Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[cascardo/linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39         [TRANS_STATE_RUNNING]           = 0U,
40         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
41                                            __TRANS_START),
42         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
43                                            __TRANS_START |
44                                            __TRANS_ATTACH),
45         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
46                                            __TRANS_START |
47                                            __TRANS_ATTACH |
48                                            __TRANS_JOIN),
49         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
50                                            __TRANS_START |
51                                            __TRANS_ATTACH |
52                                            __TRANS_JOIN |
53                                            __TRANS_JOIN_NOLOCK),
54         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
55                                            __TRANS_START |
56                                            __TRANS_ATTACH |
57                                            __TRANS_JOIN |
58                                            __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63         WARN_ON(atomic_read(&transaction->use_count) == 0);
64         if (atomic_dec_and_test(&transaction->use_count)) {
65                 BUG_ON(!list_empty(&transaction->list));
66                 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67                 while (!list_empty(&transaction->pending_chunks)) {
68                         struct extent_map *em;
69
70                         em = list_first_entry(&transaction->pending_chunks,
71                                               struct extent_map, list);
72                         list_del_init(&em->list);
73                         free_extent_map(em);
74                 }
75                 kmem_cache_free(btrfs_transaction_cachep, transaction);
76         }
77 }
78
79 static void clear_btree_io_tree(struct extent_io_tree *tree)
80 {
81         spin_lock(&tree->lock);
82         while (!RB_EMPTY_ROOT(&tree->state)) {
83                 struct rb_node *node;
84                 struct extent_state *state;
85
86                 node = rb_first(&tree->state);
87                 state = rb_entry(node, struct extent_state, rb_node);
88                 rb_erase(&state->rb_node, &tree->state);
89                 RB_CLEAR_NODE(&state->rb_node);
90                 /*
91                  * btree io trees aren't supposed to have tasks waiting for
92                  * changes in the flags of extent states ever.
93                  */
94                 ASSERT(!waitqueue_active(&state->wq));
95                 free_extent_state(state);
96                 if (need_resched()) {
97                         spin_unlock(&tree->lock);
98                         cond_resched();
99                         spin_lock(&tree->lock);
100                 }
101         }
102         spin_unlock(&tree->lock);
103 }
104
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106                                          struct btrfs_fs_info *fs_info)
107 {
108         struct btrfs_root *root, *tmp;
109
110         down_write(&fs_info->commit_root_sem);
111         list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112                                  dirty_list) {
113                 list_del_init(&root->dirty_list);
114                 free_extent_buffer(root->commit_root);
115                 root->commit_root = btrfs_root_node(root);
116                 if (is_fstree(root->objectid))
117                         btrfs_unpin_free_ino(root);
118                 clear_btree_io_tree(&root->dirty_log_pages);
119         }
120         up_write(&fs_info->commit_root_sem);
121 }
122
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124                                          unsigned int type)
125 {
126         if (type & TRANS_EXTWRITERS)
127                 atomic_inc(&trans->num_extwriters);
128 }
129
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131                                          unsigned int type)
132 {
133         if (type & TRANS_EXTWRITERS)
134                 atomic_dec(&trans->num_extwriters);
135 }
136
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138                                           unsigned int type)
139 {
140         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145         return atomic_read(&trans->num_extwriters);
146 }
147
148 /*
149  * either allocate a new transaction or hop into the existing one
150  */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153         struct btrfs_transaction *cur_trans;
154         struct btrfs_fs_info *fs_info = root->fs_info;
155
156         spin_lock(&fs_info->trans_lock);
157 loop:
158         /* The file system has been taken offline. No new transactions. */
159         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160                 spin_unlock(&fs_info->trans_lock);
161                 return -EROFS;
162         }
163
164         cur_trans = fs_info->running_transaction;
165         if (cur_trans) {
166                 if (cur_trans->aborted) {
167                         spin_unlock(&fs_info->trans_lock);
168                         return cur_trans->aborted;
169                 }
170                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171                         spin_unlock(&fs_info->trans_lock);
172                         return -EBUSY;
173                 }
174                 atomic_inc(&cur_trans->use_count);
175                 atomic_inc(&cur_trans->num_writers);
176                 extwriter_counter_inc(cur_trans, type);
177                 spin_unlock(&fs_info->trans_lock);
178                 return 0;
179         }
180         spin_unlock(&fs_info->trans_lock);
181
182         /*
183          * If we are ATTACH, we just want to catch the current transaction,
184          * and commit it. If there is no transaction, just return ENOENT.
185          */
186         if (type == TRANS_ATTACH)
187                 return -ENOENT;
188
189         /*
190          * JOIN_NOLOCK only happens during the transaction commit, so
191          * it is impossible that ->running_transaction is NULL
192          */
193         BUG_ON(type == TRANS_JOIN_NOLOCK);
194
195         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196         if (!cur_trans)
197                 return -ENOMEM;
198
199         spin_lock(&fs_info->trans_lock);
200         if (fs_info->running_transaction) {
201                 /*
202                  * someone started a transaction after we unlocked.  Make sure
203                  * to redo the checks above
204                  */
205                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206                 goto loop;
207         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208                 spin_unlock(&fs_info->trans_lock);
209                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210                 return -EROFS;
211         }
212
213         atomic_set(&cur_trans->num_writers, 1);
214         extwriter_counter_init(cur_trans, type);
215         init_waitqueue_head(&cur_trans->writer_wait);
216         init_waitqueue_head(&cur_trans->commit_wait);
217         cur_trans->state = TRANS_STATE_RUNNING;
218         /*
219          * One for this trans handle, one so it will live on until we
220          * commit the transaction.
221          */
222         atomic_set(&cur_trans->use_count, 2);
223         cur_trans->have_free_bgs = 0;
224         cur_trans->start_time = get_seconds();
225
226         cur_trans->delayed_refs.href_root = RB_ROOT;
227         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
228         cur_trans->delayed_refs.num_heads_ready = 0;
229         cur_trans->delayed_refs.num_heads = 0;
230         cur_trans->delayed_refs.flushing = 0;
231         cur_trans->delayed_refs.run_delayed_start = 0;
232
233         /*
234          * although the tree mod log is per file system and not per transaction,
235          * the log must never go across transaction boundaries.
236          */
237         smp_mb();
238         if (!list_empty(&fs_info->tree_mod_seq_list))
239                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
240                         "creating a fresh transaction\n");
241         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
242                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
243                         "creating a fresh transaction\n");
244         atomic64_set(&fs_info->tree_mod_seq, 0);
245
246         spin_lock_init(&cur_trans->delayed_refs.lock);
247
248         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
249         INIT_LIST_HEAD(&cur_trans->pending_chunks);
250         INIT_LIST_HEAD(&cur_trans->switch_commits);
251         INIT_LIST_HEAD(&cur_trans->pending_ordered);
252         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
253         spin_lock_init(&cur_trans->dirty_bgs_lock);
254         list_add_tail(&cur_trans->list, &fs_info->trans_list);
255         extent_io_tree_init(&cur_trans->dirty_pages,
256                              fs_info->btree_inode->i_mapping);
257         fs_info->generation++;
258         cur_trans->transid = fs_info->generation;
259         fs_info->running_transaction = cur_trans;
260         cur_trans->aborted = 0;
261         spin_unlock(&fs_info->trans_lock);
262
263         return 0;
264 }
265
266 /*
267  * this does all the record keeping required to make sure that a reference
268  * counted root is properly recorded in a given transaction.  This is required
269  * to make sure the old root from before we joined the transaction is deleted
270  * when the transaction commits
271  */
272 static int record_root_in_trans(struct btrfs_trans_handle *trans,
273                                struct btrfs_root *root)
274 {
275         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
276             root->last_trans < trans->transid) {
277                 WARN_ON(root == root->fs_info->extent_root);
278                 WARN_ON(root->commit_root != root->node);
279
280                 /*
281                  * see below for IN_TRANS_SETUP usage rules
282                  * we have the reloc mutex held now, so there
283                  * is only one writer in this function
284                  */
285                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
286
287                 /* make sure readers find IN_TRANS_SETUP before
288                  * they find our root->last_trans update
289                  */
290                 smp_wmb();
291
292                 spin_lock(&root->fs_info->fs_roots_radix_lock);
293                 if (root->last_trans == trans->transid) {
294                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
295                         return 0;
296                 }
297                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
298                            (unsigned long)root->root_key.objectid,
299                            BTRFS_ROOT_TRANS_TAG);
300                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
301                 root->last_trans = trans->transid;
302
303                 /* this is pretty tricky.  We don't want to
304                  * take the relocation lock in btrfs_record_root_in_trans
305                  * unless we're really doing the first setup for this root in
306                  * this transaction.
