Merge branches 'acpi-ec', 'acpi-soc', 'acpi-video' and 'acpi-resources'
[cascardo/linux.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62
63 struct btrfs_iget_args {
64         struct btrfs_key *location;
65         struct btrfs_root *root;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
88         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
89         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
90         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
91         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
92         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
93         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
94 };
95
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100                                    struct page *locked_page,
101                                    u64 start, u64 end, int *page_started,
102                                    unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104                                            u64 len, u64 orig_start,
105                                            u64 block_start, u64 block_len,
106                                            u64 orig_block_len, u64 ram_bytes,
107                                            int type);
108
109 static int btrfs_dirty_inode(struct inode *inode);
110
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112                                      struct inode *inode,  struct inode *dir,
113                                      const struct qstr *qstr)
114 {
115         int err;
116
117         err = btrfs_init_acl(trans, inode, dir);
118         if (!err)
119                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120         return err;
121 }
122
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129                                 struct btrfs_path *path, int extent_inserted,
130                                 struct btrfs_root *root, struct inode *inode,
131                                 u64 start, size_t size, size_t compressed_size,
132                                 int compress_type,
133                                 struct page **compressed_pages)
134 {
135         struct extent_buffer *leaf;
136         struct page *page = NULL;
137         char *kaddr;
138         unsigned long ptr;
139         struct btrfs_file_extent_item *ei;
140         int err = 0;
141         int ret;
142         size_t cur_size = size;
143         unsigned long offset;
144
145         if (compressed_size && compressed_pages)
146                 cur_size = compressed_size;
147
148         inode_add_bytes(inode, size);
149
150         if (!extent_inserted) {
151                 struct btrfs_key key;
152                 size_t datasize;
153
154                 key.objectid = btrfs_ino(inode);
155                 key.offset = start;
156                 key.type = BTRFS_EXTENT_DATA_KEY;
157
158                 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159                 path->leave_spinning = 1;
160                 ret = btrfs_insert_empty_item(trans, root, path, &key,
161                                               datasize);
162                 if (ret) {
163                         err = ret;
164                         goto fail;
165                 }
166         }
167         leaf = path->nodes[0];
168         ei = btrfs_item_ptr(leaf, path->slots[0],
169                             struct btrfs_file_extent_item);
170         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172         btrfs_set_file_extent_encryption(leaf, ei, 0);
173         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175         ptr = btrfs_file_extent_inline_start(ei);
176
177         if (compress_type != BTRFS_COMPRESS_NONE) {
178                 struct page *cpage;
179                 int i = 0;
180                 while (compressed_size > 0) {
181                         cpage = compressed_pages[i];
182                         cur_size = min_t(unsigned long, compressed_size,
183                                        PAGE_CACHE_SIZE);
184
185                         kaddr = kmap_atomic(cpage);
186                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
187                         kunmap_atomic(kaddr);
188
189                         i++;
190                         ptr += cur_size;
191                         compressed_size -= cur_size;
192                 }
193                 btrfs_set_file_extent_compression(leaf, ei,
194                                                   compress_type);
195         } else {
196                 page = find_get_page(inode->i_mapping,
197                                      start >> PAGE_CACHE_SHIFT);
198                 btrfs_set_file_extent_compression(leaf, ei, 0);
199                 kaddr = kmap_atomic(page);
200                 offset = start & (PAGE_CACHE_SIZE - 1);
201                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202                 kunmap_atomic(kaddr);
203                 page_cache_release(page);
204         }
205         btrfs_mark_buffer_dirty(leaf);
206         btrfs_release_path(path);
207
208         /*
209          * we're an inline extent, so nobody can
210          * extend the file past i_size without locking
211          * a page we already have locked.
212          *
213          * We must do any isize and inode updates
214          * before we unlock the pages.  Otherwise we
215          * could end up racing with unlink.
216          */
217         BTRFS_I(inode)->disk_i_size = inode->i_size;
218         ret = btrfs_update_inode(trans, root, inode);
219
220         return ret;
221 fail:
222         return err;
223 }
224
225
226 /*
227  * conditionally insert an inline extent into the file.  This
228  * does the checks required to make sure the data is small enough
229  * to fit as an inline extent.
230  */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232                                           struct inode *inode, u64 start,
233                                           u64 end, size_t compressed_size,
234                                           int compress_type,
235                                           struct page **compressed_pages)
236 {
237         struct btrfs_trans_handle *trans;
238         u64 isize = i_size_read(inode);
239         u64 actual_end = min(end + 1, isize);
240         u64 inline_len = actual_end - start;
241         u64 aligned_end = ALIGN(end, root->sectorsize);
242         u64 data_len = inline_len;
243         int ret;
244         struct btrfs_path *path;
245         int extent_inserted = 0;
246         u32 extent_item_size;
247
248         if (compressed_size)
249                 data_len = compressed_size;
250
251         if (start > 0 ||
252             actual_end > PAGE_CACHE_SIZE ||
253             data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254             (!compressed_size &&
255             (actual_end & (root->sectorsize - 1)) == 0) ||
256             end + 1 < isize ||
257             data_len > root->fs_info->max_inline) {
258                 return 1;
259         }
260
261         path = btrfs_alloc_path();
262         if (!path)
263                 return -ENOMEM;
264
265         trans = btrfs_join_transaction(root);
266         if (IS_ERR(trans)) {
267                 btrfs_free_path(path);
268                 return PTR_ERR(trans);
269         }
270         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
272         if (compressed_size && compressed_pages)
273                 extent_item_size = btrfs_file_extent_calc_inline_size(
274                    compressed_size);
275         else
276                 extent_item_size = btrfs_file_extent_calc_inline_size(
277                     inline_len);
278
279         ret = __btrfs_drop_extents(trans, root, inode, path,
280                                    start, aligned_end, NULL,
281                                    1, 1, extent_item_size, &extent_inserted);
282         if (ret) {
283                 btrfs_abort_transaction(trans, root, ret);
284                 goto out;
285         }
286
287         if (isize > actual_end)
288                 inline_len = min_t(u64, isize, actual_end);
289         ret = insert_inline_extent(trans, path, extent_inserted,
290                                    root, inode, start,
291                                    inline_len, compressed_size,
292                                    compress_type, compressed_pages);
293         if (ret && ret != -ENOSPC) {
294                 btrfs_abort_transaction(trans, root, ret);
295                 goto out;
296         } else if (ret == -ENOSPC) {
297                 ret = 1;
298                 goto out;
299         }
300
301         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302         btrfs_delalloc_release_metadata(inode, end + 1 - start);
303         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305         btrfs_free_path(path);
306         btrfs_end_transaction(trans, root);
307         return ret;
308 }
309
310 struct async_extent {
311         u64 start;
312         u64 ram_size;
313         u64 compressed_size;
314         struct page **pages;
315         unsigned long nr_pages;
316         int compress_type;
317         struct list_head list;
318 };
319
320 struct async_cow {
321         struct inode *inode;
322         struct btrfs_root *root;
323         struct page *locked_page;
324         u64 start;
325         u64 end;
326         struct list_head extents;
327         struct btrfs_work work;
328 };
329
330 static noinline int add_async_extent(struct async_cow *cow,
331                                      u64 start, u64 ram_size,
332                                      u64 compressed_size,
333                                      struct page **pages,
334                                      unsigned long nr_pages,
335                                      int compress_type)
336 {
337         struct async_extent *async_extent;
338
339         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340         BUG_ON(!async_extent); /* -ENOMEM */
341         async_extent->start = start;
342         async_extent->ram_size = ram_size;
343         async_extent->compressed_size = compressed_size;
344         async_extent->pages = pages;
345         async_extent->nr_pages = nr_pages;
346         async_extent->compress_type = compress_type;
347         list_add_tail(&async_extent->list, &cow->extents);
348         return 0;
349 }
350
351 static inline int inode_need_compress(struct inode *inode)
352 {
353         struct btrfs_root *root = BTRFS_I(inode)->root;
354
355         /* force compress */
356         if (btrfs_test_opt(root, FORCE_COMPRESS))
357                 return 1;
358         /* bad compression ratios */
359         if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360                 return 0;
361         if (btrfs_test_opt(root, COMPRESS) ||
362             BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363             BTRFS_I(inode)->force_compress)
364                 return 1;
365         return 0;
366 }
367
368 /*
369  * we create compressed extents in two phases.  The first
370  * phase compresses a range of pages that have already been
371  * locked (both pages and state bits are locked).
372  *
373  * This is done inside an ordered work queue, and the compression
374  * is spread across many cpus.  The actual IO submission is step
375  * two, and the ordered work queue takes care of making sure that
376  * happens in the same order things were put onto the queue by
377  * writepages and friends.
378  *
379  * If this code finds it can't get good compression, it puts an
380  * entry onto the work queue to write the uncompressed bytes.  This
381  * makes sure that both compressed inodes and uncompressed inodes
382  * are written in the same order that the flusher thread sent them
383  * down.
384  */
385 static noinline void compress_file_range(struct inode *inode,
386                                         struct page *locked_page,
387                                         u64 start, u64 end,
388                                         struct async_cow *async_cow,
389                                         int *num_added)
390 {
391         struct btrfs_root *root = BTRFS_I(inode)->root;
392         u64 num_bytes;
393         u64 blocksize = root->sectorsize;
394         u64 actual_end;
395         u64 isize = i_size_read(inode);
396         int ret = 0;
397         struct page **pages = NULL;
398         unsigned long nr_pages;
399         unsigned long nr_pages_ret = 0;
400         unsigned long total_compressed = 0;
401         unsigned long total_in = 0;
402         unsigned long max_compressed = 128 * 1024;
403         unsigned long max_uncompressed = 128 * 1024;
404         int i;
405         int will_compress;
406         int compress_type = root->fs_info->compress_type;
407         int redirty = 0;
408
409         /* if this is a small write inside eof, kick off a defrag */
410         if ((end - start + 1) < 16 * 1024 &&
411             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
412                 btrfs_add_inode_defrag(NULL, inode);
413
414         actual_end = min_t(u64, isize, end + 1);
415 again:
416         will_compress = 0;
417         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
418         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
419
420         /*
421          * we don't want to send crud past the end of i_size through
422          * compression, that's just a waste of CPU time.  So, if the
423          * end of the file is before the start of our current
424          * requested range of bytes, we bail out to the uncompressed
425          * cleanup code that can deal with all of this.
426          *
427          * It isn't really the fastest way to fix things, but this is a
428          * very uncommon corner.
429          */
430         if (actual_end <= start)
431                 goto cleanup_and_bail_uncompressed;
432
433         total_compressed = actual_end - start;
434
435         /*
436          * skip compression for a small file range(<=blocksize) that
437          * isn't an inline extent, since it dosen't save disk space at all.
438          */
439         if (total_compressed <= blocksize &&
440            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
441                 goto cleanup_and_bail_uncompressed;
442
443         /* we want to make sure that amount of ram required to uncompress
444          * an extent is reasonable, so we limit the total size in ram
445          * of a compressed extent to 128k.  This is a crucial number
446          * because it also controls how easily we can spread reads across
447          * cpus for decompression.
448          *
449          * We also want to make sure the amount of IO required to do
450          * a random read is reasonably small, so we limit the size of
451          * a compressed extent to 128k.
452          */
453         total_compressed = min(total_compressed, max_uncompressed);
454         num_bytes = ALIGN(end - start + 1, blocksize);
455         num_bytes = max(blocksize,  num_bytes);
456         total_in = 0;
457         ret = 0;
458
459         /*
460          * we do compression for mount -o compress and when the
461          * inode has not been flagged as nocompress.  This flag can
462          * change at any time if we discover bad compression ratios.
463          */
464         if (inode_need_compress(inode)) {
465                 WARN_ON(pages);
466                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
467                 if (!pages) {
468                         /* just bail out to the uncompressed code */
469                         goto cont;
470                 }
471
472                 if (BTRFS_I(inode)->force_compress)
473                         compress_type = BTRFS_I(inode)->force_compress;
474
475                 /*
476                  * we need to call clear_page_dirty_for_io on each
477                  * page in the range.  Otherwise applications with the file
478                  * mmap'd can wander in and change the page contents while
479                  * we are compressing them.
480                  *
481                  * If the compression fails for any reason, we set the pages
482                  * dirty again later on.
483                  */
484                 extent_range_clear_dirty_for_io(inode, start, end);
485                 redirty = 1;
486                 ret = btrfs_compress_pages(compress_type,
487                                            inode->i_mapping, start,
488                                            total_compressed, pages,
489                                            nr_pages, &nr_pages_ret,
490                                            &total_in,
491                                            &total_compressed,
492                                            max_compressed);
493
494                 if (!ret) {
495                         unsigned long offset = total_compressed &
496                                 (PAGE_CACHE_SIZE - 1);
497                         struct page *page = pages[nr_pages_ret - 1];
498                         char *kaddr;
499
500                         /* zero the tail end of the last page, we might be
501                          * sending it down to disk
502                          */
503                         if (offset) {
504                                 kaddr = kmap_atomic(page);
505                                 memset(kaddr + offset, 0,
506                                        PAGE_CACHE_SIZE - offset);
507                                 kunmap_atomic(kaddr);
508                         }
509                         will_compress = 1;
510                 }
511         }
512 cont:
513         if (start == 0) {
514                 /* lets try to make an inline extent */
515                 if (ret || total_in < (actual_end - start)) {
516                         /* we didn't compress the entire range, try
517                          * to make an uncompressed inline extent.
518                          */
519                         ret = cow_file_range_inline(root, inode, start, end,
520                                                     0, 0, NULL);
521                 } else {
522                         /* try making a compressed inline extent */
523                         ret = cow_file_range_inline(root, inode, start, end,
524                                                     total_compressed,
525                                                     compress_type, pages);
526                 }
527                 if (ret <= 0) {
528                         unsigned long clear_flags = EXTENT_DELALLOC |
529                                 EXTENT_DEFRAG;
530                         unsigned long page_error_op;
531
532                         clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
533                         page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
534
535                         /*
536                          * inline extent creation worked or returned error,
537                          * we don't need to create any more async work items.
538                          * Unlock and free up our temp pages.
539                          */
540                         extent_clear_unlock_delalloc(inode, start, end, NULL,
541                                                      clear_flags, PAGE_UNLOCK |
542                                                      PAGE_CLEAR_DIRTY |
543                                                      PAGE_SET_WRITEBACK |
544                                                      page_error_op |
545                                                      PAGE_END_WRITEBACK);
546                         goto free_pages_out;
547                 }
548         }
549
550         if (will_compress) {
551                 /*
552                  * we aren't doing an inline extent round the compressed size
553                  * up to a block size boundary so the allocator does sane
554                  * things
555                  */
556                 total_compressed = ALIGN(total_compressed, blocksize);
557
558                 /*
559                  * one last check to make sure the compression is really a
560                  * win, compare the page count read with the blocks on disk
561                  */
562                 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
563                 if (total_compressed >= total_in) {
564                         will_compress = 0;
565                 } else {
566                         num_bytes = total_in;
567                 }
568         }
569         if (!will_compress && pages) {
570                 /*
571                  * the compression code ran but failed to make things smaller,
572                  * free any pages it allocated and our page pointer array
573                  */
574                 for (i = 0; i < nr_pages_ret; i++) {
575                         WARN_ON(pages[i]->mapping);
576                         page_cache_release(pages[i]);
577                 }
578                 kfree(pages);
579                 pages = NULL;
580                 total_compressed = 0;
581                 nr_pages_ret = 0;
582
583                 /* flag the file so we don't compress in the future */
584                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
585                     !(BTRFS_I(inode)->force_compress)) {
586                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
587                 }
588         }
589         if (will_compress) {
590                 *num_added += 1;
591
592                 /* the async work queues will take care of doing actual
593                  * allocation on disk for these compressed pages,
594                  * and will submit them to the elevator.
595                  */
596                 add_async_extent(async_cow, start, num_bytes,
597                                  total_compressed, pages, nr_pages_ret,
598                                  compress_type);
599
600                 if (start + num_bytes < end) {
601                         start += num_bytes;
602                         pages = NULL;
603                         cond_resched();
604                         goto again;
605                 }
606         } else {
607 cleanup_and_bail_uncompressed:
608                 /*
609                  * No compression, but we still need to write the pages in
610                  * the file we've been given so far.  redirty the locked
611                  * page if it corresponds to our extent and set things up
612                  * for the async work queue to run cow_file_range to do
613                  * the normal delalloc dance
614                  */
615                 if (page_offset(locked_page) >= start &&
616                     page_offset(locked_page) <= end) {
617                         __set_page_dirty_nobuffers(locked_page);
618                         /* unlocked later on in the async handlers */
619                 }
620                 if (redirty)
621                         extent_range_redirty_for_io(inode, start, end);
622                 add_async_extent(async_cow, start, end - start + 1,
623                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
624                 *num_added += 1;
625         }
626
627         return;
628
629 free_pages_out:
630         for (i = 0; i < nr_pages_ret; i++) {
631                 WARN_ON(pages[i]->mapping);
632                 page_cache_release(pages[i]);
633         }
634         kfree(pages);
635 }
636
637 static void free_async_extent_pages(struct async_extent *async_extent)
638 {
639         int i;
640
641         if (!async_extent->pages)
642                 return;
643
644         for (i = 0; i < async_extent->nr_pages; i++) {
645                 WARN_ON(async_extent->pages[i]->mapping);
646                 page_cache_release(async_extent->pages[i]);
647         }
648         kfree(async_extent->pages);
649         async_extent->nr_pages = 0;
650         async_extent->pages = NULL;
651 }
652
653 /*
654  * phase two of compressed writeback.  This is the ordered portion
655  * of the code, which only gets called in the order the work was
656  * queued.  We walk all the async extents created by compress_file_range
657  * and send them down to the disk.
658  */
659 static noinline void submit_compressed_extents(struct inode *inode,
660                                               struct async_cow *async_cow)
661 {
662         struct async_extent *async_extent;
663         u64 alloc_hint = 0;
664         struct btrfs_key ins;
665         struct extent_map *em;
666         struct btrfs_root *root = BTRFS_I(inode)->root;
667         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
668         struct extent_io_tree *io_tree;
669         int ret = 0;
670
671 again:
672         while (!list_empty(&async_cow->extents)) {
673                 async_extent = list_entry(async_cow->extents.next,
674                                           struct async_extent, list);
675                 list_del(&async_extent->list);
676
677                 io_tree = &BTRFS_I(inode)->io_tree;
678
679 retry:
680                 /* did the compression code fall back to uncompressed IO? */
681                 if (!async_extent->pages) {
682                         int page_started = 0;
683                         unsigned long nr_written = 0;
684
685                         lock_extent(io_tree, async_extent->start,
686                                          async_extent->start +
687                                          async_extent->ram_size - 1);
688
689                         /* allocate blocks */
690                         ret = cow_file_range(inode, async_cow->locked_page,
691                                              async_extent->start,
692                                              async_extent->start +
693                                              async_extent->ram_size - 1,
694                                              &page_started, &nr_written, 0);
695
696                         /* JDM XXX */
697
698                         /*
699                          * if page_started, cow_file_range inserted an
700                          * inline extent and took care of all the unlocking
701                          * and IO for us.  Otherwise, we need to submit
702                          * all those pages down to the drive.
703                          */
704                         if (!page_started && !ret)
705                                 extent_write_locked_range(io_tree,
706                                                   inode, async_extent->start,
707                                                   async_extent->start +
708                                                   async_extent->ram_size - 1,
709                                                   btrfs_get_extent,
710                                                   WB_SYNC_ALL);
711                         else if (ret)
712                                 unlock_page(async_cow->locked_page);
713                         kfree(async_extent);
714                         cond_resched();
715                         continue;
716                 }
717
718                 lock_extent(io_tree, async_extent->start,
719                             async_extent->start + async_extent->ram_size - 1);
720
721                 ret = btrfs_reserve_extent(root,
722                                            async_extent->compressed_size,
723                                            async_extent->compressed_size,
724                                            0, alloc_hint, &ins, 1, 1);
725                 if (ret) {
726                         free_async_extent_pages(async_extent);
727
728                         if (ret == -ENOSPC) {
729                                 unlock_extent(io_tree, async_extent->start,
730                                               async_extent->start +
731                                               async_extent->ram_size - 1);
732
733                                 /*
734                                  * we need to redirty the pages if we decide to
735                                  * fallback to uncompressed IO, otherwise we
736                                  * will not submit these pages down to lower
737                                  * layers.
738                                  */
739                                 extent_range_redirty_for_io(inode,
740                                                 async_extent->start,
741                                                 async_extent->start +
742                                                 async_extent->ram_size - 1);
743
744                                 goto retry;
745                         }
746                         goto out_free;
747                 }
748
749                 /*
750                  * here we're doing allocation and writeback of the
751                  * compressed pages
752                  */
753                 btrfs_drop_extent_cache(inode, async_extent->start,
754                                         async_extent->start +
755                                         async_extent->ram_size - 1, 0);
756
757                 em = alloc_extent_map();
758                 if (!em) {
759                         ret = -ENOMEM;
760                         goto out_free_reserve;
761                 }
762                 em->start = async_extent->start;
763                 em->len = async_extent->ram_size;
764                 em->orig_start = em->start;
765                 em->mod_start = em->start;
766                 em->mod_len = em->len;
767
768                 em->block_start = ins.objectid;
769                 em->block_len = ins.offset;
770                 em->orig_block_len = ins.offset;
771                 em->ram_bytes = async_extent->ram_size;
772                 em->bdev = root->fs_info->fs_devices->latest_bdev;
773                 em->compress_type = async_extent->compress_type;
774                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
775                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
776                 em->generation = -1;
777
778                 while (1) {
779                         write_lock(&em_tree->lock);
780                         ret = add_extent_mapping(em_tree, em, 1);
781                         write_unlock(&em_tree->lock);
782                         if (ret != -EEXIST) {
783                                 free_extent_map(em);
784                                 break;
785                         }
786                         btrfs_drop_extent_cache(inode, async_extent->start,
787                                                 async_extent->start +
788                                                 async_extent->ram_size - 1, 0);
789                 }
790
791                 if (ret)
792                         goto out_free_reserve;
793
794                 ret = btrfs_add_ordered_extent_compress(inode,
795                                                 async_extent->start,
796                                                 ins.objectid,
797                                                 async_extent->ram_size,
798                                                 ins.offset,
799                                                 BTRFS_ORDERED_COMPRESSED,
800                                                 async_extent->compress_type);
801                 if (ret) {
802                         btrfs_drop_extent_cache(inode, async_extent->start,
803                                                 async_extent->start +
804                                                 async_extent->ram_size - 1, 0);
805                         goto out_free_reserve;
806                 }
807
808                 /*
809                  * clear dirty, set writeback and unlock the pages.
810                  */
811                 extent_clear_unlock_delalloc(inode, async_extent->start,
812                                 async_extent->start +
813                                 async_extent->ram_size - 1,
814                                 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
815                                 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
816                                 PAGE_SET_WRITEBACK);
817                 ret = btrfs_submit_compressed_write(inode,
818                                     async_extent->start,
819                                     async_extent->ram_size,
820                                     ins.objectid,
821                                     ins.offset, async_extent->pages,
822                                     async_extent->nr_pages);
823                 if (ret) {
824                         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
825                         struct page *p = async_extent->pages[0];
826                         const u64 start = async_extent->start;
827                         const u64 end = start + async_extent->ram_size - 1;
828
829                         p->mapping = inode->i_mapping;
830                         tree->ops->writepage_end_io_hook(p, start, end,
831                                                          NULL, 0);
832                         p->mapping = NULL;
833                         extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
834                                                      PAGE_END_WRITEBACK |
835                                                      PAGE_SET_ERROR);
836                         free_async_extent_pages(async_extent);
837                 }
838                 alloc_hint = ins.objectid + ins.offset;
839                 kfree(async_extent);
840                 cond_resched();
841         }
842         return;
843 out_free_reserve:
844         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
845 out_free:
846         extent_clear_unlock_delalloc(inode, async_extent->start,
847                                      async_extent->start +
848                                      async_extent->ram_size - 1,
849                                      NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
850                                      EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
851                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
852                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
853                                      PAGE_SET_ERROR);
854         free_async_extent_pages(async_extent);
855         kfree(async_extent);
856         goto again;
857 }
858
859 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
860                                       u64 num_bytes)
861 {
862         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
863         struct extent_map *em;
864         u64 alloc_hint = 0;
865
866         read_lock(&em_tree->lock);
867         em = search_extent_mapping(em_tree, start, num_bytes);
868         if (em) {
869                 /*
870                  * if block start isn't an actual block number then find the
871                  * first block in this inode and use that as a hint.  If that
872                  * block is also bogus then just don't worry about it.
873                  */
874                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
875                         free_extent_map(em);
876                         em = search_extent_mapping(em_tree, 0, 0);
877                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
878                                 alloc_hint = em->block_start;
879                         if (em)
880                                 free_extent_map(em);
881                 } else {
882                         alloc_hint = em->block_start;
883                         free_extent_map(em);
884                 }
885         }
886         read_unlock(&em_tree->lock);
887
888         return alloc_hint;
889 }
890
891 /*
892  * when extent_io.c finds a delayed allocation range in the file,
893  * the call backs end up in this code.  The basic idea is to
894  * allocate extents on disk for the range, and create ordered data structs
895  * in ram to track those extents.
896  *
897  * locked_page is the page that writepage had locked already.  We use
898  * it to make sure we don't do extra locks or unlocks.
899  *
900  * *page_started is set to one if we unlock locked_page and do everything
901  * required to start IO on it.  It may be clean and already done with
902  * IO when we return.
903  */
904 static noinline int cow_file_range(struct inode *inode,
905                                    struct page *locked_page,
906                                    u64 start, u64 end, int *page_started,
907                                    unsigned long *nr_written,
908                                    int unlock)
909 {
910         struct btrfs_root *root = BTRFS_I(inode)->root;
911         u64 alloc_hint = 0;
912         u64 num_bytes;
913         unsigned long ram_size;
914         u64 disk_num_bytes;
915         u64 cur_alloc_size;
916         u64 blocksize = root->sectorsize;
917         struct btrfs_key ins;
918         struct extent_map *em;
919         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
920         int ret = 0;
921
922         if (btrfs_is_free_space_inode(inode)) {
923                 WARN_ON_ONCE(1);
924                 ret = -EINVAL;
925                 goto out_unlock;
926         }
927
928         num_bytes = ALIGN(end - start + 1, blocksize);
929         num_bytes = max(blocksize,  num_bytes);
930         disk_num_bytes = num_bytes;
931
932         /* if this is a small write inside eof, kick off defrag */
933         if (num_bytes < 64 * 1024 &&
934             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
935                 btrfs_add_inode_defrag(NULL, inode);
936
937         if (start == 0) {
938                 /* lets try to make an inline extent */
939                 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
940                                             NULL);
941                 if (ret == 0) {
942                         extent_clear_unlock_delalloc(inode, start, end, NULL,
943                                      EXTENT_LOCKED | EXTENT_DELALLOC |
944                                      EXTENT_DEFRAG, PAGE_UNLOCK |
945                                      PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
946                                      PAGE_END_WRITEBACK);
947
948                         *nr_written = *nr_written +
949                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
950                         *page_started = 1;
951                         goto out;
952                 } else if (ret < 0) {
953                         goto out_unlock;
954                 }
955         }
956
957         BUG_ON(disk_num_bytes >
958                btrfs_super_total_bytes(root->fs_info->super_copy));
959
960         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
961         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
962
963         while (disk_num_bytes > 0) {
964                 unsigned long op;
965
966                 cur_alloc_size = disk_num_bytes;
967                 ret = btrfs_reserve_extent(root, cur_alloc_size,
968                                            root->sectorsize, 0, alloc_hint,
969                                            &ins, 1, 1);
970                 if (ret < 0)
971                         goto out_unlock;
972
973                 em = alloc_extent_map();
974                 if (!em) {
975                         ret = -ENOMEM;
976                         goto out_reserve;
977                 }
978                 em->start = start;
979                 em->orig_start = em->start;
980                 ram_size = ins.offset;
981                 em->len = ins.offset;
982                 em->mod_start = em->start;
983                 em->mod_len = em->len;
984
985                 em->block_start = ins.objectid;
986                 em->block_len = ins.offset;
987                 em->orig_block_len = ins.offset;
988                 em->ram_bytes = ram_size;
989                 em->bdev = root->fs_info->fs_devices->latest_bdev;
990                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
991                 em->generation = -1;
992
993                 while (1) {
994                         write_lock(&em_tree->lock);
995                         ret = add_extent_mapping(em_tree, em, 1);
996                         write_unlock(&em_tree->lock);
997                         if (ret != -EEXIST) {
998                                 free_extent_map(em);
999                                 break;
1000                         }
1001                         btrfs_drop_extent_cache(inode, start,
1002                                                 start + ram_size - 1, 0);
1003                 }
1004                 if (ret)
1005                         goto out_reserve;
1006
1007                 cur_alloc_size = ins.offset;
1008                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1009                                                ram_size, cur_alloc_size, 0);
1010                 if (ret)
1011                         goto out_drop_extent_cache;
1012
1013                 if (root->root_key.objectid ==
1014                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1015                         ret = btrfs_reloc_clone_csums(inode, start,
1016                                                       cur_alloc_size);
1017                         if (ret)
1018                                 goto out_drop_extent_cache;
1019                 }
1020
1021                 if (disk_num_bytes < cur_alloc_size)
1022                         break;
1023
1024                 /* we're not doing compressed IO, don't unlock the first
1025                  * page (which the caller expects to stay locked), don't
1026                  * clear any dirty bits and don't set any writeback bits
1027                  *
1028                  * Do set the Private2 bit so we know this page was properly
1029                  * setup for writepage
1030                  */
1031                 op = unlock ? PAGE_UNLOCK : 0;
1032                 op |= PAGE_SET_PRIVATE2;
1033
1034                 extent_clear_unlock_delalloc(inode, start,
1035                                              start + ram_size - 1, locked_page,
1036                                              EXTENT_LOCKED | EXTENT_DELALLOC,
1037                                              op);
1038                 disk_num_bytes -= cur_alloc_size;
1039                 num_bytes -= cur_alloc_size;
1040                 alloc_hint = ins.objectid + ins.offset;
1041                 start += cur_alloc_size;
1042         }
1043 out:
1044         return ret;
1045
1046 out_drop_extent_cache:
1047         btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1048 out_reserve:
1049         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1050 out_unlock:
1051         extent_clear_unlock_delalloc(inode, start, end, locked_page,
1052                                      EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1053                                      EXTENT_DELALLOC | EXTENT_DEFRAG,
1054                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1055                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1056         goto out;
1057 }
1058
1059 /*
1060  * work queue call back to started compression on a file and pages
1061  */
1062 static noinline void async_cow_start(struct btrfs_work *work)
1063 {
1064         struct async_cow *async_cow;
1065         int num_added = 0;
1066         async_cow = container_of(work, struct async_cow, work);
1067
1068         compress_file_range(async_cow->inode, async_cow->locked_page,
1069                             async_cow->start, async_cow->end, async_cow,
1070                             &num_added);
1071         if (num_added == 0) {
1072                 btrfs_add_delayed_iput(async_cow->inode);
1073                 async_cow->inode = NULL;
1074         }
1075 }
1076
1077 /*
1078  * work queue call back to submit previously compressed pages
1079  */
1080 static noinline void async_cow_submit(struct btrfs_work *work)
1081 {
1082         struct async_cow *async_cow;
1083         struct btrfs_root *root;
1084         unsigned long nr_pages;
1085
1086         async_cow = container_of(work, struct async_cow, work);
1087
1088         root = async_cow->root;
1089         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1090                 PAGE_CACHE_SHIFT;
1091
1092         if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1093             5 * 1024 * 1024 &&
1094             waitqueue_active(&root->fs_info->async_submit_wait))
1095                 wake_up(&root->fs_info->async_submit_wait);
1096
1097         if (async_cow->inode)
1098                 submit_compressed_extents(async_cow->inode, async_cow);
1099 }
1100
1101 static noinline void async_cow_free(struct btrfs_work *work)
1102 {
1103         struct async_cow *async_cow;
1104         async_cow = container_of(work, struct async_cow, work);
1105         if (async_cow->inode)
1106                 btrfs_add_delayed_iput(async_cow->inode);
1107         kfree(async_cow);
1108 }
1109
1110 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1111                                 u64 start, u64 end, int *page_started,
1112                                 unsigned long *nr_written)
1113 {
1114         struct async_cow *async_cow;
1115         struct btrfs_root *root = BTRFS_I(inode)->root;
1116         unsigned long nr_pages;
1117         u64 cur_end;
1118         int limit = 10 * 1024 * 1024;
1119
1120         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1121                          1, 0, NULL, GFP_NOFS);
1122         while (start < end) {
1123                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1124                 BUG_ON(!async_cow); /* -ENOMEM */
1125                 async_cow->inode = igrab(inode);
1126                 async_cow->root = root;
1127                 async_cow->locked_page = locked_page;
1128                 async_cow->start = start;
1129
1130                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1131                     !btrfs_test_opt(root, FORCE_COMPRESS))
1132                         cur_end = end;
1133                 else
1134                         cur_end = min(end, start + 512 * 1024 - 1);
1135
1136                 async_cow->end = cur_end;
1137                 INIT_LIST_HEAD(&async_cow->extents);
1138
1139                 btrfs_init_work(&async_cow->work,
1140                                 btrfs_delalloc_helper,
1141                                 async_cow_start, async_cow_submit,
1142                                 async_cow_free);
1143
1144                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1145                         PAGE_CACHE_SHIFT;
1146                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1147
1148                 btrfs_queue_work(root->fs_info->delalloc_workers,
1149                                  &async_cow->work);
1150
1151                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1152                         wait_event(root->fs_info->async_submit_wait,
1153                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1154                             limit));
1155                 }
1156
1157                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1158                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1159                         wait_event(root->fs_info->async_submit_wait,
1160                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1161                            0));
1162                 }
1163
1164                 *nr_written += nr_pages;
1165                 start = cur_end + 1;
1166         }
1167         *page_started = 1;
1168         return 0;
1169 }
1170
1171 static noinline int csum_exist_in_range(struct btrfs_root *root,
1172                                         u64 bytenr, u64 num_bytes)
1173 {
1174         int ret;
1175         struct btrfs_ordered_sum *sums;
1176         LIST_HEAD(list);
1177
1178         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1179                                        bytenr + num_bytes - 1, &list, 0);
1180         if (ret == 0 && list_empty(&list))
1181                 return 0;
1182
1183         while (!list_empty(&list)) {
1184                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1185                 list_del(&sums->list);
1186                 kfree(sums);
1187         }
1188         return 1;
1189 }
1190
1191 /*
1192  * when nowcow writeback call back.  This checks for snapshots or COW copies
1193  * of the extents that exist in the file, and COWs the file as required.
1194  *
1195  * If no cow copies or snapshots exist, we write directly to the existing
1196  * blocks on disk
1197  */
1198 static noinline int run_delalloc_nocow(struct inode *inode,
1199                                        struct page *locked_page,
1200                               u64 start, u64 end, int *page_started, int force,
1201                               unsigned long *nr_written)
1202 {
1203         struct btrfs_root *root = BTRFS_I(inode)->root;
1204         struct btrfs_trans_handle *trans;
1205         struct extent_buffer *leaf;
1206         struct btrfs_path *path;
1207         struct btrfs_file_extent_item *fi;
1208         struct btrfs_key found_key;
1209         u64 cow_start;
1210         u64 cur_offset;
1211         u64 extent_end;
1212         u64 extent_offset;
1213         u64 disk_bytenr;
1214         u64 num_bytes;
1215         u64 disk_num_bytes;
1216         u64 ram_bytes;
1217         int extent_type;
1218         int ret, err;
1219         int type;
1220         int nocow;
1221         int check_prev = 1;
1222         bool nolock;
1223         u64 ino = btrfs_ino(inode);
1224
1225         path = btrfs_alloc_path();
1226         if (!path) {
1227                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1228                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1229                                              EXTENT_DO_ACCOUNTING |
1230                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1231                                              PAGE_CLEAR_DIRTY |
1232                                              PAGE_SET_WRITEBACK |
1233                                              PAGE_END_WRITEBACK);
1234                 return -ENOMEM;
1235         }
1236
1237         nolock = btrfs_is_free_space_inode(inode);
1238
1239         if (nolock)
1240                 trans = btrfs_join_transaction_nolock(root);
1241         else
1242                 trans = btrfs_join_transaction(root);
1243
1244         if (IS_ERR(trans)) {
1245                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1246                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1247                                              EXTENT_DO_ACCOUNTING |
1248                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1249                                              PAGE_CLEAR_DIRTY |
1250                                              PAGE_SET_WRITEBACK |
1251                                              PAGE_END_WRITEBACK);
1252                 btrfs_free_path(path);
1253                 return PTR_ERR(trans);
1254         }
1255
1256         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1257
1258         cow_start = (u64)-1;
1259         cur_offset = start;
1260         while (1) {
1261                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1262                                                cur_offset, 0);
1263                 if (ret < 0)
1264                         goto error;
1265                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1266                         leaf = path->nodes[0];
1267                         btrfs_item_key_to_cpu(leaf, &found_key,
1268                                               path->slots[0] - 1);
1269                         if (found_key.objectid == ino &&
1270                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1271                                 path->slots[0]--;
1272                 }
1273                 check_prev = 0;
1274 next_slot:
1275                 leaf = path->nodes[0];
1276                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1277                         ret = btrfs_next_leaf(root, path);
1278                         if (ret < 0)
1279                                 goto error;
1280                         if (ret > 0)
1281                                 break;
1282                         leaf = path->nodes[0];
1283                 }
1284
1285                 nocow = 0;
1286                 disk_bytenr = 0;
1287                 num_bytes = 0;
1288                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1289
1290                 if (found_key.objectid > ino ||
1291                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1292                     found_key.offset > end)
1293                         break;
1294
1295                 if (found_key.offset > cur_offset) {
1296                         extent_end = found_key.offset;
1297                         extent_type = 0;
1298                         goto out_check;
1299                 }
1300
1301                 fi = btrfs_item_ptr(leaf, path->slots[0],
1302                                     struct btrfs_file_extent_item);
1303                 extent_type = btrfs_file_extent_type(leaf, fi);
1304
1305                 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1306                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1307                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1308                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1309                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1310                         extent_end = found_key.offset +
1311                                 btrfs_file_extent_num_bytes(leaf, fi);
1312                         disk_num_bytes =
1313                                 btrfs_file_extent_disk_num_bytes(leaf, fi);
1314                         if (extent_end <= start) {
1315                                 path->slots[0]++;
1316                                 goto next_slot;
1317                         }
1318                         if (disk_bytenr == 0)
1319                                 goto out_check;
1320                         if (btrfs_file_extent_compression(leaf, fi) ||
1321                             btrfs_file_extent_encryption(leaf, fi) ||
1322                             btrfs_file_extent_other_encoding(leaf, fi))
1323                                 goto out_check;
1324                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1325                                 goto out_check;
1326                         if (btrfs_extent_readonly(root, disk_bytenr))
1327                                 goto out_check;
1328                         if (btrfs_cross_ref_exist(trans, root, ino,
1329                                                   found_key.offset -
1330                                                   extent_offset, disk_bytenr))
1331                                 goto out_check;
1332                         disk_bytenr += extent_offset;
1333                         disk_bytenr += cur_offset - found_key.offset;
1334                         num_bytes = min(end + 1, extent_end) - cur_offset;
1335                         /*
1336                          * if there are pending snapshots for this root,
1337                          * we fall into common COW way.
