a73acf496e10fe798a1594cafbb5660736460f81
[cascardo/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46                                 struct btrfs_root *root,
47                                 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55
56 static struct btrfs_fs_devices *__alloc_fs_devices(void)
57 {
58         struct btrfs_fs_devices *fs_devs;
59
60         fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
61         if (!fs_devs)
62                 return ERR_PTR(-ENOMEM);
63
64         mutex_init(&fs_devs->device_list_mutex);
65
66         INIT_LIST_HEAD(&fs_devs->devices);
67         INIT_LIST_HEAD(&fs_devs->resized_devices);
68         INIT_LIST_HEAD(&fs_devs->alloc_list);
69         INIT_LIST_HEAD(&fs_devs->list);
70
71         return fs_devs;
72 }
73
74 /**
75  * alloc_fs_devices - allocate struct btrfs_fs_devices
76  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
77  *              generated.
78  *
79  * Return: a pointer to a new &struct btrfs_fs_devices on success;
80  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
81  * can be destroyed with kfree() right away.
82  */
83 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
84 {
85         struct btrfs_fs_devices *fs_devs;
86
87         fs_devs = __alloc_fs_devices();
88         if (IS_ERR(fs_devs))
89                 return fs_devs;
90
91         if (fsid)
92                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
93         else
94                 generate_random_uuid(fs_devs->fsid);
95
96         return fs_devs;
97 }
98
99 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
100 {
101         struct btrfs_device *device;
102         WARN_ON(fs_devices->opened);
103         while (!list_empty(&fs_devices->devices)) {
104                 device = list_entry(fs_devices->devices.next,
105                                     struct btrfs_device, dev_list);
106                 list_del(&device->dev_list);
107                 rcu_string_free(device->name);
108                 kfree(device);
109         }
110         kfree(fs_devices);
111 }
112
113 static void btrfs_kobject_uevent(struct block_device *bdev,
114                                  enum kobject_action action)
115 {
116         int ret;
117
118         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
119         if (ret)
120                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
121                         action,
122                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
123                         &disk_to_dev(bdev->bd_disk)->kobj);
124 }
125
126 void btrfs_cleanup_fs_uuids(void)
127 {
128         struct btrfs_fs_devices *fs_devices;
129
130         while (!list_empty(&fs_uuids)) {
131                 fs_devices = list_entry(fs_uuids.next,
132                                         struct btrfs_fs_devices, list);
133                 list_del(&fs_devices->list);
134                 free_fs_devices(fs_devices);
135         }
136 }
137
138 static struct btrfs_device *__alloc_device(void)
139 {
140         struct btrfs_device *dev;
141
142         dev = kzalloc(sizeof(*dev), GFP_NOFS);
143         if (!dev)
144                 return ERR_PTR(-ENOMEM);
145
146         INIT_LIST_HEAD(&dev->dev_list);
147         INIT_LIST_HEAD(&dev->dev_alloc_list);
148         INIT_LIST_HEAD(&dev->resized_list);
149
150         spin_lock_init(&dev->io_lock);
151
152         spin_lock_init(&dev->reada_lock);
153         atomic_set(&dev->reada_in_flight, 0);
154         atomic_set(&dev->dev_stats_ccnt, 0);
155         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
156         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
157
158         return dev;
159 }
160
161 static noinline struct btrfs_device *__find_device(struct list_head *head,
162                                                    u64 devid, u8 *uuid)
163 {
164         struct btrfs_device *dev;
165
166         list_for_each_entry(dev, head, dev_list) {
167                 if (dev->devid == devid &&
168                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
169                         return dev;
170                 }
171         }
172         return NULL;
173 }
174
175 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
176 {
177         struct btrfs_fs_devices *fs_devices;
178
179         list_for_each_entry(fs_devices, &fs_uuids, list) {
180                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
181                         return fs_devices;
182         }
183         return NULL;
184 }
185
186 static int
187 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
188                       int flush, struct block_device **bdev,
189                       struct buffer_head **bh)
190 {
191         int ret;
192
193         *bdev = blkdev_get_by_path(device_path, flags, holder);
194
195         if (IS_ERR(*bdev)) {
196                 ret = PTR_ERR(*bdev);
197                 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
198                 goto error;
199         }
200
201         if (flush)
202                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
203         ret = set_blocksize(*bdev, 4096);
204         if (ret) {
205                 blkdev_put(*bdev, flags);
206                 goto error;
207         }
208         invalidate_bdev(*bdev);
209         *bh = btrfs_read_dev_super(*bdev);
210         if (!*bh) {
211                 ret = -EINVAL;
212                 blkdev_put(*bdev, flags);
213                 goto error;
214         }
215
216         return 0;
217
218 error:
219         *bdev = NULL;
220         *bh = NULL;
221         return ret;
222 }
223
224 static void requeue_list(struct btrfs_pending_bios *pending_bios,
225                         struct bio *head, struct bio *tail)
226 {
227
228         struct bio *old_head;
229
230         old_head = pending_bios->head;
231         pending_bios->head = head;
232         if (pending_bios->tail)
233                 tail->bi_next = old_head;
234         else
235                 pending_bios->tail = tail;
236 }
237
238 /*
239  * we try to collect pending bios for a device so we don't get a large
240  * number of procs sending bios down to the same device.  This greatly
241  * improves the schedulers ability to collect and merge the bios.
242  *
243  * But, it also turns into a long list of bios to process and that is sure
244  * to eventually make the worker thread block.  The solution here is to
245  * make some progress and then put this work struct back at the end of
246  * the list if the block device is congested.  This way, multiple devices
247  * can make progress from a single worker thread.
248  */
249 static noinline void run_scheduled_bios(struct btrfs_device *device)
250 {
251         struct bio *pending;
252         struct backing_dev_info *bdi;
253         struct btrfs_fs_info *fs_info;
254         struct btrfs_pending_bios *pending_bios;
255         struct bio *tail;
256         struct bio *cur;
257         int again = 0;
258         unsigned long num_run;
259         unsigned long batch_run = 0;
260         unsigned long limit;
261         unsigned long last_waited = 0;
262         int force_reg = 0;
263         int sync_pending = 0;
264         struct blk_plug plug;
265
266         /*
267          * this function runs all the bios we've collected for
268          * a particular device.  We don't want to wander off to
269          * another device without first sending all of these down.
270          * So, setup a plug here and finish it off before we return
271          */
272         blk_start_plug(&plug);
273
274         bdi = blk_get_backing_dev_info(device->bdev);
275         fs_info = device->dev_root->fs_info;
276         limit = btrfs_async_submit_limit(fs_info);
277         limit = limit * 2 / 3;
278
279 loop:
280         spin_lock(&device->io_lock);
281
282 loop_lock:
283         num_run = 0;
284
285         /* take all the bios off the list at once and process them
286          * later on (without the lock held).  But, remember the
287          * tail and other pointers so the bios can be properly reinserted
288          * into the list if we hit congestion
289          */
290         if (!force_reg && device->pending_sync_bios.head) {
291                 pending_bios = &device->pending_sync_bios;
292                 force_reg = 1;
293         } else {
294                 pending_bios = &device->pending_bios;
295                 force_reg = 0;
296         }
297
298         pending = pending_bios->head;
299         tail = pending_bios->tail;
300         WARN_ON(pending && !tail);
301
302         /*
303          * if pending was null this time around, no bios need processing
304          * at all and we can stop.  Otherwise it'll loop back up again
305          * and do an additional check so no bios are missed.
306          *
307          * device->running_pending is used to synchronize with the
308          * schedule_bio code.
309          */
310         if (device->pending_sync_bios.head == NULL &&
311             device->pending_bios.head == NULL) {
312                 again = 0;
313                 device->running_pending = 0;
314         } else {
315                 again = 1;
316                 device->running_pending = 1;
317         }
318
319         pending_bios->head = NULL;
320         pending_bios->tail = NULL;
321
322         spin_unlock(&device->io_lock);
323
324         while (pending) {
325
326                 rmb();
327                 /* we want to work on both lists, but do more bios on the
328                  * sync list than the regular list
329                  */
330                 if ((num_run > 32 &&
331                     pending_bios != &device->pending_sync_bios &&
332                     device->pending_sync_bios.head) ||
333                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
334                     device->pending_bios.head)) {
335                         spin_lock(&device->io_lock);
336                         requeue_list(pending_bios, pending, tail);
337                         goto loop_lock;
338                 }
339
340                 cur = pending;
341                 pending = pending->bi_next;
342                 cur->bi_next = NULL;
343
344                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
345                     waitqueue_active(&fs_info->async_submit_wait))
346                         wake_up(&fs_info->async_submit_wait);
347
348                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
349
350                 /*
351                  * if we're doing the sync list, record that our
352                  * plug has some sync requests on it
353                  *
354                  * If we're doing the regular list and there are
355                  * sync requests sitting around, unplug before
356                  * we add more
357                  */
358                 if (pending_bios == &device->pending_sync_bios) {
359                         sync_pending = 1;
360                 } else if (sync_pending) {
361                         blk_finish_plug(&plug);
362                         blk_start_plug(&plug);
363                         sync_pending = 0;
364                 }
365
366                 btrfsic_submit_bio(cur->bi_rw, cur);
367                 num_run++;
368                 batch_run++;
369
370                 cond_resched();
371
372                 /*
373                  * we made progress, there is more work to do and the bdi
374                  * is now congested.  Back off and let other work structs
375                  * run instead
376                  */
377                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
378                     fs_info->fs_devices->open_devices > 1) {
379                         struct io_context *ioc;
380
381                         ioc = current->io_context;
382
383                         /*
384                          * the main goal here is that we don't want to
385                          * block if we're going to be able to submit
386                          * more requests without blocking.
387                          *
388                          * This code does two great things, it pokes into
389                          * the elevator code from a filesystem _and_
390                          * it makes assumptions about how batching works.
391                          */
392                         if (ioc && ioc->nr_batch_requests > 0 &&
393                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
394                             (last_waited == 0 ||
395                              ioc->last_waited == last_waited)) {
396                                 /*
397                                  * we want to go through our batch of
398                                  * requests and stop.  So, we copy out
399                                  * the ioc->last_waited time and test
400                                  * against it before looping
401                                  */
402                                 last_waited = ioc->last_waited;
403                                 cond_resched();
404                                 continue;
405                         }
406                         spin_lock(&device->io_lock);
407                         requeue_list(pending_bios, pending, tail);
408                         device->running_pending = 1;
409
410                         spin_unlock(&device->io_lock);
411                         btrfs_queue_work(fs_info->submit_workers,
412                                          &device->work);
413                         goto done;
414                 }
415                 /* unplug every 64 requests just for good measure */
416                 if (batch_run % 64 == 0) {
417                         blk_finish_plug(&plug);
418                         blk_start_plug(&plug);
419                         sync_pending = 0;
420                 }
421         }
422
423         cond_resched();
424         if (again)
425                 goto loop;
426
427         spin_lock(&device->io_lock);
428         if (device->pending_bios.head || device->pending_sync_bios.head)
429                 goto loop_lock;
430         spin_unlock(&device->io_lock);
431
432 done:
433         blk_finish_plug(&plug);
434 }
435
436 static void pending_bios_fn(struct btrfs_work *work)
437 {
438         struct btrfs_device *device;
439
440         device = container_of(work, struct btrfs_device, work);
441         run_scheduled_bios(device);
442 }
443
444 /*
445  * Add new device to list of registered devices
446  *
447  * Returns:
448  * 1   - first time device is seen
449  * 0   - device already known
450  * < 0 - error
451  */
452 static noinline int device_list_add(const char *path,
453                            struct btrfs_super_block *disk_super,
454                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
455 {
456         struct btrfs_device *device;
457         struct btrfs_fs_devices *fs_devices;
458         struct rcu_string *name;
459         int ret = 0;
460         u64 found_transid = btrfs_super_generation(disk_super);
461
462         fs_devices = find_fsid(disk_super->fsid);
463         if (!fs_devices) {
464                 fs_devices = alloc_fs_devices(disk_super->fsid);
465                 if (IS_ERR(fs_devices))
466                         return PTR_ERR(fs_devices);
467
468                 list_add(&fs_devices->list, &fs_uuids);
469
470                 device = NULL;
471         } else {
472                 device = __find_device(&fs_devices->devices, devid,
473                                        disk_super->dev_item.uuid);
474         }
475
476         if (!device) {
477                 if (fs_devices->opened)
478                         return -EBUSY;
479
480                 device = btrfs_alloc_device(NULL, &devid,
481                                             disk_super->dev_item.uuid);
482                 if (IS_ERR(device)) {
483                         /* we can safely leave the fs_devices entry around */
484                         return PTR_ERR(device);
485                 }
486
487                 name = rcu_string_strdup(path, GFP_NOFS);
488                 if (!name) {
489                         kfree(device);
490                         return -ENOMEM;
491                 }
492                 rcu_assign_pointer(device->name, name);
493
494                 mutex_lock(&fs_devices->device_list_mutex);
495                 list_add_rcu(&device->dev_list, &fs_devices->devices);
496                 fs_devices->num_devices++;
497                 mutex_unlock(&fs_devices->device_list_mutex);
498
499                 ret = 1;
500                 device->fs_devices = fs_devices;
501         } else if (!device->name || strcmp(device->name->str, path)) {
502                 /*
503                  * When FS is already mounted.
504                  * 1. If you are here and if the device->name is NULL that
505                  *    means this device was missing at time of FS mount.
506                  * 2. If you are here and if the device->name is different
507                  *    from 'path' that means either
508                  *      a. The same device disappeared and reappeared with
509                  *         different name. or
510                  *      b. The missing-disk-which-was-replaced, has
511                  *         reappeared now.
512                  *
513                  * We must allow 1 and 2a above. But 2b would be a spurious
514                  * and unintentional.
515                  *
516                  * Further in case of 1 and 2a above, the disk at 'path'
517                  * would have missed some transaction when it was away and
518                  * in case of 2a the stale bdev has to be updated as well.
519                  * 2b must not be allowed at all time.
520                  */
521
522                 /*
523                  * For now, we do allow update to btrfs_fs_device through the
524                  * btrfs dev scan cli after FS has been mounted.  We're still
525                  * tracking a problem where systems fail mount by subvolume id
526                  * when we reject replacement on a mounted FS.
527                  */
528                 if (!fs_devices->opened && found_transid < device->generation) {
529                         /*
530                          * That is if the FS is _not_ mounted and if you
531                          * are here, that means there is more than one
532                          * disk with same uuid and devid.We keep the one
533                          * with larger generation number or the last-in if
534                          * generation are equal.
535                          */
536                         return -EEXIST;
537                 }
538
539                 name = rcu_string_strdup(path, GFP_NOFS);
540                 if (!name)
541                         return -ENOMEM;
542                 rcu_string_free(device->name);
543                 rcu_assign_pointer(device->name, name);
544                 if (device->missing) {
545                         fs_devices->missing_devices--;
546                         device->missing = 0;
547                 }
548         }
549
550         /*
551          * Unmount does not free the btrfs_device struct but would zero
552          * generation along with most of the other members. So just update
553          * it back. We need it to pick the disk with largest generation
554          * (as above).
555          */
556         if (!fs_devices->opened)
557                 device->generation = found_transid;
558
559         *fs_devices_ret = fs_devices;
560
561         return ret;
562 }
563
564 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
565 {
566         struct btrfs_fs_devices *fs_devices;
567         struct btrfs_device *device;
568         struct btrfs_device *orig_dev;
569
570         fs_devices = alloc_fs_devices(orig->fsid);
571         if (IS_ERR(fs_devices))
572                 return fs_devices;
573
574         mutex_lock(&orig->device_list_mutex);
575         fs_devices->total_devices = orig->total_devices;
576
577         /* We have held the volume lock, it is safe to get the devices. */
578         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
579                 struct rcu_string *name;
580
581                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
582                                             orig_dev->uuid);
583                 if (IS_ERR(device))
584                         goto error;
585
586                 /*
587                  * This is ok to do without rcu read locked because we hold the
588                  * uuid mutex so nothing we touch in here is going to disappear.
589                  */
590                 if (orig_dev->name) {
591                         name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
592                         if (!name) {
593                                 kfree(device);
594                                 goto error;
595                         }
596                         rcu_assign_pointer(device->name, name);
597                 }
598
599                 list_add(&device->dev_list, &fs_devices->devices);
600                 device->fs_devices = fs_devices;
601                 fs_devices->num_devices++;
602         }
603         mutex_unlock(&orig->device_list_mutex);
604         return fs_devices;
605 error:
606         mutex_unlock(&orig->device_list_mutex);
607         free_fs_devices(fs_devices);
608         return ERR_PTR(-ENOMEM);
609 }
610
611 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
612 {
613         struct btrfs_device *device, *next;
614         struct btrfs_device *latest_dev = NULL;
615
616         mutex_lock(&uuid_mutex);
617 again:
618         /* This is the initialized path, it is safe to release the devices. */
619         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
620                 if (device->in_fs_metadata) {
621                         if (!device->is_tgtdev_for_dev_replace &&
622                             (!latest_dev ||
623                              device->generation > latest_dev->generation)) {
624                                 latest_dev = device;
625                         }
626                         continue;
627                 }
628
629                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
630                         /*
631                          * In the first step, keep the device which has
632                          * the correct fsid and the devid that is used
633                          * for the dev_replace procedure.
634                          * In the second step, the dev_replace state is
635                          * read from the device tree and it is known
636                          * whether the procedure is really active or
637                          * not, which means whether this device is
638                          * used or whether it should be removed.
639                          */
640                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
641                                 continue;
642                         }
643                 }
644                 if (device->bdev) {
645                         blkdev_put(device->bdev, device->mode);
646                         device->bdev = NULL;
647                         fs_devices->open_devices--;
648                 }
649                 if (device->writeable) {
650                         list_del_init(&device->dev_alloc_list);
651                         device->writeable = 0;
652                         if (!device->is_tgtdev_for_dev_replace)
653                                 fs_devices->rw_devices--;
654                 }
655                 list_del_init(&device->dev_list);
656                 fs_devices->num_devices--;
657                 rcu_string_free(device->name);
658                 kfree(device);
659         }
660
661         if (fs_devices->seed) {
662                 fs_devices = fs_devices->seed;
663                 goto again;
664         }
665
666         fs_devices->latest_bdev = latest_dev->bdev;
667
668         mutex_unlock(&uuid_mutex);
669 }
670
671 static void __free_device(struct work_struct *work)
672 {
673         struct btrfs_device *device;
674
675         device = container_of(work, struct btrfs_device, rcu_work);
676
677         if (device->bdev)
678                 blkdev_put(device->bdev, device->mode);
679
680         rcu_string_free(device->name);
681         kfree(device);
682 }
683
684 static void free_device(struct rcu_head *head)
685 {
686         struct btrfs_device *device;
687
688         device = container_of(head, struct btrfs_device, rcu);
689
690         INIT_WORK(&device->rcu_work, __free_device);
691         schedule_work(&device->rcu_work);
692 }
693
694 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
695 {
696         struct btrfs_device *device;
697
698         if (--fs_devices->opened > 0)
699                 return 0;
700
701         mutex_lock(&fs_devices->device_list_mutex);
702         list_for_each_entry(device, &fs_devices->devices, dev_list) {
703                 struct btrfs_device *new_device;
704                 struct rcu_string *name;
705
706                 if (device->bdev)
707                         fs_devices->open_devices--;
708
709                 if (device->writeable &&
710                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
711                         list_del_init(&device->dev_alloc_list);
712                         fs_devices->rw_devices--;
713                 }
714
715                 if (device->missing)
716                         fs_devices->missing_devices--;
717
718                 new_device = btrfs_alloc_device(NULL, &device->devid,
719                                                 device->uuid);
720                 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
721
722                 /* Safe because we are under uuid_mutex */
723                 if (device->name) {
724                         name = rcu_string_strdup(device->name->str, GFP_NOFS);
725                         BUG_ON(!name); /* -ENOMEM */
726                         rcu_assign_pointer(new_device->name, name);
727                 }
728
729                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
730                 new_device->fs_devices = device->fs_devices;
731
732                 call_rcu(&device->rcu, free_device);
733         }
734         mutex_unlock(&fs_devices->device_list_mutex);
735
736         WARN_ON(fs_devices->open_devices);
737         WARN_ON(fs_devices->rw_devices);
738         fs_devices->opened = 0;
739         fs_devices->seeding = 0;
740
741         return 0;
742 }
743
744 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
745 {
746         struct btrfs_fs_devices *seed_devices = NULL;
747         int ret;
748
749         mutex_lock(&uuid_mutex);
750         ret = __btrfs_close_devices(fs_devices);
751         if (!fs_devices->opened) {
752                 seed_devices = fs_devices->seed;
753                 fs_devices->seed = NULL;
754         }
755         mutex_unlock(&uuid_mutex);
756
757         while (seed_devices) {
758                 fs_devices = seed_devices;
759                 seed_devices = fs_devices->seed;
760                 __btrfs_close_devices(fs_devices);
761                 free_fs_devices(fs_devices);
762         }
763         /*
764          * Wait for rcu kworkers under __btrfs_close_devices
765          * to finish all blkdev_puts so device is really
766          * free when umount is done.
767          */
768         rcu_barrier();
769         return ret;
770 }
771
772 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
773                                 fmode_t flags, void *holder)
774 {
775         struct request_queue *q;
776         struct block_device *bdev;
777         struct list_head *head = &fs_devices->devices;
778         struct btrfs_device *device;
779         struct btrfs_device *latest_dev = NULL;
780         struct buffer_head *bh;
781         struct btrfs_super_block *disk_super;
782         u64 devid;
783         int seeding = 1;
784         int ret = 0;
785
786         flags |= FMODE_EXCL;
787
788         list_for_each_entry(device, head, dev_list) {
789                 if (device->bdev)
790                         continue;
791                 if (!device->name)
792                         continue;
793
794                 /* Just open everything we can; ignore failures here */
795                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
796                                             &bdev, &bh))
797                         continue;
798
799                 disk_super = (struct btrfs_super_block *)bh->b_data;
800                 devid = btrfs_stack_device_id(&disk_super->dev_item);
801                 if (devid != device->devid)
802                         goto error_brelse;
803
804                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
805                            BTRFS_UUID_SIZE))
806                         goto error_brelse;
807
808                 device->generation = btrfs_super_generation(disk_super);
809                 if (!latest_dev ||
810                     device->generation > latest_dev->generation)
811                         latest_dev = device;
812
813                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
814                         device->writeable = 0;
815                 } else {
816                         device->writeable = !bdev_read_only(bdev);
817                         seeding = 0;
818                 }
819
820                 q = bdev_get_queue(bdev);
821                 if (blk_queue_discard(q))
822                         device->can_discard = 1;
823
824                 device->bdev = bdev;
825                 device->in_fs_metadata = 0;
826                 device->mode = flags;
827
828                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
829                         fs_devices->rotating = 1;
830
831                 fs_devices->open_devices++;
832                 if (device->writeable &&
833                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
834                         fs_devices->rw_devices++;
835                         list_add(&device->dev_alloc_list,
836                                  &fs_devices->alloc_list);
837                 }
838                 brelse(bh);
839                 continue;
840
841 error_brelse:
842                 brelse(bh);
843                 blkdev_put(bdev, flags);
844                 continue;
845         }
846         if (fs_devices->open_devices == 0) {
847                 ret = -EINVAL;
848                 goto out;
849         }
850         fs_devices->seeding = seeding;
851         fs_devices->opened = 1;
852         fs_devices->latest_bdev = latest_dev->bdev;
853         fs_devices->total_rw_bytes = 0;
854 out:
855         return ret;
856 }
857
858 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
859                        fmode_t flags, void *holder)
860 {
861         int ret;
862
863         mutex_lock(&uuid_mutex);
864         if (fs_devices->opened) {
865                 fs_devices->opened++;
866                 ret = 0;
867         } else {
868                 ret = __btrfs_open_devices(fs_devices, flags, holder);
869         }
870         mutex_unlock(&uuid_mutex);
871         return ret;
872 }
873
874 /*
875  * Look for a btrfs signature on a device. This may be called out of the mount path
876  * and we are not allowed to call set_blocksize during the scan. The superblock
877  * is read via pagecache
878  */
879 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
880                           struct btrfs_fs_devices **fs_devices_ret)
881 {
882         struct btrfs_super_block *disk_super;
883         struct block_device *bdev;
884         struct page *page;
885         void *p;
886         int ret = -EINVAL;
887         u64 devid;
888         u64 transid;
889         u64 total_devices;
890         u64 bytenr;
891         pgoff_t index;
892
893         /*
894          * we would like to check all the supers, but that would make
895          * a btrfs mount succeed after a mkfs from a different FS.