307                  *
308                  * Normally we'd use root->last_trans as a flag to decide
309                  * if we want to take the expensive mutex.
310                  *
311                  * But, we have to set root->last_trans before we
312                  * init the relocation root, otherwise, we trip over warnings
313                  * in ctree.c.  The solution used here is to flag ourselves
314                  * with root IN_TRANS_SETUP.  When this is 1, we're still
315                  * fixing up the reloc trees and everyone must wait.
316                  *
317                  * When this is zero, they can trust root->last_trans and fly
318                  * through btrfs_record_root_in_trans without having to take the
319                  * lock.  smp_wmb() makes sure that all the writes above are
320                  * done before we pop in the zero below
321                  */
322                 btrfs_init_reloc_root(trans, root);
323                 smp_mb__before_atomic();
324                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
325         }
326         return 0;
327 }
328
329
330 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
331                                struct btrfs_root *root)
332 {
333         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
334                 return 0;
335
336         /*
337          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
338          * and barriers
339          */
340         smp_rmb();
341         if (root->last_trans == trans->transid &&
342             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
343                 return 0;
344
345         mutex_lock(&root->fs_info->reloc_mutex);
346         record_root_in_trans(trans, root);
347         mutex_unlock(&root->fs_info->reloc_mutex);
348
349         return 0;
350 }
351
352 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
353 {
354         return (trans->state >= TRANS_STATE_BLOCKED &&
355                 trans->state < TRANS_STATE_UNBLOCKED &&
356                 !trans->aborted);
357 }
358
359 /* wait for commit against the current transaction to become unblocked
360  * when this is done, it is safe to start a new transaction, but the current
361  * transaction might not be fully on disk.
362  */
363 static void wait_current_trans(struct btrfs_root *root)
364 {
365         struct btrfs_transaction *cur_trans;
366
367         spin_lock(&root->fs_info->trans_lock);
368         cur_trans = root->fs_info->running_transaction;
369         if (cur_trans && is_transaction_blocked(cur_trans)) {
370                 atomic_inc(&cur_trans->use_count);
371                 spin_unlock(&root->fs_info->trans_lock);
372
373                 wait_event(root->fs_info->transaction_wait,
374                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
375                            cur_trans->aborted);
376                 btrfs_put_transaction(cur_trans);
377         } else {
378                 spin_unlock(&root->fs_info->trans_lock);
379         }
380 }
381
382 static int may_wait_transaction(struct btrfs_root *root, int type)
383 {
384         if (root->fs_info->log_root_recovering)
385                 return 0;
386
387         if (type == TRANS_USERSPACE)
388                 return 1;
389
390         if (type == TRANS_START &&
391             !atomic_read(&root->fs_info->open_ioctl_trans))
392                 return 1;
393
394         return 0;
395 }
396
397 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
398 {
399         if (!root->fs_info->reloc_ctl ||
400             !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
401             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
402             root->reloc_root)
403                 return false;
404
405         return true;
406 }
407
408 static struct btrfs_trans_handle *
409 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
410                   enum btrfs_reserve_flush_enum flush)
411 {
412         struct btrfs_trans_handle *h;
413         struct btrfs_transaction *cur_trans;
414         u64 num_bytes = 0;
415         u64 qgroup_reserved = 0;
416         bool reloc_reserved = false;
417         int ret;
418
419         /* Send isn't supposed to start transactions. */
420         ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
421
422         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
423                 return ERR_PTR(-EROFS);
424
425         if (current->journal_info) {
426                 WARN_ON(type & TRANS_EXTWRITERS);
427                 h = current->journal_info;
428                 h->use_count++;
429                 WARN_ON(h->use_count > 2);
430                 h->orig_rsv = h->block_rsv;
431                 h->block_rsv = NULL;
432                 goto got_it;
433         }
434
435         /*
436          * Do the reservation before we join the transaction so we can do all
437          * the appropriate flushing if need be.
438          */
439         if (num_items > 0 && root != root->fs_info->chunk_root) {
440                 if (root->fs_info->quota_enabled &&
441                     is_fstree(root->root_key.objectid)) {
442                         qgroup_reserved = num_items * root->nodesize;
443                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
444                         if (ret)
445                                 return ERR_PTR(ret);
446                 }
447
448                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
449                 /*
450                  * Do the reservation for the relocation root creation
451                  */
452                 if (need_reserve_reloc_root(root)) {
453                         num_bytes += root->nodesize;
454                         reloc_reserved = true;
455                 }
456
457                 ret = btrfs_block_rsv_add(root,
458                                           &root->fs_info->trans_block_rsv,
459                                           num_bytes, flush);
460                 if (ret)
461                         goto reserve_fail;
462         }
463 again:
464         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
465         if (!h) {
466                 ret = -ENOMEM;
467                 goto alloc_fail;
468         }
469
470         /*
471          * If we are JOIN_NOLOCK we're already committing a transaction and
472          * waiting on this guy, so we don't need to do the sb_start_intwrite
473          * because we're already holding a ref.  We need this because we could
474          * have raced in and did an fsync() on a file which can kick a commit
475          * and then we deadlock with somebody doing a freeze.
476          *
477          * If we are ATTACH, it means we just want to catch the current
478          * transaction and commit it, so we needn't do sb_start_intwrite(). 
479          */
480         if (type & __TRANS_FREEZABLE)
481                 sb_start_intwrite(root->fs_info->sb);
482
483         if (may_wait_transaction(root, type))
484                 wait_current_trans(root);
485
486         do {
487                 ret = join_transaction(root, type);
488                 if (ret == -EBUSY) {
489                         wait_current_trans(root);
490                         if (unlikely(type == TRANS_ATTACH))
491                                 ret = -ENOENT;
492                 }
493         } while (ret == -EBUSY);
494
495         if (ret < 0) {
496                 /* We must get the transaction if we are JOIN_NOLOCK. */
497                 BUG_ON(type == TRANS_JOIN_NOLOCK);
498                 goto join_fail;
499         }
500
501         cur_trans = root->fs_info->running_transaction;
502
503         h->transid = cur_trans->transid;
504         h->transaction = cur_trans;
505         h->blocks_used = 0;
506         h->bytes_reserved = 0;
507         h->root = root;
508         h->delayed_ref_updates = 0;
509         h->use_count = 1;
510         h->adding_csums = 0;
511         h->block_rsv = NULL;
512         h->orig_rsv = NULL;
513         h->aborted = 0;
514         h->qgroup_reserved = 0;
515         h->delayed_ref_elem.seq = 0;
516         h->type = type;
517         h->allocating_chunk = false;
518         h->reloc_reserved = false;
519         h->sync = false;
520         INIT_LIST_HEAD(&h->qgroup_ref_list);
521         INIT_LIST_HEAD(&h->new_bgs);
522         INIT_LIST_HEAD(&h->ordered);
523
524         smp_mb();
525         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
526             may_wait_transaction(root, type)) {
527                 current->journal_info = h;
528                 btrfs_commit_transaction(h, root);
529                 goto again;
530         }
531
532         if (num_bytes) {
533                 trace_btrfs_space_reservation(root->fs_info, "transaction",
534                                               h->transid, num_bytes, 1);
535                 h->block_rsv = &root->fs_info->trans_block_rsv;
536                 h->bytes_reserved = num_bytes;
537                 h->reloc_reserved = reloc_reserved;
538         }
539         h->qgroup_reserved = qgroup_reserved;
540
541 got_it:
542         btrfs_record_root_in_trans(h, root);
543
544         if (!current->journal_info && type != TRANS_USERSPACE)
545                 current->journal_info = h;
546         return h;
547
548 join_fail:
549         if (type & __TRANS_FREEZABLE)
550                 sb_end_intwrite(root->fs_info->sb);
551         kmem_cache_free(btrfs_trans_handle_cachep, h);
552 alloc_fail:
553         if (num_bytes)
554                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
555                                         num_bytes);
556 reserve_fail:
557         if (qgroup_reserved)
558                 btrfs_qgroup_free(root, qgroup_reserved);
559         return ERR_PTR(ret);
560 }
561
562 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
563                                                    int num_items)
564 {
565         return start_transaction(root, num_items, TRANS_START,
566                                  BTRFS_RESERVE_FLUSH_ALL);
567 }
568
569 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
570                                         struct btrfs_root *root, int num_items)
571 {
572         return start_transaction(root, num_items, TRANS_START,
573                                  BTRFS_RESERVE_FLUSH_LIMIT);
574 }
575
576 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
577 {
578         return start_transaction(root, 0, TRANS_JOIN, 0);
579 }
580
581 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
582 {
583         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
584 }
585
586 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
587 {
588         return start_transaction(root, 0, TRANS_USERSPACE, 0);
589 }
590
591 /*
592  * btrfs_attach_transaction() - catch the running transaction
593  *
594  * It is used when we want to commit the current the transaction, but
595  * don't want to start a new one.
