x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / fs / btrfs / reada.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
31
32 #undef DEBUG
33
34 /*
35  * This is the implementation for the generic read ahead framework.
36  *
37  * To trigger a readahead, btrfs_reada_add must be called. It will start
38  * a read ahead for the given range [start, end) on tree root. The returned
39  * handle can either be used to wait on the readahead to finish
40  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41  *
42  * The read ahead works as follows:
43  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44  * reada_start_machine will then search for extents to prefetch and trigger
45  * some reads. When a read finishes for a node, all contained node/leaf
46  * pointers that lie in the given range will also be enqueued. The reads will
47  * be triggered in sequential order, thus giving a big win over a naive
48  * enumeration. It will also make use of multi-device layouts. Each disk
49  * will have its on read pointer and all disks will by utilized in parallel.
50  * Also will no two disks read both sides of a mirror simultaneously, as this
51  * would waste seeking capacity. Instead both disks will read different parts
52  * of the filesystem.
53  * Any number of readaheads can be started in parallel. The read order will be
54  * determined globally, i.e. 2 parallel readaheads will normally finish faster
55  * than the 2 started one after another.
56  */
57
58 #define MAX_IN_FLIGHT 6
59
60 struct reada_extctl {
61         struct list_head        list;
62         struct reada_control    *rc;
63         u64                     generation;
64 };
65
66 struct reada_extent {
67         u64                     logical;
68         struct btrfs_key        top;
69         int                     err;
70         struct list_head        extctl;
71         int                     refcnt;
72         spinlock_t              lock;
73         struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
74         int                     nzones;
75         int                     scheduled;
76 };
77
78 struct reada_zone {
79         u64                     start;
80         u64                     end;
81         u64                     elems;
82         struct list_head        list;
83         spinlock_t              lock;
84         int                     locked;
85         struct btrfs_device     *device;
86         struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87                                                            * self */
88         int                     ndevs;
89         struct kref             refcnt;
90 };
91
92 struct reada_machine_work {
93         struct btrfs_work       work;
94         struct btrfs_fs_info    *fs_info;
95 };
96
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104                            struct btrfs_key *top, u64 generation);
105
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static void __readahead_hook(struct btrfs_fs_info *fs_info,
109                              struct reada_extent *re, struct extent_buffer *eb,
110                              u64 start, int err)
111 {
112         int level = 0;
113         int nritems;
114         int i;
115         u64 bytenr;
116         u64 generation;
117         struct list_head list;
118
119         if (eb)
120                 level = btrfs_header_level(eb);
121
122         spin_lock(&re->lock);
123         /*
124          * just take the full list from the extent. afterwards we
125          * don't need the lock anymore
126          */
127         list_replace_init(&re->extctl, &list);
128         re->scheduled = 0;
129         spin_unlock(&re->lock);
130
131         /*
132          * this is the error case, the extent buffer has not been
133          * read correctly. We won't access anything from it and
134          * just cleanup our data structures. Effectively this will
135          * cut the branch below this node from read ahead.
136          */
137         if (err)
138                 goto cleanup;
139
140         /*
141          * FIXME: currently we just set nritems to 0 if this is a leaf,
142          * effectively ignoring the content. In a next step we could
143          * trigger more readahead depending from the content, e.g.
144          * fetch the checksums for the extents in the leaf.
145          */
146         if (!level)
147                 goto cleanup;
148
149         nritems = btrfs_header_nritems(eb);
150         generation = btrfs_header_generation(eb);
151         for (i = 0; i < nritems; i++) {
152                 struct reada_extctl *rec;
153                 u64 n_gen;
154                 struct btrfs_key key;
155                 struct btrfs_key next_key;
156
157                 btrfs_node_key_to_cpu(eb, &key, i);
158                 if (i + 1 < nritems)
159                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
160                 else
161                         next_key = re->top;
162                 bytenr = btrfs_node_blockptr(eb, i);
163                 n_gen = btrfs_node_ptr_generation(eb, i);
164
165                 list_for_each_entry(rec, &list, list) {
166                         struct reada_control *rc = rec->rc;
167
168                         /*
169                          * if the generation doesn't match, just ignore this
170                          * extctl. This will probably cut off a branch from
171                          * prefetch. Alternatively one could start a new (sub-)
172                          * prefetch for this branch, starting again from root.