896          * So, we need to add a special mount option to scan for
897          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
898          */
899         bytenr = btrfs_sb_offset(0);
900         flags |= FMODE_EXCL;
901         mutex_lock(&uuid_mutex);
902
903         bdev = blkdev_get_by_path(path, flags, holder);
904
905         if (IS_ERR(bdev)) {
906                 ret = PTR_ERR(bdev);
907                 goto error;
908         }
909
910         /* make sure our super fits in the device */
911         if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
912                 goto error_bdev_put;
913
914         /* make sure our super fits in the page */
915         if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
916                 goto error_bdev_put;
917
918         /* make sure our super doesn't straddle pages on disk */
919         index = bytenr >> PAGE_CACHE_SHIFT;
920         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
921                 goto error_bdev_put;
922
923         /* pull in the page with our super */
924         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
925                                    index, GFP_NOFS);
926
927         if (IS_ERR_OR_NULL(page))
928                 goto error_bdev_put;
929
930         p = kmap(page);
931
932         /* align our pointer to the offset of the super block */
933         disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
934
935         if (btrfs_super_bytenr(disk_super) != bytenr ||
936             btrfs_super_magic(disk_super) != BTRFS_MAGIC)
937                 goto error_unmap;
938
939         devid = btrfs_stack_device_id(&disk_super->dev_item);
940         transid = btrfs_super_generation(disk_super);
941         total_devices = btrfs_super_num_devices(disk_super);
942
943         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
944         if (ret > 0) {
945                 if (disk_super->label[0]) {
946                         if (disk_super->label[BTRFS_LABEL_SIZE - 1])
947                                 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
948                         printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
949                 } else {
950                         printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
951                 }
952
953                 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
954                 ret = 0;
955         }
956         if (!ret && fs_devices_ret)
957                 (*fs_devices_ret)->total_devices = total_devices;
958
959 error_unmap:
960         kunmap(page);
961         page_cache_release(page);
962
963 error_bdev_put:
964         blkdev_put(bdev, flags);
965 error:
966         mutex_unlock(&uuid_mutex);
967         return ret;
968 }
969
970 /* helper to account the used device space in the range */
971 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
972                                    u64 end, u64 *length)
973 {
974         struct btrfs_key key;
975         struct btrfs_root *root = device->dev_root;
976         struct btrfs_dev_extent *dev_extent;
977         struct btrfs_path *path;
978         u64 extent_end;
979         int ret;
980         int slot;
981         struct extent_buffer *l;
982
983         *length = 0;
984
985         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
986                 return 0;
987
988         path = btrfs_alloc_path();
989         if (!path)
990                 return -ENOMEM;
991         path->reada = 2;
992
993         key.objectid = device->devid;
994         key.offset = start;
995         key.type = BTRFS_DEV_EXTENT_KEY;
996
997         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
998         if (ret < 0)
999                 goto out;
1000         if (ret > 0) {
1001                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1002                 if (ret < 0)
1003                         goto out;
1004         }
1005
1006         while (1) {
1007                 l = path->nodes[0];
1008                 slot = path->slots[0];
1009                 if (slot >= btrfs_header_nritems(l)) {
1010                         ret = btrfs_next_leaf(root, path);
1011                         if (ret == 0)
1012                                 continue;
1013                         if (ret < 0)
1014                                 goto out;
1015
1016                         break;
1017                 }
1018                 btrfs_item_key_to_cpu(l, &key, slot);
1019
1020                 if (key.objectid < device->devid)
1021                         goto next;
1022
1023                 if (key.objectid > device->devid)
1024                         break;
1025
1026                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1027                         goto next;
1028
1029                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1030                 extent_end = key.offset + btrfs_dev_extent_length(l,
1031                                                                   dev_extent);
1032                 if (key.offset <= start && extent_end > end) {
1033                         *length = end - start + 1;
1034                         break;
1035                 } else if (key.offset <= start && extent_end > start)
1036                         *length += extent_end - start;
1037                 else if (key.offset > start && extent_end <= end)
1038                         *length += extent_end - key.offset;
1039                 else if (key.offset > start && key.offset <= end) {
1040                         *length += end - key.offset + 1;
1041                         break;
1042                 } else if (key.offset > end)
1043                         break;
1044
1045 next:
1046                 path->slots[0]++;
1047         }
1048         ret = 0;
1049 out:
1050         btrfs_free_path(path);
1051         return ret;
1052 }
1053
1054 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1055                                    struct btrfs_device *device,
1056                                    u64 *start, u64 len)
1057 {
1058         struct extent_map *em;
1059         struct list_head *search_list = &trans->transaction->pending_chunks;
1060         int ret = 0;
1061
1062 again:
1063         list_for_each_entry(em, search_list, list) {
1064                 struct map_lookup *map;
1065                 int i;
1066
1067                 map = (struct map_lookup *)em->bdev;
1068                 for (i = 0; i < map->num_stripes; i++) {
1069                         if (map->stripes[i].dev != device)
1070                                 continue;
1071                         if (map->stripes[i].physical >= *start + len ||
1072                             map->stripes[i].physical + em->orig_block_len <=
1073                             *start)
1074                                 continue;
1075                         *start = map->stripes[i].physical +
1076                                 em->orig_block_len;
1077                         ret = 1;
1078                 }
1079         }
1080         if (search_list == &trans->transaction->pending_chunks) {
1081                 search_list = &trans->root->fs_info->pinned_chunks;
1082                 goto again;
1083         }
1084
1085         return ret;
1086 }
1087
1088
1089 /*
1090  * find_free_dev_extent - find free space in the specified device
1091  * @device:     the device which we search the free space in
1092  * @num_bytes:  the size of the free space that we need
1093  * @start:      store the start of the free space.
1094  * @len:        the size of the free space. that we find, or the size of the max
1095  *              free space if we don't find suitable free space
1096  *
1097  * this uses a pretty simple search, the expectation is that it is
1098  * called very infrequently and that a given device has a small number
1099  * of extents
1100  *
1101  * @start is used to store the start of the free space if we find. But if we
1102  * don't find suitable free space, it will be used to store the start position
1103  * of the max free space.
1104  *
1105  * @len is used to store the size of the free space that we find.
1106  * But if we don't find suitable free space, it is used to store the size of
1107  * the max free space.
1108  */
1109 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1110                          struct btrfs_device *device, u64 num_bytes,
1111                          u64 *start, u64 *len)
1112 {
1113         struct btrfs_key key;
1114         struct btrfs_root *root = device->dev_root;
1115         struct btrfs_dev_extent *dev_extent;
1116         struct btrfs_path *path;
1117         u64 hole_size;
1118         u64 max_hole_start;
1119         u64 max_hole_size;
1120         u64 extent_end;
1121         u64 search_start;
1122         u64 search_end = device->total_bytes;
1123         int ret;
1124         int slot;
1125         struct extent_buffer *l;
1126
1127         /* FIXME use last free of some kind */
1128
1129         /* we don't want to overwrite the superblock on the drive,
1130          * so we make sure to start at an offset of at least 1MB
1131          */
1132         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1133
1134         path = btrfs_alloc_path();
1135         if (!path)
1136                 return -ENOMEM;
1137 again:
1138         max_hole_start = search_start;
1139         max_hole_size = 0;
1140         hole_size = 0;
1141
1142         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1143                 ret = -ENOSPC;
1144                 goto out;
1145         }
1146
1147         path->reada = 2;
1148         path->search_commit_root = 1;
1149         path->skip_locking = 1;
1150
1151         key.objectid = device->devid;
1152         key.offset = search_start;
1153         key.type = BTRFS_DEV_EXTENT_KEY;
1154
1155         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1156         if (ret < 0)
1157                 goto out;
1158         if (ret > 0) {
1159                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1160                 if (ret < 0)
1161                         goto out;
1162         }
1163
1164         while (1) {
1165                 l = path->nodes[0];
1166                 slot = path->slots[0];
1167                 if (slot >= btrfs_header_nritems(l)) {
1168                         ret = btrfs_next_leaf(root, path);
1169                         if (ret == 0)
1170                                 continue;
1171                         if (ret < 0)
1172                                 goto out;
1173
1174                         break;
1175                 }
1176                 btrfs_item_key_to_cpu(l, &key, slot);
1177
1178                 if (key.objectid < device->devid)
1179                         goto next;
1180
1181                 if (key.objectid > device->devid)
1182                         break;
1183
1184                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1185                         goto next;
1186
1187                 if (key.offset > search_start) {
1188                         hole_size = key.offset - search_start;
1189
1190                         /*
1191                          * Have to check before we set max_hole_start, otherwise
1192                          * we could end up sending back this offset anyway.
1193                          */
1194                         if (contains_pending_extent(trans, device,
1195                                                     &search_start,
1196                                                     hole_size))
1197                                 hole_size = 0;
1198
1199                         if (hole_size > max_hole_size) {
1200                                 max_hole_start = search_start;
1201                                 max_hole_size = hole_size;
1202                         }
1203
1204                         /*
1205                          * If this free space is greater than which we need,
1206                          * it must be the max free space that we have found
1207                          * until now, so max_hole_start must point to the start
1208                          * of this free space and the length of this free space
1209                          * is stored in max_hole_size. Thus, we return
1210                          * max_hole_start and max_hole_size and go back to the
1211                          * caller.
1212                          */
1213                         if (hole_size >= num_bytes) {
1214                                 ret = 0;
1215                                 goto out;
1216                         }
1217                 }
1218
1219                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1220                 extent_end = key.offset + btrfs_dev_extent_length(l,
1221                                                                   dev_extent);
1222                 if (extent_end > search_start)
1223                         search_start = extent_end;
1224 next:
1225                 path->slots[0]++;
1226                 cond_resched();
1227         }
1228
1229         /*
1230          * At this point, search_start should be the end of
1231          * allocated dev extents, and when shrinking the device,
1232          * search_end may be smaller than search_start.
1233          */
1234         if (search_end > search_start)
1235                 hole_size = search_end - search_start;
1236
1237         if (hole_size > max_hole_size) {
1238                 max_hole_start = search_start;
1239                 max_hole_size = hole_size;
1240         }
1241
1242         if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1243                 btrfs_release_path(path);
1244                 goto again;
1245         }
1246
1247         /* See above. */
1248         if (hole_size < num_bytes)
1249                 ret = -ENOSPC;
1250         else
1251                 ret = 0;
1252
1253 out:
1254         btrfs_free_path(path);
1255         *start = max_hole_start;
1256         if (len)
1257                 *len = max_hole_size;
1258         return ret;
1259 }
1260
1261 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1262                           struct btrfs_device *device,
1263                           u64 start, u64 *dev_extent_len)
1264 {
1265         int ret;
1266         struct btrfs_path *path;
1267         struct btrfs_root *root = device->dev_root;
1268         struct btrfs_key key;
1269         struct btrfs_key found_key;
1270         struct extent_buffer *leaf = NULL;
1271         struct btrfs_dev_extent *extent = NULL;
1272
1273         path = btrfs_alloc_path();
1274         if (!path)
1275                 return -ENOMEM;
1276
1277         key.objectid = device->devid;
1278         key.offset = start;
1279         key.type = BTRFS_DEV_EXTENT_KEY;
1280 again:
1281         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1282         if (ret > 0) {
1283                 ret = btrfs_previous_item(root, path, key.objectid,
1284                                           BTRFS_DEV_EXTENT_KEY);
1285                 if (ret)
1286                         goto out;
1287                 leaf = path->nodes[0];
1288                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1289                 extent = btrfs_item_ptr(leaf, path->slots[0],
1290                                         struct btrfs_dev_extent);
1291                 BUG_ON(found_key.offset > start || found_key.offset +
1292                        btrfs_dev_extent_length(leaf, extent) < start);
1293                 key = found_key;
1294                 btrfs_release_path(path);
1295                 goto again;
1296         } else if (ret == 0) {
1297                 leaf = path->nodes[0];
1298                 extent = btrfs_item_ptr(leaf, path->slots[0],
1299                                         struct btrfs_dev_extent);
1300         } else {
1301                 btrfs_error(root->fs_info, ret, "Slot search failed");
1302                 goto out;
1303         }
1304
1305         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1306
1307         ret = btrfs_del_item(trans, root, path);
1308         if (ret) {
1309                 btrfs_error(root->fs_info, ret,
1310                             "Failed to remove dev extent item");
1311         } else {
1312                 trans->transaction->have_free_bgs = 1;
1313         }
1314 out:
1315         btrfs_free_path(path);
1316         return ret;
1317 }
1318
1319 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1320                                   struct btrfs_device *device,
1321                                   u64 chunk_tree, u64 chunk_objectid,
1322                                   u64 chunk_offset, u64 start, u64 num_bytes)
1323 {
1324         int ret;
1325         struct btrfs_path *path;
1326         struct btrfs_root *root = device->dev_root;
1327         struct btrfs_dev_extent *extent;
1328         struct extent_buffer *leaf;
1329         struct btrfs_key key;
1330
1331         WARN_ON(!device->in_fs_metadata);
1332         WARN_ON(device->is_tgtdev_for_dev_replace);
1333         path = btrfs_alloc_path();
1334         if (!path)
1335                 return -ENOMEM;
1336
1337         key.objectid = device->devid;
1338         key.offset = start;
1339         key.type = BTRFS_DEV_EXTENT_KEY;
1340         ret = btrfs_insert_empty_item(trans, root, path, &key,
1341                                       sizeof(*extent));
1342         if (ret)
1343                 goto out;
1344
1345         leaf = path->nodes[0];
1346         extent = btrfs_item_ptr(leaf, path->slots[0],
1347                                 struct btrfs_dev_extent);
1348         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1349         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1350         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1351
1352         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1353                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1354
1355         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1356         btrfs_mark_buffer_dirty(leaf);
1357 out:
1358         btrfs_free_path(path);
1359         return ret;
1360 }
1361
1362 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1363 {
1364         struct extent_map_tree *em_tree;
1365         struct extent_map *em;
1366         struct rb_node *n;
1367         u64 ret = 0;
1368
1369         em_tree = &fs_info->mapping_tree.map_tree;
1370         read_lock(&em_tree->lock);
1371         n = rb_last(&em_tree->map);
1372         if (n) {
1373                 em = rb_entry(n, struct extent_map, rb_node);
1374                 ret = em->start + em->len;
1375         }
1376         read_unlock(&em_tree->lock);
1377
1378         return ret;
1379 }
1380
1381 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1382                                     u64 *devid_ret)
1383 {
1384         int ret;
1385         struct btrfs_key key;
1386         struct btrfs_key found_key;
1387         struct btrfs_path *path;
1388
1389         path = btrfs_alloc_path();
1390         if (!path)
1391                 return -ENOMEM;
1392
1393         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1394         key.type = BTRFS_DEV_ITEM_KEY;
1395         key.offset = (u64)-1;
1396
1397         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1398         if (ret < 0)
1399                 goto error;
1400
1401         BUG_ON(ret == 0); /* Corruption */
1402
1403         ret = btrfs_previous_item(fs_info->chunk_root, path,
1404                                   BTRFS_DEV_ITEMS_OBJECTID,
1405                                   BTRFS_DEV_ITEM_KEY);
1406         if (ret) {
1407                 *devid_ret = 1;
1408         } else {
1409                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1410                                       path->slots[0]);
1411                 *devid_ret = found_key.offset + 1;
1412         }
1413         ret = 0;
1414 error:
1415         btrfs_free_path(path);
1416         return ret;
1417 }
1418
1419 /*
1420  * the device information is stored in the chunk root
1421  * the btrfs_device struct should be fully filled in
1422  */
1423 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1424                             struct btrfs_root *root,
1425                             struct btrfs_device *device)
1426 {
1427         int ret;
1428         struct btrfs_path *path;
1429         struct btrfs_dev_item *dev_item;
1430         struct extent_buffer *leaf;
1431         struct btrfs_key key;
1432         unsigned long ptr;
1433
1434         root = root->fs_info->chunk_root;
1435
1436         path = btrfs_alloc_path();
1437         if (!path)
1438                 return -ENOMEM;
1439
1440         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1441         key.type = BTRFS_DEV_ITEM_KEY;
1442         key.offset = device->devid;
1443
1444         ret = btrfs_insert_empty_item(trans, root, path, &key,
1445                                       sizeof(*dev_item));
1446         if (ret)
1447                 goto out;
1448
1449         leaf = path->nodes[0];
1450         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1451
1452         btrfs_set_device_id(leaf, dev_item, device->devid);
1453         btrfs_set_device_generation(leaf, dev_item, 0);
1454         btrfs_set_device_type(leaf, dev_item, device->type);
1455         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1456         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1457         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1458         btrfs_set_device_total_bytes(leaf, dev_item,
1459                                      btrfs_device_get_disk_total_bytes(device));
1460         btrfs_set_device_bytes_used(leaf, dev_item,
1461                                     btrfs_device_get_bytes_used(device));
1462         btrfs_set_device_group(leaf, dev_item, 0);
1463         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1464         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1465         btrfs_set_device_start_offset(leaf, dev_item, 0);
1466
1467         ptr = btrfs_device_uuid(dev_item);
1468         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1469         ptr = btrfs_device_fsid(dev_item);
1470         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1471         btrfs_mark_buffer_dirty(leaf);
1472
1473         ret = 0;
1474 out:
1475         btrfs_free_path(path);
1476         return ret;
1477 }
1478
1479 /*
1480  * Function to update ctime/mtime for a given device path.
1481  * Mainly used for ctime/mtime based probe like libblkid.
1482  */
1483 static void update_dev_time(char *path_name)
1484 {
1485         struct file *filp;
1486
1487         filp = filp_open(path_name, O_RDWR, 0);
1488         if (IS_ERR(filp))
1489                 return;
1490         file_update_time(filp);
1491         filp_close(filp, NULL);
1492         return;
1493 }
1494
1495 static int btrfs_rm_dev_item(struct btrfs_root *root,
1496                              struct btrfs_device *device)
1497 {
1498         int ret;
1499         struct btrfs_path *path;
1500         struct btrfs_key key;
1501         struct btrfs_trans_handle *trans;
1502
1503         root = root->fs_info->chunk_root;
1504
1505         path = btrfs_alloc_path();
1506         if (!path)
1507                 return -ENOMEM;
1508
1509         trans = btrfs_start_transaction(root, 0);
1510         if (IS_ERR(trans)) {
1511                 btrfs_free_path(path);
1512                 return PTR_ERR(trans);
1513         }
1514         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1515         key.type = BTRFS_DEV_ITEM_KEY;
1516         key.offset = device->devid;
1517
1518         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1519         if (ret < 0)
1520                 goto out;
1521
1522         if (ret > 0) {
1523                 ret = -ENOENT;
1524                 goto out;
1525         }
1526
1527         ret = btrfs_del_item(trans, root, path);
1528         if (ret)
1529                 goto out;
1530 out:
1531         btrfs_free_path(path);
1532         btrfs_commit_transaction(trans, root);
1533         return ret;
1534 }
1535
1536 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1537 {
1538         struct btrfs_device *device;
1539         struct btrfs_device *next_device;
1540         struct block_device *bdev;
1541         struct buffer_head *bh = NULL;
1542         struct btrfs_super_block *disk_super;
1543         struct btrfs_fs_devices *cur_devices;
1544         u64 all_avail;
1545         u64 devid;
1546         u64 num_devices;
1547         u8 *dev_uuid;
1548         unsigned seq;
1549         int ret = 0;
1550         bool clear_super = false;
1551
1552         mutex_lock(&uuid_mutex);
1553
1554         do {
1555                 seq = read_seqbegin(&root->fs_info->profiles_lock);
1556
1557                 all_avail = root->fs_info->avail_data_alloc_bits |
1558                             root->fs_info->avail_system_alloc_bits |
1559                             root->fs_info->avail_metadata_alloc_bits;
1560         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1561
1562         num_devices = root->fs_info->fs_devices->num_devices;
1563         btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1564         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1565                 WARN_ON(num_devices < 1);
1566                 num_devices--;
1567         }
1568         btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1569
1570         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1571                 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1572                 goto out;
1573         }
1574
1575         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1576                 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1577                 goto out;
1578         }
1579
1580         if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1581             root->fs_info->fs_devices->rw_devices <= 2) {
1582                 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1583                 goto out;
1584         }
1585         if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1586             root->fs_info->fs_devices->rw_devices <= 3) {
1587                 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1588                 goto out;
1589         }
1590
1591         if (strcmp(device_path, "missing") == 0) {
1592                 struct list_head *devices;
1593                 struct btrfs_device *tmp;
1594
1595                 device = NULL;
1596                 devices = &root->fs_info->fs_devices->devices;
1597                 /*
1598                  * It is safe to read the devices since the volume_mutex
1599                  * is held.
1600                  */
1601                 list_for_each_entry(tmp, devices, dev_list) {
1602                         if (tmp->in_fs_metadata &&
1603                             !tmp->is_tgtdev_for_dev_replace &&
1604                             !tmp->bdev) {
1605                                 device = tmp;
1606                                 break;
1607                         }
1608                 }
1609                 bdev = NULL;
1610                 bh = NULL;
1611                 disk_super = NULL;
1612                 if (!device) {
1613                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1614                         goto out;
1615                 }
1616         } else {
1617                 ret = btrfs_get_bdev_and_sb(device_path,
1618                                             FMODE_WRITE | FMODE_EXCL,
1619                                             root->fs_info->bdev_holder, 0,
1620                                             &bdev, &bh);
1621                 if (ret)
1622                         goto out;
1623                 disk_super = (struct btrfs_super_block *)bh->b_data;
1624                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1625                 dev_uuid = disk_super->dev_item.uuid;
1626                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1627                                            disk_super->fsid);
1628                 if (!device) {
1629                         ret = -ENOENT;
1630                         goto error_brelse;
1631                 }
1632         }
1633
1634         if (device->is_tgtdev_for_dev_replace) {
1635                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1636                 goto error_brelse;
1637         }
1638
1639         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1640                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1641                 goto error_brelse;
1642         }
1643
1644         if (device->writeable) {
1645                 lock_chunks(root);
1646                 list_del_init(&device->dev_alloc_list);
1647                 device->fs_devices->rw_devices--;
1648                 unlock_chunks(root);
1649                 clear_super = true;
1650         }
1651
1652         mutex_unlock(&uuid_mutex);
1653         ret = btrfs_shrink_device(device, 0);
1654         mutex_lock(&uuid_mutex);
1655         if (ret)
1656                 goto error_undo;
1657
1658         /*
1659          * TODO: the superblock still includes this device in its num_devices
1660          * counter although write_all_supers() is not locked out. This
1661          * could give a filesystem state which requires a degraded mount.
1662          */
1663         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1664         if (ret)
1665                 goto error_undo;
1666
1667         device->in_fs_metadata = 0;
1668         btrfs_scrub_cancel_dev(root->fs_info, device);
1669
1670         /*
1671          * the device list mutex makes sure that we don't change
1672          * the device list while someone else is writing out all
1673          * the device supers. Whoever is writing all supers, should
1674          * lock the device list mutex before getting the number of
1675          * devices in the super block (super_copy). Conversely,
1676          * whoever updates the number of devices in the super block
1677          * (super_copy) should hold the device list mutex.