596  *
597  * Note: If this function return -ENOENT, it just means there is no
598  * running transaction. But it is possible that the inactive transaction
599  * is still in the memory, not fully on disk. If you hope there is no
600  * inactive transaction in the fs when -ENOENT is returned, you should
601  * invoke
602  *     btrfs_attach_transaction_barrier()
603  */
604 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
605 {
606         return start_transaction(root, 0, TRANS_ATTACH, 0);
607 }
608
609 /*
610  * btrfs_attach_transaction_barrier() - catch the running transaction
611  *
612  * It is similar to the above function, the differentia is this one
613  * will wait for all the inactive transactions until they fully
614  * complete.
615  */
616 struct btrfs_trans_handle *
617 btrfs_attach_transaction_barrier(struct btrfs_root *root)
618 {
619         struct btrfs_trans_handle *trans;
620
621         trans = start_transaction(root, 0, TRANS_ATTACH, 0);
622         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
623                 btrfs_wait_for_commit(root, 0);
624
625         return trans;
626 }
627
628 /* wait for a transaction commit to be fully complete */
629 static noinline void wait_for_commit(struct btrfs_root *root,
630                                     struct btrfs_transaction *commit)
631 {
632         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
633 }
634
635 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
636 {
637         struct btrfs_transaction *cur_trans = NULL, *t;
638         int ret = 0;
639
640         if (transid) {
641                 if (transid <= root->fs_info->last_trans_committed)
642                         goto out;
643
644                 /* find specified transaction */
645                 spin_lock(&root->fs_info->trans_lock);
646                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
647                         if (t->transid == transid) {
648                                 cur_trans = t;
649                                 atomic_inc(&cur_trans->use_count);
650                                 ret = 0;
651                                 break;
652                         }
653                         if (t->transid > transid) {
654                                 ret = 0;
655                                 break;
656                         }
657                 }
658                 spin_unlock(&root->fs_info->trans_lock);
659
660                 /*
661                  * The specified transaction doesn't exist, or we
662                  * raced with btrfs_commit_transaction
663                  */
664                 if (!cur_trans) {
665                         if (transid > root->fs_info->last_trans_committed)
666                                 ret = -EINVAL;
667                         goto out;
668                 }
669         } else {
670                 /* find newest transaction that is committing | committed */
671                 spin_lock(&root->fs_info->trans_lock);
672                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
673                                             list) {
674                         if (t->state >= TRANS_STATE_COMMIT_START) {
675                                 if (t->state == TRANS_STATE_COMPLETED)
676                                         break;
677                                 cur_trans = t;
678                                 atomic_inc(&cur_trans->use_count);
679                                 break;
680                         }
681                 }
682                 spin_unlock(&root->fs_info->trans_lock);
683                 if (!cur_trans)
684                         goto out;  /* nothing committing|committed */
685         }
686
687         wait_for_commit(root, cur_trans);
688         btrfs_put_transaction(cur_trans);
689 out:
690         return ret;
691 }
692
693 void btrfs_throttle(struct btrfs_root *root)
694 {
695         if (!atomic_read(&root->fs_info->open_ioctl_trans))
696                 wait_current_trans(root);
697 }
698
699 static int should_end_transaction(struct btrfs_trans_handle *trans,
700                                   struct btrfs_root *root)
701 {
702         if (root->fs_info->global_block_rsv.space_info->full &&
703             btrfs_check_space_for_delayed_refs(trans, root))
704                 return 1;
705
706         return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
707 }
708
709 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
710                                  struct btrfs_root *root)
711 {
712         struct btrfs_transaction *cur_trans = trans->transaction;
713         int updates;
714         int err;
715
716         smp_mb();
717         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
718             cur_trans->delayed_refs.flushing)
719                 return 1;
720
721         updates = trans->delayed_ref_updates;
722         trans->delayed_ref_updates = 0;
723         if (updates) {
724                 err = btrfs_run_delayed_refs(trans, root, updates);
725                 if (err) /* Error code will also eval true */
726                         return err;
727         }
728
729         return should_end_transaction(trans, root);
730 }
731
732 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
733                           struct btrfs_root *root, int throttle)
734 {
735         struct btrfs_transaction *cur_trans = trans->transaction;
736         struct btrfs_fs_info *info = root->fs_info;
737         unsigned long cur = trans->delayed_ref_updates;
738         int lock = (trans->type != TRANS_JOIN_NOLOCK);
739         int err = 0;
740         int must_run_delayed_refs = 0;
741
742         if (trans->use_count > 1) {
743                 trans->use_count--;
744                 trans->block_rsv = trans->orig_rsv;
745                 return 0;
746         }
747
748         btrfs_trans_release_metadata(trans, root);
749         trans->block_rsv = NULL;
750
751         if (!list_empty(&trans->new_bgs))
752                 btrfs_create_pending_block_groups(trans, root);
753
754         if (!list_empty(&trans->ordered)) {
755                 spin_lock(&info->trans_lock);
756                 list_splice(&trans->ordered, &cur_trans->pending_ordered);
757                 spin_unlock(&info->trans_lock);
758         }
759
760         trans->delayed_ref_updates = 0;
761         if (!trans->sync) {
762                 must_run_delayed_refs =
763                         btrfs_should_throttle_delayed_refs(trans, root);
764                 cur = max_t(unsigned long, cur, 32);
765
766                 /*
767                  * don't make the caller wait if they are from a NOLOCK
768                  * or ATTACH transaction, it will deadlock with commit
769                  */
770                 if (must_run_delayed_refs == 1 &&
771                     (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
772                         must_run_delayed_refs = 2;
773         }
774
775         if (trans->qgroup_reserved) {
776                 /*
777                  * the same root has to be passed here between start_transaction
778                  * and end_transaction. Subvolume quota depends on this.
779                  */
780                 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
781                 trans->qgroup_reserved = 0;
782         }
783
784         btrfs_trans_release_metadata(trans, root);
785         trans->block_rsv = NULL;
786
787         if (!list_empty(&trans->new_bgs))
788                 btrfs_create_pending_block_groups(trans, root);
789
790         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
791             should_end_transaction(trans, root) &&
792             ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
793                 spin_lock(&info->trans_lock);
794                 if (cur_trans->state == TRANS_STATE_RUNNING)
795                         cur_trans->state = TRANS_STATE_BLOCKED;
796                 spin_unlock(&info->trans_lock);
797         }
798
799         if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
800                 if (throttle)
801                         return btrfs_commit_transaction(trans, root);
802                 else
803                         wake_up_process(info->transaction_kthread);
804         }
805
806         if (trans->type & __TRANS_FREEZABLE)
807                 sb_end_intwrite(root->fs_info->sb);
808
809         WARN_ON(cur_trans != info->running_transaction);
810         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
811         atomic_dec(&cur_trans->num_writers);
812         extwriter_counter_dec(cur_trans, trans->type);
813
814         smp_mb();
815         if (waitqueue_active(&cur_trans->writer_wait))
816                 wake_up(&cur_trans->writer_wait);
817         btrfs_put_transaction(cur_trans);
818
819         if (current->journal_info == trans)
820                 current->journal_info = NULL;
821
822         if (throttle)
823                 btrfs_run_delayed_iputs(root);
824
825         if (trans->aborted ||
826             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
827                 wake_up_process(info->transaction_kthread);
828                 err = -EIO;
829         }
830         assert_qgroups_uptodate(trans);
831
832         kmem_cache_free(btrfs_trans_handle_cachep, trans);
833         if (must_run_delayed_refs) {
834                 btrfs_async_run_delayed_refs(root, cur,
835                                              must_run_delayed_refs == 1);
836         }
837         return err;
838 }
839
840 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
841                           struct btrfs_root *root)
842 {
843         return __btrfs_end_transaction(trans, root, 0);
844 }
845
846 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
847                                    struct btrfs_root *root)
848 {
849         return __btrfs_end_transaction(trans, root, 1);
850 }
851
852 /*
853  * when btree blocks are allocated, they have some corresponding bits set for
854  * them in one of two extent_io trees.  This is used to make sure all of
855  * those extents are sent to disk but does not wait on them
856  */
857 int btrfs_write_marked_extents(struct btrfs_root *root,
858                                struct extent_io_tree *dirty_pages, int mark)
859 {
860         int err = 0;
861         int werr = 0;
862         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
863         struct extent_state *cached_state = NULL;
864         u64 start = 0;
865         u64 end;
866
867         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
868                                       mark, &cached_state)) {
869                 bool wait_writeback = false;
870
871                 err = convert_extent_bit(dirty_pages, start, end,
872                                          EXTENT_NEED_WAIT,
873                                          mark, &cached_state, GFP_NOFS);
874                 /*
875                  * convert_extent_bit can return -ENOMEM, which is most of the
876                  * time a temporary error. So when it happens, ignore the error
877                  * and wait for writeback of this range to finish - because we
878                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
879                  * to btrfs_wait_marked_extents() would not know that writeback
880                  * for this range started and therefore wouldn't wait for it to
881                  * finish - we don't want to commit a superblock that points to
882                  * btree nodes/leafs for which writeback hasn't finished yet
883                  * (and without errors).
