x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / fs / btrfs / inode-map.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/delay.h>
20 #include <linux/kthread.h>
21 #include <linux/pagemap.h>
22
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "free-space-cache.h"
26 #include "inode-map.h"
27 #include "transaction.h"
28
29 static int caching_kthread(void *data)
30 {
31         struct btrfs_root *root = data;
32         struct btrfs_fs_info *fs_info = root->fs_info;
33         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
34         struct btrfs_key key;
35         struct btrfs_path *path;
36         struct extent_buffer *leaf;
37         u64 last = (u64)-1;
38         int slot;
39         int ret;
40
41         if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
42                 return 0;
43
44         path = btrfs_alloc_path();
45         if (!path)
46                 return -ENOMEM;
47
48         /* Since the commit root is read-only, we can safely skip locking. */
49         path->skip_locking = 1;
50         path->search_commit_root = 1;
51         path->reada = READA_FORWARD;
52
53         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
54         key.offset = 0;
55         key.type = BTRFS_INODE_ITEM_KEY;
56 again:
57         /* need to make sure the commit_root doesn't disappear */
58         down_read(&fs_info->commit_root_sem);
59
60         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
61         if (ret < 0)
62                 goto out;
63
64         while (1) {
65                 if (btrfs_fs_closing(fs_info))
66                         goto out;
67
68                 leaf = path->nodes[0];
69                 slot = path->slots[0];
70                 if (slot >= btrfs_header_nritems(leaf)) {
71                         ret = btrfs_next_leaf(root, path);
72                         if (ret < 0)
73                                 goto out;
74                         else if (ret > 0)
75                                 break;
76
77                         if (need_resched() ||
78                             btrfs_transaction_in_commit(fs_info)) {
79                                 leaf = path->nodes[0];
80
81                                 if (WARN_ON(btrfs_header_nritems(leaf) == 0))
82                                         break;
83
84                                 /*
85                                  * Save the key so we can advances forward
86                                  * in the next search.
87                                  */
88                                 btrfs_item_key_to_cpu(leaf, &key, 0);
89                                 btrfs_release_path(path);
90                                 root->ino_cache_progress = last;
91                                 up_read(&fs_info->commit_root_sem);
92                                 schedule_timeout(1);
93                                 goto again;
94                         } else
95                                 continue;
96                 }
97
98                 btrfs_item_key_to_cpu(leaf, &key, slot);
99
100                 if (key.type != BTRFS_INODE_ITEM_KEY)
101                         goto next;
102
103                 if (key.objectid >= root->highest_objectid)
104                         break;
105
106                 if (last != (u64)-1 && last + 1 != key.objectid) {
107                         __btrfs_add_free_space(fs_info, ctl, last + 1,
108                                                key.objectid - last - 1);
109                         wake_up(&root->ino_cache_wait);
110                 }
111
112                 last = key.objectid;
113 next:
114                 path->slots[0]++;
115         }
116
117         if (last < root->highest_objectid - 1) {
118                 __btrfs_add_free_space(fs_info, ctl, last + 1,
119                                        root->highest_objectid - last - 1);
120         }
121
122         spin_lock(&root->ino_cache_lock);
123         root->ino_cache_state = BTRFS_CACHE_FINISHED;
124         spin_unlock(&root->ino_cache_lock);
125
126         root->ino_cache_progress = (u64)-1;
127         btrfs_unpin_free_ino(root);
128 out:
129         wake_up(&root->ino_cache_wait);
130         up_read(&fs_info->commit_root_sem);
131
132         btrfs_free_path(path);
133
134         return ret;
135 }
136
137 static void start_caching(struct btrfs_root *root)
138 {
139         struct btrfs_fs_info *fs_info = root->fs_info;
140         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
141         struct task_struct *tsk;
142         int ret;
143         u64 objectid;
144
145         if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
146                 return;
147
148         spin_lock(&root->ino_cache_lock);
149         if (root->ino_cache_state != BTRFS_CACHE_NO) {
150                 spin_unlock(&root->ino_cache_lock);
151                 return;
152         }
153
154         root->ino_cache_state = BTRFS_CACHE_STARTED;
155         spin_unlock(&root->ino_cache_lock);
156
157         ret = load_free_ino_cache(fs_info, root);
158         if (ret == 1) {
159                 spin_lock(&root->ino_cache_lock);
160                 root->ino_cache_state = BTRFS_CACHE_FINISHED;
161                 spin_unlock(&root->ino_cache_lock);