1338                          */
1339                         if (!nolock) {
1340                                 err = btrfs_start_write_no_snapshoting(root);
1341                                 if (!err)
1342                                         goto out_check;
1343                         }
1344                         /*
1345                          * force cow if csum exists in the range.
1346                          * this ensure that csum for a given extent are
1347                          * either valid or do not exist.
1348                          */
1349                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1350                                 goto out_check;
1351                         nocow = 1;
1352                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353                         extent_end = found_key.offset +
1354                                 btrfs_file_extent_inline_len(leaf,
1355                                                      path->slots[0], fi);
1356                         extent_end = ALIGN(extent_end, root->sectorsize);
1357                 } else {
1358                         BUG_ON(1);
1359                 }
1360 out_check:
1361                 if (extent_end <= start) {
1362                         path->slots[0]++;
1363                         if (!nolock && nocow)
1364                                 btrfs_end_write_no_snapshoting(root);
1365                         goto next_slot;
1366                 }
1367                 if (!nocow) {
1368                         if (cow_start == (u64)-1)
1369                                 cow_start = cur_offset;
1370                         cur_offset = extent_end;
1371                         if (cur_offset > end)
1372                                 break;
1373                         path->slots[0]++;
1374                         goto next_slot;
1375                 }
1376
1377                 btrfs_release_path(path);
1378                 if (cow_start != (u64)-1) {
1379                         ret = cow_file_range(inode, locked_page,
1380                                              cow_start, found_key.offset - 1,
1381                                              page_started, nr_written, 1);
1382                         if (ret) {
1383                                 if (!nolock && nocow)
1384                                         btrfs_end_write_no_snapshoting(root);
1385                                 goto error;
1386                         }
1387                         cow_start = (u64)-1;
1388                 }
1389
1390                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1391                         struct extent_map *em;
1392                         struct extent_map_tree *em_tree;
1393                         em_tree = &BTRFS_I(inode)->extent_tree;
1394                         em = alloc_extent_map();
1395                         BUG_ON(!em); /* -ENOMEM */
1396                         em->start = cur_offset;
1397                         em->orig_start = found_key.offset - extent_offset;
1398                         em->len = num_bytes;
1399                         em->block_len = num_bytes;
1400                         em->block_start = disk_bytenr;
1401                         em->orig_block_len = disk_num_bytes;
1402                         em->ram_bytes = ram_bytes;
1403                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1404                         em->mod_start = em->start;
1405                         em->mod_len = em->len;
1406                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1407                         set_bit(EXTENT_FLAG_FILLING, &em->flags);
1408                         em->generation = -1;
1409                         while (1) {
1410                                 write_lock(&em_tree->lock);
1411                                 ret = add_extent_mapping(em_tree, em, 1);
1412                                 write_unlock(&em_tree->lock);
1413                                 if (ret != -EEXIST) {
1414                                         free_extent_map(em);
1415                                         break;
1416                                 }
1417                                 btrfs_drop_extent_cache(inode, em->start,
1418                                                 em->start + em->len - 1, 0);
1419                         }
1420                         type = BTRFS_ORDERED_PREALLOC;
1421                 } else {
1422                         type = BTRFS_ORDERED_NOCOW;
1423                 }
1424
1425                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1426                                                num_bytes, num_bytes, type);
1427                 BUG_ON(ret); /* -ENOMEM */
1428
1429                 if (root->root_key.objectid ==
1430                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1431                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1432                                                       num_bytes);
1433                         if (ret) {
1434                                 if (!nolock && nocow)
1435                                         btrfs_end_write_no_snapshoting(root);
1436                                 goto error;
1437                         }
1438                 }
1439
1440                 extent_clear_unlock_delalloc(inode, cur_offset,
1441                                              cur_offset + num_bytes - 1,
1442                                              locked_page, EXTENT_LOCKED |
1443                                              EXTENT_DELALLOC, PAGE_UNLOCK |
1444                                              PAGE_SET_PRIVATE2);
1445                 if (!nolock && nocow)
1446                         btrfs_end_write_no_snapshoting(root);
1447                 cur_offset = extent_end;
1448                 if (cur_offset > end)
1449                         break;
1450         }
1451         btrfs_release_path(path);
1452
1453         if (cur_offset <= end && cow_start == (u64)-1) {
1454                 cow_start = cur_offset;
1455                 cur_offset = end;
1456         }
1457
1458         if (cow_start != (u64)-1) {
1459                 ret = cow_file_range(inode, locked_page, cow_start, end,
1460                                      page_started, nr_written, 1);
1461                 if (ret)
1462                         goto error;
1463         }
1464
1465 error:
1466         err = btrfs_end_transaction(trans, root);
1467         if (!ret)
1468                 ret = err;
1469
1470         if (ret && cur_offset < end)
1471                 extent_clear_unlock_delalloc(inode, cur_offset, end,
1472                                              locked_page, EXTENT_LOCKED |
1473                                              EXTENT_DELALLOC | EXTENT_DEFRAG |
1474                                              EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1475                                              PAGE_CLEAR_DIRTY |
1476                                              PAGE_SET_WRITEBACK |
1477                                              PAGE_END_WRITEBACK);
1478         btrfs_free_path(path);
1479         return ret;
1480 }
1481
1482 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1483 {
1484
1485         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1486             !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1487                 return 0;
1488
1489         /*
1490          * @defrag_bytes is a hint value, no spinlock held here,
1491          * if is not zero, it means the file is defragging.
1492          * Force cow if given extent needs to be defragged.
1493          */
1494         if (BTRFS_I(inode)->defrag_bytes &&
1495             test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1496                            EXTENT_DEFRAG, 0, NULL))
1497                 return 1;
1498
1499         return 0;
1500 }
1501
1502 /*
1503  * extent_io.c call back to do delayed allocation processing
1504  */
1505 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1506                               u64 start, u64 end, int *page_started,
1507                               unsigned long *nr_written)
1508 {
1509         int ret;
1510         int force_cow = need_force_cow(inode, start, end);
1511
1512         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1513                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1514                                          page_started, 1, nr_written);
1515         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1516                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1517                                          page_started, 0, nr_written);
1518         } else if (!inode_need_compress(inode)) {
1519                 ret = cow_file_range(inode, locked_page, start, end,
1520                                       page_started, nr_written, 1);
1521         } else {
1522                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1523                         &BTRFS_I(inode)->runtime_flags);
1524                 ret = cow_file_range_async(inode, locked_page, start, end,
1525                                            page_started, nr_written);
1526         }
1527         return ret;
1528 }
1529
1530 static void btrfs_split_extent_hook(struct inode *inode,
1531                                     struct extent_state *orig, u64 split)
1532 {
1533         /* not delalloc, ignore it */
1534         if (!(orig->state & EXTENT_DELALLOC))
1535                 return;
1536
1537         spin_lock(&BTRFS_I(inode)->lock);
1538         BTRFS_I(inode)->outstanding_extents++;
1539         spin_unlock(&BTRFS_I(inode)->lock);
1540 }
1541
1542 /*
1543  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1544  * extents so we can keep track of new extents that are just merged onto old
1545  * extents, such as when we are doing sequential writes, so we can properly
1546  * account for the metadata space we'll need.
1547  */
1548 static void btrfs_merge_extent_hook(struct inode *inode,
1549                                     struct extent_state *new,
1550                                     struct extent_state *other)
1551 {
1552         /* not delalloc, ignore it */
1553         if (!(other->state & EXTENT_DELALLOC))
1554                 return;
1555
1556         spin_lock(&BTRFS_I(inode)->lock);
1557         BTRFS_I(inode)->outstanding_extents--;
1558         spin_unlock(&BTRFS_I(inode)->lock);
1559 }
1560
1561 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1562                                       struct inode *inode)
1563 {
1564         spin_lock(&root->delalloc_lock);
1565         if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1566                 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1567                               &root->delalloc_inodes);
1568                 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1569                         &BTRFS_I(inode)->runtime_flags);
1570                 root->nr_delalloc_inodes++;
1571                 if (root->nr_delalloc_inodes == 1) {
1572                         spin_lock(&root->fs_info->delalloc_root_lock);
1573                         BUG_ON(!list_empty(&root->delalloc_root));
1574                         list_add_tail(&root->delalloc_root,
1575                                       &root->fs_info->delalloc_roots);
1576                         spin_unlock(&root->fs_info->delalloc_root_lock);
1577                 }
1578         }
1579         spin_unlock(&root->delalloc_lock);
1580 }
1581
1582 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1583                                      struct inode *inode)
1584 {
1585         spin_lock(&root->delalloc_lock);
1586         if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1587                 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1588                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1589                           &BTRFS_I(inode)->runtime_flags);
1590                 root->nr_delalloc_inodes--;
1591                 if (!root->nr_delalloc_inodes) {
1592                         spin_lock(&root->fs_info->delalloc_root_lock);
1593                         BUG_ON(list_empty(&root->delalloc_root));
1594                         list_del_init(&root->delalloc_root);
1595                         spin_unlock(&root->fs_info->delalloc_root_lock);
1596                 }
1597         }
1598         spin_unlock(&root->delalloc_lock);
1599 }
1600
1601 /*
1602  * extent_io.c set_bit_hook, used to track delayed allocation
1603  * bytes in this file, and to maintain the list of inodes that
1604  * have pending delalloc work to be done.
1605  */
1606 static void btrfs_set_bit_hook(struct inode *inode,
1607                                struct extent_state *state, unsigned long *bits)
1608 {
1609
1610         if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1611                 WARN_ON(1);
1612         /*
1613          * set_bit and clear bit hooks normally require _irqsave/restore
1614          * but in this case, we are only testing for the DELALLOC
1615          * bit, which is only set or cleared with irqs on
1616          */
1617         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1618                 struct btrfs_root *root = BTRFS_I(inode)->root;
1619                 u64 len = state->end + 1 - state->start;
1620                 bool do_list = !btrfs_is_free_space_inode(inode);
1621
1622                 if (*bits & EXTENT_FIRST_DELALLOC) {
1623                         *bits &= ~EXTENT_FIRST_DELALLOC;
1624                 } else {
1625                         spin_lock(&BTRFS_I(inode)->lock);
1626                         BTRFS_I(inode)->outstanding_extents++;
1627                         spin_unlock(&BTRFS_I(inode)->lock);
1628                 }
1629
1630                 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1631                                      root->fs_info->delalloc_batch);
1632                 spin_lock(&BTRFS_I(inode)->lock);
1633                 BTRFS_I(inode)->delalloc_bytes += len;
1634                 if (*bits & EXTENT_DEFRAG)
1635                         BTRFS_I(inode)->defrag_bytes += len;
1636                 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1637                                          &BTRFS_I(inode)->runtime_flags))
1638                         btrfs_add_delalloc_inodes(root, inode);
1639                 spin_unlock(&BTRFS_I(inode)->lock);
1640         }
1641 }
1642
1643 /*
1644  * extent_io.c clear_bit_hook, see set_bit_hook for why
1645  */
1646 static void btrfs_clear_bit_hook(struct inode *inode,
1647                                  struct extent_state *state,
1648                                  unsigned long *bits)
1649 {
1650         u64 len = state->end + 1 - state->start;
1651
1652         spin_lock(&BTRFS_I(inode)->lock);
1653         if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1654                 BTRFS_I(inode)->defrag_bytes -= len;
1655         spin_unlock(&BTRFS_I(inode)->lock);
1656
1657         /*
1658          * set_bit and clear bit hooks normally require _irqsave/restore
1659          * but in this case, we are only testing for the DELALLOC
1660          * bit, which is only set or cleared with irqs on
1661          */
1662         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1663                 struct btrfs_root *root = BTRFS_I(inode)->root;
1664                 bool do_list = !btrfs_is_free_space_inode(inode);
1665
1666                 if (*bits & EXTENT_FIRST_DELALLOC) {
1667                         *bits &= ~EXTENT_FIRST_DELALLOC;
1668                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1669                         spin_lock(&BTRFS_I(inode)->lock);
1670                         BTRFS_I(inode)->outstanding_extents--;
1671                         spin_unlock(&BTRFS_I(inode)->lock);
1672                 }
1673
1674                 /*
1675                  * We don't reserve metadata space for space cache inodes so we
1676                  * don't need to call dellalloc_release_metadata if there is an
1677                  * error.
1678                  */
1679                 if (*bits & EXTENT_DO_ACCOUNTING &&
1680                     root != root->fs_info->tree_root)
1681                         btrfs_delalloc_release_metadata(inode, len);
1682
1683                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1684                     && do_list && !(state->state & EXTENT_NORESERVE))
1685                         btrfs_free_reserved_data_space(inode, len);
1686
1687                 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1688                                      root->fs_info->delalloc_batch);
1689                 spin_lock(&BTRFS_I(inode)->lock);
1690                 BTRFS_I(inode)->delalloc_bytes -= len;
1691                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1692                     test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1693                              &BTRFS_I(inode)->runtime_flags))
1694                         btrfs_del_delalloc_inode(root, inode);
1695                 spin_unlock(&BTRFS_I(inode)->lock);
1696         }
1697 }
1698
1699 /*
1700  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1701  * we don't create bios that span stripes or chunks
1702  */
1703 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1704                          size_t size, struct bio *bio,
1705                          unsigned long bio_flags)
1706 {
1707         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1708         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1709         u64 length = 0;
1710         u64 map_length;
1711         int ret;
1712
1713         if (bio_flags & EXTENT_BIO_COMPRESSED)
1714                 return 0;
1715
1716         length = bio->bi_iter.bi_size;
1717         map_length = length;
1718         ret = btrfs_map_block(root->fs_info, rw, logical,
1719                               &map_length, NULL, 0);
1720         /* Will always return 0 with map_multi == NULL */
1721         BUG_ON(ret < 0);
1722         if (map_length < length + size)
1723                 return 1;
1724         return 0;
1725 }
1726
1727 /*
1728  * in order to insert checksums into the metadata in large chunks,
1729  * we wait until bio submission time.   All the pages in the bio are
1730  * checksummed and sums are attached onto the ordered extent record.
1731  *
1732  * At IO completion time the cums attached on the ordered extent record
1733  * are inserted into the btree
1734  */
1735 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1736                                     struct bio *bio, int mirror_num,
1737                                     unsigned long bio_flags,
1738                                     u64 bio_offset)
1739 {
1740         struct btrfs_root *root = BTRFS_I(inode)->root;
1741         int ret = 0;
1742
1743         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1744         BUG_ON(ret); /* -ENOMEM */
1745         return 0;
1746 }
1747
1748 /*
1749  * in order to insert checksums into the metadata in large chunks,
1750  * we wait until bio submission time.   All the pages in the bio are
1751  * checksummed and sums are attached onto the ordered extent record.
1752  *
1753  * At IO completion time the cums attached on the ordered extent record
1754  * are inserted into the btree
1755  */
1756 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1757                           int mirror_num, unsigned long bio_flags,
1758                           u64 bio_offset)
1759 {
1760         struct btrfs_root *root = BTRFS_I(inode)->root;
1761         int ret;
1762
1763         ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1764         if (ret)
1765                 bio_endio(bio, ret);
1766         return ret;
1767 }
1768
1769 /*
1770  * extent_io.c submission hook. This does the right thing for csum calculation
1771  * on write, or reading the csums from the tree before a read
1772  */
1773 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1774                           int mirror_num, unsigned long bio_flags,
1775                           u64 bio_offset)
1776 {
1777         struct btrfs_root *root = BTRFS_I(inode)->root;
1778         int ret = 0;
1779         int skip_sum;
1780         int metadata = 0;
1781         int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1782
1783         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1784
1785         if (btrfs_is_free_space_inode(inode))
1786                 metadata = 2;
1787
1788         if (!(rw & REQ_WRITE)) {
1789                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1790                 if (ret)
1791                         goto out;
1792
1793                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1794                         ret = btrfs_submit_compressed_read(inode, bio,
1795                                                            mirror_num,
1796                                                            bio_flags);
1797                         goto out;
1798                 } else if (!skip_sum) {
1799                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1800                         if (ret)
1801                                 goto out;
1802                 }
1803                 goto mapit;
1804         } else if (async && !skip_sum) {
1805                 /* csum items have already been cloned */
1806                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1807                         goto mapit;
1808                 /* we're doing a write, do the async checksumming */
1809                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1810                                    inode, rw, bio, mirror_num,
1811                                    bio_flags, bio_offset,
1812                                    __btrfs_submit_bio_start,
1813                                    __btrfs_submit_bio_done);
1814                 goto out;
1815         } else if (!skip_sum) {
1816                 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1817                 if (ret)
1818                         goto out;
1819         }
1820
1821 mapit:
1822         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1823
1824 out:
1825         if (ret < 0)
1826                 bio_endio(bio, ret);
1827         return ret;
1828 }
1829
1830 /*
1831  * given a list of ordered sums record them in the inode.  This happens
1832  * at IO completion time based on sums calculated at bio submission time.
1833  */
1834 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1835                              struct inode *inode, u64 file_offset,
1836                              struct list_head *list)
1837 {
1838         struct btrfs_ordered_sum *sum;
1839
1840         list_for_each_entry(sum, list, list) {
1841                 trans->adding_csums = 1;
1842                 btrfs_csum_file_blocks(trans,
1843                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1844                 trans->adding_csums = 0;
1845         }
1846         return 0;
1847 }
1848
1849 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1850                               struct extent_state **cached_state)
1851 {
1852         WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1853         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1854                                    cached_state, GFP_NOFS);
1855 }
1856
1857 /* see btrfs_writepage_start_hook for details on why this is required */
1858 struct btrfs_writepage_fixup {
1859         struct page *page;
1860         struct btrfs_work work;
1861 };
1862
1863 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1864 {
1865         struct btrfs_writepage_fixup *fixup;
1866         struct btrfs_ordered_extent *ordered;
1867         struct extent_state *cached_state = NULL;
1868         struct page *page;
1869         struct inode *inode;
1870         u64 page_start;
1871         u64 page_end;
1872         int ret;
1873
1874         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1875         page = fixup->page;
1876 again:
1877         lock_page(page);
1878         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1879                 ClearPageChecked(page);
1880                 goto out_page;
1881         }
1882
1883         inode = page->mapping->host;
1884         page_start = page_offset(page);
1885         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1886
1887         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1888                          &cached_state);
1889
1890         /* already ordered? We're done */
1891         if (PagePrivate2(page))
1892                 goto out;
1893
1894         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1895         if (ordered) {
1896                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1897                                      page_end, &cached_state, GFP_NOFS);
1898                 unlock_page(page);
1899                 btrfs_start_ordered_extent(inode, ordered, 1);
1900                 btrfs_put_ordered_extent(ordered);
1901                 goto again;
1902         }
1903
1904         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1905         if (ret) {
1906                 mapping_set_error(page->mapping, ret);
1907                 end_extent_writepage(page, ret, page_start, page_end);
1908                 ClearPageChecked(page);
1909                 goto out;
1910          }
1911
1912         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1913         ClearPageChecked(page);
1914         set_page_dirty(page);
1915 out:
1916         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1917                              &cached_state, GFP_NOFS);
1918 out_page:
1919         unlock_page(page);
1920         page_cache_release(page);
1921         kfree(fixup);
1922 }
1923
1924 /*
1925  * There are a few paths in the higher layers of the kernel that directly
1926  * set the page dirty bit without asking the filesystem if it is a
1927  * good idea.  This causes problems because we want to make sure COW
1928  * properly happens and the data=ordered rules are followed.
1929  *
1930  * In our case any range that doesn't have the ORDERED bit set
1931  * hasn't been properly setup for IO.  We kick off an async process
1932  * to fix it up.  The async helper will wait for ordered extents, set
1933  * the delalloc bit and make it safe to write the page.
1934  */
1935 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1936 {
1937         struct inode *inode = page->mapping->host;
1938         struct btrfs_writepage_fixup *fixup;
1939         struct btrfs_root *root = BTRFS_I(inode)->root;
1940
1941         /* this page is properly in the ordered list */
1942         if (TestClearPagePrivate2(page))
1943                 return 0;
1944
1945         if (PageChecked(page))
1946                 return -EAGAIN;
1947
1948         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1949         if (!fixup)
1950                 return -EAGAIN;
1951
1952         SetPageChecked(page);
1953         page_cache_get(page);
1954         btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1955                         btrfs_writepage_fixup_worker, NULL, NULL);
1956         fixup->page = page;
1957         btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1958         return -EBUSY;
1959 }
1960
1961 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1962                                        struct inode *inode, u64 file_pos,
1963                                        u64 disk_bytenr, u64 disk_num_bytes,
1964                                        u64 num_bytes, u64 ram_bytes,
1965                                        u8 compression, u8 encryption,
1966                                        u16 other_encoding, int extent_type)
1967 {
1968         struct btrfs_root *root = BTRFS_I(inode)->root;
1969         struct btrfs_file_extent_item *fi;
1970         struct btrfs_path *path;
1971         struct extent_buffer *leaf;
1972         struct btrfs_key ins;
1973         int extent_inserted = 0;
1974         int ret;
1975
1976         path = btrfs_alloc_path();
1977         if (!path)
1978                 return -ENOMEM;
1979
1980         /*
1981          * we may be replacing one extent in the tree with another.
1982          * The new extent is pinned in the extent map, and we don't want
1983          * to drop it from the cache until it is completely in the btree.
1984          *
1985          * So, tell btrfs_drop_extents to leave this extent in the cache.
1986          * the caller is expected to unpin it and allow it to be merged
1987          * with the others.
1988          */
1989         ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1990                                    file_pos + num_bytes, NULL, 0,
1991                                    1, sizeof(*fi), &extent_inserted);
1992         if (ret)
1993                 goto out;
1994
1995         if (!extent_inserted) {
1996                 ins.objectid = btrfs_ino(inode);
1997                 ins.offset = file_pos;
1998                 ins.type = BTRFS_EXTENT_DATA_KEY;
1999
2000                 path->leave_spinning = 1;
2001                 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2002                                               sizeof(*fi));
2003                 if (ret)
2004                         goto out;
2005         }
2006         leaf = path->nodes[0];
2007         fi = btrfs_item_ptr(leaf, path->slots[0],
2008                             struct btrfs_file_extent_item);
2009         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2010         btrfs_set_file_extent_type(leaf, fi, extent_type);
2011         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2012         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2013         btrfs_set_file_extent_offset(leaf, fi, 0);
2014         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2015         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2016         btrfs_set_file_extent_compression(leaf, fi, compression);
2017         btrfs_set_file_extent_encryption(leaf, fi, encryption);
2018         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2019
2020         btrfs_mark_buffer_dirty(leaf);
2021         btrfs_release_path(path);
2022
2023         inode_add_bytes(inode, num_bytes);
2024
2025         ins.objectid = disk_bytenr;
2026         ins.offset = disk_num_bytes;
2027         ins.type = BTRFS_EXTENT_ITEM_KEY;
2028         ret = btrfs_alloc_reserved_file_extent(trans, root,
2029                                         root->root_key.objectid,
2030                                         btrfs_ino(inode), file_pos, &ins);
2031 out:
2032         btrfs_free_path(path);
2033
2034         return ret;
2035 }
2036
2037 /* snapshot-aware defrag */
2038 struct sa_defrag_extent_backref {
2039         struct rb_node node;
2040         struct old_sa_defrag_extent *old;
2041         u64 root_id;
2042         u64 inum;
2043         u64 file_pos;
2044         u64 extent_offset;
2045         u64 num_bytes;
2046         u64 generation;
2047 };
2048
2049 struct old_sa_defrag_extent {
2050         struct list_head list;
2051         struct new_sa_defrag_extent *new;
2052
2053         u64 extent_offset;
2054         u64 bytenr;
2055         u64 offset;
2056         u64 len;
2057         int count;
2058 };
2059
2060 struct new_sa_defrag_extent {
2061         struct rb_root root;
2062         struct list_head head;
2063         struct btrfs_path *path;
2064         struct inode *inode;
2065         u64 file_pos;
2066         u64 len;
2067         u64 bytenr;
2068         u64 disk_len;
2069         u8 compress_type;
2070 };
2071
2072 static int backref_comp(struct sa_defrag_extent_backref *b1,
2073                         struct sa_defrag_extent_backref *b2)
2074 {
2075         if (b1->root_id < b2->root_id)
2076                 return -1;
2077         else if (b1->root_id > b2->root_id)
2078                 return 1;
2079
2080         if (b1->inum < b2->inum)
2081                 return -1;
2082         else if (b1->inum > b2->inum)
2083                 return 1;
2084
2085         if (b1->file_pos < b2->file_pos)
2086                 return -1;
2087         else if (b1->file_pos > b2->file_pos)
2088                 return 1;
2089
2090         /*
2091          * [------------------------------] ===> (a range of space)
2092          *     |<--->|   |<---->| =============> (fs/file tree A)
2093          * |<---------------------------->| ===> (fs/file tree B)
2094          *
2095          * A range of space can refer to two file extents in one tree while
2096          * refer to only one file extent in another tree.
2097          *
2098          * So we may process a disk offset more than one time(two extents in A)
2099          * and locate at the same extent(one extent in B), then insert two same
2100          * backrefs(both refer to the extent in B).
2101          */
2102         return 0;
2103 }
2104
2105 static void backref_insert(struct rb_root *root,
2106                            struct sa_defrag_extent_backref *backref)
2107 {
2108         struct rb_node **p = &root->rb_node;
2109         struct rb_node *parent = NULL;
2110         struct sa_defrag_extent_backref *entry;
2111         int ret;
2112
2113         while (*p) {
2114                 parent = *p;
2115                 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2116
2117                 ret = backref_comp(backref, entry);
2118                 if (ret < 0)
2119                         p = &(*p)->rb_left;
2120                 else
2121                         p = &(*p)->rb_right;
2122         }
2123
2124         rb_link_node(&backref->node, parent, p);
2125         rb_insert_color(&backref->node, root);
2126 }
2127
2128 /*
2129  * Note the backref might has changed, and in this case we just return 0.
2130  */
2131 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2132                                        void *ctx)
2133 {
2134         struct btrfs_file_extent_item *extent;
2135         struct btrfs_fs_info *fs_info;
2136         struct old_sa_defrag_extent *old = ctx;
2137         struct new_sa_defrag_extent *new = old->new;
2138         struct btrfs_path *path = new->path;
2139         struct btrfs_key key;
2140         struct btrfs_root *root;
2141         struct sa_defrag_extent_backref *backref;
2142         struct extent_buffer *leaf;
2143         struct inode *inode = new->inode;
2144         int slot;
2145         int ret;
2146         u64 extent_offset;
2147         u64 num_bytes;
2148
2149         if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2150             inum == btrfs_ino(inode))
2151                 return 0;
2152
2153         key.objectid = root_id;
2154         key.type = BTRFS_ROOT_ITEM_KEY;
2155         key.offset = (u64)-1;
2156
2157         fs_info = BTRFS_I(inode)->root->fs_info;
2158         root = btrfs_read_fs_root_no_name(fs_info, &key);
2159         if (IS_ERR(root)) {
2160                 if (PTR_ERR(root) == -ENOENT)
2161                         return 0;
2162                 WARN_ON(1);
2163                 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2164                          inum, offset, root_id);
2165                 return PTR_ERR(root);
2166         }
2167
2168         key.objectid = inum;
2169         key.type = BTRFS_EXTENT_DATA_KEY;
2170         if (offset > (u64)-1 << 32)
2171                 key.offset = 0;
2172         else
2173                 key.offset = offset;
2174
2175         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2176         if (WARN_ON(ret < 0))
2177                 return ret;
2178         ret = 0;
2179
2180         while (1) {
2181                 cond_resched();
2182
2183                 leaf = path->nodes[0];
2184                 slot = path->slots[0];
2185
2186                 if (slot >= btrfs_header_nritems(leaf)) {
2187                         ret = btrfs_next_leaf(root, path);
2188                         if (ret < 0) {
2189                                 goto out;
2190                         } else if (ret > 0) {
2191                                 ret = 0;
2192                                 goto out;
2193                         }
2194                         continue;
2195                 }
2196
2197                 path->slots[0]++;
2198
2199                 btrfs_item_key_to_cpu(leaf, &key, slot);
2200
2201                 if (key.objectid > inum)
2202                         goto out;
2203
2204                 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2205                         continue;
2206
2207                 extent = btrfs_item_ptr(leaf, slot,
2208                                         struct btrfs_file_extent_item);
2209
2210                 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2211                         continue;
2212
2213                 /*
2214                  * 'offset' refers to the exact key.offset,
2215                  * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2216                  * (key.offset - extent_offset).
2217                  */
2218                 if (key.offset != offset)
2219                         continue;
2220
2221                 extent_offset = btrfs_file_extent_offset(leaf, extent);
2222                 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2223
2224                 if (extent_offset >= old->extent_offset + old->offset +
2225                     old->len || extent_offset + num_bytes <=
2226                     old->extent_offset + old->offset)
2227                         continue;
2228                 break;
2229         }
2230
2231         backref = kmalloc(sizeof(*backref), GFP_NOFS);
2232         if (!backref) {
2233                 ret = -ENOENT;
2234                 goto out;
2235         }
2236
2237         backref->root_id = root_id;
2238         backref->inum = inum;
2239         backref->file_pos = offset;
2240         backref->num_bytes = num_bytes;
2241         backref->extent_offset = extent_offset;
2242         backref->generation = btrfs_file_extent_generation(leaf, extent);
2243         backref->old = old;
2244         backref_insert(&new->root, backref);
2245         old->count++;
2246 out:
2247         btrfs_release_path(path);
2248         WARN_ON(ret);
2249         return ret;
2250 }
2251
2252 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2253                                    struct new_sa_defrag_extent *new)
2254 {
2255         struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2256         struct old_sa_defrag_extent *old, *tmp;
2257         int ret;
2258
2259         new->path = path;
2260
2261         list_for_each_entry_safe(old, tmp, &new->head, list) {
2262                 ret = iterate_inodes_from_logical(old->bytenr +
2263                                                   old->extent_offset, fs_info,
2264                                                   path, record_one_backref,
2265                                                   old);
2266                 if (ret < 0 && ret != -ENOENT)
2267                         return false;
2268
2269                 /* no backref to be processed for this extent */
2270                 if (!old->count) {
2271                         list_del(&old->list);
2272                         kfree(old);
2273                 }
2274         }
2275
2276         if (list_empty(&new->head))
2277                 return false;
2278
2279         return true;
2280 }
2281
2282 static int relink_is_mergable(struct extent_buffer *leaf,
2283                               struct btrfs_file_extent_item *fi,
2284                               struct new_sa_defrag_extent *new)
2285 {
2286         if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2287                 return 0;
2288
2289         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2290                 return 0;
2291
2292         if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2293                 return 0;
2294
2295         if (btrfs_file_extent_encryption(leaf, fi) ||
2296             btrfs_file_extent_other_encoding(leaf, fi))
2297                 return 0;
2298
2299         return 1;
2300 }
2301
2302 /*
2303  * Note the backref might has changed, and in this case we just return 0.