884                  * We cleanup any entries left in the io tree when committing
885                  * the transaction (through clear_btree_io_tree()).
886                  */
887                 if (err == -ENOMEM) {
888                         err = 0;
889                         wait_writeback = true;
890                 }
891                 if (!err)
892                         err = filemap_fdatawrite_range(mapping, start, end);
893                 if (err)
894                         werr = err;
895                 else if (wait_writeback)
896                         werr = filemap_fdatawait_range(mapping, start, end);
897                 free_extent_state(cached_state);
898                 cached_state = NULL;
899                 cond_resched();
900                 start = end + 1;
901         }
902         return werr;
903 }
904
905 /*
906  * when btree blocks are allocated, they have some corresponding bits set for
907  * them in one of two extent_io trees.  This is used to make sure all of
908  * those extents are on disk for transaction or log commit.  We wait
909  * on all the pages and clear them from the dirty pages state tree
910  */
911 int btrfs_wait_marked_extents(struct btrfs_root *root,
912                               struct extent_io_tree *dirty_pages, int mark)
913 {
914         int err = 0;
915         int werr = 0;
916         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
917         struct extent_state *cached_state = NULL;
918         u64 start = 0;
919         u64 end;
920         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
921         bool errors = false;
922
923         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
924                                       EXTENT_NEED_WAIT, &cached_state)) {
925                 /*
926                  * Ignore -ENOMEM errors returned by clear_extent_bit().
927                  * When committing the transaction, we'll remove any entries
928                  * left in the io tree. For a log commit, we don't remove them
929                  * after committing the log because the tree can be accessed
930                  * concurrently - we do it only at transaction commit time when
931                  * it's safe to do it (through clear_btree_io_tree()).
932                  */
933                 err = clear_extent_bit(dirty_pages, start, end,
934                                        EXTENT_NEED_WAIT,
935                                        0, 0, &cached_state, GFP_NOFS);
936                 if (err == -ENOMEM)
937                         err = 0;
938                 if (!err)
939                         err = filemap_fdatawait_range(mapping, start, end);
940                 if (err)
941                         werr = err;
942                 free_extent_state(cached_state);
943                 cached_state = NULL;
944                 cond_resched();
945                 start = end + 1;
946         }
947         if (err)
948                 werr = err;
949
950         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
951                 if ((mark & EXTENT_DIRTY) &&
952                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
953                                        &btree_ino->runtime_flags))
954                         errors = true;
955
956                 if ((mark & EXTENT_NEW) &&
957                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
958                                        &btree_ino->runtime_flags))
959                         errors = true;
960         } else {
961                 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
962                                        &btree_ino->runtime_flags))
963                         errors = true;
964         }
965
966         if (errors && !werr)
967                 werr = -EIO;
968
969         return werr;
970 }
971
972 /*
973  * when btree blocks are allocated, they have some corresponding bits set for
974  * them in one of two extent_io trees.  This is used to make sure all of
975  * those extents are on disk for transaction or log commit
976  */
977 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
978                                 struct extent_io_tree *dirty_pages, int mark)
979 {
980         int ret;
981         int ret2;
982         struct blk_plug plug;
983
984         blk_start_plug(&plug);
985         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
986         blk_finish_plug(&plug);
987         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
988
989         if (ret)
990                 return ret;
991         if (ret2)
992                 return ret2;
993         return 0;
994 }
995
996 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
997                                      struct btrfs_root *root)
998 {
999         int ret;
1000
1001         ret = btrfs_write_and_wait_marked_extents(root,
1002                                            &trans->transaction->dirty_pages,
1003                                            EXTENT_DIRTY);
1004         clear_btree_io_tree(&trans->transaction->dirty_pages);
1005
1006         return ret;
1007 }
1008
1009 /*
1010  * this is used to update the root pointer in the tree of tree roots.
1011  *
1012  * But, in the case of the extent allocation tree, updating the root
1013  * pointer may allocate blocks which may change the root of the extent
1014  * allocation tree.
1015  *
1016  * So, this loops and repeats and makes sure the cowonly root didn't
1017  * change while the root pointer was being updated in the metadata.
1018  */
1019 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1020                                struct btrfs_root *root)
1021 {
1022         int ret;
1023         u64 old_root_bytenr;
1024         u64 old_root_used;
1025         struct btrfs_root *tree_root = root->fs_info->tree_root;
1026         bool extent_root = (root->objectid == BTRFS_EXTENT_TREE_OBJECTID);
1027
1028         old_root_used = btrfs_root_used(&root->root_item);
1029         btrfs_write_dirty_block_groups(trans, root);
1030
1031         while (1) {
1032                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1033                 if (old_root_bytenr == root->node->start &&
1034                     old_root_used == btrfs_root_used(&root->root_item) &&
1035                     (!extent_root ||
1036                      list_empty(&trans->transaction->dirty_bgs)))
1037                         break;
1038
1039                 btrfs_set_root_node(&root->root_item, root->node);
1040                 ret = btrfs_update_root(trans, tree_root,
1041                                         &root->root_key,
1042                                         &root->root_item);
1043                 if (ret)
1044                         return ret;
1045
1046                 old_root_used = btrfs_root_used(&root->root_item);
1047                 if (extent_root) {
1048                         ret = btrfs_write_dirty_block_groups(trans, root);
1049                         if (ret)
1050                                 return ret;
1051                 }
1052                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1053                 if (ret)
1054                         return ret;
1055         }
1056
1057         return 0;
1058 }
1059
1060 /*
1061  * update all the cowonly tree roots on disk
1062  *
1063  * The error handling in this function may not be obvious. Any of the
1064  * failures will cause the file system to go offline. We still need
1065  * to clean up the delayed refs.