162                 return;
163         }
164
165         /*
166          * It can be quite time-consuming to fill the cache by searching
167          * through the extent tree, and this can keep ino allocation path
168          * waiting. Therefore at start we quickly find out the highest
169          * inode number and we know we can use inode numbers which fall in
170          * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
171          */
172         ret = btrfs_find_free_objectid(root, &objectid);
173         if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
174                 __btrfs_add_free_space(fs_info, ctl, objectid,
175                                        BTRFS_LAST_FREE_OBJECTID - objectid + 1);
176         }
177
178         tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
179                           root->root_key.objectid);
180         if (IS_ERR(tsk)) {
181                 btrfs_warn(fs_info, "failed to start inode caching task");
182                 btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
183                                 "disabling inode map caching");
184         }
185 }
186
187 int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
188 {
189         if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
190                 return btrfs_find_free_objectid(root, objectid);
191
192 again:
193         *objectid = btrfs_find_ino_for_alloc(root);
194
195         if (*objectid != 0)
196                 return 0;
197
198         start_caching(root);
199
200         wait_event(root->ino_cache_wait,
201                    root->ino_cache_state == BTRFS_CACHE_FINISHED ||
202                    root->free_ino_ctl->free_space > 0);
203
204         if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
205             root->free_ino_ctl->free_space == 0)
206                 return -ENOSPC;
207         else
208                 goto again;
209 }
210
211 void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
212 {
213         struct btrfs_fs_info *fs_info = root->fs_info;
214         struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
215
216         if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
217                 return;
218 again:
219         if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
220                 __btrfs_add_free_space(fs_info, pinned, objectid, 1);
221         } else {
222                 down_write(&fs_info->commit_root_sem);
223                 spin_lock(&root->ino_cache_lock);
224                 if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
225                         spin_unlock(&root->ino_cache_lock);
226                         up_write(&fs_info->commit_root_sem);
227                         goto again;
228                 }
229                 spin_unlock(&root->ino_cache_lock);
230
231                 start_caching(root);
232
233                 __btrfs_add_free_space(fs_info, pinned, objectid, 1);
234
235                 up_write(&fs_info->commit_root_sem);
236         }
237 }
238
239 /*
240  * When a transaction is committed, we'll move those inode numbers which are
241  * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
242  * others will just be dropped, because the commit root we were searching has
243  * changed.
244  *
245  * Must be called with root->fs_info->commit_root_sem held
246  */
247 void btrfs_unpin_free_ino(struct btrfs_root *root)
248 {
249         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
250         struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
251         spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
252         struct btrfs_free_space *info;
253         struct rb_node *n;
254         u64 count;
255
256         if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
257                 return;
258
259         while (1) {
260                 bool add_to_ctl = true;
261
262                 spin_lock(rbroot_lock);
263                 n = rb_first(rbroot);
264                 if (!n) {
265                         spin_unlock(rbroot_lock);
266                         break;
267                 }
268
269                 info = rb_entry(n, struct btrfs_free_space, offset_index);
270                 BUG_ON(info->bitmap); /* Logic error */
271
272                 if (info->offset > root->ino_cache_progress)
273                         add_to_ctl = false;
274                 else if (info->offset + info->bytes > root->ino_cache_progress)
275                         count = root->ino_cache_progress - info->offset + 1;
276                 else
277                         count = info->bytes;
278
279                 rb_erase(&info->offset_index, rbroot);
280                 spin_unlock(rbroot_lock);
281                 if (add_to_ctl)
282                         __btrfs_add_free_space(root->fs_info, ctl,
283                                                info->offset, count);
284                 kmem_cache_free(btrfs_free_space_cachep, info);
285         }
286 }
287
288 #define INIT_THRESHOLD  ((SZ_32K / 2) / sizeof(struct btrfs_free_space))
289 #define INODES_PER_BITMAP (PAGE_SIZE * 8)
290
291 /*
292  * The goal is to keep the memory used by the free_ino tree won't
293  * exceed the memory if we use bitmaps only.