173                          * FIXME: move the generation check out of this loop
174                          */
175 #ifdef DEBUG
176                         if (rec->generation != generation) {
177                                 btrfs_debug(fs_info,
178                                             "generation mismatch for (%llu,%d,%llu) %llu != %llu",
179                                             key.objectid, key.type, key.offset,
180                                             rec->generation, generation);
181                         }
182 #endif
183                         if (rec->generation == generation &&
184                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
185                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
186                                 reada_add_block(rc, bytenr, &next_key, n_gen);
187                 }
188         }
189
190 cleanup:
191         /*
192          * free extctl records
193          */
194         while (!list_empty(&list)) {
195                 struct reada_control *rc;
196                 struct reada_extctl *rec;
197
198                 rec = list_first_entry(&list, struct reada_extctl, list);
199                 list_del(&rec->list);
200                 rc = rec->rc;
201                 kfree(rec);
202
203                 kref_get(&rc->refcnt);
204                 if (atomic_dec_and_test(&rc->elems)) {
205                         kref_put(&rc->refcnt, reada_control_release);
206                         wake_up(&rc->wait);
207                 }
208                 kref_put(&rc->refcnt, reada_control_release);
209
210                 reada_extent_put(fs_info, re);  /* one ref for each entry */
211         }
212
213         return;
214 }
215
216 /*
217  * start is passed separately in case eb in NULL, which may be the case with
218  * failed I/O
219  */
220 int btree_readahead_hook(struct btrfs_fs_info *fs_info,
221                          struct extent_buffer *eb, u64 start, int err)
222 {
223         int ret = 0;
224         struct reada_extent *re;
225
226         /* find extent */
227         spin_lock(&fs_info->reada_lock);
228         re = radix_tree_lookup(&fs_info->reada_tree,
229                                start >> PAGE_SHIFT);
230         if (re)
231                 re->refcnt++;
232         spin_unlock(&fs_info->reada_lock);
233         if (!re) {
234                 ret = -1;
235                 goto start_machine;
236         }
237
238         __readahead_hook(fs_info, re, eb, start, err);
239         reada_extent_put(fs_info, re);  /* our ref */
240
241 start_machine:
242         reada_start_machine(fs_info);
243         return ret;
244 }
245
246 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
247                                           struct btrfs_device *dev, u64 logical,
248                                           struct btrfs_bio *bbio)
249 {
250         int ret;
251         struct reada_zone *zone;
252         struct btrfs_block_group_cache *cache = NULL;
253         u64 start;
254         u64 end;
255         int i;
256
257         zone = NULL;
258         spin_lock(&fs_info->reada_lock);
259         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
260                                      logical >> PAGE_SHIFT, 1);
261         if (ret == 1 && logical >= zone->start && logical <= zone->end) {
262                 kref_get(&zone->refcnt);
263                 spin_unlock(&fs_info->reada_lock);
264                 return zone;
265         }
266
267         spin_unlock(&fs_info->reada_lock);
268
269         cache = btrfs_lookup_block_group(fs_info, logical);
270         if (!cache)
271                 return NULL;
272
273         start = cache->key.objectid;
274         end = start + cache->key.offset - 1;
275         btrfs_put_block_group(cache);
276
277         zone = kzalloc(sizeof(*zone), GFP_KERNEL);
278         if (!zone)
279                 return NULL;
280
281         zone->start = start;
282         zone->end = end;
283         INIT_LIST_HEAD(&zone->list);
284         spin_lock_init(&zone->lock);
285         zone->locked = 0;
286         kref_init(&zone->refcnt);
287         zone->elems = 0;
288         zone->device = dev; /* our device always sits at index 0 */
289         for (i = 0; i < bbio->num_stripes; ++i) {
290                 /* bounds have already been checked */
291                 zone->devs[i] = bbio->stripes[i].dev;
292         }
293         zone->ndevs = bbio->num_stripes;
294
295         spin_lock(&fs_info->reada_lock);
296         ret = radix_tree_insert(&dev->reada_zones,
297                                 (unsigned long)(zone->end >> PAGE_SHIFT),
298                                 zone);
299
300         if (ret == -EEXIST) {
301                 kfree(zone);
302                 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
303                                              logical >> PAGE_SHIFT, 1);
304                 if (ret == 1 && logical >= zone->start && logical <= zone->end)
305                         kref_get(&zone->refcnt);
306                 else
307                         zone = NULL;