1066  */
1067 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1068                                          struct btrfs_root *root)
1069 {
1070         struct btrfs_fs_info *fs_info = root->fs_info;
1071         struct list_head *next;
1072         struct extent_buffer *eb;
1073         int ret;
1074
1075         eb = btrfs_lock_root_node(fs_info->tree_root);
1076         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1077                               0, &eb);
1078         btrfs_tree_unlock(eb);
1079         free_extent_buffer(eb);
1080
1081         if (ret)
1082                 return ret;
1083
1084         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1085         if (ret)
1086                 return ret;
1087
1088         ret = btrfs_run_dev_stats(trans, root->fs_info);
1089         if (ret)
1090                 return ret;
1091         ret = btrfs_run_dev_replace(trans, root->fs_info);
1092         if (ret)
1093                 return ret;
1094         ret = btrfs_run_qgroups(trans, root->fs_info);
1095         if (ret)
1096                 return ret;
1097
1098         /* run_qgroups might have added some more refs */
1099         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1100         if (ret)
1101                 return ret;
1102
1103         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1104                 next = fs_info->dirty_cowonly_roots.next;
1105                 list_del_init(next);
1106                 root = list_entry(next, struct btrfs_root, dirty_list);
1107                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1108
1109                 if (root != fs_info->extent_root)
1110                         list_add_tail(&root->dirty_list,
1111                                       &trans->transaction->switch_commits);
1112                 ret = update_cowonly_root(trans, root);
1113                 if (ret)
1114                         return ret;
1115         }
1116
1117         list_add_tail(&fs_info->extent_root->dirty_list,
1118                       &trans->transaction->switch_commits);
1119         btrfs_after_dev_replace_commit(fs_info);
1120
1121         return 0;
1122 }
1123
1124 /*
1125  * dead roots are old snapshots that need to be deleted.  This allocates
1126  * a dirty root struct and adds it into the list of dead roots that need to
1127  * be deleted
1128  */
1129 void btrfs_add_dead_root(struct btrfs_root *root)
1130 {
1131         spin_lock(&root->fs_info->trans_lock);
1132         if (list_empty(&root->root_list))
1133                 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1134         spin_unlock(&root->fs_info->trans_lock);
1135 }
1136
1137 /*
1138  * update all the cowonly tree roots on disk
1139  */
1140 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1141                                     struct btrfs_root *root)
1142 {
1143         struct btrfs_root *gang[8];
1144         struct btrfs_fs_info *fs_info = root->fs_info;
1145         int i;
1146         int ret;
1147         int err = 0;
1148
1149         spin_lock(&fs_info->fs_roots_radix_lock);
1150         while (1) {
1151                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1152                                                  (void **)gang, 0,
1153                                                  ARRAY_SIZE(gang),
1154                                                  BTRFS_ROOT_TRANS_TAG);
1155                 if (ret == 0)
1156                         break;
1157                 for (i = 0; i < ret; i++) {
1158                         root = gang[i];
1159                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1160                                         (unsigned long)root->root_key.objectid,
1161                                         BTRFS_ROOT_TRANS_TAG);
1162                         spin_unlock(&fs_info->fs_roots_radix_lock);
1163
1164                         btrfs_free_log(trans, root);
1165                         btrfs_update_reloc_root(trans, root);
1166                         btrfs_orphan_commit_root(trans, root);
1167
1168                         btrfs_save_ino_cache(root, trans);
1169
1170                         /* see comments in should_cow_block() */
1171                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1172                         smp_mb__after_atomic();
1173
1174                         if (root->commit_root != root->node) {
1175                                 list_add_tail(&root->dirty_list,
1176                                         &trans->transaction->switch_commits);
1177                                 btrfs_set_root_node(&root->root_item,
1178                                                     root->node);
1179                         }
1180
1181                         err = btrfs_update_root(trans, fs_info->tree_root,
1182                                                 &root->root_key,
1183                                                 &root->root_item);
1184                         spin_lock(&fs_info->fs_roots_radix_lock);
1185                         if (err)
1186                                 break;
1187                 }
1188         }
1189         spin_unlock(&fs_info->fs_roots_radix_lock);
1190         return err;
1191 }
1192
1193 /*
1194  * defrag a given btree.
1195  * Every leaf in the btree is read and defragged.
1196  */
1197 int btrfs_defrag_root(struct btrfs_root *root)
1198 {
1199         struct btrfs_fs_info *info = root->fs_info;
1200         struct btrfs_trans_handle *trans;
1201         int ret;
1202
1203         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1204                 return 0;
1205
1206         while (1) {
1207                 trans = btrfs_start_transaction(root, 0);
1208                 if (IS_ERR(trans))
1209                         return PTR_ERR(trans);
1210
1211                 ret = btrfs_defrag_leaves(trans, root);
1212
1213                 btrfs_end_transaction(trans, root);
1214                 btrfs_btree_balance_dirty(info->tree_root);
1215                 cond_resched();
1216
1217                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1218                         break;
1219
1220                 if (btrfs_defrag_cancelled(root->fs_info)) {
1221                         pr_debug("BTRFS: defrag_root cancelled\n");
1222                         ret = -EAGAIN;
1223                         break;
1224                 }
1225         }
1226         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1227         return ret;
1228 }
1229
1230 /*
1231  * new snapshots need to be created at a very specific time in the
1232  * transaction commit.  This does the actual creation.
1233  *
1234  * Note:
1235  * If the error which may affect the commitment of the current transaction
1236  * happens, we should return the error number. If the error which just affect
1237  * the creation of the pending snapshots, just return 0.
1238  */
1239 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1240                                    struct btrfs_fs_info *fs_info,
1241                                    struct btrfs_pending_snapshot *pending)
1242 {
1243         struct btrfs_key key;
1244         struct btrfs_root_item *new_root_item;
1245         struct btrfs_root *tree_root = fs_info->tree_root;
1246         struct btrfs_root *root = pending->root;
1247         struct btrfs_root *parent_root;
1248         struct btrfs_block_rsv *rsv;
1249         struct inode *parent_inode;
1250         struct btrfs_path *path;
1251         struct btrfs_dir_item *dir_item;
1252         struct dentry *dentry;
1253         struct extent_buffer *tmp;
1254         struct extent_buffer *old;
1255         struct timespec cur_time = CURRENT_TIME;
1256         int ret = 0;
1257         u64 to_reserve = 0;
1258         u64 index = 0;
1259         u64 objectid;
1260         u64 root_flags;
1261         uuid_le new_uuid;
1262
1263         path = btrfs_alloc_path();
1264         if (!path) {
1265                 pending->error = -ENOMEM;
1266                 return 0;
1267         }
1268
1269         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1270         if (!new_root_item) {
1271                 pending->error = -ENOMEM;
1272                 goto root_item_alloc_fail;
1273         }
1274
1275         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1276         if (pending->error)
1277                 goto no_free_objectid;
1278
1279         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1280
1281         if (to_reserve > 0) {
1282                 pending->error = btrfs_block_rsv_add(root,
1283                                                      &pending->block_rsv,
1284                                                      to_reserve,
1285                                                      BTRFS_RESERVE_NO_FLUSH);
1286                 if (pending->error)
1287                         goto no_free_objectid;
1288         }
1289
1290         key.objectid = objectid;
1291         key.offset = (u64)-1;
1292         key.type = BTRFS_ROOT_ITEM_KEY;
1293
1294         rsv = trans->block_rsv;
1295         trans->block_rsv = &pending->block_rsv;
1296         trans->bytes_reserved = trans->block_rsv->reserved;
1297
1298         dentry = pending->dentry;
1299         parent_inode = pending->dir;
1300         parent_root = BTRFS_I(parent_inode)->root;
1301         record_root_in_trans(trans, parent_root);
1302
1303         /*
1304          * insert the directory item
1305          */
1306         ret = btrfs_set_inode_index(parent_inode, &index);
1307         BUG_ON(ret); /* -ENOMEM */
1308
1309         /* check if there is a file/dir which has the same name. */
1310         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1311                                          btrfs_ino(parent_inode),
1312                                          dentry->d_name.name,
1313                                          dentry->d_name.len, 0);
1314         if (dir_item != NULL && !IS_ERR(dir_item)) {
1315                 pending->error = -EEXIST;
1316                 goto dir_item_existed;
1317         } else if (IS_ERR(dir_item)) {
1318                 ret = PTR_ERR(dir_item);
1319                 btrfs_abort_transaction(trans, root, ret);
1320                 goto fail;
1321         }
1322         btrfs_release_path(path);
1323
1324         /*
1325          * pull in the delayed directory update
1326          * and the delayed inode item
1327          * otherwise we corrupt the FS during
1328          * snapshot
1329          */
1330         ret = btrfs_run_delayed_items(trans, root);
1331         if (ret) {      /* Transaction aborted */
1332                 btrfs_abort_transaction(trans, root, ret);
1333                 goto fail;
1334         }
1335
1336         record_root_in_trans(trans, root);
1337         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1338         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1339         btrfs_check_and_init_root_item(new_root_item);
1340
1341         root_flags = btrfs_root_flags(new_root_item);
1342         if (pending->readonly)
1343                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1344         else
1345                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1346         btrfs_set_root_flags(new_root_item, root_flags);
1347
1348         btrfs_set_root_generation_v2(new_root_item,
1349                         trans->transid);
1350         uuid_le_gen(&new_uuid);
1351         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1352         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1353                         BTRFS_UUID_SIZE);
1354         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1355                 memset(new_root_item->received_uuid, 0,
1356                        sizeof(new_root_item->received_uuid));
1357                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1358                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1359                 btrfs_set_root_stransid(new_root_item, 0);
1360                 btrfs_set_root_rtransid(new_root_item, 0);
1361         }
1362         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1363         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1364         btrfs_set_root_otransid(new_root_item, trans->transid);
1365
1366         old = btrfs_lock_root_node(root);
1367         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1368         if (ret) {
1369                 btrfs_tree_unlock(old);
1370                 free_extent_buffer(old);
1371                 btrfs_abort_transaction(trans, root, ret);
1372                 goto fail;
1373         }
1374
1375         btrfs_set_lock_blocking(old);
1376
1377         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1378         /* clean up in any case */
1379         btrfs_tree_unlock(old);
1380         free_extent_buffer(old);
1381         if (ret) {
1382                 btrfs_abort_transaction(trans, root, ret);
1383                 goto fail;
1384         }
1385
1386         /*
1387          * We need to flush delayed refs in order to make sure all of our quota
1388          * operations have been done before we call btrfs_qgroup_inherit.