1678          */
1679
1680         cur_devices = device->fs_devices;
1681         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1682         list_del_rcu(&device->dev_list);
1683
1684         device->fs_devices->num_devices--;
1685         device->fs_devices->total_devices--;
1686
1687         if (device->missing)
1688                 device->fs_devices->missing_devices--;
1689
1690         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1691                                  struct btrfs_device, dev_list);
1692         if (device->bdev == root->fs_info->sb->s_bdev)
1693                 root->fs_info->sb->s_bdev = next_device->bdev;
1694         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1695                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1696
1697         if (device->bdev) {
1698                 device->fs_devices->open_devices--;
1699                 /* remove sysfs entry */
1700                 btrfs_kobj_rm_device(root->fs_info, device);
1701         }
1702
1703         call_rcu(&device->rcu, free_device);
1704
1705         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1706         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1707         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1708
1709         if (cur_devices->open_devices == 0) {
1710                 struct btrfs_fs_devices *fs_devices;
1711                 fs_devices = root->fs_info->fs_devices;
1712                 while (fs_devices) {
1713                         if (fs_devices->seed == cur_devices) {
1714                                 fs_devices->seed = cur_devices->seed;
1715                                 break;
1716                         }
1717                         fs_devices = fs_devices->seed;
1718                 }
1719                 cur_devices->seed = NULL;
1720                 __btrfs_close_devices(cur_devices);
1721                 free_fs_devices(cur_devices);
1722         }
1723
1724         root->fs_info->num_tolerated_disk_barrier_failures =
1725                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1726
1727         /*
1728          * at this point, the device is zero sized.  We want to
1729          * remove it from the devices list and zero out the old super
1730          */
1731         if (clear_super && disk_super) {
1732                 u64 bytenr;
1733                 int i;
1734
1735                 /* make sure this device isn't detected as part of
1736                  * the FS anymore
1737                  */
1738                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1739                 set_buffer_dirty(bh);
1740                 sync_dirty_buffer(bh);
1741
1742                 /* clear the mirror copies of super block on the disk
1743                  * being removed, 0th copy is been taken care above and
1744                  * the below would take of the rest
1745                  */
1746                 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1747                         bytenr = btrfs_sb_offset(i);
1748                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1749                                         i_size_read(bdev->bd_inode))
1750                                 break;
1751
1752                         brelse(bh);
1753                         bh = __bread(bdev, bytenr / 4096,
1754                                         BTRFS_SUPER_INFO_SIZE);
1755                         if (!bh)
1756                                 continue;
1757
1758                         disk_super = (struct btrfs_super_block *)bh->b_data;
1759
1760                         if (btrfs_super_bytenr(disk_super) != bytenr ||
1761                                 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1762                                 continue;
1763                         }
1764                         memset(&disk_super->magic, 0,
1765                                                 sizeof(disk_super->magic));
1766                         set_buffer_dirty(bh);
1767                         sync_dirty_buffer(bh);
1768                 }
1769         }
1770
1771         ret = 0;
1772
1773         if (bdev) {
1774                 /* Notify udev that device has changed */
1775                 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1776
1777                 /* Update ctime/mtime for device path for libblkid */
1778                 update_dev_time(device_path);
1779         }
1780
1781 error_brelse:
1782         brelse(bh);
1783         if (bdev)
1784                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1785 out:
1786         mutex_unlock(&uuid_mutex);
1787         return ret;
1788 error_undo:
1789         if (device->writeable) {
1790                 lock_chunks(root);
1791                 list_add(&device->dev_alloc_list,
1792                          &root->fs_info->fs_devices->alloc_list);
1793                 device->fs_devices->rw_devices++;
1794                 unlock_chunks(root);
1795         }
1796         goto error_brelse;
1797 }
1798
1799 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1800                                         struct btrfs_device *srcdev)
1801 {
1802         struct btrfs_fs_devices *fs_devices;
1803
1804         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1805
1806         /*
1807          * in case of fs with no seed, srcdev->fs_devices will point
1808          * to fs_devices of fs_info. However when the dev being replaced is
1809          * a seed dev it will point to the seed's local fs_devices. In short
1810          * srcdev will have its correct fs_devices in both the cases.
1811          */
1812         fs_devices = srcdev->fs_devices;
1813
1814         list_del_rcu(&srcdev->dev_list);
1815         list_del_rcu(&srcdev->dev_alloc_list);
1816         fs_devices->num_devices--;
1817         if (srcdev->missing)
1818                 fs_devices->missing_devices--;
1819
1820         if (srcdev->writeable) {
1821                 fs_devices->rw_devices--;
1822                 /* zero out the old super if it is writable */
1823                 btrfs_scratch_superblock(srcdev);
1824         }
1825
1826         if (srcdev->bdev)
1827                 fs_devices->open_devices--;
1828 }
1829
1830 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1831                                       struct btrfs_device *srcdev)
1832 {
1833         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1834
1835         call_rcu(&srcdev->rcu, free_device);
1836
1837         /*
1838          * unless fs_devices is seed fs, num_devices shouldn't go
1839          * zero
1840          */
1841         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1842
1843         /* if this is no devs we rather delete the fs_devices */
1844         if (!fs_devices->num_devices) {
1845                 struct btrfs_fs_devices *tmp_fs_devices;
1846
1847                 tmp_fs_devices = fs_info->fs_devices;
1848                 while (tmp_fs_devices) {
1849                         if (tmp_fs_devices->seed == fs_devices) {
1850                                 tmp_fs_devices->seed = fs_devices->seed;
1851                                 break;
1852                         }
1853                         tmp_fs_devices = tmp_fs_devices->seed;
1854                 }
1855                 fs_devices->seed = NULL;
1856                 __btrfs_close_devices(fs_devices);
1857                 free_fs_devices(fs_devices);
1858         }
1859 }
1860
1861 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1862                                       struct btrfs_device *tgtdev)
1863 {
1864         struct btrfs_device *next_device;
1865
1866         mutex_lock(&uuid_mutex);
1867         WARN_ON(!tgtdev);
1868         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1869         if (tgtdev->bdev) {
1870                 btrfs_scratch_superblock(tgtdev);
1871                 fs_info->fs_devices->open_devices--;
1872         }
1873         fs_info->fs_devices->num_devices--;
1874
1875         next_device = list_entry(fs_info->fs_devices->devices.next,
1876                                  struct btrfs_device, dev_list);
1877         if (tgtdev->bdev == fs_info->sb->s_bdev)
1878                 fs_info->sb->s_bdev = next_device->bdev;
1879         if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1880                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1881         list_del_rcu(&tgtdev->dev_list);
1882
1883         call_rcu(&tgtdev->rcu, free_device);
1884
1885         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1886         mutex_unlock(&uuid_mutex);
1887 }
1888
1889 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1890                                      struct btrfs_device **device)
1891 {
1892         int ret = 0;
1893         struct btrfs_super_block *disk_super;
1894         u64 devid;
1895         u8 *dev_uuid;
1896         struct block_device *bdev;
1897         struct buffer_head *bh;
1898
1899         *device = NULL;
1900         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1901                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
1902         if (ret)
1903                 return ret;
1904         disk_super = (struct btrfs_super_block *)bh->b_data;
1905         devid = btrfs_stack_device_id(&disk_super->dev_item);
1906         dev_uuid = disk_super->dev_item.uuid;
1907         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1908                                     disk_super->fsid);
1909         brelse(bh);
1910         if (!*device)
1911                 ret = -ENOENT;
1912         blkdev_put(bdev, FMODE_READ);
1913         return ret;
1914 }
1915
1916 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1917                                          char *device_path,
1918                                          struct btrfs_device **device)
1919 {
1920         *device = NULL;
1921         if (strcmp(device_path, "missing") == 0) {
1922                 struct list_head *devices;
1923                 struct btrfs_device *tmp;
1924
1925                 devices = &root->fs_info->fs_devices->devices;
1926                 /*
1927                  * It is safe to read the devices since the volume_mutex
1928                  * is held by the caller.
1929                  */
1930                 list_for_each_entry(tmp, devices, dev_list) {
1931                         if (tmp->in_fs_metadata && !tmp->bdev) {
1932                                 *device = tmp;
1933                                 break;
1934                         }
1935                 }
1936
1937                 if (!*device) {
1938                         btrfs_err(root->fs_info, "no missing device found");
1939                         return -ENOENT;
1940                 }
1941
1942                 return 0;
1943         } else {
1944                 return btrfs_find_device_by_path(root, device_path, device);
1945         }
1946 }
1947
1948 /*
1949  * does all the dirty work required for changing file system's UUID.
1950  */
1951 static int btrfs_prepare_sprout(struct btrfs_root *root)
1952 {
1953         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1954         struct btrfs_fs_devices *old_devices;
1955         struct btrfs_fs_devices *seed_devices;
1956         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1957         struct btrfs_device *device;
1958         u64 super_flags;
1959
1960         BUG_ON(!mutex_is_locked(&uuid_mutex));
1961         if (!fs_devices->seeding)
1962                 return -EINVAL;
1963
1964         seed_devices = __alloc_fs_devices();
1965         if (IS_ERR(seed_devices))
1966                 return PTR_ERR(seed_devices);
1967
1968         old_devices = clone_fs_devices(fs_devices);
1969         if (IS_ERR(old_devices)) {
1970                 kfree(seed_devices);
1971                 return PTR_ERR(old_devices);
1972         }
1973
1974         list_add(&old_devices->list, &fs_uuids);
1975
1976         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1977         seed_devices->opened = 1;
1978         INIT_LIST_HEAD(&seed_devices->devices);
1979         INIT_LIST_HEAD(&seed_devices->alloc_list);
1980         mutex_init(&seed_devices->device_list_mutex);
1981
1982         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1983         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1984                               synchronize_rcu);
1985         list_for_each_entry(device, &seed_devices->devices, dev_list)
1986                 device->fs_devices = seed_devices;
1987
1988         lock_chunks(root);
1989         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1990         unlock_chunks(root);
1991
1992         fs_devices->seeding = 0;
1993         fs_devices->num_devices = 0;
1994         fs_devices->open_devices = 0;
1995         fs_devices->missing_devices = 0;
1996         fs_devices->rotating = 0;
1997         fs_devices->seed = seed_devices;
1998
1999         generate_random_uuid(fs_devices->fsid);
2000         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2001         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2002         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2003
2004         super_flags = btrfs_super_flags(disk_super) &
2005                       ~BTRFS_SUPER_FLAG_SEEDING;
2006         btrfs_set_super_flags(disk_super, super_flags);
2007
2008         return 0;
2009 }
2010
2011 /*
2012  * strore the expected generation for seed devices in device items.
2013  */
2014 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2015                                struct btrfs_root *root)
2016 {
2017         struct btrfs_path *path;
2018         struct extent_buffer *leaf;
2019         struct btrfs_dev_item *dev_item;
2020         struct btrfs_device *device;
2021         struct btrfs_key key;
2022         u8 fs_uuid[BTRFS_UUID_SIZE];
2023         u8 dev_uuid[BTRFS_UUID_SIZE];
2024         u64 devid;
2025         int ret;
2026
2027         path = btrfs_alloc_path();
2028         if (!path)
2029                 return -ENOMEM;
2030
2031         root = root->fs_info->chunk_root;
2032         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2033         key.offset = 0;
2034         key.type = BTRFS_DEV_ITEM_KEY;
2035
2036         while (1) {
2037                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2038                 if (ret < 0)
2039                         goto error;
2040
2041                 leaf = path->nodes[0];
2042 next_slot:
2043                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2044                         ret = btrfs_next_leaf(root, path);
2045                         if (ret > 0)
2046                                 break;
2047                         if (ret < 0)
2048                                 goto error;
2049                         leaf = path->nodes[0];
2050                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2051                         btrfs_release_path(path);
2052                         continue;
2053                 }
2054
2055                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2056                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2057                     key.type != BTRFS_DEV_ITEM_KEY)
2058                         break;
2059
2060                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2061                                           struct btrfs_dev_item);
2062                 devid = btrfs_device_id(leaf, dev_item);
2063                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2064                                    BTRFS_UUID_SIZE);
2065                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2066                                    BTRFS_UUID_SIZE);
2067                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2068                                            fs_uuid);
2069                 BUG_ON(!device); /* Logic error */
2070
2071                 if (device->fs_devices->seeding) {
2072                         btrfs_set_device_generation(leaf, dev_item,
2073                                                     device->generation);
2074                         btrfs_mark_buffer_dirty(leaf);
2075                 }
2076
2077                 path->slots[0]++;
2078                 goto next_slot;
2079         }
2080         ret = 0;
2081 error:
2082         btrfs_free_path(path);
2083         return ret;
2084 }
2085
2086 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2087 {
2088         struct request_queue *q;
2089         struct btrfs_trans_handle *trans;
2090         struct btrfs_device *device;
2091         struct block_device *bdev;
2092         struct list_head *devices;
2093         struct super_block *sb = root->fs_info->sb;
2094         struct rcu_string *name;
2095         u64 tmp;
2096         int seeding_dev = 0;
2097         int ret = 0;
2098
2099         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2100                 return -EROFS;
2101
2102         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2103                                   root->fs_info->bdev_holder);
2104         if (IS_ERR(bdev))
2105                 return PTR_ERR(bdev);
2106
2107         if (root->fs_info->fs_devices->seeding) {
2108                 seeding_dev = 1;
2109                 down_write(&sb->s_umount);
2110                 mutex_lock(&uuid_mutex);
2111         }
2112
2113         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2114
2115         devices = &root->fs_info->fs_devices->devices;
2116
2117         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2118         list_for_each_entry(device, devices, dev_list) {
2119                 if (device->bdev == bdev) {
2120                         ret = -EEXIST;
2121                         mutex_unlock(
2122                                 &root->fs_info->fs_devices->device_list_mutex);
2123                         goto error;
2124                 }
2125         }
2126         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2127
2128         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2129         if (IS_ERR(device)) {
2130                 /* we can safely leave the fs_devices entry around */
2131                 ret = PTR_ERR(device);
2132                 goto error;
2133         }
2134
2135         name = rcu_string_strdup(device_path, GFP_NOFS);
2136         if (!name) {
2137                 kfree(device);
2138                 ret = -ENOMEM;
2139                 goto error;
2140         }
2141         rcu_assign_pointer(device->name, name);
2142
2143         trans = btrfs_start_transaction(root, 0);
2144         if (IS_ERR(trans)) {
2145                 rcu_string_free(device->name);
2146                 kfree(device);
2147                 ret = PTR_ERR(trans);
2148                 goto error;
2149         }
2150
2151         q = bdev_get_queue(bdev);
2152         if (blk_queue_discard(q))
2153                 device->can_discard = 1;
2154         device->writeable = 1;
2155         device->generation = trans->transid;
2156         device->io_width = root->sectorsize;
2157         device->io_align = root->sectorsize;
2158         device->sector_size = root->sectorsize;
2159         device->total_bytes = i_size_read(bdev->bd_inode);
2160         device->disk_total_bytes = device->total_bytes;
2161         device->commit_total_bytes = device->total_bytes;
2162         device->dev_root = root->fs_info->dev_root;
2163         device->bdev = bdev;
2164         device->in_fs_metadata = 1;
2165         device->is_tgtdev_for_dev_replace = 0;
2166         device->mode = FMODE_EXCL;
2167         device->dev_stats_valid = 1;
2168         set_blocksize(device->bdev, 4096);
2169
2170         if (seeding_dev) {
2171                 sb->s_flags &= ~MS_RDONLY;
2172                 ret = btrfs_prepare_sprout(root);
2173                 BUG_ON(ret); /* -ENOMEM */
2174         }
2175
2176         device->fs_devices = root->fs_info->fs_devices;
2177
2178         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2179         lock_chunks(root);
2180         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2181         list_add(&device->dev_alloc_list,
2182                  &root->fs_info->fs_devices->alloc_list);
2183         root->fs_info->fs_devices->num_devices++;
2184         root->fs_info->fs_devices->open_devices++;
2185         root->fs_info->fs_devices->rw_devices++;
2186         root->fs_info->fs_devices->total_devices++;
2187         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2188
2189         spin_lock(&root->fs_info->free_chunk_lock);
2190         root->fs_info->free_chunk_space += device->total_bytes;
2191         spin_unlock(&root->fs_info->free_chunk_lock);
2192
2193         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2194                 root->fs_info->fs_devices->rotating = 1;
2195
2196         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2197         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2198                                     tmp + device->total_bytes);
2199
2200         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2201         btrfs_set_super_num_devices(root->fs_info->super_copy,
2202                                     tmp + 1);
2203
2204         /* add sysfs device entry */
2205         btrfs_kobj_add_device(root->fs_info, device);
2206
2207         /*
2208          * we've got more storage, clear any full flags on the space
2209          * infos
2210          */
2211         btrfs_clear_space_info_full(root->fs_info);
2212
2213         unlock_chunks(root);
2214         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2215
2216         if (seeding_dev) {
2217                 lock_chunks(root);
2218                 ret = init_first_rw_device(trans, root, device);
2219                 unlock_chunks(root);
2220                 if (ret) {
2221                         btrfs_abort_transaction(trans, root, ret);
2222                         goto error_trans;
2223                 }
2224         }
2225
2226         ret = btrfs_add_device(trans, root, device);
2227         if (ret) {
2228                 btrfs_abort_transaction(trans, root, ret);
2229                 goto error_trans;
2230         }
2231
2232         if (seeding_dev) {
2233                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2234
2235                 ret = btrfs_finish_sprout(trans, root);
2236                 if (ret) {
2237                         btrfs_abort_transaction(trans, root, ret);
2238                         goto error_trans;
2239                 }
2240
2241                 /* Sprouting would change fsid of the mounted root,
2242                  * so rename the fsid on the sysfs
2243                  */
2244                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2245                                                 root->fs_info->fsid);
2246                 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2247                         goto error_trans;
2248         }
2249
2250         root->fs_info->num_tolerated_disk_barrier_failures =
2251                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2252         ret = btrfs_commit_transaction(trans, root);
2253
2254         if (seeding_dev) {
2255                 mutex_unlock(&uuid_mutex);
2256                 up_write(&sb->s_umount);
2257
2258                 if (ret) /* transaction commit */
2259                         return ret;
2260
2261                 ret = btrfs_relocate_sys_chunks(root);
2262                 if (ret < 0)
2263                         btrfs_error(root->fs_info, ret,
2264                                     "Failed to relocate sys chunks after "
2265                                     "device initialization. This can be fixed "
2266                                     "using the \"btrfs balance\" command.");
2267                 trans = btrfs_attach_transaction(root);
2268                 if (IS_ERR(trans)) {
2269                         if (PTR_ERR(trans) == -ENOENT)
2270                                 return 0;
2271                         return PTR_ERR(trans);
2272                 }
2273                 ret = btrfs_commit_transaction(trans, root);
2274         }
2275
2276         /* Update ctime/mtime for libblkid */
2277         update_dev_time(device_path);
2278         return ret;
2279
2280 error_trans:
2281         btrfs_end_transaction(trans, root);
2282         rcu_string_free(device->name);
2283         btrfs_kobj_rm_device(root->fs_info, device);
2284         kfree(device);
2285 error:
2286         blkdev_put(bdev, FMODE_EXCL);
2287         if (seeding_dev) {
2288                 mutex_unlock(&uuid_mutex);
2289                 up_write(&sb->s_umount);
2290         }
2291         return ret;
2292 }
2293
2294 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2295                                   struct btrfs_device *srcdev,
2296                                   struct btrfs_device **device_out)
2297 {
2298         struct request_queue *q;
2299         struct btrfs_device *device;
2300         struct block_device *bdev;
2301         struct btrfs_fs_info *fs_info = root->fs_info;
2302         struct list_head *devices;
2303         struct rcu_string *name;
2304         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2305         int ret = 0;
2306
2307         *device_out = NULL;
2308         if (fs_info->fs_devices->seeding) {
2309                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2310                 return -EINVAL;
2311         }
2312
2313         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2314                                   fs_info->bdev_holder);
2315         if (IS_ERR(bdev)) {
2316                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2317                 return PTR_ERR(bdev);
2318         }
2319
2320         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2321
2322         devices = &fs_info->fs_devices->devices;
2323         list_for_each_entry(device, devices, dev_list) {
2324                 if (device->bdev == bdev) {
2325                         btrfs_err(fs_info, "target device is in the filesystem!");
2326                         ret = -EEXIST;
2327                         goto error;
2328                 }
2329         }
2330
2331
2332         if (i_size_read(bdev->bd_inode) <
2333             btrfs_device_get_total_bytes(srcdev)) {
2334                 btrfs_err(fs_info, "target device is smaller than source device!");
2335                 ret = -EINVAL;
2336                 goto error;
2337         }
2338
2339
2340         device = btrfs_alloc_device(NULL, &devid, NULL);
2341         if (IS_ERR(device)) {
2342                 ret = PTR_ERR(device);
2343                 goto error;
2344         }
2345
2346         name = rcu_string_strdup(device_path, GFP_NOFS);
2347         if (!name) {
2348                 kfree(device);
2349                 ret = -ENOMEM;
2350                 goto error;
2351         }
2352         rcu_assign_pointer(device->name, name);
2353
2354         q = bdev_get_queue(bdev);
2355         if (blk_queue_discard(q))
2356                 device->can_discard = 1;
2357         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2358         device->writeable = 1;
2359         device->generation = 0;
2360         device->io_width = root->sectorsize;
2361         device->io_align = root->sectorsize;
2362         device->sector_size = root->sectorsize;
2363         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2364         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2365         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2366         ASSERT(list_empty(&srcdev->resized_list));
2367         device->commit_total_bytes = srcdev->commit_total_bytes;
2368         device->commit_bytes_used = device->bytes_used;
2369         device->dev_root = fs_info->dev_root;
2370         device->bdev = bdev;
2371         device->in_fs_metadata = 1;
2372         device->is_tgtdev_for_dev_replace = 1;
2373         device->mode = FMODE_EXCL;
2374         device->dev_stats_valid = 1;
2375         set_blocksize(device->bdev, 4096);
2376         device->fs_devices = fs_info->fs_devices;
2377         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2378         fs_info->fs_devices->num_devices++;
2379         fs_info->fs_devices->open_devices++;
2380         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2381
2382         *device_out = device;
2383         return ret;
2384
2385 error:
2386         blkdev_put(bdev, FMODE_EXCL);
2387         return ret;
2388 }
2389
2390 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2391                                               struct btrfs_device *tgtdev)
2392 {
2393         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2394         tgtdev->io_width = fs_info->dev_root->sectorsize;
2395         tgtdev->io_align = fs_info->dev_root->sectorsize;
2396         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2397         tgtdev->dev_root = fs_info->dev_root;
2398         tgtdev->in_fs_metadata = 1;
2399 }
2400
2401 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2402                                         struct btrfs_device *device)
2403 {
2404         int ret;
2405         struct btrfs_path *path;
2406         struct btrfs_root *root;
2407         struct btrfs_dev_item *dev_item;
2408         struct extent_buffer *leaf;
2409         struct btrfs_key key;
2410
2411         root = device->dev_root->fs_info->chunk_root;
2412
2413         path = btrfs_alloc_path();
2414         if (!path)
2415                 return -ENOMEM;
2416
2417         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2418         key.type = BTRFS_DEV_ITEM_KEY;
2419         key.offset = device->devid;
2420
2421         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2422         if (ret < 0)
2423                 goto out;
2424
2425         if (ret > 0) {
2426                 ret = -ENOENT;
2427                 goto out;
2428         }
2429
2430         leaf = path->nodes[0];
2431         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2432
2433         btrfs_set_device_id(leaf, dev_item, device->devid);
2434         btrfs_set_device_type(leaf, dev_item, device->type);
2435         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2436         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2437         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2438         btrfs_set_device_total_bytes(leaf, dev_item,
2439                                      btrfs_device_get_disk_total_bytes(device));
2440         btrfs_set_device_bytes_used(leaf, dev_item,
2441                                     btrfs_device_get_bytes_used(device));
2442         btrfs_mark_buffer_dirty(leaf);
2443
2444 out:
2445         btrfs_free_path(path);
2446         return ret;
2447 }
2448
2449 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2450                       struct btrfs_device *device, u64 new_size)
2451 {
2452         struct btrfs_super_block *super_copy =
2453                 device->dev_root->fs_info->super_copy;
2454         struct btrfs_fs_devices *fs_devices;
2455         u64 old_total;
2456         u64 diff;
2457
2458         if (!device->writeable)
2459                 return -EACCES;
2460
2461         lock_chunks(device->dev_root);
2462         old_total = btrfs_super_total_bytes(super_copy);
2463         diff = new_size - device->total_bytes;
2464
2465         if (new_size <= device->total_bytes ||
2466             device->is_tgtdev_for_dev_replace) {
2467                 unlock_chunks(device->dev_root);
2468                 return -EINVAL;
2469         }
2470
2471         fs_devices = device->dev_root->fs_info->fs_devices;
2472
2473         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2474         device->fs_devices->total_rw_bytes += diff;
2475
2476         btrfs_device_set_total_bytes(device, new_size);
2477         btrfs_device_set_disk_total_bytes(device, new_size);
2478         btrfs_clear_space_info_full(device->dev_root->fs_info);
2479         if (list_empty(&device->resized_list))
2480                 list_add_tail(&device->resized_list,
2481                               &fs_devices->resized_devices);
2482         unlock_chunks(device->dev_root);
2483
2484         return btrfs_update_device(trans, device);
2485 }
2486
2487 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2488                             struct btrfs_root *root, u64 chunk_objectid,
2489                             u64 chunk_offset)
2490 {
2491         int ret;
2492         struct btrfs_path *path;
2493         struct btrfs_key key;
2494
2495         root = root->fs_info->chunk_root;
2496         path = btrfs_alloc_path();
2497         if (!path)
2498                 return -ENOMEM;
2499
2500         key.objectid = chunk_objectid;
2501         key.offset = chunk_offset;
2502         key.type = BTRFS_CHUNK_ITEM_KEY;
2503
2504         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2505         if (ret < 0)
2506                 goto out;
2507         else if (ret > 0) { /* Logic error or corruption */
2508                 btrfs_error(root->fs_info, -ENOENT,
2509                             "Failed lookup while freeing chunk.");
2510                 ret = -ENOENT;
2511                 goto out;
2512         }
2513
2514         ret = btrfs_del_item(trans, root, path);
2515         if (ret < 0)
2516                 btrfs_error(root->fs_info, ret,
2517                             "Failed to delete chunk item.");
2518 out:
2519         btrfs_free_path(path);
2520         return ret;
2521 }
2522
2523 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2524                         chunk_offset)
2525 {
2526         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2527         struct btrfs_disk_key *disk_key;
2528         struct btrfs_chunk *chunk;
2529         u8 *ptr;
2530         int ret = 0;
2531         u32 num_stripes;
2532         u32 array_size;
2533         u32 len = 0;
2534         u32 cur;
2535         struct btrfs_key key;
2536
2537         lock_chunks(root);
2538         array_size = btrfs_super_sys_array_size(super_copy);
2539
2540         ptr = super_copy->sys_chunk_array;
2541         cur = 0;
2542
2543         while (cur < array_size) {
2544                 disk_key = (struct btrfs_disk_key *)ptr;
2545                 btrfs_disk_key_to_cpu(&key, disk_key);
2546
2547                 len = sizeof(*disk_key);
2548
2549                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2550                         chunk = (struct btrfs_chunk *)(ptr + len);
2551                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2552                         len += btrfs_chunk_item_size(num_stripes);
2553                 } else {
2554                         ret = -EIO;
2555                         break;
2556                 }
2557                 if (key.objectid == chunk_objectid &&
2558                     key.offset == chunk_offset) {
2559                         memmove(ptr, ptr + len, array_size - (cur + len));
2560                         array_size -= len;
2561                         btrfs_set_super_sys_array_size(super_copy, array_size);
2562                 } else {
2563                         ptr += len;
2564                         cur += len;
2565                 }
2566         }
2567         unlock_chunks(root);
2568         return ret;
2569 }
2570
2571 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2572                        struct btrfs_root *root, u64 chunk_offset)
2573 {
2574         struct extent_map_tree *em_tree;
2575         struct extent_map *em;
2576         struct btrfs_root *extent_root = root->fs_info->extent_root;
2577         struct map_lookup *map;
2578         u64 dev_extent_len = 0;
2579         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2580         int i, ret = 0;
2581
2582         /* Just in case */
2583         root = root->fs_info->chunk_root;
2584         em_tree = &root->fs_info->mapping_tree.map_tree;
2585
2586         read_lock(&em_tree->lock);
2587         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2588         read_unlock(&em_tree->lock);
2589
2590         if (!em || em->start > chunk_offset ||
2591             em->start + em->len < chunk_offset) {
2592                 /*
2593                  * This is a logic error, but we don't want to just rely on the
2594                  * user having built with ASSERT enabled, so if ASSERT doens't
2595                  * do anything we still error out.
