x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 #include "compression.h"
45
46 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 /*
48  * when auto defrag is enabled we
49  * queue up these defrag structs to remember which
50  * inodes need defragging passes
51  */
52 struct inode_defrag {
53         struct rb_node rb_node;
54         /* objectid */
55         u64 ino;
56         /*
57          * transid where the defrag was added, we search for
58          * extents newer than this
59          */
60         u64 transid;
61
62         /* root objectid */
63         u64 root;
64
65         /* last offset we were able to defrag */
66         u64 last_offset;
67
68         /* if we've wrapped around back to zero once already */
69         int cycled;
70 };
71
72 static int __compare_inode_defrag(struct inode_defrag *defrag1,
73                                   struct inode_defrag *defrag2)
74 {
75         if (defrag1->root > defrag2->root)
76                 return 1;
77         else if (defrag1->root < defrag2->root)
78                 return -1;
79         else if (defrag1->ino > defrag2->ino)
80                 return 1;
81         else if (defrag1->ino < defrag2->ino)
82                 return -1;
83         else
84                 return 0;
85 }
86
87 /* pop a record for an inode into the defrag tree.  The lock
88  * must be held already
89  *
90  * If you're inserting a record for an older transid than an
91  * existing record, the transid already in the tree is lowered
92  *
93  * If an existing record is found the defrag item you
94  * pass in is freed
95  */
96 static int __btrfs_add_inode_defrag(struct inode *inode,
97                                     struct inode_defrag *defrag)
98 {
99         struct btrfs_root *root = BTRFS_I(inode)->root;
100         struct inode_defrag *entry;
101         struct rb_node **p;
102         struct rb_node *parent = NULL;
103         int ret;
104
105         p = &root->fs_info->defrag_inodes.rb_node;
106         while (*p) {
107                 parent = *p;
108                 entry = rb_entry(parent, struct inode_defrag, rb_node);
109
110                 ret = __compare_inode_defrag(defrag, entry);
111                 if (ret < 0)
112                         p = &parent->rb_left;
113                 else if (ret > 0)
114                         p = &parent->rb_right;
115                 else {
116                         /* if we're reinserting an entry for
117                          * an old defrag run, make sure to
118                          * lower the transid of our existing record
119                          */
120                         if (defrag->transid < entry->transid)
121                                 entry->transid = defrag->transid;
122                         if (defrag->last_offset > entry->last_offset)
123                                 entry->last_offset = defrag->last_offset;
124                         return -EEXIST;
125                 }
126         }
127         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
128         rb_link_node(&defrag->rb_node, parent, p);
129         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
130         return 0;
131 }
132
133 static inline int __need_auto_defrag(struct btrfs_root *root)
134 {
135         if (!btrfs_test_opt(root->fs_info, AUTO_DEFRAG))
136                 return 0;
137
138         if (btrfs_fs_closing(root->fs_info))
139                 return 0;
140
141         return 1;
142 }
143
144 /*
145  * insert a defrag record for this inode if auto defrag is
146  * enabled
147  */
148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149                            struct inode *inode)
150 {
151         struct btrfs_root *root = BTRFS_I(inode)->root;
152         struct inode_defrag *defrag;
153         u64 transid;
154         int ret;
155
156         if (!__need_auto_defrag(root))
157                 return 0;
158
159         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
160                 return 0;
161
162         if (trans)
163                 transid = trans->transid;
164         else
165                 transid = BTRFS_I(inode)->root->last_trans;
166
167         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168         if (!defrag)
169                 return -ENOMEM;
170
171         defrag->ino = btrfs_ino(inode);
172         defrag->transid = transid;
173         defrag->root = root->root_key.objectid;
174
175         spin_lock(&root->fs_info->defrag_inodes_lock);
176         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
177                 /*
178                  * If we set IN_DEFRAG flag and evict the inode from memory,
179                  * and then re-read this inode, this new inode doesn't have
180                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
181                  */
182                 ret = __btrfs_add_inode_defrag(inode, defrag);
183                 if (ret)
184                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185         } else {
186                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187         }
188         spin_unlock(&root->fs_info->defrag_inodes_lock);
189         return 0;
190 }
191
192 /*
193  * Requeue the defrag object. If there is a defrag object that points to
194  * the same inode in the tree, we will merge them together (by
195  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196  */
197 static void btrfs_requeue_inode_defrag(struct inode *inode,
198                                        struct inode_defrag *defrag)
199 {
200         struct btrfs_root *root = BTRFS_I(inode)->root;
201         int ret;
202
203         if (!__need_auto_defrag(root))
204                 goto out;
205
206         /*
207          * Here we don't check the IN_DEFRAG flag, because we need merge
208          * them together.
209          */
210         spin_lock(&root->fs_info->defrag_inodes_lock);
211         ret = __btrfs_add_inode_defrag(inode, defrag);
212         spin_unlock(&root->fs_info->defrag_inodes_lock);
213         if (ret)
214                 goto out;
215         return;
216 out:
217         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219
220 /*
221  * pick the defragable inode that we want, if it doesn't exist, we will get
222  * the next one.
223  */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227         struct inode_defrag *entry = NULL;
228         struct inode_defrag tmp;
229         struct rb_node *p;
230         struct rb_node *parent = NULL;
231         int ret;
232
233         tmp.ino = ino;
234         tmp.root = root;
235
236         spin_lock(&fs_info->defrag_inodes_lock);
237         p = fs_info->defrag_inodes.rb_node;
238         while (p) {
239                 parent = p;
240                 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242                 ret = __compare_inode_defrag(&tmp, entry);
243                 if (ret < 0)
244                         p = parent->rb_left;
245                 else if (ret > 0)
246                         p = parent->rb_right;
247                 else
248                         goto out;
249         }
250
251         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252                 parent = rb_next(parent);
253                 if (parent)
254                         entry = rb_entry(parent, struct inode_defrag, rb_node);
255                 else
256                         entry = NULL;
257         }
258 out:
259         if (entry)
260                 rb_erase(parent, &fs_info->defrag_inodes);
261         spin_unlock(&fs_info->defrag_inodes_lock);
262         return entry;
263 }
264
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267         struct inode_defrag *defrag;
268         struct rb_node *node;
269
270         spin_lock(&fs_info->defrag_inodes_lock);
271         node = rb_first(&fs_info->defrag_inodes);
272         while (node) {
273                 rb_erase(node, &fs_info->defrag_inodes);
274                 defrag = rb_entry(node, struct inode_defrag, rb_node);
275                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277                 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279                 node = rb_first(&fs_info->defrag_inodes);
280         }
281         spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283
284 #define BTRFS_DEFRAG_BATCH      1024
285
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287                                     struct inode_defrag *defrag)
288 {
289         struct btrfs_root *inode_root;
290         struct inode *inode;
291         struct btrfs_key key;
292         struct btrfs_ioctl_defrag_range_args range;
293         int num_defrag;
294         int index;
295         int ret;
296
297         /* get the inode */
298         key.objectid = defrag->root;
299         key.type = BTRFS_ROOT_ITEM_KEY;
300         key.offset = (u64)-1;
301
302         index = srcu_read_lock(&fs_info->subvol_srcu);
303
304         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305         if (IS_ERR(inode_root)) {
306                 ret = PTR_ERR(inode_root);
307                 goto cleanup;
308         }
309
310         key.objectid = defrag->ino;
311         key.type = BTRFS_INODE_ITEM_KEY;
312         key.offset = 0;
313         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314         if (IS_ERR(inode)) {
315                 ret = PTR_ERR(inode);
316                 goto cleanup;
317         }
318         srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320         /* do a chunk of defrag */
321         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322         memset(&range, 0, sizeof(range));
323         range.len = (u64)-1;
324         range.start = defrag->last_offset;
325
326         sb_start_write(fs_info->sb);
327         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328                                        BTRFS_DEFRAG_BATCH);
329         sb_end_write(fs_info->sb);
330         /*
331          * if we filled the whole defrag batch, there
332          * must be more work to do.  Queue this defrag
333          * again
334          */
335         if (num_defrag == BTRFS_DEFRAG_BATCH) {
336                 defrag->last_offset = range.start;
337                 btrfs_requeue_inode_defrag(inode, defrag);
338         } else if (defrag->last_offset && !defrag->cycled) {
339                 /*
340                  * we didn't fill our defrag batch, but
341                  * we didn't start at zero.  Make sure we loop
342                  * around to the start of the file.
343                  */
344                 defrag->last_offset = 0;
345                 defrag->cycled = 1;
346                 btrfs_requeue_inode_defrag(inode, defrag);
347         } else {
348                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349         }
350
351         iput(inode);
352         return 0;
353 cleanup:
354         srcu_read_unlock(&fs_info->subvol_srcu, index);
355         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356         return ret;
357 }
358
359 /*
360  * run through the list of inodes in the FS that need
361  * defragging
362  */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365         struct inode_defrag *defrag;
366         u64 first_ino = 0;
367         u64 root_objectid = 0;
368
369         atomic_inc(&fs_info->defrag_running);
370         while (1) {
371                 /* Pause the auto defragger. */
372                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373                              &fs_info->fs_state))
374                         break;
375
376                 if (!__need_auto_defrag(fs_info->tree_root))
377                         break;
378
379                 /* find an inode to defrag */
380                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381                                                  first_ino);
382                 if (!defrag) {
383                         if (root_objectid || first_ino) {
384                                 root_objectid = 0;
385                                 first_ino = 0;
386                                 continue;
387                         } else {
388                                 break;
389                         }
390                 }
391
392                 first_ino = defrag->ino + 1;
393                 root_objectid = defrag->root;
394
395                 __btrfs_run_defrag_inode(fs_info, defrag);
396         }
397         atomic_dec(&fs_info->defrag_running);
398
399         /*
400          * during unmount, we use the transaction_wait queue to
401          * wait for the defragger to stop
402          */
403         wake_up(&fs_info->transaction_wait);
404         return 0;
405 }
406
407 /* simple helper to fault in pages and copy.  This should go away
408  * and be replaced with calls into generic code.
409  */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411                                          struct page **prepared_pages,
412                                          struct iov_iter *i)
413 {
414         size_t copied = 0;
415         size_t total_copied = 0;
416         int pg = 0;
417         int offset = pos & (PAGE_SIZE - 1);
418
419         while (write_bytes > 0) {
420                 size_t count = min_t(size_t,
421                                      PAGE_SIZE - offset, write_bytes);
422                 struct page *page = prepared_pages[pg];
423                 /*
424                  * Copy data from userspace to the current page
425                  */
426                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428                 /* Flush processor's dcache for this page */
429                 flush_dcache_page(page);
430
431                 /*
432                  * if we get a partial write, we can end up with
433                  * partially up to date pages.  These add
434                  * a lot of complexity, so make sure they don't
435                  * happen by forcing this copy to be retried.
436                  *
437                  * The rest of the btrfs_file_write code will fall
438                  * back to page at a time copies after we return 0.
439                  */
440                 if (!PageUptodate(page) && copied < count)
441                         copied = 0;
442
443                 iov_iter_advance(i, copied);
444                 write_bytes -= copied;
445                 total_copied += copied;
446
447                 /* Return to btrfs_file_write_iter to fault page */
448                 if (unlikely(copied == 0))
449                         break;
450
451                 if (copied < PAGE_SIZE - offset) {
452                         offset += copied;
453                 } else {
454                         pg++;
455                         offset = 0;
456                 }
457         }
458         return total_copied;
459 }
460
461 /*
462  * unlocks pages after btrfs_file_write is done with them
463  */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466         size_t i;
467         for (i = 0; i < num_pages; i++) {
468                 /* page checked is some magic around finding pages that
469                  * have been modified without going through btrfs_set_page_dirty
470                  * clear it here. There should be no need to mark the pages
471                  * accessed as prepare_pages should have marked them accessed
472                  * in prepare_pages via find_or_create_page()
473                  */
474                 ClearPageChecked(pages[i]);
475                 unlock_page(pages[i]);
476                 put_page(pages[i]);
477         }
478 }
479
480 /*
481  * after copy_from_user, pages need to be dirtied and we need to make
482  * sure holes are created between the current EOF and the start of
483  * any next extents (if required).