2304  */
2305 static noinline int relink_extent_backref(struct btrfs_path *path,
2306                                  struct sa_defrag_extent_backref *prev,
2307                                  struct sa_defrag_extent_backref *backref)
2308 {
2309         struct btrfs_file_extent_item *extent;
2310         struct btrfs_file_extent_item *item;
2311         struct btrfs_ordered_extent *ordered;
2312         struct btrfs_trans_handle *trans;
2313         struct btrfs_fs_info *fs_info;
2314         struct btrfs_root *root;
2315         struct btrfs_key key;
2316         struct extent_buffer *leaf;
2317         struct old_sa_defrag_extent *old = backref->old;
2318         struct new_sa_defrag_extent *new = old->new;
2319         struct inode *src_inode = new->inode;
2320         struct inode *inode;
2321         struct extent_state *cached = NULL;
2322         int ret = 0;
2323         u64 start;
2324         u64 len;
2325         u64 lock_start;
2326         u64 lock_end;
2327         bool merge = false;
2328         int index;
2329
2330         if (prev && prev->root_id == backref->root_id &&
2331             prev->inum == backref->inum &&
2332             prev->file_pos + prev->num_bytes == backref->file_pos)
2333                 merge = true;
2334
2335         /* step 1: get root */
2336         key.objectid = backref->root_id;
2337         key.type = BTRFS_ROOT_ITEM_KEY;
2338         key.offset = (u64)-1;
2339
2340         fs_info = BTRFS_I(src_inode)->root->fs_info;
2341         index = srcu_read_lock(&fs_info->subvol_srcu);
2342
2343         root = btrfs_read_fs_root_no_name(fs_info, &key);
2344         if (IS_ERR(root)) {
2345                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2346                 if (PTR_ERR(root) == -ENOENT)
2347                         return 0;
2348                 return PTR_ERR(root);
2349         }
2350
2351         if (btrfs_root_readonly(root)) {
2352                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2353                 return 0;
2354         }
2355
2356         /* step 2: get inode */
2357         key.objectid = backref->inum;
2358         key.type = BTRFS_INODE_ITEM_KEY;
2359         key.offset = 0;
2360
2361         inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2362         if (IS_ERR(inode)) {
2363                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2364                 return 0;
2365         }
2366
2367         srcu_read_unlock(&fs_info->subvol_srcu, index);
2368
2369         /* step 3: relink backref */
2370         lock_start = backref->file_pos;
2371         lock_end = backref->file_pos + backref->num_bytes - 1;
2372         lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2373                          0, &cached);
2374
2375         ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2376         if (ordered) {
2377                 btrfs_put_ordered_extent(ordered);
2378                 goto out_unlock;
2379         }
2380
2381         trans = btrfs_join_transaction(root);
2382         if (IS_ERR(trans)) {
2383                 ret = PTR_ERR(trans);
2384                 goto out_unlock;
2385         }
2386
2387         key.objectid = backref->inum;
2388         key.type = BTRFS_EXTENT_DATA_KEY;
2389         key.offset = backref->file_pos;
2390
2391         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2392         if (ret < 0) {
2393                 goto out_free_path;
2394         } else if (ret > 0) {
2395                 ret = 0;
2396                 goto out_free_path;
2397         }
2398
2399         extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2400                                 struct btrfs_file_extent_item);
2401
2402         if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2403             backref->generation)
2404                 goto out_free_path;
2405
2406         btrfs_release_path(path);
2407
2408         start = backref->file_pos;
2409         if (backref->extent_offset < old->extent_offset + old->offset)
2410                 start += old->extent_offset + old->offset -
2411                          backref->extent_offset;
2412
2413         len = min(backref->extent_offset + backref->num_bytes,
2414                   old->extent_offset + old->offset + old->len);
2415         len -= max(backref->extent_offset, old->extent_offset + old->offset);
2416
2417         ret = btrfs_drop_extents(trans, root, inode, start,
2418                                  start + len, 1);
2419         if (ret)
2420                 goto out_free_path;
2421 again:
2422         key.objectid = btrfs_ino(inode);
2423         key.type = BTRFS_EXTENT_DATA_KEY;
2424         key.offset = start;
2425
2426         path->leave_spinning = 1;
2427         if (merge) {
2428                 struct btrfs_file_extent_item *fi;
2429                 u64 extent_len;
2430                 struct btrfs_key found_key;
2431
2432                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2433                 if (ret < 0)
2434                         goto out_free_path;
2435
2436                 path->slots[0]--;
2437                 leaf = path->nodes[0];
2438                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2439
2440                 fi = btrfs_item_ptr(leaf, path->slots[0],
2441                                     struct btrfs_file_extent_item);
2442                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2443
2444                 if (extent_len + found_key.offset == start &&
2445                     relink_is_mergable(leaf, fi, new)) {
2446                         btrfs_set_file_extent_num_bytes(leaf, fi,
2447                                                         extent_len + len);
2448                         btrfs_mark_buffer_dirty(leaf);
2449                         inode_add_bytes(inode, len);
2450
2451                         ret = 1;
2452                         goto out_free_path;
2453                 } else {
2454                         merge = false;
2455                         btrfs_release_path(path);
2456                         goto again;
2457                 }
2458         }
2459
2460         ret = btrfs_insert_empty_item(trans, root, path, &key,
2461                                         sizeof(*extent));
2462         if (ret) {
2463                 btrfs_abort_transaction(trans, root, ret);
2464                 goto out_free_path;
2465         }
2466
2467         leaf = path->nodes[0];
2468         item = btrfs_item_ptr(leaf, path->slots[0],
2469                                 struct btrfs_file_extent_item);
2470         btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2471         btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2472         btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2473         btrfs_set_file_extent_num_bytes(leaf, item, len);
2474         btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2475         btrfs_set_file_extent_generation(leaf, item, trans->transid);
2476         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2477         btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2478         btrfs_set_file_extent_encryption(leaf, item, 0);
2479         btrfs_set_file_extent_other_encoding(leaf, item, 0);
2480
2481         btrfs_mark_buffer_dirty(leaf);
2482         inode_add_bytes(inode, len);
2483         btrfs_release_path(path);
2484
2485         ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2486                         new->disk_len, 0,
2487                         backref->root_id, backref->inum,
2488                         new->file_pos, 0);      /* start - extent_offset */
2489         if (ret) {
2490                 btrfs_abort_transaction(trans, root, ret);
2491                 goto out_free_path;
2492         }
2493
2494         ret = 1;
2495 out_free_path:
2496         btrfs_release_path(path);
2497         path->leave_spinning = 0;
2498         btrfs_end_transaction(trans, root);
2499 out_unlock:
2500         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2501                              &cached, GFP_NOFS);
2502         iput(inode);
2503         return ret;
2504 }
2505
2506 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2507 {
2508         struct old_sa_defrag_extent *old, *tmp;
2509
2510         if (!new)
2511                 return;
2512
2513         list_for_each_entry_safe(old, tmp, &new->head, list) {
2514                 list_del(&old->list);
2515                 kfree(old);
2516         }
2517         kfree(new);
2518 }
2519
2520 static void relink_file_extents(struct new_sa_defrag_extent *new)
2521 {
2522         struct btrfs_path *path;
2523         struct sa_defrag_extent_backref *backref;
2524         struct sa_defrag_extent_backref *prev = NULL;
2525         struct inode *inode;
2526         struct btrfs_root *root;
2527         struct rb_node *node;
2528         int ret;
2529
2530         inode = new->inode;
2531         root = BTRFS_I(inode)->root;
2532
2533         path = btrfs_alloc_path();
2534         if (!path)
2535                 return;
2536
2537         if (!record_extent_backrefs(path, new)) {
2538                 btrfs_free_path(path);
2539                 goto out;
2540         }
2541         btrfs_release_path(path);
2542
2543         while (1) {
2544                 node = rb_first(&new->root);
2545                 if (!node)
2546                         break;
2547                 rb_erase(node, &new->root);
2548
2549                 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2550
2551                 ret = relink_extent_backref(path, prev, backref);
2552                 WARN_ON(ret < 0);
2553
2554                 kfree(prev);
2555
2556                 if (ret == 1)
2557                         prev = backref;
2558                 else
2559                         prev = NULL;
2560                 cond_resched();
2561         }
2562         kfree(prev);
2563
2564         btrfs_free_path(path);
2565 out:
2566         free_sa_defrag_extent(new);
2567
2568         atomic_dec(&root->fs_info->defrag_running);
2569         wake_up(&root->fs_info->transaction_wait);
2570 }
2571
2572 static struct new_sa_defrag_extent *
2573 record_old_file_extents(struct inode *inode,
2574                         struct btrfs_ordered_extent *ordered)
2575 {
2576         struct btrfs_root *root = BTRFS_I(inode)->root;
2577         struct btrfs_path *path;
2578         struct btrfs_key key;
2579         struct old_sa_defrag_extent *old;
2580         struct new_sa_defrag_extent *new;
2581         int ret;
2582
2583         new = kmalloc(sizeof(*new), GFP_NOFS);
2584         if (!new)
2585                 return NULL;
2586
2587         new->inode = inode;
2588         new->file_pos = ordered->file_offset;
2589         new->len = ordered->len;
2590         new->bytenr = ordered->start;
2591         new->disk_len = ordered->disk_len;
2592         new->compress_type = ordered->compress_type;
2593         new->root = RB_ROOT;
2594         INIT_LIST_HEAD(&new->head);
2595
2596         path = btrfs_alloc_path();
2597         if (!path)
2598                 goto out_kfree;
2599
2600         key.objectid = btrfs_ino(inode);
2601         key.type = BTRFS_EXTENT_DATA_KEY;
2602         key.offset = new->file_pos;
2603
2604         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2605         if (ret < 0)
2606                 goto out_free_path;
2607         if (ret > 0 && path->slots[0] > 0)
2608                 path->slots[0]--;
2609
2610         /* find out all the old extents for the file range */
2611         while (1) {
2612                 struct btrfs_file_extent_item *extent;
2613                 struct extent_buffer *l;
2614                 int slot;
2615                 u64 num_bytes;
2616                 u64 offset;
2617                 u64 end;
2618                 u64 disk_bytenr;
2619                 u64 extent_offset;
2620
2621                 l = path->nodes[0];
2622                 slot = path->slots[0];
2623
2624                 if (slot >= btrfs_header_nritems(l)) {
2625                         ret = btrfs_next_leaf(root, path);
2626                         if (ret < 0)
2627                                 goto out_free_path;
2628                         else if (ret > 0)
2629                                 break;
2630                         continue;
2631                 }
2632
2633                 btrfs_item_key_to_cpu(l, &key, slot);
2634
2635                 if (key.objectid != btrfs_ino(inode))
2636                         break;
2637                 if (key.type != BTRFS_EXTENT_DATA_KEY)
2638                         break;
2639                 if (key.offset >= new->file_pos + new->len)
2640                         break;
2641
2642                 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2643
2644                 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2645                 if (key.offset + num_bytes < new->file_pos)
2646                         goto next;
2647
2648                 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2649                 if (!disk_bytenr)
2650                         goto next;
2651
2652                 extent_offset = btrfs_file_extent_offset(l, extent);
2653
2654                 old = kmalloc(sizeof(*old), GFP_NOFS);
2655                 if (!old)
2656                         goto out_free_path;
2657
2658                 offset = max(new->file_pos, key.offset);
2659                 end = min(new->file_pos + new->len, key.offset + num_bytes);
2660
2661                 old->bytenr = disk_bytenr;
2662                 old->extent_offset = extent_offset;
2663                 old->offset = offset - key.offset;
2664                 old->len = end - offset;
2665                 old->new = new;
2666                 old->count = 0;
2667                 list_add_tail(&old->list, &new->head);
2668 next:
2669                 path->slots[0]++;
2670                 cond_resched();
2671         }
2672
2673         btrfs_free_path(path);
2674         atomic_inc(&root->fs_info->defrag_running);
2675
2676         return new;
2677
2678 out_free_path:
2679         btrfs_free_path(path);
2680 out_kfree:
2681         free_sa_defrag_extent(new);
2682         return NULL;
2683 }
2684
2685 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2686                                          u64 start, u64 len)
2687 {
2688         struct btrfs_block_group_cache *cache;
2689
2690         cache = btrfs_lookup_block_group(root->fs_info, start);
2691         ASSERT(cache);
2692
2693         spin_lock(&cache->lock);
2694         cache->delalloc_bytes -= len;
2695         spin_unlock(&cache->lock);
2696
2697         btrfs_put_block_group(cache);
2698 }
2699
2700 /* as ordered data IO finishes, this gets called so we can finish
2701  * an ordered extent if the range of bytes in the file it covers are
2702  * fully written.
2703  */
2704 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2705 {
2706         struct inode *inode = ordered_extent->inode;
2707         struct btrfs_root *root = BTRFS_I(inode)->root;
2708         struct btrfs_trans_handle *trans = NULL;
2709         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2710         struct extent_state *cached_state = NULL;
2711         struct new_sa_defrag_extent *new = NULL;
2712         int compress_type = 0;
2713         int ret = 0;
2714         u64 logical_len = ordered_extent->len;
2715         bool nolock;
2716         bool truncated = false;
2717
2718         nolock = btrfs_is_free_space_inode(inode);
2719
2720         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2721                 ret = -EIO;
2722                 goto out;
2723         }
2724
2725         btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2726                                      ordered_extent->file_offset +
2727                                      ordered_extent->len - 1);
2728
2729         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2730                 truncated = true;
2731                 logical_len = ordered_extent->truncated_len;
2732                 /* Truncated the entire extent, don't bother adding */
2733                 if (!logical_len)
2734                         goto out;
2735         }
2736
2737         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2738                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2739                 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2740                 if (nolock)
2741                         trans = btrfs_join_transaction_nolock(root);
2742                 else
2743                         trans = btrfs_join_transaction(root);
2744                 if (IS_ERR(trans)) {
2745                         ret = PTR_ERR(trans);
2746                         trans = NULL;
2747                         goto out;
2748                 }
2749                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2750                 ret = btrfs_update_inode_fallback(trans, root, inode);
2751                 if (ret) /* -ENOMEM or corruption */
2752                         btrfs_abort_transaction(trans, root, ret);
2753                 goto out;
2754         }
2755
2756         lock_extent_bits(io_tree, ordered_extent->file_offset,
2757                          ordered_extent->file_offset + ordered_extent->len - 1,
2758                          0, &cached_state);
2759
2760         ret = test_range_bit(io_tree, ordered_extent->file_offset,
2761                         ordered_extent->file_offset + ordered_extent->len - 1,
2762                         EXTENT_DEFRAG, 1, cached_state);
2763         if (ret) {
2764                 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2765                 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2766                         /* the inode is shared */
2767                         new = record_old_file_extents(inode, ordered_extent);
2768
2769                 clear_extent_bit(io_tree, ordered_extent->file_offset,
2770                         ordered_extent->file_offset + ordered_extent->len - 1,
2771                         EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2772         }
2773
2774         if (nolock)
2775                 trans = btrfs_join_transaction_nolock(root);
2776         else
2777                 trans = btrfs_join_transaction(root);
2778         if (IS_ERR(trans)) {
2779                 ret = PTR_ERR(trans);
2780                 trans = NULL;
2781                 goto out_unlock;
2782         }
2783
2784         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2785
2786         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2787                 compress_type = ordered_extent->compress_type;
2788         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2789                 BUG_ON(compress_type);
2790                 ret = btrfs_mark_extent_written(trans, inode,
2791                                                 ordered_extent->file_offset,
2792                                                 ordered_extent->file_offset +
2793                                                 logical_len);
2794         } else {
2795                 BUG_ON(root == root->fs_info->tree_root);
2796                 ret = insert_reserved_file_extent(trans, inode,
2797                                                 ordered_extent->file_offset,
2798                                                 ordered_extent->start,
2799                                                 ordered_extent->disk_len,
2800                                                 logical_len, logical_len,
2801                                                 compress_type, 0, 0,
2802                                                 BTRFS_FILE_EXTENT_REG);
2803                 if (!ret)
2804                         btrfs_release_delalloc_bytes(root,
2805                                                      ordered_extent->start,
2806                                                      ordered_extent->disk_len);
2807         }
2808         unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2809                            ordered_extent->file_offset, ordered_extent->len,
2810                            trans->transid);
2811         if (ret < 0) {
2812                 btrfs_abort_transaction(trans, root, ret);
2813                 goto out_unlock;
2814         }
2815
2816         add_pending_csums(trans, inode, ordered_extent->file_offset,
2817                           &ordered_extent->list);
2818
2819         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2820         ret = btrfs_update_inode_fallback(trans, root, inode);
2821         if (ret) { /* -ENOMEM or corruption */
2822                 btrfs_abort_transaction(trans, root, ret);
2823                 goto out_unlock;
2824         }
2825         ret = 0;
2826 out_unlock:
2827         unlock_extent_cached(io_tree, ordered_extent->file_offset,
2828                              ordered_extent->file_offset +
2829                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
2830 out:
2831         if (root != root->fs_info->tree_root)
2832                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2833         if (trans)
2834                 btrfs_end_transaction(trans, root);
2835
2836         if (ret || truncated) {
2837                 u64 start, end;
2838
2839                 if (truncated)
2840                         start = ordered_extent->file_offset + logical_len;
2841                 else
2842                         start = ordered_extent->file_offset;
2843                 end = ordered_extent->file_offset + ordered_extent->len - 1;
2844                 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2845
2846                 /* Drop the cache for the part of the extent we didn't write. */
2847                 btrfs_drop_extent_cache(inode, start, end, 0);
2848
2849                 /*
2850                  * If the ordered extent had an IOERR or something else went
2851                  * wrong we need to return the space for this ordered extent
2852                  * back to the allocator.  We only free the extent in the
2853                  * truncated case if we didn't write out the extent at all.
2854                  */
2855                 if ((ret || !logical_len) &&
2856                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2857                     !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2858                         btrfs_free_reserved_extent(root, ordered_extent->start,
2859                                                    ordered_extent->disk_len, 1);
2860         }
2861
2862
2863         /*
2864          * This needs to be done to make sure anybody waiting knows we are done
2865          * updating everything for this ordered extent.
2866          */
2867         btrfs_remove_ordered_extent(inode, ordered_extent);
2868
2869         /* for snapshot-aware defrag */
2870         if (new) {
2871                 if (ret) {
2872                         free_sa_defrag_extent(new);
2873                         atomic_dec(&root->fs_info->defrag_running);
2874                 } else {
2875                         relink_file_extents(new);
2876                 }
2877         }
2878
2879         /* once for us */
2880         btrfs_put_ordered_extent(ordered_extent);
2881         /* once for the tree */
2882         btrfs_put_ordered_extent(ordered_extent);
2883
2884         return ret;
2885 }
2886
2887 static void finish_ordered_fn(struct btrfs_work *work)
2888 {
2889         struct btrfs_ordered_extent *ordered_extent;
2890         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2891         btrfs_finish_ordered_io(ordered_extent);
2892 }
2893
2894 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2895                                 struct extent_state *state, int uptodate)
2896 {
2897         struct inode *inode = page->mapping->host;
2898         struct btrfs_root *root = BTRFS_I(inode)->root;
2899         struct btrfs_ordered_extent *ordered_extent = NULL;
2900         struct btrfs_workqueue *wq;
2901         btrfs_work_func_t func;
2902
2903         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2904
2905         ClearPagePrivate2(page);
2906         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2907                                             end - start + 1, uptodate))
2908                 return 0;
2909
2910         if (btrfs_is_free_space_inode(inode)) {
2911                 wq = root->fs_info->endio_freespace_worker;
2912                 func = btrfs_freespace_write_helper;
2913         } else {
2914                 wq = root->fs_info->endio_write_workers;
2915                 func = btrfs_endio_write_helper;
2916         }
2917
2918         btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2919                         NULL);
2920         btrfs_queue_work(wq, &ordered_extent->work);
2921
2922         return 0;
2923 }
2924
2925 static int __readpage_endio_check(struct inode *inode,
2926                                   struct btrfs_io_bio *io_bio,
2927                                   int icsum, struct page *page,
2928                                   int pgoff, u64 start, size_t len)
2929 {
2930         char *kaddr;
2931         u32 csum_expected;
2932         u32 csum = ~(u32)0;
2933         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2934                                       DEFAULT_RATELIMIT_BURST);
2935
2936         csum_expected = *(((u32 *)io_bio->csum) + icsum);
2937
2938         kaddr = kmap_atomic(page);
2939         csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
2940         btrfs_csum_final(csum, (char *)&csum);
2941         if (csum != csum_expected)
2942                 goto zeroit;
2943
2944         kunmap_atomic(kaddr);
2945         return 0;
2946 zeroit:
2947         if (__ratelimit(&_rs))
2948                 btrfs_info(BTRFS_I(inode)->root->fs_info,
2949                            "csum failed ino %llu off %llu csum %u expected csum %u",
2950                            btrfs_ino(inode), start, csum, csum_expected);
2951         memset(kaddr + pgoff, 1, len);
2952         flush_dcache_page(page);
2953         kunmap_atomic(kaddr);
2954         if (csum_expected == 0)
2955                 return 0;
2956         return -EIO;
2957 }
2958
2959 /*
2960  * when reads are done, we need to check csums to verify the data is correct
2961  * if there's a match, we allow the bio to finish.  If not, the code in
2962  * extent_io.c will try to find good copies for us.
2963  */
2964 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2965                                       u64 phy_offset, struct page *page,
2966                                       u64 start, u64 end, int mirror)
2967 {
2968         size_t offset = start - page_offset(page);
2969         struct inode *inode = page->mapping->host;
2970         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2971         struct btrfs_root *root = BTRFS_I(inode)->root;
2972
2973         if (PageChecked(page)) {
2974                 ClearPageChecked(page);
2975                 return 0;
2976         }
2977
2978         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2979                 return 0;
2980
2981         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2982             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2983                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2984                                   GFP_NOFS);
2985                 return 0;
2986         }
2987
2988         phy_offset >>= inode->i_sb->s_blocksize_bits;
2989         return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
2990                                       start, (size_t)(end - start + 1));
2991 }
2992
2993 struct delayed_iput {
2994         struct list_head list;
2995         struct inode *inode;
2996 };
2997
2998 /* JDM: If this is fs-wide, why can't we add a pointer to
2999  * btrfs_inode instead and avoid the allocation? */
3000 void btrfs_add_delayed_iput(struct inode *inode)
3001 {
3002         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3003         struct delayed_iput *delayed;
3004
3005         if (atomic_add_unless(&inode->i_count, -1, 1))
3006                 return;
3007
3008         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3009         delayed->inode = inode;
3010
3011         spin_lock(&fs_info->delayed_iput_lock);
3012         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3013         spin_unlock(&fs_info->delayed_iput_lock);
3014 }
3015
3016 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3017 {
3018         LIST_HEAD(list);
3019         struct btrfs_fs_info *fs_info = root->fs_info;
3020         struct delayed_iput *delayed;
3021         int empty;
3022
3023         spin_lock(&fs_info->delayed_iput_lock);
3024         empty = list_empty(&fs_info->delayed_iputs);
3025         spin_unlock(&fs_info->delayed_iput_lock);
3026         if (empty)
3027                 return;
3028
3029         spin_lock(&fs_info->delayed_iput_lock);
3030         list_splice_init(&fs_info->delayed_iputs, &list);
3031         spin_unlock(&fs_info->delayed_iput_lock);
3032
3033         while (!list_empty(&list)) {
3034                 delayed = list_entry(list.next, struct delayed_iput, list);
3035                 list_del(&delayed->list);
3036                 iput(delayed->inode);
3037                 kfree(delayed);
3038         }
3039 }
3040
3041 /*
3042  * This is called in transaction commit time. If there are no orphan
3043  * files in the subvolume, it removes orphan item and frees block_rsv
3044  * structure.
3045  */
3046 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3047                               struct btrfs_root *root)
3048 {
3049         struct btrfs_block_rsv *block_rsv;
3050         int ret;
3051
3052         if (atomic_read(&root->orphan_inodes) ||
3053             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3054                 return;
3055
3056         spin_lock(&root->orphan_lock);
3057         if (atomic_read(&root->orphan_inodes)) {
3058                 spin_unlock(&root->orphan_lock);
3059                 return;
3060         }
3061
3062         if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3063                 spin_unlock(&root->orphan_lock);
3064                 return;
3065         }
3066
3067         block_rsv = root->orphan_block_rsv;
3068         root->orphan_block_rsv = NULL;
3069         spin_unlock(&root->orphan_lock);
3070
3071         if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3072             btrfs_root_refs(&root->root_item) > 0) {
3073                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3074                                             root->root_key.objectid);
3075                 if (ret)
3076                         btrfs_abort_transaction(trans, root, ret);
3077                 else
3078                         clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3079                                   &root->state);
3080         }
3081
3082         if (block_rsv) {
3083                 WARN_ON(block_rsv->size > 0);
3084                 btrfs_free_block_rsv(root, block_rsv);
3085         }
3086 }
3087
3088 /*
3089  * This creates an orphan entry for the given inode in case something goes
3090  * wrong in the middle of an unlink/truncate.
3091  *
3092  * NOTE: caller of this function should reserve 5 units of metadata for
3093  *       this function.
3094  */
3095 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3096 {
3097         struct btrfs_root *root = BTRFS_I(inode)->root;
3098         struct btrfs_block_rsv *block_rsv = NULL;
3099         int reserve = 0;
3100         int insert = 0;
3101         int ret;
3102
3103         if (!root->orphan_block_rsv) {
3104                 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3105                 if (!block_rsv)
3106                         return -ENOMEM;
3107         }
3108
3109         spin_lock(&root->orphan_lock);
3110         if (!root->orphan_block_rsv) {
3111                 root->orphan_block_rsv = block_rsv;
3112         } else if (block_rsv) {
3113                 btrfs_free_block_rsv(root, block_rsv);
3114                 block_rsv = NULL;
3115         }
3116
3117         if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3118                               &BTRFS_I(inode)->runtime_flags)) {
3119 #if 0
3120                 /*
3121                  * For proper ENOSPC handling, we should do orphan
3122                  * cleanup when mounting. But this introduces backward
3123                  * compatibility issue.
3124                  */
3125                 if (!xchg(&root->orphan_item_inserted, 1))
3126                         insert = 2;
3127                 else
3128                         insert = 1;
3129 #endif
3130                 insert = 1;
3131                 atomic_inc(&root->orphan_inodes);
3132         }
3133
3134         if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3135                               &BTRFS_I(inode)->runtime_flags))
3136                 reserve = 1;
3137         spin_unlock(&root->orphan_lock);
3138
3139         /* grab metadata reservation from transaction handle */
3140         if (reserve) {
3141                 ret = btrfs_orphan_reserve_metadata(trans, inode);
3142                 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3143         }
3144
3145         /* insert an orphan item to track this unlinked/truncated file */
3146         if (insert >= 1) {
3147                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3148                 if (ret) {
3149                         atomic_dec(&root->orphan_inodes);
3150                         if (reserve) {
3151                                 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3152                                           &BTRFS_I(inode)->runtime_flags);
3153                                 btrfs_orphan_release_metadata(inode);
3154                         }
3155                         if (ret != -EEXIST) {
3156                                 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3157                                           &BTRFS_I(inode)->runtime_flags);
3158                                 btrfs_abort_transaction(trans, root, ret);
3159                                 return ret;
3160                         }
3161                 }
3162                 ret = 0;
3163         }
3164
3165         /* insert an orphan item to track subvolume contains orphan files */
3166         if (insert >= 2) {
3167                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3168                                                root->root_key.objectid);
3169                 if (ret && ret != -EEXIST) {
3170                         btrfs_abort_transaction(trans, root, ret);
3171                         return ret;
3172                 }
3173         }
3174         return 0;
3175 }
3176
3177 /*
3178  * We have done the truncate/delete so we can go ahead and remove the orphan
3179  * item for this particular inode.
3180  */
3181 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3182                             struct inode *inode)
3183 {
3184         struct btrfs_root *root = BTRFS_I(inode)->root;
3185         int delete_item = 0;
3186         int release_rsv = 0;
3187         int ret = 0;
3188
3189         spin_lock(&root->orphan_lock);
3190         if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3191                                &BTRFS_I(inode)->runtime_flags))
3192                 delete_item = 1;
3193
3194         if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3195                                &BTRFS_I(inode)->runtime_flags))
3196                 release_rsv = 1;
3197         spin_unlock(&root->orphan_lock);
3198
3199         if (delete_item) {
3200                 atomic_dec(&root->orphan_inodes);
3201                 if (trans)
3202                         ret = btrfs_del_orphan_item(trans, root,
3203                                                     btrfs_ino(inode));
3204         }
3205
3206         if (release_rsv)
3207                 btrfs_orphan_release_metadata(inode);
3208
3209         return ret;
3210 }
3211
3212 /*
3213  * this cleans up any orphans that may be left on the list from the last use
3214  * of this root.
3215  */
3216 int btrfs_orphan_cleanup(struct btrfs_root *root)
3217 {
3218         struct btrfs_path *path;
3219         struct extent_buffer *leaf;
3220         struct btrfs_key key, found_key;
3221         struct btrfs_trans_handle *trans;
3222         struct inode *inode;
3223         u64 last_objectid = 0;
3224         int ret = 0, nr_unlink = 0, nr_truncate = 0;
3225
3226         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3227                 return 0;
3228
3229         path = btrfs_alloc_path();
3230         if (!path) {
3231                 ret = -ENOMEM;
3232                 goto out;
3233         }
3234         path->reada = -1;
3235
3236         key.objectid = BTRFS_ORPHAN_OBJECTID;
3237         key.type = BTRFS_ORPHAN_ITEM_KEY;
3238         key.offset = (u64)-1;
3239
3240         while (1) {
3241                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3242                 if (ret < 0)
3243                         goto out;
3244
3245                 /*
3246                  * if ret == 0 means we found what we were searching for, which
3247                  * is weird, but possible, so only screw with path if we didn't
3248                  * find the key and see if we have stuff that matches
3249                  */
3250                 if (ret > 0) {
3251                         ret = 0;
3252                         if (path->slots[0] == 0)
3253                                 break;
3254                         path->slots[0]--;
3255                 }
3256
3257                 /* pull out the item */
3258                 leaf = path->nodes[0];
3259                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3260
3261                 /* make sure the item matches what we want */
3262                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3263                         break;
3264                 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3265                         break;
3266
3267                 /* release the path since we're done with it */
3268                 btrfs_release_path(path);
3269
3270                 /*
3271                  * this is where we are basically btrfs_lookup, without the
3272                  * crossing root thing.  we store the inode number in the
3273                  * offset of the orphan item.
3274                  */
3275
3276                 if (found_key.offset == last_objectid) {
3277                         btrfs_err(root->fs_info,
3278                                 "Error removing orphan entry, stopping orphan cleanup");
3279                         ret = -EINVAL;
3280                         goto out;
3281                 }
3282
3283                 last_objectid = found_key.offset;
3284
3285                 found_key.objectid = found_key.offset;
3286                 found_key.type = BTRFS_INODE_ITEM_KEY;
3287                 found_key.offset = 0;
3288                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3289                 ret = PTR_ERR_OR_ZERO(inode);
3290                 if (ret && ret != -ESTALE)
3291                         goto out;
3292
3293                 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3294                         struct btrfs_root *dead_root;
3295                         struct btrfs_fs_info *fs_info = root->fs_info;
3296                         int is_dead_root = 0;
3297
3298                         /*
3299                          * this is an orphan in the tree root. Currently these
3300                          * could come from 2 sources:
3301                          *  a) a snapshot deletion in progress
3302                          *  b) a free space cache inode
3303                          * We need to distinguish those two, as the snapshot
3304                          * orphan must not get deleted.
3305                          * find_dead_roots already ran before us, so if this
3306                          * is a snapshot deletion, we should find the root
3307                          * in the dead_roots list
3308                          */
3309                         spin_lock(&fs_info->trans_lock);
3310                         list_for_each_entry(dead_root, &fs_info->dead_roots,
3311                                             root_list) {
3312                                 if (dead_root->root_key.objectid ==
3313                                     found_key.objectid) {
3314                                         is_dead_root = 1;
3315                                         break;
3316                                 }
3317                         }
3318                         spin_unlock(&fs_info->trans_lock);
3319                         if (is_dead_root) {
3320                                 /* prevent this orphan from being found again */
3321                                 key.offset = found_key.objectid - 1;
3322                                 continue;
3323                         }
3324                 }
3325                 /*
3326                  * Inode is already gone but the orphan item is still there,
3327                  * kill the orphan item.
3328                  */
3329                 if (ret == -ESTALE) {
3330                         trans = btrfs_start_transaction(root, 1);
3331                         if (IS_ERR(trans)) {
3332                                 ret = PTR_ERR(trans);
3333                                 goto out;
3334                         }
3335                         btrfs_debug(root->fs_info, "auto deleting %Lu",
3336                                 found_key.objectid);
3337                         ret = btrfs_del_orphan_item(trans, root,
3338                                                     found_key.objectid);
3339                         btrfs_end_transaction(trans, root);
3340                         if (ret)
3341                                 goto out;
3342                         continue;
3343                 }
3344
3345                 /*
3346                  * add this inode to the orphan list so btrfs_orphan_del does
3347                  * the proper thing when we hit it
3348                  */
3349                 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3350                         &BTRFS_I(inode)->runtime_flags);
3351                 atomic_inc(&root->orphan_inodes);
3352
3353                 /* if we have links, this was a truncate, lets do that */
3354                 if (inode->i_nlink) {
3355                         if (WARN_ON(!S_ISREG(inode->i_mode))) {
3356                                 iput(inode);
3357                                 continue;
3358                         }
3359                         nr_truncate++;
3360
3361                         /* 1 for the orphan item deletion. */
3362                         trans = btrfs_start_transaction(root, 1);
3363                         if (IS_ERR(trans)) {
3364                                 iput(inode);
3365                                 ret = PTR_ERR(trans);
3366                                 goto out;
3367                         }
3368                         ret = btrfs_orphan_add(trans, inode);
3369                         btrfs_end_transaction(trans, root);
3370                         if (ret) {
3371                                 iput(inode);
3372                                 goto out;
3373                         }
3374
3375                         ret = btrfs_truncate(inode);
3376                         if (ret)
3377                                 btrfs_orphan_del(NULL, inode);
3378                 } else {
3379                         nr_unlink++;
3380                 }
3381
3382                 /* this will do delete_inode and everything for us */
3383                 iput(inode);
3384                 if (ret)
3385                         goto out;
3386         }
3387         /* release the path since we're done with it */
3388         btrfs_release_path(path);
3389
3390         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3391
3392         if (root->orphan_block_rsv)
3393                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3394                                         (u64)-1);
3395
3396         if (root->orphan_block_rsv ||
3397             test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3398                 trans = btrfs_join_transaction(root);
3399                 if (!IS_ERR(trans))
3400                         btrfs_end_transaction(trans, root);
3401         }
3402
3403         if (nr_unlink)
3404                 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3405         if (nr_truncate)
3406                 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3407
3408 out:
3409         if (ret)
3410                 btrfs_crit(root->fs_info,
3411                         "could not do orphan cleanup %d", ret);
3412         btrfs_free_path(path);
3413         return ret;
3414 }
3415
3416 /*
3417  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3418  * don't find any xattrs, we know there can't be any acls.
3419  *
3420  * slot is the slot the inode is in, objectid is the objectid of the inode
3421  */
3422 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3423                                           int slot, u64 objectid,
3424                                           int *first_xattr_slot)
3425 {
3426         u32 nritems = btrfs_header_nritems(leaf);
3427         struct btrfs_key found_key;
3428         static u64 xattr_access = 0;
3429         static u64 xattr_default = 0;
3430         int scanned = 0;
3431
3432         if (!xattr_access) {
3433                 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3434                                         strlen(POSIX_ACL_XATTR_ACCESS));
3435                 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3436                                         strlen(POSIX_ACL_XATTR_DEFAULT));
3437         }
3438
3439         slot++;
3440         *first_xattr_slot = -1;
3441         while (slot < nritems) {
3442                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3443
3444                 /* we found a different objectid, there must not be acls */
3445                 if (found_key.objectid != objectid)
3446                         return 0;
3447
3448                 /* we found an xattr, assume we've got an acl */
3449                 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3450                         if (*first_xattr_slot == -1)
3451                                 *first_xattr_slot = slot;
3452                         if (found_key.offset == xattr_access ||
3453                             found_key.offset == xattr_default)
3454                                 return 1;
3455                 }
3456
3457                 /*
3458                  * we found a key greater than an xattr key, there can't
3459                  * be any acls later on
3460                  */
3461                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3462                         return 0;
3463
3464                 slot++;
3465                 scanned++;
3466
3467                 /*
3468                  * it goes inode, inode backrefs, xattrs, extents,
3469                  * so if there are a ton of hard links to an inode there can
3470                  * be a lot of backrefs.  Don't waste time searching too hard,
3471                  * this is just an optimization
3472                  */
3473                 if (scanned >= 8)
3474                         break;
3475         }
3476         /* we hit the end of the leaf before we found an xattr or
3477          * something larger than an xattr.  We have to assume the inode
3478          * has acls
3479          */
3480         if (*first_xattr_slot == -1)
3481                 *first_xattr_slot = slot;
3482         return 1;
3483 }
3484
3485 /*
3486  * read an inode from the btree into the in-memory inode
3487  */
3488 static void btrfs_read_locked_inode(struct inode *inode)
3489 {
3490         struct btrfs_path *path;
3491         struct extent_buffer *leaf;
3492         struct btrfs_inode_item *inode_item;
3493         struct btrfs_timespec *tspec;
3494         struct btrfs_root *root = BTRFS_I(inode)->root;
3495         struct btrfs_key location;
3496         unsigned long ptr;
3497         int maybe_acls;
3498         u32 rdev;
3499         int ret;
3500         bool filled = false;
3501         int first_xattr_slot;
3502
3503         ret = btrfs_fill_inode(inode, &rdev);
3504         if (!ret)
3505                 filled = true;
3506
3507         path = btrfs_alloc_path();
3508         if (!path)
3509                 goto make_bad;
3510
3511         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3512
3513         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3514         if (ret)
3515                 goto make_bad;
3516
3517         leaf = path->nodes[0];
3518
3519         if (filled)
3520                 goto cache_index;
3521
3522         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3523                                     struct btrfs_inode_item);
3524         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3525         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3526         i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3527         i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3528         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3529
3530         tspec = btrfs_inode_atime(inode_item);
3531         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3532         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3533
3534         tspec = btrfs_inode_mtime(inode_item);
3535         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3536         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3537
3538         tspec = btrfs_inode_ctime(inode_item);
3539         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3540         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3541
3542         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3543         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3544         BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3545
3546         /*
3547          * If we were modified in the current generation and evicted from memory
3548          * and then re-read we need to do a full sync since we don't have any
3549          * idea about which extents were modified before we were evicted from
3550          * cache.
3551          */
3552         if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3553                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3554                         &BTRFS_I(inode)->runtime_flags);
3555
3556         inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3557         inode->i_generation = BTRFS_I(inode)->generation;
3558         inode->i_rdev = 0;
3559         rdev = btrfs_inode_rdev(leaf, inode_item);
3560
3561         BTRFS_I(inode)->index_cnt = (u64)-1;
3562         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3563
3564 cache_index:
3565         path->slots[0]++;
3566         if (inode->i_nlink != 1 ||
3567             path->slots[0] >= btrfs_header_nritems(leaf))
3568                 goto cache_acl;
3569
3570         btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3571         if (location.objectid != btrfs_ino(inode))
3572                 goto cache_acl;
3573
3574         ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3575         if (location.type == BTRFS_INODE_REF_KEY) {
3576                 struct btrfs_inode_ref *ref;
3577
3578                 ref = (struct btrfs_inode_ref *)ptr;
3579                 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3580         } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3581                 struct btrfs_inode_extref *extref;
3582
3583                 extref = (struct btrfs_inode_extref *)ptr;
3584                 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3585                                                                      extref);
3586         }
3587 cache_acl:
3588         /*
3589          * try to precache a NULL acl entry for files that don't have
3590          * any xattrs or acls
3591          */
3592         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3593                                            btrfs_ino(inode), &first_xattr_slot);
3594         if (first_xattr_slot != -1) {
3595                 path->slots[0] = first_xattr_slot;
3596                 ret = btrfs_load_inode_props(inode, path);
3597                 if (ret)
3598                         btrfs_err(root->fs_info,
3599                                   "error loading props for ino %llu (root %llu): %d",
3600                                   btrfs_ino(inode),
3601                                   root->root_key.objectid, ret);
3602         }
3603         btrfs_free_path(path);
3604
3605         if (!maybe_acls)
3606                 cache_no_acl(inode);
3607
3608         switch (inode->i_mode & S_IFMT) {
3609         case S_IFREG:
3610                 inode->i_mapping->a_ops = &btrfs_aops;
3611                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3612                 inode->i_fop = &btrfs_file_operations;
3613                 inode->i_op = &btrfs_file_inode_operations;
3614                 break;
3615         case S_IFDIR:
3616                 inode->i_fop = &btrfs_dir_file_operations;
3617                 if (root == root->fs_info->tree_root)
3618                         inode->i_op = &btrfs_dir_ro_inode_operations;
3619                 else
3620                         inode->i_op = &btrfs_dir_inode_operations;
3621                 break;
3622         case S_IFLNK:
3623                 inode->i_op = &btrfs_symlink_inode_operations;
3624                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3625                 break;
3626         default:
3627                 inode->i_op = &btrfs_special_inode_operations;
3628                 init_special_inode(inode, inode->i_mode, rdev);
3629                 break;
3630         }
3631
3632         btrfs_update_iflags(inode);
3633         return;
3634
3635 make_bad:
3636         btrfs_free_path(path);
3637         make_bad_inode(inode);
3638 }
3639
3640 /*
3641  * given a leaf and an inode, copy the inode fields into the leaf
3642  */
3643 static void fill_inode_item(struct btrfs_trans_handle *trans,
3644                             struct extent_buffer *leaf,
3645                             struct btrfs_inode_item *item,
3646                             struct inode *inode)
3647 {
3648         struct btrfs_map_token token;
3649
3650         btrfs_init_map_token(&token);
3651
3652         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3653         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3654         btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3655                                    &token);
3656         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3657         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3658
3659         btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3660                                      inode->i_atime.tv_sec, &token);
3661         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3662                                       inode->i_atime.tv_nsec, &token);
3663
3664         btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3665                                      inode->i_mtime.tv_sec, &token);
3666         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3667                                       inode->i_mtime.tv_nsec, &token);
3668
3669         btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3670                                      inode->i_ctime.tv_sec, &token);
3671         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3672                                       inode->i_ctime.tv_nsec, &token);
3673
3674         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3675                                      &token);
3676         btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3677                                          &token);
3678         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3679         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3680         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3681         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3682         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3683 }
3684
3685 /*
3686  * copy everything in the in-memory inode into the btree.