2596                  */
2597                 ASSERT(0);
2598                 if (em)
2599                         free_extent_map(em);
2600                 return -EINVAL;
2601         }
2602         map = (struct map_lookup *)em->bdev;
2603
2604         for (i = 0; i < map->num_stripes; i++) {
2605                 struct btrfs_device *device = map->stripes[i].dev;
2606                 ret = btrfs_free_dev_extent(trans, device,
2607                                             map->stripes[i].physical,
2608                                             &dev_extent_len);
2609                 if (ret) {
2610                         btrfs_abort_transaction(trans, root, ret);
2611                         goto out;
2612                 }
2613
2614                 if (device->bytes_used > 0) {
2615                         lock_chunks(root);
2616                         btrfs_device_set_bytes_used(device,
2617                                         device->bytes_used - dev_extent_len);
2618                         spin_lock(&root->fs_info->free_chunk_lock);
2619                         root->fs_info->free_chunk_space += dev_extent_len;
2620                         spin_unlock(&root->fs_info->free_chunk_lock);
2621                         btrfs_clear_space_info_full(root->fs_info);
2622                         unlock_chunks(root);
2623                 }
2624
2625                 if (map->stripes[i].dev) {
2626                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2627                         if (ret) {
2628                                 btrfs_abort_transaction(trans, root, ret);
2629                                 goto out;
2630                         }
2631                 }
2632         }
2633         ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2634         if (ret) {
2635                 btrfs_abort_transaction(trans, root, ret);
2636                 goto out;
2637         }
2638
2639         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2640
2641         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2642                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2643                 if (ret) {
2644                         btrfs_abort_transaction(trans, root, ret);
2645                         goto out;
2646                 }
2647         }
2648
2649         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2650         if (ret) {
2651                 btrfs_abort_transaction(trans, extent_root, ret);
2652                 goto out;
2653         }
2654
2655 out:
2656         /* once for us */
2657         free_extent_map(em);
2658         return ret;
2659 }
2660
2661 static int btrfs_relocate_chunk(struct btrfs_root *root,
2662                                 u64 chunk_objectid,
2663                                 u64 chunk_offset)
2664 {
2665         struct btrfs_root *extent_root;
2666         struct btrfs_trans_handle *trans;
2667         int ret;
2668
2669         root = root->fs_info->chunk_root;
2670         extent_root = root->fs_info->extent_root;
2671
2672         ret = btrfs_can_relocate(extent_root, chunk_offset);
2673         if (ret)
2674                 return -ENOSPC;
2675
2676         /* step one, relocate all the extents inside this chunk */
2677         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2678         if (ret)
2679                 return ret;
2680
2681         trans = btrfs_start_transaction(root, 0);
2682         if (IS_ERR(trans)) {
2683                 ret = PTR_ERR(trans);
2684                 btrfs_std_error(root->fs_info, ret);
2685                 return ret;
2686         }
2687
2688         /*
2689          * step two, delete the device extents and the
2690          * chunk tree entries
2691          */
2692         ret = btrfs_remove_chunk(trans, root, chunk_offset);
2693         btrfs_end_transaction(trans, root);
2694         return ret;
2695 }
2696
2697 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2698 {
2699         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2700         struct btrfs_path *path;
2701         struct extent_buffer *leaf;
2702         struct btrfs_chunk *chunk;
2703         struct btrfs_key key;
2704         struct btrfs_key found_key;
2705         u64 chunk_type;
2706         bool retried = false;
2707         int failed = 0;
2708         int ret;
2709
2710         path = btrfs_alloc_path();
2711         if (!path)
2712                 return -ENOMEM;
2713
2714 again:
2715         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2716         key.offset = (u64)-1;
2717         key.type = BTRFS_CHUNK_ITEM_KEY;
2718
2719         while (1) {
2720                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2721                 if (ret < 0)
2722                         goto error;
2723                 BUG_ON(ret == 0); /* Corruption */
2724
2725                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2726                                           key.type);
2727                 if (ret < 0)
2728                         goto error;
2729                 if (ret > 0)
2730                         break;
2731
2732                 leaf = path->nodes[0];
2733                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2734
2735                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2736                                        struct btrfs_chunk);
2737                 chunk_type = btrfs_chunk_type(leaf, chunk);
2738                 btrfs_release_path(path);
2739
2740                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2741                         ret = btrfs_relocate_chunk(chunk_root,
2742                                                    found_key.objectid,
2743                                                    found_key.offset);
2744                         if (ret == -ENOSPC)
2745                                 failed++;
2746                         else
2747                                 BUG_ON(ret);
2748                 }
2749
2750                 if (found_key.offset == 0)
2751                         break;
2752                 key.offset = found_key.offset - 1;
2753         }
2754         ret = 0;
2755         if (failed && !retried) {
2756                 failed = 0;
2757                 retried = true;
2758                 goto again;
2759         } else if (WARN_ON(failed && retried)) {
2760                 ret = -ENOSPC;
2761         }
2762 error:
2763         btrfs_free_path(path);
2764         return ret;
2765 }
2766
2767 static int insert_balance_item(struct btrfs_root *root,
2768                                struct btrfs_balance_control *bctl)
2769 {
2770         struct btrfs_trans_handle *trans;
2771         struct btrfs_balance_item *item;
2772         struct btrfs_disk_balance_args disk_bargs;
2773         struct btrfs_path *path;
2774         struct extent_buffer *leaf;
2775         struct btrfs_key key;
2776         int ret, err;
2777
2778         path = btrfs_alloc_path();
2779         if (!path)
2780                 return -ENOMEM;
2781
2782         trans = btrfs_start_transaction(root, 0);
2783         if (IS_ERR(trans)) {
2784                 btrfs_free_path(path);
2785                 return PTR_ERR(trans);
2786         }
2787
2788         key.objectid = BTRFS_BALANCE_OBJECTID;
2789         key.type = BTRFS_BALANCE_ITEM_KEY;
2790         key.offset = 0;
2791
2792         ret = btrfs_insert_empty_item(trans, root, path, &key,
2793                                       sizeof(*item));
2794         if (ret)
2795                 goto out;
2796
2797         leaf = path->nodes[0];
2798         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2799
2800         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2801
2802         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2803         btrfs_set_balance_data(leaf, item, &disk_bargs);
2804         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2805         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2806         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2807         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2808
2809         btrfs_set_balance_flags(leaf, item, bctl->flags);
2810
2811         btrfs_mark_buffer_dirty(leaf);
2812 out:
2813         btrfs_free_path(path);
2814         err = btrfs_commit_transaction(trans, root);
2815         if (err && !ret)
2816                 ret = err;
2817         return ret;
2818 }
2819
2820 static int del_balance_item(struct btrfs_root *root)
2821 {
2822         struct btrfs_trans_handle *trans;
2823         struct btrfs_path *path;
2824         struct btrfs_key key;
2825         int ret, err;
2826
2827         path = btrfs_alloc_path();
2828         if (!path)
2829                 return -ENOMEM;
2830
2831         trans = btrfs_start_transaction(root, 0);
2832         if (IS_ERR(trans)) {
2833                 btrfs_free_path(path);
2834                 return PTR_ERR(trans);
2835         }
2836
2837         key.objectid = BTRFS_BALANCE_OBJECTID;
2838         key.type = BTRFS_BALANCE_ITEM_KEY;
2839         key.offset = 0;
2840
2841         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2842         if (ret < 0)
2843                 goto out;
2844         if (ret > 0) {
2845                 ret = -ENOENT;
2846                 goto out;
2847         }
2848
2849         ret = btrfs_del_item(trans, root, path);
2850 out:
2851         btrfs_free_path(path);
2852         err = btrfs_commit_transaction(trans, root);
2853         if (err && !ret)
2854                 ret = err;
2855         return ret;
2856 }
2857
2858 /*
2859  * This is a heuristic used to reduce the number of chunks balanced on
2860  * resume after balance was interrupted.
2861  */
2862 static void update_balance_args(struct btrfs_balance_control *bctl)
2863 {
2864         /*
2865          * Turn on soft mode for chunk types that were being converted.
2866          */
2867         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2868                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2869         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2870                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2871         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2872                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2873
2874         /*
2875          * Turn on usage filter if is not already used.  The idea is
2876          * that chunks that we have already balanced should be
2877          * reasonably full.  Don't do it for chunks that are being
2878          * converted - that will keep us from relocating unconverted
2879          * (albeit full) chunks.
2880          */
2881         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2882             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2883                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2884                 bctl->data.usage = 90;
2885         }
2886         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2887             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2888                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2889                 bctl->sys.usage = 90;
2890         }
2891         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2892             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2893                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2894                 bctl->meta.usage = 90;
2895         }
2896 }
2897
2898 /*
2899  * Should be called with both balance and volume mutexes held to
2900  * serialize other volume operations (add_dev/rm_dev/resize) with
2901  * restriper.  Same goes for unset_balance_control.
2902  */
2903 static void set_balance_control(struct btrfs_balance_control *bctl)
2904 {
2905         struct btrfs_fs_info *fs_info = bctl->fs_info;
2906
2907         BUG_ON(fs_info->balance_ctl);
2908
2909         spin_lock(&fs_info->balance_lock);
2910         fs_info->balance_ctl = bctl;
2911         spin_unlock(&fs_info->balance_lock);
2912 }
2913
2914 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2915 {
2916         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2917
2918         BUG_ON(!fs_info->balance_ctl);
2919
2920         spin_lock(&fs_info->balance_lock);
2921         fs_info->balance_ctl = NULL;
2922         spin_unlock(&fs_info->balance_lock);
2923
2924         kfree(bctl);
2925 }
2926
2927 /*
2928  * Balance filters.  Return 1 if chunk should be filtered out
2929  * (should not be balanced).
2930  */
2931 static int chunk_profiles_filter(u64 chunk_type,
2932                                  struct btrfs_balance_args *bargs)
2933 {
2934         chunk_type = chunk_to_extended(chunk_type) &
2935                                 BTRFS_EXTENDED_PROFILE_MASK;
2936
2937         if (bargs->profiles & chunk_type)
2938                 return 0;
2939
2940         return 1;
2941 }
2942
2943 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2944                               struct btrfs_balance_args *bargs)
2945 {
2946         struct btrfs_block_group_cache *cache;
2947         u64 chunk_used, user_thresh;
2948         int ret = 1;
2949
2950         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2951         chunk_used = btrfs_block_group_used(&cache->item);
2952
2953         if (bargs->usage == 0)
2954                 user_thresh = 1;
2955         else if (bargs->usage > 100)
2956                 user_thresh = cache->key.offset;
2957         else
2958                 user_thresh = div_factor_fine(cache->key.offset,
2959                                               bargs->usage);
2960
2961         if (chunk_used < user_thresh)
2962                 ret = 0;
2963
2964         btrfs_put_block_group(cache);
2965         return ret;
2966 }
2967
2968 static int chunk_devid_filter(struct extent_buffer *leaf,
2969                               struct btrfs_chunk *chunk,
2970                               struct btrfs_balance_args *bargs)
2971 {
2972         struct btrfs_stripe *stripe;
2973         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2974         int i;
2975
2976         for (i = 0; i < num_stripes; i++) {
2977                 stripe = btrfs_stripe_nr(chunk, i);
2978                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2979                         return 0;
2980         }
2981
2982         return 1;
2983 }
2984
2985 /* [pstart, pend) */
2986 static int chunk_drange_filter(struct extent_buffer *leaf,
2987                                struct btrfs_chunk *chunk,
2988                                u64 chunk_offset,
2989                                struct btrfs_balance_args *bargs)
2990 {
2991         struct btrfs_stripe *stripe;
2992         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2993         u64 stripe_offset;
2994         u64 stripe_length;
2995         int factor;
2996         int i;
2997
2998         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2999                 return 0;
3000
3001         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3002              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3003                 factor = num_stripes / 2;
3004         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3005                 factor = num_stripes - 1;
3006         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3007                 factor = num_stripes - 2;
3008         } else {
3009                 factor = num_stripes;
3010         }
3011
3012         for (i = 0; i < num_stripes; i++) {
3013                 stripe = btrfs_stripe_nr(chunk, i);
3014                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3015                         continue;
3016
3017                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3018                 stripe_length = btrfs_chunk_length(leaf, chunk);
3019                 stripe_length = div_u64(stripe_length, factor);
3020
3021                 if (stripe_offset < bargs->pend &&
3022                     stripe_offset + stripe_length > bargs->pstart)
3023                         return 0;
3024         }
3025
3026         return 1;
3027 }
3028
3029 /* [vstart, vend) */
3030 static int chunk_vrange_filter(struct extent_buffer *leaf,
3031                                struct btrfs_chunk *chunk,
3032                                u64 chunk_offset,
3033                                struct btrfs_balance_args *bargs)
3034 {
3035         if (chunk_offset < bargs->vend &&
3036             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3037                 /* at least part of the chunk is inside this vrange */
3038                 return 0;
3039
3040         return 1;
3041 }
3042
3043 static int chunk_soft_convert_filter(u64 chunk_type,
3044                                      struct btrfs_balance_args *bargs)
3045 {
3046         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3047                 return 0;
3048
3049         chunk_type = chunk_to_extended(chunk_type) &
3050                                 BTRFS_EXTENDED_PROFILE_MASK;
3051
3052         if (bargs->target == chunk_type)
3053                 return 1;
3054
3055         return 0;
3056 }
3057
3058 static int should_balance_chunk(struct btrfs_root *root,
3059                                 struct extent_buffer *leaf,
3060                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3061 {
3062         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3063         struct btrfs_balance_args *bargs = NULL;
3064         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3065
3066         /* type filter */
3067         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3068               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3069                 return 0;
3070         }
3071
3072         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3073                 bargs = &bctl->data;
3074         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3075                 bargs = &bctl->sys;
3076         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3077                 bargs = &bctl->meta;
3078
3079         /* profiles filter */
3080         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3081             chunk_profiles_filter(chunk_type, bargs)) {
3082                 return 0;
3083         }
3084
3085         /* usage filter */
3086         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3087             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3088                 return 0;
3089         }
3090
3091         /* devid filter */
3092         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3093             chunk_devid_filter(leaf, chunk, bargs)) {
3094                 return 0;
3095         }
3096
3097         /* drange filter, makes sense only with devid filter */
3098         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3099             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3100                 return 0;
3101         }
3102
3103         /* vrange filter */
3104         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3105             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3106                 return 0;
3107         }
3108
3109         /* soft profile changing mode */
3110         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3111             chunk_soft_convert_filter(chunk_type, bargs)) {
3112                 return 0;
3113         }
3114
3115         /*
3116          * limited by count, must be the last filter
3117          */
3118         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3119                 if (bargs->limit == 0)
3120                         return 0;
3121                 else
3122                         bargs->limit--;
3123         }
3124
3125         return 1;
3126 }
3127
3128 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3129 {
3130         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3131         struct btrfs_root *chunk_root = fs_info->chunk_root;
3132         struct btrfs_root *dev_root = fs_info->dev_root;
3133         struct list_head *devices;
3134         struct btrfs_device *device;
3135         u64 old_size;
3136         u64 size_to_free;
3137         struct btrfs_chunk *chunk;
3138         struct btrfs_path *path;
3139         struct btrfs_key key;
3140         struct btrfs_key found_key;
3141         struct btrfs_trans_handle *trans;
3142         struct extent_buffer *leaf;
3143         int slot;
3144         int ret;
3145         int enospc_errors = 0;
3146         bool counting = true;
3147         u64 limit_data = bctl->data.limit;
3148         u64 limit_meta = bctl->meta.limit;
3149         u64 limit_sys = bctl->sys.limit;
3150
3151         /* step one make some room on all the devices */
3152         devices = &fs_info->fs_devices->devices;
3153         list_for_each_entry(device, devices, dev_list) {
3154                 old_size = btrfs_device_get_total_bytes(device);
3155                 size_to_free = div_factor(old_size, 1);
3156                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3157                 if (!device->writeable ||
3158                     btrfs_device_get_total_bytes(device) -
3159                     btrfs_device_get_bytes_used(device) > size_to_free ||
3160                     device->is_tgtdev_for_dev_replace)
3161                         continue;
3162
3163                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3164                 if (ret == -ENOSPC)
3165                         break;
3166                 BUG_ON(ret);
3167
3168                 trans = btrfs_start_transaction(dev_root, 0);
3169                 BUG_ON(IS_ERR(trans));
3170
3171                 ret = btrfs_grow_device(trans, device, old_size);
3172                 BUG_ON(ret);
3173
3174                 btrfs_end_transaction(trans, dev_root);
3175         }
3176
3177         /* step two, relocate all the chunks */
3178         path = btrfs_alloc_path();
3179         if (!path) {
3180                 ret = -ENOMEM;
3181                 goto error;
3182         }
3183
3184         /* zero out stat counters */
3185         spin_lock(&fs_info->balance_lock);
3186         memset(&bctl->stat, 0, sizeof(bctl->stat));
3187         spin_unlock(&fs_info->balance_lock);
3188 again:
3189         if (!counting) {
3190                 bctl->data.limit = limit_data;
3191                 bctl->meta.limit = limit_meta;
3192                 bctl->sys.limit = limit_sys;
3193         }
3194         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3195         key.offset = (u64)-1;
3196         key.type = BTRFS_CHUNK_ITEM_KEY;
3197
3198         while (1) {
3199                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3200                     atomic_read(&fs_info->balance_cancel_req)) {
3201                         ret = -ECANCELED;
3202                         goto error;
3203                 }
3204
3205                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3206                 if (ret < 0)
3207                         goto error;
3208
3209                 /*
3210                  * this shouldn't happen, it means the last relocate
3211                  * failed
3212                  */
3213                 if (ret == 0)
3214                         BUG(); /* FIXME break ? */
3215
3216                 ret = btrfs_previous_item(chunk_root, path, 0,
3217                                           BTRFS_CHUNK_ITEM_KEY);
3218                 if (ret) {
3219                         ret = 0;
3220                         break;
3221                 }
3222
3223                 leaf = path->nodes[0];
3224                 slot = path->slots[0];
3225                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3226
3227                 if (found_key.objectid != key.objectid)
3228                         break;
3229
3230                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3231
3232                 if (!counting) {
3233                         spin_lock(&fs_info->balance_lock);
3234                         bctl->stat.considered++;
3235                         spin_unlock(&fs_info->balance_lock);
3236                 }
3237
3238                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3239                                            found_key.offset);
3240                 btrfs_release_path(path);
3241                 if (!ret)
3242                         goto loop;
3243
3244                 if (counting) {
3245                         spin_lock(&fs_info->balance_lock);
3246                         bctl->stat.expected++;
3247                         spin_unlock(&fs_info->balance_lock);
3248                         goto loop;
3249                 }
3250
3251                 ret = btrfs_relocate_chunk(chunk_root,
3252                                            found_key.objectid,
3253                                            found_key.offset);
3254                 if (ret && ret != -ENOSPC)
3255                         goto error;
3256                 if (ret == -ENOSPC) {
3257                         enospc_errors++;
3258                 } else {
3259                         spin_lock(&fs_info->balance_lock);
3260                         bctl->stat.completed++;
3261                         spin_unlock(&fs_info->balance_lock);
3262                 }
3263 loop:
3264                 if (found_key.offset == 0)
3265                         break;
3266                 key.offset = found_key.offset - 1;
3267         }
3268
3269         if (counting) {
3270                 btrfs_release_path(path);
3271                 counting = false;
3272                 goto again;
3273         }
3274 error:
3275         btrfs_free_path(path);
3276         if (enospc_errors) {
3277                 btrfs_info(fs_info, "%d enospc errors during balance",
3278                        enospc_errors);
3279                 if (!ret)
3280                         ret = -ENOSPC;
3281         }
3282
3283         return ret;
3284 }
3285
3286 /**
3287  * alloc_profile_is_valid - see if a given profile is valid and reduced
3288  * @flags: profile to validate
3289  * @extended: if true @flags is treated as an extended profile
3290  */
3291 static int alloc_profile_is_valid(u64 flags, int extended)
3292 {
3293         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3294                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3295
3296         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3297
3298         /* 1) check that all other bits are zeroed */
3299         if (flags & ~mask)
3300                 return 0;
3301
3302         /* 2) see if profile is reduced */
3303         if (flags == 0)
3304                 return !extended; /* "0" is valid for usual profiles */
3305
3306         /* true if exactly one bit set */
3307         return (flags & (flags - 1)) == 0;
3308 }
3309
3310 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3311 {
3312         /* cancel requested || normal exit path */
3313         return atomic_read(&fs_info->balance_cancel_req) ||
3314                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3315                  atomic_read(&fs_info->balance_cancel_req) == 0);
3316 }
3317
3318 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3319 {
3320         int ret;
3321
3322         unset_balance_control(fs_info);
3323         ret = del_balance_item(fs_info->tree_root);
3324         if (ret)
3325                 btrfs_std_error(fs_info, ret);
3326
3327         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3328 }
3329
3330 /*
3331  * Should be called with both balance and volume mutexes held
3332  */
3333 int btrfs_balance(struct btrfs_balance_control *bctl,
3334                   struct btrfs_ioctl_balance_args *bargs)
3335 {
3336         struct btrfs_fs_info *fs_info = bctl->fs_info;
3337         u64 allowed;
3338         int mixed = 0;
3339         int ret;
3340         u64 num_devices;
3341         unsigned seq;
3342
3343         if (btrfs_fs_closing(fs_info) ||
3344             atomic_read(&fs_info->balance_pause_req) ||
3345             atomic_read(&fs_info->balance_cancel_req)) {
3346                 ret = -EINVAL;
3347                 goto out;
3348         }
3349
3350         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3351         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3352                 mixed = 1;
3353
3354         /*
3355          * In case of mixed groups both data and meta should be picked,
3356          * and identical options should be given for both of them.