484  *
485  * this also makes the decision about creating an inline extent vs
486  * doing real data extents, marking pages dirty and delalloc as required.
487  */
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489                              struct page **pages, size_t num_pages,
490                              loff_t pos, size_t write_bytes,
491                              struct extent_state **cached)
492 {
493         int err = 0;
494         int i;
495         u64 num_bytes;
496         u64 start_pos;
497         u64 end_of_last_block;
498         u64 end_pos = pos + write_bytes;
499         loff_t isize = i_size_read(inode);
500
501         start_pos = pos & ~((u64)root->sectorsize - 1);
502         num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
503
504         end_of_last_block = start_pos + num_bytes - 1;
505         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506                                         cached, 0);
507         if (err)
508                 return err;
509
510         for (i = 0; i < num_pages; i++) {
511                 struct page *p = pages[i];
512                 SetPageUptodate(p);
513                 ClearPageChecked(p);
514                 set_page_dirty(p);
515         }
516
517         /*
518          * we've only changed i_size in ram, and we haven't updated
519          * the disk i_size.  There is no need to log the inode
520          * at this time.
521          */
522         if (end_pos > isize)
523                 i_size_write(inode, end_pos);
524         return 0;
525 }
526
527 /*
528  * this drops all the extents in the cache that intersect the range
529  * [start, end].  Existing extents are split as required.
530  */
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532                              int skip_pinned)
533 {
534         struct extent_map *em;
535         struct extent_map *split = NULL;
536         struct extent_map *split2 = NULL;
537         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538         u64 len = end - start + 1;
539         u64 gen;
540         int ret;
541         int testend = 1;
542         unsigned long flags;
543         int compressed = 0;
544         bool modified;
545
546         WARN_ON(end < start);
547         if (end == (u64)-1) {
548                 len = (u64)-1;
549                 testend = 0;
550         }
551         while (1) {
552                 int no_splits = 0;
553
554                 modified = false;
555                 if (!split)
556                         split = alloc_extent_map();
557                 if (!split2)
558                         split2 = alloc_extent_map();
559                 if (!split || !split2)
560                         no_splits = 1;
561
562                 write_lock(&em_tree->lock);
563                 em = lookup_extent_mapping(em_tree, start, len);
564                 if (!em) {
565                         write_unlock(&em_tree->lock);
566                         break;
567                 }
568                 flags = em->flags;
569                 gen = em->generation;
570                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571                         if (testend && em->start + em->len >= start + len) {
572                                 free_extent_map(em);
573                                 write_unlock(&em_tree->lock);
574                                 break;
575                         }
576                         start = em->start + em->len;
577                         if (testend)
578                                 len = start + len - (em->start + em->len);
579                         free_extent_map(em);
580                         write_unlock(&em_tree->lock);
581                         continue;
582                 }
583                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
586                 modified = !list_empty(&em->list);
587                 if (no_splits)
588                         goto next;
589
590                 if (em->start < start) {
591                         split->start = em->start;
592                         split->len = start - em->start;
593
594                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595                                 split->orig_start = em->orig_start;
596                                 split->block_start = em->block_start;
597
598                                 if (compressed)
599                                         split->block_len = em->block_len;
600                                 else
601                                         split->block_len = split->len;
602                                 split->orig_block_len = max(split->block_len,
603                                                 em->orig_block_len);
604                                 split->ram_bytes = em->ram_bytes;
605                         } else {
606                                 split->orig_start = split->start;
607                                 split->block_len = 0;
608                                 split->block_start = em->block_start;
609                                 split->orig_block_len = 0;
610                                 split->ram_bytes = split->len;
611                         }
612
613                         split->generation = gen;
614                         split->bdev = em->bdev;
615                         split->flags = flags;
616                         split->compress_type = em->compress_type;
617                         replace_extent_mapping(em_tree, em, split, modified);
618                         free_extent_map(split);
619                         split = split2;
620                         split2 = NULL;
621                 }
622                 if (testend && em->start + em->len > start + len) {
623                         u64 diff = start + len - em->start;
624
625                         split->start = start + len;
626                         split->len = em->start + em->len - (start + len);
627                         split->bdev = em->bdev;
628                         split->flags = flags;
629                         split->compress_type = em->compress_type;
630                         split->generation = gen;
631
632                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633                                 split->orig_block_len = max(em->block_len,
634                                                     em->orig_block_len);
635
636                                 split->ram_bytes = em->ram_bytes;
637                                 if (compressed) {
638                                         split->block_len = em->block_len;
639                                         split->block_start = em->block_start;
640                                         split->orig_start = em->orig_start;
641                                 } else {
642                                         split->block_len = split->len;
643                                         split->block_start = em->block_start
644                                                 + diff;
645                                         split->orig_start = em->orig_start;
646                                 }
647                         } else {
648                                 split->ram_bytes = split->len;
649                                 split->orig_start = split->start;
650                                 split->block_len = 0;
651                                 split->block_start = em->block_start;
652                                 split->orig_block_len = 0;
653                         }
654
655                         if (extent_map_in_tree(em)) {
656                                 replace_extent_mapping(em_tree, em, split,
657                                                        modified);
658                         } else {
659                                 ret = add_extent_mapping(em_tree, split,
660                                                          modified);
661                                 ASSERT(ret == 0); /* Logic error */
662                         }
663                         free_extent_map(split);
664                         split = NULL;
665                 }
666 next:
667                 if (extent_map_in_tree(em))
668                         remove_extent_mapping(em_tree, em);
669                 write_unlock(&em_tree->lock);
670
671                 /* once for us */
672                 free_extent_map(em);
673                 /* once for the tree*/
674                 free_extent_map(em);
675         }
676         if (split)
677                 free_extent_map(split);
678         if (split2)
679                 free_extent_map(split2);
680 }
681
682 /*
683  * this is very complex, but the basic idea is to drop all extents
684  * in the range start - end.  hint_block is filled in with a block number
685  * that would be a good hint to the block allocator for this file.
686  *
687  * If an extent intersects the range but is not entirely inside the range
688  * it is either truncated or split.  Anything entirely inside the range
689  * is deleted from the tree.
690  */
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692                          struct btrfs_root *root, struct inode *inode,
693                          struct btrfs_path *path, u64 start, u64 end,
694                          u64 *drop_end, int drop_cache,
695                          int replace_extent,
696                          u32 extent_item_size,
697                          int *key_inserted)
698 {
699         struct extent_buffer *leaf;
700         struct btrfs_file_extent_item *fi;
701         struct btrfs_key key;
702         struct btrfs_key new_key;
703         u64 ino = btrfs_ino(inode);
704         u64 search_start = start;
705         u64 disk_bytenr = 0;
706         u64 num_bytes = 0;
707         u64 extent_offset = 0;
708         u64 extent_end = 0;
709         int del_nr = 0;
710         int del_slot = 0;
711         int extent_type;
712         int recow;
713         int ret;
714         int modify_tree = -1;
715         int update_refs;
716         int found = 0;
717         int leafs_visited = 0;
718
719         if (drop_cache)
720                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
721
722         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723                 modify_tree = 0;
724
725         update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726                        root == root->fs_info->tree_root);
727         while (1) {
728                 recow = 0;
729                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730                                                search_start, modify_tree);
731                 if (ret < 0)
732                         break;
733                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734                         leaf = path->nodes[0];
735                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736                         if (key.objectid == ino &&
737                             key.type == BTRFS_EXTENT_DATA_KEY)
738                                 path->slots[0]--;
739                 }
740                 ret = 0;
741                 leafs_visited++;
742 next_slot:
743                 leaf = path->nodes[0];
744                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745                         BUG_ON(del_nr > 0);
746                         ret = btrfs_next_leaf(root, path);
747                         if (ret < 0)
748                                 break;
749                         if (ret > 0) {
750                                 ret = 0;
751                                 break;
752                         }
753                         leafs_visited++;
754                         leaf = path->nodes[0];
755                         recow = 1;
756                 }
757
758                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759
760                 if (key.objectid > ino)
761                         break;
762                 if (WARN_ON_ONCE(key.objectid < ino) ||
763                     key.type < BTRFS_EXTENT_DATA_KEY) {
764                         ASSERT(del_nr == 0);
765                         path->slots[0]++;
766                         goto next_slot;
767                 }
768                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769                         break;
770
771                 fi = btrfs_item_ptr(leaf, path->slots[0],
772                                     struct btrfs_file_extent_item);
773                 extent_type = btrfs_file_extent_type(leaf, fi);
774
775                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
776                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779                         extent_offset = btrfs_file_extent_offset(leaf, fi);
780                         extent_end = key.offset +
781                                 btrfs_file_extent_num_bytes(leaf, fi);
782                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783                         extent_end = key.offset +
784                                 btrfs_file_extent_inline_len(leaf,
785                                                      path->slots[0], fi);
786                 } else {
787                         /* can't happen */
788                         BUG();
789                 }
790
791                 /*
792                  * Don't skip extent items representing 0 byte lengths. They
793                  * used to be created (bug) if while punching holes we hit
794                  * -ENOSPC condition. So if we find one here, just ensure we
795                  * delete it, otherwise we would insert a new file extent item
796                  * with the same key (offset) as that 0 bytes length file
797                  * extent item in the call to setup_items_for_insert() later
798                  * in this function.