3687  */
3688 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3689                                 struct btrfs_root *root, struct inode *inode)
3690 {
3691         struct btrfs_inode_item *inode_item;
3692         struct btrfs_path *path;
3693         struct extent_buffer *leaf;
3694         int ret;
3695
3696         path = btrfs_alloc_path();
3697         if (!path)
3698                 return -ENOMEM;
3699
3700         path->leave_spinning = 1;
3701         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3702                                  1);
3703         if (ret) {
3704                 if (ret > 0)
3705                         ret = -ENOENT;
3706                 goto failed;
3707         }
3708
3709         leaf = path->nodes[0];
3710         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3711                                     struct btrfs_inode_item);
3712
3713         fill_inode_item(trans, leaf, inode_item, inode);
3714         btrfs_mark_buffer_dirty(leaf);
3715         btrfs_set_inode_last_trans(trans, inode);
3716         ret = 0;
3717 failed:
3718         btrfs_free_path(path);
3719         return ret;
3720 }
3721
3722 /*
3723  * copy everything in the in-memory inode into the btree.
3724  */
3725 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3726                                 struct btrfs_root *root, struct inode *inode)
3727 {
3728         int ret;
3729
3730         /*
3731          * If the inode is a free space inode, we can deadlock during commit
3732          * if we put it into the delayed code.
3733          *
3734          * The data relocation inode should also be directly updated
3735          * without delay
3736          */
3737         if (!btrfs_is_free_space_inode(inode)
3738             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3739             && !root->fs_info->log_root_recovering) {
3740                 btrfs_update_root_times(trans, root);
3741
3742                 ret = btrfs_delayed_update_inode(trans, root, inode);
3743                 if (!ret)
3744                         btrfs_set_inode_last_trans(trans, inode);
3745                 return ret;
3746         }
3747
3748         return btrfs_update_inode_item(trans, root, inode);
3749 }
3750
3751 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3752                                          struct btrfs_root *root,
3753                                          struct inode *inode)
3754 {
3755         int ret;
3756
3757         ret = btrfs_update_inode(trans, root, inode);
3758         if (ret == -ENOSPC)
3759                 return btrfs_update_inode_item(trans, root, inode);
3760         return ret;
3761 }
3762
3763 /*
3764  * unlink helper that gets used here in inode.c and in the tree logging
3765  * recovery code.  It remove a link in a directory with a given name, and
3766  * also drops the back refs in the inode to the directory
3767  */
3768 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3769                                 struct btrfs_root *root,
3770                                 struct inode *dir, struct inode *inode,
3771                                 const char *name, int name_len)
3772 {
3773         struct btrfs_path *path;
3774         int ret = 0;
3775         struct extent_buffer *leaf;
3776         struct btrfs_dir_item *di;
3777         struct btrfs_key key;
3778         u64 index;
3779         u64 ino = btrfs_ino(inode);
3780         u64 dir_ino = btrfs_ino(dir);
3781
3782         path = btrfs_alloc_path();
3783         if (!path) {
3784                 ret = -ENOMEM;
3785                 goto out;
3786         }
3787
3788         path->leave_spinning = 1;
3789         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3790                                     name, name_len, -1);
3791         if (IS_ERR(di)) {
3792                 ret = PTR_ERR(di);
3793                 goto err;
3794         }
3795         if (!di) {
3796                 ret = -ENOENT;
3797                 goto err;
3798         }
3799         leaf = path->nodes[0];
3800         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3801         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3802         if (ret)
3803                 goto err;
3804         btrfs_release_path(path);
3805
3806         /*
3807          * If we don't have dir index, we have to get it by looking up
3808          * the inode ref, since we get the inode ref, remove it directly,
3809          * it is unnecessary to do delayed deletion.
3810          *
3811          * But if we have dir index, needn't search inode ref to get it.
3812          * Since the inode ref is close to the inode item, it is better
3813          * that we delay to delete it, and just do this deletion when
3814          * we update the inode item.
3815          */
3816         if (BTRFS_I(inode)->dir_index) {
3817                 ret = btrfs_delayed_delete_inode_ref(inode);
3818                 if (!ret) {
3819                         index = BTRFS_I(inode)->dir_index;
3820                         goto skip_backref;
3821                 }
3822         }
3823
3824         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3825                                   dir_ino, &index);
3826         if (ret) {
3827                 btrfs_info(root->fs_info,
3828                         "failed to delete reference to %.*s, inode %llu parent %llu",
3829                         name_len, name, ino, dir_ino);
3830                 btrfs_abort_transaction(trans, root, ret);
3831                 goto err;
3832         }
3833 skip_backref:
3834         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3835         if (ret) {
3836                 btrfs_abort_transaction(trans, root, ret);
3837                 goto err;
3838         }
3839
3840         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3841                                          inode, dir_ino);
3842         if (ret != 0 && ret != -ENOENT) {
3843                 btrfs_abort_transaction(trans, root, ret);
3844                 goto err;
3845         }
3846
3847         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3848                                            dir, index);
3849         if (ret == -ENOENT)
3850                 ret = 0;
3851         else if (ret)
3852                 btrfs_abort_transaction(trans, root, ret);
3853 err:
3854         btrfs_free_path(path);
3855         if (ret)
3856                 goto out;
3857
3858         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3859         inode_inc_iversion(inode);
3860         inode_inc_iversion(dir);
3861         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3862         ret = btrfs_update_inode(trans, root, dir);
3863 out:
3864         return ret;
3865 }
3866
3867 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3868                        struct btrfs_root *root,
3869                        struct inode *dir, struct inode *inode,
3870                        const char *name, int name_len)
3871 {
3872         int ret;
3873         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3874         if (!ret) {
3875                 drop_nlink(inode);
3876                 ret = btrfs_update_inode(trans, root, inode);
3877         }
3878         return ret;
3879 }
3880
3881 /*
3882  * helper to start transaction for unlink and rmdir.
3883  *
3884  * unlink and rmdir are special in btrfs, they do not always free space, so
3885  * if we cannot make our reservations the normal way try and see if there is
3886  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3887  * allow the unlink to occur.
3888  */
3889 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3890 {
3891         struct btrfs_trans_handle *trans;
3892         struct btrfs_root *root = BTRFS_I(dir)->root;
3893         int ret;
3894
3895         /*
3896          * 1 for the possible orphan item
3897          * 1 for the dir item
3898          * 1 for the dir index
3899          * 1 for the inode ref
3900          * 1 for the inode
3901          */
3902         trans = btrfs_start_transaction(root, 5);
3903         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3904                 return trans;
3905
3906         if (PTR_ERR(trans) == -ENOSPC) {
3907                 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3908
3909                 trans = btrfs_start_transaction(root, 0);
3910                 if (IS_ERR(trans))
3911                         return trans;
3912                 ret = btrfs_cond_migrate_bytes(root->fs_info,
3913                                                &root->fs_info->trans_block_rsv,
3914                                                num_bytes, 5);
3915                 if (ret) {
3916                         btrfs_end_transaction(trans, root);
3917                         return ERR_PTR(ret);
3918                 }
3919                 trans->block_rsv = &root->fs_info->trans_block_rsv;
3920                 trans->bytes_reserved = num_bytes;
3921         }
3922         return trans;
3923 }
3924
3925 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3926 {
3927         struct btrfs_root *root = BTRFS_I(dir)->root;
3928         struct btrfs_trans_handle *trans;
3929         struct inode *inode = dentry->d_inode;
3930         int ret;
3931
3932         trans = __unlink_start_trans(dir);
3933         if (IS_ERR(trans))
3934                 return PTR_ERR(trans);
3935
3936         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3937
3938         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3939                                  dentry->d_name.name, dentry->d_name.len);
3940         if (ret)
3941                 goto out;
3942
3943         if (inode->i_nlink == 0) {
3944                 ret = btrfs_orphan_add(trans, inode);
3945                 if (ret)
3946                         goto out;
3947         }
3948
3949 out:
3950         btrfs_end_transaction(trans, root);
3951         btrfs_btree_balance_dirty(root);
3952         return ret;
3953 }
3954
3955 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3956                         struct btrfs_root *root,
3957                         struct inode *dir, u64 objectid,
3958                         const char *name, int name_len)
3959 {
3960         struct btrfs_path *path;
3961         struct extent_buffer *leaf;
3962         struct btrfs_dir_item *di;
3963         struct btrfs_key key;
3964         u64 index;
3965         int ret;
3966         u64 dir_ino = btrfs_ino(dir);
3967
3968         path = btrfs_alloc_path();
3969         if (!path)
3970                 return -ENOMEM;
3971
3972         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3973                                    name, name_len, -1);
3974         if (IS_ERR_OR_NULL(di)) {
3975                 if (!di)
3976                         ret = -ENOENT;
3977                 else
3978                         ret = PTR_ERR(di);
3979                 goto out;
3980         }
3981
3982         leaf = path->nodes[0];
3983         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3984         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3985         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3986         if (ret) {
3987                 btrfs_abort_transaction(trans, root, ret);
3988                 goto out;
3989         }
3990         btrfs_release_path(path);
3991
3992         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3993                                  objectid, root->root_key.objectid,
3994                                  dir_ino, &index, name, name_len);
3995         if (ret < 0) {
3996                 if (ret != -ENOENT) {
3997                         btrfs_abort_transaction(trans, root, ret);
3998                         goto out;
3999                 }
4000                 di = btrfs_search_dir_index_item(root, path, dir_ino,
4001                                                  name, name_len);
4002                 if (IS_ERR_OR_NULL(di)) {
4003                         if (!di)
4004                                 ret = -ENOENT;
4005                         else
4006                                 ret = PTR_ERR(di);
4007                         btrfs_abort_transaction(trans, root, ret);
4008                         goto out;
4009                 }
4010
4011                 leaf = path->nodes[0];
4012                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4013                 btrfs_release_path(path);
4014                 index = key.offset;
4015         }
4016         btrfs_release_path(path);
4017
4018         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4019         if (ret) {
4020                 btrfs_abort_transaction(trans, root, ret);
4021                 goto out;
4022         }
4023
4024         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4025         inode_inc_iversion(dir);
4026         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4027         ret = btrfs_update_inode_fallback(trans, root, dir);
4028         if (ret)
4029                 btrfs_abort_transaction(trans, root, ret);
4030 out:
4031         btrfs_free_path(path);
4032         return ret;
4033 }
4034
4035 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4036 {
4037         struct inode *inode = dentry->d_inode;
4038         int err = 0;
4039         struct btrfs_root *root = BTRFS_I(dir)->root;
4040         struct btrfs_trans_handle *trans;
4041
4042         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4043                 return -ENOTEMPTY;
4044         if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4045                 return -EPERM;
4046
4047         trans = __unlink_start_trans(dir);
4048         if (IS_ERR(trans))
4049                 return PTR_ERR(trans);
4050
4051         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4052                 err = btrfs_unlink_subvol(trans, root, dir,
4053                                           BTRFS_I(inode)->location.objectid,
4054                                           dentry->d_name.name,
4055                                           dentry->d_name.len);
4056                 goto out;
4057         }
4058
4059         err = btrfs_orphan_add(trans, inode);
4060         if (err)
4061                 goto out;
4062
4063         /* now the directory is empty */
4064         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4065                                  dentry->d_name.name, dentry->d_name.len);
4066         if (!err)
4067                 btrfs_i_size_write(inode, 0);
4068 out:
4069         btrfs_end_transaction(trans, root);
4070         btrfs_btree_balance_dirty(root);
4071
4072         return err;
4073 }
4074
4075 /*
4076  * this can truncate away extent items, csum items and directory items.
4077  * It starts at a high offset and removes keys until it can't find
4078  * any higher than new_size
4079  *
4080  * csum items that cross the new i_size are truncated to the new size
4081  * as well.
4082  *
4083  * min_type is the minimum key type to truncate down to.  If set to 0, this
4084  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4085  */
4086 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4087                                struct btrfs_root *root,
4088                                struct inode *inode,
4089                                u64 new_size, u32 min_type)
4090 {
4091         struct btrfs_path *path;
4092         struct extent_buffer *leaf;
4093         struct btrfs_file_extent_item *fi;
4094         struct btrfs_key key;
4095         struct btrfs_key found_key;
4096         u64 extent_start = 0;
4097         u64 extent_num_bytes = 0;
4098         u64 extent_offset = 0;
4099         u64 item_end = 0;
4100         u64 last_size = (u64)-1;
4101         u32 found_type = (u8)-1;
4102         int found_extent;
4103         int del_item;
4104         int pending_del_nr = 0;
4105         int pending_del_slot = 0;
4106         int extent_type = -1;
4107         int ret;
4108         int err = 0;
4109         u64 ino = btrfs_ino(inode);
4110
4111         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4112
4113         path = btrfs_alloc_path();
4114         if (!path)
4115                 return -ENOMEM;
4116         path->reada = -1;
4117
4118         /*
4119          * We want to drop from the next block forward in case this new size is
4120          * not block aligned since we will be keeping the last block of the
4121          * extent just the way it is.
4122          */
4123         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4124             root == root->fs_info->tree_root)
4125                 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4126                                         root->sectorsize), (u64)-1, 0);
4127
4128         /*
4129          * This function is also used to drop the items in the log tree before
4130          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4131          * it is used to drop the loged items. So we shouldn't kill the delayed
4132          * items.
4133          */
4134         if (min_type == 0 && root == BTRFS_I(inode)->root)
4135                 btrfs_kill_delayed_inode_items(inode);
4136
4137         key.objectid = ino;
4138         key.offset = (u64)-1;
4139         key.type = (u8)-1;
4140
4141 search_again:
4142         path->leave_spinning = 1;
4143         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4144         if (ret < 0) {
4145                 err = ret;
4146                 goto out;
4147         }
4148
4149         if (ret > 0) {
4150                 /* there are no items in the tree for us to truncate, we're
4151                  * done
4152                  */
4153                 if (path->slots[0] == 0)
4154                         goto out;
4155                 path->slots[0]--;
4156         }
4157
4158         while (1) {
4159                 fi = NULL;
4160                 leaf = path->nodes[0];
4161                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4162                 found_type = found_key.type;
4163
4164                 if (found_key.objectid != ino)
4165                         break;
4166
4167                 if (found_type < min_type)
4168                         break;
4169
4170                 item_end = found_key.offset;
4171                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4172                         fi = btrfs_item_ptr(leaf, path->slots[0],
4173                                             struct btrfs_file_extent_item);
4174                         extent_type = btrfs_file_extent_type(leaf, fi);
4175                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4176                                 item_end +=
4177                                     btrfs_file_extent_num_bytes(leaf, fi);
4178                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4179                                 item_end += btrfs_file_extent_inline_len(leaf,
4180                                                          path->slots[0], fi);
4181                         }
4182                         item_end--;
4183                 }
4184                 if (found_type > min_type) {
4185                         del_item = 1;
4186                 } else {
4187                         if (item_end < new_size)
4188                                 break;
4189                         if (found_key.offset >= new_size)
4190                                 del_item = 1;
4191                         else
4192                                 del_item = 0;
4193                 }
4194                 found_extent = 0;
4195                 /* FIXME, shrink the extent if the ref count is only 1 */
4196                 if (found_type != BTRFS_EXTENT_DATA_KEY)
4197                         goto delete;
4198
4199                 if (del_item)
4200                         last_size = found_key.offset;
4201                 else
4202                         last_size = new_size;
4203
4204                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4205                         u64 num_dec;
4206                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4207                         if (!del_item) {
4208                                 u64 orig_num_bytes =
4209                                         btrfs_file_extent_num_bytes(leaf, fi);
4210                                 extent_num_bytes = ALIGN(new_size -
4211                                                 found_key.offset,
4212                                                 root->sectorsize);
4213                                 btrfs_set_file_extent_num_bytes(leaf, fi,
4214                                                          extent_num_bytes);
4215                                 num_dec = (orig_num_bytes -
4216                                            extent_num_bytes);
4217                                 if (test_bit(BTRFS_ROOT_REF_COWS,
4218                                              &root->state) &&
4219                                     extent_start != 0)
4220                                         inode_sub_bytes(inode, num_dec);
4221                                 btrfs_mark_buffer_dirty(leaf);
4222                         } else {
4223                                 extent_num_bytes =
4224                                         btrfs_file_extent_disk_num_bytes(leaf,
4225                                                                          fi);
4226                                 extent_offset = found_key.offset -
4227                                         btrfs_file_extent_offset(leaf, fi);
4228
4229                                 /* FIXME blocksize != 4096 */
4230                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4231                                 if (extent_start != 0) {
4232                                         found_extent = 1;
4233                                         if (test_bit(BTRFS_ROOT_REF_COWS,
4234                                                      &root->state))
4235                                                 inode_sub_bytes(inode, num_dec);
4236                                 }
4237                         }
4238                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4239                         /*
4240                          * we can't truncate inline items that have had
4241                          * special encodings
4242                          */
4243                         if (!del_item &&
4244                             btrfs_file_extent_compression(leaf, fi) == 0 &&
4245                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
4246                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4247                                 u32 size = new_size - found_key.offset;
4248
4249                                 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4250                                         inode_sub_bytes(inode, item_end + 1 -
4251                                                         new_size);
4252
4253                                 /*
4254                                  * update the ram bytes to properly reflect
4255                                  * the new size of our item
4256                                  */
4257                                 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4258                                 size =
4259                                     btrfs_file_extent_calc_inline_size(size);
4260                                 btrfs_truncate_item(root, path, size, 1);
4261                         } else if (test_bit(BTRFS_ROOT_REF_COWS,
4262                                             &root->state)) {
4263                                 inode_sub_bytes(inode, item_end + 1 -
4264                                                 found_key.offset);
4265                         }
4266                 }
4267 delete:
4268                 if (del_item) {
4269                         if (!pending_del_nr) {
4270                                 /* no pending yet, add ourselves */
4271                                 pending_del_slot = path->slots[0];
4272                                 pending_del_nr = 1;
4273                         } else if (pending_del_nr &&
4274                                    path->slots[0] + 1 == pending_del_slot) {
4275                                 /* hop on the pending chunk */
4276                                 pending_del_nr++;
4277                                 pending_del_slot = path->slots[0];
4278                         } else {
4279                                 BUG();
4280                         }
4281                 } else {
4282                         break;
4283                 }
4284                 if (found_extent &&
4285                     (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4286                      root == root->fs_info->tree_root)) {
4287                         btrfs_set_path_blocking(path);
4288                         ret = btrfs_free_extent(trans, root, extent_start,
4289                                                 extent_num_bytes, 0,
4290                                                 btrfs_header_owner(leaf),
4291                                                 ino, extent_offset, 0);
4292                         BUG_ON(ret);
4293                 }
4294
4295                 if (found_type == BTRFS_INODE_ITEM_KEY)
4296                         break;
4297
4298                 if (path->slots[0] == 0 ||
4299                     path->slots[0] != pending_del_slot) {
4300                         if (pending_del_nr) {
4301                                 ret = btrfs_del_items(trans, root, path,
4302                                                 pending_del_slot,
4303                                                 pending_del_nr);
4304                                 if (ret) {
4305                                         btrfs_abort_transaction(trans,
4306                                                                 root, ret);
4307                                         goto error;
4308                                 }
4309                                 pending_del_nr = 0;
4310                         }
4311                         btrfs_release_path(path);
4312                         goto search_again;
4313                 } else {
4314                         path->slots[0]--;
4315                 }
4316         }
4317 out:
4318         if (pending_del_nr) {
4319                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4320                                       pending_del_nr);
4321                 if (ret)
4322                         btrfs_abort_transaction(trans, root, ret);
4323         }
4324 error:
4325         if (last_size != (u64)-1 &&
4326             root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4327                 btrfs_ordered_update_i_size(inode, last_size, NULL);
4328         btrfs_free_path(path);
4329         return err;
4330 }
4331
4332 /*
4333  * btrfs_truncate_page - read, zero a chunk and write a page
4334  * @inode - inode that we're zeroing
4335  * @from - the offset to start zeroing
4336  * @len - the length to zero, 0 to zero the entire range respective to the
4337  *      offset
4338  * @front - zero up to the offset instead of from the offset on
4339  *
4340  * This will find the page for the "from" offset and cow the page and zero the
4341  * part we want to zero.  This is used with truncate and hole punching.
4342  */
4343 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4344                         int front)
4345 {
4346         struct address_space *mapping = inode->i_mapping;
4347         struct btrfs_root *root = BTRFS_I(inode)->root;
4348         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4349         struct btrfs_ordered_extent *ordered;
4350         struct extent_state *cached_state = NULL;
4351         char *kaddr;
4352         u32 blocksize = root->sectorsize;
4353         pgoff_t index = from >> PAGE_CACHE_SHIFT;
4354         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4355         struct page *page;
4356         gfp_t mask = btrfs_alloc_write_mask(mapping);
4357         int ret = 0;
4358         u64 page_start;
4359         u64 page_end;
4360
4361         if ((offset & (blocksize - 1)) == 0 &&
4362             (!len || ((len & (blocksize - 1)) == 0)))
4363                 goto out;
4364         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4365         if (ret)
4366                 goto out;
4367
4368 again:
4369         page = find_or_create_page(mapping, index, mask);
4370         if (!page) {
4371                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4372                 ret = -ENOMEM;
4373                 goto out;
4374         }
4375
4376         page_start = page_offset(page);
4377         page_end = page_start + PAGE_CACHE_SIZE - 1;
4378
4379         if (!PageUptodate(page)) {
4380                 ret = btrfs_readpage(NULL, page);
4381                 lock_page(page);
4382                 if (page->mapping != mapping) {
4383                         unlock_page(page);
4384                         page_cache_release(page);
4385                         goto again;
4386                 }
4387                 if (!PageUptodate(page)) {
4388                         ret = -EIO;
4389                         goto out_unlock;
4390                 }
4391         }
4392         wait_on_page_writeback(page);
4393
4394         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4395         set_page_extent_mapped(page);
4396
4397         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4398         if (ordered) {
4399                 unlock_extent_cached(io_tree, page_start, page_end,
4400                                      &cached_state, GFP_NOFS);
4401                 unlock_page(page);
4402                 page_cache_release(page);
4403                 btrfs_start_ordered_extent(inode, ordered, 1);
4404                 btrfs_put_ordered_extent(ordered);
4405                 goto again;
4406         }
4407
4408         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4409                           EXTENT_DIRTY | EXTENT_DELALLOC |
4410                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4411                           0, 0, &cached_state, GFP_NOFS);
4412
4413         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4414                                         &cached_state);
4415         if (ret) {
4416                 unlock_extent_cached(io_tree, page_start, page_end,
4417                                      &cached_state, GFP_NOFS);
4418                 goto out_unlock;
4419         }
4420
4421         if (offset != PAGE_CACHE_SIZE) {
4422                 if (!len)
4423                         len = PAGE_CACHE_SIZE - offset;
4424                 kaddr = kmap(page);
4425                 if (front)
4426                         memset(kaddr, 0, offset);
4427                 else
4428                         memset(kaddr + offset, 0, len);
4429                 flush_dcache_page(page);
4430                 kunmap(page);
4431         }
4432         ClearPageChecked(page);
4433         set_page_dirty(page);
4434         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4435                              GFP_NOFS);
4436
4437 out_unlock:
4438         if (ret)
4439                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4440         unlock_page(page);
4441         page_cache_release(page);
4442 out:
4443         return ret;
4444 }
4445
4446 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4447                              u64 offset, u64 len)
4448 {
4449         struct btrfs_trans_handle *trans;
4450         int ret;
4451
4452         /*
4453          * Still need to make sure the inode looks like it's been updated so
4454          * that any holes get logged if we fsync.
4455          */
4456         if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4457                 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4458                 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4459                 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4460                 return 0;
4461         }
4462
4463         /*
4464          * 1 - for the one we're dropping
4465          * 1 - for the one we're adding
4466          * 1 - for updating the inode.
4467          */
4468         trans = btrfs_start_transaction(root, 3);
4469         if (IS_ERR(trans))
4470                 return PTR_ERR(trans);
4471
4472         ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4473         if (ret) {
4474                 btrfs_abort_transaction(trans, root, ret);
4475                 btrfs_end_transaction(trans, root);
4476                 return ret;
4477         }
4478
4479         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4480                                        0, 0, len, 0, len, 0, 0, 0);
4481         if (ret)
4482                 btrfs_abort_transaction(trans, root, ret);
4483         else
4484                 btrfs_update_inode(trans, root, inode);
4485         btrfs_end_transaction(trans, root);
4486         return ret;
4487 }
4488
4489 /*
4490  * This function puts in dummy file extents for the area we're creating a hole
4491  * for.  So if we are truncating this file to a larger size we need to insert
4492  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4493  * the range between oldsize and size
4494  */
4495 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4496 {
4497         struct btrfs_root *root = BTRFS_I(inode)->root;
4498         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4499         struct extent_map *em = NULL;
4500         struct extent_state *cached_state = NULL;
4501         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4502         u64 hole_start = ALIGN(oldsize, root->sectorsize);
4503         u64 block_end = ALIGN(size, root->sectorsize);
4504         u64 last_byte;
4505         u64 cur_offset;
4506         u64 hole_size;
4507         int err = 0;
4508
4509         /*
4510          * If our size started in the middle of a page we need to zero out the
4511          * rest of the page before we expand the i_size, otherwise we could
4512          * expose stale data.
4513          */
4514         err = btrfs_truncate_page(inode, oldsize, 0, 0);
4515         if (err)
4516                 return err;
4517
4518         if (size <= hole_start)
4519                 return 0;
4520
4521         while (1) {
4522                 struct btrfs_ordered_extent *ordered;
4523
4524                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4525                                  &cached_state);
4526                 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4527                                                      block_end - hole_start);
4528                 if (!ordered)
4529                         break;
4530                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4531                                      &cached_state, GFP_NOFS);
4532                 btrfs_start_ordered_extent(inode, ordered, 1);
4533                 btrfs_put_ordered_extent(ordered);
4534         }
4535
4536         cur_offset = hole_start;
4537         while (1) {
4538                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4539                                 block_end - cur_offset, 0);
4540                 if (IS_ERR(em)) {
4541                         err = PTR_ERR(em);
4542                         em = NULL;
4543                         break;
4544                 }
4545                 last_byte = min(extent_map_end(em), block_end);
4546                 last_byte = ALIGN(last_byte , root->sectorsize);
4547                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4548                         struct extent_map *hole_em;
4549                         hole_size = last_byte - cur_offset;
4550
4551                         err = maybe_insert_hole(root, inode, cur_offset,
4552                                                 hole_size);
4553                         if (err)
4554                                 break;
4555                         btrfs_drop_extent_cache(inode, cur_offset,
4556                                                 cur_offset + hole_size - 1, 0);
4557                         hole_em = alloc_extent_map();
4558                         if (!hole_em) {
4559                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4560                                         &BTRFS_I(inode)->runtime_flags);
4561                                 goto next;
4562                         }
4563                         hole_em->start = cur_offset;
4564                         hole_em->len = hole_size;
4565                         hole_em->orig_start = cur_offset;
4566
4567                         hole_em->block_start = EXTENT_MAP_HOLE;
4568                         hole_em->block_len = 0;
4569                         hole_em->orig_block_len = 0;
4570                         hole_em->ram_bytes = hole_size;
4571                         hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4572                         hole_em->compress_type = BTRFS_COMPRESS_NONE;
4573                         hole_em->generation = root->fs_info->generation;
4574
4575                         while (1) {
4576                                 write_lock(&em_tree->lock);
4577                                 err = add_extent_mapping(em_tree, hole_em, 1);
4578                                 write_unlock(&em_tree->lock);
4579                                 if (err != -EEXIST)
4580                                         break;
4581                                 btrfs_drop_extent_cache(inode, cur_offset,
4582                                                         cur_offset +
4583                                                         hole_size - 1, 0);
4584                         }
4585                         free_extent_map(hole_em);
4586                 }
4587 next:
4588                 free_extent_map(em);
4589                 em = NULL;
4590                 cur_offset = last_byte;
4591                 if (cur_offset >= block_end)
4592                         break;
4593         }
4594         free_extent_map(em);
4595         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4596                              GFP_NOFS);
4597         return err;
4598 }
4599
4600 static int wait_snapshoting_atomic_t(atomic_t *a)
4601 {
4602         schedule();
4603         return 0;
4604 }
4605
4606 static void wait_for_snapshot_creation(struct btrfs_root *root)
4607 {
4608         while (true) {
4609                 int ret;
4610
4611                 ret = btrfs_start_write_no_snapshoting(root);
4612                 if (ret)
4613                         break;
4614                 wait_on_atomic_t(&root->will_be_snapshoted,
4615                                  wait_snapshoting_atomic_t,
4616                                  TASK_UNINTERRUPTIBLE);
4617         }
4618 }
4619
4620 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4621 {
4622         struct btrfs_root *root = BTRFS_I(inode)->root;
4623         struct btrfs_trans_handle *trans;
4624         loff_t oldsize = i_size_read(inode);
4625         loff_t newsize = attr->ia_size;
4626         int mask = attr->ia_valid;
4627         int ret;
4628
4629         /*
4630          * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4631          * special case where we need to update the times despite not having
4632          * these flags set.  For all other operations the VFS set these flags
4633          * explicitly if it wants a timestamp update.
4634          */
4635         if (newsize != oldsize) {
4636                 inode_inc_iversion(inode);
4637                 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4638                         inode->i_ctime = inode->i_mtime =
4639                                 current_fs_time(inode->i_sb);
4640         }
4641
4642         if (newsize > oldsize) {
4643                 truncate_pagecache(inode, newsize);
4644                 /*
4645                  * Don't do an expanding truncate while snapshoting is ongoing.
4646                  * This is to ensure the snapshot captures a fully consistent
4647                  * state of this file - if the snapshot captures this expanding
4648                  * truncation, it must capture all writes that happened before
4649                  * this truncation.
4650                  */
4651                 wait_for_snapshot_creation(root);
4652                 ret = btrfs_cont_expand(inode, oldsize, newsize);
4653                 if (ret) {
4654                         btrfs_end_write_no_snapshoting(root);
4655                         return ret;
4656                 }
4657
4658                 trans = btrfs_start_transaction(root, 1);
4659                 if (IS_ERR(trans)) {
4660                         btrfs_end_write_no_snapshoting(root);
4661                         return PTR_ERR(trans);
4662                 }
4663
4664                 i_size_write(inode, newsize);
4665                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4666                 ret = btrfs_update_inode(trans, root, inode);
4667                 btrfs_end_write_no_snapshoting(root);
4668                 btrfs_end_transaction(trans, root);
4669         } else {
4670
4671                 /*
4672                  * We're truncating a file that used to have good data down to
4673                  * zero. Make sure it gets into the ordered flush list so that
4674                  * any new writes get down to disk quickly.
4675                  */
4676                 if (newsize == 0)
4677                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4678                                 &BTRFS_I(inode)->runtime_flags);
4679
4680                 /*
4681                  * 1 for the orphan item we're going to add
4682                  * 1 for the orphan item deletion.
4683                  */
4684                 trans = btrfs_start_transaction(root, 2);
4685                 if (IS_ERR(trans))
4686                         return PTR_ERR(trans);
4687
4688                 /*
4689                  * We need to do this in case we fail at _any_ point during the
4690                  * actual truncate.  Once we do the truncate_setsize we could
4691                  * invalidate pages which forces any outstanding ordered io to
4692                  * be instantly completed which will give us extents that need
4693                  * to be truncated.  If we fail to get an orphan inode down we
4694                  * could have left over extents that were never meant to live,
4695                  * so we need to garuntee from this point on that everything
4696                  * will be consistent.
4697                  */
4698                 ret = btrfs_orphan_add(trans, inode);
4699                 btrfs_end_transaction(trans, root);
4700                 if (ret)
4701                         return ret;
4702
4703                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4704                 truncate_setsize(inode, newsize);
4705
4706                 /* Disable nonlocked read DIO to avoid the end less truncate */
4707                 btrfs_inode_block_unlocked_dio(inode);
4708                 inode_dio_wait(inode);
4709                 btrfs_inode_resume_unlocked_dio(inode);
4710
4711                 ret = btrfs_truncate(inode);
4712                 if (ret && inode->i_nlink) {
4713                         int err;
4714
4715                         /*
4716                          * failed to truncate, disk_i_size is only adjusted down
4717                          * as we remove extents, so it should represent the true
4718                          * size of the inode, so reset the in memory size and
4719                          * delete our orphan entry.
4720                          */
4721                         trans = btrfs_join_transaction(root);
4722                         if (IS_ERR(trans)) {
4723                                 btrfs_orphan_del(NULL, inode);
4724                                 return ret;
4725                         }
4726                         i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4727                         err = btrfs_orphan_del(trans, inode);
4728                         if (err)
4729                                 btrfs_abort_transaction(trans, root, err);
4730                         btrfs_end_transaction(trans, root);
4731                 }
4732         }
4733
4734         return ret;
4735 }
4736
4737 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4738 {
4739         struct inode *inode = dentry->d_inode;
4740         struct btrfs_root *root = BTRFS_I(inode)->root;
4741         int err;
4742
4743         if (btrfs_root_readonly(root))
4744                 return -EROFS;
4745
4746         err = inode_change_ok(inode, attr);
4747         if (err)
4748                 return err;
4749
4750         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4751                 err = btrfs_setsize(inode, attr);
4752                 if (err)
4753                         return err;
4754         }
4755
4756         if (attr->ia_valid) {
4757                 setattr_copy(inode, attr);
4758                 inode_inc_iversion(inode);
4759                 err = btrfs_dirty_inode(inode);
4760
4761                 if (!err && attr->ia_valid & ATTR_MODE)
4762                         err = posix_acl_chmod(inode, inode->i_mode);
4763         }
4764
4765         return err;
4766 }
4767
4768 /*
4769  * While truncating the inode pages during eviction, we get the VFS calling
4770  * btrfs_invalidatepage() against each page of the inode. This is slow because
4771  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4772  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4773  * extent_state structures over and over, wasting lots of time.
4774  *
4775  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4776  * those expensive operations on a per page basis and do only the ordered io
4777  * finishing, while we release here the extent_map and extent_state structures,
4778  * without the excessive merging and splitting.
4779  */
4780 static void evict_inode_truncate_pages(struct inode *inode)
4781 {
4782         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4783         struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4784         struct rb_node *node;
4785
4786         ASSERT(inode->i_state & I_FREEING);
4787         truncate_inode_pages_final(&inode->i_data);
4788
4789         write_lock(&map_tree->lock);
4790         while (!RB_EMPTY_ROOT(&map_tree->map)) {
4791                 struct extent_map *em;
4792
4793                 node = rb_first(&map_tree->map);
4794                 em = rb_entry(node, struct extent_map, rb_node);
4795                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4796                 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4797                 remove_extent_mapping(map_tree, em);
4798                 free_extent_map(em);
4799                 if (need_resched()) {
4800                         write_unlock(&map_tree->lock);
4801                         cond_resched();
4802                         write_lock(&map_tree->lock);
4803                 }
4804         }
4805         write_unlock(&map_tree->lock);
4806
4807         spin_lock(&io_tree->lock);
4808         while (!RB_EMPTY_ROOT(&io_tree->state)) {
4809                 struct extent_state *state;
4810                 struct extent_state *cached_state = NULL;
4811
4812                 node = rb_first(&io_tree->state);
4813                 state = rb_entry(node, struct extent_state, rb_node);
4814                 atomic_inc(&state->refs);
4815                 spin_unlock(&io_tree->lock);
4816
4817                 lock_extent_bits(io_tree, state->start, state->end,
4818                                  0, &cached_state);
4819                 clear_extent_bit(io_tree, state->start, state->end,
4820                                  EXTENT_LOCKED | EXTENT_DIRTY |
4821                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4822                                  EXTENT_DEFRAG, 1, 1,
4823                                  &cached_state, GFP_NOFS);
4824                 free_extent_state(state);
4825
4826                 cond_resched();
4827                 spin_lock(&io_tree->lock);
4828         }
4829         spin_unlock(&io_tree->lock);
4830 }
4831
4832 void btrfs_evict_inode(struct inode *inode)
4833 {
4834         struct btrfs_trans_handle *trans;
4835         struct btrfs_root *root = BTRFS_I(inode)->root;
4836         struct btrfs_block_rsv *rsv, *global_rsv;
4837         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4838         int ret;
4839
4840         trace_btrfs_inode_evict(inode);
4841
4842         evict_inode_truncate_pages(inode);
4843
4844         if (inode->i_nlink &&
4845             ((btrfs_root_refs(&root->root_item) != 0 &&
4846               root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4847              btrfs_is_free_space_inode(inode)))
4848                 goto no_delete;
4849
4850         if (is_bad_inode(inode)) {
4851                 btrfs_orphan_del(NULL, inode);
4852                 goto no_delete;
4853         }
4854         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4855         btrfs_wait_ordered_range(inode, 0, (u64)-1);
4856
4857         btrfs_free_io_failure_record(inode, 0, (u64)-1);
4858
4859         if (root->fs_info->log_root_recovering) {
4860                 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4861                                  &BTRFS_I(inode)->runtime_flags));
4862                 goto no_delete;
4863         }
4864
4865         if (inode->i_nlink > 0) {
4866                 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4867                        root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4868                 goto no_delete;
4869         }
4870
4871         ret = btrfs_commit_inode_delayed_inode(inode);
4872         if (ret) {
4873                 btrfs_orphan_del(NULL, inode);
4874                 goto no_delete;
4875         }
4876
4877         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4878         if (!rsv) {
4879                 btrfs_orphan_del(NULL, inode);
4880                 goto no_delete;
4881         }
4882         rsv->size = min_size;
4883         rsv->failfast = 1;
4884         global_rsv = &root->fs_info->global_block_rsv;
4885
4886         btrfs_i_size_write(inode, 0);
4887
4888         /*
4889          * This is a bit simpler than btrfs_truncate since we've already
4890          * reserved our space for our orphan item in the unlink, so we just
4891          * need to reserve some slack space in case we add bytes and update
4892          * inode item when doing the truncate.
