list_first_entry(&cur_trans->io_bgs,
4547                                          struct btrfs_block_group_cache,
4548                                          io_list);
4549                 if (!cache) {
4550                         btrfs_err(root->fs_info,
4551                                   "orphan block group on io_bgs list");
4552                         return;
4553                 }
4554
4555                 list_del_init(&cache->io_list);
4556                 spin_lock(&cache->lock);
4557                 cache->disk_cache_state = BTRFS_DC_ERROR;
4558                 spin_unlock(&cache->lock);
4559                 btrfs_cleanup_bg_io(cache);
4560         }
4561 }
4562
4563 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4564                                    struct btrfs_root *root)
4565 {
4566         btrfs_cleanup_dirty_bgs(cur_trans, root);
4567         ASSERT(list_empty(&cur_trans->dirty_bgs));
4568         ASSERT(list_empty(&cur_trans->io_bgs));
4569
4570         btrfs_destroy_delayed_refs(cur_trans, root);
4571
4572         cur_trans->state = TRANS_STATE_COMMIT_START;
4573         wake_up(&root->fs_info->transaction_blocked_wait);
4574
4575         cur_trans->state = TRANS_STATE_UNBLOCKED;
4576         wake_up(&root->fs_info->transaction_wait);
4577
4578         btrfs_destroy_delayed_inodes(root);
4579         btrfs_assert_delayed_root_empty(root);
4580
4581         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4582                                      EXTENT_DIRTY);
4583         btrfs_destroy_pinned_extent(root,
4584                                     root->fs_info->pinned_extents);
4585
4586         cur_trans->state =TRANS_STATE_COMPLETED;
4587         wake_up(&cur_trans->commit_wait);
4588
4589         /*
4590         memset(cur_trans, 0, sizeof(*cur_trans));
4591         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4592         */
4593 }
4594
4595 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4596 {
4597         struct btrfs_transaction *t;
4598
4599         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4600
4601         spin_lock(&root->fs_info->trans_lock);
4602         while (!list_empty(&root->fs_info->trans_list)) {
4603                 t = list_first_entry(&root->fs_info->trans_list,
4604                                      struct btrfs_transaction, list);
4605                 if (t->state >= TRANS_STATE_COMMIT_START) {
4606                         atomic_inc(&t->use_count);
4607                         spin_unlock(&root->fs_info->trans_lock);
4608                         btrfs_wait_for_commit(root, t->transid);
4609                         btrfs_put_transaction(t);
4610                         spin_lock(&root->fs_info->trans_lock);
4611                         continue;
4612                 }
4613                 if (t == root->fs_info->running_transaction) {
4614                         t->state = TRANS_STATE_COMMIT_DOING;
4615                         spin_unlock(&root->fs_info->trans_lock);
4616                         /*
4617                          * We wait for 0 num_writers since we don't hold a trans
4618                          * handle open currently for this transaction.
4619                          */
4620                         wait_event(t->writer_wait,
4621                                    atomic_read(&t->num_writers) == 0);
4622                 } else {
4623                         spin_unlock(&root->fs_info->trans_lock);
4624                 }
4625                 btrfs_cleanup_one_transaction(t, root);
4626
4627                 spin_lock(&root->fs_info->trans_lock);
4628                 if (t == root->fs_info->running_transaction)
4629                         root->fs_info->running_transaction = NULL;
4630                 list_del_init(&t->list);
4631                 spin_unlock(&root->fs_info->trans_lock);
4632
4633                 btrfs_put_transaction(t);
4634                 trace_btrfs_transaction_commit(root);
4635                 spin_lock(&root->fs_info->trans_lock);
4636         }
4637         spin_unlock(&root->fs_info->trans_lock);
4638         btrfs_destroy_all_ordered_extents(root->fs_info);
4639         btrfs_destroy_delayed_inodes(root);
4640         btrfs_assert_delayed_root_empty(root);
4641         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4642         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4643         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4644
4645         return 0;
4646 }
4647
4648 static const struct extent_io_ops btree_extent_io_ops = {
4649         .readpage_end_io_hook = btree_readpage_end_io_hook,
4650         .readpage_io_failed_hook = btree_io_failed_hook,
4651         .submit_bio_hook = btree_submit_bio_hook,
4652         /* note we're sharing with inode.c for the merge bio hook */
4653         .merge_bio_hook = btrfs_merge_bio_hook,
4654 };