799                  */
800                 if (extent_end == key.offset && extent_end >= search_start)
801                         goto delete_extent_item;
802
803                 if (extent_end <= search_start) {
804                         path->slots[0]++;
805                         goto next_slot;
806                 }
807
808                 found = 1;
809                 search_start = max(key.offset, start);
810                 if (recow || !modify_tree) {
811                         modify_tree = -1;
812                         btrfs_release_path(path);
813                         continue;
814                 }
815
816                 /*
817                  *     | - range to drop - |
818                  *  | -------- extent -------- |
819                  */
820                 if (start > key.offset && end < extent_end) {
821                         BUG_ON(del_nr > 0);
822                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823                                 ret = -EOPNOTSUPP;
824                                 break;
825                         }
826
827                         memcpy(&new_key, &key, sizeof(new_key));
828                         new_key.offset = start;
829                         ret = btrfs_duplicate_item(trans, root, path,
830                                                    &new_key);
831                         if (ret == -EAGAIN) {
832                                 btrfs_release_path(path);
833                                 continue;
834                         }
835                         if (ret < 0)
836                                 break;
837
838                         leaf = path->nodes[0];
839                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840                                             struct btrfs_file_extent_item);
841                         btrfs_set_file_extent_num_bytes(leaf, fi,
842                                                         start - key.offset);
843
844                         fi = btrfs_item_ptr(leaf, path->slots[0],
845                                             struct btrfs_file_extent_item);
846
847                         extent_offset += start - key.offset;
848                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849                         btrfs_set_file_extent_num_bytes(leaf, fi,
850                                                         extent_end - start);
851                         btrfs_mark_buffer_dirty(leaf);
852
853                         if (update_refs && disk_bytenr > 0) {
854                                 ret = btrfs_inc_extent_ref(trans, root,
855                                                 disk_bytenr, num_bytes, 0,
856                                                 root->root_key.objectid,
857                                                 new_key.objectid,
858                                                 start - extent_offset);
859                                 BUG_ON(ret); /* -ENOMEM */
860                         }
861                         key.offset = start;
862                 }
863                 /*
864                  *  | ---- range to drop ----- |
865                  *      | -------- extent -------- |
866                  */
867                 if (start <= key.offset && end < extent_end) {
868                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869                                 ret = -EOPNOTSUPP;
870                                 break;
871                         }
872
873                         memcpy(&new_key, &key, sizeof(new_key));
874                         new_key.offset = end;
875                         btrfs_set_item_key_safe(root->fs_info, path, &new_key);
876
877                         extent_offset += end - key.offset;
878                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879                         btrfs_set_file_extent_num_bytes(leaf, fi,
880                                                         extent_end - end);
881                         btrfs_mark_buffer_dirty(leaf);
882                         if (update_refs && disk_bytenr > 0)
883                                 inode_sub_bytes(inode, end - key.offset);
884                         break;
885                 }
886
887                 search_start = extent_end;
888                 /*
889                  *       | ---- range to drop ----- |
890                  *  | -------- extent -------- |
891                  */
892                 if (start > key.offset && end >= extent_end) {
893                         BUG_ON(del_nr > 0);
894                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895                                 ret = -EOPNOTSUPP;
896                                 break;
897                         }
898
899                         btrfs_set_file_extent_num_bytes(leaf, fi,
900                                                         start - key.offset);
901                         btrfs_mark_buffer_dirty(leaf);
902                         if (update_refs && disk_bytenr > 0)
903                                 inode_sub_bytes(inode, extent_end - start);
904                         if (end == extent_end)
905                                 break;
906
907                         path->slots[0]++;
908                         goto next_slot;
909                 }
910
911                 /*
912                  *  | ---- range to drop ----- |
913                  *    | ------ extent ------ |
914                  */
915                 if (start <= key.offset && end >= extent_end) {
916 delete_extent_item:
917                         if (del_nr == 0) {
918                                 del_slot = path->slots[0];
919                                 del_nr = 1;
920                         } else {
921                                 BUG_ON(del_slot + del_nr != path->slots[0]);
922                                 del_nr++;
923                         }
924
925                         if (update_refs &&
926                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
927                                 inode_sub_bytes(inode,
928                                                 extent_end - key.offset);
929                                 extent_end = ALIGN(extent_end,
930                                                    root->sectorsize);
931                         } else if (update_refs && disk_bytenr > 0) {
932                                 ret = btrfs_free_extent(trans, root,
933                                                 disk_bytenr, num_bytes, 0,
934                                                 root->root_key.objectid,
935                                                 key.objectid, key.offset -
936                                                 extent_offset);
937                                 BUG_ON(ret); /* -ENOMEM */
938                                 inode_sub_bytes(inode,
939                                                 extent_end - key.offset);
940                         }
941
942                         if (end == extent_end)
943                                 break;
944
945                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946                                 path->slots[0]++;
947                                 goto next_slot;
948                         }
949
950                         ret = btrfs_del_items(trans, root, path, del_slot,
951                                               del_nr);
952                         if (ret) {
953                                 btrfs_abort_transaction(trans, ret);
954                                 break;
955                         }
956
957                         del_nr = 0;
958                         del_slot = 0;
959
960                         btrfs_release_path(path);
961                         continue;
962                 }
963
964                 BUG_ON(1);
965         }
966
967         if (!ret && del_nr > 0) {
968                 /*
969                  * Set path->slots[0] to first slot, so that after the delete
970                  * if items are move off from our leaf to its immediate left or
971                  * right neighbor leafs, we end up with a correct and adjusted
972                  * path->slots[0] for our insertion (if replace_extent != 0).
973                  */
974                 path->slots[0] = del_slot;
975                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976                 if (ret)
977                         btrfs_abort_transaction(trans, ret);
978         }
979
980         leaf = path->nodes[0];
981         /*
982          * If btrfs_del_items() was called, it might have deleted a leaf, in
983          * which case it unlocked our path, so check path->locks[0] matches a
984          * write lock.
985          */
986         if (!ret && replace_extent && leafs_visited == 1 &&
987             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988              path->locks[0] == BTRFS_WRITE_LOCK) &&
989             btrfs_leaf_free_space(root, leaf) >=
990             sizeof(struct btrfs_item) + extent_item_size) {
991
992                 key.objectid = ino;
993                 key.type = BTRFS_EXTENT_DATA_KEY;
994                 key.offset = start;
995                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996                         struct btrfs_key slot_key;
997
998                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000                                 path->slots[0]++;
1001                 }
1002                 setup_items_for_insert(root, path, &key,
1003                                        &extent_item_size,
1004                                        extent_item_size,
1005                                        sizeof(struct btrfs_item) +
1006                                        extent_item_size, 1);
1007                 *key_inserted = 1;
1008         }
1009
1010         if (!replace_extent || !(*key_inserted))
1011                 btrfs_release_path(path);
1012         if (drop_end)
1013                 *drop_end = found ? min(end, extent_end) : end;
1014         return ret;
1015 }
1016
1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018                        struct btrfs_root *root, struct inode *inode, u64 start,
1019                        u64 end, int drop_cache)
1020 {
1021         struct btrfs_path *path;
1022         int ret;
1023
1024         path = btrfs_alloc_path();
1025         if (!path)
1026                 return -ENOMEM;
1027         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028                                    drop_cache, 0, 0, NULL);
1029         btrfs_free_path(path);
1030         return ret;
1031 }
1032
1033 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034                             u64 objectid, u64 bytenr, u64 orig_offset,
1035                             u64 *start, u64 *end)
1036 {
1037         struct btrfs_file_extent_item *fi;
1038         struct btrfs_key key;
1039         u64 extent_end;
1040
1041         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042                 return 0;
1043
1044         btrfs_item_key_to_cpu(leaf, &key, slot);
1045         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046                 return 0;
1047
1048         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052             btrfs_file_extent_compression(leaf, fi) ||
1053             btrfs_file_extent_encryption(leaf, fi) ||
1054             btrfs_file_extent_other_encoding(leaf, fi))
1055                 return 0;
1056
1057         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059                 return 0;
1060
1061         *start = key.offset;
1062         *end = extent_end;
1063         return 1;
1064 }
1065
1066 /*
1067  * Mark extent in the range start - end as written.
1068  *
1069  * This changes extent type from 'pre-allocated' to 'regular'. If only
1070  * part of extent is marked as written, the extent will be split into
1071  * two or three.
1072  */
1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074                               struct inode *inode, u64 start, u64 end)
1075 {
1076         struct btrfs_root *root = BTRFS_I(inode)->root;
1077         struct extent_buffer *leaf;
1078         struct btrfs_path *path;
1079         struct btrfs_file_extent_item *fi;
1080         struct btrfs_key key;
1081         struct btrfs_key new_key;
1082         u64 bytenr;
1083         u64 num_bytes;
1084         u64 extent_end;
1085         u64 orig_offset;
1086         u64 other_start;
1087         u64 other_end;
1088         u64 split;
1089         int del_nr = 0;
1090         int del_slot = 0;
1091         int recow;
1092         int ret;
1093         u64 ino = btrfs_ino(inode);
1094
1095         path = btrfs_alloc_path();
1096         if (!path)
1097                 return -ENOMEM;
1098 again:
1099         recow = 0;
1100         split = start;
1101         key.objectid = ino;
1102         key.type = BTRFS_EXTENT_DATA_KEY;
1103         key.offset = split;
1104
1105         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106         if (ret < 0)
1107                 goto out;
1108         if (ret > 0 && path->slots[0] > 0)
1109                 path->slots[0]--;
1110
1111         leaf = path->nodes[0];
1112         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113         if (key.objectid != ino ||
1114             key.type != BTRFS_EXTENT_DATA_KEY) {
1115                 ret = -EINVAL;
1116                 btrfs_abort_transaction(trans, ret);
1117                 goto out;
1118         }
1119         fi = btrfs_item_ptr(leaf, path->slots[0],
1120                             struct btrfs_file_extent_item);
1121         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1122                 ret = -EINVAL;
1123                 btrfs_abort_transaction(trans, ret);
1124                 goto out;
1125         }
1126         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1127         if (key.offset > start || extent_end < end) {
1128                 ret = -EINVAL;
1129                 btrfs_abort_transaction(trans, ret);
1130                 goto out;
1131         }
1132
1133         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1134         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1135         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1136         memcpy(&new_key, &key, sizeof(new_key));
1137
1138         if (start == key.offset && end < extent_end) {
1139                 other_start = 0;
1140                 other_end = start;
1141                 if (extent_mergeable(leaf, path->slots[0] - 1,
1142                                      ino, bytenr, orig_offset,
1143                                      &other_start, &other_end)) {
1144                         new_key.offset = end;
1145                         btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1146                         fi = btrfs_item_ptr(leaf, path->slots[0],
1147                                             struct btrfs_file_extent_item);
1148                         btrfs_set_file_extent_generation(leaf, fi,
1149                                                          trans->transid);
1150                         btrfs_set_file_extent_num_bytes(leaf, fi,
1151                                                         extent_end - end);
1152                         btrfs_set_file_extent_offset(leaf, fi,
1153                                                      end - orig_offset);
1154                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1155                                             struct btrfs_file_extent_item);
1156                         btrfs_set_file_extent_generation(leaf, fi,
1157                                                          trans->transid);
1158                         btrfs_set_file_extent_num_bytes(leaf, fi,
1159                                                         end - other_start);
1160                         btrfs_mark_buffer_dirty(leaf);
1161                         goto out;
1162                 }
1163         }
1164
1165         if (start > key.offset && end == extent_end) {
1166                 other_start = end;
1167                 other_end = 0;
1168                 if (extent_mergeable(leaf, path->slots[0] + 1,
1169                                      ino, bytenr, orig_offset,
1170                                      &other_start, &other_end)) {
1171                         fi = btrfs_item_ptr(leaf, path->slots[0],
1172                                             struct btrfs_file_extent_item);
1173                         btrfs_set_file_extent_num_bytes(leaf, fi,
1174                                                         start - key.offset);
1175                         btrfs_set_file_extent_generation(leaf, fi,
1176                                                          trans->transid);
1177                         path->slots[0]++;
1178                         new_key.offset = start;
1179                         btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1180
1181                         fi = btrfs_item_ptr(leaf, path->slots[0],
1182                                             struct btrfs_file_extent_item);
1183                         btrfs_set_file_extent_generation(leaf, fi,
1184                                                          trans->transid);
1185                         btrfs_set_file_extent_num_bytes(leaf, fi,
1186                                                         other_end - start);
1187                         btrfs_set_file_extent_offset(leaf, fi,
1188                                                      start - orig_offset);
1189                         btrfs_mark_buffer_dirty(leaf);
1190                         goto out;
1191                 }
1192         }
1193
1194         while (start > key.offset || end < extent_end) {
1195                 if (key.offset == start)
1196                         split = end;
1197
1198                 new_key.offset = split;
1199                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1200                 if (ret == -EAGAIN) {
1201                         btrfs_release_path(path);
1202                         goto again;
1203                 }
1204                 if (ret < 0) {
1205                         btrfs_abort_transaction(trans, ret);
1206                         goto out;
1207                 }
1208
1209                 leaf = path->nodes[0];
1210                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1211                                     struct btrfs_file_extent_item);
1212                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1213                 btrfs_set_file_extent_num_bytes(leaf, fi,
1214                                                 split - key.offset);
1215
1216                 fi = btrfs_item_ptr(leaf, path->slots[0],
1217                                     struct btrfs_file_extent_item);
1218
1219                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1220                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1221                 btrfs_set_file_extent_num_bytes(leaf, fi,
1222                                                 extent_end - split);
1223                 btrfs_mark_buffer_dirty(leaf);
1224
1225                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1226                                            root->root_key.objectid,
1227                                            ino, orig_offset);
1228                 if (ret) {
1229                         btrfs_abort_transaction(trans, ret);
1230                         goto out;
1231                 }
1232
1233                 if (split == start) {
1234                         key.offset = start;
1235                 } else {
1236                         if (start != key.offset) {
1237                                 ret = -EINVAL;
1238                                 btrfs_abort_transaction(trans, ret);
1239                                 goto out;
1240                         }
1241                         path->slots[0]--;
1242                         extent_end = end;
1243                 }
1244                 recow = 1;
1245         }
1246
1247         other_start = end;
1248         other_end = 0;
1249         if (extent_mergeable(leaf, path->slots[0] + 1,
1250                              ino, bytenr, orig_offset,
1251                              &other_start, &other_end)) {
1252                 if (recow) {
1253                         btrfs_release_path(path);
1254                         goto again;
1255                 }
1256                 extent_end = other_end;
1257                 del_slot = path->slots[0] + 1;
1258                 del_nr++;
1259                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1260                                         0, root->root_key.objectid,
1261                                         ino, orig_offset);
1262                 if (ret) {
1263                         btrfs_abort_transaction(trans, ret);
1264                         goto out;
1265                 }
1266         }
1267         other_start = 0;
1268         other_end = start;
1269         if (extent_mergeable(leaf, path->slots[0] - 1,
1270                              ino, bytenr, orig_offset,
1271                              &other_start, &other_end)) {
1272                 if (recow) {
1273                         btrfs_release_path(path);
1274                         goto again;
1275                 }
1276                 key.offset = other_start;
1277                 del_slot = path->slots[0];
1278                 del_nr++;
1279                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1280                                         0, root->root_key.objectid,
1281                                         ino, orig_offset);
1282                 if (ret) {
1283                         btrfs_abort_transaction(trans, ret);
1284                         goto out;
1285                 }
1286         }
1287         if (del_nr == 0) {
1288                 fi = btrfs_item_ptr(leaf, path->slots[0],
1289                            struct btrfs_file_extent_item);
1290                 btrfs_set_file_extent_type(leaf, fi,
1291                                            BTRFS_FILE_EXTENT_REG);
1292                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293                 btrfs_mark_buffer_dirty(leaf);
1294         } else {
1295                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1296                            struct btrfs_file_extent_item);
1297                 btrfs_set_file_extent_type(leaf, fi,
1298                                            BTRFS_FILE_EXTENT_REG);
1299                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1300                 btrfs_set_file_extent_num_bytes(leaf, fi,
1301                                                 extent_end - key.offset);
1302                 btrfs_mark_buffer_dirty(leaf);
1303
1304                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1305                 if (ret < 0) {
1306                         btrfs_abort_transaction(trans, ret);
1307                         goto out;
1308                 }
1309         }
1310 out:
1311         btrfs_free_path(path);
1312         return 0;
1313 }
1314
1315 /*
1316  * on error we return an unlocked page and the error value
1317  * on success we return a locked page and 0
1318  */
1319 static int prepare_uptodate_page(struct inode *inode,
1320                                  struct page *page, u64 pos,
1321                                  bool force_uptodate)
1322 {
1323         int ret = 0;
1324
1325         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1326             !PageUptodate(page)) {
1327                 ret = btrfs_readpage(NULL, page);
1328                 if (ret)
1329                         return ret;
1330                 lock_page(page);
1331                 if (!PageUptodate(page)) {
1332                         unlock_page(page);
1333                         return -EIO;
1334                 }
1335                 if (page->mapping != inode->i_mapping) {
1336                         unlock_page(page);
1337                         return -EAGAIN;
1338                 }
1339         }
1340         return 0;
1341 }
1342
1343 /*
1344  * this just gets pages into the page cache and locks them down.