308         }
309         spin_unlock(&fs_info->reada_lock);
310
311         return zone;
312 }
313
314 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
315                                               u64 logical,
316                                               struct btrfs_key *top)
317 {
318         int ret;
319         struct reada_extent *re = NULL;
320         struct reada_extent *re_exist = NULL;
321         struct btrfs_fs_info *fs_info = root->fs_info;
322         struct btrfs_bio *bbio = NULL;
323         struct btrfs_device *dev;
324         struct btrfs_device *prev_dev;
325         u32 blocksize;
326         u64 length;
327         int real_stripes;
328         int nzones = 0;
329         unsigned long index = logical >> PAGE_SHIFT;
330         int dev_replace_is_ongoing;
331         int have_zone = 0;
332
333         spin_lock(&fs_info->reada_lock);
334         re = radix_tree_lookup(&fs_info->reada_tree, index);
335         if (re)
336                 re->refcnt++;
337         spin_unlock(&fs_info->reada_lock);
338
339         if (re)
340                 return re;
341
342         re = kzalloc(sizeof(*re), GFP_KERNEL);
343         if (!re)
344                 return NULL;
345
346         blocksize = root->nodesize;
347         re->logical = logical;
348         re->top = *top;
349         INIT_LIST_HEAD(&re->extctl);
350         spin_lock_init(&re->lock);
351         re->refcnt = 1;
352
353         /*
354          * map block
355          */
356         length = blocksize;
357         ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
358                               &bbio, 0);
359         if (ret || !bbio || length < blocksize)
360                 goto error;
361
362         if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
363                 btrfs_err(root->fs_info,
364                            "readahead: more than %d copies not supported",
365                            BTRFS_MAX_MIRRORS);
366                 goto error;
367         }
368
369         real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
370         for (nzones = 0; nzones < real_stripes; ++nzones) {
371                 struct reada_zone *zone;
372
373                 dev = bbio->stripes[nzones].dev;
374
375                 /* cannot read ahead on missing device. */
376                  if (!dev->bdev)
377                         continue;
378
379                 zone = reada_find_zone(fs_info, dev, logical, bbio);
380                 if (!zone)
381                         continue;
382
383                 re->zones[re->nzones++] = zone;
384                 spin_lock(&zone->lock);
385                 if (!zone->elems)
386                         kref_get(&zone->refcnt);
387                 ++zone->elems;
388                 spin_unlock(&zone->lock);
389                 spin_lock(&fs_info->reada_lock);
390                 kref_put(&zone->refcnt, reada_zone_release);
391                 spin_unlock(&fs_info->reada_lock);
392         }
393         if (re->nzones == 0) {
394                 /* not a single zone found, error and out */
395                 goto error;
396         }
397
398         /* insert extent in reada_tree + all per-device trees, all or nothing */
399         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
400         spin_lock(&fs_info->reada_lock);
401         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
402         if (ret == -EEXIST) {
403                 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
404                 BUG_ON(!re_exist);
405                 re_exist->refcnt++;
406                 spin_unlock(&fs_info->reada_lock);
407                 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
408                 goto error;
409         }
410         if (ret) {
411                 spin_unlock(&fs_info->reada_lock);
412                 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
413                 goto error;
414         }
415         prev_dev = NULL;
416         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
417                         &fs_info->dev_replace);
418         for (nzones = 0; nzones < re->nzones; ++nzones) {
419                 dev = re->zones[nzones]->device;
420
421                 if (dev == prev_dev) {
422                         /*
423                          * in case of DUP, just add the first zone. As both
424                          * are on the same device, there's nothing to gain
425                          * from adding both.
426                          * Also, it wouldn't work, as the tree is per device
427                          * and adding would fail with EEXIST
428                          */
429                         continue;
430                 }
431                 if (!dev->bdev)
432                         continue;
433
434                 if (dev_replace_is_ongoing &&
435                     dev == fs_info->dev_replace.tgtdev) {
436                         /*
437                          * as this device is selected for reading only as
438                          * a last resort, skip it for read ahead.