3357          */
3358         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3359         if (mixed && (bctl->flags & allowed)) {
3360                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3361                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3362                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3363                         btrfs_err(fs_info, "with mixed groups data and "
3364                                    "metadata balance options must be the same");
3365                         ret = -EINVAL;
3366                         goto out;
3367                 }
3368         }
3369
3370         num_devices = fs_info->fs_devices->num_devices;
3371         btrfs_dev_replace_lock(&fs_info->dev_replace);
3372         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3373                 BUG_ON(num_devices < 1);
3374                 num_devices--;
3375         }
3376         btrfs_dev_replace_unlock(&fs_info->dev_replace);
3377         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3378         if (num_devices == 1)
3379                 allowed |= BTRFS_BLOCK_GROUP_DUP;
3380         else if (num_devices > 1)
3381                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3382         if (num_devices > 2)
3383                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3384         if (num_devices > 3)
3385                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3386                             BTRFS_BLOCK_GROUP_RAID6);
3387         if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3388             (!alloc_profile_is_valid(bctl->data.target, 1) ||
3389              (bctl->data.target & ~allowed))) {
3390                 btrfs_err(fs_info, "unable to start balance with target "
3391                            "data profile %llu",
3392                        bctl->data.target);
3393                 ret = -EINVAL;
3394                 goto out;
3395         }
3396         if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3397             (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3398              (bctl->meta.target & ~allowed))) {
3399                 btrfs_err(fs_info,
3400                            "unable to start balance with target metadata profile %llu",
3401                        bctl->meta.target);
3402                 ret = -EINVAL;
3403                 goto out;
3404         }
3405         if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3406             (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3407              (bctl->sys.target & ~allowed))) {
3408                 btrfs_err(fs_info,
3409                            "unable to start balance with target system profile %llu",
3410                        bctl->sys.target);
3411                 ret = -EINVAL;
3412                 goto out;
3413         }
3414
3415         /* allow dup'ed data chunks only in mixed mode */
3416         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3417             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3418                 btrfs_err(fs_info, "dup for data is not allowed");
3419                 ret = -EINVAL;
3420                 goto out;
3421         }
3422
3423         /* allow to reduce meta or sys integrity only if force set */
3424         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3425                         BTRFS_BLOCK_GROUP_RAID10 |
3426                         BTRFS_BLOCK_GROUP_RAID5 |
3427                         BTRFS_BLOCK_GROUP_RAID6;
3428         do {
3429                 seq = read_seqbegin(&fs_info->profiles_lock);
3430
3431                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3432                      (fs_info->avail_system_alloc_bits & allowed) &&
3433                      !(bctl->sys.target & allowed)) ||
3434                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3435                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3436                      !(bctl->meta.target & allowed))) {
3437                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3438                                 btrfs_info(fs_info, "force reducing metadata integrity");
3439                         } else {
3440                                 btrfs_err(fs_info, "balance will reduce metadata "
3441                                            "integrity, use force if you want this");
3442                                 ret = -EINVAL;
3443                                 goto out;
3444                         }
3445                 }
3446         } while (read_seqretry(&fs_info->profiles_lock, seq));
3447
3448         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3449                 int num_tolerated_disk_barrier_failures;
3450                 u64 target = bctl->sys.target;
3451
3452                 num_tolerated_disk_barrier_failures =
3453                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3454                 if (num_tolerated_disk_barrier_failures > 0 &&
3455                     (target &
3456                      (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3457                       BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3458                         num_tolerated_disk_barrier_failures = 0;
3459                 else if (num_tolerated_disk_barrier_failures > 1 &&
3460                          (target &
3461                           (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3462                         num_tolerated_disk_barrier_failures = 1;
3463
3464                 fs_info->num_tolerated_disk_barrier_failures =
3465                         num_tolerated_disk_barrier_failures;
3466         }
3467
3468         ret = insert_balance_item(fs_info->tree_root, bctl);
3469         if (ret && ret != -EEXIST)
3470                 goto out;
3471
3472         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3473                 BUG_ON(ret == -EEXIST);
3474                 set_balance_control(bctl);
3475         } else {
3476                 BUG_ON(ret != -EEXIST);
3477                 spin_lock(&fs_info->balance_lock);
3478                 update_balance_args(bctl);
3479                 spin_unlock(&fs_info->balance_lock);
3480         }
3481
3482         atomic_inc(&fs_info->balance_running);
3483         mutex_unlock(&fs_info->balance_mutex);
3484
3485         ret = __btrfs_balance(fs_info);
3486
3487         mutex_lock(&fs_info->balance_mutex);
3488         atomic_dec(&fs_info->balance_running);
3489
3490         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3491                 fs_info->num_tolerated_disk_barrier_failures =
3492                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3493         }
3494
3495         if (bargs) {
3496                 memset(bargs, 0, sizeof(*bargs));
3497                 update_ioctl_balance_args(fs_info, 0, bargs);
3498         }
3499
3500         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3501             balance_need_close(fs_info)) {
3502                 __cancel_balance(fs_info);
3503         }
3504
3505         wake_up(&fs_info->balance_wait_q);
3506
3507         return ret;
3508 out:
3509         if (bctl->flags & BTRFS_BALANCE_RESUME)
3510                 __cancel_balance(fs_info);
3511         else {
3512                 kfree(bctl);
3513                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3514         }
3515         return ret;
3516 }
3517
3518 static int balance_kthread(void *data)
3519 {
3520         struct btrfs_fs_info *fs_info = data;
3521         int ret = 0;
3522
3523         mutex_lock(&fs_info->volume_mutex);
3524         mutex_lock(&fs_info->balance_mutex);
3525
3526         if (fs_info->balance_ctl) {
3527                 btrfs_info(fs_info, "continuing balance");
3528                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3529         }
3530
3531         mutex_unlock(&fs_info->balance_mutex);
3532         mutex_unlock(&fs_info->volume_mutex);
3533
3534         return ret;
3535 }
3536
3537 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3538 {
3539         struct task_struct *tsk;
3540
3541         spin_lock(&fs_info->balance_lock);
3542         if (!fs_info->balance_ctl) {
3543                 spin_unlock(&fs_info->balance_lock);
3544                 return 0;
3545         }
3546         spin_unlock(&fs_info->balance_lock);
3547
3548         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3549                 btrfs_info(fs_info, "force skipping balance");
3550                 return 0;
3551         }
3552
3553         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3554         return PTR_ERR_OR_ZERO(tsk);
3555 }
3556
3557 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3558 {
3559         struct btrfs_balance_control *bctl;
3560         struct btrfs_balance_item *item;
3561         struct btrfs_disk_balance_args disk_bargs;
3562         struct btrfs_path *path;
3563         struct extent_buffer *leaf;
3564         struct btrfs_key key;
3565         int ret;
3566
3567         path = btrfs_alloc_path();
3568         if (!path)
3569                 return -ENOMEM;
3570
3571         key.objectid = BTRFS_BALANCE_OBJECTID;
3572         key.type = BTRFS_BALANCE_ITEM_KEY;
3573         key.offset = 0;
3574
3575         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3576         if (ret < 0)
3577                 goto out;
3578         if (ret > 0) { /* ret = -ENOENT; */
3579                 ret = 0;
3580                 goto out;
3581         }
3582
3583         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3584         if (!bctl) {
3585                 ret = -ENOMEM;
3586                 goto out;
3587         }
3588
3589         leaf = path->nodes[0];
3590         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3591
3592         bctl->fs_info = fs_info;
3593         bctl->flags = btrfs_balance_flags(leaf, item);
3594         bctl->flags |= BTRFS_BALANCE_RESUME;
3595
3596         btrfs_balance_data(leaf, item, &disk_bargs);
3597         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3598         btrfs_balance_meta(leaf, item, &disk_bargs);
3599         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3600         btrfs_balance_sys(leaf, item, &disk_bargs);
3601         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3602
3603         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3604
3605         mutex_lock(&fs_info->volume_mutex);
3606         mutex_lock(&fs_info->balance_mutex);
3607
3608         set_balance_control(bctl);
3609
3610         mutex_unlock(&fs_info->balance_mutex);
3611         mutex_unlock(&fs_info->volume_mutex);
3612 out:
3613         btrfs_free_path(path);
3614         return ret;
3615 }
3616
3617 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3618 {
3619         int ret = 0;
3620
3621         mutex_lock(&fs_info->balance_mutex);
3622         if (!fs_info->balance_ctl) {
3623                 mutex_unlock(&fs_info->balance_mutex);
3624                 return -ENOTCONN;
3625         }
3626
3627         if (atomic_read(&fs_info->balance_running)) {
3628                 atomic_inc(&fs_info->balance_pause_req);
3629                 mutex_unlock(&fs_info->balance_mutex);
3630
3631                 wait_event(fs_info->balance_wait_q,
3632                            atomic_read(&fs_info->balance_running) == 0);
3633
3634                 mutex_lock(&fs_info->balance_mutex);
3635                 /* we are good with balance_ctl ripped off from under us */
3636                 BUG_ON(atomic_read(&fs_info->balance_running));
3637                 atomic_dec(&fs_info->balance_pause_req);
3638         } else {
3639                 ret = -ENOTCONN;
3640         }
3641
3642         mutex_unlock(&fs_info->balance_mutex);
3643         return ret;
3644 }
3645
3646 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3647 {
3648         if (fs_info->sb->s_flags & MS_RDONLY)
3649                 return -EROFS;
3650
3651         mutex_lock(&fs_info->balance_mutex);
3652         if (!fs_info->balance_ctl) {
3653                 mutex_unlock(&fs_info->balance_mutex);
3654                 return -ENOTCONN;
3655         }
3656
3657         atomic_inc(&fs_info->balance_cancel_req);
3658         /*
3659          * if we are running just wait and return, balance item is
3660          * deleted in btrfs_balance in this case
3661          */
3662         if (atomic_read(&fs_info->balance_running)) {
3663                 mutex_unlock(&fs_info->balance_mutex);
3664                 wait_event(fs_info->balance_wait_q,
3665                            atomic_read(&fs_info->balance_running) == 0);
3666                 mutex_lock(&fs_info->balance_mutex);
3667         } else {
3668                 /* __cancel_balance needs volume_mutex */
3669                 mutex_unlock(&fs_info->balance_mutex);
3670                 mutex_lock(&fs_info->volume_mutex);
3671                 mutex_lock(&fs_info->balance_mutex);
3672
3673                 if (fs_info->balance_ctl)
3674                         __cancel_balance(fs_info);
3675
3676                 mutex_unlock(&fs_info->volume_mutex);
3677         }
3678
3679         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3680         atomic_dec(&fs_info->balance_cancel_req);
3681         mutex_unlock(&fs_info->balance_mutex);
3682         return 0;
3683 }
3684
3685 static int btrfs_uuid_scan_kthread(void *data)
3686 {
3687         struct btrfs_fs_info *fs_info = data;
3688         struct btrfs_root *root = fs_info->tree_root;
3689         struct btrfs_key key;
3690         struct btrfs_key max_key;
3691         struct btrfs_path *path = NULL;
3692         int ret = 0;
3693         struct extent_buffer *eb;
3694         int slot;
3695         struct btrfs_root_item root_item;
3696         u32 item_size;
3697         struct btrfs_trans_handle *trans = NULL;
3698
3699         path = btrfs_alloc_path();
3700         if (!path) {
3701                 ret = -ENOMEM;
3702                 goto out;
3703         }
3704
3705         key.objectid = 0;
3706         key.type = BTRFS_ROOT_ITEM_KEY;
3707         key.offset = 0;
3708
3709         max_key.objectid = (u64)-1;
3710         max_key.type = BTRFS_ROOT_ITEM_KEY;
3711         max_key.offset = (u64)-1;
3712
3713         while (1) {
3714                 ret = btrfs_search_forward(root, &key, path, 0);
3715                 if (ret) {
3716                         if (ret > 0)
3717                                 ret = 0;
3718                         break;
3719                 }
3720
3721                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3722                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3723                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3724                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
3725                         goto skip;
3726
3727                 eb = path->nodes[0];
3728                 slot = path->slots[0];
3729                 item_size = btrfs_item_size_nr(eb, slot);
3730                 if (item_size < sizeof(root_item))
3731                         goto skip;
3732
3733                 read_extent_buffer(eb, &root_item,
3734                                    btrfs_item_ptr_offset(eb, slot),
3735                                    (int)sizeof(root_item));
3736                 if (btrfs_root_refs(&root_item) == 0)
3737                         goto skip;
3738
3739                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3740                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
3741                         if (trans)
3742                                 goto update_tree;
3743
3744                         btrfs_release_path(path);
3745                         /*
3746                          * 1 - subvol uuid item
3747                          * 1 - received_subvol uuid item
3748                          */
3749                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3750                         if (IS_ERR(trans)) {
3751                                 ret = PTR_ERR(trans);
3752                                 break;
3753                         }
3754                         continue;
3755                 } else {
3756                         goto skip;
3757                 }
3758 update_tree:
3759                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3760                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3761                                                   root_item.uuid,
3762                                                   BTRFS_UUID_KEY_SUBVOL,
3763                                                   key.objectid);
3764                         if (ret < 0) {
3765                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3766                                         ret);
3767                                 break;
3768                         }
3769                 }
3770
3771                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3772                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3773                                                   root_item.received_uuid,
3774                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3775                                                   key.objectid);
3776                         if (ret < 0) {
3777                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3778                                         ret);
3779                                 break;
3780                         }
3781                 }
3782
3783 skip:
3784                 if (trans) {
3785                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3786                         trans = NULL;
3787                         if (ret)
3788                                 break;
3789                 }
3790
3791                 btrfs_release_path(path);
3792                 if (key.offset < (u64)-1) {
3793                         key.offset++;
3794                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3795                         key.offset = 0;
3796                         key.type = BTRFS_ROOT_ITEM_KEY;
3797                 } else if (key.objectid < (u64)-1) {
3798                         key.offset = 0;
3799                         key.type = BTRFS_ROOT_ITEM_KEY;
3800                         key.objectid++;
3801                 } else {
3802                         break;
3803                 }
3804                 cond_resched();
3805         }
3806
3807 out:
3808         btrfs_free_path(path);
3809         if (trans && !IS_ERR(trans))
3810                 btrfs_end_transaction(trans, fs_info->uuid_root);
3811         if (ret)
3812                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3813         else
3814                 fs_info->update_uuid_tree_gen = 1;
3815         up(&fs_info->uuid_tree_rescan_sem);
3816         return 0;
3817 }
3818
3819 /*
3820  * Callback for btrfs_uuid_tree_iterate().
3821  * returns:
3822  * 0    check succeeded, the entry is not outdated.
3823  * < 0  if an error occured.
3824  * > 0  if the check failed, which means the caller shall remove the entry.
3825  */
3826 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3827                                        u8 *uuid, u8 type, u64 subid)
3828 {
3829         struct btrfs_key key;
3830         int ret = 0;
3831         struct btrfs_root *subvol_root;
3832
3833         if (type != BTRFS_UUID_KEY_SUBVOL &&
3834             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3835                 goto out;
3836
3837         key.objectid = subid;
3838         key.type = BTRFS_ROOT_ITEM_KEY;
3839         key.offset = (u64)-1;
3840         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3841         if (IS_ERR(subvol_root)) {
3842                 ret = PTR_ERR(subvol_root);
3843                 if (ret == -ENOENT)
3844                         ret = 1;
3845                 goto out;
3846         }
3847
3848         switch (type) {
3849         case BTRFS_UUID_KEY_SUBVOL:
3850                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3851                         ret = 1;
3852                 break;
3853         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3854                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3855                            BTRFS_UUID_SIZE))
3856                         ret = 1;
3857                 break;
3858         }
3859
3860 out:
3861         return ret;
3862 }
3863
3864 static int btrfs_uuid_rescan_kthread(void *data)
3865 {
3866         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3867         int ret;
3868
3869         /*
3870          * 1st step is to iterate through the existing UUID tree and
3871          * to delete all entries that contain outdated data.
3872          * 2nd step is to add all missing entries to the UUID tree.
3873          */
3874         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3875         if (ret < 0) {
3876                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3877                 up(&fs_info->uuid_tree_rescan_sem);
3878                 return ret;
3879         }
3880         return btrfs_uuid_scan_kthread(data);
3881 }
3882
3883 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3884 {
3885         struct btrfs_trans_handle *trans;
3886         struct btrfs_root *tree_root = fs_info->tree_root;
3887         struct btrfs_root *uuid_root;
3888         struct task_struct *task;
3889         int ret;
3890
3891         /*
3892          * 1 - root node
3893          * 1 - root item
3894          */
3895         trans = btrfs_start_transaction(tree_root, 2);
3896         if (IS_ERR(trans))
3897                 return PTR_ERR(trans);
3898
3899         uuid_root = btrfs_create_tree(trans, fs_info,
3900                                       BTRFS_UUID_TREE_OBJECTID);
3901         if (IS_ERR(uuid_root)) {
3902                 btrfs_abort_transaction(trans, tree_root,
3903                                         PTR_ERR(uuid_root));
3904                 return PTR_ERR(uuid_root);
3905         }
3906
3907         fs_info->uuid_root = uuid_root;
3908
3909         ret = btrfs_commit_transaction(trans, tree_root);
3910         if (ret)
3911                 return ret;
3912
3913         down(&fs_info->uuid_tree_rescan_sem);
3914         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3915         if (IS_ERR(task)) {
3916                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3917                 btrfs_warn(fs_info, "failed to start uuid_scan task");
3918                 up(&fs_info->uuid_tree_rescan_sem);
3919                 return PTR_ERR(task);
3920         }
3921
3922         return 0;
3923 }
3924
3925 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3926 {
3927         struct task_struct *task;
3928
3929         down(&fs_info->uuid_tree_rescan_sem);
3930         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3931         if (IS_ERR(task)) {
3932                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3933                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3934                 up(&fs_info->uuid_tree_rescan_sem);
3935                 return PTR_ERR(task);
3936         }
3937
3938         return 0;
3939 }
3940
3941 /*
3942  * shrinking a device means finding all of the device extents past
3943  * the new size, and then following the back refs to the chunks.