1345  */
1346 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1347                                   size_t num_pages, loff_t pos,
1348                                   size_t write_bytes, bool force_uptodate)
1349 {
1350         int i;
1351         unsigned long index = pos >> PAGE_SHIFT;
1352         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1353         int err = 0;
1354         int faili;
1355
1356         for (i = 0; i < num_pages; i++) {
1357 again:
1358                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1359                                                mask | __GFP_WRITE);
1360                 if (!pages[i]) {
1361                         faili = i - 1;
1362                         err = -ENOMEM;
1363                         goto fail;
1364                 }
1365
1366                 if (i == 0)
1367                         err = prepare_uptodate_page(inode, pages[i], pos,
1368                                                     force_uptodate);
1369                 if (!err && i == num_pages - 1)
1370                         err = prepare_uptodate_page(inode, pages[i],
1371                                                     pos + write_bytes, false);
1372                 if (err) {
1373                         put_page(pages[i]);
1374                         if (err == -EAGAIN) {
1375                                 err = 0;
1376                                 goto again;
1377                         }
1378                         faili = i - 1;
1379                         goto fail;
1380                 }
1381                 wait_on_page_writeback(pages[i]);
1382         }
1383
1384         return 0;
1385 fail:
1386         while (faili >= 0) {
1387                 unlock_page(pages[faili]);
1388                 put_page(pages[faili]);
1389                 faili--;
1390         }
1391         return err;
1392
1393 }
1394
1395 /*
1396  * This function locks the extent and properly waits for data=ordered extents
1397  * to finish before allowing the pages to be modified if need.
1398  *
1399  * The return value:
1400  * 1 - the extent is locked
1401  * 0 - the extent is not locked, and everything is OK
1402  * -EAGAIN - need re-prepare the pages
1403  * the other < 0 number - Something wrong happens
1404  */
1405 static noinline int
1406 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1407                                 size_t num_pages, loff_t pos,
1408                                 size_t write_bytes,
1409                                 u64 *lockstart, u64 *lockend,
1410                                 struct extent_state **cached_state)
1411 {
1412         struct btrfs_root *root = BTRFS_I(inode)->root;
1413         u64 start_pos;
1414         u64 last_pos;
1415         int i;
1416         int ret = 0;
1417
1418         start_pos = round_down(pos, root->sectorsize);
1419         last_pos = start_pos
1420                 + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
1421
1422         if (start_pos < inode->i_size) {
1423                 struct btrfs_ordered_extent *ordered;
1424                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1425                                  start_pos, last_pos, cached_state);
1426                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1427                                                      last_pos - start_pos + 1);
1428                 if (ordered &&
1429                     ordered->file_offset + ordered->len > start_pos &&
1430                     ordered->file_offset <= last_pos) {
1431                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1432                                              start_pos, last_pos,
1433                                              cached_state, GFP_NOFS);
1434                         for (i = 0; i < num_pages; i++) {
1435                                 unlock_page(pages[i]);
1436                                 put_page(pages[i]);
1437                         }
1438                         btrfs_start_ordered_extent(inode, ordered, 1);
1439                         btrfs_put_ordered_extent(ordered);
1440                         return -EAGAIN;
1441                 }
1442                 if (ordered)
1443                         btrfs_put_ordered_extent(ordered);
1444
1445                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1446                                   last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1447                                   EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1448                                   0, 0, cached_state, GFP_NOFS);
1449                 *lockstart = start_pos;
1450                 *lockend = last_pos;
1451                 ret = 1;
1452         }
1453
1454         for (i = 0; i < num_pages; i++) {
1455                 if (clear_page_dirty_for_io(pages[i]))
1456                         account_page_redirty(pages[i]);
1457                 set_page_extent_mapped(pages[i]);
1458                 WARN_ON(!PageLocked(pages[i]));
1459         }
1460
1461         return ret;
1462 }
1463
1464 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1465                                     size_t *write_bytes)
1466 {
1467         struct btrfs_root *root = BTRFS_I(inode)->root;
1468         struct btrfs_ordered_extent *ordered;
1469         u64 lockstart, lockend;
1470         u64 num_bytes;
1471         int ret;
1472
1473         ret = btrfs_start_write_no_snapshoting(root);
1474         if (!ret)
1475                 return -ENOSPC;
1476
1477         lockstart = round_down(pos, root->sectorsize);
1478         lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1479
1480         while (1) {
1481                 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1482                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1483                                                      lockend - lockstart + 1);
1484                 if (!ordered) {
1485                         break;
1486                 }
1487                 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1488                 btrfs_start_ordered_extent(inode, ordered, 1);
1489                 btrfs_put_ordered_extent(ordered);
1490         }
1491
1492         num_bytes = lockend - lockstart + 1;
1493         ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1494         if (ret <= 0) {
1495                 ret = 0;
1496                 btrfs_end_write_no_snapshoting(root);
1497         } else {
1498                 *write_bytes = min_t(size_t, *write_bytes ,
1499                                      num_bytes - pos + lockstart);
1500         }
1501
1502         unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1503
1504         return ret;
1505 }
1506
1507 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1508                                                struct iov_iter *i,
1509                                                loff_t pos)
1510 {
1511         struct inode *inode = file_inode(file);
1512         struct btrfs_root *root = BTRFS_I(inode)->root;
1513         struct page **pages = NULL;
1514         struct extent_state *cached_state = NULL;
1515         u64 release_bytes = 0;
1516         u64 lockstart;
1517         u64 lockend;
1518         size_t num_written = 0;
1519         int nrptrs;
1520         int ret = 0;
1521         bool only_release_metadata = false;
1522         bool force_page_uptodate = false;
1523         bool need_unlock;
1524
1525         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1526                         PAGE_SIZE / (sizeof(struct page *)));
1527         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1528         nrptrs = max(nrptrs, 8);
1529         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1530         if (!pages)
1531                 return -ENOMEM;
1532
1533         while (iov_iter_count(i) > 0) {
1534                 size_t offset = pos & (PAGE_SIZE - 1);
1535                 size_t sector_offset;
1536                 size_t write_bytes = min(iov_iter_count(i),
1537                                          nrptrs * (size_t)PAGE_SIZE -
1538                                          offset);
1539                 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1540                                                 PAGE_SIZE);
1541                 size_t reserve_bytes;
1542                 size_t dirty_pages;
1543                 size_t copied;
1544                 size_t dirty_sectors;
1545                 size_t num_sectors;
1546
1547                 WARN_ON(num_pages > nrptrs);
1548
1549                 /*
1550                  * Fault pages before locking them in prepare_pages
1551                  * to avoid recursive lock
1552                  */
1553                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1554                         ret = -EFAULT;
1555                         break;
1556                 }
1557
1558                 sector_offset = pos & (root->sectorsize - 1);
1559                 reserve_bytes = round_up(write_bytes + sector_offset,
1560                                 root->sectorsize);
1561
1562                 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1563                 if (ret < 0) {
1564                         if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1565                                                       BTRFS_INODE_PREALLOC)) &&
1566                             check_can_nocow(inode, pos, &write_bytes) > 0) {
1567                                 /*
1568                                  * For nodata cow case, no need to reserve
1569                                  * data space.
1570                                  */
1571                                 only_release_metadata = true;
1572                                 /*
1573                                  * our prealloc extent may be smaller than
1574                                  * write_bytes, so scale down.
1575                                  */
1576                                 num_pages = DIV_ROUND_UP(write_bytes + offset,
1577                                                          PAGE_SIZE);
1578                                 reserve_bytes = round_up(write_bytes +
1579                                                          sector_offset,
1580                                                          root->sectorsize);
1581                         } else {
1582                                 break;
1583                         }
1584                 }
1585
1586                 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1587                 if (ret) {
1588                         if (!only_release_metadata)
1589                                 btrfs_free_reserved_data_space(inode, pos,
1590                                                                write_bytes);
1591                         else
1592                                 btrfs_end_write_no_snapshoting(root);
1593                         break;
1594                 }
1595
1596                 release_bytes = reserve_bytes;
1597                 need_unlock = false;
1598 again:
1599                 /*
1600                  * This is going to setup the pages array with the number of
1601                  * pages we want, so we don't really need to worry about the
1602                  * contents of pages from loop to loop
1603                  */
1604                 ret = prepare_pages(inode, pages, num_pages,
1605                                     pos, write_bytes,
1606                                     force_page_uptodate);
1607                 if (ret)
1608                         break;
1609
1610                 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1611                                                 pos, write_bytes, &lockstart,
1612                                                 &lockend, &cached_state);
1613                 if (ret < 0) {
1614                         if (ret == -EAGAIN)
1615                                 goto again;
1616                         break;
1617                 } else if (ret > 0) {
1618                         need_unlock = true;
1619                         ret = 0;
1620                 }
1621
1622                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1623
1624                 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1625                                                 reserve_bytes);
1626                 dirty_sectors = round_up(copied + sector_offset,
1627                                         root->sectorsize);
1628                 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1629                                                 dirty_sectors);
1630
1631                 /*
1632                  * if we have trouble faulting in the pages, fall
1633                  * back to one page at a time
1634                  */
1635                 if (copied < write_bytes)
1636                         nrptrs = 1;
1637
1638                 if (copied == 0) {
1639                         force_page_uptodate = true;
1640                         dirty_sectors = 0;
1641                         dirty_pages = 0;
1642                 } else {
1643                         force_page_uptodate = false;
1644                         dirty_pages = DIV_ROUND_UP(copied + offset,
1645                                                    PAGE_SIZE);
1646                 }
1647
1648                 /*
1649                  * If we had a short copy we need to release the excess delaloc
1650                  * bytes we reserved.  We need to increment outstanding_extents
1651                  * because btrfs_delalloc_release_space and
1652                  * btrfs_delalloc_release_metadata will decrement it, but
1653                  * we still have an outstanding extent for the chunk we actually
1654                  * managed to copy.