439                          */
440                         continue;
441                 }
442                 prev_dev = dev;
443                 ret = radix_tree_insert(&dev->reada_extents, index, re);
444                 if (ret) {
445                         while (--nzones >= 0) {
446                                 dev = re->zones[nzones]->device;
447                                 BUG_ON(dev == NULL);
448                                 /* ignore whether the entry was inserted */
449                                 radix_tree_delete(&dev->reada_extents, index);
450                         }
451                         BUG_ON(fs_info == NULL);
452                         radix_tree_delete(&fs_info->reada_tree, index);
453                         spin_unlock(&fs_info->reada_lock);
454                         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
455                         goto error;
456                 }
457                 have_zone = 1;
458         }
459         spin_unlock(&fs_info->reada_lock);
460         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
461
462         if (!have_zone)
463                 goto error;
464
465         btrfs_put_bbio(bbio);
466         return re;
467
468 error:
469         for (nzones = 0; nzones < re->nzones; ++nzones) {
470                 struct reada_zone *zone;
471
472                 zone = re->zones[nzones];
473                 kref_get(&zone->refcnt);
474                 spin_lock(&zone->lock);
475                 --zone->elems;
476                 if (zone->elems == 0) {
477                         /*
478                          * no fs_info->reada_lock needed, as this can't be
479                          * the last ref
480                          */
481                         kref_put(&zone->refcnt, reada_zone_release);
482                 }
483                 spin_unlock(&zone->lock);
484
485                 spin_lock(&fs_info->reada_lock);
486                 kref_put(&zone->refcnt, reada_zone_release);
487                 spin_unlock(&fs_info->reada_lock);
488         }
489         btrfs_put_bbio(bbio);
490         kfree(re);
491         return re_exist;
492 }
493
494 static void reada_extent_put(struct btrfs_fs_info *fs_info,
495                              struct reada_extent *re)
496 {
497         int i;
498         unsigned long index = re->logical >> PAGE_SHIFT;
499
500         spin_lock(&fs_info->reada_lock);
501         if (--re->refcnt) {
502                 spin_unlock(&fs_info->reada_lock);
503                 return;
504         }
505
506         radix_tree_delete(&fs_info->reada_tree, index);
507         for (i = 0; i < re->nzones; ++i) {
508                 struct reada_zone *zone = re->zones[i];
509
510                 radix_tree_delete(&zone->device->reada_extents, index);
511         }
512
513         spin_unlock(&fs_info->reada_lock);
514
515         for (i = 0; i < re->nzones; ++i) {
516                 struct reada_zone *zone = re->zones[i];
517
518                 kref_get(&zone->refcnt);
519                 spin_lock(&zone->lock);
520                 --zone->elems;
521                 if (zone->elems == 0) {
522                         /* no fs_info->reada_lock needed, as this can't be
523                          * the last ref */
524                         kref_put(&zone->refcnt, reada_zone_release);
525                 }
526                 spin_unlock(&zone->lock);
527
528                 spin_lock(&fs_info->reada_lock);
529                 kref_put(&zone->refcnt, reada_zone_release);
530                 spin_unlock(&fs_info->reada_lock);
531         }
532
533         kfree(re);
534 }
535
536 static void reada_zone_release(struct kref *kref)
537 {
538         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
539
540         radix_tree_delete(&zone->device->reada_zones,
541                           zone->end >> PAGE_SHIFT);
542
543         kfree(zone);
544 }
545
546 static void reada_control_release(struct kref *kref)
547 {
548         struct reada_control *rc = container_of(kref, struct reada_control,
549                                                 refcnt);
550
551         kfree(rc);
552 }
553
554 static int reada_add_block(struct reada_control *rc, u64 logical,
555                            struct btrfs_key *top, u64 generation)
556 {
557         struct btrfs_root *root = rc->root;
558         struct reada_extent *re;
559         struct reada_extctl *rec;
560
561         re = reada_find_extent(root, logical, top); /* takes one ref */
562         if (!re)
563                 return -1;
564
565         rec = kzalloc(sizeof(*rec), GFP_KERNEL);
566         if (!rec) {
567                 reada_extent_put(root->fs_info, re);
568                 return -ENOMEM;
569         }
570
571         rec->rc = rc;
572         rec->generation = generation;
573         atomic_inc(&rc->elems);
574
575         spin_lock(&re->lock);
576         list_add_tail(&rec->list, &re->extctl);
577         spin_unlock(&re->lock);
578
579         /* leave the ref on the extent */
580
581         return 0;
582 }
583
584 /*
585  * called with fs_info->reada_lock held
586  */
587 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