4893          */
4894         while (1) {
4895                 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4896                                              BTRFS_RESERVE_FLUSH_LIMIT);
4897
4898                 /*
4899                  * Try and steal from the global reserve since we will
4900                  * likely not use this space anyway, we want to try as
4901                  * hard as possible to get this to work.
4902                  */
4903                 if (ret)
4904                         ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4905
4906                 if (ret) {
4907                         btrfs_warn(root->fs_info,
4908                                 "Could not get space for a delete, will truncate on mount %d",
4909                                 ret);
4910                         btrfs_orphan_del(NULL, inode);
4911                         btrfs_free_block_rsv(root, rsv);
4912                         goto no_delete;
4913                 }
4914
4915                 trans = btrfs_join_transaction(root);
4916                 if (IS_ERR(trans)) {
4917                         btrfs_orphan_del(NULL, inode);
4918                         btrfs_free_block_rsv(root, rsv);
4919                         goto no_delete;
4920                 }
4921
4922                 trans->block_rsv = rsv;
4923
4924                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4925                 if (ret != -ENOSPC)
4926                         break;
4927
4928                 trans->block_rsv = &root->fs_info->trans_block_rsv;
4929                 btrfs_end_transaction(trans, root);
4930                 trans = NULL;
4931                 btrfs_btree_balance_dirty(root);
4932         }
4933
4934         btrfs_free_block_rsv(root, rsv);
4935
4936         /*
4937          * Errors here aren't a big deal, it just means we leave orphan items
4938          * in the tree.  They will be cleaned up on the next mount.
4939          */
4940         if (ret == 0) {
4941                 trans->block_rsv = root->orphan_block_rsv;
4942                 btrfs_orphan_del(trans, inode);
4943         } else {
4944                 btrfs_orphan_del(NULL, inode);
4945         }
4946
4947         trans->block_rsv = &root->fs_info->trans_block_rsv;
4948         if (!(root == root->fs_info->tree_root ||
4949               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4950                 btrfs_return_ino(root, btrfs_ino(inode));
4951
4952         btrfs_end_transaction(trans, root);
4953         btrfs_btree_balance_dirty(root);
4954 no_delete:
4955         btrfs_remove_delayed_node(inode);
4956         clear_inode(inode);
4957         return;
4958 }
4959
4960 /*
4961  * this returns the key found in the dir entry in the location pointer.
4962  * If no dir entries were found, location->objectid is 0.
4963  */
4964 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4965                                struct btrfs_key *location)
4966 {
4967         const char *name = dentry->d_name.name;
4968         int namelen = dentry->d_name.len;
4969         struct btrfs_dir_item *di;
4970         struct btrfs_path *path;
4971         struct btrfs_root *root = BTRFS_I(dir)->root;
4972         int ret = 0;
4973
4974         path = btrfs_alloc_path();
4975         if (!path)
4976                 return -ENOMEM;
4977
4978         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4979                                     namelen, 0);
4980         if (IS_ERR(di))
4981                 ret = PTR_ERR(di);
4982
4983         if (IS_ERR_OR_NULL(di))
4984                 goto out_err;
4985
4986         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4987 out:
4988         btrfs_free_path(path);
4989         return ret;
4990 out_err:
4991         location->objectid = 0;
4992         goto out;
4993 }
4994
4995 /*
4996  * when we hit a tree root in a directory, the btrfs part of the inode
4997  * needs to be changed to reflect the root directory of the tree root.  This
4998  * is kind of like crossing a mount point.
4999  */
5000 static int fixup_tree_root_location(struct btrfs_root *root,
5001                                     struct inode *dir,
5002                                     struct dentry *dentry,
5003                                     struct btrfs_key *location,
5004                                     struct btrfs_root **sub_root)
5005 {
5006         struct btrfs_path *path;
5007         struct btrfs_root *new_root;
5008         struct btrfs_root_ref *ref;
5009         struct extent_buffer *leaf;
5010         int ret;
5011         int err = 0;
5012
5013         path = btrfs_alloc_path();
5014         if (!path) {
5015                 err = -ENOMEM;
5016                 goto out;
5017         }
5018
5019         err = -ENOENT;
5020         ret = btrfs_find_item(root->fs_info->tree_root, path,
5021                                 BTRFS_I(dir)->root->root_key.objectid,
5022                                 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
5023         if (ret) {
5024                 if (ret < 0)
5025                         err = ret;
5026                 goto out;
5027         }
5028
5029         leaf = path->nodes[0];
5030         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5031         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5032             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5033                 goto out;
5034
5035         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5036                                    (unsigned long)(ref + 1),
5037                                    dentry->d_name.len);
5038         if (ret)
5039                 goto out;
5040
5041         btrfs_release_path(path);
5042
5043         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5044         if (IS_ERR(new_root)) {
5045                 err = PTR_ERR(new_root);
5046                 goto out;
5047         }
5048
5049         *sub_root = new_root;
5050         location->objectid = btrfs_root_dirid(&new_root->root_item);
5051         location->type = BTRFS_INODE_ITEM_KEY;
5052         location->offset = 0;
5053         err = 0;
5054 out:
5055         btrfs_free_path(path);
5056         return err;
5057 }
5058
5059 static void inode_tree_add(struct inode *inode)
5060 {
5061         struct btrfs_root *root = BTRFS_I(inode)->root;
5062         struct btrfs_inode *entry;
5063         struct rb_node **p;
5064         struct rb_node *parent;
5065         struct rb_node *new = &BTRFS_I(inode)->rb_node;
5066         u64 ino = btrfs_ino(inode);
5067
5068         if (inode_unhashed(inode))
5069                 return;
5070         parent = NULL;
5071         spin_lock(&root->inode_lock);
5072         p = &root->inode_tree.rb_node;
5073         while (*p) {
5074                 parent = *p;
5075                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5076
5077                 if (ino < btrfs_ino(&entry->vfs_inode))
5078                         p = &parent->rb_left;
5079                 else if (ino > btrfs_ino(&entry->vfs_inode))
5080                         p = &parent->rb_right;
5081                 else {
5082                         WARN_ON(!(entry->vfs_inode.i_state &
5083                                   (I_WILL_FREE | I_FREEING)));
5084                         rb_replace_node(parent, new, &root->inode_tree);
5085                         RB_CLEAR_NODE(parent);
5086                         spin_unlock(&root->inode_lock);
5087                         return;
5088                 }
5089         }
5090         rb_link_node(new, parent, p);
5091         rb_insert_color(new, &root->inode_tree);
5092         spin_unlock(&root->inode_lock);
5093 }
5094
5095 static void inode_tree_del(struct inode *inode)
5096 {
5097         struct btrfs_root *root = BTRFS_I(inode)->root;
5098         int empty = 0;
5099
5100         spin_lock(&root->inode_lock);
5101         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5102                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5103                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5104                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5105         }
5106         spin_unlock(&root->inode_lock);
5107
5108         if (empty && btrfs_root_refs(&root->root_item) == 0) {
5109                 synchronize_srcu(&root->fs_info->subvol_srcu);
5110                 spin_lock(&root->inode_lock);
5111                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5112                 spin_unlock(&root->inode_lock);
5113                 if (empty)
5114                         btrfs_add_dead_root(root);
5115         }
5116 }
5117
5118 void btrfs_invalidate_inodes(struct btrfs_root *root)
5119 {
5120         struct rb_node *node;
5121         struct rb_node *prev;
5122         struct btrfs_inode *entry;
5123         struct inode *inode;
5124         u64 objectid = 0;
5125
5126         if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5127                 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5128
5129         spin_lock(&root->inode_lock);
5130 again:
5131         node = root->inode_tree.rb_node;
5132         prev = NULL;
5133         while (node) {
5134                 prev = node;
5135                 entry = rb_entry(node, struct btrfs_inode, rb_node);
5136
5137                 if (objectid < btrfs_ino(&entry->vfs_inode))
5138                         node = node->rb_left;
5139                 else if (objectid > btrfs_ino(&entry->vfs_inode))
5140                         node = node->rb_right;
5141                 else
5142                         break;
5143         }
5144         if (!node) {
5145                 while (prev) {
5146                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
5147                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5148                                 node = prev;
5149                                 break;
5150                         }
5151                         prev = rb_next(prev);
5152                 }
5153         }
5154         while (node) {
5155                 entry = rb_entry(node, struct btrfs_inode, rb_node);
5156                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5157                 inode = igrab(&entry->vfs_inode);
5158                 if (inode) {
5159                         spin_unlock(&root->inode_lock);
5160                         if (atomic_read(&inode->i_count) > 1)
5161                                 d_prune_aliases(inode);
5162                         /*
5163                          * btrfs_drop_inode will have it removed from
5164                          * the inode cache when its usage count
5165                          * hits zero.
5166                          */
5167                         iput(inode);
5168                         cond_resched();
5169                         spin_lock(&root->inode_lock);
5170                         goto again;
5171                 }
5172
5173                 if (cond_resched_lock(&root->inode_lock))
5174                         goto again;
5175
5176                 node = rb_next(node);
5177         }
5178         spin_unlock(&root->inode_lock);
5179 }
5180
5181 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5182 {
5183         struct btrfs_iget_args *args = p;
5184         inode->i_ino = args->location->objectid;
5185         memcpy(&BTRFS_I(inode)->location, args->location,
5186                sizeof(*args->location));
5187         BTRFS_I(inode)->root = args->root;
5188         return 0;
5189 }
5190
5191 static int btrfs_find_actor(struct inode *inode, void *opaque)
5192 {
5193         struct btrfs_iget_args *args = opaque;
5194         return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5195                 args->root == BTRFS_I(inode)->root;
5196 }
5197
5198 static struct inode *btrfs_iget_locked(struct super_block *s,
5199                                        struct btrfs_key *location,
5200                                        struct btrfs_root *root)
5201 {
5202         struct inode *inode;
5203         struct btrfs_iget_args args;
5204         unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5205
5206         args.location = location;
5207         args.root = root;
5208
5209         inode = iget5_locked(s, hashval, btrfs_find_actor,
5210                              btrfs_init_locked_inode,
5211                              (void *)&args);
5212         return inode;
5213 }
5214
5215 /* Get an inode object given its location and corresponding root.
5216  * Returns in *is_new if the inode was read from disk
5217  */
5218 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5219                          struct btrfs_root *root, int *new)
5220 {
5221         struct inode *inode;
5222
5223         inode = btrfs_iget_locked(s, location, root);
5224         if (!inode)
5225                 return ERR_PTR(-ENOMEM);
5226
5227         if (inode->i_state & I_NEW) {
5228                 btrfs_read_locked_inode(inode);
5229                 if (!is_bad_inode(inode)) {
5230                         inode_tree_add(inode);
5231                         unlock_new_inode(inode);
5232                         if (new)
5233                                 *new = 1;
5234                 } else {
5235                         unlock_new_inode(inode);
5236                         iput(inode);
5237                         inode = ERR_PTR(-ESTALE);
5238                 }
5239         }
5240
5241         return inode;
5242 }
5243
5244 static struct inode *new_simple_dir(struct super_block *s,
5245                                     struct btrfs_key *key,
5246                                     struct btrfs_root *root)
5247 {
5248         struct inode *inode = new_inode(s);
5249
5250         if (!inode)
5251                 return ERR_PTR(-ENOMEM);
5252
5253         BTRFS_I(inode)->root = root;
5254         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5255         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5256
5257         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5258         inode->i_op = &btrfs_dir_ro_inode_operations;
5259         inode->i_fop = &simple_dir_operations;
5260         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5261         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5262
5263         return inode;
5264 }
5265
5266 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5267 {
5268         struct inode *inode;
5269         struct btrfs_root *root = BTRFS_I(dir)->root;
5270         struct btrfs_root *sub_root = root;
5271         struct btrfs_key location;
5272         int index;
5273         int ret = 0;
5274
5275         if (dentry->d_name.len > BTRFS_NAME_LEN)
5276                 return ERR_PTR(-ENAMETOOLONG);
5277
5278         ret = btrfs_inode_by_name(dir, dentry, &location);
5279         if (ret < 0)
5280                 return ERR_PTR(ret);
5281
5282         if (location.objectid == 0)
5283                 return ERR_PTR(-ENOENT);
5284
5285         if (location.type == BTRFS_INODE_ITEM_KEY) {
5286                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5287                 return inode;
5288         }
5289
5290         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5291
5292         index = srcu_read_lock(&root->fs_info->subvol_srcu);
5293         ret = fixup_tree_root_location(root, dir, dentry,
5294                                        &location, &sub_root);
5295         if (ret < 0) {
5296                 if (ret != -ENOENT)
5297                         inode = ERR_PTR(ret);
5298                 else
5299                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
5300         } else {
5301                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5302         }
5303         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5304
5305         if (!IS_ERR(inode) && root != sub_root) {
5306                 down_read(&root->fs_info->cleanup_work_sem);
5307                 if (!(inode->i_sb->s_flags & MS_RDONLY))
5308                         ret = btrfs_orphan_cleanup(sub_root);
5309                 up_read(&root->fs_info->cleanup_work_sem);
5310                 if (ret) {
5311                         iput(inode);
5312                         inode = ERR_PTR(ret);
5313                 }
5314         }
5315
5316         return inode;
5317 }
5318
5319 static int btrfs_dentry_delete(const struct dentry *dentry)
5320 {
5321         struct btrfs_root *root;
5322         struct inode *inode = dentry->d_inode;
5323
5324         if (!inode && !IS_ROOT(dentry))
5325                 inode = dentry->d_parent->d_inode;
5326
5327         if (inode) {
5328                 root = BTRFS_I(inode)->root;
5329                 if (btrfs_root_refs(&root->root_item) == 0)
5330                         return 1;
5331
5332                 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5333                         return 1;
5334         }
5335         return 0;
5336 }
5337
5338 static void btrfs_dentry_release(struct dentry *dentry)
5339 {
5340         kfree(dentry->d_fsdata);
5341 }
5342
5343 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5344                                    unsigned int flags)
5345 {
5346         struct inode *inode;
5347
5348         inode = btrfs_lookup_dentry(dir, dentry);
5349         if (IS_ERR(inode)) {
5350                 if (PTR_ERR(inode) == -ENOENT)
5351                         inode = NULL;
5352                 else
5353                         return ERR_CAST(inode);
5354         }
5355
5356         return d_splice_alias(inode, dentry);
5357 }
5358
5359 unsigned char btrfs_filetype_table[] = {
5360         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5361 };
5362
5363 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5364 {
5365         struct inode *inode = file_inode(file);
5366         struct btrfs_root *root = BTRFS_I(inode)->root;
5367         struct btrfs_item *item;
5368         struct btrfs_dir_item *di;
5369         struct btrfs_key key;
5370         struct btrfs_key found_key;
5371         struct btrfs_path *path;
5372         struct list_head ins_list;
5373         struct list_head del_list;
5374         int ret;
5375         struct extent_buffer *leaf;
5376         int slot;
5377         unsigned char d_type;
5378         int over = 0;
5379         u32 di_cur;
5380         u32 di_total;
5381         u32 di_len;
5382         int key_type = BTRFS_DIR_INDEX_KEY;
5383         char tmp_name[32];
5384         char *name_ptr;
5385         int name_len;
5386         int is_curr = 0;        /* ctx->pos points to the current index? */
5387
5388         /* FIXME, use a real flag for deciding about the key type */
5389         if (root->fs_info->tree_root == root)
5390                 key_type = BTRFS_DIR_ITEM_KEY;
5391
5392         if (!dir_emit_dots(file, ctx))
5393                 return 0;
5394
5395         path = btrfs_alloc_path();
5396         if (!path)
5397                 return -ENOMEM;
5398
5399         path->reada = 1;
5400
5401         if (key_type == BTRFS_DIR_INDEX_KEY) {
5402                 INIT_LIST_HEAD(&ins_list);
5403                 INIT_LIST_HEAD(&del_list);
5404                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5405         }
5406
5407         key.type = key_type;
5408         key.offset = ctx->pos;
5409         key.objectid = btrfs_ino(inode);
5410
5411         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5412         if (ret < 0)
5413                 goto err;
5414
5415         while (1) {
5416                 leaf = path->nodes[0];
5417                 slot = path->slots[0];
5418                 if (slot >= btrfs_header_nritems(leaf)) {
5419                         ret = btrfs_next_leaf(root, path);
5420                         if (ret < 0)
5421                                 goto err;
5422                         else if (ret > 0)
5423                                 break;
5424                         continue;
5425                 }
5426
5427                 item = btrfs_item_nr(slot);
5428                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5429
5430                 if (found_key.objectid != key.objectid)
5431                         break;
5432                 if (found_key.type != key_type)
5433                         break;
5434                 if (found_key.offset < ctx->pos)
5435                         goto next;
5436                 if (key_type == BTRFS_DIR_INDEX_KEY &&
5437                     btrfs_should_delete_dir_index(&del_list,
5438                                                   found_key.offset))
5439                         goto next;
5440
5441                 ctx->pos = found_key.offset;
5442                 is_curr = 1;
5443
5444                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5445                 di_cur = 0;
5446                 di_total = btrfs_item_size(leaf, item);
5447
5448                 while (di_cur < di_total) {
5449                         struct btrfs_key location;
5450
5451                         if (verify_dir_item(root, leaf, di))
5452                                 break;
5453
5454                         name_len = btrfs_dir_name_len(leaf, di);
5455                         if (name_len <= sizeof(tmp_name)) {
5456                                 name_ptr = tmp_name;
5457                         } else {
5458                                 name_ptr = kmalloc(name_len, GFP_NOFS);
5459                                 if (!name_ptr) {
5460                                         ret = -ENOMEM;
5461                                         goto err;
5462                                 }
5463                         }
5464                         read_extent_buffer(leaf, name_ptr,
5465                                            (unsigned long)(di + 1), name_len);
5466
5467                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5468                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
5469
5470
5471                         /* is this a reference to our own snapshot? If so
5472                          * skip it.
5473                          *
5474                          * In contrast to old kernels, we insert the snapshot's
5475                          * dir item and dir index after it has been created, so
5476                          * we won't find a reference to our own snapshot. We
5477                          * still keep the following code for backward
5478                          * compatibility.
5479                          */
5480                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
5481                             location.objectid == root->root_key.objectid) {
5482                                 over = 0;
5483                                 goto skip;
5484                         }
5485                         over = !dir_emit(ctx, name_ptr, name_len,
5486                                        location.objectid, d_type);
5487
5488 skip:
5489                         if (name_ptr != tmp_name)
5490                                 kfree(name_ptr);
5491
5492                         if (over)
5493                                 goto nopos;
5494                         di_len = btrfs_dir_name_len(leaf, di) +
5495                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
5496                         di_cur += di_len;
5497                         di = (struct btrfs_dir_item *)((char *)di + di_len);
5498                 }
5499 next:
5500                 path->slots[0]++;
5501         }
5502
5503         if (key_type == BTRFS_DIR_INDEX_KEY) {
5504                 if (is_curr)
5505                         ctx->pos++;
5506                 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5507                 if (ret)
5508                         goto nopos;
5509         }
5510
5511         /* Reached end of directory/root. Bump pos past the last item. */
5512         ctx->pos++;
5513
5514         /*
5515          * Stop new entries from being returned after we return the last
5516          * entry.
5517          *
5518          * New directory entries are assigned a strictly increasing
5519          * offset.  This means that new entries created during readdir
5520          * are *guaranteed* to be seen in the future by that readdir.
5521          * This has broken buggy programs which operate on names as
5522          * they're returned by readdir.  Until we re-use freed offsets
5523          * we have this hack to stop new entries from being returned
5524          * under the assumption that they'll never reach this huge
5525          * offset.
5526          *
5527          * This is being careful not to overflow 32bit loff_t unless the
5528          * last entry requires it because doing so has broken 32bit apps
5529          * in the past.
5530          */
5531         if (key_type == BTRFS_DIR_INDEX_KEY) {
5532                 if (ctx->pos >= INT_MAX)
5533                         ctx->pos = LLONG_MAX;
5534                 else
5535                         ctx->pos = INT_MAX;
5536         }
5537 nopos:
5538         ret = 0;
5539 err:
5540         if (key_type == BTRFS_DIR_INDEX_KEY)
5541                 btrfs_put_delayed_items(&ins_list, &del_list);
5542         btrfs_free_path(path);
5543         return ret;
5544 }
5545
5546 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5547 {
5548         struct btrfs_root *root = BTRFS_I(inode)->root;
5549         struct btrfs_trans_handle *trans;
5550         int ret = 0;
5551         bool nolock = false;
5552
5553         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5554                 return 0;
5555
5556         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5557                 nolock = true;
5558
5559         if (wbc->sync_mode == WB_SYNC_ALL) {
5560                 if (nolock)
5561                         trans = btrfs_join_transaction_nolock(root);
5562                 else
5563                         trans = btrfs_join_transaction(root);
5564                 if (IS_ERR(trans))
5565                         return PTR_ERR(trans);
5566                 ret = btrfs_commit_transaction(trans, root);
5567         }
5568         return ret;
5569 }
5570
5571 /*
5572  * This is somewhat expensive, updating the tree every time the
5573  * inode changes.  But, it is most likely to find the inode in cache.
5574  * FIXME, needs more benchmarking...there are no reasons other than performance
5575  * to keep or drop this code.
5576  */
5577 static int btrfs_dirty_inode(struct inode *inode)
5578 {
5579         struct btrfs_root *root = BTRFS_I(inode)->root;
5580         struct btrfs_trans_handle *trans;
5581         int ret;
5582
5583         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5584                 return 0;
5585
5586         trans = btrfs_join_transaction(root);
5587         if (IS_ERR(trans))
5588                 return PTR_ERR(trans);
5589
5590         ret = btrfs_update_inode(trans, root, inode);
5591         if (ret && ret == -ENOSPC) {
5592                 /* whoops, lets try again with the full transaction */
5593                 btrfs_end_transaction(trans, root);
5594                 trans = btrfs_start_transaction(root, 1);
5595                 if (IS_ERR(trans))
5596                         return PTR_ERR(trans);
5597
5598                 ret = btrfs_update_inode(trans, root, inode);
5599         }
5600         btrfs_end_transaction(trans, root);
5601         if (BTRFS_I(inode)->delayed_node)
5602                 btrfs_balance_delayed_items(root);
5603
5604         return ret;
5605 }
5606
5607 /*
5608  * This is a copy of file_update_time.  We need this so we can return error on
5609  * ENOSPC for updating the inode in the case of file write and mmap writes.
5610  */
5611 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5612                              int flags)
5613 {
5614         struct btrfs_root *root = BTRFS_I(inode)->root;
5615
5616         if (btrfs_root_readonly(root))
5617                 return -EROFS;
5618
5619         if (flags & S_VERSION)
5620                 inode_inc_iversion(inode);
5621         if (flags & S_CTIME)
5622                 inode->i_ctime = *now;
5623         if (flags & S_MTIME)
5624                 inode->i_mtime = *now;
5625         if (flags & S_ATIME)
5626                 inode->i_atime = *now;
5627         return btrfs_dirty_inode(inode);
5628 }
5629
5630 /*
5631  * find the highest existing sequence number in a directory
5632  * and then set the in-memory index_cnt variable to reflect
5633  * free sequence numbers
5634  */
5635 static int btrfs_set_inode_index_count(struct inode *inode)
5636 {
5637         struct btrfs_root *root = BTRFS_I(inode)->root;
5638         struct btrfs_key key, found_key;
5639         struct btrfs_path *path;
5640         struct extent_buffer *leaf;
5641         int ret;
5642
5643         key.objectid = btrfs_ino(inode);
5644         key.type = BTRFS_DIR_INDEX_KEY;
5645         key.offset = (u64)-1;
5646
5647         path = btrfs_alloc_path();
5648         if (!path)
5649                 return -ENOMEM;
5650
5651         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5652         if (ret < 0)
5653                 goto out;
5654         /* FIXME: we should be able to handle this */
5655         if (ret == 0)
5656                 goto out;
5657         ret = 0;
5658
5659         /*
5660          * MAGIC NUMBER EXPLANATION:
5661          * since we search a directory based on f_pos we have to start at 2
5662          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5663          * else has to start at 2
5664          */
5665         if (path->slots[0] == 0) {
5666                 BTRFS_I(inode)->index_cnt = 2;
5667                 goto out;
5668         }
5669
5670         path->slots[0]--;
5671
5672         leaf = path->nodes[0];
5673         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5674
5675         if (found_key.objectid != btrfs_ino(inode) ||
5676             found_key.type != BTRFS_DIR_INDEX_KEY) {
5677                 BTRFS_I(inode)->index_cnt = 2;
5678                 goto out;
5679         }
5680
5681         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5682 out:
5683         btrfs_free_path(path);
5684         return ret;
5685 }
5686
5687 /*
5688  * helper to find a free sequence number in a given directory.  This current
5689  * code is very simple, later versions will do smarter things in the btree
5690  */
5691 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5692 {
5693         int ret = 0;
5694
5695         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5696                 ret = btrfs_inode_delayed_dir_index_count(dir);
5697                 if (ret) {
5698                         ret = btrfs_set_inode_index_count(dir);
5699                         if (ret)
5700                                 return ret;
5701                 }
5702         }
5703
5704         *index = BTRFS_I(dir)->index_cnt;
5705         BTRFS_I(dir)->index_cnt++;
5706
5707         return ret;
5708 }
5709
5710 static int btrfs_insert_inode_locked(struct inode *inode)
5711 {
5712         struct btrfs_iget_args args;
5713         args.location = &BTRFS_I(inode)->location;
5714         args.root = BTRFS_I(inode)->root;
5715
5716         return insert_inode_locked4(inode,
5717                    btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5718                    btrfs_find_actor, &args);
5719 }
5720
5721 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5722                                      struct btrfs_root *root,
5723                                      struct inode *dir,
5724                                      const char *name, int name_len,
5725                                      u64 ref_objectid, u64 objectid,
5726                                      umode_t mode, u64 *index)
5727 {
5728         struct inode *inode;
5729         struct btrfs_inode_item *inode_item;
5730         struct btrfs_key *location;
5731         struct btrfs_path *path;
5732         struct btrfs_inode_ref *ref;
5733         struct btrfs_key key[2];
5734         u32 sizes[2];
5735         int nitems = name ? 2 : 1;
5736         unsigned long ptr;
5737         int ret;
5738
5739         path = btrfs_alloc_path();
5740         if (!path)
5741                 return ERR_PTR(-ENOMEM);
5742
5743         inode = new_inode(root->fs_info->sb);
5744         if (!inode) {
5745                 btrfs_free_path(path);
5746                 return ERR_PTR(-ENOMEM);
5747         }
5748
5749         /*
5750          * O_TMPFILE, set link count to 0, so that after this point,
5751          * we fill in an inode item with the correct link count.
5752          */
5753         if (!name)
5754                 set_nlink(inode, 0);
5755
5756         /*
5757          * we have to initialize this early, so we can reclaim the inode
5758          * number if we fail afterwards in this function.
5759          */
5760         inode->i_ino = objectid;
5761
5762         if (dir && name) {
5763                 trace_btrfs_inode_request(dir);
5764
5765                 ret = btrfs_set_inode_index(dir, index);
5766                 if (ret) {
5767                         btrfs_free_path(path);
5768                         iput(inode);
5769                         return ERR_PTR(ret);
5770                 }
5771         } else if (dir) {
5772                 *index = 0;
5773         }
5774         /*
5775          * index_cnt is ignored for everything but a dir,
5776          * btrfs_get_inode_index_count has an explanation for the magic
5777          * number
5778          */
5779         BTRFS_I(inode)->index_cnt = 2;
5780         BTRFS_I(inode)->dir_index = *index;
5781         BTRFS_I(inode)->root = root;
5782         BTRFS_I(inode)->generation = trans->transid;
5783         inode->i_generation = BTRFS_I(inode)->generation;
5784
5785         /*
5786          * We could have gotten an inode number from somebody who was fsynced
5787          * and then removed in this same transaction, so let's just set full
5788          * sync since it will be a full sync anyway and this will blow away the
5789          * old info in the log.
5790          */
5791         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5792
5793         key[0].objectid = objectid;
5794         key[0].type = BTRFS_INODE_ITEM_KEY;
5795         key[0].offset = 0;
5796
5797         sizes[0] = sizeof(struct btrfs_inode_item);
5798
5799         if (name) {
5800                 /*
5801                  * Start new inodes with an inode_ref. This is slightly more
5802                  * efficient for small numbers of hard links since they will
5803                  * be packed into one item. Extended refs will kick in if we
5804                  * add more hard links than can fit in the ref item.
5805                  */
5806                 key[1].objectid = objectid;
5807                 key[1].type = BTRFS_INODE_REF_KEY;
5808                 key[1].offset = ref_objectid;
5809
5810                 sizes[1] = name_len + sizeof(*ref);
5811         }
5812
5813         location = &BTRFS_I(inode)->location;
5814         location->objectid = objectid;
5815         location->offset = 0;
5816         location->type = BTRFS_INODE_ITEM_KEY;
5817
5818         ret = btrfs_insert_inode_locked(inode);
5819         if (ret < 0)
5820                 goto fail;
5821
5822         path->leave_spinning = 1;
5823         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5824         if (ret != 0)
5825                 goto fail_unlock;
5826
5827         inode_init_owner(inode, dir, mode);
5828         inode_set_bytes(inode, 0);
5829         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5830         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5831                                   struct btrfs_inode_item);
5832         memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5833                              sizeof(*inode_item));
5834         fill_inode_item(trans, path->nodes[0], inode_item, inode);
5835
5836         if (name) {
5837                 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5838                                      struct btrfs_inode_ref);
5839                 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5840                 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5841                 ptr = (unsigned long)(ref + 1);
5842                 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5843         }
5844
5845         btrfs_mark_buffer_dirty(path->nodes[0]);
5846         btrfs_free_path(path);
5847
5848         btrfs_inherit_iflags(inode, dir);
5849
5850         if (S_ISREG(mode)) {
5851                 if (btrfs_test_opt(root, NODATASUM))
5852                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5853                 if (btrfs_test_opt(root, NODATACOW))
5854                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5855                                 BTRFS_INODE_NODATASUM;
5856         }
5857
5858         inode_tree_add(inode);
5859
5860         trace_btrfs_inode_new(inode);
5861         btrfs_set_inode_last_trans(trans, inode);
5862
5863         btrfs_update_root_times(trans, root);
5864
5865         ret = btrfs_inode_inherit_props(trans, inode, dir);
5866         if (ret)
5867                 btrfs_err(root->fs_info,
5868                           "error inheriting props for ino %llu (root %llu): %d",
5869                           btrfs_ino(inode), root->root_key.objectid, ret);
5870
5871         return inode;
5872
5873 fail_unlock:
5874         unlock_new_inode(inode);
5875 fail:
5876         if (dir && name)
5877                 BTRFS_I(dir)->index_cnt--;
5878         btrfs_free_path(path);
5879         iput(inode);
5880         return ERR_PTR(ret);
5881 }
5882
5883 static inline u8 btrfs_inode_type(struct inode *inode)
5884 {
5885         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5886 }
5887
5888 /*
5889  * utility function to add 'inode' into 'parent_inode' with
5890  * a give name and a given sequence number.
5891  * if 'add_backref' is true, also insert a backref from the
5892  * inode to the parent directory.
5893  */
5894 int btrfs_add_link(struct btrfs_trans_handle *trans,
5895                    struct inode *parent_inode, struct inode *inode,
5896                    const char *name, int name_len, int add_backref, u64 index)
5897 {
5898         int ret = 0;
5899         struct btrfs_key key;
5900         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5901         u64 ino = btrfs_ino(inode);
5902         u64 parent_ino = btrfs_ino(parent_inode);
5903
5904         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5905                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5906         } else {
5907                 key.objectid = ino;
5908                 key.type = BTRFS_INODE_ITEM_KEY;
5909                 key.offset = 0;
5910         }
5911
5912         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5913                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5914                                          key.objectid, root->root_key.objectid,
5915                                          parent_ino, index, name, name_len);
5916         } else if (add_backref) {
5917                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5918                                              parent_ino, index);
5919         }
5920
5921         /* Nothing to clean up yet */
5922         if (ret)
5923                 return ret;
5924
5925         ret = btrfs_insert_dir_item(trans, root, name, name_len,
5926                                     parent_inode, &key,
5927                                     btrfs_inode_type(inode), index);
5928         if (ret == -EEXIST || ret == -EOVERFLOW)
5929                 goto fail_dir_item;
5930         else if (ret) {
5931                 btrfs_abort_transaction(trans, root, ret);
5932                 return ret;
5933         }
5934
5935         btrfs_i_size_write(parent_inode, parent_inode->i_size +
5936                            name_len * 2);
5937         inode_inc_iversion(parent_inode);
5938         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5939         ret = btrfs_update_inode(trans, root, parent_inode);
5940         if (ret)
5941                 btrfs_abort_transaction(trans, root, ret);
5942         return ret;
5943
5944 fail_dir_item:
5945         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5946                 u64 local_index;
5947                 int err;
5948                 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5949                                  key.objectid, root->root_key.objectid,
5950                                  parent_ino, &local_index, name, name_len);
5951
5952         } else if (add_backref) {
5953                 u64 local_index;
5954                 int err;
5955
5956                 err = btrfs_del_inode_ref(trans, root, name, name_len,
5957                                           ino, parent_ino, &local_index);
5958         }
5959         return ret;
5960 }
5961
5962 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5963                             struct inode *dir, struct dentry *dentry,
5964                             struct inode *inode, int backref, u64 index)
5965 {
5966         int err = btrfs_add_link(trans, dir, inode,
5967                                  dentry->d_name.name, dentry->d_name.len,
5968                                  backref, index);
5969         if (err > 0)
5970                 err = -EEXIST;
5971         return err;
5972 }
5973
5974 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5975                         umode_t mode, dev_t rdev)
5976 {
5977         struct btrfs_trans_handle *trans;
5978         struct btrfs_root *root = BTRFS_I(dir)->root;
5979         struct inode *inode = NULL;
5980         int err;
5981         int drop_inode = 0;
5982         u64 objectid;
5983         u64 index = 0;
5984
5985         if (!new_valid_dev(rdev))
5986                 return -EINVAL;
5987
5988         /*
5989          * 2 for inode item and ref
5990          * 2 for dir items
5991          * 1 for xattr if selinux is on
5992          */
5993         trans = btrfs_start_transaction(root, 5);
5994         if (IS_ERR(trans))
5995                 return PTR_ERR(trans);
5996
5997         err = btrfs_find_free_ino(root, &objectid);
5998         if (err)
5999                 goto out_unlock;
6000
6001         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6002                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6003                                 mode, &index);
6004         if (IS_ERR(inode)) {
6005                 err = PTR_ERR(inode);
6006                 goto out_unlock;
6007         }
6008
6009         /*
6010         * If the active LSM wants to access the inode during
6011         * d_instantiate it needs these. Smack checks to see
6012         * if the filesystem supports xattrs by looking at the
6013         * ops vector.
6014         */
6015         inode->i_op = &btrfs_special_inode_operations;
6016         init_special_inode(inode, inode->i_mode, rdev);
6017
6018         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6019         if (err)
6020                 goto out_unlock_inode;
6021
6022         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6023         if (err) {
6024                 goto out_unlock_inode;
6025         } else {
6026                 btrfs_update_inode(trans, root, inode);
6027                 unlock_new_inode(inode);
6028                 d_instantiate(dentry, inode);
6029         }
6030
6031 out_unlock:
6032         btrfs_end_transaction(trans, root);
6033         btrfs_balance_delayed_items(root);
6034         btrfs_btree_balance_dirty(root);
6035         if (drop_inode) {
6036                 inode_dec_link_count(inode);
6037                 iput(inode);
6038         }
6039         return err;
6040
6041 out_unlock_inode:
6042         drop_inode = 1;
6043         unlock_new_inode(inode);
6044         goto out_unlock;
6045
6046 }
6047
6048 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6049                         umode_t mode, bool excl)
6050 {
6051         struct btrfs_trans_handle *trans;
6052         struct btrfs_root *root = BTRFS_I(dir)->root;
6053         struct inode *inode = NULL;
6054         int drop_inode_on_err = 0;
6055         int err;
6056         u64 objectid;
6057         u64 index = 0;
6058
6059         /*
6060          * 2 for inode item and ref
6061          * 2 for dir items
6062          * 1 for xattr if selinux is on
6063          */
6064         trans = btrfs_start_transaction(root, 5);
6065         if (IS_ERR(trans))
6066                 return PTR_ERR(trans);
6067
6068         err = btrfs_find_free_ino(root, &objectid);
6069         if (err)
6070                 goto out_unlock;
6071
6072         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6073                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6074                                 mode, &index);
6075         if (IS_ERR(inode)) {
6076                 err = PTR_ERR(inode);
6077                 goto out_unlock;
6078         }
6079         drop_inode_on_err = 1;
6080         /*
6081         * If the active LSM wants to access the inode during
6082         * d_instantiate it needs these. Smack checks to see
6083         * if the filesystem supports xattrs by looking at the
6084         * ops vector.