1655                  */
1656                 if (num_sectors > dirty_sectors) {
1657
1658                         /* release everything except the sectors we dirtied */
1659                         release_bytes -= dirty_sectors <<
1660                                 root->fs_info->sb->s_blocksize_bits;
1661
1662                         if (copied > 0) {
1663                                 spin_lock(&BTRFS_I(inode)->lock);
1664                                 BTRFS_I(inode)->outstanding_extents++;
1665                                 spin_unlock(&BTRFS_I(inode)->lock);
1666                         }
1667                         if (only_release_metadata) {
1668                                 btrfs_delalloc_release_metadata(inode,
1669                                                                 release_bytes);
1670                         } else {
1671                                 u64 __pos;
1672
1673                                 __pos = round_down(pos, root->sectorsize) +
1674                                         (dirty_pages << PAGE_SHIFT);
1675                                 btrfs_delalloc_release_space(inode, __pos,
1676                                                              release_bytes);
1677                         }
1678                 }
1679
1680                 release_bytes = round_up(copied + sector_offset,
1681                                         root->sectorsize);
1682
1683                 if (copied > 0)
1684                         ret = btrfs_dirty_pages(root, inode, pages,
1685                                                 dirty_pages, pos, copied,
1686                                                 NULL);
1687                 if (need_unlock)
1688                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1689                                              lockstart, lockend, &cached_state,
1690                                              GFP_NOFS);
1691                 if (ret) {
1692                         btrfs_drop_pages(pages, num_pages);
1693                         break;
1694                 }
1695
1696                 release_bytes = 0;
1697                 if (only_release_metadata)
1698                         btrfs_end_write_no_snapshoting(root);
1699
1700                 if (only_release_metadata && copied > 0) {
1701                         lockstart = round_down(pos, root->sectorsize);
1702                         lockend = round_up(pos + copied, root->sectorsize) - 1;
1703
1704                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1705                                        lockend, EXTENT_NORESERVE, NULL,
1706                                        NULL, GFP_NOFS);
1707                         only_release_metadata = false;
1708                 }
1709
1710                 btrfs_drop_pages(pages, num_pages);
1711
1712                 cond_resched();
1713
1714                 balance_dirty_pages_ratelimited(inode->i_mapping);
1715                 if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1716                         btrfs_btree_balance_dirty(root);
1717
1718                 pos += copied;
1719                 num_written += copied;
1720         }
1721
1722         kfree(pages);
1723
1724         if (release_bytes) {
1725                 if (only_release_metadata) {
1726                         btrfs_end_write_no_snapshoting(root);
1727                         btrfs_delalloc_release_metadata(inode, release_bytes);
1728                 } else {
1729                         btrfs_delalloc_release_space(inode,
1730                                                 round_down(pos, root->sectorsize),
1731                                                 release_bytes);
1732                 }
1733         }
1734
1735         return num_written ? num_written : ret;
1736 }
1737
1738 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1739 {
1740         struct file *file = iocb->ki_filp;
1741         struct inode *inode = file_inode(file);
1742         loff_t pos = iocb->ki_pos;
1743         ssize_t written;
1744         ssize_t written_buffered;
1745         loff_t endbyte;
1746         int err;
1747
1748         written = generic_file_direct_write(iocb, from);
1749
1750         if (written < 0 || !iov_iter_count(from))
1751                 return written;
1752
1753         pos += written;
1754         written_buffered = __btrfs_buffered_write(file, from, pos);
1755         if (written_buffered < 0) {
1756                 err = written_buffered;
1757                 goto out;
1758         }
1759         /*
1760          * Ensure all data is persisted. We want the next direct IO read to be
1761          * able to read what was just written.
1762          */
1763         endbyte = pos + written_buffered - 1;
1764         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1765         if (err)
1766                 goto out;
1767         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1768         if (err)
1769                 goto out;
1770         written += written_buffered;
1771         iocb->ki_pos = pos + written_buffered;
1772         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1773                                  endbyte >> PAGE_SHIFT);
1774 out:
1775         return written ? written : err;
1776 }
1777
1778 static void update_time_for_write(struct inode *inode)
1779 {
1780         struct timespec now;
1781
1782         if (IS_NOCMTIME(inode))
1783                 return;
1784
1785         now = current_time(inode);
1786         if (!timespec_equal(&inode->i_mtime, &now))
1787                 inode->i_mtime = now;
1788
1789         if (!timespec_equal(&inode->i_ctime, &now))
1790                 inode->i_ctime = now;
1791
1792         if (IS_I_VERSION(inode))
1793                 inode_inc_iversion(inode);
1794 }
1795
1796 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1797                                     struct iov_iter *from)
1798 {
1799         struct file *file = iocb->ki_filp;
1800         struct inode *inode = file_inode(file);
1801         struct btrfs_root *root = BTRFS_I(inode)->root;
1802         u64 start_pos;
1803         u64 end_pos;
1804         ssize_t num_written = 0;
1805         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1806         ssize_t err;
1807         loff_t pos;
1808         size_t count;
1809         loff_t oldsize;
1810         int clean_page = 0;
1811
1812         inode_lock(inode);
1813         err = generic_write_checks(iocb, from);
1814         if (err <= 0) {
1815                 inode_unlock(inode);
1816                 return err;
1817         }
1818
1819         current->backing_dev_info = inode_to_bdi(inode);
1820         err = file_remove_privs(file);
1821         if (err) {
1822                 inode_unlock(inode);
1823                 goto out;
1824         }
1825
1826         /*
1827          * If BTRFS flips readonly due to some impossible error
1828          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1829          * although we have opened a file as writable, we have
1830          * to stop this write operation to ensure FS consistency.
1831          */
1832         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1833                 inode_unlock(inode);
1834                 err = -EROFS;
1835                 goto out;
1836         }
1837
1838         /*
1839          * We reserve space for updating the inode when we reserve space for the
1840          * extent we are going to write, so we will enospc out there.  We don't
1841          * need to start yet another transaction to update the inode as we will
1842          * update the inode when we finish writing whatever data we write.
1843          */
1844         update_time_for_write(inode);
1845
1846         pos = iocb->ki_pos;
1847         count = iov_iter_count(from);
1848         start_pos = round_down(pos, root->sectorsize);
1849         oldsize = i_size_read(inode);
1850         if (start_pos > oldsize) {
1851                 /* Expand hole size to cover write data, preventing empty gap */
1852                 end_pos = round_up(pos + count, root->sectorsize);
1853                 err = btrfs_cont_expand(inode, oldsize, end_pos);
1854                 if (err) {
1855                         inode_unlock(inode);
1856                         goto out;
1857                 }
1858                 if (start_pos > round_up(oldsize, root->sectorsize))
1859                         clean_page = 1;
1860         }
1861
1862         if (sync)
1863                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1864
1865         if (iocb->ki_flags & IOCB_DIRECT) {
1866                 num_written = __btrfs_direct_write(iocb, from);
1867         } else {
1868                 num_written = __btrfs_buffered_write(file, from, pos);
1869                 if (num_written > 0)
1870                         iocb->ki_pos = pos + num_written;
1871                 if (clean_page)
1872                         pagecache_isize_extended(inode, oldsize,
1873                                                 i_size_read(inode));
1874         }
1875
1876         inode_unlock(inode);
1877
1878         /*
1879          * We also have to set last_sub_trans to the current log transid,
1880          * otherwise subsequent syncs to a file that's been synced in this
1881          * transaction will appear to have already occurred.
1882          */
1883         spin_lock(&BTRFS_I(inode)->lock);
1884         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1885         spin_unlock(&BTRFS_I(inode)->lock);
1886         if (num_written > 0)
1887                 num_written = generic_write_sync(iocb, num_written);
1888
1889         if (sync)
1890                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1891 out:
1892         current->backing_dev_info = NULL;
1893         return num_written ? num_written : err;
1894 }
1895
1896 int btrfs_release_file(struct inode *inode, struct file *filp)
1897 {
1898         if (filp->private_data)
1899                 btrfs_ioctl_trans_end(filp);
1900         /*
1901          * ordered_data_close is set by settattr when we are about to truncate
1902          * a file from a non-zero size to a zero size.  This tries to
1903          * flush down new bytes that may have been written if the
1904          * application were using truncate to replace a file in place.
1905          */
1906         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1907                                &BTRFS_I(inode)->runtime_flags))
1908                         filemap_flush(inode->i_mapping);
1909         return 0;
1910 }
1911
1912 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1913 {
1914         int ret;
1915
1916         atomic_inc(&BTRFS_I(inode)->sync_writers);
1917         ret = btrfs_fdatawrite_range(inode, start, end);
1918         atomic_dec(&BTRFS_I(inode)->sync_writers);
1919
1920         return ret;
1921 }
1922
1923 /*
1924  * fsync call for both files and directories.  This logs the inode into
1925  * the tree log instead of forcing full commits whenever possible.
1926  *
1927  * It needs to call filemap_fdatawait so that all ordered extent updates are
1928  * in the metadata btree are up to date for copying to the log.
1929  *
1930  * It drops the inode mutex before doing the tree log commit.  This is an
1931  * important optimization for directories because holding the mutex prevents
1932  * new operations on the dir while we write to disk.
1933  */
1934 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1935 {
1936         struct dentry *dentry = file_dentry(file);
1937         struct inode *inode = d_inode(dentry);
1938         struct btrfs_root *root = BTRFS_I(inode)->root;
1939         struct btrfs_trans_handle *trans;
1940         struct btrfs_log_ctx ctx;
1941         int ret = 0;
1942         bool full_sync = 0;
1943         u64 len;
1944
1945         /*
1946          * The range length can be represented by u64, we have to do the typecasts
1947          * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1948          */
1949         len = (u64)end - (u64)start + 1;
1950         trace_btrfs_sync_file(file, datasync);
1951
1952         /*
1953          * We write the dirty pages in the range and wait until they complete
1954          * out of the ->i_mutex. If so, we can flush the dirty pages by
1955          * multi-task, and make the performance up.  See
1956          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1957          */
1958         ret = start_ordered_ops(inode, start, end);
1959         if (ret)
1960                 return ret;
1961
1962         inode_lock(inode);
1963         atomic_inc(&root->log_batch);
1964         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1965                              &BTRFS_I(inode)->runtime_flags);
1966         /*
1967          * We might have have had more pages made dirty after calling
1968          * start_ordered_ops and before acquiring the inode's i_mutex.
1969          */
1970         if (full_sync) {
1971                 /*
1972                  * For a full sync, we need to make sure any ordered operations
1973                  * start and finish before we start logging the inode, so that
1974                  * all extents are persisted and the respective file extent
1975                  * items are in the fs/subvol btree.
1976                  */
1977                 ret = btrfs_wait_ordered_range(inode, start, len);
1978         } else {
1979                 /*
1980                  * Start any new ordered operations before starting to log the
1981                  * inode. We will wait for them to finish in btrfs_sync_log().