588 {
589         int i;
590         unsigned long index = zone->end >> PAGE_SHIFT;
591
592         for (i = 0; i < zone->ndevs; ++i) {
593                 struct reada_zone *peer;
594                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
595                 if (peer && peer->device != zone->device)
596                         peer->locked = lock;
597         }
598 }
599
600 /*
601  * called with fs_info->reada_lock held
602  */
603 static int reada_pick_zone(struct btrfs_device *dev)
604 {
605         struct reada_zone *top_zone = NULL;
606         struct reada_zone *top_locked_zone = NULL;
607         u64 top_elems = 0;
608         u64 top_locked_elems = 0;
609         unsigned long index = 0;
610         int ret;
611
612         if (dev->reada_curr_zone) {
613                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
614                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
615                 dev->reada_curr_zone = NULL;
616         }
617         /* pick the zone with the most elements */
618         while (1) {
619                 struct reada_zone *zone;
620
621                 ret = radix_tree_gang_lookup(&dev->reada_zones,
622                                              (void **)&zone, index, 1);
623                 if (ret == 0)
624                         break;
625                 index = (zone->end >> PAGE_SHIFT) + 1;
626                 if (zone->locked) {
627                         if (zone->elems > top_locked_elems) {
628                                 top_locked_elems = zone->elems;
629                                 top_locked_zone = zone;
630                         }
631                 } else {
632                         if (zone->elems > top_elems) {
633                                 top_elems = zone->elems;
634                                 top_zone = zone;
635                         }
636                 }
637         }
638         if (top_zone)
639                 dev->reada_curr_zone = top_zone;
640         else if (top_locked_zone)
641                 dev->reada_curr_zone = top_locked_zone;
642         else
643                 return 0;
644
645         dev->reada_next = dev->reada_curr_zone->start;
646         kref_get(&dev->reada_curr_zone->refcnt);
647         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
648
649         return 1;
650 }
651
652 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
653                                    struct btrfs_device *dev)
654 {
655         struct reada_extent *re = NULL;
656         int mirror_num = 0;
657         struct extent_buffer *eb = NULL;
658         u64 logical;
659         int ret;
660         int i;
661
662         spin_lock(&fs_info->reada_lock);
663         if (dev->reada_curr_zone == NULL) {
664                 ret = reada_pick_zone(dev);
665                 if (!ret) {
666                         spin_unlock(&fs_info->reada_lock);
667                         return 0;
668                 }
669         }
670         /*
671          * FIXME currently we issue the reads one extent at a time. If we have
672          * a contiguous block of extents, we could also coagulate them or use
673          * plugging to speed things up
674          */
675         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
676                                      dev->reada_next >> PAGE_SHIFT, 1);
677         if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
678                 ret = reada_pick_zone(dev);
679                 if (!ret) {
680                         spin_unlock(&fs_info->reada_lock);
681                         return 0;
682                 }
683                 re = NULL;
684                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
685                                         dev->reada_next >> PAGE_SHIFT, 1);
686         }
687         if (ret == 0) {
688                 spin_unlock(&fs_info->reada_lock);
689                 return 0;
690         }
691         dev->reada_next = re->logical + fs_info->tree_root->nodesize;
692         re->refcnt++;
693
694         spin_unlock(&fs_info->reada_lock);
695
696         spin_lock(&re->lock);
697         if (re->scheduled || list_empty(&re->extctl)) {
698                 spin_unlock(&re->lock);
699                 reada_extent_put(fs_info, re);
700                 return 0;
701         }
702         re->scheduled = 1;
703         spin_unlock(&re->lock);
704
705         /*
706          * find mirror num
707          */
708         for (i = 0; i < re->nzones; ++i) {
709                 if (re->zones[i]->device == dev) {
710                         mirror_num = i + 1;
711                         break;
712                 }
713         }
714         logical = re->logical;
715
716         atomic_inc(&dev->reada_in_flight);
717         ret = reada_tree_block_flagged(fs_info->extent_root, logical,
718                         mirror_num, &eb);
719         if (ret)
720                 __readahead_hook(fs_info, re, NULL, logical, ret);
721         else if (eb)
722                 __readahead_hook(fs_info, re, eb, eb->start, ret);
723
724         if (eb)
725                 free_extent_buffer(eb);
726