6085         */
6086         inode->i_fop = &btrfs_file_operations;
6087         inode->i_op = &btrfs_file_inode_operations;
6088         inode->i_mapping->a_ops = &btrfs_aops;
6089
6090         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6091         if (err)
6092                 goto out_unlock_inode;
6093
6094         err = btrfs_update_inode(trans, root, inode);
6095         if (err)
6096                 goto out_unlock_inode;
6097
6098         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6099         if (err)
6100                 goto out_unlock_inode;
6101
6102         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6103         unlock_new_inode(inode);
6104         d_instantiate(dentry, inode);
6105
6106 out_unlock:
6107         btrfs_end_transaction(trans, root);
6108         if (err && drop_inode_on_err) {
6109                 inode_dec_link_count(inode);
6110                 iput(inode);
6111         }
6112         btrfs_balance_delayed_items(root);
6113         btrfs_btree_balance_dirty(root);
6114         return err;
6115
6116 out_unlock_inode:
6117         unlock_new_inode(inode);
6118         goto out_unlock;
6119
6120 }
6121
6122 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6123                       struct dentry *dentry)
6124 {
6125         struct btrfs_trans_handle *trans;
6126         struct btrfs_root *root = BTRFS_I(dir)->root;
6127         struct inode *inode = old_dentry->d_inode;
6128         u64 index;
6129         int err;
6130         int drop_inode = 0;
6131
6132         /* do not allow sys_link's with other subvols of the same device */
6133         if (root->objectid != BTRFS_I(inode)->root->objectid)
6134                 return -EXDEV;
6135
6136         if (inode->i_nlink >= BTRFS_LINK_MAX)
6137                 return -EMLINK;
6138
6139         err = btrfs_set_inode_index(dir, &index);
6140         if (err)
6141                 goto fail;
6142
6143         /*
6144          * 2 items for inode and inode ref
6145          * 2 items for dir items
6146          * 1 item for parent inode
6147          */
6148         trans = btrfs_start_transaction(root, 5);
6149         if (IS_ERR(trans)) {
6150                 err = PTR_ERR(trans);
6151                 goto fail;
6152         }
6153
6154         /* There are several dir indexes for this inode, clear the cache. */
6155         BTRFS_I(inode)->dir_index = 0ULL;
6156         inc_nlink(inode);
6157         inode_inc_iversion(inode);
6158         inode->i_ctime = CURRENT_TIME;
6159         ihold(inode);
6160         set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6161
6162         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6163
6164         if (err) {
6165                 drop_inode = 1;
6166         } else {
6167                 struct dentry *parent = dentry->d_parent;
6168                 err = btrfs_update_inode(trans, root, inode);
6169                 if (err)
6170                         goto fail;
6171                 if (inode->i_nlink == 1) {
6172                         /*
6173                          * If new hard link count is 1, it's a file created
6174                          * with open(2) O_TMPFILE flag.
6175                          */
6176                         err = btrfs_orphan_del(trans, inode);
6177                         if (err)
6178                                 goto fail;
6179                 }
6180                 d_instantiate(dentry, inode);
6181                 btrfs_log_new_name(trans, inode, NULL, parent);
6182         }
6183
6184         btrfs_end_transaction(trans, root);
6185         btrfs_balance_delayed_items(root);
6186 fail:
6187         if (drop_inode) {
6188                 inode_dec_link_count(inode);
6189                 iput(inode);
6190         }
6191         btrfs_btree_balance_dirty(root);
6192         return err;
6193 }
6194
6195 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6196 {
6197         struct inode *inode = NULL;
6198         struct btrfs_trans_handle *trans;
6199         struct btrfs_root *root = BTRFS_I(dir)->root;
6200         int err = 0;
6201         int drop_on_err = 0;
6202         u64 objectid = 0;
6203         u64 index = 0;
6204
6205         /*
6206          * 2 items for inode and ref
6207          * 2 items for dir items
6208          * 1 for xattr if selinux is on
6209          */
6210         trans = btrfs_start_transaction(root, 5);
6211         if (IS_ERR(trans))
6212                 return PTR_ERR(trans);
6213
6214         err = btrfs_find_free_ino(root, &objectid);
6215         if (err)
6216                 goto out_fail;
6217
6218         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6219                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6220                                 S_IFDIR | mode, &index);
6221         if (IS_ERR(inode)) {
6222                 err = PTR_ERR(inode);
6223                 goto out_fail;
6224         }
6225
6226         drop_on_err = 1;
6227         /* these must be set before we unlock the inode */
6228         inode->i_op = &btrfs_dir_inode_operations;
6229         inode->i_fop = &btrfs_dir_file_operations;
6230
6231         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6232         if (err)
6233                 goto out_fail_inode;
6234
6235         btrfs_i_size_write(inode, 0);
6236         err = btrfs_update_inode(trans, root, inode);
6237         if (err)
6238                 goto out_fail_inode;
6239
6240         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6241                              dentry->d_name.len, 0, index);
6242         if (err)
6243                 goto out_fail_inode;
6244
6245         d_instantiate(dentry, inode);
6246         /*
6247          * mkdir is special.  We're unlocking after we call d_instantiate
6248          * to avoid a race with nfsd calling d_instantiate.
6249          */
6250         unlock_new_inode(inode);
6251         drop_on_err = 0;
6252
6253 out_fail:
6254         btrfs_end_transaction(trans, root);
6255         if (drop_on_err) {
6256                 inode_dec_link_count(inode);
6257                 iput(inode);
6258         }
6259         btrfs_balance_delayed_items(root);
6260         btrfs_btree_balance_dirty(root);
6261         return err;
6262
6263 out_fail_inode:
6264         unlock_new_inode(inode);
6265         goto out_fail;
6266 }
6267
6268 /* Find next extent map of a given extent map, caller needs to ensure locks */
6269 static struct extent_map *next_extent_map(struct extent_map *em)
6270 {
6271         struct rb_node *next;
6272
6273         next = rb_next(&em->rb_node);
6274         if (!next)
6275                 return NULL;
6276         return container_of(next, struct extent_map, rb_node);
6277 }
6278
6279 static struct extent_map *prev_extent_map(struct extent_map *em)
6280 {
6281         struct rb_node *prev;
6282
6283         prev = rb_prev(&em->rb_node);
6284         if (!prev)
6285                 return NULL;
6286         return container_of(prev, struct extent_map, rb_node);
6287 }
6288
6289 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6290  * the existing extent is the nearest extent to map_start,
6291  * and an extent that you want to insert, deal with overlap and insert
6292  * the best fitted new extent into the tree.
6293  */
6294 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6295                                 struct extent_map *existing,
6296                                 struct extent_map *em,
6297                                 u64 map_start)
6298 {
6299         struct extent_map *prev;
6300         struct extent_map *next;
6301         u64 start;
6302         u64 end;
6303         u64 start_diff;
6304
6305         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6306
6307         if (existing->start > map_start) {
6308                 next = existing;
6309                 prev = prev_extent_map(next);
6310         } else {
6311                 prev = existing;
6312                 next = next_extent_map(prev);
6313         }
6314
6315         start = prev ? extent_map_end(prev) : em->start;
6316         start = max_t(u64, start, em->start);
6317         end = next ? next->start : extent_map_end(em);
6318         end = min_t(u64, end, extent_map_end(em));
6319         start_diff = start - em->start;
6320         em->start = start;
6321         em->len = end - start;
6322         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6323             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6324                 em->block_start += start_diff;
6325                 em->block_len -= start_diff;
6326         }
6327         return add_extent_mapping(em_tree, em, 0);
6328 }
6329
6330 static noinline int uncompress_inline(struct btrfs_path *path,
6331                                       struct inode *inode, struct page *page,
6332                                       size_t pg_offset, u64 extent_offset,
6333                                       struct btrfs_file_extent_item *item)
6334 {
6335         int ret;
6336         struct extent_buffer *leaf = path->nodes[0];
6337         char *tmp;
6338         size_t max_size;
6339         unsigned long inline_size;
6340         unsigned long ptr;
6341         int compress_type;
6342
6343         WARN_ON(pg_offset != 0);
6344         compress_type = btrfs_file_extent_compression(leaf, item);
6345         max_size = btrfs_file_extent_ram_bytes(leaf, item);
6346         inline_size = btrfs_file_extent_inline_item_len(leaf,
6347                                         btrfs_item_nr(path->slots[0]));
6348         tmp = kmalloc(inline_size, GFP_NOFS);
6349         if (!tmp)
6350                 return -ENOMEM;
6351         ptr = btrfs_file_extent_inline_start(item);
6352
6353         read_extent_buffer(leaf, tmp, ptr, inline_size);
6354
6355         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6356         ret = btrfs_decompress(compress_type, tmp, page,
6357                                extent_offset, inline_size, max_size);
6358         kfree(tmp);
6359         return ret;
6360 }
6361
6362 /*
6363  * a bit scary, this does extent mapping from logical file offset to the disk.
6364  * the ugly parts come from merging extents from the disk with the in-ram
6365  * representation.  This gets more complex because of the data=ordered code,
6366  * where the in-ram extents might be locked pending data=ordered completion.
6367  *
6368  * This also copies inline extents directly into the page.
6369  */
6370
6371 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6372                                     size_t pg_offset, u64 start, u64 len,
6373                                     int create)
6374 {
6375         int ret;
6376         int err = 0;
6377         u64 extent_start = 0;
6378         u64 extent_end = 0;
6379         u64 objectid = btrfs_ino(inode);
6380         u32 found_type;
6381         struct btrfs_path *path = NULL;
6382         struct btrfs_root *root = BTRFS_I(inode)->root;
6383         struct btrfs_file_extent_item *item;
6384         struct extent_buffer *leaf;
6385         struct btrfs_key found_key;
6386         struct extent_map *em = NULL;
6387         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6388         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6389         struct btrfs_trans_handle *trans = NULL;
6390         const bool new_inline = !page || create;
6391
6392 again:
6393         read_lock(&em_tree->lock);
6394         em = lookup_extent_mapping(em_tree, start, len);
6395         if (em)
6396                 em->bdev = root->fs_info->fs_devices->latest_bdev;
6397         read_unlock(&em_tree->lock);
6398
6399         if (em) {
6400                 if (em->start > start || em->start + em->len <= start)
6401                         free_extent_map(em);
6402                 else if (em->block_start == EXTENT_MAP_INLINE && page)
6403                         free_extent_map(em);
6404                 else
6405                         goto out;
6406         }
6407         em = alloc_extent_map();
6408         if (!em) {
6409                 err = -ENOMEM;
6410                 goto out;
6411         }
6412         em->bdev = root->fs_info->fs_devices->latest_bdev;
6413         em->start = EXTENT_MAP_HOLE;
6414         em->orig_start = EXTENT_MAP_HOLE;
6415         em->len = (u64)-1;
6416         em->block_len = (u64)-1;
6417
6418         if (!path) {
6419                 path = btrfs_alloc_path();
6420                 if (!path) {
6421                         err = -ENOMEM;
6422                         goto out;
6423                 }
6424                 /*
6425                  * Chances are we'll be called again, so go ahead and do
6426                  * readahead
6427                  */
6428                 path->reada = 1;
6429         }
6430
6431         ret = btrfs_lookup_file_extent(trans, root, path,
6432                                        objectid, start, trans != NULL);
6433         if (ret < 0) {
6434                 err = ret;
6435                 goto out;
6436         }
6437
6438         if (ret != 0) {
6439                 if (path->slots[0] == 0)
6440                         goto not_found;
6441                 path->slots[0]--;
6442         }
6443
6444         leaf = path->nodes[0];
6445         item = btrfs_item_ptr(leaf, path->slots[0],
6446                               struct btrfs_file_extent_item);
6447         /* are we inside the extent that was found? */
6448         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6449         found_type = found_key.type;
6450         if (found_key.objectid != objectid ||
6451             found_type != BTRFS_EXTENT_DATA_KEY) {
6452                 /*
6453                  * If we backup past the first extent we want to move forward
6454                  * and see if there is an extent in front of us, otherwise we'll
6455                  * say there is a hole for our whole search range which can
6456                  * cause problems.
6457                  */
6458                 extent_end = start;
6459                 goto next;
6460         }
6461
6462         found_type = btrfs_file_extent_type(leaf, item);
6463         extent_start = found_key.offset;
6464         if (found_type == BTRFS_FILE_EXTENT_REG ||
6465             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6466                 extent_end = extent_start +
6467                        btrfs_file_extent_num_bytes(leaf, item);
6468         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6469                 size_t size;
6470                 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6471                 extent_end = ALIGN(extent_start + size, root->sectorsize);
6472         }
6473 next:
6474         if (start >= extent_end) {
6475                 path->slots[0]++;
6476                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6477                         ret = btrfs_next_leaf(root, path);
6478                         if (ret < 0) {
6479                                 err = ret;
6480                                 goto out;
6481                         }
6482                         if (ret > 0)
6483                                 goto not_found;
6484                         leaf = path->nodes[0];
6485                 }
6486                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6487                 if (found_key.objectid != objectid ||
6488                     found_key.type != BTRFS_EXTENT_DATA_KEY)
6489                         goto not_found;
6490                 if (start + len <= found_key.offset)
6491                         goto not_found;
6492                 if (start > found_key.offset)
6493                         goto next;
6494                 em->start = start;
6495                 em->orig_start = start;
6496                 em->len = found_key.offset - start;
6497                 goto not_found_em;
6498         }
6499
6500         btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6501
6502         if (found_type == BTRFS_FILE_EXTENT_REG ||
6503             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6504                 goto insert;
6505         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6506                 unsigned long ptr;
6507                 char *map;
6508                 size_t size;
6509                 size_t extent_offset;
6510                 size_t copy_size;
6511
6512                 if (new_inline)
6513                         goto out;
6514
6515                 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6516                 extent_offset = page_offset(page) + pg_offset - extent_start;
6517                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6518                                 size - extent_offset);
6519                 em->start = extent_start + extent_offset;
6520                 em->len = ALIGN(copy_size, root->sectorsize);
6521                 em->orig_block_len = em->len;
6522                 em->orig_start = em->start;
6523                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6524                 if (create == 0 && !PageUptodate(page)) {
6525                         if (btrfs_file_extent_compression(leaf, item) !=
6526                             BTRFS_COMPRESS_NONE) {
6527                                 ret = uncompress_inline(path, inode, page,
6528                                                         pg_offset,
6529                                                         extent_offset, item);
6530                                 if (ret) {
6531                                         err = ret;
6532                                         goto out;
6533                                 }
6534                         } else {
6535                                 map = kmap(page);
6536                                 read_extent_buffer(leaf, map + pg_offset, ptr,
6537                                                    copy_size);
6538                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6539                                         memset(map + pg_offset + copy_size, 0,
6540                                                PAGE_CACHE_SIZE - pg_offset -
6541                                                copy_size);
6542                                 }
6543                                 kunmap(page);
6544                         }
6545                         flush_dcache_page(page);
6546                 } else if (create && PageUptodate(page)) {
6547                         BUG();
6548                         if (!trans) {
6549                                 kunmap(page);
6550                                 free_extent_map(em);
6551                                 em = NULL;
6552
6553                                 btrfs_release_path(path);
6554                                 trans = btrfs_join_transaction(root);
6555
6556                                 if (IS_ERR(trans))
6557                                         return ERR_CAST(trans);
6558                                 goto again;
6559                         }
6560                         map = kmap(page);
6561                         write_extent_buffer(leaf, map + pg_offset, ptr,
6562                                             copy_size);
6563                         kunmap(page);
6564                         btrfs_mark_buffer_dirty(leaf);
6565                 }
6566                 set_extent_uptodate(io_tree, em->start,
6567                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
6568                 goto insert;
6569         }
6570 not_found:
6571         em->start = start;
6572         em->orig_start = start;
6573         em->len = len;
6574 not_found_em:
6575         em->block_start = EXTENT_MAP_HOLE;
6576         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6577 insert:
6578         btrfs_release_path(path);
6579         if (em->start > start || extent_map_end(em) <= start) {
6580                 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6581                         em->start, em->len, start, len);
6582                 err = -EIO;
6583                 goto out;
6584         }
6585
6586         err = 0;
6587         write_lock(&em_tree->lock);
6588         ret = add_extent_mapping(em_tree, em, 0);
6589         /* it is possible that someone inserted the extent into the tree
6590          * while we had the lock dropped.  It is also possible that
6591          * an overlapping map exists in the tree
6592          */
6593         if (ret == -EEXIST) {
6594                 struct extent_map *existing;
6595
6596                 ret = 0;
6597
6598                 existing = search_extent_mapping(em_tree, start, len);
6599                 /*
6600                  * existing will always be non-NULL, since there must be
6601                  * extent causing the -EEXIST.
6602                  */
6603                 if (start >= extent_map_end(existing) ||
6604                     start <= existing->start) {
6605                         /*
6606                          * The existing extent map is the one nearest to
6607                          * the [start, start + len) range which overlaps
6608                          */
6609                         err = merge_extent_mapping(em_tree, existing,
6610                                                    em, start);
6611                         free_extent_map(existing);
6612                         if (err) {
6613                                 free_extent_map(em);
6614                                 em = NULL;
6615                         }
6616                 } else {
6617                         free_extent_map(em);
6618                         em = existing;
6619                         err = 0;
6620                 }
6621         }
6622         write_unlock(&em_tree->lock);
6623 out:
6624
6625         trace_btrfs_get_extent(root, em);
6626
6627         if (path)
6628                 btrfs_free_path(path);
6629         if (trans) {
6630                 ret = btrfs_end_transaction(trans, root);
6631                 if (!err)
6632                         err = ret;
6633         }
6634         if (err) {
6635                 free_extent_map(em);
6636                 return ERR_PTR(err);
6637         }
6638         BUG_ON(!em); /* Error is always set */
6639         return em;
6640 }
6641
6642 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6643                                            size_t pg_offset, u64 start, u64 len,
6644                                            int create)
6645 {
6646         struct extent_map *em;
6647         struct extent_map *hole_em = NULL;
6648         u64 range_start = start;
6649         u64 end;
6650         u64 found;
6651         u64 found_end;
6652         int err = 0;
6653
6654         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6655         if (IS_ERR(em))
6656                 return em;
6657         if (em) {
6658                 /*
6659                  * if our em maps to
6660                  * -  a hole or
6661                  * -  a pre-alloc extent,
6662                  * there might actually be delalloc bytes behind it.
6663                  */
6664                 if (em->block_start != EXTENT_MAP_HOLE &&
6665                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6666                         return em;
6667                 else
6668                         hole_em = em;
6669         }
6670
6671         /* check to see if we've wrapped (len == -1 or similar) */
6672         end = start + len;
6673         if (end < start)
6674                 end = (u64)-1;
6675         else
6676                 end -= 1;
6677
6678         em = NULL;
6679
6680         /* ok, we didn't find anything, lets look for delalloc */
6681         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6682                                  end, len, EXTENT_DELALLOC, 1);
6683         found_end = range_start + found;
6684         if (found_end < range_start)
6685                 found_end = (u64)-1;
6686
6687         /*
6688          * we didn't find anything useful, return
6689          * the original results from get_extent()
6690          */
6691         if (range_start > end || found_end <= start) {
6692                 em = hole_em;
6693                 hole_em = NULL;
6694                 goto out;
6695         }
6696
6697         /* adjust the range_start to make sure it doesn't
6698          * go backwards from the start they passed in
6699          */
6700         range_start = max(start, range_start);
6701         found = found_end - range_start;
6702
6703         if (found > 0) {
6704                 u64 hole_start = start;
6705                 u64 hole_len = len;
6706
6707                 em = alloc_extent_map();
6708                 if (!em) {
6709                         err = -ENOMEM;
6710                         goto out;
6711                 }
6712                 /*
6713                  * when btrfs_get_extent can't find anything it
6714                  * returns one huge hole
6715                  *
6716                  * make sure what it found really fits our range, and
6717                  * adjust to make sure it is based on the start from
6718                  * the caller
6719                  */
6720                 if (hole_em) {
6721                         u64 calc_end = extent_map_end(hole_em);
6722
6723                         if (calc_end <= start || (hole_em->start > end)) {
6724                                 free_extent_map(hole_em);
6725                                 hole_em = NULL;
6726                         } else {
6727                                 hole_start = max(hole_em->start, start);
6728                                 hole_len = calc_end - hole_start;
6729                         }
6730                 }
6731                 em->bdev = NULL;
6732                 if (hole_em && range_start > hole_start) {
6733                         /* our hole starts before our delalloc, so we
6734                          * have to return just the parts of the hole
6735                          * that go until  the delalloc starts
6736                          */
6737                         em->len = min(hole_len,
6738                                       range_start - hole_start);
6739                         em->start = hole_start;
6740                         em->orig_start = hole_start;
6741                         /*
6742                          * don't adjust block start at all,
6743                          * it is fixed at EXTENT_MAP_HOLE
6744                          */
6745                         em->block_start = hole_em->block_start;
6746                         em->block_len = hole_len;
6747                         if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6748                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6749                 } else {
6750                         em->start = range_start;
6751                         em->len = found;
6752                         em->orig_start = range_start;
6753                         em->block_start = EXTENT_MAP_DELALLOC;
6754                         em->block_len = found;
6755                 }
6756         } else if (hole_em) {
6757                 return hole_em;
6758         }
6759 out:
6760
6761         free_extent_map(hole_em);
6762         if (err) {
6763                 free_extent_map(em);
6764                 return ERR_PTR(err);
6765         }
6766         return em;
6767 }
6768
6769 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6770                                                   u64 start, u64 len)
6771 {
6772         struct btrfs_root *root = BTRFS_I(inode)->root;
6773         struct extent_map *em;
6774         struct btrfs_key ins;
6775         u64 alloc_hint;
6776         int ret;
6777
6778         alloc_hint = get_extent_allocation_hint(inode, start, len);
6779         ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6780                                    alloc_hint, &ins, 1, 1);
6781         if (ret)
6782                 return ERR_PTR(ret);
6783
6784         em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6785                               ins.offset, ins.offset, ins.offset, 0);
6786         if (IS_ERR(em)) {
6787                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6788                 return em;
6789         }
6790
6791         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6792                                            ins.offset, ins.offset, 0);
6793         if (ret) {
6794                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6795                 free_extent_map(em);
6796                 return ERR_PTR(ret);
6797         }
6798
6799         return em;
6800 }
6801
6802 /*
6803  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6804  * block must be cow'd
6805  */
6806 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6807                               u64 *orig_start, u64 *orig_block_len,
6808                               u64 *ram_bytes)
6809 {
6810         struct btrfs_trans_handle *trans;
6811         struct btrfs_path *path;
6812         int ret;
6813         struct extent_buffer *leaf;
6814         struct btrfs_root *root = BTRFS_I(inode)->root;
6815         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6816         struct btrfs_file_extent_item *fi;
6817         struct btrfs_key key;
6818         u64 disk_bytenr;
6819         u64 backref_offset;
6820         u64 extent_end;
6821         u64 num_bytes;
6822         int slot;
6823         int found_type;
6824         bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6825
6826         path = btrfs_alloc_path();
6827         if (!path)
6828                 return -ENOMEM;
6829
6830         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6831                                        offset, 0);
6832         if (ret < 0)
6833                 goto out;
6834
6835         slot = path->slots[0];
6836         if (ret == 1) {
6837                 if (slot == 0) {
6838                         /* can't find the item, must cow */
6839                         ret = 0;
6840                         goto out;
6841                 }
6842                 slot--;
6843         }
6844         ret = 0;
6845         leaf = path->nodes[0];
6846         btrfs_item_key_to_cpu(leaf, &key, slot);
6847         if (key.objectid != btrfs_ino(inode) ||
6848             key.type != BTRFS_EXTENT_DATA_KEY) {
6849                 /* not our file or wrong item type, must cow */
6850                 goto out;
6851         }
6852
6853         if (key.offset > offset) {
6854                 /* Wrong offset, must cow */
6855                 goto out;
6856         }
6857
6858         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6859         found_type = btrfs_file_extent_type(leaf, fi);
6860         if (found_type != BTRFS_FILE_EXTENT_REG &&
6861             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6862                 /* not a regular extent, must cow */
6863                 goto out;
6864         }
6865
6866         if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6867                 goto out;
6868
6869         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6870         if (extent_end <= offset)
6871                 goto out;
6872
6873         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6874         if (disk_bytenr == 0)
6875                 goto out;
6876
6877         if (btrfs_file_extent_compression(leaf, fi) ||
6878             btrfs_file_extent_encryption(leaf, fi) ||
6879             btrfs_file_extent_other_encoding(leaf, fi))
6880                 goto out;
6881
6882         backref_offset = btrfs_file_extent_offset(leaf, fi);
6883
6884         if (orig_start) {
6885                 *orig_start = key.offset - backref_offset;
6886                 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6887                 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6888         }
6889
6890         if (btrfs_extent_readonly(root, disk_bytenr))
6891                 goto out;
6892
6893         num_bytes = min(offset + *len, extent_end) - offset;
6894         if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6895                 u64 range_end;
6896
6897                 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6898                 ret = test_range_bit(io_tree, offset, range_end,
6899                                      EXTENT_DELALLOC, 0, NULL);
6900                 if (ret) {
6901                         ret = -EAGAIN;
6902                         goto out;
6903                 }
6904         }
6905
6906         btrfs_release_path(path);
6907
6908         /*
6909          * look for other files referencing this extent, if we
6910          * find any we must cow
6911          */
6912         trans = btrfs_join_transaction(root);
6913         if (IS_ERR(trans)) {
6914                 ret = 0;
6915                 goto out;
6916         }
6917
6918         ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6919                                     key.offset - backref_offset, disk_bytenr);
6920         btrfs_end_transaction(trans, root);
6921         if (ret) {
6922                 ret = 0;
6923                 goto out;
6924         }
6925
6926         /*
6927          * adjust disk_bytenr and num_bytes to cover just the bytes
6928          * in this extent we are about to write.  If there
6929          * are any csums in that range we have to cow in order
6930          * to keep the csums correct
6931          */
6932         disk_bytenr += backref_offset;
6933         disk_bytenr += offset - key.offset;
6934         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6935                                 goto out;
6936         /*
6937          * all of the above have passed, it is safe to overwrite this extent
6938          * without cow
6939          */
6940         *len = num_bytes;
6941         ret = 1;
6942 out:
6943         btrfs_free_path(path);
6944         return ret;
6945 }
6946
6947 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6948 {
6949         struct radix_tree_root *root = &inode->i_mapping->page_tree;
6950         int found = false;
6951         void **pagep = NULL;
6952         struct page *page = NULL;
6953         int start_idx;
6954         int end_idx;
6955
6956         start_idx = start >> PAGE_CACHE_SHIFT;
6957
6958         /*
6959          * end is the last byte in the last page.  end == start is legal
6960          */
6961         end_idx = end >> PAGE_CACHE_SHIFT;
6962
6963         rcu_read_lock();
6964
6965         /* Most of the code in this while loop is lifted from
6966          * find_get_page.  It's been modified to begin searching from a
6967          * page and return just the first page found in that range.  If the
6968          * found idx is less than or equal to the end idx then we know that
6969          * a page exists.  If no pages are found or if those pages are
6970          * outside of the range then we're fine (yay!) */
6971         while (page == NULL &&
6972                radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6973                 page = radix_tree_deref_slot(pagep);
6974                 if (unlikely(!page))
6975                         break;
6976
6977                 if (radix_tree_exception(page)) {
6978                         if (radix_tree_deref_retry(page)) {
6979                                 page = NULL;
6980                                 continue;
6981                         }
6982                         /*
6983                          * Otherwise, shmem/tmpfs must be storing a swap entry
6984                          * here as an exceptional entry: so return it without
6985                          * attempting to raise page count.
6986                          */
6987                         page = NULL;
6988                         break; /* TODO: Is this relevant for this use case? */
6989                 }
6990
6991                 if (!page_cache_get_speculative(page)) {
6992                         page = NULL;
6993                         continue;
6994                 }
6995
6996                 /*
6997                  * Has the page moved?
6998                  * This is part of the lockless pagecache protocol. See
6999                  * include/linux/pagemap.h for details.
7000                  */
7001                 if (unlikely(page != *pagep)) {
7002                         page_cache_release(page);
7003                         page = NULL;
7004                 }
7005         }
7006
7007         if (page) {
7008                 if (page->index <= end_idx)
7009                         found = true;
7010                 page_cache_release(page);
7011         }
7012
7013         rcu_read_unlock();
7014         return found;
7015 }
7016
7017 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7018                               struct extent_state **cached_state, int writing)
7019 {
7020         struct btrfs_ordered_extent *ordered;
7021         int ret = 0;
7022
7023         while (1) {
7024                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7025                                  0, cached_state);
7026                 /*
7027                  * We're concerned with the entire range that we're going to be
7028                  * doing DIO to, so we need to make sure theres no ordered
7029                  * extents in this range.
7030                  */
7031                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7032                                                      lockend - lockstart + 1);
7033
7034                 /*
7035                  * We need to make sure there are no buffered pages in this
7036                  * range either, we could have raced between the invalidate in
7037                  * generic_file_direct_write and locking the extent.  The
7038                  * invalidate needs to happen so that reads after a write do not
7039                  * get stale data.
7040                  */
7041                 if (!ordered &&
7042                     (!writing ||
7043                      !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7044                         break;
7045
7046                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7047                                      cached_state, GFP_NOFS);
7048
7049                 if (ordered) {
7050                         btrfs_start_ordered_extent(inode, ordered, 1);
7051                         btrfs_put_ordered_extent(ordered);
7052                 } else {
7053                         /* Screw you mmap */
7054                         ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7055                         if (ret)
7056                                 break;
7057                         ret = filemap_fdatawait_range(inode->i_mapping,
7058                                                       lockstart,
7059                                                       lockend);
7060                         if (ret)
7061                                 break;
7062
7063                         /*
7064                          * If we found a page that couldn't be invalidated just
7065                          * fall back to buffered.
7066                          */
7067                         ret = invalidate_inode_pages2_range(inode->i_mapping,
7068                                         lockstart >> PAGE_CACHE_SHIFT,
7069                                         lockend >> PAGE_CACHE_SHIFT);
7070                         if (ret)
7071                                 break;
7072                 }
7073
7074                 cond_resched();
7075         }
7076
7077         return ret;
7078 }
7079
7080 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7081                                            u64 len, u64 orig_start,
7082                                            u64 block_start, u64 block_len,
7083                                            u64 orig_block_len, u64 ram_bytes,
7084                                            int type)
7085 {
7086         struct extent_map_tree *em_tree;
7087         struct extent_map *em;
7088         struct btrfs_root *root = BTRFS_I(inode)->root;
7089         int ret;
7090
7091         em_tree = &BTRFS_I(inode)->extent_tree;
7092         em = alloc_extent_map();
7093         if (!em)
7094                 return ERR_PTR(-ENOMEM);
7095
7096         em->start = start;
7097         em->orig_start = orig_start;
7098         em->mod_start = start;
7099         em->mod_len = len;
7100         em->len = len;
7101         em->block_len = block_len;
7102         em->block_start = block_start;
7103         em->bdev = root->fs_info->fs_devices->latest_bdev;
7104         em->orig_block_len = orig_block_len;
7105         em->ram_bytes = ram_bytes;
7106         em->generation = -1;
7107         set_bit(EXTENT_FLAG_PINNED, &em->flags);
7108         if (type == BTRFS_ORDERED_PREALLOC)
7109                 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7110
7111         do {
7112                 btrfs_drop_extent_cache(inode, em->start,
7113                                 em->start + em->len - 1, 0);
7114                 write_lock(&em_tree->lock);
7115                 ret = add_extent_mapping(em_tree, em, 1);
7116                 write_unlock(&em_tree->lock);
7117         } while (ret == -EEXIST);
7118
7119         if (ret) {
7120                 free_extent_map(em);
7121                 return ERR_PTR(ret);
7122         }
7123
7124         return em;
7125 }
7126
7127
7128 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7129                                    struct buffer_head *bh_result, int create)
7130 {
7131         struct extent_map *em;
7132         struct btrfs_root *root = BTRFS_I(inode)->root;
7133         struct extent_state *cached_state = NULL;
7134         u64 start = iblock << inode->i_blkbits;
7135         u64 lockstart, lockend;
7136         u64 len = bh_result->b_size;
7137         int unlock_bits = EXTENT_LOCKED;
7138         int ret = 0;
7139
7140         if (create)
7141                 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
7142         else
7143                 len = min_t(u64, len, root->sectorsize);
7144
7145         lockstart = start;
7146         lockend = start + len - 1;
7147
7148         /*
7149          * If this errors out it's because we couldn't invalidate pagecache for
7150          * this range and we need to fallback to buffered.
7151          */
7152         if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7153                 return -ENOTBLK;
7154
7155         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7156         if (IS_ERR(em)) {
7157                 ret = PTR_ERR(em);
7158                 goto unlock_err;
7159         }
7160
7161         /*
7162          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7163          * io.  INLINE is special, and we could probably kludge it in here, but
7164          * it's still buffered so for safety lets just fall back to the generic
7165          * buffered path.
7166          *
7167          * For COMPRESSED we _have_ to read the entire extent in so we can
7168          * decompress it, so there will be buffering required no matter what we
7169          * do, so go ahead and fallback to buffered.
7170          *
7171          * We return -ENOTBLK because thats what makes DIO go ahead and go back
7172          * to buffered IO.  Don't blame me, this is the price we pay for using
7173          * the generic code.
7174          */
7175         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7176             em->block_start == EXTENT_MAP_INLINE) {
7177                 free_extent_map(em);
7178                 ret = -ENOTBLK;
7179                 goto unlock_err;
7180         }
7181
7182         /* Just a good old fashioned hole, return */
7183         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7184                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7185                 free_extent_map(em);
7186                 goto unlock_err;
7187         }
7188
7189         /*
7190          * We don't allocate a new extent in the following cases
7191          *
7192          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7193          * existing extent.
7194          * 2) The extent is marked as PREALLOC.  We're good to go here and can
7195          * just use the extent.
7196          *
7197          */
7198         if (!create) {
7199                 len = min(len, em->len - (start - em->start));
7200                 lockstart = start + len;
7201                 goto unlock;
7202         }
7203
7204         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7205             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7206              em->block_start != EXTENT_MAP_HOLE)) {
7207                 int type;
7208                 int ret;
7209                 u64 block_start, orig_start, orig_block_len, ram_bytes;
7210
7211                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7212                         type = BTRFS_ORDERED_PREALLOC;
7213                 else
7214                         type = BTRFS_ORDERED_NOCOW;
7215                 len = min(len, em->len - (start - em->start));
7216                 block_start = em->block_start + (start - em->start);
7217
7218                 if (can_nocow_extent(inode, start, &len, &orig_start,
7219                                      &orig_block_len, &ram_bytes) == 1) {
7220                         if (type == BTRFS_ORDERED_PREALLOC) {
7221                                 free_extent_map(em);
7222                                 em = create_pinned_em(inode, start, len,
7223                                                        orig_start,
7224                                                        block_start, len,
7225                                                        orig_block_len,
7226                                                        ram_bytes, type);
7227                                 if (IS_ERR(em)) {
7228                                         ret = PTR_ERR(em);
7229                                         goto unlock_err;
7230                                 }
7231                         }
7232
7233                         ret = btrfs_add_ordered_extent_dio(inode, start,
7234                                            block_start, len, len, type);
7235                         if (ret) {
7236                                 free_extent_map(em);
7237                                 goto unlock_err;
7238                         }
7239                         goto unlock;
7240                 }
7241         }
7242
7243         /*
7244          * this will cow the extent, reset the len in case we changed
7245          * it above
7246          */
7247         len = bh_result->b_size;
7248         free_extent_map(em);
7249         em = btrfs_new_extent_direct(inode, start, len);
7250         if (IS_ERR(em)) {
7251                 ret = PTR_ERR(em);
7252                 goto unlock_err;
7253         }
7254         len = min(len, em->len - (start - em->start));
7255 unlock:
7256         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7257                 inode->i_blkbits;
7258         bh_result->b_size = len;
7259         bh_result->b_bdev = em->bdev;
7260         set_buffer_mapped(bh_result);
7261         if (create) {
7262                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7263                         set_buffer_new(bh_result);
7264
7265                 /*
7266                  * Need to update the i_size under the extent lock so buffered
7267                  * readers will get the updated i_size when we unlock.
7268                  */
7269                 if (start + len > i_size_read(inode))
7270                         i_size_write(inode, start + len);
7271
7272                 spin_lock(&BTRFS_I(inode)->lock);
7273                 BTRFS_I(inode)->outstanding_extents++;
7274                 spin_unlock(&BTRFS_I(inode)->lock);
7275
7276                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7277                                      lockstart + len - 1, EXTENT_DELALLOC, NULL,
7278                                      &cached_state, GFP_NOFS);
7279                 BUG_ON(ret);
7280         }
7281
7282         /*
7283          * In the case of write we need to clear and unlock the entire range,
7284          * in the case of read we need to unlock only the end area that we
7285          * aren't using if there is any left over space.