1982                  *
1983                  * Right before acquiring the inode's mutex, we might have new
1984                  * writes dirtying pages, which won't immediately start the
1985                  * respective ordered operations - that is done through the
1986                  * fill_delalloc callbacks invoked from the writepage and
1987                  * writepages address space operations. So make sure we start
1988                  * all ordered operations before starting to log our inode. Not
1989                  * doing this means that while logging the inode, writeback
1990                  * could start and invoke writepage/writepages, which would call
1991                  * the fill_delalloc callbacks (cow_file_range,
1992                  * submit_compressed_extents). These callbacks add first an
1993                  * extent map to the modified list of extents and then create
1994                  * the respective ordered operation, which means in
1995                  * tree-log.c:btrfs_log_inode() we might capture all existing
1996                  * ordered operations (with btrfs_get_logged_extents()) before
1997                  * the fill_delalloc callback adds its ordered operation, and by
1998                  * the time we visit the modified list of extent maps (with
1999                  * btrfs_log_changed_extents()), we see and process the extent
2000                  * map they created. We then use the extent map to construct a
2001                  * file extent item for logging without waiting for the
2002                  * respective ordered operation to finish - this file extent
2003                  * item points to a disk location that might not have yet been
2004                  * written to, containing random data - so after a crash a log
2005                  * replay will make our inode have file extent items that point
2006                  * to disk locations containing invalid data, as we returned
2007                  * success to userspace without waiting for the respective
2008                  * ordered operation to finish, because it wasn't captured by
2009                  * btrfs_get_logged_extents().
2010                  */
2011                 ret = start_ordered_ops(inode, start, end);
2012         }
2013         if (ret) {
2014                 inode_unlock(inode);
2015                 goto out;
2016         }
2017         atomic_inc(&root->log_batch);
2018
2019         /*
2020          * If the last transaction that changed this file was before the current
2021          * transaction and we have the full sync flag set in our inode, we can
2022          * bail out now without any syncing.
2023          *
2024          * Note that we can't bail out if the full sync flag isn't set. This is
2025          * because when the full sync flag is set we start all ordered extents
2026          * and wait for them to fully complete - when they complete they update
2027          * the inode's last_trans field through:
2028          *
2029          *     btrfs_finish_ordered_io() ->
2030          *         btrfs_update_inode_fallback() ->
2031          *             btrfs_update_inode() ->
2032          *                 btrfs_set_inode_last_trans()
2033          *
2034          * So we are sure that last_trans is up to date and can do this check to
2035          * bail out safely. For the fast path, when the full sync flag is not
2036          * set in our inode, we can not do it because we start only our ordered
2037          * extents and don't wait for them to complete (that is when
2038          * btrfs_finish_ordered_io runs), so here at this point their last_trans
2039          * value might be less than or equals to fs_info->last_trans_committed,
2040          * and setting a speculative last_trans for an inode when a buffered
2041          * write is made (such as fs_info->generation + 1 for example) would not
2042          * be reliable since after setting the value and before fsync is called
2043          * any number of transactions can start and commit (transaction kthread
2044          * commits the current transaction periodically), and a transaction
2045          * commit does not start nor waits for ordered extents to complete.
2046          */
2047         smp_mb();
2048         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2049             (full_sync && BTRFS_I(inode)->last_trans <=
2050              root->fs_info->last_trans_committed) ||
2051             (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2052              BTRFS_I(inode)->last_trans
2053              <= root->fs_info->last_trans_committed)) {
2054                 /*
2055                  * We've had everything committed since the last time we were
2056                  * modified so clear this flag in case it was set for whatever
2057                  * reason, it's no longer relevant.
2058                  */
2059                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2060                           &BTRFS_I(inode)->runtime_flags);
2061                 /*
2062                  * An ordered extent might have started before and completed
2063                  * already with io errors, in which case the inode was not
2064                  * updated and we end up here. So check the inode's mapping
2065                  * flags for any errors that might have happened while doing
2066                  * writeback of file data.
2067                  */
2068                 ret = filemap_check_errors(inode->i_mapping);
2069                 inode_unlock(inode);
2070                 goto out;
2071         }
2072
2073         /*
2074          * ok we haven't committed the transaction yet, lets do a commit
2075          */
2076         if (file->private_data)
2077                 btrfs_ioctl_trans_end(file);
2078
2079         /*
2080          * We use start here because we will need to wait on the IO to complete
2081          * in btrfs_sync_log, which could require joining a transaction (for
2082          * example checking cross references in the nocow path).  If we use join
2083          * here we could get into a situation where we're waiting on IO to
2084          * happen that is blocked on a transaction trying to commit.  With start
2085          * we inc the extwriter counter, so we wait for all extwriters to exit
2086          * before we start blocking join'ers.  This comment is to keep somebody
2087          * from thinking they are super smart and changing this to
2088          * btrfs_join_transaction *cough*Josef*cough*.
2089          */
2090         trans = btrfs_start_transaction(root, 0);
2091         if (IS_ERR(trans)) {
2092                 ret = PTR_ERR(trans);
2093                 inode_unlock(inode);
2094                 goto out;
2095         }
2096         trans->sync = true;
2097
2098         btrfs_init_log_ctx(&ctx, inode);
2099
2100         ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2101         if (ret < 0) {
2102                 /* Fallthrough and commit/free transaction. */
2103                 ret = 1;
2104         }
2105
2106         /* we've logged all the items and now have a consistent
2107          * version of the file in the log.  It is possible that
2108          * someone will come in and modify the file, but that's
2109          * fine because the log is consistent on disk, and we
2110          * have references to all of the file's extents
2111          *
2112          * It is possible that someone will come in and log the
2113          * file again, but that will end up using the synchronization
2114          * inside btrfs_sync_log to keep things safe.
2115          */
2116         inode_unlock(inode);
2117
2118         /*
2119          * If any of the ordered extents had an error, just return it to user
2120          * space, so that the application knows some writes didn't succeed and
2121          * can take proper action (retry for e.g.). Blindly committing the
2122          * transaction in this case, would fool userspace that everything was
2123          * successful. And we also want to make sure our log doesn't contain
2124          * file extent items pointing to extents that weren't fully written to -
2125          * just like in the non fast fsync path, where we check for the ordered
2126          * operation's error flag before writing to the log tree and return -EIO
2127          * if any of them had this flag set (btrfs_wait_ordered_range) -
2128          * therefore we need to check for errors in the ordered operations,
2129          * which are indicated by ctx.io_err.
2130          */
2131         if (ctx.io_err) {
2132                 btrfs_end_transaction(trans, root);
2133                 ret = ctx.io_err;
2134                 goto out;
2135         }
2136
2137         if (ret != BTRFS_NO_LOG_SYNC) {
2138                 if (!ret) {
2139                         ret = btrfs_sync_log(trans, root, &ctx);
2140                         if (!ret) {
2141                                 ret = btrfs_end_transaction(trans, root);
2142                                 goto out;
2143                         }
2144                 }
2145                 if (!full_sync) {
2146                         ret = btrfs_wait_ordered_range(inode, start, len);
2147                         if (ret) {
2148                                 btrfs_end_transaction(trans, root);
2149                                 goto out;
2150                         }
2151                 }
2152                 ret = btrfs_commit_transaction(trans, root);
2153         } else {
2154                 ret = btrfs_end_transaction(trans, root);
2155         }
2156 out:
2157         return ret > 0 ? -EIO : ret;
2158 }
2159
2160 static const struct vm_operations_struct btrfs_file_vm_ops = {
2161         .fault          = filemap_fault,
2162         .map_pages      = filemap_map_pages,
2163         .page_mkwrite   = btrfs_page_mkwrite,
2164 };
2165
2166 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2167 {
2168         struct address_space *mapping = filp->f_mapping;
2169
2170         if (!mapping->a_ops->readpage)
2171                 return -ENOEXEC;
2172
2173         file_accessed(filp);
2174         vma->vm_ops = &btrfs_file_vm_ops;
2175
2176         return 0;
2177 }
2178
2179 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2180                           int slot, u64 start, u64 end)
2181 {
2182         struct btrfs_file_extent_item *fi;
2183         struct btrfs_key key;
2184
2185         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2186                 return 0;
2187
2188         btrfs_item_key_to_cpu(leaf, &key, slot);
2189         if (key.objectid != btrfs_ino(inode) ||
2190             key.type != BTRFS_EXTENT_DATA_KEY)
2191                 return 0;
2192
2193         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2194
2195         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2196                 return 0;
2197
2198         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2199                 return 0;
2200
2201         if (key.offset == end)
2202                 return 1;
2203         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2204                 return 1;
2205         return 0;
2206 }
2207
2208 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2209                       struct btrfs_path *path, u64 offset, u64 end)
2210 {
2211         struct btrfs_root *root = BTRFS_I(inode)->root;
2212         struct extent_buffer *leaf;
2213         struct btrfs_file_extent_item *fi;
2214         struct extent_map *hole_em;
2215         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2216         struct btrfs_key key;
2217         int ret;
2218
2219         if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2220                 goto out;
2221
2222         key.objectid = btrfs_ino(inode);
2223         key.type = BTRFS_EXTENT_DATA_KEY;
2224         key.offset = offset;
2225
2226         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2227         if (ret < 0)
2228                 return ret;
2229         BUG_ON(!ret);
2230
2231         leaf = path->nodes[0];
2232         if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2233                 u64 num_bytes;
2234
2235                 path->slots[0]--;
2236                 fi = btrfs_item_ptr(leaf, path->slots[0],
2237                                     struct btrfs_file_extent_item);
2238                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2239                         end - offset;
2240                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2241                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2242                 btrfs_set_file_extent_offset(leaf, fi, 0);
2243                 btrfs_mark_buffer_dirty(leaf);
2244                 goto out;
2245         }
2246
2247         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2248                 u64 num_bytes;
2249
2250                 key.offset = offset;
2251                 btrfs_set_item_key_safe(root->fs_info, path, &key);
2252                 fi = btrfs_item_ptr(leaf, path->slots[0],
2253                                     struct btrfs_file_extent_item);
2254                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2255                         offset;
2256                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2257                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2258                 btrfs_set_file_extent_offset(leaf, fi, 0);
2259                 btrfs_mark_buffer_dirty(leaf);
2260                 goto out;
2261         }
2262         btrfs_release_path(path);
2263
2264         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2265                                        0, 0, end - offset, 0, end - offset,
2266                                        0, 0, 0);
2267         if (ret)
2268                 return ret;
2269
2270 out:
2271         btrfs_release_path(path);
2272
2273         hole_em = alloc_extent_map();
2274         if (!hole_em) {
2275                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2276                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2277                         &BTRFS_I(inode)->runtime_flags);
2278         } else {
2279                 hole_em->start = offset;
2280                 hole_em->len = end - offset;
2281                 hole_em->ram_bytes = hole_em->len;
2282                 hole_em->orig_start = offset;
2283
2284                 hole_em->block_start = EXTENT_MAP_HOLE;
2285                 hole_em->block_len = 0;
2286                 hole_em->orig_block_len = 0;
2287                 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2288                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2289                 hole_em->generation = trans->transid;
2290
2291                 do {
2292                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2293                         write_lock(&em_tree->lock);
2294                         ret = add_extent_mapping(em_tree, hole_em, 1);
2295                         write_unlock(&em_tree->lock);
2296                 } while (ret == -EEXIST);
2297                 free_extent_map(hole_em);
2298                 if (ret)
2299                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2300                                 &BTRFS_I(inode)->runtime_flags);
2301         }
2302
2303         return 0;
2304 }
2305
2306 /*
2307  * Find a hole extent on given inode and change start/len to the end of hole
2308  * extent.(hole/vacuum extent whose em->start <= start &&
2309  *         em->start + em->len > start)
2310  * When a hole extent is found, return 1 and modify start/len.