727         atomic_dec(&dev->reada_in_flight);
728         reada_extent_put(fs_info, re);
729
730         return 1;
731
732 }
733
734 static void reada_start_machine_worker(struct btrfs_work *work)
735 {
736         struct reada_machine_work *rmw;
737         struct btrfs_fs_info *fs_info;
738         int old_ioprio;
739
740         rmw = container_of(work, struct reada_machine_work, work);
741         fs_info = rmw->fs_info;
742
743         kfree(rmw);
744
745         old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
746                                        task_nice_ioprio(current));
747         set_task_ioprio(current, BTRFS_IOPRIO_READA);
748         __reada_start_machine(fs_info);
749         set_task_ioprio(current, old_ioprio);
750
751         atomic_dec(&fs_info->reada_works_cnt);
752 }
753
754 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
755 {
756         struct btrfs_device *device;
757         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
758         u64 enqueued;
759         u64 total = 0;
760         int i;
761
762         do {
763                 enqueued = 0;
764                 mutex_lock(&fs_devices->device_list_mutex);
765                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
766                         if (atomic_read(&device->reada_in_flight) <
767                             MAX_IN_FLIGHT)
768                                 enqueued += reada_start_machine_dev(fs_info,
769                                                                     device);
770                 }
771                 mutex_unlock(&fs_devices->device_list_mutex);
772                 total += enqueued;
773         } while (enqueued && total < 10000);
774
775         if (enqueued == 0)
776                 return;
777
778         /*
779          * If everything is already in the cache, this is effectively single
780          * threaded. To a) not hold the caller for too long and b) to utilize
781          * more cores, we broke the loop above after 10000 iterations and now
782          * enqueue to workers to finish it. This will distribute the load to
783          * the cores.
784          */
785         for (i = 0; i < 2; ++i) {
786                 reada_start_machine(fs_info);
787                 if (atomic_read(&fs_info->reada_works_cnt) >
788                     BTRFS_MAX_MIRRORS * 2)
789                         break;
790         }
791 }
792
793 static void reada_start_machine(struct btrfs_fs_info *fs_info)
794 {
795         struct reada_machine_work *rmw;
796
797         rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
798         if (!rmw) {
799                 /* FIXME we cannot handle this properly right now */
800                 BUG();
801         }
802         btrfs_init_work(&rmw->work, btrfs_readahead_helper,
803                         reada_start_machine_worker, NULL, NULL);
804         rmw->fs_info = fs_info;
805
806         btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
807         atomic_inc(&fs_info->reada_works_cnt);
808 }
809
810 #ifdef DEBUG
811 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
812 {
813         struct btrfs_device *device;
814         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
815         unsigned long index;
816         int ret;
817         int i;
818         int j;
819         int cnt;
820
821         spin_lock(&fs_info->reada_lock);
822         list_for_each_entry(device, &fs_devices->devices, dev_list) {
823                 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
824                         atomic_read(&device->reada_in_flight));
825                 index = 0;
826                 while (1) {
827                         struct reada_zone *zone;
828                         ret = radix_tree_gang_lookup(&device->reada_zones,
829                                                      (void **)&zone, index, 1);
830                         if (ret == 0)
831                                 break;
832                         pr_debug("  zone %llu-%llu elems %llu locked %d devs",
833                                     zone->start, zone->end, zone->elems,
834                                     zone->locked);
835                         for (j = 0; j < zone->ndevs; ++j) {
836                                 pr_cont(" %lld",
837                                         zone->devs[j]->devid);
838                         }
839                         if (device->reada_curr_zone == zone)
840                                 pr_cont(" curr off %llu",
841                                         device->reada_next - zone->start);
842                         pr_cont("\n");
843                         index = (zone->end >> PAGE_SHIFT) + 1;
844                 }
845                 cnt = 0;
846                 index = 0;
847                 while (all) {
848                         struct reada_extent *re = NULL;
849
850                         ret = radix_tree_gang_lookup(&device->reada_extents,
851                                                      (void **)&re, index, 1);
852                         if (ret == 0)
853                                 break;
854                         pr_debug("  re: logical %llu size %u empty %d scheduled %d",