7286          */
7287         if (lockstart < lockend) {
7288                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7289                                  lockend, unlock_bits, 1, 0,
7290                                  &cached_state, GFP_NOFS);
7291         } else {
7292                 free_extent_state(cached_state);
7293         }
7294
7295         free_extent_map(em);
7296
7297         return 0;
7298
7299 unlock_err:
7300         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7301                          unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7302         return ret;
7303 }
7304
7305 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7306                                         int rw, int mirror_num)
7307 {
7308         struct btrfs_root *root = BTRFS_I(inode)->root;
7309         int ret;
7310
7311         BUG_ON(rw & REQ_WRITE);
7312
7313         bio_get(bio);
7314
7315         ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7316                                   BTRFS_WQ_ENDIO_DIO_REPAIR);
7317         if (ret)
7318                 goto err;
7319
7320         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7321 err:
7322         bio_put(bio);
7323         return ret;
7324 }
7325
7326 static int btrfs_check_dio_repairable(struct inode *inode,
7327                                       struct bio *failed_bio,
7328                                       struct io_failure_record *failrec,
7329                                       int failed_mirror)
7330 {
7331         int num_copies;
7332
7333         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7334                                       failrec->logical, failrec->len);
7335         if (num_copies == 1) {
7336                 /*
7337                  * we only have a single copy of the data, so don't bother with
7338                  * all the retry and error correction code that follows. no
7339                  * matter what the error is, it is very likely to persist.
7340                  */
7341                 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7342                          num_copies, failrec->this_mirror, failed_mirror);
7343                 return 0;
7344         }
7345
7346         failrec->failed_mirror = failed_mirror;
7347         failrec->this_mirror++;
7348         if (failrec->this_mirror == failed_mirror)
7349                 failrec->this_mirror++;
7350
7351         if (failrec->this_mirror > num_copies) {
7352                 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7353                          num_copies, failrec->this_mirror, failed_mirror);
7354                 return 0;
7355         }
7356
7357         return 1;
7358 }
7359
7360 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7361                           struct page *page, u64 start, u64 end,
7362                           int failed_mirror, bio_end_io_t *repair_endio,
7363                           void *repair_arg)
7364 {
7365         struct io_failure_record *failrec;
7366         struct bio *bio;
7367         int isector;
7368         int read_mode;
7369         int ret;
7370
7371         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7372
7373         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7374         if (ret)
7375                 return ret;
7376
7377         ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7378                                          failed_mirror);
7379         if (!ret) {
7380                 free_io_failure(inode, failrec);
7381                 return -EIO;
7382         }
7383
7384         if (failed_bio->bi_vcnt > 1)
7385                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7386         else
7387                 read_mode = READ_SYNC;
7388
7389         isector = start - btrfs_io_bio(failed_bio)->logical;
7390         isector >>= inode->i_sb->s_blocksize_bits;
7391         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7392                                       0, isector, repair_endio, repair_arg);
7393         if (!bio) {
7394                 free_io_failure(inode, failrec);
7395                 return -EIO;
7396         }
7397
7398         btrfs_debug(BTRFS_I(inode)->root->fs_info,
7399                     "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7400                     read_mode, failrec->this_mirror, failrec->in_validation);
7401
7402         ret = submit_dio_repair_bio(inode, bio, read_mode,
7403                                     failrec->this_mirror);
7404         if (ret) {
7405                 free_io_failure(inode, failrec);
7406                 bio_put(bio);
7407         }
7408
7409         return ret;
7410 }
7411
7412 struct btrfs_retry_complete {
7413         struct completion done;
7414         struct inode *inode;
7415         u64 start;
7416         int uptodate;
7417 };
7418
7419 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7420 {
7421         struct btrfs_retry_complete *done = bio->bi_private;
7422         struct bio_vec *bvec;
7423         int i;
7424
7425         if (err)
7426                 goto end;
7427
7428         done->uptodate = 1;
7429         bio_for_each_segment_all(bvec, bio, i)
7430                 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7431 end:
7432         complete(&done->done);
7433         bio_put(bio);
7434 }
7435
7436 static int __btrfs_correct_data_nocsum(struct inode *inode,
7437                                        struct btrfs_io_bio *io_bio)
7438 {
7439         struct bio_vec *bvec;
7440         struct btrfs_retry_complete done;
7441         u64 start;
7442         int i;
7443         int ret;
7444
7445         start = io_bio->logical;
7446         done.inode = inode;
7447
7448         bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7449 try_again:
7450                 done.uptodate = 0;
7451                 done.start = start;
7452                 init_completion(&done.done);
7453
7454                 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7455                                      start + bvec->bv_len - 1,
7456                                      io_bio->mirror_num,
7457                                      btrfs_retry_endio_nocsum, &done);
7458                 if (ret)
7459                         return ret;
7460
7461                 wait_for_completion(&done.done);
7462
7463                 if (!done.uptodate) {
7464                         /* We might have another mirror, so try again */
7465                         goto try_again;
7466                 }
7467
7468                 start += bvec->bv_len;
7469         }
7470
7471         return 0;
7472 }
7473
7474 static void btrfs_retry_endio(struct bio *bio, int err)
7475 {
7476         struct btrfs_retry_complete *done = bio->bi_private;
7477         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7478         struct bio_vec *bvec;
7479         int uptodate;
7480         int ret;
7481         int i;
7482
7483         if (err)
7484                 goto end;
7485
7486         uptodate = 1;
7487         bio_for_each_segment_all(bvec, bio, i) {
7488                 ret = __readpage_endio_check(done->inode, io_bio, i,
7489                                              bvec->bv_page, 0,
7490                                              done->start, bvec->bv_len);
7491                 if (!ret)
7492                         clean_io_failure(done->inode, done->start,
7493                                          bvec->bv_page, 0);
7494                 else
7495                         uptodate = 0;
7496         }
7497
7498         done->uptodate = uptodate;
7499 end:
7500         complete(&done->done);
7501         bio_put(bio);
7502 }
7503
7504 static int __btrfs_subio_endio_read(struct inode *inode,
7505                                     struct btrfs_io_bio *io_bio, int err)
7506 {
7507         struct bio_vec *bvec;
7508         struct btrfs_retry_complete done;
7509         u64 start;
7510         u64 offset = 0;
7511         int i;
7512         int ret;
7513
7514         err = 0;
7515         start = io_bio->logical;
7516         done.inode = inode;
7517
7518         bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7519                 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7520                                              0, start, bvec->bv_len);
7521                 if (likely(!ret))
7522                         goto next;
7523 try_again:
7524                 done.uptodate = 0;
7525                 done.start = start;
7526                 init_completion(&done.done);
7527
7528                 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7529                                      start + bvec->bv_len - 1,
7530                                      io_bio->mirror_num,
7531                                      btrfs_retry_endio, &done);
7532                 if (ret) {
7533                         err = ret;
7534                         goto next;
7535                 }
7536
7537                 wait_for_completion(&done.done);
7538
7539                 if (!done.uptodate) {
7540                         /* We might have another mirror, so try again */
7541                         goto try_again;
7542                 }
7543 next:
7544                 offset += bvec->bv_len;
7545                 start += bvec->bv_len;
7546         }
7547
7548         return err;
7549 }
7550
7551 static int btrfs_subio_endio_read(struct inode *inode,
7552                                   struct btrfs_io_bio *io_bio, int err)
7553 {
7554         bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7555
7556         if (skip_csum) {
7557                 if (unlikely(err))
7558                         return __btrfs_correct_data_nocsum(inode, io_bio);
7559                 else
7560                         return 0;
7561         } else {
7562                 return __btrfs_subio_endio_read(inode, io_bio, err);
7563         }
7564 }
7565
7566 static void btrfs_endio_direct_read(struct bio *bio, int err)
7567 {
7568         struct btrfs_dio_private *dip = bio->bi_private;
7569         struct inode *inode = dip->inode;
7570         struct bio *dio_bio;
7571         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7572
7573         if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7574                 err = btrfs_subio_endio_read(inode, io_bio, err);
7575
7576         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7577                       dip->logical_offset + dip->bytes - 1);
7578         dio_bio = dip->dio_bio;
7579
7580         kfree(dip);
7581
7582         /* If we had a csum failure make sure to clear the uptodate flag */
7583         if (err)
7584                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7585         dio_end_io(dio_bio, err);
7586
7587         if (io_bio->end_io)
7588                 io_bio->end_io(io_bio, err);
7589         bio_put(bio);
7590 }
7591
7592 static void btrfs_endio_direct_write(struct bio *bio, int err)
7593 {
7594         struct btrfs_dio_private *dip = bio->bi_private;
7595         struct inode *inode = dip->inode;
7596         struct btrfs_root *root = BTRFS_I(inode)->root;
7597         struct btrfs_ordered_extent *ordered = NULL;
7598         u64 ordered_offset = dip->logical_offset;
7599         u64 ordered_bytes = dip->bytes;
7600         struct bio *dio_bio;
7601         int ret;
7602
7603         if (err)
7604                 goto out_done;
7605 again:
7606         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7607                                                    &ordered_offset,
7608                                                    ordered_bytes, !err);
7609         if (!ret)
7610                 goto out_test;
7611
7612         btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7613                         finish_ordered_fn, NULL, NULL);
7614         btrfs_queue_work(root->fs_info->endio_write_workers,
7615                          &ordered->work);
7616 out_test:
7617         /*
7618          * our bio might span multiple ordered extents.  If we haven't
7619          * completed the accounting for the whole dio, go back and try again
7620          */
7621         if (ordered_offset < dip->logical_offset + dip->bytes) {
7622                 ordered_bytes = dip->logical_offset + dip->bytes -
7623                         ordered_offset;
7624                 ordered = NULL;
7625                 goto again;
7626         }
7627 out_done:
7628         dio_bio = dip->dio_bio;
7629
7630         kfree(dip);
7631
7632         /* If we had an error make sure to clear the uptodate flag */
7633         if (err)
7634                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7635         dio_end_io(dio_bio, err);
7636         bio_put(bio);
7637 }
7638
7639 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7640                                     struct bio *bio, int mirror_num,
7641                                     unsigned long bio_flags, u64 offset)
7642 {
7643         int ret;
7644         struct btrfs_root *root = BTRFS_I(inode)->root;
7645         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7646         BUG_ON(ret); /* -ENOMEM */
7647         return 0;
7648 }
7649
7650 static void btrfs_end_dio_bio(struct bio *bio, int err)
7651 {
7652         struct btrfs_dio_private *dip = bio->bi_private;
7653
7654         if (err)
7655                 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7656                            "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7657                            btrfs_ino(dip->inode), bio->bi_rw,
7658                            (unsigned long long)bio->bi_iter.bi_sector,
7659                            bio->bi_iter.bi_size, err);
7660
7661         if (dip->subio_endio)
7662                 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7663
7664         if (err) {
7665                 dip->errors = 1;
7666
7667                 /*
7668                  * before atomic variable goto zero, we must make sure
7669                  * dip->errors is perceived to be set.
7670                  */
7671                 smp_mb__before_atomic();
7672         }
7673
7674         /* if there are more bios still pending for this dio, just exit */
7675         if (!atomic_dec_and_test(&dip->pending_bios))
7676                 goto out;
7677
7678         if (dip->errors) {
7679                 bio_io_error(dip->orig_bio);
7680         } else {
7681                 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7682                 bio_endio(dip->orig_bio, 0);
7683         }
7684 out:
7685         bio_put(bio);
7686 }
7687
7688 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7689                                        u64 first_sector, gfp_t gfp_flags)
7690 {
7691         int nr_vecs = bio_get_nr_vecs(bdev);
7692         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7693 }
7694
7695 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7696                                                  struct inode *inode,
7697                                                  struct btrfs_dio_private *dip,
7698                                                  struct bio *bio,
7699                                                  u64 file_offset)
7700 {
7701         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7702         struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7703         int ret;
7704
7705         /*
7706          * We load all the csum data we need when we submit
7707          * the first bio to reduce the csum tree search and
7708          * contention.
7709          */
7710         if (dip->logical_offset == file_offset) {
7711                 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7712                                                 file_offset);
7713                 if (ret)
7714                         return ret;
7715         }
7716
7717         if (bio == dip->orig_bio)
7718                 return 0;
7719
7720         file_offset -= dip->logical_offset;
7721         file_offset >>= inode->i_sb->s_blocksize_bits;
7722         io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7723
7724         return 0;
7725 }
7726
7727 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7728                                          int rw, u64 file_offset, int skip_sum,
7729                                          int async_submit)
7730 {
7731         struct btrfs_dio_private *dip = bio->bi_private;
7732         int write = rw & REQ_WRITE;
7733         struct btrfs_root *root = BTRFS_I(inode)->root;
7734         int ret;
7735
7736         if (async_submit)
7737                 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7738
7739         bio_get(bio);
7740
7741         if (!write) {
7742                 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7743                                 BTRFS_WQ_ENDIO_DATA);
7744                 if (ret)
7745                         goto err;
7746         }
7747
7748         if (skip_sum)
7749                 goto map;
7750
7751         if (write && async_submit) {
7752                 ret = btrfs_wq_submit_bio(root->fs_info,
7753                                    inode, rw, bio, 0, 0,
7754                                    file_offset,
7755                                    __btrfs_submit_bio_start_direct_io,
7756                                    __btrfs_submit_bio_done);
7757                 goto err;
7758         } else if (write) {
7759                 /*
7760                  * If we aren't doing async submit, calculate the csum of the
7761                  * bio now.
7762                  */
7763                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7764                 if (ret)
7765                         goto err;
7766         } else {
7767                 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7768                                                      file_offset);
7769                 if (ret)
7770                         goto err;
7771         }
7772 map:
7773         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7774 err:
7775         bio_put(bio);
7776         return ret;
7777 }
7778
7779 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7780                                     int skip_sum)
7781 {
7782         struct inode *inode = dip->inode;
7783         struct btrfs_root *root = BTRFS_I(inode)->root;
7784         struct bio *bio;
7785         struct bio *orig_bio = dip->orig_bio;
7786         struct bio_vec *bvec = orig_bio->bi_io_vec;
7787         u64 start_sector = orig_bio->bi_iter.bi_sector;
7788         u64 file_offset = dip->logical_offset;
7789         u64 submit_len = 0;
7790         u64 map_length;
7791         int nr_pages = 0;
7792         int ret;
7793         int async_submit = 0;
7794
7795         map_length = orig_bio->bi_iter.bi_size;
7796         ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7797                               &map_length, NULL, 0);
7798         if (ret)
7799                 return -EIO;
7800
7801         if (map_length >= orig_bio->bi_iter.bi_size) {
7802                 bio = orig_bio;
7803                 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7804                 goto submit;
7805         }
7806
7807         /* async crcs make it difficult to collect full stripe writes. */
7808         if (btrfs_get_alloc_profile(root, 1) &
7809             (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7810                 async_submit = 0;
7811         else
7812                 async_submit = 1;
7813
7814         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7815         if (!bio)
7816                 return -ENOMEM;
7817
7818         bio->bi_private = dip;
7819         bio->bi_end_io = btrfs_end_dio_bio;
7820         btrfs_io_bio(bio)->logical = file_offset;
7821         atomic_inc(&dip->pending_bios);
7822
7823         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7824                 if (map_length < submit_len + bvec->bv_len ||
7825                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7826                                  bvec->bv_offset) < bvec->bv_len) {
7827                         /*
7828                          * inc the count before we submit the bio so
7829                          * we know the end IO handler won't happen before
7830                          * we inc the count. Otherwise, the dip might get freed
7831                          * before we're done setting it up
7832                          */
7833                         atomic_inc(&dip->pending_bios);
7834                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
7835                                                      file_offset, skip_sum,
7836                                                      async_submit);
7837                         if (ret) {
7838                                 bio_put(bio);
7839                                 atomic_dec(&dip->pending_bios);
7840                                 goto out_err;
7841                         }
7842
7843                         start_sector += submit_len >> 9;
7844                         file_offset += submit_len;
7845
7846                         submit_len = 0;
7847                         nr_pages = 0;
7848
7849                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7850                                                   start_sector, GFP_NOFS);
7851                         if (!bio)
7852                                 goto out_err;
7853                         bio->bi_private = dip;
7854                         bio->bi_end_io = btrfs_end_dio_bio;
7855                         btrfs_io_bio(bio)->logical = file_offset;
7856
7857                         map_length = orig_bio->bi_iter.bi_size;
7858                         ret = btrfs_map_block(root->fs_info, rw,
7859                                               start_sector << 9,
7860                                               &map_length, NULL, 0);
7861                         if (ret) {
7862                                 bio_put(bio);
7863                                 goto out_err;
7864                         }
7865                 } else {
7866                         submit_len += bvec->bv_len;
7867                         nr_pages++;
7868                         bvec++;
7869                 }
7870         }
7871
7872 submit:
7873         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7874                                      async_submit);
7875         if (!ret)
7876                 return 0;
7877
7878         bio_put(bio);
7879 out_err:
7880         dip->errors = 1;
7881         /*
7882          * before atomic variable goto zero, we must
7883          * make sure dip->errors is perceived to be set.
7884          */
7885         smp_mb__before_atomic();
7886         if (atomic_dec_and_test(&dip->pending_bios))
7887                 bio_io_error(dip->orig_bio);
7888
7889         /* bio_end_io() will handle error, so we needn't return it */
7890         return 0;
7891 }
7892
7893 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7894                                 struct inode *inode, loff_t file_offset)
7895 {
7896         struct btrfs_root *root = BTRFS_I(inode)->root;
7897         struct btrfs_dio_private *dip;
7898         struct bio *io_bio;
7899         struct btrfs_io_bio *btrfs_bio;
7900         int skip_sum;
7901         int write = rw & REQ_WRITE;
7902         int ret = 0;
7903
7904         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7905
7906         io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7907         if (!io_bio) {
7908                 ret = -ENOMEM;
7909                 goto free_ordered;
7910         }
7911
7912         dip = kzalloc(sizeof(*dip), GFP_NOFS);
7913         if (!dip) {
7914                 ret = -ENOMEM;
7915                 goto free_io_bio;
7916         }
7917
7918         dip->private = dio_bio->bi_private;
7919         dip->inode = inode;
7920         dip->logical_offset = file_offset;
7921         dip->bytes = dio_bio->bi_iter.bi_size;
7922         dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7923         io_bio->bi_private = dip;
7924         dip->orig_bio = io_bio;
7925         dip->dio_bio = dio_bio;
7926         atomic_set(&dip->pending_bios, 0);
7927         btrfs_bio = btrfs_io_bio(io_bio);
7928         btrfs_bio->logical = file_offset;
7929
7930         if (write) {
7931                 io_bio->bi_end_io = btrfs_endio_direct_write;
7932         } else {
7933                 io_bio->bi_end_io = btrfs_endio_direct_read;
7934                 dip->subio_endio = btrfs_subio_endio_read;
7935         }
7936
7937         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7938         if (!ret)
7939                 return;
7940
7941         if (btrfs_bio->end_io)
7942                 btrfs_bio->end_io(btrfs_bio, ret);
7943 free_io_bio:
7944         bio_put(io_bio);
7945
7946 free_ordered:
7947         /*
7948          * If this is a write, we need to clean up the reserved space and kill
7949          * the ordered extent.
7950          */
7951         if (write) {
7952                 struct btrfs_ordered_extent *ordered;
7953                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7954                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7955                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7956                         btrfs_free_reserved_extent(root, ordered->start,
7957                                                    ordered->disk_len, 1);
7958                 btrfs_put_ordered_extent(ordered);
7959                 btrfs_put_ordered_extent(ordered);
7960         }
7961         bio_endio(dio_bio, ret);
7962 }
7963
7964 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7965                         const struct iov_iter *iter, loff_t offset)
7966 {
7967         int seg;
7968         int i;
7969         unsigned blocksize_mask = root->sectorsize - 1;
7970         ssize_t retval = -EINVAL;
7971
7972         if (offset & blocksize_mask)
7973                 goto out;
7974
7975         if (iov_iter_alignment(iter) & blocksize_mask)
7976                 goto out;
7977
7978         /* If this is a write we don't need to check anymore */
7979         if (rw & WRITE)
7980                 return 0;
7981         /*
7982          * Check to make sure we don't have duplicate iov_base's in this
7983          * iovec, if so return EINVAL, otherwise we'll get csum errors
7984          * when reading back.
7985          */
7986         for (seg = 0; seg < iter->nr_segs; seg++) {
7987                 for (i = seg + 1; i < iter->nr_segs; i++) {
7988                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7989                                 goto out;
7990                 }
7991         }
7992         retval = 0;
7993 out:
7994         return retval;
7995 }
7996
7997 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7998                         struct iov_iter *iter, loff_t offset)
7999 {
8000         struct file *file = iocb->ki_filp;
8001         struct inode *inode = file->f_mapping->host;
8002         size_t count = 0;
8003         int flags = 0;
8004         bool wakeup = true;
8005         bool relock = false;
8006         ssize_t ret;
8007
8008         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
8009                 return 0;
8010
8011         atomic_inc(&inode->i_dio_count);
8012         smp_mb__after_atomic();
8013
8014         /*
8015          * The generic stuff only does filemap_write_and_wait_range, which
8016          * isn't enough if we've written compressed pages to this area, so
8017          * we need to flush the dirty pages again to make absolutely sure
8018          * that any outstanding dirty pages are on disk.
8019          */
8020         count = iov_iter_count(iter);
8021         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8022                      &BTRFS_I(inode)->runtime_flags))
8023                 filemap_fdatawrite_range(inode->i_mapping, offset,
8024                                          offset + count - 1);
8025
8026         if (rw & WRITE) {
8027                 /*
8028                  * If the write DIO is beyond the EOF, we need update
8029                  * the isize, but it is protected by i_mutex. So we can
8030                  * not unlock the i_mutex at this case.
8031                  */
8032                 if (offset + count <= inode->i_size) {
8033                         mutex_unlock(&inode->i_mutex);
8034                         relock = true;
8035                 }
8036                 ret = btrfs_delalloc_reserve_space(inode, count);
8037                 if (ret)
8038                         goto out;
8039         } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8040                                      &BTRFS_I(inode)->runtime_flags)) {
8041                 inode_dio_done(inode);
8042                 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8043                 wakeup = false;
8044         }
8045
8046         ret = __blockdev_direct_IO(rw, iocb, inode,
8047                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8048                         iter, offset, btrfs_get_blocks_direct, NULL,
8049                         btrfs_submit_direct, flags);
8050         if (rw & WRITE) {
8051                 if (ret < 0 && ret != -EIOCBQUEUED)
8052                         btrfs_delalloc_release_space(inode, count);
8053                 else if (ret >= 0 && (size_t)ret < count)
8054                         btrfs_delalloc_release_space(inode,
8055                                                      count - (size_t)ret);
8056                 else
8057                         btrfs_delalloc_release_metadata(inode, 0);
8058         }
8059 out:
8060         if (wakeup)
8061                 inode_dio_done(inode);
8062         if (relock)
8063                 mutex_lock(&inode->i_mutex);
8064
8065         return ret;
8066 }
8067
8068 #define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
8069
8070 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8071                 __u64 start, __u64 len)
8072 {
8073         int     ret;
8074
8075         ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8076         if (ret)
8077                 return ret;
8078
8079         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8080 }
8081
8082 int btrfs_readpage(struct file *file, struct page *page)
8083 {
8084         struct extent_io_tree *tree;
8085         tree = &BTRFS_I(page->mapping->host)->io_tree;
8086         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8087 }
8088
8089 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8090 {
8091         struct extent_io_tree *tree;
8092
8093
8094         if (current->flags & PF_MEMALLOC) {
8095                 redirty_page_for_writepage(wbc, page);
8096                 unlock_page(page);
8097                 return 0;
8098         }
8099         tree = &BTRFS_I(page->mapping->host)->io_tree;
8100         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8101 }
8102
8103 static int btrfs_writepages(struct address_space *mapping,
8104                             struct writeback_control *wbc)
8105 {
8106         struct extent_io_tree *tree;
8107
8108         tree = &BTRFS_I(mapping->host)->io_tree;
8109         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8110 }
8111
8112 static int
8113 btrfs_readpages(struct file *file, struct address_space *mapping,
8114                 struct list_head *pages, unsigned nr_pages)
8115 {
8116         struct extent_io_tree *tree;
8117         tree = &BTRFS_I(mapping->host)->io_tree;
8118         return extent_readpages(tree, mapping, pages, nr_pages,
8119                                 btrfs_get_extent);
8120 }
8121 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8122 {
8123         struct extent_io_tree *tree;
8124         struct extent_map_tree *map;
8125         int ret;
8126
8127         tree = &BTRFS_I(page->mapping->host)->io_tree;
8128         map = &BTRFS_I(page->mapping->host)->extent_tree;
8129         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8130         if (ret == 1) {
8131                 ClearPagePrivate(page);
8132                 set_page_private(page, 0);
8133                 page_cache_release(page);
8134         }
8135         return ret;
8136 }
8137
8138 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8139 {
8140         if (PageWriteback(page) || PageDirty(page))
8141                 return 0;
8142         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8143 }
8144
8145 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8146                                  unsigned int length)
8147 {
8148         struct inode *inode = page->mapping->host;
8149         struct extent_io_tree *tree;
8150         struct btrfs_ordered_extent *ordered;
8151         struct extent_state *cached_state = NULL;
8152         u64 page_start = page_offset(page);
8153         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8154         int inode_evicting = inode->i_state & I_FREEING;
8155
8156         /*
8157          * we have the page locked, so new writeback can't start,
8158          * and the dirty bit won't be cleared while we are here.
8159          *
8160          * Wait for IO on this page so that we can safely clear
8161          * the PagePrivate2 bit and do ordered accounting
8162          */
8163         wait_on_page_writeback(page);
8164
8165         tree = &BTRFS_I(inode)->io_tree;
8166         if (offset) {
8167                 btrfs_releasepage(page, GFP_NOFS);
8168                 return;
8169         }
8170
8171         if (!inode_evicting)
8172                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8173         ordered = btrfs_lookup_ordered_extent(inode, page_start);
8174         if (ordered) {
8175                 /*
8176                  * IO on this page will never be started, so we need
8177                  * to account for any ordered extents now
8178                  */
8179                 if (!inode_evicting)
8180                         clear_extent_bit(tree, page_start, page_end,
8181                                          EXTENT_DIRTY | EXTENT_DELALLOC |
8182                                          EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8183                                          EXTENT_DEFRAG, 1, 0, &cached_state,
8184                                          GFP_NOFS);
8185                 /*
8186                  * whoever cleared the private bit is responsible
8187                  * for the finish_ordered_io
8188                  */
8189                 if (TestClearPagePrivate2(page)) {
8190                         struct btrfs_ordered_inode_tree *tree;
8191                         u64 new_len;
8192
8193                         tree = &BTRFS_I(inode)->ordered_tree;
8194
8195                         spin_lock_irq(&tree->lock);
8196                         set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8197                         new_len = page_start - ordered->file_offset;
8198                         if (new_len < ordered->truncated_len)
8199                                 ordered->truncated_len = new_len;
8200                         spin_unlock_irq(&tree->lock);
8201
8202                         if (btrfs_dec_test_ordered_pending(inode, &ordered,
8203                                                            page_start,
8204                                                            PAGE_CACHE_SIZE, 1))
8205                                 btrfs_finish_ordered_io(ordered);
8206                 }
8207                 btrfs_put_ordered_extent(ordered);
8208                 if (!inode_evicting) {
8209                         cached_state = NULL;
8210                         lock_extent_bits(tree, page_start, page_end, 0,
8211                                          &cached_state);
8212                 }
8213         }
8214
8215         if (!inode_evicting) {
8216                 clear_extent_bit(tree, page_start, page_end,
8217                                  EXTENT_LOCKED | EXTENT_DIRTY |
8218                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8219                                  EXTENT_DEFRAG, 1, 1,
8220                                  &cached_state, GFP_NOFS);
8221
8222                 __btrfs_releasepage(page, GFP_NOFS);
8223         }
8224
8225         ClearPageChecked(page);
8226         if (PagePrivate(page)) {
8227                 ClearPagePrivate(page);
8228                 set_page_private(page, 0);
8229                 page_cache_release(page);
8230         }
8231 }
8232
8233 /*
8234  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8235  * called from a page fault handler when a page is first dirtied. Hence we must
8236  * be careful to check for EOF conditions here. We set the page up correctly
8237  * for a written page which means we get ENOSPC checking when writing into
8238  * holes and correct delalloc and unwritten extent mapping on filesystems that
8239  * support these features.
8240  *
8241  * We are not allowed to take the i_mutex here so we have to play games to
8242  * protect against truncate races as the page could now be beyond EOF.  Because
8243  * vmtruncate() writes the inode size before removing pages, once we have the
8244  * page lock we can determine safely if the page is beyond EOF. If it is not
8245  * beyond EOF, then the page is guaranteed safe against truncation until we
8246  * unlock the page.
8247  */
8248 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8249 {
8250         struct page *page = vmf->page;
8251         struct inode *inode = file_inode(vma->vm_file);
8252         struct btrfs_root *root = BTRFS_I(inode)->root;
8253         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8254         struct btrfs_ordered_extent *ordered;
8255         struct extent_state *cached_state = NULL;
8256         char *kaddr;
8257         unsigned long zero_start;
8258         loff_t size;
8259         int ret;
8260         int reserved = 0;
8261         u64 page_start;
8262         u64 page_end;
8263
8264         sb_start_pagefault(inode->i_sb);
8265         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8266         if (!ret) {
8267                 ret = file_update_time(vma->vm_file);
8268                 reserved = 1;
8269         }
8270         if (ret) {
8271                 if (ret == -ENOMEM)
8272                         ret = VM_FAULT_OOM;
8273                 else /* -ENOSPC, -EIO, etc */
8274                         ret = VM_FAULT_SIGBUS;
8275                 if (reserved)
8276                         goto out;
8277                 goto out_noreserve;
8278         }
8279
8280         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8281 again:
8282         lock_page(page);
8283         size = i_size_read(inode);
8284         page_start = page_offset(page);
8285         page_end = page_start + PAGE_CACHE_SIZE - 1;
8286
8287         if ((page->mapping != inode->i_mapping) ||
8288             (page_start >= size)) {
8289                 /* page got truncated out from underneath us */
8290                 goto out_unlock;
8291         }
8292         wait_on_page_writeback(page);
8293
8294         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8295         set_page_extent_mapped(page);
8296
8297         /*
8298          * we can't set the delalloc bits if there are pending ordered
8299          * extents.  Drop our locks and wait for them to finish
8300          */
8301         ordered = btrfs_lookup_ordered_extent(inode, page_start);
8302         if (ordered) {
8303                 unlock_extent_cached(io_tree, page_start, page_end,
8304                                      &cached_state, GFP_NOFS);
8305                 unlock_page(page);
8306                 btrfs_start_ordered_extent(inode, ordered, 1);
8307                 btrfs_put_ordered_extent(ordered);
8308                 goto again;
8309         }
8310
8311         /*
8312          * XXX - page_mkwrite gets called every time the page is dirtied, even
8313          * if it was already dirty, so for space accounting reasons we need to
8314          * clear any delalloc bits for the range we are fixing to save.  There
8315          * is probably a better way to do this, but for now keep consistent with
8316          * prepare_pages in the normal write path.
8317          */
8318         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8319                           EXTENT_DIRTY | EXTENT_DELALLOC |
8320                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8321                           0, 0, &cached_state, GFP_NOFS);
8322
8323         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8324                                         &cached_state);
8325         if (ret) {
8326                 unlock_extent_cached(io_tree, page_start, page_end,
8327                                      &cached_state, GFP_NOFS);
8328                 ret = VM_FAULT_SIGBUS;
8329                 goto out_unlock;
8330         }
8331         ret = 0;
8332
8333         /* page is wholly or partially inside EOF */
8334         if (page_start + PAGE_CACHE_SIZE > size)
8335                 zero_start = size & ~PAGE_CACHE_MASK;
8336         else
8337                 zero_start = PAGE_CACHE_SIZE;
8338
8339         if (zero_start != PAGE_CACHE_SIZE) {
8340                 kaddr = kmap(page);
8341                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8342                 flush_dcache_page(page);
8343                 kunmap(page);
8344         }
8345         ClearPageChecked(page);
8346         set_page_dirty(page);
8347         SetPageUptodate(page);
8348
8349         BTRFS_I(inode)->last_trans = root->fs_info->generation;
8350         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8351         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8352
8353         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8354
8355 out_unlock:
8356         if (!ret) {
8357                 sb_end_pagefault(inode->i_sb);
8358                 return VM_FAULT_LOCKED;
8359         }
8360         unlock_page(page);
8361 out:
8362         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8363 out_noreserve:
8364         sb_end_pagefault(inode->i_sb);
8365         return ret;
8366 }
8367
8368 static int btrfs_truncate(struct inode *inode)
8369 {
8370         struct btrfs_root *root = BTRFS_I(inode)->root;
8371         struct btrfs_block_rsv *rsv;
8372         int ret = 0;
8373         int err = 0;
8374         struct btrfs_trans_handle *trans;
8375         u64 mask = root->sectorsize - 1;
8376         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8377
8378         ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8379                                        (u64)-1);
8380         if (ret)
8381                 return ret;
8382
8383         /*
8384          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8385          * 3 things going on here
8386          *
8387          * 1) We need to reserve space for our orphan item and the space to
8388          * delete our orphan item.  Lord knows we don't want to have a dangling
8389          * orphan item because we didn't reserve space to remove it.
8390          *
8391          * 2) We need to reserve space to update our inode.
8392          *
8393          * 3) We need to have something to cache all the space that is going to
8394          * be free'd up by the truncate operation, but also have some slack
8395          * space reserved in case it uses space during the truncate (thank you
8396          * very much snapshotting).
8397          *
8398          * And we need these to all be seperate.  The fact is we can use alot of
8399          * space doing the truncate, and we have no earthly idea how much space
8400          * we will use, so we need the truncate reservation to be seperate so it
8401          * doesn't end up using space reserved for updating the inode or
8402          * removing the orphan item.  We also need to be able to stop the
8403          * transaction and start a new one, which means we need to be able to
8404          * update the inode several times, and we have no idea of knowing how
8405          * many times that will be, so we can't just reserve 1 item for the
8406          * entirety of the opration, so that has to be done seperately as well.
8407          * Then there is the orphan item, which does indeed need to be held on
8408          * to for the whole operation, and we need nobody to touch this reserved
8409          * space except the orphan code.
8410          *
8411          * So that leaves us with
8412          *
8413          * 1) root->orphan_block_rsv - for the orphan deletion.
8414          * 2) rsv - for the truncate reservation, which we will steal from the
8415          * transaction reservation.
8416          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8417          * updating the inode.
8418          */
8419         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8420         if (!rsv)
8421                 return -ENOMEM;
8422         rsv->size = min_size;
8423         rsv->failfast = 1;
8424
8425         /*
8426          * 1 for the truncate slack space
8427          * 1 for updating the inode.
8428          */
8429         trans = btrfs_start_transaction(root, 2);
8430         if (IS_ERR(trans)) {
8431                 err = PTR_ERR(trans);
8432                 goto out;
8433         }
8434
8435         /* Migrate the slack space for the truncate to our reserve */
8436         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8437                                       min_size);
8438         BUG_ON(ret);
8439
8440         /*
8441          * So if we truncate and then write and fsync we normally would just
8442          * write the extents that changed, which is a problem if we need to
8443          * first truncate that entire inode.  So set this flag so we write out
8444          * all of the extents in the inode to the sync log so we're completely
8445          * safe.
8446          */
8447         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8448         trans->block_rsv = rsv;
8449
8450         while (1) {
8451                 ret = btrfs_truncate_inode_items(trans, root, inode,
8452                                                  inode->i_size,
8453                                                  BTRFS_EXTENT_DATA_KEY);
8454                 if (ret != -ENOSPC) {
8455                         err = ret;
8456                         break;
8457                 }
8458
8459                 trans->block_rsv = &root->fs_info->trans_block_rsv;
8460                 ret = btrfs_update_inode(trans, root, inode);
8461                 if (ret) {
8462                         err = ret;
8463                         break;
8464                 }
8465
8466                 btrfs_end_transaction(trans, root);
8467                 btrfs_btree_balance_dirty(root);
8468
8469                 trans = btrfs_start_transaction(root, 2);
8470                 if (IS_ERR(trans)) {
8471                         ret = err = PTR_ERR(trans);
8472                         trans = NULL;
8473                         break;
8474                 }
8475
8476                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8477                                               rsv, min_size);
8478                 BUG_ON(ret);    /* shouldn't happen */
8479                 trans->block_rsv = rsv;
8480         }
8481
8482         if (ret == 0 && inode->i_nlink > 0) {
8483                 trans->block_rsv = root->orphan_block_rsv;
8484                 ret = btrfs_orphan_del(trans, inode);
8485                 if (ret)
8486                         err = ret;
8487         }
8488
8489         if (trans) {
8490                 trans->block_rsv = &root->fs_info->trans_block_rsv;
8491                 ret = btrfs_update_inode(trans, root, inode);
8492                 if (ret && !err)
8493                         err = ret;
8494
8495                 ret = btrfs_end_transaction(trans, root);
8496                 btrfs_btree_balance_dirty(root);
8497         }
8498
8499 out:
8500         btrfs_free_block_rsv(root, rsv);
8501
8502         if (ret && !err)
8503                 err = ret;
8504
8505         return err;
8506 }
8507
8508 /*
8509  * create a new subvolume directory/inode (helper for the ioctl).