2311  */
2312 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2313 {
2314         struct extent_map *em;
2315         int ret = 0;
2316
2317         em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2318         if (IS_ERR_OR_NULL(em)) {
2319                 if (!em)
2320                         ret = -ENOMEM;
2321                 else
2322                         ret = PTR_ERR(em);
2323                 return ret;
2324         }
2325
2326         /* Hole or vacuum extent(only exists in no-hole mode) */
2327         if (em->block_start == EXTENT_MAP_HOLE) {
2328                 ret = 1;
2329                 *len = em->start + em->len > *start + *len ?
2330                        0 : *start + *len - em->start - em->len;
2331                 *start = em->start + em->len;
2332         }
2333         free_extent_map(em);
2334         return ret;
2335 }
2336
2337 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2338 {
2339         struct btrfs_root *root = BTRFS_I(inode)->root;
2340         struct extent_state *cached_state = NULL;
2341         struct btrfs_path *path;
2342         struct btrfs_block_rsv *rsv;
2343         struct btrfs_trans_handle *trans;
2344         u64 lockstart;
2345         u64 lockend;
2346         u64 tail_start;
2347         u64 tail_len;
2348         u64 orig_start = offset;
2349         u64 cur_offset;
2350         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2351         u64 drop_end;
2352         int ret = 0;
2353         int err = 0;
2354         unsigned int rsv_count;
2355         bool same_block;
2356         bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2357         u64 ino_size;
2358         bool truncated_block = false;
2359         bool updated_inode = false;
2360
2361         ret = btrfs_wait_ordered_range(inode, offset, len);
2362         if (ret)
2363                 return ret;
2364
2365         inode_lock(inode);
2366         ino_size = round_up(inode->i_size, root->sectorsize);
2367         ret = find_first_non_hole(inode, &offset, &len);
2368         if (ret < 0)
2369                 goto out_only_mutex;
2370         if (ret && !len) {
2371                 /* Already in a large hole */
2372                 ret = 0;
2373                 goto out_only_mutex;
2374         }
2375
2376         lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2377         lockend = round_down(offset + len,
2378                              BTRFS_I(inode)->root->sectorsize) - 1;
2379         same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2380                 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
2381         /*
2382          * We needn't truncate any block which is beyond the end of the file
2383          * because we are sure there is no data there.
2384          */
2385         /*
2386          * Only do this if we are in the same block and we aren't doing the
2387          * entire block.
2388          */
2389         if (same_block && len < root->sectorsize) {
2390                 if (offset < ino_size) {
2391                         truncated_block = true;
2392                         ret = btrfs_truncate_block(inode, offset, len, 0);
2393                 } else {
2394                         ret = 0;
2395                 }
2396                 goto out_only_mutex;
2397         }
2398
2399         /* zero back part of the first block */
2400         if (offset < ino_size) {
2401                 truncated_block = true;
2402                 ret = btrfs_truncate_block(inode, offset, 0, 0);
2403                 if (ret) {
2404                         inode_unlock(inode);
2405                         return ret;
2406                 }
2407         }
2408
2409         /* Check the aligned pages after the first unaligned page,
2410          * if offset != orig_start, which means the first unaligned page
2411          * including several following pages are already in holes,
2412          * the extra check can be skipped */
2413         if (offset == orig_start) {
2414                 /* after truncate page, check hole again */
2415                 len = offset + len - lockstart;
2416                 offset = lockstart;
2417                 ret = find_first_non_hole(inode, &offset, &len);
2418                 if (ret < 0)
2419                         goto out_only_mutex;
2420                 if (ret && !len) {
2421                         ret = 0;
2422                         goto out_only_mutex;
2423                 }
2424                 lockstart = offset;
2425         }
2426
2427         /* Check the tail unaligned part is in a hole */
2428         tail_start = lockend + 1;
2429         tail_len = offset + len - tail_start;
2430         if (tail_len) {
2431                 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2432                 if (unlikely(ret < 0))
2433                         goto out_only_mutex;
2434                 if (!ret) {
2435                         /* zero the front end of the last page */
2436                         if (tail_start + tail_len < ino_size) {
2437                                 truncated_block = true;
2438                                 ret = btrfs_truncate_block(inode,
2439                                                         tail_start + tail_len,
2440                                                         0, 1);
2441                                 if (ret)
2442                                         goto out_only_mutex;
2443                         }
2444                 }
2445         }
2446
2447         if (lockend < lockstart) {
2448                 ret = 0;
2449                 goto out_only_mutex;
2450         }
2451
2452         while (1) {
2453                 struct btrfs_ordered_extent *ordered;
2454
2455                 truncate_pagecache_range(inode, lockstart, lockend);
2456
2457                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2458                                  &cached_state);
2459                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2460
2461                 /*
2462                  * We need to make sure we have no ordered extents in this range
2463                  * and nobody raced in and read a page in this range, if we did
2464                  * we need to try again.
2465                  */
2466                 if ((!ordered ||
2467                     (ordered->file_offset + ordered->len <= lockstart ||
2468                      ordered->file_offset > lockend)) &&
2469                      !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2470                         if (ordered)
2471                                 btrfs_put_ordered_extent(ordered);
2472                         break;
2473                 }
2474                 if (ordered)
2475                         btrfs_put_ordered_extent(ordered);
2476                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2477                                      lockend, &cached_state, GFP_NOFS);
2478                 ret = btrfs_wait_ordered_range(inode, lockstart,
2479                                                lockend - lockstart + 1);
2480                 if (ret) {
2481                         inode_unlock(inode);
2482                         return ret;
2483                 }
2484         }
2485
2486         path = btrfs_alloc_path();
2487         if (!path) {
2488                 ret = -ENOMEM;
2489                 goto out;
2490         }
2491
2492         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2493         if (!rsv) {
2494                 ret = -ENOMEM;
2495                 goto out_free;
2496         }
2497         rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2498         rsv->failfast = 1;
2499
2500         /*
2501          * 1 - update the inode
2502          * 1 - removing the extents in the range
2503          * 1 - adding the hole extent if no_holes isn't set
2504          */
2505         rsv_count = no_holes ? 2 : 3;
2506         trans = btrfs_start_transaction(root, rsv_count);
2507         if (IS_ERR(trans)) {
2508                 err = PTR_ERR(trans);
2509                 goto out_free;
2510         }
2511
2512         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2513                                       min_size, 0);
2514         BUG_ON(ret);
2515         trans->block_rsv = rsv;
2516
2517         cur_offset = lockstart;
2518         len = lockend - cur_offset;
2519         while (cur_offset < lockend) {
2520                 ret = __btrfs_drop_extents(trans, root, inode, path,
2521                                            cur_offset, lockend + 1,
2522                                            &drop_end, 1, 0, 0, NULL);
2523                 if (ret != -ENOSPC)
2524                         break;
2525
2526                 trans->block_rsv = &root->fs_info->trans_block_rsv;
2527
2528                 if (cur_offset < ino_size) {
2529                         ret = fill_holes(trans, inode, path, cur_offset,
2530                                          drop_end);
2531                         if (ret) {
2532                                 err = ret;
2533                                 break;
2534                         }
2535                 }
2536
2537                 cur_offset = drop_end;
2538
2539                 ret = btrfs_update_inode(trans, root, inode);
2540                 if (ret) {
2541                         err = ret;
2542                         break;
2543                 }
2544
2545                 btrfs_end_transaction(trans, root);
2546                 btrfs_btree_balance_dirty(root);
2547
2548                 trans = btrfs_start_transaction(root, rsv_count);
2549                 if (IS_ERR(trans)) {
2550                         ret = PTR_ERR(trans);
2551                         trans = NULL;
2552                         break;
2553                 }
2554
2555                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2556                                               rsv, min_size, 0);
2557                 BUG_ON(ret);    /* shouldn't happen */
2558                 trans->block_rsv = rsv;
2559
2560                 ret = find_first_non_hole(inode, &cur_offset, &len);
2561                 if (unlikely(ret < 0))
2562                         break;
2563                 if (ret && !len) {
2564                         ret = 0;
2565                         break;
2566                 }
2567         }
2568
2569         if (ret) {
2570                 err = ret;
2571                 goto out_trans;
2572         }
2573
2574         trans->block_rsv = &root->fs_info->trans_block_rsv;
2575         /*
2576          * If we are using the NO_HOLES feature we might have had already an
2577          * hole that overlaps a part of the region [lockstart, lockend] and
2578          * ends at (or beyond) lockend. Since we have no file extent items to
2579          * represent holes, drop_end can be less than lockend and so we must
2580          * make sure we have an extent map representing the existing hole (the
2581          * call to __btrfs_drop_extents() might have dropped the existing extent
2582          * map representing the existing hole), otherwise the fast fsync path
2583          * will not record the existence of the hole region
2584          * [existing_hole_start, lockend].
2585          */
2586         if (drop_end <= lockend)
2587                 drop_end = lockend + 1;
2588         /*
2589          * Don't insert file hole extent item if it's for a range beyond eof
2590          * (because it's useless) or if it represents a 0 bytes range (when
2591          * cur_offset == drop_end).
2592          */
2593         if (cur_offset < ino_size && cur_offset < drop_end) {
2594                 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2595                 if (ret) {
2596                         err = ret;
2597                         goto out_trans;
2598                 }
2599         }
2600
2601 out_trans:
2602         if (!trans)
2603                 goto out_free;
2604
2605         inode_inc_iversion(inode);
2606         inode->i_mtime = inode->i_ctime = current_time(inode);
2607
2608         trans->block_rsv = &root->fs_info->trans_block_rsv;
2609         ret = btrfs_update_inode(trans, root, inode);
2610         updated_inode = true;
2611         btrfs_end_transaction(trans, root);
2612         btrfs_btree_balance_dirty(root);
2613 out_free:
2614         btrfs_free_path(path);
2615         btrfs_free_block_rsv(root, rsv);
2616 out:
2617         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2618                              &cached_state, GFP_NOFS);
2619 out_only_mutex:
2620         if (!updated_inode && truncated_block && !ret && !err) {
2621                 /*
2622                  * If we only end up zeroing part of a page, we still need to
2623                  * update the inode item, so that all the time fields are
2624                  * updated as well as the necessary btrfs inode in memory fields
2625                  * for detecting, at fsync time, if the inode isn't yet in the
2626                  * log tree or it's there but not up to date.
2627                  */
2628                 trans = btrfs_start_transaction(root, 1);
2629                 if (IS_ERR(trans)) {
2630                         err = PTR_ERR(trans);
2631                 } else {
2632                         err = btrfs_update_inode(trans, root, inode);
2633                         ret = btrfs_end_transaction(trans, root);
2634                 }
2635         }
2636         inode_unlock(inode);
2637         if (ret && !err)
2638                 err = ret;
2639         return err;
2640 }
2641
2642 /* Helper structure to record which range is already reserved */
2643 struct falloc_range {
2644         struct list_head list;
2645         u64 start;
2646         u64 len;
2647 };
2648
2649 /*
2650  * Helper function to add falloc range
2651  *
2652  * Caller should have locked the larger range of extent containing
2653  * [start, len)
2654  */
2655 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2656 {
2657         struct falloc_range *prev = NULL;
2658         struct falloc_range *range = NULL;
2659
2660         if (list_empty(head))
2661                 goto insert;
2662
2663         /*
2664          * As fallocate iterate by bytenr order, we only need to check
2665          * the last range.