855                                 re->logical, fs_info->tree_root->nodesize,
856                                 list_empty(&re->extctl), re->scheduled);
857
858                         for (i = 0; i < re->nzones; ++i) {
859                                 pr_cont(" zone %llu-%llu devs",
860                                         re->zones[i]->start,
861                                         re->zones[i]->end);
862                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
863                                         pr_cont(" %lld",
864                                                 re->zones[i]->devs[j]->devid);
865                                 }
866                         }
867                         pr_cont("\n");
868                         index = (re->logical >> PAGE_SHIFT) + 1;
869                         if (++cnt > 15)
870                                 break;
871                 }
872         }
873
874         index = 0;
875         cnt = 0;
876         while (all) {
877                 struct reada_extent *re = NULL;
878
879                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
880                                              index, 1);
881                 if (ret == 0)
882                         break;
883                 if (!re->scheduled) {
884                         index = (re->logical >> PAGE_SHIFT) + 1;
885                         continue;
886                 }
887                 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
888                         re->logical, fs_info->tree_root->nodesize,
889                         list_empty(&re->extctl), re->scheduled);
890                 for (i = 0; i < re->nzones; ++i) {
891                         pr_cont(" zone %llu-%llu devs",
892                                 re->zones[i]->start,
893                                 re->zones[i]->end);
894                         for (j = 0; j < re->zones[i]->ndevs; ++j) {
895                                 pr_cont(" %lld",
896                                        re->zones[i]->devs[j]->devid);
897                         }
898                 }
899                 pr_cont("\n");
900                 index = (re->logical >> PAGE_SHIFT) + 1;
901         }
902         spin_unlock(&fs_info->reada_lock);
903 }
904 #endif
905
906 /*
907  * interface
908  */
909 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
910                         struct btrfs_key *key_start, struct btrfs_key *key_end)
911 {
912         struct reada_control *rc;
913         u64 start;
914         u64 generation;
915         int ret;
916         struct extent_buffer *node;
917         static struct btrfs_key max_key = {
918                 .objectid = (u64)-1,
919                 .type = (u8)-1,
920                 .offset = (u64)-1
921         };
922
923         rc = kzalloc(sizeof(*rc), GFP_KERNEL);
924         if (!rc)
925                 return ERR_PTR(-ENOMEM);
926
927         rc->root = root;
928         rc->key_start = *key_start;
929         rc->key_end = *key_end;
930         atomic_set(&rc->elems, 0);
931         init_waitqueue_head(&rc->wait);
932         kref_init(&rc->refcnt);
933         kref_get(&rc->refcnt); /* one ref for having elements */
934
935         node = btrfs_root_node(root);
936         start = node->start;
937         generation = btrfs_header_generation(node);
938         free_extent_buffer(node);
939
940         ret = reada_add_block(rc, start, &max_key, generation);
941         if (ret) {
942                 kfree(rc);
943                 return ERR_PTR(ret);
944         }
945
946         reada_start_machine(root->fs_info);
947
948         return rc;
949 }
950
951 #ifdef DEBUG
952 int btrfs_reada_wait(void *handle)
953 {
954         struct reada_control *rc = handle;
955         struct btrfs_fs_info *fs_info = rc->root->fs_info;
956
957         while (atomic_read(&rc->elems)) {
958                 if (!atomic_read(&fs_info->reada_works_cnt))
959                         reada_start_machine(fs_info);
960                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
961                                    5 * HZ);
962                 dump_devs(rc->root->fs_info,
963                           atomic_read(&rc->elems) < 10 ? 1 : 0);
964         }
965
966         dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
967
968         kref_put(&rc->refcnt, reada_control_release);
969
970         return 0;
971 }
972 #else
973 int btrfs_reada_wait(void *handle)
974 {
975         struct reada_control *rc = handle;
976         struct btrfs_fs_info *fs_info = rc->root->fs_info;
977
978         while (atomic_read(&rc->elems)) {
979                 if (!atomic_read(&fs_info->reada_works_cnt))
980                         reada_start_machine(fs_info);
981                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
982                                    (HZ + 9) / 10);
983         }
984
985         kref_put(&rc->refcnt, reada_control_release);
986
987         return 0;
988 }
989 #endif
990
991 void btrfs_reada_detach(void *handle)
992 {
993         struct reada_control *rc = handle;
994
995         kref_put(&rc->refcnt, reada_control_release);
996 }