1389          */
1390         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1391         if (ret) {
1392                 btrfs_abort_transaction(trans, root, ret);
1393                 goto fail;
1394         }
1395
1396         ret = btrfs_qgroup_inherit(trans, fs_info,
1397                                    root->root_key.objectid,
1398                                    objectid, pending->inherit);
1399         if (ret) {
1400                 btrfs_abort_transaction(trans, root, ret);
1401                 goto fail;
1402         }
1403
1404         /* see comments in should_cow_block() */
1405         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1406         smp_wmb();
1407
1408         btrfs_set_root_node(new_root_item, tmp);
1409         /* record when the snapshot was created in key.offset */
1410         key.offset = trans->transid;
1411         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1412         btrfs_tree_unlock(tmp);
1413         free_extent_buffer(tmp);
1414         if (ret) {
1415                 btrfs_abort_transaction(trans, root, ret);
1416                 goto fail;
1417         }
1418
1419         /*
1420          * insert root back/forward references
1421          */
1422         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1423                                  parent_root->root_key.objectid,
1424                                  btrfs_ino(parent_inode), index,
1425                                  dentry->d_name.name, dentry->d_name.len);
1426         if (ret) {
1427                 btrfs_abort_transaction(trans, root, ret);
1428                 goto fail;
1429         }
1430
1431         key.offset = (u64)-1;
1432         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1433         if (IS_ERR(pending->snap)) {
1434                 ret = PTR_ERR(pending->snap);
1435                 btrfs_abort_transaction(trans, root, ret);
1436                 goto fail;
1437         }
1438
1439         ret = btrfs_reloc_post_snapshot(trans, pending);
1440         if (ret) {
1441                 btrfs_abort_transaction(trans, root, ret);
1442                 goto fail;
1443         }
1444
1445         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1446         if (ret) {
1447                 btrfs_abort_transaction(trans, root, ret);
1448                 goto fail;
1449         }
1450
1451         ret = btrfs_insert_dir_item(trans, parent_root,
1452                                     dentry->d_name.name, dentry->d_name.len,
1453                                     parent_inode, &key,
1454                                     BTRFS_FT_DIR, index);
1455         /* We have check then name at the beginning, so it is impossible. */
1456         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1457         if (ret) {
1458                 btrfs_abort_transaction(trans, root, ret);
1459                 goto fail;
1460         }
1461
1462         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1463                                          dentry->d_name.len * 2);
1464         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1465         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1466         if (ret) {
1467                 btrfs_abort_transaction(trans, root, ret);
1468                 goto fail;
1469         }
1470         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1471                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1472         if (ret) {
1473                 btrfs_abort_transaction(trans, root, ret);
1474                 goto fail;
1475         }
1476         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1477                 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1478                                           new_root_item->received_uuid,
1479                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1480                                           objectid);
1481                 if (ret && ret != -EEXIST) {
1482                         btrfs_abort_transaction(trans, root, ret);
1483                         goto fail;
1484                 }
1485         }
1486 fail:
1487         pending->error = ret;
1488 dir_item_existed:
1489         trans->block_rsv = rsv;
1490         trans->bytes_reserved = 0;
1491 no_free_objectid:
1492         kfree(new_root_item);
1493 root_item_alloc_fail:
1494         btrfs_free_path(path);
1495         return ret;
1496 }
1497
1498 /*
1499  * create all the snapshots we've scheduled for creation
1500  */
1501 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1502                                              struct btrfs_fs_info *fs_info)
1503 {
1504         struct btrfs_pending_snapshot *pending, *next;
1505         struct list_head *head = &trans->transaction->pending_snapshots;
1506         int ret = 0;
1507
1508         list_for_each_entry_safe(pending, next, head, list) {
1509                 list_del(&pending->list);
1510                 ret = create_pending_snapshot(trans, fs_info, pending);
1511                 if (ret)
1512                         break;
1513         }
1514         return ret;
1515 }
1516
1517 static void update_super_roots(struct btrfs_root *root)
1518 {
1519         struct btrfs_root_item *root_item;
1520         struct btrfs_super_block *super;
1521
1522         super = root->fs_info->super_copy;
1523
1524         root_item = &root->fs_info->chunk_root->root_item;
1525         super->chunk_root = root_item->bytenr;
1526         super->chunk_root_generation = root_item->generation;
1527         super->chunk_root_level = root_item->level;
1528
1529         root_item = &root->fs_info->tree_root->root_item;
1530         super->root = root_item->bytenr;
1531         super->generation = root_item->generation;
1532         super->root_level = root_item->level;
1533         if (btrfs_test_opt(root, SPACE_CACHE))
1534                 super->cache_generation = root_item->generation;
1535         if (root->fs_info->update_uuid_tree_gen)
1536                 super->uuid_tree_generation = root_item->generation;
1537 }
1538
1539 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1540 {
1541         struct btrfs_transaction *trans;
1542         int ret = 0;
1543
1544         spin_lock(&info->trans_lock);
1545         trans = info->running_transaction;
1546         if (trans)
1547                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1548         spin_unlock(&info->trans_lock);
1549         return ret;
1550 }
1551
1552 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1553 {
1554         struct btrfs_transaction *trans;
1555         int ret = 0;
1556
1557         spin_lock(&info->trans_lock);
1558         trans = info->running_transaction;
1559         if (trans)
1560                 ret = is_transaction_blocked(trans);
1561         spin_unlock(&info->trans_lock);
1562         return ret;
1563 }
1564
1565 /*
1566  * wait for the current transaction commit to start and block subsequent
1567  * transaction joins
1568  */
1569 static void wait_current_trans_commit_start(struct btrfs_root *root,
1570                                             struct btrfs_transaction *trans)
1571 {
1572         wait_event(root->fs_info->transaction_blocked_wait,
1573                    trans->state >= TRANS_STATE_COMMIT_START ||
1574                    trans->aborted);
1575 }
1576
1577 /*
1578  * wait for the current transaction to start and then become unblocked.
1579  * caller holds ref.
1580  */
1581 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1582                                          struct btrfs_transaction *trans)
1583 {
1584         wait_event(root->fs_info->transaction_wait,
1585                    trans->state >= TRANS_STATE_UNBLOCKED ||
1586                    trans->aborted);
1587 }
1588
1589 /*
1590  * commit transactions asynchronously. once btrfs_commit_transaction_async
1591  * returns, any subsequent transaction will not be allowed to join.
1592  */
1593 struct btrfs_async_commit {
1594         struct btrfs_trans_handle *newtrans;
1595         struct btrfs_root *root;
1596         struct work_struct work;
1597 };
1598
1599 static void do_async_commit(struct work_struct *work)
1600 {
1601         struct btrfs_async_commit *ac =
1602                 container_of(work, struct btrfs_async_commit, work);
1603
1604         /*
1605          * We've got freeze protection passed with the transaction.
1606          * Tell lockdep about it.
1607          */
1608         if (ac->newtrans->type & __TRANS_FREEZABLE)
1609                 rwsem_acquire_read(
1610                      &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1611                      0, 1, _THIS_IP_);
1612
1613         current->journal_info = ac->newtrans;
1614
1615         btrfs_commit_transaction(ac->newtrans, ac->root);
1616         kfree(ac);
1617 }
1618
1619 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1620                                    struct btrfs_root *root,
1621                                    int wait_for_unblock)
1622 {
1623         struct btrfs_async_commit *ac;
1624         struct btrfs_transaction *cur_trans;
1625
1626         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1627         if (!ac)
1628                 return -ENOMEM;
1629
1630         INIT_WORK(&ac->work, do_async_commit);
1631         ac->root = root;
1632         ac->newtrans = btrfs_join_transaction(root);
1633         if (IS_ERR(ac->newtrans)) {
1634                 int err = PTR_ERR(ac->newtrans);
1635                 kfree(ac);
1636                 return err;
1637         }
1638
1639         /* take transaction reference */
1640         cur_trans = trans->transaction;
1641         atomic_inc(&cur_trans->use_count);
1642
1643         btrfs_end_transaction(trans, root);
1644
1645         /*
1646          * Tell lockdep we've released the freeze rwsem, since the
1647          * async commit thread will be the one to unlock it.