2666          */
2667         prev = list_entry(head->prev, struct falloc_range, list);
2668         if (prev->start + prev->len == start) {
2669                 prev->len += len;
2670                 return 0;
2671         }
2672 insert:
2673         range = kmalloc(sizeof(*range), GFP_KERNEL);
2674         if (!range)
2675                 return -ENOMEM;
2676         range->start = start;
2677         range->len = len;
2678         list_add_tail(&range->list, head);
2679         return 0;
2680 }
2681
2682 static long btrfs_fallocate(struct file *file, int mode,
2683                             loff_t offset, loff_t len)
2684 {
2685         struct inode *inode = file_inode(file);
2686         struct extent_state *cached_state = NULL;
2687         struct falloc_range *range;
2688         struct falloc_range *tmp;
2689         struct list_head reserve_list;
2690         u64 cur_offset;
2691         u64 last_byte;
2692         u64 alloc_start;
2693         u64 alloc_end;
2694         u64 alloc_hint = 0;
2695         u64 locked_end;
2696         u64 actual_end = 0;
2697         struct extent_map *em;
2698         int blocksize = BTRFS_I(inode)->root->sectorsize;
2699         int ret;
2700
2701         alloc_start = round_down(offset, blocksize);
2702         alloc_end = round_up(offset + len, blocksize);
2703         cur_offset = alloc_start;
2704
2705         /* Make sure we aren't being give some crap mode */
2706         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2707                 return -EOPNOTSUPP;
2708
2709         if (mode & FALLOC_FL_PUNCH_HOLE)
2710                 return btrfs_punch_hole(inode, offset, len);
2711
2712         /*
2713          * Only trigger disk allocation, don't trigger qgroup reserve
2714          *
2715          * For qgroup space, it will be checked later.
2716          */
2717         ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2718         if (ret < 0)
2719                 return ret;
2720
2721         inode_lock(inode);
2722
2723         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2724                 ret = inode_newsize_ok(inode, offset + len);
2725                 if (ret)
2726                         goto out;
2727         }
2728
2729         /*
2730          * TODO: Move these two operations after we have checked
2731          * accurate reserved space, or fallocate can still fail but
2732          * with page truncated or size expanded.
2733          *
2734          * But that's a minor problem and won't do much harm BTW.
2735          */
2736         if (alloc_start > inode->i_size) {
2737                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2738                                         alloc_start);
2739                 if (ret)
2740                         goto out;
2741         } else if (offset + len > inode->i_size) {
2742                 /*
2743                  * If we are fallocating from the end of the file onward we
2744                  * need to zero out the end of the block if i_size lands in the
2745                  * middle of a block.
2746                  */
2747                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2748                 if (ret)
2749                         goto out;
2750         }
2751
2752         /*
2753          * wait for ordered IO before we have any locks.  We'll loop again
2754          * below with the locks held.
2755          */
2756         ret = btrfs_wait_ordered_range(inode, alloc_start,
2757                                        alloc_end - alloc_start);
2758         if (ret)
2759                 goto out;
2760
2761         locked_end = alloc_end - 1;
2762         while (1) {
2763                 struct btrfs_ordered_extent *ordered;
2764
2765                 /* the extent lock is ordered inside the running
2766                  * transaction
2767                  */
2768                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2769                                  locked_end, &cached_state);
2770                 ordered = btrfs_lookup_first_ordered_extent(inode,
2771                                                             alloc_end - 1);
2772                 if (ordered &&
2773                     ordered->file_offset + ordered->len > alloc_start &&
2774                     ordered->file_offset < alloc_end) {
2775                         btrfs_put_ordered_extent(ordered);
2776                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2777                                              alloc_start, locked_end,
2778                                              &cached_state, GFP_KERNEL);
2779                         /*
2780                          * we can't wait on the range with the transaction
2781                          * running or with the extent lock held
2782                          */
2783                         ret = btrfs_wait_ordered_range(inode, alloc_start,
2784                                                        alloc_end - alloc_start);
2785                         if (ret)
2786                                 goto out;
2787                 } else {
2788                         if (ordered)
2789                                 btrfs_put_ordered_extent(ordered);
2790                         break;
2791                 }
2792         }
2793
2794         /* First, check if we exceed the qgroup limit */
2795         INIT_LIST_HEAD(&reserve_list);
2796         while (1) {
2797                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2798                                       alloc_end - cur_offset, 0);
2799                 if (IS_ERR_OR_NULL(em)) {
2800                         if (!em)
2801                                 ret = -ENOMEM;
2802                         else
2803                                 ret = PTR_ERR(em);
2804                         break;
2805                 }
2806                 last_byte = min(extent_map_end(em), alloc_end);
2807                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2808                 last_byte = ALIGN(last_byte, blocksize);
2809                 if (em->block_start == EXTENT_MAP_HOLE ||
2810                     (cur_offset >= inode->i_size &&
2811                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2812                         ret = add_falloc_range(&reserve_list, cur_offset,
2813                                                last_byte - cur_offset);
2814                         if (ret < 0) {
2815                                 free_extent_map(em);
2816                                 break;
2817                         }
2818                         ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2819                                         last_byte - cur_offset);
2820                         if (ret < 0)
2821                                 break;
2822                 } else {
2823                         /*
2824                          * Do not need to reserve unwritten extent for this
2825                          * range, free reserved data space first, otherwise
2826                          * it'll result in false ENOSPC error.
2827                          */
2828                         btrfs_free_reserved_data_space(inode, cur_offset,
2829                                 last_byte - cur_offset);
2830                 }
2831                 free_extent_map(em);
2832                 cur_offset = last_byte;
2833                 if (cur_offset >= alloc_end)
2834                         break;
2835         }
2836
2837         /*
2838          * If ret is still 0, means we're OK to fallocate.
2839          * Or just cleanup the list and exit.
2840          */
2841         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2842                 if (!ret)
2843                         ret = btrfs_prealloc_file_range(inode, mode,
2844                                         range->start,
2845                                         range->len, 1 << inode->i_blkbits,
2846                                         offset + len, &alloc_hint);
2847                 else
2848                         btrfs_free_reserved_data_space(inode, range->start,
2849                                                        range->len);
2850                 list_del(&range->list);
2851                 kfree(range);
2852         }
2853         if (ret < 0)
2854                 goto out_unlock;
2855
2856         if (actual_end > inode->i_size &&
2857             !(mode & FALLOC_FL_KEEP_SIZE)) {
2858                 struct btrfs_trans_handle *trans;
2859                 struct btrfs_root *root = BTRFS_I(inode)->root;
2860
2861                 /*
2862                  * We didn't need to allocate any more space, but we
2863                  * still extended the size of the file so we need to
2864                  * update i_size and the inode item.
2865                  */
2866                 trans = btrfs_start_transaction(root, 1);
2867                 if (IS_ERR(trans)) {
2868                         ret = PTR_ERR(trans);
2869                 } else {
2870                         inode->i_ctime = current_time(inode);
2871                         i_size_write(inode, actual_end);
2872                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
2873                         ret = btrfs_update_inode(trans, root, inode);
2874                         if (ret)
2875                                 btrfs_end_transaction(trans, root);
2876                         else
2877                                 ret = btrfs_end_transaction(trans, root);
2878                 }
2879         }
2880 out_unlock:
2881         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2882                              &cached_state, GFP_KERNEL);
2883 out:
2884         inode_unlock(inode);
2885         /* Let go of our reservation. */
2886         if (ret != 0)
2887                 btrfs_free_reserved_data_space(inode, alloc_start,
2888                                        alloc_end - cur_offset);
2889         return ret;
2890 }
2891
2892 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2893 {
2894         struct btrfs_root *root = BTRFS_I(inode)->root;
2895         struct extent_map *em = NULL;
2896         struct extent_state *cached_state = NULL;
2897         u64 lockstart;
2898         u64 lockend;
2899         u64 start;
2900         u64 len;
2901         int ret = 0;
2902
2903         if (inode->i_size == 0)
2904                 return -ENXIO;
2905
2906         /*
2907          * *offset can be negative, in this case we start finding DATA/HOLE from
2908          * the very start of the file.
2909          */
2910         start = max_t(loff_t, 0, *offset);
2911
2912         lockstart = round_down(start, root->sectorsize);
2913         lockend = round_up(i_size_read(inode), root->sectorsize);
2914         if (lockend <= lockstart)
2915                 lockend = lockstart + root->sectorsize;
2916         lockend--;
2917         len = lockend - lockstart + 1;
2918
2919         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2920                          &cached_state);
2921
2922         while (start < inode->i_size) {
2923                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2924                 if (IS_ERR(em)) {
2925                         ret = PTR_ERR(em);
2926                         em = NULL;
2927                         break;
2928                 }
2929
2930                 if (whence == SEEK_HOLE &&
2931                     (em->block_start == EXTENT_MAP_HOLE ||
2932                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2933                         break;
2934                 else if (whence == SEEK_DATA &&
2935                            (em->block_start != EXTENT_MAP_HOLE &&
2936                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2937                         break;
2938
2939                 start = em->start + em->len;
2940                 free_extent_map(em);
2941                 em = NULL;
2942                 cond_resched();
2943         }
2944         free_extent_map(em);
2945         if (!ret) {
2946                 if (whence == SEEK_DATA && start >= inode->i_size)
2947                         ret = -ENXIO;
2948                 else
2949                         *offset = min_t(loff_t, start, inode->i_size);
2950         }
2951         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2952                              &cached_state, GFP_NOFS);
2953         return ret;
2954 }
2955
2956 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2957 {
2958         struct inode *inode = file->f_mapping->host;
2959         int ret;
2960
2961         inode_lock(inode);
2962         switch (whence) {
2963         case SEEK_END:
2964         case SEEK_CUR:
2965                 offset = generic_file_llseek(file, offset, whence);
2966                 goto out;
2967         case SEEK_DATA:
2968         case SEEK_HOLE:
2969                 if (offset >= i_size_read(inode)) {
2970                         inode_unlock(inode);
2971                         return -ENXIO;
2972                 }
2973
2974                 ret = find_desired_extent(inode, &offset, whence);
2975                 if (ret) {
2976                         inode_unlock(inode);
2977                         return ret;
2978                 }
2979         }
2980
2981         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2982 out:
2983         inode_unlock(inode);
2984         return offset;
2985 }
2986
2987 const struct file_operations btrfs_file_operations = {
2988         .llseek         = btrfs_file_llseek,
2989         .read_iter      = generic_file_read_iter,
2990         .splice_read    = generic_file_splice_read,
2991         .write_iter     = btrfs_file_write_iter,
2992         .mmap           = btrfs_file_mmap,
2993         .open           = generic_file_open,
2994         .release        = btrfs_release_file,
2995         .fsync          = btrfs_sync_file,
2996         .fallocate      = btrfs_fallocate,
2997         .unlocked_ioctl = btrfs_ioctl,
2998 #ifdef CONFIG_COMPAT
2999         .compat_ioctl   = btrfs_compat_ioctl,
3000 #endif
3001         .copy_file_range = btrfs_copy_file_range,
3002         .clone_file_range = btrfs_clone_file_range,
3003         .dedupe_file_range = btrfs_dedupe_file_range,
3004 };
3005
3006 void btrfs_auto_defrag_exit(void)
3007 {
3008         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3009 }
3010
3011 int btrfs_auto_defrag_init(void)
3012 {
3013         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3014                                         sizeof(struct inode_defrag), 0,
3015                                         SLAB_MEM_SPREAD,
3016                                         NULL);
3017         if (!btrfs_inode_defrag_cachep)
3018                 return -ENOMEM;
3019
3020         return 0;
3021 }
3022
3023 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3024 {
3025         int ret;
3026
3027         /*
3028          * So with compression we will find and lock a dirty page and clear the
3029          * first one as dirty, setup an async extent, and immediately return
3030          * with the entire range locked but with nobody actually marked with
3031          * writeback.  So we can't just filemap_write_and_wait_range() and
3032          * expect it to work since it will just kick off a thread to do the
3033          * actual work.  So we need to call filemap_fdatawrite_range _again_
3034          * since it will wait on the page lock, which won't be unlocked until
3035          * after the pages have been marked as writeback and so we're good to go
3036          * from there.  We have to do this otherwise we'll miss the ordered
3037          * extents and that results in badness.  Please Josef, do not think you
3038          * know better and pull this out at some point in the future, it is
3039          * right and you are wrong.
3040          */
3041         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3042         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3043                              &BTRFS_I(inode)->runtime_flags))
3044                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3045
3046         return ret;
3047 }