3944  * The chunk relocation code actually frees the device extent
3945  */
3946 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3947 {
3948         struct btrfs_trans_handle *trans;
3949         struct btrfs_root *root = device->dev_root;
3950         struct btrfs_dev_extent *dev_extent = NULL;
3951         struct btrfs_path *path;
3952         u64 length;
3953         u64 chunk_objectid;
3954         u64 chunk_offset;
3955         int ret;
3956         int slot;
3957         int failed = 0;
3958         bool retried = false;
3959         struct extent_buffer *l;
3960         struct btrfs_key key;
3961         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3962         u64 old_total = btrfs_super_total_bytes(super_copy);
3963         u64 old_size = btrfs_device_get_total_bytes(device);
3964         u64 diff = old_size - new_size;
3965
3966         if (device->is_tgtdev_for_dev_replace)
3967                 return -EINVAL;
3968
3969         path = btrfs_alloc_path();
3970         if (!path)
3971                 return -ENOMEM;
3972
3973         path->reada = 2;
3974
3975         lock_chunks(root);
3976
3977         btrfs_device_set_total_bytes(device, new_size);
3978         if (device->writeable) {
3979                 device->fs_devices->total_rw_bytes -= diff;
3980                 spin_lock(&root->fs_info->free_chunk_lock);
3981                 root->fs_info->free_chunk_space -= diff;
3982                 spin_unlock(&root->fs_info->free_chunk_lock);
3983         }
3984         unlock_chunks(root);
3985
3986 again:
3987         key.objectid = device->devid;
3988         key.offset = (u64)-1;
3989         key.type = BTRFS_DEV_EXTENT_KEY;
3990
3991         do {
3992                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3993                 if (ret < 0)
3994                         goto done;
3995
3996                 ret = btrfs_previous_item(root, path, 0, key.type);
3997                 if (ret < 0)
3998                         goto done;
3999                 if (ret) {
4000                         ret = 0;
4001                         btrfs_release_path(path);
4002                         break;
4003                 }
4004
4005                 l = path->nodes[0];
4006                 slot = path->slots[0];
4007                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4008
4009                 if (key.objectid != device->devid) {
4010                         btrfs_release_path(path);
4011                         break;
4012                 }
4013
4014                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4015                 length = btrfs_dev_extent_length(l, dev_extent);
4016
4017                 if (key.offset + length <= new_size) {
4018                         btrfs_release_path(path);
4019                         break;
4020                 }
4021
4022                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4023                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4024                 btrfs_release_path(path);
4025
4026                 ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset);
4027                 if (ret && ret != -ENOSPC)
4028                         goto done;
4029                 if (ret == -ENOSPC)
4030                         failed++;
4031         } while (key.offset-- > 0);
4032
4033         if (failed && !retried) {
4034                 failed = 0;
4035                 retried = true;
4036                 goto again;
4037         } else if (failed && retried) {
4038                 ret = -ENOSPC;
4039                 lock_chunks(root);
4040
4041                 btrfs_device_set_total_bytes(device, old_size);
4042                 if (device->writeable)
4043                         device->fs_devices->total_rw_bytes += diff;
4044                 spin_lock(&root->fs_info->free_chunk_lock);
4045                 root->fs_info->free_chunk_space += diff;
4046                 spin_unlock(&root->fs_info->free_chunk_lock);
4047                 unlock_chunks(root);
4048                 goto done;
4049         }
4050
4051         /* Shrinking succeeded, else we would be at "done". */
4052         trans = btrfs_start_transaction(root, 0);
4053         if (IS_ERR(trans)) {
4054                 ret = PTR_ERR(trans);
4055                 goto done;
4056         }
4057
4058         lock_chunks(root);
4059         btrfs_device_set_disk_total_bytes(device, new_size);
4060         if (list_empty(&device->resized_list))
4061                 list_add_tail(&device->resized_list,
4062                               &root->fs_info->fs_devices->resized_devices);
4063
4064         WARN_ON(diff > old_total);
4065         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4066         unlock_chunks(root);
4067
4068         /* Now btrfs_update_device() will change the on-disk size. */
4069         ret = btrfs_update_device(trans, device);
4070         btrfs_end_transaction(trans, root);
4071 done:
4072         btrfs_free_path(path);
4073         return ret;
4074 }
4075
4076 static int btrfs_add_system_chunk(struct btrfs_root *root,
4077                            struct btrfs_key *key,
4078                            struct btrfs_chunk *chunk, int item_size)
4079 {
4080         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4081         struct btrfs_disk_key disk_key;
4082         u32 array_size;
4083         u8 *ptr;
4084
4085         lock_chunks(root);
4086         array_size = btrfs_super_sys_array_size(super_copy);
4087         if (array_size + item_size + sizeof(disk_key)
4088                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4089                 unlock_chunks(root);
4090                 return -EFBIG;
4091         }
4092
4093         ptr = super_copy->sys_chunk_array + array_size;
4094         btrfs_cpu_key_to_disk(&disk_key, key);
4095         memcpy(ptr, &disk_key, sizeof(disk_key));
4096         ptr += sizeof(disk_key);
4097         memcpy(ptr, chunk, item_size);
4098         item_size += sizeof(disk_key);
4099         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4100         unlock_chunks(root);
4101
4102         return 0;
4103 }
4104
4105 /*
4106  * sort the devices in descending order by max_avail, total_avail
4107  */
4108 static int btrfs_cmp_device_info(const void *a, const void *b)
4109 {
4110         const struct btrfs_device_info *di_a = a;
4111         const struct btrfs_device_info *di_b = b;
4112
4113         if (di_a->max_avail > di_b->max_avail)
4114                 return -1;
4115         if (di_a->max_avail < di_b->max_avail)
4116                 return 1;
4117         if (di_a->total_avail > di_b->total_avail)
4118                 return -1;
4119         if (di_a->total_avail < di_b->total_avail)
4120                 return 1;
4121         return 0;
4122 }
4123
4124 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4125         [BTRFS_RAID_RAID10] = {
4126                 .sub_stripes    = 2,
4127                 .dev_stripes    = 1,
4128                 .devs_max       = 0,    /* 0 == as many as possible */
4129                 .devs_min       = 4,
4130                 .devs_increment = 2,
4131                 .ncopies        = 2,
4132         },
4133         [BTRFS_RAID_RAID1] = {
4134                 .sub_stripes    = 1,
4135                 .dev_stripes    = 1,
4136                 .devs_max       = 2,
4137                 .devs_min       = 2,
4138                 .devs_increment = 2,
4139                 .ncopies        = 2,
4140         },
4141         [BTRFS_RAID_DUP] = {
4142                 .sub_stripes    = 1,
4143                 .dev_stripes    = 2,
4144                 .devs_max       = 1,
4145                 .devs_min       = 1,
4146                 .devs_increment = 1,
4147                 .ncopies        = 2,
4148         },
4149         [BTRFS_RAID_RAID0] = {
4150                 .sub_stripes    = 1,
4151                 .dev_stripes    = 1,
4152                 .devs_max       = 0,
4153                 .devs_min       = 2,
4154                 .devs_increment = 1,
4155                 .ncopies        = 1,
4156         },
4157         [BTRFS_RAID_SINGLE] = {
4158                 .sub_stripes    = 1,
4159                 .dev_stripes    = 1,
4160                 .devs_max       = 1,
4161                 .devs_min       = 1,
4162                 .devs_increment = 1,
4163                 .ncopies        = 1,
4164         },
4165         [BTRFS_RAID_RAID5] = {
4166                 .sub_stripes    = 1,
4167                 .dev_stripes    = 1,
4168                 .devs_max       = 0,
4169                 .devs_min       = 2,
4170                 .devs_increment = 1,
4171                 .ncopies        = 2,
4172         },
4173         [BTRFS_RAID_RAID6] = {
4174                 .sub_stripes    = 1,
4175                 .dev_stripes    = 1,
4176                 .devs_max       = 0,
4177                 .devs_min       = 3,
4178                 .devs_increment = 1,
4179                 .ncopies        = 3,
4180         },
4181 };
4182
4183 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4184 {
4185         /* TODO allow them to set a preferred stripe size */
4186         return 64 * 1024;
4187 }
4188
4189 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4190 {
4191         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4192                 return;
4193
4194         btrfs_set_fs_incompat(info, RAID56);
4195 }
4196
4197 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4198                         - sizeof(struct btrfs_item)             \
4199                         - sizeof(struct btrfs_chunk))           \
4200                         / sizeof(struct btrfs_stripe) + 1)
4201
4202 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4203                                 - 2 * sizeof(struct btrfs_disk_key)     \
4204                                 - 2 * sizeof(struct btrfs_chunk))       \
4205                                 / sizeof(struct btrfs_stripe) + 1)
4206
4207 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4208                                struct btrfs_root *extent_root, u64 start,
4209                                u64 type)
4210 {
4211         struct btrfs_fs_info *info = extent_root->fs_info;
4212         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4213         struct list_head *cur;
4214         struct map_lookup *map = NULL;
4215         struct extent_map_tree *em_tree;
4216         struct extent_map *em;
4217         struct btrfs_device_info *devices_info = NULL;
4218         u64 total_avail;
4219         int num_stripes;        /* total number of stripes to allocate */
4220         int data_stripes;       /* number of stripes that count for
4221                                    block group size */
4222         int sub_stripes;        /* sub_stripes info for map */
4223         int dev_stripes;        /* stripes per dev */
4224         int devs_max;           /* max devs to use */
4225         int devs_min;           /* min devs needed */
4226         int devs_increment;     /* ndevs has to be a multiple of this */
4227         int ncopies;            /* how many copies to data has */
4228         int ret;
4229         u64 max_stripe_size;
4230         u64 max_chunk_size;
4231         u64 stripe_size;
4232         u64 num_bytes;
4233         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4234         int ndevs;
4235         int i;
4236         int j;
4237         int index;
4238
4239         BUG_ON(!alloc_profile_is_valid(type, 0));
4240
4241         if (list_empty(&fs_devices->alloc_list))
4242                 return -ENOSPC;
4243
4244         index = __get_raid_index(type);
4245
4246         sub_stripes = btrfs_raid_array[index].sub_stripes;
4247         dev_stripes = btrfs_raid_array[index].dev_stripes;
4248         devs_max = btrfs_raid_array[index].devs_max;
4249         devs_min = btrfs_raid_array[index].devs_min;
4250         devs_increment = btrfs_raid_array[index].devs_increment;
4251         ncopies = btrfs_raid_array[index].ncopies;
4252
4253         if (type & BTRFS_BLOCK_GROUP_DATA) {
4254                 max_stripe_size = 1024 * 1024 * 1024;
4255                 max_chunk_size = 10 * max_stripe_size;
4256                 if (!devs_max)
4257                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4258         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4259                 /* for larger filesystems, use larger metadata chunks */
4260                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4261                         max_stripe_size = 1024 * 1024 * 1024;
4262                 else
4263                         max_stripe_size = 256 * 1024 * 1024;
4264                 max_chunk_size = max_stripe_size;
4265                 if (!devs_max)
4266                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4267         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4268                 max_stripe_size = 32 * 1024 * 1024;
4269                 max_chunk_size = 2 * max_stripe_size;
4270                 if (!devs_max)
4271                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4272         } else {
4273                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4274                        type);
4275                 BUG_ON(1);
4276         }
4277
4278         /* we don't want a chunk larger than 10% of writeable space */
4279         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4280                              max_chunk_size);
4281
4282         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4283                                GFP_NOFS);
4284         if (!devices_info)
4285                 return -ENOMEM;
4286
4287         cur = fs_devices->alloc_list.next;
4288
4289         /*
4290          * in the first pass through the devices list, we gather information
4291          * about the available holes on each device.
4292          */
4293         ndevs = 0;
4294         while (cur != &fs_devices->alloc_list) {
4295                 struct btrfs_device *device;
4296                 u64 max_avail;
4297                 u64 dev_offset;
4298
4299                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4300
4301                 cur = cur->next;
4302
4303                 if (!device->writeable) {
4304                         WARN(1, KERN_ERR
4305                                "BTRFS: read-only device in alloc_list\n");
4306                         continue;
4307                 }
4308
4309                 if (!device->in_fs_metadata ||
4310                     device->is_tgtdev_for_dev_replace)
4311                         continue;
4312
4313                 if (device->total_bytes > device->bytes_used)
4314                         total_avail = device->total_bytes - device->bytes_used;
4315                 else
4316                         total_avail = 0;
4317
4318                 /* If there is no space on this device, skip it. */
4319                 if (total_avail == 0)
4320                         continue;
4321
4322                 ret = find_free_dev_extent(trans, device,
4323                                            max_stripe_size * dev_stripes,
4324                                            &dev_offset, &max_avail);
4325                 if (ret && ret != -ENOSPC)
4326                         goto error;
4327
4328                 if (ret == 0)
4329                         max_avail = max_stripe_size * dev_stripes;
4330
4331                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4332                         continue;
4333
4334                 if (ndevs == fs_devices->rw_devices) {
4335                         WARN(1, "%s: found more than %llu devices\n",
4336                              __func__, fs_devices->rw_devices);
4337                         break;
4338                 }
4339                 devices_info[ndevs].dev_offset = dev_offset;
4340                 devices_info[ndevs].max_avail = max_avail;
4341                 devices_info[ndevs].total_avail = total_avail;
4342                 devices_info[ndevs].dev = device;
4343                 ++ndevs;
4344         }
4345
4346         /*
4347          * now sort the devices by hole size / available space
4348          */
4349         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4350              btrfs_cmp_device_info, NULL);
4351
4352         /* round down to number of usable stripes */
4353         ndevs -= ndevs % devs_increment;
4354
4355         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4356                 ret = -ENOSPC;
4357                 goto error;
4358         }
4359
4360         if (devs_max && ndevs > devs_max)
4361                 ndevs = devs_max;
4362         /*
4363          * the primary goal is to maximize the number of stripes, so use as many
4364          * devices as possible, even if the stripes are not maximum sized.
4365          */
4366         stripe_size = devices_info[ndevs-1].max_avail;
4367         num_stripes = ndevs * dev_stripes;
4368
4369         /*
4370          * this will have to be fixed for RAID1 and RAID10 over
4371          * more drives
4372          */
4373         data_stripes = num_stripes / ncopies;
4374
4375         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4376                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4377                                  btrfs_super_stripesize(info->super_copy));
4378                 data_stripes = num_stripes - 1;
4379         }
4380         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4381                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4382                                  btrfs_super_stripesize(info->super_copy));
4383                 data_stripes = num_stripes - 2;
4384         }
4385
4386         /*
4387          * Use the number of data stripes to figure out how big this chunk
4388          * is really going to be in terms of logical address space,
4389          * and compare that answer with the max chunk size
4390          */
4391         if (stripe_size * data_stripes > max_chunk_size) {
4392                 u64 mask = (1ULL << 24) - 1;
4393
4394                 stripe_size = div_u64(max_chunk_size, data_stripes);
4395
4396                 /* bump the answer up to a 16MB boundary */
4397                 stripe_size = (stripe_size + mask) & ~mask;
4398
4399                 /* but don't go higher than the limits we found
4400                  * while searching for free extents
4401                  */
4402                 if (stripe_size > devices_info[ndevs-1].max_avail)
4403                         stripe_size = devices_info[ndevs-1].max_avail;
4404         }
4405
4406         stripe_size = div_u64(stripe_size, dev_stripes);
4407
4408         /* align to BTRFS_STRIPE_LEN */
4409         stripe_size = div_u64(stripe_size, raid_stripe_len);
4410         stripe_size *= raid_stripe_len;
4411
4412         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4413         if (!map) {
4414                 ret = -ENOMEM;
4415                 goto error;
4416         }
4417         map->num_stripes = num_stripes;
4418
4419         for (i = 0; i < ndevs; ++i) {
4420                 for (j = 0; j < dev_stripes; ++j) {
4421                         int s = i * dev_stripes + j;
4422                         map->stripes[s].dev = devices_info[i].dev;
4423                         map->stripes[s].physical = devices_info[i].dev_offset +
4424                                                    j * stripe_size;
4425                 }
4426         }
4427         map->sector_size = extent_root->sectorsize;
4428         map->stripe_len = raid_stripe_len;
4429         map->io_align = raid_stripe_len;
4430         map->io_width = raid_stripe_len;
4431         map->type = type;
4432         map->sub_stripes = sub_stripes;
4433
4434         num_bytes = stripe_size * data_stripes;
4435
4436         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4437
4438         em = alloc_extent_map();
4439         if (!em) {
4440                 kfree(map);
4441                 ret = -ENOMEM;
4442                 goto error;
4443         }
4444         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4445         em->bdev = (struct block_device *)map;
4446         em->start = start;
4447         em->len = num_bytes;
4448         em->block_start = 0;
4449         em->block_len = em->len;
4450         em->orig_block_len = stripe_size;
4451
4452         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4453         write_lock(&em_tree->lock);
4454         ret = add_extent_mapping(em_tree, em, 0);
4455         if (!ret) {
4456                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4457                 atomic_inc(&em->refs);
4458         }
4459         write_unlock(&em_tree->lock);
4460         if (ret) {
4461                 free_extent_map(em);
4462                 goto error;
4463         }
4464
4465         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4466                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4467                                      start, num_bytes);
4468         if (ret)
4469                 goto error_del_extent;
4470
4471         for (i = 0; i < map->num_stripes; i++) {
4472                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4473                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4474         }
4475
4476         spin_lock(&extent_root->fs_info->free_chunk_lock);
4477         extent_root->fs_info->free_chunk_space -= (stripe_size *
4478                                                    map->num_stripes);
4479         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4480
4481         free_extent_map(em);
4482         check_raid56_incompat_flag(extent_root->fs_info, type);
4483
4484         kfree(devices_info);
4485         return 0;
4486
4487 error_del_extent:
4488         write_lock(&em_tree->lock);
4489         remove_extent_mapping(em_tree, em);
4490         write_unlock(&em_tree->lock);
4491
4492         /* One for our allocation */
4493         free_extent_map(em);
4494         /* One for the tree reference */
4495         free_extent_map(em);
4496         /* One for the pending_chunks list reference */
4497         free_extent_map(em);
4498 error:
4499         kfree(devices_info);
4500         return ret;
4501 }
4502
4503 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4504                                 struct btrfs_root *extent_root,
4505                                 u64 chunk_offset, u64 chunk_size)
4506 {
4507         struct btrfs_key key;
4508         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4509         struct btrfs_device *device;
4510         struct btrfs_chunk *chunk;
4511         struct btrfs_stripe *stripe;
4512         struct extent_map_tree *em_tree;
4513         struct extent_map *em;
4514         struct map_lookup *map;
4515         size_t item_size;
4516         u64 dev_offset;
4517         u64 stripe_size;
4518         int i = 0;
4519         int ret;
4520
4521         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4522         read_lock(&em_tree->lock);
4523         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4524         read_unlock(&em_tree->lock);
4525
4526         if (!em) {
4527                 btrfs_crit(extent_root->fs_info, "unable to find logical "
4528                            "%Lu len %Lu", chunk_offset, chunk_size);
4529                 return -EINVAL;
4530         }
4531
4532         if (em->start != chunk_offset || em->len != chunk_size) {
4533                 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4534                           " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4535                           chunk_size, em->start, em->len);
4536                 free_extent_map(em);
4537                 return -EINVAL;
4538         }
4539
4540         map = (struct map_lookup *)em->bdev;
4541         item_size = btrfs_chunk_item_size(map->num_stripes);
4542         stripe_size = em->orig_block_len;
4543
4544         chunk = kzalloc(item_size, GFP_NOFS);
4545         if (!chunk) {
4546                 ret = -ENOMEM;
4547                 goto out;
4548         }
4549
4550         for (i = 0; i < map->num_stripes; i++) {
4551                 device = map->stripes[i].dev;
4552                 dev_offset = map->stripes[i].physical;
4553
4554                 ret = btrfs_update_device(trans, device);
4555                 if (ret)
4556                         goto out;
4557                 ret = btrfs_alloc_dev_extent(trans, device,
4558                                              chunk_root->root_key.objectid,
4559                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4560                                              chunk_offset, dev_offset,
4561                                              stripe_size);
4562                 if (ret)
4563                         goto out;
4564         }
4565
4566         stripe = &chunk->stripe;
4567         for (i = 0; i < map->num_stripes; i++) {
4568                 device = map->stripes[i].dev;
4569                 dev_offset = map->stripes[i].physical;
4570
4571                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4572                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4573                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4574                 stripe++;
4575         }
4576
4577         btrfs_set_stack_chunk_length(chunk, chunk_size);
4578         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4579         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4580         btrfs_set_stack_chunk_type(chunk, map->type);
4581         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4582         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4583         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4584         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4585         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4586
4587         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4588         key.type = BTRFS_CHUNK_ITEM_KEY;
4589         key.offset = chunk_offset;
4590
4591         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4592         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4593                 /*
4594                  * TODO: Cleanup of inserted chunk root in case of
4595                  * failure.
4596                  */
4597                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4598                                              item_size);
4599         }
4600
4601 out:
4602         kfree(chunk);
4603         free_extent_map(em);
4604         return ret;
4605 }
4606
4607 /*
4608  * Chunk allocation falls into two parts. The first part does works
4609  * that make the new allocated chunk useable, but not do any operation
4610  * that modifies the chunk tree. The second part does the works that
4611  * require modifying the chunk tree. This division is important for the
4612  * bootstrap process of adding storage to a seed btrfs.
4613  */
4614 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4615                       struct btrfs_root *extent_root, u64 type)
4616 {
4617         u64 chunk_offset;
4618
4619         chunk_offset = find_next_chunk(extent_root->fs_info);
4620         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4621 }
4622
4623 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4624                                          struct btrfs_root *root,
4625                                          struct btrfs_device *device)
4626 {
4627         u64 chunk_offset;
4628         u64 sys_chunk_offset;
4629         u64 alloc_profile;
4630         struct btrfs_fs_info *fs_info = root->fs_info;
4631         struct btrfs_root *extent_root = fs_info->extent_root;
4632         int ret;
4633
4634         chunk_offset = find_next_chunk(fs_info);
4635         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4636         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4637                                   alloc_profile);
4638         if (ret)
4639                 return ret;
4640
4641         sys_chunk_offset = find_next_chunk(root->fs_info);
4642         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4643         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4644                                   alloc_profile);
4645         return ret;
4646 }
4647
4648 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4649 {
4650         int max_errors;
4651
4652         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4653                          BTRFS_BLOCK_GROUP_RAID10 |
4654                          BTRFS_BLOCK_GROUP_RAID5 |
4655                          BTRFS_BLOCK_GROUP_DUP)) {
4656                 max_errors = 1;
4657         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4658                 max_errors = 2;
4659         } else {
4660                 max_errors = 0;
4661         }
4662
4663         return max_errors;
4664 }
4665
4666 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4667 {
4668         struct extent_map *em;
4669         struct map_lookup *map;
4670         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4671         int readonly = 0;
4672         int miss_ndevs = 0;
4673         int i;
4674
4675         read_lock(&map_tree->map_tree.lock);
4676         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4677         read_unlock(&map_tree->map_tree.lock);
4678         if (!em)
4679                 return 1;
4680
4681         map = (struct map_lookup *)em->bdev;
4682         for (i = 0; i < map->num_stripes; i++) {
4683                 if (map->stripes[i].dev->missing) {
4684                         miss_ndevs++;
4685                         continue;
4686                 }
4687
4688                 if (!map->stripes[i].dev->writeable) {
4689                         readonly = 1;
4690                         goto end;
4691                 }
4692         }
4693
4694         /*
4695          * If the number of missing devices is larger than max errors,
4696          * we can not write the data into that chunk successfully, so
4697          * set it readonly.
4698          */
4699         if (miss_ndevs > btrfs_chunk_max_errors(map))
4700                 readonly = 1;
4701 end:
4702         free_extent_map(em);
4703         return readonly;
4704 }
4705
4706 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4707 {
4708         extent_map_tree_init(&tree->map_tree);
4709 }
4710
4711 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4712 {
4713         struct extent_map *em;
4714
4715         while (1) {
4716                 write_lock(&tree->map_tree.lock);
4717                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4718                 if (em)
4719                         remove_extent_mapping(&tree->map_tree, em);
4720                 write_unlock(&tree->map_tree.lock);
4721                 if (!em)
4722                         break;
4723                 /* once for us */
4724                 free_extent_map(em);
4725                 /* once for the tree */
4726                 free_extent_map(em);
4727         }
4728 }
4729
4730 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4731 {
4732         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4733         struct extent_map *em;
4734         struct map_lookup *map;
4735         struct extent_map_tree *em_tree = &map_tree->map_tree;
4736         int ret;
4737
4738         read_lock(&em_tree->lock);
4739         em = lookup_extent_mapping(em_tree, logical, len);
4740         read_unlock(&em_tree->lock);
4741
4742         /*
4743          * We could return errors for these cases, but that could get ugly and
4744          * we'd probably do the same thing which is just not do anything else
4745          * and exit, so return 1 so the callers don't try to use other copies.