1648          */
1649         if (ac->newtrans->type & __TRANS_FREEZABLE)
1650                 rwsem_release(
1651                         &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1652                         1, _THIS_IP_);
1653
1654         schedule_work(&ac->work);
1655
1656         /* wait for transaction to start and unblock */
1657         if (wait_for_unblock)
1658                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1659         else
1660                 wait_current_trans_commit_start(root, cur_trans);
1661
1662         if (current->journal_info == trans)
1663                 current->journal_info = NULL;
1664
1665         btrfs_put_transaction(cur_trans);
1666         return 0;
1667 }
1668
1669
1670 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1671                                 struct btrfs_root *root, int err)
1672 {
1673         struct btrfs_transaction *cur_trans = trans->transaction;
1674         DEFINE_WAIT(wait);
1675
1676         WARN_ON(trans->use_count > 1);
1677
1678         btrfs_abort_transaction(trans, root, err);
1679
1680         spin_lock(&root->fs_info->trans_lock);
1681
1682         /*
1683          * If the transaction is removed from the list, it means this
1684          * transaction has been committed successfully, so it is impossible
1685          * to call the cleanup function.
1686          */
1687         BUG_ON(list_empty(&cur_trans->list));
1688
1689         list_del_init(&cur_trans->list);
1690         if (cur_trans == root->fs_info->running_transaction) {
1691                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1692                 spin_unlock(&root->fs_info->trans_lock);
1693                 wait_event(cur_trans->writer_wait,
1694                            atomic_read(&cur_trans->num_writers) == 1);
1695
1696                 spin_lock(&root->fs_info->trans_lock);
1697         }
1698         spin_unlock(&root->fs_info->trans_lock);
1699
1700         btrfs_cleanup_one_transaction(trans->transaction, root);
1701
1702         spin_lock(&root->fs_info->trans_lock);
1703         if (cur_trans == root->fs_info->running_transaction)
1704                 root->fs_info->running_transaction = NULL;
1705         spin_unlock(&root->fs_info->trans_lock);
1706
1707         if (trans->type & __TRANS_FREEZABLE)
1708                 sb_end_intwrite(root->fs_info->sb);
1709         btrfs_put_transaction(cur_trans);
1710         btrfs_put_transaction(cur_trans);
1711
1712         trace_btrfs_transaction_commit(root);
1713
1714         if (current->journal_info == trans)
1715                 current->journal_info = NULL;
1716         btrfs_scrub_cancel(root->fs_info);
1717
1718         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1719 }
1720
1721 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1722 {
1723         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1724                 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1725         return 0;
1726 }
1727
1728 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1729 {
1730         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1731                 btrfs_wait_ordered_roots(fs_info, -1);
1732 }
1733
1734 static inline void
1735 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1736                            struct btrfs_fs_info *fs_info)
1737 {
1738         struct btrfs_ordered_extent *ordered;
1739
1740         spin_lock(&fs_info->trans_lock);
1741         while (!list_empty(&cur_trans->pending_ordered)) {
1742                 ordered = list_first_entry(&cur_trans->pending_ordered,
1743                                            struct btrfs_ordered_extent,
1744                                            trans_list);
1745                 list_del_init(&ordered->trans_list);
1746                 spin_unlock(&fs_info->trans_lock);
1747
1748                 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1749                                                    &ordered->flags));
1750                 btrfs_put_ordered_extent(ordered);
1751                 spin_lock(&fs_info->trans_lock);
1752         }
1753         spin_unlock(&fs_info->trans_lock);
1754 }
1755
1756 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1757                              struct btrfs_root *root)
1758 {
1759         struct btrfs_transaction *cur_trans = trans->transaction;
1760         struct btrfs_transaction *prev_trans = NULL;
1761         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1762         int ret;
1763
1764         /* Stop the commit early if ->aborted is set */
1765         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1766                 ret = cur_trans->aborted;
1767                 btrfs_end_transaction(trans, root);
1768                 return ret;
1769         }
1770
1771         /* make a pass through all the delayed refs we have so far
1772          * any runnings procs may add more while we are here
1773          */
1774         ret = btrfs_run_delayed_refs(trans, root, 0);
1775         if (ret) {
1776                 btrfs_end_transaction(trans, root);
1777                 return ret;
1778         }
1779
1780         btrfs_trans_release_metadata(trans, root);
1781         trans->block_rsv = NULL;
1782         if (trans->qgroup_reserved) {
1783                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1784                 trans->qgroup_reserved = 0;
1785         }
1786
1787         cur_trans = trans->transaction;
1788
1789         /*
1790          * set the flushing flag so procs in this transaction have to
1791          * start sending their work down.
1792          */
1793         cur_trans->delayed_refs.flushing = 1;
1794         smp_wmb();
1795
1796         if (!list_empty(&trans->new_bgs))
1797                 btrfs_create_pending_block_groups(trans, root);
1798
1799         ret = btrfs_run_delayed_refs(trans, root, 0);
1800         if (ret) {
1801                 btrfs_end_transaction(trans, root);
1802                 return ret;
1803         }
1804
1805         spin_lock(&root->fs_info->trans_lock);
1806         list_splice(&trans->ordered, &cur_trans->pending_ordered);
1807         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1808                 spin_unlock(&root->fs_info->trans_lock);
1809                 atomic_inc(&cur_trans->use_count);
1810                 ret = btrfs_end_transaction(trans, root);
1811
1812                 wait_for_commit(root, cur_trans);
1813
1814                 btrfs_put_transaction(cur_trans);
1815
1816                 return ret;
1817         }
1818
1819         cur_trans->state = TRANS_STATE_COMMIT_START;
1820         wake_up(&root->fs_info->transaction_blocked_wait);
1821
1822         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1823                 prev_trans = list_entry(cur_trans->list.prev,
1824                                         struct btrfs_transaction, list);
1825                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1826                         atomic_inc(&prev_trans->use_count);
1827                         spin_unlock(&root->fs_info->trans_lock);
1828
1829                         wait_for_commit(root, prev_trans);
1830
1831                         btrfs_put_transaction(prev_trans);
1832                 } else {
1833                         spin_unlock(&root->fs_info->trans_lock);
1834                 }
1835         } else {
1836                 spin_unlock(&root->fs_info->trans_lock);
1837         }
1838
1839         extwriter_counter_dec(cur_trans, trans->type);
1840
1841         ret = btrfs_start_delalloc_flush(root->fs_info);
1842         if (ret)
1843                 goto cleanup_transaction;
1844
1845         ret = btrfs_run_delayed_items(trans, root);
1846         if (ret)
1847                 goto cleanup_transaction;
1848
1849         wait_event(cur_trans->writer_wait,
1850                    extwriter_counter_read(cur_trans) == 0);
1851
1852         /* some pending stuffs might be added after the previous flush. */
1853         ret = btrfs_run_delayed_items(trans, root);
1854         if (ret)
1855                 goto cleanup_transaction;
1856
1857         btrfs_wait_delalloc_flush(root->fs_info);
1858
1859         btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1860
1861         btrfs_scrub_pause(root);
1862         /*
1863          * Ok now we need to make sure to block out any other joins while we
1864          * commit the transaction.  We could have started a join before setting
1865          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1866          */
1867         spin_lock(&root->fs_info->trans_lock);
1868         cur_trans->state = TRANS_STATE_COMMIT_DOING;
1869         spin_unlock(&root->fs_info->trans_lock);
1870         wait_event(cur_trans->writer_wait,
1871                    atomic_read(&cur_trans->num_writers) == 1);
1872
1873         /* ->aborted might be set after the previous check, so check it */
1874         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1875                 ret = cur_trans->aborted;
1876                 goto scrub_continue;
1877         }
1878         /*
1879          * the reloc mutex makes sure that we stop
1880          * the balancing code from coming in and moving
1881          * extents around in the middle of the commit
1882          */
1883         mutex_lock(&root->fs_info->reloc_mutex);
1884
1885         /*
1886          * We needn't worry about the delayed items because we will
1887          * deal with them in create_pending_snapshot(), which is the
1888          * core function of the snapshot creation.
1889          */
1890         ret = create_pending_snapshots(trans, root->fs_info);
1891         if (ret) {
1892                 mutex_unlock(&root->fs_info->reloc_mutex);
1893                 goto scrub_continue;
1894         }
1895
1896         /*
1897          * We insert the dir indexes of the snapshots and update the inode
1898          * of the snapshots' parents after the snapshot creation, so there
1899          * are some delayed items which are not dealt with. Now deal with
1900          * them.
1901          *
1902          * We needn't worry that this operation will corrupt the snapshots,
1903          * because all the tree which are snapshoted will be forced to COW
1904          * the nodes and leaves.