8510  */
8511 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8512                              struct btrfs_root *new_root,
8513                              struct btrfs_root *parent_root,
8514                              u64 new_dirid)
8515 {
8516         struct inode *inode;
8517         int err;
8518         u64 index = 0;
8519
8520         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8521                                 new_dirid, new_dirid,
8522                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
8523                                 &index);
8524         if (IS_ERR(inode))
8525                 return PTR_ERR(inode);
8526         inode->i_op = &btrfs_dir_inode_operations;
8527         inode->i_fop = &btrfs_dir_file_operations;
8528
8529         set_nlink(inode, 1);
8530         btrfs_i_size_write(inode, 0);
8531         unlock_new_inode(inode);
8532
8533         err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8534         if (err)
8535                 btrfs_err(new_root->fs_info,
8536                           "error inheriting subvolume %llu properties: %d",
8537                           new_root->root_key.objectid, err);
8538
8539         err = btrfs_update_inode(trans, new_root, inode);
8540
8541         iput(inode);
8542         return err;
8543 }
8544
8545 struct inode *btrfs_alloc_inode(struct super_block *sb)
8546 {
8547         struct btrfs_inode *ei;
8548         struct inode *inode;
8549
8550         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8551         if (!ei)
8552                 return NULL;
8553
8554         ei->root = NULL;
8555         ei->generation = 0;
8556         ei->last_trans = 0;
8557         ei->last_sub_trans = 0;
8558         ei->logged_trans = 0;
8559         ei->delalloc_bytes = 0;
8560         ei->defrag_bytes = 0;
8561         ei->disk_i_size = 0;
8562         ei->flags = 0;
8563         ei->csum_bytes = 0;
8564         ei->index_cnt = (u64)-1;
8565         ei->dir_index = 0;
8566         ei->last_unlink_trans = 0;
8567         ei->last_log_commit = 0;
8568
8569         spin_lock_init(&ei->lock);
8570         ei->outstanding_extents = 0;
8571         ei->reserved_extents = 0;
8572
8573         ei->runtime_flags = 0;
8574         ei->force_compress = BTRFS_COMPRESS_NONE;
8575
8576         ei->delayed_node = NULL;
8577
8578         inode = &ei->vfs_inode;
8579         extent_map_tree_init(&ei->extent_tree);
8580         extent_io_tree_init(&ei->io_tree, &inode->i_data);
8581         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8582         ei->io_tree.track_uptodate = 1;
8583         ei->io_failure_tree.track_uptodate = 1;
8584         atomic_set(&ei->sync_writers, 0);
8585         mutex_init(&ei->log_mutex);
8586         mutex_init(&ei->delalloc_mutex);
8587         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8588         INIT_LIST_HEAD(&ei->delalloc_inodes);
8589         RB_CLEAR_NODE(&ei->rb_node);
8590
8591         return inode;
8592 }
8593
8594 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8595 void btrfs_test_destroy_inode(struct inode *inode)
8596 {
8597         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8598         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8599 }
8600 #endif
8601
8602 static void btrfs_i_callback(struct rcu_head *head)
8603 {
8604         struct inode *inode = container_of(head, struct inode, i_rcu);
8605         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8606 }
8607
8608 void btrfs_destroy_inode(struct inode *inode)
8609 {
8610         struct btrfs_ordered_extent *ordered;
8611         struct btrfs_root *root = BTRFS_I(inode)->root;
8612
8613         WARN_ON(!hlist_empty(&inode->i_dentry));
8614         WARN_ON(inode->i_data.nrpages);
8615         WARN_ON(BTRFS_I(inode)->outstanding_extents);
8616         WARN_ON(BTRFS_I(inode)->reserved_extents);
8617         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8618         WARN_ON(BTRFS_I(inode)->csum_bytes);
8619         WARN_ON(BTRFS_I(inode)->defrag_bytes);
8620
8621         /*
8622          * This can happen where we create an inode, but somebody else also
8623          * created the same inode and we need to destroy the one we already
8624          * created.
8625          */
8626         if (!root)
8627                 goto free;
8628
8629         if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8630                      &BTRFS_I(inode)->runtime_flags)) {
8631                 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8632                         btrfs_ino(inode));
8633                 atomic_dec(&root->orphan_inodes);
8634         }
8635
8636         while (1) {
8637                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8638                 if (!ordered)
8639                         break;
8640                 else {
8641                         btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8642                                 ordered->file_offset, ordered->len);
8643                         btrfs_remove_ordered_extent(inode, ordered);
8644                         btrfs_put_ordered_extent(ordered);
8645                         btrfs_put_ordered_extent(ordered);
8646                 }
8647         }
8648         inode_tree_del(inode);
8649         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8650 free:
8651         call_rcu(&inode->i_rcu, btrfs_i_callback);
8652 }
8653
8654 int btrfs_drop_inode(struct inode *inode)
8655 {
8656         struct btrfs_root *root = BTRFS_I(inode)->root;
8657
8658         if (root == NULL)
8659                 return 1;
8660
8661         /* the snap/subvol tree is on deleting */
8662         if (btrfs_root_refs(&root->root_item) == 0)
8663                 return 1;
8664         else
8665                 return generic_drop_inode(inode);
8666 }
8667
8668 static void init_once(void *foo)
8669 {
8670         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8671
8672         inode_init_once(&ei->vfs_inode);
8673 }
8674
8675 void btrfs_destroy_cachep(void)
8676 {
8677         /*
8678          * Make sure all delayed rcu free inodes are flushed before we
8679          * destroy cache.
8680          */
8681         rcu_barrier();
8682         if (btrfs_inode_cachep)
8683                 kmem_cache_destroy(btrfs_inode_cachep);
8684         if (btrfs_trans_handle_cachep)
8685                 kmem_cache_destroy(btrfs_trans_handle_cachep);
8686         if (btrfs_transaction_cachep)
8687                 kmem_cache_destroy(btrfs_transaction_cachep);
8688         if (btrfs_path_cachep)
8689                 kmem_cache_destroy(btrfs_path_cachep);
8690         if (btrfs_free_space_cachep)
8691                 kmem_cache_destroy(btrfs_free_space_cachep);
8692         if (btrfs_delalloc_work_cachep)
8693                 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8694 }
8695
8696 int btrfs_init_cachep(void)
8697 {
8698         btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8699                         sizeof(struct btrfs_inode), 0,
8700                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8701         if (!btrfs_inode_cachep)
8702                 goto fail;
8703
8704         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8705                         sizeof(struct btrfs_trans_handle), 0,
8706                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8707         if (!btrfs_trans_handle_cachep)
8708                 goto fail;
8709
8710         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8711                         sizeof(struct btrfs_transaction), 0,
8712                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8713         if (!btrfs_transaction_cachep)
8714                 goto fail;
8715
8716         btrfs_path_cachep = kmem_cache_create("btrfs_path",
8717                         sizeof(struct btrfs_path), 0,
8718                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8719         if (!btrfs_path_cachep)
8720                 goto fail;
8721
8722         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8723                         sizeof(struct btrfs_free_space), 0,
8724                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8725         if (!btrfs_free_space_cachep)
8726                 goto fail;
8727
8728         btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8729                         sizeof(struct btrfs_delalloc_work), 0,
8730                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8731                         NULL);
8732         if (!btrfs_delalloc_work_cachep)
8733                 goto fail;
8734
8735         return 0;
8736 fail:
8737         btrfs_destroy_cachep();
8738         return -ENOMEM;
8739 }
8740
8741 static int btrfs_getattr(struct vfsmount *mnt,
8742                          struct dentry *dentry, struct kstat *stat)
8743 {
8744         u64 delalloc_bytes;
8745         struct inode *inode = dentry->d_inode;
8746         u32 blocksize = inode->i_sb->s_blocksize;
8747
8748         generic_fillattr(inode, stat);
8749         stat->dev = BTRFS_I(inode)->root->anon_dev;
8750         stat->blksize = PAGE_CACHE_SIZE;
8751
8752         spin_lock(&BTRFS_I(inode)->lock);
8753         delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8754         spin_unlock(&BTRFS_I(inode)->lock);
8755         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8756                         ALIGN(delalloc_bytes, blocksize)) >> 9;
8757         return 0;
8758 }
8759
8760 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8761                            struct inode *new_dir, struct dentry *new_dentry)
8762 {
8763         struct btrfs_trans_handle *trans;
8764         struct btrfs_root *root = BTRFS_I(old_dir)->root;
8765         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8766         struct inode *new_inode = new_dentry->d_inode;
8767         struct inode *old_inode = old_dentry->d_inode;
8768         struct timespec ctime = CURRENT_TIME;
8769         u64 index = 0;
8770         u64 root_objectid;
8771         int ret;
8772         u64 old_ino = btrfs_ino(old_inode);
8773
8774         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8775                 return -EPERM;
8776
8777         /* we only allow rename subvolume link between subvolumes */
8778         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8779                 return -EXDEV;
8780
8781         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8782             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8783                 return -ENOTEMPTY;
8784
8785         if (S_ISDIR(old_inode->i_mode) && new_inode &&
8786             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8787                 return -ENOTEMPTY;
8788
8789
8790         /* check for collisions, even if the  name isn't there */
8791         ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8792                              new_dentry->d_name.name,
8793                              new_dentry->d_name.len);
8794
8795         if (ret) {
8796                 if (ret == -EEXIST) {
8797                         /* we shouldn't get
8798                          * eexist without a new_inode */
8799                         if (WARN_ON(!new_inode)) {
8800                                 return ret;
8801                         }
8802                 } else {
8803                         /* maybe -EOVERFLOW */
8804                         return ret;
8805                 }
8806         }
8807         ret = 0;
8808
8809         /*
8810          * we're using rename to replace one file with another.  Start IO on it
8811          * now so  we don't add too much work to the end of the transaction
8812          */
8813         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8814                 filemap_flush(old_inode->i_mapping);
8815
8816         /* close the racy window with snapshot create/destroy ioctl */
8817         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8818                 down_read(&root->fs_info->subvol_sem);
8819         /*
8820          * We want to reserve the absolute worst case amount of items.  So if
8821          * both inodes are subvols and we need to unlink them then that would
8822          * require 4 item modifications, but if they are both normal inodes it
8823          * would require 5 item modifications, so we'll assume their normal
8824          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8825          * should cover the worst case number of items we'll modify.
8826          */
8827         trans = btrfs_start_transaction(root, 11);
8828         if (IS_ERR(trans)) {
8829                 ret = PTR_ERR(trans);
8830                 goto out_notrans;
8831         }
8832
8833         if (dest != root)
8834                 btrfs_record_root_in_trans(trans, dest);
8835
8836         ret = btrfs_set_inode_index(new_dir, &index);
8837         if (ret)
8838                 goto out_fail;
8839
8840         BTRFS_I(old_inode)->dir_index = 0ULL;
8841         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8842                 /* force full log commit if subvolume involved. */
8843                 btrfs_set_log_full_commit(root->fs_info, trans);
8844         } else {
8845                 ret = btrfs_insert_inode_ref(trans, dest,
8846                                              new_dentry->d_name.name,
8847                                              new_dentry->d_name.len,
8848                                              old_ino,
8849                                              btrfs_ino(new_dir), index);
8850                 if (ret)
8851                         goto out_fail;
8852                 /*
8853                  * this is an ugly little race, but the rename is required
8854                  * to make sure that if we crash, the inode is either at the
8855                  * old name or the new one.  pinning the log transaction lets
8856                  * us make sure we don't allow a log commit to come in after
8857                  * we unlink the name but before we add the new name back in.
8858                  */
8859                 btrfs_pin_log_trans(root);
8860         }
8861
8862         inode_inc_iversion(old_dir);
8863         inode_inc_iversion(new_dir);
8864         inode_inc_iversion(old_inode);
8865         old_dir->i_ctime = old_dir->i_mtime = ctime;
8866         new_dir->i_ctime = new_dir->i_mtime = ctime;
8867         old_inode->i_ctime = ctime;
8868
8869         if (old_dentry->d_parent != new_dentry->d_parent)
8870                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8871
8872         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8873                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8874                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8875                                         old_dentry->d_name.name,
8876                                         old_dentry->d_name.len);
8877         } else {
8878                 ret = __btrfs_unlink_inode(trans, root, old_dir,
8879                                         old_dentry->d_inode,
8880                                         old_dentry->d_name.name,
8881                                         old_dentry->d_name.len);
8882                 if (!ret)
8883                         ret = btrfs_update_inode(trans, root, old_inode);
8884         }
8885         if (ret) {
8886                 btrfs_abort_transaction(trans, root, ret);
8887                 goto out_fail;
8888         }
8889
8890         if (new_inode) {
8891                 inode_inc_iversion(new_inode);
8892                 new_inode->i_ctime = CURRENT_TIME;
8893                 if (unlikely(btrfs_ino(new_inode) ==
8894                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8895                         root_objectid = BTRFS_I(new_inode)->location.objectid;
8896                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
8897                                                 root_objectid,
8898                                                 new_dentry->d_name.name,
8899                                                 new_dentry->d_name.len);
8900                         BUG_ON(new_inode->i_nlink == 0);
8901                 } else {
8902                         ret = btrfs_unlink_inode(trans, dest, new_dir,
8903                                                  new_dentry->d_inode,
8904                                                  new_dentry->d_name.name,
8905                                                  new_dentry->d_name.len);
8906                 }
8907                 if (!ret && new_inode->i_nlink == 0)
8908                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8909                 if (ret) {
8910                         btrfs_abort_transaction(trans, root, ret);
8911                         goto out_fail;
8912                 }
8913         }
8914
8915         ret = btrfs_add_link(trans, new_dir, old_inode,
8916                              new_dentry->d_name.name,
8917                              new_dentry->d_name.len, 0, index);
8918         if (ret) {
8919                 btrfs_abort_transaction(trans, root, ret);
8920                 goto out_fail;
8921         }
8922
8923         if (old_inode->i_nlink == 1)
8924                 BTRFS_I(old_inode)->dir_index = index;
8925
8926         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8927                 struct dentry *parent = new_dentry->d_parent;
8928                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8929                 btrfs_end_log_trans(root);
8930         }
8931 out_fail:
8932         btrfs_end_transaction(trans, root);
8933 out_notrans:
8934         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8935                 up_read(&root->fs_info->subvol_sem);
8936
8937         return ret;
8938 }
8939
8940 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8941                          struct inode *new_dir, struct dentry *new_dentry,
8942                          unsigned int flags)
8943 {
8944         if (flags & ~RENAME_NOREPLACE)
8945                 return -EINVAL;
8946
8947         return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8948 }
8949
8950 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8951 {
8952         struct btrfs_delalloc_work *delalloc_work;
8953         struct inode *inode;
8954
8955         delalloc_work = container_of(work, struct btrfs_delalloc_work,
8956                                      work);
8957         inode = delalloc_work->inode;
8958         if (delalloc_work->wait) {
8959                 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8960         } else {
8961                 filemap_flush(inode->i_mapping);
8962                 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8963                              &BTRFS_I(inode)->runtime_flags))
8964                         filemap_flush(inode->i_mapping);
8965         }
8966
8967         if (delalloc_work->delay_iput)
8968                 btrfs_add_delayed_iput(inode);
8969         else
8970                 iput(inode);
8971         complete(&delalloc_work->completion);
8972 }
8973
8974 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8975                                                     int wait, int delay_iput)
8976 {
8977         struct btrfs_delalloc_work *work;
8978
8979         work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8980         if (!work)
8981                 return NULL;
8982
8983         init_completion(&work->completion);
8984         INIT_LIST_HEAD(&work->list);
8985         work->inode = inode;
8986         work->wait = wait;
8987         work->delay_iput = delay_iput;
8988         WARN_ON_ONCE(!inode);
8989         btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8990                         btrfs_run_delalloc_work, NULL, NULL);
8991
8992         return work;
8993 }
8994
8995 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8996 {
8997         wait_for_completion(&work->completion);
8998         kmem_cache_free(btrfs_delalloc_work_cachep, work);
8999 }
9000
9001 /*
9002  * some fairly slow code that needs optimization. This walks the list
9003  * of all the inodes with pending delalloc and forces them to disk.
9004  */
9005 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9006                                    int nr)
9007 {
9008         struct btrfs_inode *binode;
9009         struct inode *inode;
9010         struct btrfs_delalloc_work *work, *next;
9011         struct list_head works;
9012         struct list_head splice;
9013         int ret = 0;
9014
9015         INIT_LIST_HEAD(&works);
9016         INIT_LIST_HEAD(&splice);
9017
9018         mutex_lock(&root->delalloc_mutex);
9019         spin_lock(&root->delalloc_lock);
9020         list_splice_init(&root->delalloc_inodes, &splice);
9021         while (!list_empty(&splice)) {
9022                 binode = list_entry(splice.next, struct btrfs_inode,
9023                                     delalloc_inodes);
9024
9025                 list_move_tail(&binode->delalloc_inodes,
9026                                &root->delalloc_inodes);
9027                 inode = igrab(&binode->vfs_inode);
9028                 if (!inode) {
9029                         cond_resched_lock(&root->delalloc_lock);
9030                         continue;
9031                 }
9032                 spin_unlock(&root->delalloc_lock);
9033
9034                 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9035                 if (!work) {
9036                         if (delay_iput)
9037                                 btrfs_add_delayed_iput(inode);
9038                         else
9039                                 iput(inode);
9040                         ret = -ENOMEM;
9041                         goto out;
9042                 }
9043                 list_add_tail(&work->list, &works);
9044                 btrfs_queue_work(root->fs_info->flush_workers,
9045                                  &work->work);
9046                 ret++;
9047                 if (nr != -1 && ret >= nr)
9048                         goto out;
9049                 cond_resched();
9050                 spin_lock(&root->delalloc_lock);
9051         }
9052         spin_unlock(&root->delalloc_lock);
9053
9054 out:
9055         list_for_each_entry_safe(work, next, &works, list) {
9056                 list_del_init(&work->list);
9057                 btrfs_wait_and_free_delalloc_work(work);
9058         }
9059
9060         if (!list_empty_careful(&splice)) {
9061                 spin_lock(&root->delalloc_lock);
9062                 list_splice_tail(&splice, &root->delalloc_inodes);
9063                 spin_unlock(&root->delalloc_lock);
9064         }
9065         mutex_unlock(&root->delalloc_mutex);
9066         return ret;
9067 }
9068
9069 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9070 {
9071         int ret;
9072
9073         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9074                 return -EROFS;
9075
9076         ret = __start_delalloc_inodes(root, delay_iput, -1);
9077         if (ret > 0)
9078                 ret = 0;
9079         /*
9080          * the filemap_flush will queue IO into the worker threads, but
9081          * we have to make sure the IO is actually started and that
9082          * ordered extents get created before we return
9083          */
9084         atomic_inc(&root->fs_info->async_submit_draining);
9085         while (atomic_read(&root->fs_info->nr_async_submits) ||
9086               atomic_read(&root->fs_info->async_delalloc_pages)) {
9087                 wait_event(root->fs_info->async_submit_wait,
9088                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9089                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9090         }
9091         atomic_dec(&root->fs_info->async_submit_draining);
9092         return ret;
9093 }
9094
9095 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9096                                int nr)
9097 {
9098         struct btrfs_root *root;
9099         struct list_head splice;
9100         int ret;
9101
9102         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9103                 return -EROFS;
9104
9105         INIT_LIST_HEAD(&splice);
9106
9107         mutex_lock(&fs_info->delalloc_root_mutex);
9108         spin_lock(&fs_info->delalloc_root_lock);
9109         list_splice_init(&fs_info->delalloc_roots, &splice);
9110         while (!list_empty(&splice) && nr) {
9111                 root = list_first_entry(&splice, struct btrfs_root,
9112                                         delalloc_root);
9113                 root = btrfs_grab_fs_root(root);
9114                 BUG_ON(!root);
9115                 list_move_tail(&root->delalloc_root,
9116                                &fs_info->delalloc_roots);
9117                 spin_unlock(&fs_info->delalloc_root_lock);
9118
9119                 ret = __start_delalloc_inodes(root, delay_iput, nr);
9120                 btrfs_put_fs_root(root);
9121                 if (ret < 0)
9122                         goto out;
9123
9124                 if (nr != -1) {
9125                         nr -= ret;
9126                         WARN_ON(nr < 0);
9127                 }
9128                 spin_lock(&fs_info->delalloc_root_lock);
9129         }
9130         spin_unlock(&fs_info->delalloc_root_lock);
9131
9132         ret = 0;
9133         atomic_inc(&fs_info->async_submit_draining);
9134         while (atomic_read(&fs_info->nr_async_submits) ||
9135               atomic_read(&fs_info->async_delalloc_pages)) {
9136                 wait_event(fs_info->async_submit_wait,
9137                    (atomic_read(&fs_info->nr_async_submits) == 0 &&
9138                     atomic_read(&fs_info->async_delalloc_pages) == 0));
9139         }
9140         atomic_dec(&fs_info->async_submit_draining);
9141 out:
9142         if (!list_empty_careful(&splice)) {
9143                 spin_lock(&fs_info->delalloc_root_lock);
9144                 list_splice_tail(&splice, &fs_info->delalloc_roots);
9145                 spin_unlock(&fs_info->delalloc_root_lock);
9146         }
9147         mutex_unlock(&fs_info->delalloc_root_mutex);
9148         return ret;
9149 }
9150
9151 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9152                          const char *symname)
9153 {
9154         struct btrfs_trans_handle *trans;
9155         struct btrfs_root *root = BTRFS_I(dir)->root;
9156         struct btrfs_path *path;
9157         struct btrfs_key key;
9158         struct inode *inode = NULL;
9159         int err;
9160         int drop_inode = 0;
9161         u64 objectid;
9162         u64 index = 0;
9163         int name_len;
9164         int datasize;
9165         unsigned long ptr;
9166         struct btrfs_file_extent_item *ei;
9167         struct extent_buffer *leaf;
9168
9169         name_len = strlen(symname);
9170         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9171                 return -ENAMETOOLONG;
9172
9173         /*
9174          * 2 items for inode item and ref
9175          * 2 items for dir items
9176          * 1 item for xattr if selinux is on
9177          */
9178         trans = btrfs_start_transaction(root, 5);
9179         if (IS_ERR(trans))
9180                 return PTR_ERR(trans);
9181
9182         err = btrfs_find_free_ino(root, &objectid);
9183         if (err)
9184                 goto out_unlock;
9185
9186         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9187                                 dentry->d_name.len, btrfs_ino(dir), objectid,
9188                                 S_IFLNK|S_IRWXUGO, &index);
9189         if (IS_ERR(inode)) {
9190                 err = PTR_ERR(inode);
9191                 goto out_unlock;
9192         }
9193
9194         /*
9195         * If the active LSM wants to access the inode during
9196         * d_instantiate it needs these. Smack checks to see
9197         * if the filesystem supports xattrs by looking at the
9198         * ops vector.
9199         */
9200         inode->i_fop = &btrfs_file_operations;
9201         inode->i_op = &btrfs_file_inode_operations;
9202         inode->i_mapping->a_ops = &btrfs_aops;
9203         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9204
9205         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9206         if (err)
9207                 goto out_unlock_inode;
9208
9209         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9210         if (err)
9211                 goto out_unlock_inode;
9212
9213         path = btrfs_alloc_path();
9214         if (!path) {
9215                 err = -ENOMEM;
9216                 goto out_unlock_inode;
9217         }
9218         key.objectid = btrfs_ino(inode);
9219         key.offset = 0;
9220         key.type = BTRFS_EXTENT_DATA_KEY;
9221         datasize = btrfs_file_extent_calc_inline_size(name_len);
9222         err = btrfs_insert_empty_item(trans, root, path, &key,
9223                                       datasize);
9224         if (err) {
9225                 btrfs_free_path(path);
9226                 goto out_unlock_inode;
9227         }
9228         leaf = path->nodes[0];
9229         ei = btrfs_item_ptr(leaf, path->slots[0],
9230                             struct btrfs_file_extent_item);
9231         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9232         btrfs_set_file_extent_type(leaf, ei,
9233                                    BTRFS_FILE_EXTENT_INLINE);
9234         btrfs_set_file_extent_encryption(leaf, ei, 0);
9235         btrfs_set_file_extent_compression(leaf, ei, 0);
9236         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9237         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9238
9239         ptr = btrfs_file_extent_inline_start(ei);
9240         write_extent_buffer(leaf, symname, ptr, name_len);
9241         btrfs_mark_buffer_dirty(leaf);
9242         btrfs_free_path(path);
9243
9244         inode->i_op = &btrfs_symlink_inode_operations;
9245         inode->i_mapping->a_ops = &btrfs_symlink_aops;
9246         inode_set_bytes(inode, name_len);
9247         btrfs_i_size_write(inode, name_len);
9248         err = btrfs_update_inode(trans, root, inode);
9249         if (err) {
9250                 drop_inode = 1;
9251                 goto out_unlock_inode;
9252         }
9253
9254         unlock_new_inode(inode);
9255         d_instantiate(dentry, inode);
9256
9257 out_unlock:
9258         btrfs_end_transaction(trans, root);
9259         if (drop_inode) {
9260                 inode_dec_link_count(inode);
9261                 iput(inode);
9262         }
9263         btrfs_btree_balance_dirty(root);
9264         return err;
9265
9266 out_unlock_inode:
9267         drop_inode = 1;
9268         unlock_new_inode(inode);
9269         goto out_unlock;
9270 }
9271
9272 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9273                                        u64 start, u64 num_bytes, u64 min_size,
9274                                        loff_t actual_len, u64 *alloc_hint,
9275                                        struct btrfs_trans_handle *trans)
9276 {
9277         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9278         struct extent_map *em;
9279         struct btrfs_root *root = BTRFS_I(inode)->root;
9280         struct btrfs_key ins;
9281         u64 cur_offset = start;
9282         u64 i_size;
9283         u64 cur_bytes;
9284         int ret = 0;
9285         bool own_trans = true;
9286
9287         if (trans)
9288                 own_trans = false;
9289         while (num_bytes > 0) {
9290                 if (own_trans) {
9291                         trans = btrfs_start_transaction(root, 3);
9292                         if (IS_ERR(trans)) {
9293                                 ret = PTR_ERR(trans);
9294                                 break;
9295                         }
9296                 }
9297
9298                 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9299                 cur_bytes = max(cur_bytes, min_size);
9300                 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9301                                            *alloc_hint, &ins, 1, 0);
9302                 if (ret) {
9303                         if (own_trans)
9304                                 btrfs_end_transaction(trans, root);
9305                         break;
9306                 }
9307
9308                 ret = insert_reserved_file_extent(trans, inode,
9309                                                   cur_offset, ins.objectid,
9310                                                   ins.offset, ins.offset,
9311                                                   ins.offset, 0, 0, 0,
9312                                                   BTRFS_FILE_EXTENT_PREALLOC);
9313                 if (ret) {
9314                         btrfs_free_reserved_extent(root, ins.objectid,
9315                                                    ins.offset, 0);
9316                         btrfs_abort_transaction(trans, root, ret);
9317                         if (own_trans)
9318                                 btrfs_end_transaction(trans, root);
9319                         break;
9320                 }
9321                 btrfs_drop_extent_cache(inode, cur_offset,
9322                                         cur_offset + ins.offset -1, 0);
9323
9324                 em = alloc_extent_map();
9325                 if (!em) {
9326                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9327                                 &BTRFS_I(inode)->runtime_flags);
9328                         goto next;
9329                 }
9330
9331                 em->start = cur_offset;
9332                 em->orig_start = cur_offset;
9333                 em->len = ins.offset;
9334                 em->block_start = ins.objectid;
9335                 em->block_len = ins.offset;
9336                 em->orig_block_len = ins.offset;
9337                 em->ram_bytes = ins.offset;
9338                 em->bdev = root->fs_info->fs_devices->latest_bdev;
9339                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9340                 em->generation = trans->transid;
9341
9342                 while (1) {
9343                         write_lock(&em_tree->lock);
9344                         ret = add_extent_mapping(em_tree, em, 1);
9345                         write_unlock(&em_tree->lock);
9346                         if (ret != -EEXIST)
9347                                 break;
9348                         btrfs_drop_extent_cache(inode, cur_offset,
9349                                                 cur_offset + ins.offset - 1,
9350                                                 0);
9351                 }
9352                 free_extent_map(em);
9353 next:
9354                 num_bytes -= ins.offset;
9355                 cur_offset += ins.offset;
9356                 *alloc_hint = ins.objectid + ins.offset;
9357
9358                 inode_inc_iversion(inode);
9359                 inode->i_ctime = CURRENT_TIME;
9360                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9361                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9362                     (actual_len > inode->i_size) &&
9363                     (cur_offset > inode->i_size)) {
9364                         if (cur_offset > actual_len)
9365                                 i_size = actual_len;
9366                         else
9367                                 i_size = cur_offset;
9368                         i_size_write(inode, i_size);
9369                         btrfs_ordered_update_i_size(inode, i_size, NULL);
9370                 }
9371
9372                 ret = btrfs_update_inode(trans, root, inode);
9373
9374                 if (ret) {
9375                         btrfs_abort_transaction(trans, root, ret);
9376                         if (own_trans)
9377                                 btrfs_end_transaction(trans, root);
9378                         break;
9379                 }
9380
9381                 if (own_trans)
9382                         btrfs_end_transaction(trans, root);
9383         }
9384         return ret;
9385 }
9386
9387 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9388                               u64 start, u64 num_bytes, u64 min_size,
9389                               loff_t actual_len, u64 *alloc_hint)
9390 {
9391         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9392                                            min_size, actual_len, alloc_hint,
9393                                            NULL);
9394 }
9395
9396 int btrfs_prealloc_file_range_trans(struct inode *inode,
9397                                     struct btrfs_trans_handle *trans, int mode,
9398                                     u64 start, u64 num_bytes, u64 min_size,
9399                                     loff_t actual_len, u64 *alloc_hint)
9400 {
9401         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9402                                            min_size, actual_len, alloc_hint, trans);
9403 }
9404
9405 static int btrfs_set_page_dirty(struct page *page)
9406 {
9407         return __set_page_dirty_nobuffers(page);
9408 }
9409
9410 static int btrfs_permission(struct inode *inode, int mask)
9411 {
9412         struct btrfs_root *root = BTRFS_I(inode)->root;
9413         umode_t mode = inode->i_mode;
9414
9415         if (mask & MAY_WRITE &&
9416             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9417                 if (btrfs_root_readonly(root))
9418                         return -EROFS;
9419                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9420                         return -EACCES;
9421         }
9422         return generic_permission(inode, mask);
9423 }
9424
9425 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9426 {
9427         struct btrfs_trans_handle *trans;
9428         struct btrfs_root *root = BTRFS_I(dir)->root;
9429         struct inode *inode = NULL;
9430         u64 objectid;
9431         u64 index;
9432         int ret = 0;
9433
9434         /*
9435          * 5 units required for adding orphan entry
9436          */
9437         trans = btrfs_start_transaction(root, 5);
9438         if (IS_ERR(trans))
9439                 return PTR_ERR(trans);
9440
9441         ret = btrfs_find_free_ino(root, &objectid);
9442         if (ret)
9443                 goto out;
9444
9445         inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9446                                 btrfs_ino(dir), objectid, mode, &index);
9447         if (IS_ERR(inode)) {
9448                 ret = PTR_ERR(inode);
9449                 inode = NULL;
9450                 goto out;
9451         }
9452
9453         inode->i_fop = &btrfs_file_operations;
9454         inode->i_op = &btrfs_file_inode_operations;
9455
9456         inode->i_mapping->a_ops = &btrfs_aops;
9457         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9458
9459         ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9460         if (ret)
9461                 goto out_inode;
9462
9463         ret = btrfs_update_inode(trans, root, inode);
9464         if (ret)
9465                 goto out_inode;
9466         ret = btrfs_orphan_add(trans, inode);
9467         if (ret)
9468                 goto out_inode;
9469
9470         /*
9471          * We set number of links to 0 in btrfs_new_inode(), and here we set
9472          * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9473          * through:
9474          *
9475          *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9476          */
9477         set_nlink(inode, 1);
9478         unlock_new_inode(inode);
9479         d_tmpfile(dentry, inode);
9480         mark_inode_dirty(inode);
9481
9482 out:
9483         btrfs_end_transaction(trans, root);
9484         if (ret)
9485                 iput(inode);
9486         btrfs_balance_delayed_items(root);
9487         btrfs_btree_balance_dirty(root);
9488         return ret;
9489
9490 out_inode:
9491         unlock_new_inode(inode);
9492         goto out;
9493
9494 }
9495
9496 /* Inspired by filemap_check_errors() */
9497 int btrfs_inode_check_errors(struct inode *inode)
9498 {
9499         int ret = 0;
9500
9501         if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9502             test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9503                 ret = -ENOSPC;
9504         if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9505             test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9506                 ret = -EIO;
9507
9508         return ret;
9509 }
9510
9511 static const struct inode_operations btrfs_dir_inode_operations = {
9512         .getattr        = btrfs_getattr,
9513         .lookup         = btrfs_lookup,
9514         .create         = btrfs_create,
9515         .unlink         = btrfs_unlink,
9516         .link           = btrfs_link,
9517         .mkdir          = btrfs_mkdir,
9518         .rmdir          = btrfs_rmdir,
9519         .rename2        = btrfs_rename2,
9520         .symlink        = btrfs_symlink,
9521         .setattr        = btrfs_setattr,
9522         .mknod          = btrfs_mknod,
9523         .setxattr       = btrfs_setxattr,
9524         .getxattr       = btrfs_getxattr,
9525         .listxattr      = btrfs_listxattr,
9526         .removexattr    = btrfs_removexattr,
9527         .permission     = btrfs_permission,
9528         .get_acl        = btrfs_get_acl,
9529         .set_acl        = btrfs_set_acl,
9530         .update_time    = btrfs_update_time,
9531         .tmpfile        = btrfs_tmpfile,
9532 };
9533 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9534         .lookup         = btrfs_lookup,
9535         .permission     = btrfs_permission,
9536         .get_acl        = btrfs_get_acl,
9537         .set_acl        = btrfs_set_acl,
9538         .update_time    = btrfs_update_time,
9539 };
9540
9541 static const struct file_operations btrfs_dir_file_operations = {
9542         .llseek         = generic_file_llseek,
9543         .read           = generic_read_dir,
9544         .iterate        = btrfs_real_readdir,
9545         .unlocked_ioctl = btrfs_ioctl,
9546 #ifdef CONFIG_COMPAT
9547         .compat_ioctl   = btrfs_ioctl,
9548 #endif
9549         .release        = btrfs_release_file,
9550         .fsync          = btrfs_sync_file,
9551 };
9552
9553 static struct extent_io_ops btrfs_extent_io_ops = {
9554         .fill_delalloc = run_delalloc_range,
9555         .submit_bio_hook = btrfs_submit_bio_hook,
9556         .merge_bio_hook = btrfs_merge_bio_hook,
9557         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9558         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9559         .writepage_start_hook = btrfs_writepage_start_hook,
9560         .set_bit_hook = btrfs_set_bit_hook,
9561         .clear_bit_hook = btrfs_clear_bit_hook,
9562         .merge_extent_hook = btrfs_merge_extent_hook,
9563         .split_extent_hook = btrfs_split_extent_hook,
9564 };
9565
9566 /*
9567  * btrfs doesn't support the bmap operation because swapfiles
9568  * use bmap to make a mapping of extents in the file.  They assume
9569  * these extents won't change over the life of the file and they
9570  * use the bmap result to do IO directly to the drive.
9571  *
9572  * the btrfs bmap call would return logical addresses that aren't
9573  * suitable for IO and they also will change frequently as COW
9574  * operations happen.  So, swapfile + btrfs == corruption.
9575  *
9576  * For now we're avoiding this by dropping bmap.
9577  */
9578 static const struct address_space_operations btrfs_aops = {
9579         .readpage       = btrfs_readpage,
9580         .writepage      = btrfs_writepage,
9581         .writepages     = btrfs_writepages,
9582         .readpages      = btrfs_readpages,
9583         .direct_IO      = btrfs_direct_IO,
9584         .invalidatepage = btrfs_invalidatepage,
9585         .releasepage    = btrfs_releasepage,
9586         .set_page_dirty = btrfs_set_page_dirty,
9587         .error_remove_page = generic_error_remove_page,
9588 };
9589
9590 static const struct address_space_operations btrfs_symlink_aops = {
9591         .readpage       = btrfs_readpage,
9592         .writepage      = btrfs_writepage,
9593         .invalidatepage = btrfs_invalidatepage,
9594         .releasepage    = btrfs_releasepage,
9595 };
9596
9597 static const struct inode_operations btrfs_file_inode_operations = {
9598         .getattr        = btrfs_getattr,
9599         .setattr        = btrfs_setattr,
9600         .setxattr       = btrfs_setxattr,
9601         .getxattr       = btrfs_getxattr,
9602         .listxattr      = btrfs_listxattr,
9603         .removexattr    = btrfs_removexattr,
9604         .permission     = btrfs_permission,
9605         .fiemap         = btrfs_fiemap,
9606         .get_acl        = btrfs_get_acl,
9607         .set_acl        = btrfs_set_acl,
9608         .update_time    = btrfs_update_time,
9609 };
9610 static const struct inode_operations btrfs_special_inode_operations = {
9611         .getattr        = btrfs_getattr,
9612         .setattr        = btrfs_setattr,
9613         .permission     = btrfs_permission,
9614         .setxattr       = btrfs_setxattr,
9615         .getxattr       = btrfs_getxattr,
9616         .listxattr      = btrfs_listxattr,
9617         .removexattr    = btrfs_removexattr,
9618         .get_acl        = btrfs_get_acl,
9619         .set_acl        = btrfs_set_acl,
9620         .update_time    = btrfs_update_time,
9621 };
9622 static const struct inode_operations btrfs_symlink_inode_operations = {
9623         .readlink       = generic_readlink,
9624         .follow_link    = page_follow_link_light,
9625         .put_link       = page_put_link,
9626         .getattr        = btrfs_getattr,
9627         .setattr        = btrfs_setattr,
9628         .permission     = btrfs_permission,
9629         .setxattr       = btrfs_setxattr,
9630         .getxattr       = btrfs_getxattr,
9631         .listxattr      = btrfs_listxattr,
9632         .removexattr    = btrfs_removexattr,
9633         .update_time    = btrfs_update_time,
9634 };
9635
9636 const struct dentry_operations btrfs_dentry_operations = {
9637         .d_delete       = btrfs_dentry_delete,
9638         .d_release      = btrfs_dentry_release,
9639 };