4746          */
4747         if (!em) {
4748                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4749                             logical+len);
4750                 return 1;
4751         }
4752
4753         if (em->start > logical || em->start + em->len < logical) {
4754                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4755                             "%Lu-%Lu", logical, logical+len, em->start,
4756                             em->start + em->len);
4757                 free_extent_map(em);
4758                 return 1;
4759         }
4760
4761         map = (struct map_lookup *)em->bdev;
4762         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4763                 ret = map->num_stripes;
4764         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4765                 ret = map->sub_stripes;
4766         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4767                 ret = 2;
4768         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4769                 ret = 3;
4770         else
4771                 ret = 1;
4772         free_extent_map(em);
4773
4774         btrfs_dev_replace_lock(&fs_info->dev_replace);
4775         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4776                 ret++;
4777         btrfs_dev_replace_unlock(&fs_info->dev_replace);
4778
4779         return ret;
4780 }
4781
4782 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4783                                     struct btrfs_mapping_tree *map_tree,
4784                                     u64 logical)
4785 {
4786         struct extent_map *em;
4787         struct map_lookup *map;
4788         struct extent_map_tree *em_tree = &map_tree->map_tree;
4789         unsigned long len = root->sectorsize;
4790
4791         read_lock(&em_tree->lock);
4792         em = lookup_extent_mapping(em_tree, logical, len);
4793         read_unlock(&em_tree->lock);
4794         BUG_ON(!em);
4795
4796         BUG_ON(em->start > logical || em->start + em->len < logical);
4797         map = (struct map_lookup *)em->bdev;
4798         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4799                 len = map->stripe_len * nr_data_stripes(map);
4800         free_extent_map(em);
4801         return len;
4802 }
4803
4804 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4805                            u64 logical, u64 len, int mirror_num)
4806 {
4807         struct extent_map *em;
4808         struct map_lookup *map;
4809         struct extent_map_tree *em_tree = &map_tree->map_tree;
4810         int ret = 0;
4811
4812         read_lock(&em_tree->lock);
4813         em = lookup_extent_mapping(em_tree, logical, len);
4814         read_unlock(&em_tree->lock);
4815         BUG_ON(!em);
4816
4817         BUG_ON(em->start > logical || em->start + em->len < logical);
4818         map = (struct map_lookup *)em->bdev;
4819         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4820                 ret = 1;
4821         free_extent_map(em);
4822         return ret;
4823 }
4824
4825 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4826                             struct map_lookup *map, int first, int num,
4827                             int optimal, int dev_replace_is_ongoing)
4828 {
4829         int i;
4830         int tolerance;
4831         struct btrfs_device *srcdev;
4832
4833         if (dev_replace_is_ongoing &&
4834             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4835              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4836                 srcdev = fs_info->dev_replace.srcdev;
4837         else
4838                 srcdev = NULL;
4839
4840         /*
4841          * try to avoid the drive that is the source drive for a
4842          * dev-replace procedure, only choose it if no other non-missing
4843          * mirror is available
4844          */
4845         for (tolerance = 0; tolerance < 2; tolerance++) {
4846                 if (map->stripes[optimal].dev->bdev &&
4847                     (tolerance || map->stripes[optimal].dev != srcdev))
4848                         return optimal;
4849                 for (i = first; i < first + num; i++) {
4850                         if (map->stripes[i].dev->bdev &&
4851                             (tolerance || map->stripes[i].dev != srcdev))
4852                                 return i;
4853                 }
4854         }
4855
4856         /* we couldn't find one that doesn't fail.  Just return something
4857          * and the io error handling code will clean up eventually
4858          */
4859         return optimal;
4860 }
4861
4862 static inline int parity_smaller(u64 a, u64 b)
4863 {
4864         return a > b;
4865 }
4866
4867 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4868 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
4869 {
4870         struct btrfs_bio_stripe s;
4871         int i;
4872         u64 l;
4873         int again = 1;
4874
4875         while (again) {
4876                 again = 0;
4877                 for (i = 0; i < num_stripes - 1; i++) {
4878                         if (parity_smaller(bbio->raid_map[i],
4879                                            bbio->raid_map[i+1])) {
4880                                 s = bbio->stripes[i];
4881                                 l = bbio->raid_map[i];
4882                                 bbio->stripes[i] = bbio->stripes[i+1];
4883                                 bbio->raid_map[i] = bbio->raid_map[i+1];
4884                                 bbio->stripes[i+1] = s;
4885                                 bbio->raid_map[i+1] = l;
4886
4887                                 again = 1;
4888                         }
4889                 }
4890         }
4891 }
4892
4893 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
4894 {
4895         struct btrfs_bio *bbio = kzalloc(
4896                  /* the size of the btrfs_bio */
4897                 sizeof(struct btrfs_bio) +
4898                 /* plus the variable array for the stripes */
4899                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
4900                 /* plus the variable array for the tgt dev */
4901                 sizeof(int) * (real_stripes) +
4902                 /*
4903                  * plus the raid_map, which includes both the tgt dev
4904                  * and the stripes
4905                  */
4906                 sizeof(u64) * (total_stripes),
4907                 GFP_NOFS);
4908         if (!bbio)
4909                 return NULL;
4910
4911         atomic_set(&bbio->error, 0);
4912         atomic_set(&bbio->refs, 1);
4913
4914         return bbio;
4915 }
4916
4917 void btrfs_get_bbio(struct btrfs_bio *bbio)
4918 {
4919         WARN_ON(!atomic_read(&bbio->refs));
4920         atomic_inc(&bbio->refs);
4921 }
4922
4923 void btrfs_put_bbio(struct btrfs_bio *bbio)
4924 {
4925         if (!bbio)
4926                 return;
4927         if (atomic_dec_and_test(&bbio->refs))
4928                 kfree(bbio);
4929 }
4930
4931 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4932                              u64 logical, u64 *length,
4933                              struct btrfs_bio **bbio_ret,
4934                              int mirror_num, int need_raid_map)
4935 {
4936         struct extent_map *em;
4937         struct map_lookup *map;
4938         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4939         struct extent_map_tree *em_tree = &map_tree->map_tree;
4940         u64 offset;
4941         u64 stripe_offset;
4942         u64 stripe_end_offset;
4943         u64 stripe_nr;
4944         u64 stripe_nr_orig;
4945         u64 stripe_nr_end;
4946         u64 stripe_len;
4947         u32 stripe_index;
4948         int i;
4949         int ret = 0;
4950         int num_stripes;
4951         int max_errors = 0;
4952         int tgtdev_indexes = 0;
4953         struct btrfs_bio *bbio = NULL;
4954         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4955         int dev_replace_is_ongoing = 0;
4956         int num_alloc_stripes;
4957         int patch_the_first_stripe_for_dev_replace = 0;
4958         u64 physical_to_patch_in_first_stripe = 0;
4959         u64 raid56_full_stripe_start = (u64)-1;
4960
4961         read_lock(&em_tree->lock);
4962         em = lookup_extent_mapping(em_tree, logical, *length);
4963         read_unlock(&em_tree->lock);
4964
4965         if (!em) {
4966                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4967                         logical, *length);
4968                 return -EINVAL;
4969         }
4970
4971         if (em->start > logical || em->start + em->len < logical) {
4972                 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4973                            "found %Lu-%Lu", logical, em->start,
4974                            em->start + em->len);
4975                 free_extent_map(em);
4976                 return -EINVAL;
4977         }
4978
4979         map = (struct map_lookup *)em->bdev;
4980         offset = logical - em->start;
4981
4982         stripe_len = map->stripe_len;
4983         stripe_nr = offset;
4984         /*
4985          * stripe_nr counts the total number of stripes we have to stride
4986          * to get to this block
4987          */
4988         stripe_nr = div64_u64(stripe_nr, stripe_len);
4989
4990         stripe_offset = stripe_nr * stripe_len;
4991         BUG_ON(offset < stripe_offset);
4992
4993         /* stripe_offset is the offset of this block in its stripe*/
4994         stripe_offset = offset - stripe_offset;
4995
4996         /* if we're here for raid56, we need to know the stripe aligned start */
4997         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4998                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4999                 raid56_full_stripe_start = offset;
5000
5001                 /* allow a write of a full stripe, but make sure we don't
5002                  * allow straddling of stripes
5003                  */
5004                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5005                                 full_stripe_len);
5006                 raid56_full_stripe_start *= full_stripe_len;
5007         }
5008
5009         if (rw & REQ_DISCARD) {
5010                 /* we don't discard raid56 yet */
5011                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5012                         ret = -EOPNOTSUPP;
5013                         goto out;
5014                 }
5015                 *length = min_t(u64, em->len - offset, *length);
5016         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5017                 u64 max_len;
5018                 /* For writes to RAID[56], allow a full stripeset across all disks.
5019                    For other RAID types and for RAID[56] reads, just allow a single
5020                    stripe (on a single disk). */
5021                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5022                     (rw & REQ_WRITE)) {
5023                         max_len = stripe_len * nr_data_stripes(map) -
5024                                 (offset - raid56_full_stripe_start);
5025                 } else {
5026                         /* we limit the length of each bio to what fits in a stripe */
5027                         max_len = stripe_len - stripe_offset;
5028                 }
5029                 *length = min_t(u64, em->len - offset, max_len);
5030         } else {
5031                 *length = em->len - offset;
5032         }
5033
5034         /* This is for when we're called from btrfs_merge_bio_hook() and all
5035            it cares about is the length */
5036         if (!bbio_ret)
5037                 goto out;
5038
5039         btrfs_dev_replace_lock(dev_replace);
5040         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5041         if (!dev_replace_is_ongoing)
5042                 btrfs_dev_replace_unlock(dev_replace);
5043
5044         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5045             !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5046             dev_replace->tgtdev != NULL) {
5047                 /*
5048                  * in dev-replace case, for repair case (that's the only
5049                  * case where the mirror is selected explicitly when
5050                  * calling btrfs_map_block), blocks left of the left cursor
5051                  * can also be read from the target drive.
5052                  * For REQ_GET_READ_MIRRORS, the target drive is added as
5053                  * the last one to the array of stripes. For READ, it also
5054                  * needs to be supported using the same mirror number.
5055                  * If the requested block is not left of the left cursor,
5056                  * EIO is returned. This can happen because btrfs_num_copies()
5057                  * returns one more in the dev-replace case.
5058                  */
5059                 u64 tmp_length = *length;
5060                 struct btrfs_bio *tmp_bbio = NULL;
5061                 int tmp_num_stripes;
5062                 u64 srcdev_devid = dev_replace->srcdev->devid;
5063                 int index_srcdev = 0;
5064                 int found = 0;
5065                 u64 physical_of_found = 0;
5066
5067                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5068                              logical, &tmp_length, &tmp_bbio, 0, 0);
5069                 if (ret) {
5070                         WARN_ON(tmp_bbio != NULL);
5071                         goto out;
5072                 }
5073
5074                 tmp_num_stripes = tmp_bbio->num_stripes;
5075                 if (mirror_num > tmp_num_stripes) {
5076                         /*
5077                          * REQ_GET_READ_MIRRORS does not contain this
5078                          * mirror, that means that the requested area
5079                          * is not left of the left cursor
5080                          */
5081                         ret = -EIO;
5082                         btrfs_put_bbio(tmp_bbio);
5083                         goto out;
5084                 }
5085
5086                 /*
5087                  * process the rest of the function using the mirror_num
5088                  * of the source drive. Therefore look it up first.
5089                  * At the end, patch the device pointer to the one of the
5090                  * target drive.
5091                  */
5092                 for (i = 0; i < tmp_num_stripes; i++) {
5093                         if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5094                                 /*
5095                                  * In case of DUP, in order to keep it
5096                                  * simple, only add the mirror with the
5097                                  * lowest physical address
5098                                  */
5099                                 if (found &&
5100                                     physical_of_found <=
5101                                      tmp_bbio->stripes[i].physical)
5102                                         continue;
5103                                 index_srcdev = i;
5104                                 found = 1;
5105                                 physical_of_found =
5106                                         tmp_bbio->stripes[i].physical;
5107                         }
5108                 }
5109
5110                 if (found) {
5111                         mirror_num = index_srcdev + 1;
5112                         patch_the_first_stripe_for_dev_replace = 1;
5113                         physical_to_patch_in_first_stripe = physical_of_found;
5114                 } else {
5115                         WARN_ON(1);
5116                         ret = -EIO;
5117                         btrfs_put_bbio(tmp_bbio);
5118                         goto out;
5119                 }
5120
5121                 btrfs_put_bbio(tmp_bbio);
5122         } else if (mirror_num > map->num_stripes) {
5123                 mirror_num = 0;
5124         }
5125
5126         num_stripes = 1;
5127         stripe_index = 0;
5128         stripe_nr_orig = stripe_nr;
5129         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5130         stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5131         stripe_end_offset = stripe_nr_end * map->stripe_len -
5132                             (offset + *length);
5133
5134         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5135                 if (rw & REQ_DISCARD)
5136                         num_stripes = min_t(u64, map->num_stripes,
5137                                             stripe_nr_end - stripe_nr_orig);
5138                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5139                                 &stripe_index);
5140                 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5141                         mirror_num = 1;
5142         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5143                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5144                         num_stripes = map->num_stripes;
5145                 else if (mirror_num)
5146                         stripe_index = mirror_num - 1;
5147                 else {
5148                         stripe_index = find_live_mirror(fs_info, map, 0,
5149                                             map->num_stripes,
5150                                             current->pid % map->num_stripes,
5151                                             dev_replace_is_ongoing);
5152                         mirror_num = stripe_index + 1;
5153                 }
5154
5155         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5156                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5157                         num_stripes = map->num_stripes;
5158                 } else if (mirror_num) {
5159                         stripe_index = mirror_num - 1;
5160                 } else {
5161                         mirror_num = 1;
5162                 }
5163
5164         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5165                 u32 factor = map->num_stripes / map->sub_stripes;
5166
5167                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5168                 stripe_index *= map->sub_stripes;
5169
5170                 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5171                         num_stripes = map->sub_stripes;
5172                 else if (rw & REQ_DISCARD)
5173                         num_stripes = min_t(u64, map->sub_stripes *
5174                                             (stripe_nr_end - stripe_nr_orig),
5175                                             map->num_stripes);
5176                 else if (mirror_num)
5177                         stripe_index += mirror_num - 1;
5178                 else {
5179                         int old_stripe_index = stripe_index;
5180                         stripe_index = find_live_mirror(fs_info, map,
5181                                               stripe_index,
5182                                               map->sub_stripes, stripe_index +
5183                                               current->pid % map->sub_stripes,
5184                                               dev_replace_is_ongoing);
5185                         mirror_num = stripe_index - old_stripe_index + 1;
5186                 }
5187
5188         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5189                 if (need_raid_map &&
5190                     ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5191                      mirror_num > 1)) {
5192                         /* push stripe_nr back to the start of the full stripe */
5193                         stripe_nr = div_u64(raid56_full_stripe_start,
5194                                         stripe_len * nr_data_stripes(map));
5195
5196                         /* RAID[56] write or recovery. Return all stripes */
5197                         num_stripes = map->num_stripes;
5198                         max_errors = nr_parity_stripes(map);
5199
5200                         *length = map->stripe_len;
5201                         stripe_index = 0;
5202                         stripe_offset = 0;
5203                 } else {
5204                         /*
5205                          * Mirror #0 or #1 means the original data block.
5206                          * Mirror #2 is RAID5 parity block.
5207                          * Mirror #3 is RAID6 Q block.
5208                          */
5209                         stripe_nr = div_u64_rem(stripe_nr,
5210                                         nr_data_stripes(map), &stripe_index);
5211                         if (mirror_num > 1)
5212                                 stripe_index = nr_data_stripes(map) +
5213                                                 mirror_num - 2;
5214
5215                         /* We distribute the parity blocks across stripes */
5216                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5217                                         &stripe_index);
5218                         if (!(rw & (REQ_WRITE | REQ_DISCARD |
5219                                     REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5220                                 mirror_num = 1;
5221                 }
5222         } else {
5223                 /*
5224                  * after this, stripe_nr is the number of stripes on this
5225                  * device we have to walk to find the data, and stripe_index is
5226                  * the number of our device in the stripe array
5227                  */
5228                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5229                                 &stripe_index);
5230                 mirror_num = stripe_index + 1;
5231         }
5232         BUG_ON(stripe_index >= map->num_stripes);
5233
5234         num_alloc_stripes = num_stripes;
5235         if (dev_replace_is_ongoing) {
5236                 if (rw & (REQ_WRITE | REQ_DISCARD))
5237                         num_alloc_stripes <<= 1;
5238                 if (rw & REQ_GET_READ_MIRRORS)
5239                         num_alloc_stripes++;
5240                 tgtdev_indexes = num_stripes;
5241         }
5242
5243         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5244         if (!bbio) {
5245                 ret = -ENOMEM;
5246                 goto out;
5247         }
5248         if (dev_replace_is_ongoing)
5249                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5250
5251         /* build raid_map */
5252         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5253             need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5254             mirror_num > 1)) {
5255                 u64 tmp;
5256                 unsigned rot;
5257
5258                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5259                                  sizeof(struct btrfs_bio_stripe) *
5260                                  num_alloc_stripes +
5261                                  sizeof(int) * tgtdev_indexes);
5262
5263                 /* Work out the disk rotation on this stripe-set */
5264                 div_u64_rem(stripe_nr, num_stripes, &rot);
5265
5266                 /* Fill in the logical address of each stripe */
5267                 tmp = stripe_nr * nr_data_stripes(map);
5268                 for (i = 0; i < nr_data_stripes(map); i++)
5269                         bbio->raid_map[(i+rot) % num_stripes] =
5270                                 em->start + (tmp + i) * map->stripe_len;
5271
5272                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5273                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5274                         bbio->raid_map[(i+rot+1) % num_stripes] =
5275                                 RAID6_Q_STRIPE;
5276         }
5277
5278         if (rw & REQ_DISCARD) {
5279                 u32 factor = 0;
5280                 u32 sub_stripes = 0;
5281                 u64 stripes_per_dev = 0;
5282                 u32 remaining_stripes = 0;
5283                 u32 last_stripe = 0;
5284
5285                 if (map->type &
5286                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5287                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5288                                 sub_stripes = 1;
5289                         else
5290                                 sub_stripes = map->sub_stripes;
5291
5292                         factor = map->num_stripes / sub_stripes;
5293                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5294                                                       stripe_nr_orig,
5295                                                       factor,
5296                                                       &remaining_stripes);
5297                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5298                         last_stripe *= sub_stripes;
5299                 }
5300
5301                 for (i = 0; i < num_stripes; i++) {
5302                         bbio->stripes[i].physical =
5303                                 map->stripes[stripe_index].physical +
5304                                 stripe_offset + stripe_nr * map->stripe_len;
5305                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5306
5307                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5308                                          BTRFS_BLOCK_GROUP_RAID10)) {
5309                                 bbio->stripes[i].length = stripes_per_dev *
5310                                                           map->stripe_len;
5311
5312                                 if (i / sub_stripes < remaining_stripes)
5313                                         bbio->stripes[i].length +=
5314                                                 map->stripe_len;
5315
5316                                 /*
5317                                  * Special for the first stripe and
5318                                  * the last stripe:
5319                                  *
5320                                  * |-------|...|-------|
5321                                  *     |----------|
5322                                  *    off     end_off
5323                                  */
5324                                 if (i < sub_stripes)
5325                                         bbio->stripes[i].length -=
5326                                                 stripe_offset;
5327
5328                                 if (stripe_index >= last_stripe &&
5329                                     stripe_index <= (last_stripe +
5330                                                      sub_stripes - 1))
5331                                         bbio->stripes[i].length -=
5332                                                 stripe_end_offset;
5333
5334                                 if (i == sub_stripes - 1)
5335                                         stripe_offset = 0;
5336                         } else
5337                                 bbio->stripes[i].length = *length;
5338
5339                         stripe_index++;
5340                         if (stripe_index == map->num_stripes) {
5341                                 /* This could only happen for RAID0/10 */
5342                                 stripe_index = 0;
5343                                 stripe_nr++;
5344                         }
5345                 }
5346         } else {
5347                 for (i = 0; i < num_stripes; i++) {
5348                         bbio->stripes[i].physical =
5349                                 map->stripes[stripe_index].physical +
5350                                 stripe_offset +
5351                                 stripe_nr * map->stripe_len;
5352                         bbio->stripes[i].dev =
5353                                 map->stripes[stripe_index].dev;
5354                         stripe_index++;
5355                 }
5356         }
5357
5358         if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5359                 max_errors = btrfs_chunk_max_errors(map);
5360
5361         if (bbio->raid_map)
5362                 sort_parity_stripes(bbio, num_stripes);
5363
5364         tgtdev_indexes = 0;
5365         if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5366             dev_replace->tgtdev != NULL) {
5367                 int index_where_to_add;
5368                 u64 srcdev_devid = dev_replace->srcdev->devid;
5369
5370                 /*
5371                  * duplicate the write operations while the dev replace
5372                  * procedure is running. Since the copying of the old disk
5373                  * to the new disk takes place at run time while the
5374                  * filesystem is mounted writable, the regular write
5375                  * operations to the old disk have to be duplicated to go
5376                  * to the new disk as well.
5377                  * Note that device->missing is handled by the caller, and
5378                  * that the write to the old disk is already set up in the
5379                  * stripes array.
5380                  */
5381                 index_where_to_add = num_stripes;
5382                 for (i = 0; i < num_stripes; i++) {
5383                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5384                                 /* write to new disk, too */
5385                                 struct btrfs_bio_stripe *new =
5386                                         bbio->stripes + index_where_to_add;
5387                                 struct btrfs_bio_stripe *old =
5388                                         bbio->stripes + i;
5389
5390                                 new->physical = old->physical;
5391                                 new->length = old->length;
5392                                 new->dev = dev_replace->tgtdev;
5393                                 bbio->tgtdev_map[i] = index_where_to_add;
5394                                 index_where_to_add++;
5395                                 max_errors++;
5396                                 tgtdev_indexes++;
5397                         }
5398                 }
5399                 num_stripes = index_where_to_add;
5400         } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5401                    dev_replace->tgtdev != NULL) {
5402                 u64 srcdev_devid = dev_replace->srcdev->devid;
5403                 int index_srcdev = 0;
5404                 int found = 0;
5405                 u64 physical_of_found = 0;
5406
5407                 /*
5408                  * During the dev-replace procedure, the target drive can
5409                  * also be used to read data in case it is needed to repair
5410                  * a corrupt block elsewhere. This is possible if the
5411                  * requested area is left of the left cursor. In this area,
5412                  * the target drive is a full copy of the source drive.
5413                  */
5414                 for (i = 0; i < num_stripes; i++) {
5415                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5416                                 /*
5417                                  * In case of DUP, in order to keep it
5418                                  * simple, only add the mirror with the
5419                                  * lowest physical address
5420                                  */
5421                                 if (found &&
5422                                     physical_of_found <=
5423                                      bbio->stripes[i].physical)
5424                                         continue;
5425                                 index_srcdev = i;
5426                                 found = 1;
5427                                 physical_of_found = bbio->stripes[i].physical;
5428                         }
5429                 }
5430                 if (found) {
5431                         if (physical_of_found + map->stripe_len <=
5432                             dev_replace->cursor_left) {
5433                                 struct btrfs_bio_stripe *tgtdev_stripe =
5434                                         bbio->stripes + num_stripes;
5435
5436                                 tgtdev_stripe->physical = physical_of_found;
5437                                 tgtdev_stripe->length =
5438                                         bbio->stripes[index_srcdev].length;
5439                                 tgtdev_stripe->dev = dev_replace->tgtdev;
5440                                 bbio->tgtdev_map[index_srcdev] = num_stripes;
5441
5442                                 tgtdev_indexes++;
5443                                 num_stripes++;
5444                         }
5445                 }
5446         }
5447
5448         *bbio_ret = bbio;
5449         bbio->map_type = map->type;
5450         bbio->num_stripes = num_stripes;
5451         bbio->max_errors = max_errors;
5452         bbio->mirror_num = mirror_num;
5453         bbio->num_tgtdevs = tgtdev_indexes;
5454
5455         /*
5456          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5457          * mirror_num == num_stripes + 1 && dev_replace target drive is
5458          * available as a mirror
5459          */
5460         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5461                 WARN_ON(num_stripes > 1);
5462                 bbio->stripes[0].dev = dev_replace->tgtdev;
5463                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5464                 bbio->mirror_num = map->num_stripes + 1;
5465         }
5466 out:
5467         if (dev_replace_is_ongoing)
5468                 btrfs_dev_replace_unlock(dev_replace);
5469         free_extent_map(em);
5470         return ret;
5471 }
5472
5473 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5474                       u64 logical, u64 *length,
5475                       struct btrfs_bio **bbio_ret, int mirror_num)
5476 {
5477         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5478                                  mirror_num, 0);
5479 }
5480
5481 /* For Scrub/replace */
5482 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5483                      u64 logical, u64 *length,
5484                      struct btrfs_bio **bbio_ret, int mirror_num,
5485                      int need_raid_map)
5486 {
5487         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5488                                  mirror_num, need_raid_map);
5489 }
5490
5491 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5492                      u64 chunk_start, u64 physical, u64 devid,
5493                      u64 **logical, int *naddrs, int *stripe_len)
5494 {
5495         struct extent_map_tree *em_tree = &map_tree->map_tree;
5496         struct extent_map *em;
5497         struct map_lookup *map;
5498         u64 *buf;
5499         u64 bytenr;
5500         u64 length;
5501         u64 stripe_nr;
5502         u64 rmap_len;
5503         int i, j, nr = 0;
5504
5505         read_lock(&em_tree->lock);
5506         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5507         read_unlock(&em_tree->lock);
5508
5509         if (!em) {
5510                 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5511                        chunk_start);
5512                 return -EIO;
5513         }
5514
5515         if (em->start != chunk_start) {
5516                 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5517                        em->start, chunk_start);
5518                 free_extent_map(em);
5519                 return -EIO;
5520         }
5521         map = (struct map_lookup *)em->bdev;
5522
5523         length = em->len;
5524         rmap_len = map->stripe_len;
5525
5526         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5527                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5528         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5529                 length = div_u64(length, map->num_stripes);
5530         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5531                 length = div_u64(length, nr_data_stripes(map));
5532                 rmap_len = map->stripe_len * nr_data_stripes(map);
5533         }
5534
5535         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5536         BUG_ON(!buf); /* -ENOMEM */
5537
5538         for (i = 0; i < map->num_stripes; i++) {
5539                 if (devid && map->stripes[i].dev->devid != devid)
5540                         continue;
5541                 if (map->stripes[i].physical > physical ||
5542                     map->stripes[i].physical + length <= physical)
5543                         continue;
5544
5545                 stripe_nr = physical - map->stripes[i].physical;
5546                 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5547
5548                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5549                         stripe_nr = stripe_nr * map->num_stripes + i;
5550                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5551                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5552                         stripe_nr = stripe_nr * map->num_stripes + i;
5553                 } /* else if RAID[56], multiply by nr_data_stripes().