1905          */
1906         ret = btrfs_run_delayed_items(trans, root);
1907         if (ret) {
1908                 mutex_unlock(&root->fs_info->reloc_mutex);
1909                 goto scrub_continue;
1910         }
1911
1912         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1913         if (ret) {
1914                 mutex_unlock(&root->fs_info->reloc_mutex);
1915                 goto scrub_continue;
1916         }
1917
1918         /*
1919          * make sure none of the code above managed to slip in a
1920          * delayed item
1921          */
1922         btrfs_assert_delayed_root_empty(root);
1923
1924         WARN_ON(cur_trans != trans->transaction);
1925
1926         /* btrfs_commit_tree_roots is responsible for getting the
1927          * various roots consistent with each other.  Every pointer
1928          * in the tree of tree roots has to point to the most up to date
1929          * root for every subvolume and other tree.  So, we have to keep
1930          * the tree logging code from jumping in and changing any
1931          * of the trees.
1932          *
1933          * At this point in the commit, there can't be any tree-log
1934          * writers, but a little lower down we drop the trans mutex
1935          * and let new people in.  By holding the tree_log_mutex
1936          * from now until after the super is written, we avoid races
1937          * with the tree-log code.
1938          */
1939         mutex_lock(&root->fs_info->tree_log_mutex);
1940
1941         ret = commit_fs_roots(trans, root);
1942         if (ret) {
1943                 mutex_unlock(&root->fs_info->tree_log_mutex);
1944                 mutex_unlock(&root->fs_info->reloc_mutex);
1945                 goto scrub_continue;
1946         }
1947
1948         /*
1949          * Since the transaction is done, we can apply the pending changes
1950          * before the next transaction.
1951          */
1952         btrfs_apply_pending_changes(root->fs_info);
1953
1954         /* commit_fs_roots gets rid of all the tree log roots, it is now
1955          * safe to free the root of tree log roots
1956          */
1957         btrfs_free_log_root_tree(trans, root->fs_info);
1958
1959         ret = commit_cowonly_roots(trans, root);
1960         if (ret) {
1961                 mutex_unlock(&root->fs_info->tree_log_mutex);
1962                 mutex_unlock(&root->fs_info->reloc_mutex);
1963                 goto scrub_continue;
1964         }
1965
1966         /*
1967          * The tasks which save the space cache and inode cache may also
1968          * update ->aborted, check it.
1969          */
1970         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1971                 ret = cur_trans->aborted;
1972                 mutex_unlock(&root->fs_info->tree_log_mutex);
1973                 mutex_unlock(&root->fs_info->reloc_mutex);
1974                 goto scrub_continue;
1975         }
1976
1977         btrfs_prepare_extent_commit(trans, root);
1978
1979         cur_trans = root->fs_info->running_transaction;
1980
1981         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1982                             root->fs_info->tree_root->node);
1983         list_add_tail(&root->fs_info->tree_root->dirty_list,
1984                       &cur_trans->switch_commits);
1985
1986         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1987                             root->fs_info->chunk_root->node);
1988         list_add_tail(&root->fs_info->chunk_root->dirty_list,
1989                       &cur_trans->switch_commits);
1990
1991         switch_commit_roots(cur_trans, root->fs_info);
1992
1993         assert_qgroups_uptodate(trans);
1994         ASSERT(list_empty(&cur_trans->dirty_bgs));
1995         update_super_roots(root);
1996
1997         btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1998         btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1999         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2000                sizeof(*root->fs_info->super_copy));
2001
2002         btrfs_update_commit_device_size(root->fs_info);
2003         btrfs_update_commit_device_bytes_used(root, cur_trans);
2004
2005         clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2006         clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2007
2008         spin_lock(&root->fs_info->trans_lock);
2009         cur_trans->state = TRANS_STATE_UNBLOCKED;
2010         root->fs_info->running_transaction = NULL;
2011         spin_unlock(&root->fs_info->trans_lock);
2012         mutex_unlock(&root->fs_info->reloc_mutex);
2013
2014         wake_up(&root->fs_info->transaction_wait);
2015
2016         ret = btrfs_write_and_wait_transaction(trans, root);
2017         if (ret) {
2018                 btrfs_error(root->fs_info, ret,
2019                             "Error while writing out transaction");
2020                 mutex_unlock(&root->fs_info->tree_log_mutex);
2021                 goto scrub_continue;
2022         }
2023
2024         ret = write_ctree_super(trans, root, 0);
2025         if (ret) {
2026                 mutex_unlock(&root->fs_info->tree_log_mutex);
2027                 goto scrub_continue;
2028         }
2029
2030         /*
2031          * the super is written, we can safely allow the tree-loggers
2032          * to go about their business
2033          */
2034         mutex_unlock(&root->fs_info->tree_log_mutex);
2035
2036         btrfs_finish_extent_commit(trans, root);
2037
2038         if (cur_trans->have_free_bgs)
2039                 btrfs_clear_space_info_full(root->fs_info);
2040
2041         root->fs_info->last_trans_committed = cur_trans->transid;
2042         /*
2043          * We needn't acquire the lock here because there is no other task
2044          * which can change it.
2045          */
2046         cur_trans->state = TRANS_STATE_COMPLETED;
2047         wake_up(&cur_trans->commit_wait);
2048
2049         spin_lock(&root->fs_info->trans_lock);
2050         list_del_init(&cur_trans->list);
2051         spin_unlock(&root->fs_info->trans_lock);
2052
2053         btrfs_put_transaction(cur_trans);
2054         btrfs_put_transaction(cur_trans);
2055
2056         if (trans->type & __TRANS_FREEZABLE)
2057                 sb_end_intwrite(root->fs_info->sb);
2058
2059         trace_btrfs_transaction_commit(root);
2060
2061         btrfs_scrub_continue(root);
2062
2063         if (current->journal_info == trans)
2064                 current->journal_info = NULL;
2065
2066         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2067
2068         if (current != root->fs_info->transaction_kthread)
2069                 btrfs_run_delayed_iputs(root);
2070
2071         return ret;
2072
2073 scrub_continue:
2074         btrfs_scrub_continue(root);
2075 cleanup_transaction:
2076         btrfs_trans_release_metadata(trans, root);
2077         trans->block_rsv = NULL;
2078         if (trans->qgroup_reserved) {
2079                 btrfs_qgroup_free(root, trans->qgroup_reserved);
2080                 trans->qgroup_reserved = 0;
2081         }
2082         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2083         if (current->journal_info == trans)
2084                 current->journal_info = NULL;
2085         cleanup_transaction(trans, root, ret);
2086
2087         return ret;
2088 }
2089
2090 /*
2091  * return < 0 if error
2092  * 0 if there are no more dead_roots at the time of call
2093  * 1 there are more to be processed, call me again
2094  *
2095  * The return value indicates there are certainly more snapshots to delete, but
2096  * if there comes a new one during processing, it may return 0. We don't mind,
2097  * because btrfs_commit_super will poke cleaner thread and it will process it a
2098  * few seconds later.
2099  */
2100 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2101 {
2102         int ret;
2103         struct btrfs_fs_info *fs_info = root->fs_info;
2104
2105         spin_lock(&fs_info->trans_lock);
2106         if (list_empty(&fs_info->dead_roots)) {
2107                 spin_unlock(&fs_info->trans_lock);
2108                 return 0;
2109         }
2110         root = list_first_entry(&fs_info->dead_roots,
2111                         struct btrfs_root, root_list);
2112         list_del_init(&root->root_list);
2113         spin_unlock(&fs_info->trans_lock);
2114
2115         pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2116
2117         btrfs_kill_all_delayed_nodes(root);
2118
2119         if (btrfs_header_backref_rev(root->node) <
2120                         BTRFS_MIXED_BACKREF_REV)
2121                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2122         else
2123                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2124
2125         return (ret < 0) ? 0 : 1;
2126 }
2127
2128 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2129 {
2130         unsigned long prev;
2131         unsigned long bit;
2132
2133         prev = xchg(&fs_info->pending_changes, 0);
2134         if (!prev)
2135                 return;
2136
2137         bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2138         if (prev & bit)
2139                 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2140         prev &= ~bit;
2141
2142         bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2143         if (prev & bit)
2144                 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2145         prev &= ~bit;
2146
2147         bit = 1 << BTRFS_PENDING_COMMIT;
2148         if (prev & bit)
2149                 btrfs_debug(fs_info, "pending commit done");
2150         prev &= ~bit;
2151
2152         if (prev)
2153                 btrfs_warn(fs_info,
2154                         "unknown pending changes left 0x%lx, ignoring", prev);
2155 }