294  */
295 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
296 {
297         struct btrfs_free_space *info;
298         struct rb_node *n;
299         int max_ino;
300         int max_bitmaps;
301
302         n = rb_last(&ctl->free_space_offset);
303         if (!n) {
304                 ctl->extents_thresh = INIT_THRESHOLD;
305                 return;
306         }
307         info = rb_entry(n, struct btrfs_free_space, offset_index);
308
309         /*
310          * Find the maximum inode number in the filesystem. Note we
311          * ignore the fact that this can be a bitmap, because we are
312          * not doing precise calculation.
313          */
314         max_ino = info->bytes - 1;
315
316         max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
317         if (max_bitmaps <= ctl->total_bitmaps) {
318                 ctl->extents_thresh = 0;
319                 return;
320         }
321
322         ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
323                                 PAGE_SIZE / sizeof(*info);
324 }
325
326 /*
327  * We don't fall back to bitmap, if we are below the extents threshold
328  * or this chunk of inode numbers is a big one.
329  */
330 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
331                        struct btrfs_free_space *info)
332 {
333         if (ctl->free_extents < ctl->extents_thresh ||
334             info->bytes > INODES_PER_BITMAP / 10)
335                 return false;
336
337         return true;
338 }
339
340 static const struct btrfs_free_space_op free_ino_op = {
341         .recalc_thresholds      = recalculate_thresholds,
342         .use_bitmap             = use_bitmap,
343 };
344
345 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
346 {
347 }
348
349 static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
350                               struct btrfs_free_space *info)
351 {
352         /*
353          * We always use extents for two reasons:
354          *
355          * - The pinned tree is only used during the process of caching
356          *   work.
357          * - Make code simpler. See btrfs_unpin_free_ino().
358          */
359         return false;
360 }
361
362 static const struct btrfs_free_space_op pinned_free_ino_op = {
363         .recalc_thresholds      = pinned_recalc_thresholds,
364         .use_bitmap             = pinned_use_bitmap,
365 };
366
367 void btrfs_init_free_ino_ctl(struct btrfs_root *root)
368 {
369         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
370         struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
371
372         spin_lock_init(&ctl->tree_lock);
373         ctl->unit = 1;
374         ctl->start = 0;
375         ctl->private = NULL;
376         ctl->op = &free_ino_op;
377         INIT_LIST_HEAD(&ctl->trimming_ranges);
378         mutex_init(&ctl->cache_writeout_mutex);
379
380         /*
381          * Initially we allow to use 16K of ram to cache chunks of
382          * inode numbers before we resort to bitmaps. This is somewhat
383          * arbitrary, but it will be adjusted in runtime.
384          */
385         ctl->extents_thresh = INIT_THRESHOLD;
386
387         spin_lock_init(&pinned->tree_lock);
388         pinned->unit = 1;
389         pinned->start = 0;
390         pinned->private = NULL;
391         pinned->extents_thresh = 0;
392         pinned->op = &pinned_free_ino_op;
393 }
394
395 int btrfs_save_ino_cache(struct btrfs_root *root,
396                          struct btrfs_trans_handle *trans)
397 {
398         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
399         struct btrfs_path *path;
400         struct inode *inode;
401         struct btrfs_block_rsv *rsv;
402         u64 num_bytes;
403         u64 alloc_hint = 0;
404         int ret;
405         int prealloc;
406         bool retry = false;
407
408         /* only fs tree and subvol/snap needs ino cache */
409         if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
410             (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
411              root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
412                 return 0;
413
414         /* Don't save inode cache if we are deleting this root */
415         if (btrfs_root_refs(&root->root_item) == 0)
416                 return 0;
417
418         if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
419                 return 0;
420
421         path = btrfs_alloc_path();
422         if (!path)
423                 return -ENOMEM;
424
425         rsv = trans->block_rsv;
426         trans->block_rsv = &root->fs_info->trans_block_rsv;
427
428         num_bytes = trans->bytes_reserved;
429         /*
430          * 1 item for inode item insertion if need
431          * 4 items for inode item update (in the worst case)
432          * 1 items for slack space if we need do truncation
433          * 1 item for free space object
434          * 3 items for pre-allocation
435          */
436         trans->bytes_reserved = btrfs_calc_trans_metadata_size(root, 10);
437         ret = btrfs_block_rsv_add(root, trans->block_rsv,
438                                   trans->bytes_reserved,
439                                   BTRFS_RESERVE_NO_FLUSH);
440         if (ret)
441                 goto out;
442         trace_btrfs_space_reservation(root->fs_info, "ino_cache",
443                                       trans->transid, trans->bytes_reserved, 1);
444 again:
445         inode = lookup_free_ino_inode(root, path);
446         if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
447                 ret = PTR_ERR(inode);
448                 goto out_release;
449         }
450
451         if (IS_ERR(inode)) {
452                 BUG_ON(retry); /* Logic error */
453                 retry = true;
454
455                 ret = create_free_ino_inode(root, trans, path);
456                 if (ret)
457                         goto out_release;
458                 goto again;
459         }
460
461         BTRFS_I(inode)->generation = 0;
462         ret = btrfs_update_inode(trans, root, inode);
463         if (ret) {
464                 btrfs_abort_transaction(trans, ret);
465                 goto out_put;
466         }
467
468         if (i_size_read(inode) > 0) {
469                 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
470                 if (ret) {
471                         if (ret != -ENOSPC)
472                                 btrfs_abort_transaction(trans, ret);
473                         goto out_put;
474                 }
475         }
476
477         spin_lock(&root->ino_cache_lock);
478         if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
479                 ret = -1;
480                 spin_unlock(&root->ino_cache_lock);
481                 goto out_put;
482         }
483         spin_unlock(&root->ino_cache_lock);
484
485         spin_lock(&ctl->tree_lock);
486         prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
487         prealloc = ALIGN(prealloc, PAGE_SIZE);
488         prealloc += ctl->total_bitmaps * PAGE_SIZE;
489         spin_unlock(&ctl->tree_lock);
490
491         /* Just to make sure we have enough space */
492         prealloc += 8 * PAGE_SIZE;
493
494         ret = btrfs_delalloc_reserve_space(inode, 0, prealloc);
495         if (ret)
496                 goto out_put;
497
498         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
499                                               prealloc, prealloc, &alloc_hint);
500         if (ret) {
501                 btrfs_delalloc_release_metadata(inode, prealloc);
502                 goto out_put;
503         }
504
505         ret = btrfs_write_out_ino_cache(root, trans, path, inode);
506 out_put:
507         iput(inode);
508 out_release:
509         trace_btrfs_space_reservation(root->fs_info, "ino_cache",
510                                       trans->transid, trans->bytes_reserved, 0);
511         btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
512 out:
513         trans->block_rsv = rsv;
514         trans->bytes_reserved = num_bytes;
515
516         btrfs_free_path(path);
517         return ret;
518 }
519
520 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
521 {
522         struct btrfs_path *path;
523         int ret;
524         struct extent_buffer *l;
525         struct btrfs_key search_key;
526         struct btrfs_key found_key;
527         int slot;
528
529         path = btrfs_alloc_path();
530         if (!path)
531                 return -ENOMEM;
532
533         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
534         search_key.type = -1;
535         search_key.offset = (u64)-1;
536         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
537         if (ret < 0)
538                 goto error;
539         BUG_ON(ret == 0); /* Corruption */
540         if (path->slots[0] > 0) {
541                 slot = path->slots[0] - 1;
542                 l = path->nodes[0];
543                 btrfs_item_key_to_cpu(l, &found_key, slot);
544                 *objectid = max_t(u64, found_key.objectid,
545                                   BTRFS_FIRST_FREE_OBJECTID - 1);
546         } else {
547                 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
548         }
549         ret = 0;
550 error:
551         btrfs_free_path(path);
552         return ret;
553 }
554
555 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
556 {
557         int ret;
558         mutex_lock(&root->objectid_mutex);
559
560         if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
561                 btrfs_warn(root->fs_info,
562                            "the objectid of root %llu reaches its highest value",
563                            root->root_key.objectid);
564                 ret = -ENOSPC;
565                 goto out;
566         }
567
568         *objectid = ++root->highest_objectid;
569         ret = 0;
570 out:
571         mutex_unlock(&root->objectid_mutex);
572         return ret;
573 }