5554                    * Alternatively, just use rmap_len below instead of
5555                    * map->stripe_len */
5556
5557                 bytenr = chunk_start + stripe_nr * rmap_len;
5558                 WARN_ON(nr >= map->num_stripes);
5559                 for (j = 0; j < nr; j++) {
5560                         if (buf[j] == bytenr)
5561                                 break;
5562                 }
5563                 if (j == nr) {
5564                         WARN_ON(nr >= map->num_stripes);
5565                         buf[nr++] = bytenr;
5566                 }
5567         }
5568
5569         *logical = buf;
5570         *naddrs = nr;
5571         *stripe_len = rmap_len;
5572
5573         free_extent_map(em);
5574         return 0;
5575 }
5576
5577 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5578 {
5579         if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5580                 bio_endio_nodec(bio, err);
5581         else
5582                 bio_endio(bio, err);
5583         btrfs_put_bbio(bbio);
5584 }
5585
5586 static void btrfs_end_bio(struct bio *bio, int err)
5587 {
5588         struct btrfs_bio *bbio = bio->bi_private;
5589         struct btrfs_device *dev = bbio->stripes[0].dev;
5590         int is_orig_bio = 0;
5591
5592         if (err) {
5593                 atomic_inc(&bbio->error);
5594                 if (err == -EIO || err == -EREMOTEIO) {
5595                         unsigned int stripe_index =
5596                                 btrfs_io_bio(bio)->stripe_index;
5597
5598                         BUG_ON(stripe_index >= bbio->num_stripes);
5599                         dev = bbio->stripes[stripe_index].dev;
5600                         if (dev->bdev) {
5601                                 if (bio->bi_rw & WRITE)
5602                                         btrfs_dev_stat_inc(dev,
5603                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5604                                 else
5605                                         btrfs_dev_stat_inc(dev,
5606                                                 BTRFS_DEV_STAT_READ_ERRS);
5607                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5608                                         btrfs_dev_stat_inc(dev,
5609                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
5610                                 btrfs_dev_stat_print_on_error(dev);
5611                         }
5612                 }
5613         }
5614
5615         if (bio == bbio->orig_bio)
5616                 is_orig_bio = 1;
5617
5618         btrfs_bio_counter_dec(bbio->fs_info);
5619
5620         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5621                 if (!is_orig_bio) {
5622                         bio_put(bio);
5623                         bio = bbio->orig_bio;
5624                 }
5625
5626                 bio->bi_private = bbio->private;
5627                 bio->bi_end_io = bbio->end_io;
5628                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5629                 /* only send an error to the higher layers if it is
5630                  * beyond the tolerance of the btrfs bio
5631                  */
5632                 if (atomic_read(&bbio->error) > bbio->max_errors) {
5633                         err = -EIO;
5634                 } else {
5635                         /*
5636                          * this bio is actually up to date, we didn't
5637                          * go over the max number of errors
5638                          */
5639                         set_bit(BIO_UPTODATE, &bio->bi_flags);
5640                         err = 0;
5641                 }
5642
5643                 btrfs_end_bbio(bbio, bio, err);
5644         } else if (!is_orig_bio) {
5645                 bio_put(bio);
5646         }
5647 }
5648
5649 /*
5650  * see run_scheduled_bios for a description of why bios are collected for
5651  * async submit.
5652  *
5653  * This will add one bio to the pending list for a device and make sure
5654  * the work struct is scheduled.
5655  */
5656 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5657                                         struct btrfs_device *device,
5658                                         int rw, struct bio *bio)
5659 {
5660         int should_queue = 1;
5661         struct btrfs_pending_bios *pending_bios;
5662
5663         if (device->missing || !device->bdev) {
5664                 bio_endio(bio, -EIO);
5665                 return;
5666         }
5667
5668         /* don't bother with additional async steps for reads, right now */
5669         if (!(rw & REQ_WRITE)) {
5670                 bio_get(bio);
5671                 btrfsic_submit_bio(rw, bio);
5672                 bio_put(bio);
5673                 return;
5674         }
5675
5676         /*
5677          * nr_async_bios allows us to reliably return congestion to the
5678          * higher layers.  Otherwise, the async bio makes it appear we have
5679          * made progress against dirty pages when we've really just put it
5680          * on a queue for later
5681          */
5682         atomic_inc(&root->fs_info->nr_async_bios);
5683         WARN_ON(bio->bi_next);
5684         bio->bi_next = NULL;
5685         bio->bi_rw |= rw;
5686
5687         spin_lock(&device->io_lock);
5688         if (bio->bi_rw & REQ_SYNC)
5689                 pending_bios = &device->pending_sync_bios;
5690         else
5691                 pending_bios = &device->pending_bios;
5692
5693         if (pending_bios->tail)
5694                 pending_bios->tail->bi_next = bio;
5695
5696         pending_bios->tail = bio;
5697         if (!pending_bios->head)
5698                 pending_bios->head = bio;
5699         if (device->running_pending)
5700                 should_queue = 0;
5701
5702         spin_unlock(&device->io_lock);
5703
5704         if (should_queue)
5705                 btrfs_queue_work(root->fs_info->submit_workers,
5706                                  &device->work);
5707 }
5708
5709 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5710                        sector_t sector)
5711 {
5712         struct bio_vec *prev;
5713         struct request_queue *q = bdev_get_queue(bdev);
5714         unsigned int max_sectors = queue_max_sectors(q);
5715         struct bvec_merge_data bvm = {
5716                 .bi_bdev = bdev,
5717                 .bi_sector = sector,
5718                 .bi_rw = bio->bi_rw,
5719         };
5720
5721         if (WARN_ON(bio->bi_vcnt == 0))
5722                 return 1;
5723
5724         prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5725         if (bio_sectors(bio) > max_sectors)
5726                 return 0;
5727
5728         if (!q->merge_bvec_fn)
5729                 return 1;
5730
5731         bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5732         if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5733                 return 0;
5734         return 1;
5735 }
5736
5737 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5738                               struct bio *bio, u64 physical, int dev_nr,
5739                               int rw, int async)
5740 {
5741         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5742
5743         bio->bi_private = bbio;
5744         btrfs_io_bio(bio)->stripe_index = dev_nr;
5745         bio->bi_end_io = btrfs_end_bio;
5746         bio->bi_iter.bi_sector = physical >> 9;
5747 #ifdef DEBUG
5748         {
5749                 struct rcu_string *name;
5750
5751                 rcu_read_lock();
5752                 name = rcu_dereference(dev->name);
5753                 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5754                          "(%s id %llu), size=%u\n", rw,
5755                          (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5756                          name->str, dev->devid, bio->bi_iter.bi_size);
5757                 rcu_read_unlock();
5758         }
5759 #endif
5760         bio->bi_bdev = dev->bdev;
5761
5762         btrfs_bio_counter_inc_noblocked(root->fs_info);
5763
5764         if (async)
5765                 btrfs_schedule_bio(root, dev, rw, bio);
5766         else
5767                 btrfsic_submit_bio(rw, bio);
5768 }
5769
5770 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5771                               struct bio *first_bio, struct btrfs_device *dev,
5772                               int dev_nr, int rw, int async)
5773 {
5774         struct bio_vec *bvec = first_bio->bi_io_vec;
5775         struct bio *bio;
5776         int nr_vecs = bio_get_nr_vecs(dev->bdev);
5777         u64 physical = bbio->stripes[dev_nr].physical;
5778
5779 again:
5780         bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5781         if (!bio)
5782                 return -ENOMEM;
5783
5784         while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5785                 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5786                                  bvec->bv_offset) < bvec->bv_len) {
5787                         u64 len = bio->bi_iter.bi_size;
5788
5789                         atomic_inc(&bbio->stripes_pending);
5790                         submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5791                                           rw, async);
5792                         physical += len;
5793                         goto again;
5794                 }
5795                 bvec++;
5796         }
5797
5798         submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5799         return 0;
5800 }
5801
5802 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5803 {
5804         atomic_inc(&bbio->error);
5805         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5806                 /* Shoud be the original bio. */
5807                 WARN_ON(bio != bbio->orig_bio);
5808
5809                 bio->bi_private = bbio->private;
5810                 bio->bi_end_io = bbio->end_io;
5811                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5812                 bio->bi_iter.bi_sector = logical >> 9;
5813
5814                 btrfs_end_bbio(bbio, bio, -EIO);
5815         }
5816 }
5817
5818 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5819                   int mirror_num, int async_submit)
5820 {
5821         struct btrfs_device *dev;
5822         struct bio *first_bio = bio;
5823         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5824         u64 length = 0;
5825         u64 map_length;
5826         int ret;
5827         int dev_nr;
5828         int total_devs;
5829         struct btrfs_bio *bbio = NULL;
5830
5831         length = bio->bi_iter.bi_size;
5832         map_length = length;
5833
5834         btrfs_bio_counter_inc_blocked(root->fs_info);
5835         ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5836                               mirror_num, 1);
5837         if (ret) {
5838                 btrfs_bio_counter_dec(root->fs_info);
5839                 return ret;
5840         }
5841
5842         total_devs = bbio->num_stripes;
5843         bbio->orig_bio = first_bio;
5844         bbio->private = first_bio->bi_private;
5845         bbio->end_io = first_bio->bi_end_io;
5846         bbio->fs_info = root->fs_info;
5847         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5848
5849         if (bbio->raid_map) {
5850                 /* In this case, map_length has been set to the length of
5851                    a single stripe; not the whole write */
5852                 if (rw & WRITE) {
5853                         ret = raid56_parity_write(root, bio, bbio, map_length);
5854                 } else {
5855                         ret = raid56_parity_recover(root, bio, bbio, map_length,
5856                                                     mirror_num, 1);
5857                 }
5858
5859                 btrfs_bio_counter_dec(root->fs_info);
5860                 return ret;
5861         }
5862
5863         if (map_length < length) {
5864                 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5865                         logical, length, map_length);
5866                 BUG();
5867         }
5868
5869         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5870                 dev = bbio->stripes[dev_nr].dev;
5871                 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5872                         bbio_error(bbio, first_bio, logical);
5873                         continue;
5874                 }
5875
5876                 /*
5877                  * Check and see if we're ok with this bio based on it's size
5878                  * and offset with the given device.
5879                  */
5880                 if (!bio_size_ok(dev->bdev, first_bio,
5881                                  bbio->stripes[dev_nr].physical >> 9)) {
5882                         ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5883                                                  dev_nr, rw, async_submit);
5884                         BUG_ON(ret);
5885                         continue;
5886                 }
5887
5888                 if (dev_nr < total_devs - 1) {
5889                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5890                         BUG_ON(!bio); /* -ENOMEM */
5891                 } else {
5892                         bio = first_bio;
5893                         bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5894                 }
5895
5896                 submit_stripe_bio(root, bbio, bio,
5897                                   bbio->stripes[dev_nr].physical, dev_nr, rw,
5898                                   async_submit);
5899         }
5900         btrfs_bio_counter_dec(root->fs_info);
5901         return 0;
5902 }
5903
5904 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5905                                        u8 *uuid, u8 *fsid)
5906 {
5907         struct btrfs_device *device;
5908         struct btrfs_fs_devices *cur_devices;
5909
5910         cur_devices = fs_info->fs_devices;
5911         while (cur_devices) {
5912                 if (!fsid ||
5913                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5914                         device = __find_device(&cur_devices->devices,
5915                                                devid, uuid);
5916                         if (device)
5917                                 return device;
5918                 }
5919                 cur_devices = cur_devices->seed;
5920         }
5921         return NULL;
5922 }
5923
5924 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5925                                             struct btrfs_fs_devices *fs_devices,
5926                                             u64 devid, u8 *dev_uuid)
5927 {
5928         struct btrfs_device *device;
5929
5930         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5931         if (IS_ERR(device))
5932                 return NULL;
5933
5934         list_add(&device->dev_list, &fs_devices->devices);
5935         device->fs_devices = fs_devices;
5936         fs_devices->num_devices++;
5937
5938         device->missing = 1;
5939         fs_devices->missing_devices++;
5940
5941         return device;
5942 }
5943
5944 /**
5945  * btrfs_alloc_device - allocate struct btrfs_device
5946  * @fs_info:    used only for generating a new devid, can be NULL if
5947  *              devid is provided (i.e. @devid != NULL).
5948  * @devid:      a pointer to devid for this device.  If NULL a new devid
5949  *              is generated.
5950  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
5951  *              is generated.
5952  *
5953  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5954  * on error.  Returned struct is not linked onto any lists and can be
5955  * destroyed with kfree() right away.
5956  */
5957 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5958                                         const u64 *devid,
5959                                         const u8 *uuid)
5960 {
5961         struct btrfs_device *dev;
5962         u64 tmp;
5963
5964         if (WARN_ON(!devid && !fs_info))
5965                 return ERR_PTR(-EINVAL);
5966
5967         dev = __alloc_device();
5968         if (IS_ERR(dev))
5969                 return dev;
5970
5971         if (devid)
5972                 tmp = *devid;
5973         else {
5974                 int ret;
5975
5976                 ret = find_next_devid(fs_info, &tmp);
5977                 if (ret) {
5978                         kfree(dev);
5979                         return ERR_PTR(ret);
5980                 }
5981         }
5982         dev->devid = tmp;
5983
5984         if (uuid)
5985                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5986         else
5987                 generate_random_uuid(dev->uuid);
5988
5989         btrfs_init_work(&dev->work, btrfs_submit_helper,
5990                         pending_bios_fn, NULL, NULL);
5991
5992         return dev;
5993 }
5994
5995 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5996                           struct extent_buffer *leaf,
5997                           struct btrfs_chunk *chunk)
5998 {
5999         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6000         struct map_lookup *map;
6001         struct extent_map *em;
6002         u64 logical;
6003         u64 length;
6004         u64 devid;
6005         u8 uuid[BTRFS_UUID_SIZE];
6006         int num_stripes;
6007         int ret;
6008         int i;
6009
6010         logical = key->offset;
6011         length = btrfs_chunk_length(leaf, chunk);
6012
6013         read_lock(&map_tree->map_tree.lock);
6014         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6015         read_unlock(&map_tree->map_tree.lock);
6016
6017         /* already mapped? */
6018         if (em && em->start <= logical && em->start + em->len > logical) {
6019                 free_extent_map(em);
6020                 return 0;
6021         } else if (em) {
6022                 free_extent_map(em);
6023         }
6024
6025         em = alloc_extent_map();
6026         if (!em)
6027                 return -ENOMEM;
6028         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6029         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6030         if (!map) {
6031                 free_extent_map(em);
6032                 return -ENOMEM;
6033         }
6034
6035         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6036         em->bdev = (struct block_device *)map;
6037         em->start = logical;
6038         em->len = length;
6039         em->orig_start = 0;
6040         em->block_start = 0;
6041         em->block_len = em->len;
6042
6043         map->num_stripes = num_stripes;
6044         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6045         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6046         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6047         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6048         map->type = btrfs_chunk_type(leaf, chunk);
6049         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6050         for (i = 0; i < num_stripes; i++) {
6051                 map->stripes[i].physical =
6052                         btrfs_stripe_offset_nr(leaf, chunk, i);
6053                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6054                 read_extent_buffer(leaf, uuid, (unsigned long)
6055                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6056                                    BTRFS_UUID_SIZE);
6057                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6058                                                         uuid, NULL);
6059                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6060                         free_extent_map(em);
6061                         return -EIO;
6062                 }
6063                 if (!map->stripes[i].dev) {
6064                         map->stripes[i].dev =
6065                                 add_missing_dev(root, root->fs_info->fs_devices,
6066                                                 devid, uuid);
6067                         if (!map->stripes[i].dev) {
6068                                 free_extent_map(em);
6069                                 return -EIO;
6070                         }
6071                 }
6072                 map->stripes[i].dev->in_fs_metadata = 1;
6073         }
6074
6075         write_lock(&map_tree->map_tree.lock);
6076         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6077         write_unlock(&map_tree->map_tree.lock);
6078         BUG_ON(ret); /* Tree corruption */
6079         free_extent_map(em);
6080
6081         return 0;
6082 }
6083
6084 static void fill_device_from_item(struct extent_buffer *leaf,
6085                                  struct btrfs_dev_item *dev_item,
6086                                  struct btrfs_device *device)
6087 {
6088         unsigned long ptr;
6089
6090         device->devid = btrfs_device_id(leaf, dev_item);
6091         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6092         device->total_bytes = device->disk_total_bytes;
6093         device->commit_total_bytes = device->disk_total_bytes;
6094         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6095         device->commit_bytes_used = device->bytes_used;
6096         device->type = btrfs_device_type(leaf, dev_item);
6097         device->io_align = btrfs_device_io_align(leaf, dev_item);
6098         device->io_width = btrfs_device_io_width(leaf, dev_item);
6099         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6100         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6101         device->is_tgtdev_for_dev_replace = 0;
6102
6103         ptr = btrfs_device_uuid(dev_item);
6104         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6105 }
6106
6107 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6108                                                   u8 *fsid)
6109 {
6110         struct btrfs_fs_devices *fs_devices;
6111         int ret;
6112
6113         BUG_ON(!mutex_is_locked(&uuid_mutex));
6114
6115         fs_devices = root->fs_info->fs_devices->seed;
6116         while (fs_devices) {
6117                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6118                         return fs_devices;
6119
6120                 fs_devices = fs_devices->seed;
6121         }
6122
6123         fs_devices = find_fsid(fsid);
6124         if (!fs_devices) {
6125                 if (!btrfs_test_opt(root, DEGRADED))
6126                         return ERR_PTR(-ENOENT);
6127
6128                 fs_devices = alloc_fs_devices(fsid);
6129                 if (IS_ERR(fs_devices))
6130                         return fs_devices;
6131
6132                 fs_devices->seeding = 1;
6133                 fs_devices->opened = 1;
6134                 return fs_devices;
6135         }
6136
6137         fs_devices = clone_fs_devices(fs_devices);
6138         if (IS_ERR(fs_devices))
6139                 return fs_devices;
6140
6141         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6142                                    root->fs_info->bdev_holder);
6143         if (ret) {
6144                 free_fs_devices(fs_devices);
6145                 fs_devices = ERR_PTR(ret);
6146                 goto out;
6147         }
6148
6149         if (!fs_devices->seeding) {
6150                 __btrfs_close_devices(fs_devices);
6151                 free_fs_devices(fs_devices);
6152                 fs_devices = ERR_PTR(-EINVAL);
6153                 goto out;
6154         }
6155
6156         fs_devices->seed = root->fs_info->fs_devices->seed;
6157         root->fs_info->fs_devices->seed = fs_devices;
6158 out:
6159         return fs_devices;
6160 }
6161
6162 static int read_one_dev(struct btrfs_root *root,
6163                         struct extent_buffer *leaf,
6164                         struct btrfs_dev_item *dev_item)
6165 {
6166         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6167         struct btrfs_device *device;
6168         u64 devid;
6169         int ret;
6170         u8 fs_uuid[BTRFS_UUID_SIZE];
6171         u8 dev_uuid[BTRFS_UUID_SIZE];
6172
6173         devid = btrfs_device_id(leaf, dev_item);
6174         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6175                            BTRFS_UUID_SIZE);
6176         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6177                            BTRFS_UUID_SIZE);
6178
6179         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6180                 fs_devices = open_seed_devices(root, fs_uuid);
6181                 if (IS_ERR(fs_devices))
6182                         return PTR_ERR(fs_devices);
6183         }
6184
6185         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6186         if (!device) {
6187                 if (!btrfs_test_opt(root, DEGRADED))
6188                         return -EIO;
6189
6190                 btrfs_warn(root->fs_info, "devid %llu missing", devid);
6191                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6192                 if (!device)
6193                         return -ENOMEM;
6194         } else {
6195                 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6196                         return -EIO;
6197
6198                 if(!device->bdev && !device->missing) {
6199                         /*
6200                          * this happens when a device that was properly setup
6201                          * in the device info lists suddenly goes bad.
6202                          * device->bdev is NULL, and so we have to set
6203                          * device->missing to one here
6204                          */
6205                         device->fs_devices->missing_devices++;
6206                         device->missing = 1;
6207                 }
6208
6209                 /* Move the device to its own fs_devices */
6210                 if (device->fs_devices != fs_devices) {
6211                         ASSERT(device->missing);
6212
6213                         list_move(&device->dev_list, &fs_devices->devices);
6214                         device->fs_devices->num_devices--;
6215                         fs_devices->num_devices++;
6216
6217                         device->fs_devices->missing_devices--;
6218                         fs_devices->missing_devices++;
6219
6220                         device->fs_devices = fs_devices;
6221                 }
6222         }
6223
6224         if (device->fs_devices != root->fs_info->fs_devices) {
6225                 BUG_ON(device->writeable);
6226                 if (device->generation !=
6227                     btrfs_device_generation(leaf, dev_item))
6228                         return -EINVAL;
6229         }
6230
6231         fill_device_from_item(leaf, dev_item, device);
6232         device->in_fs_metadata = 1;
6233         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6234                 device->fs_devices->total_rw_bytes += device->total_bytes;
6235                 spin_lock(&root->fs_info->free_chunk_lock);
6236                 root->fs_info->free_chunk_space += device->total_bytes -
6237                         device->bytes_used;
6238                 spin_unlock(&root->fs_info->free_chunk_lock);
6239         }
6240         ret = 0;
6241         return ret;
6242 }
6243
6244 int btrfs_read_sys_array(struct btrfs_root *root)
6245 {
6246         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6247         struct extent_buffer *sb;
6248         struct btrfs_disk_key *disk_key;
6249         struct btrfs_chunk *chunk;
6250         u8 *array_ptr;
6251         unsigned long sb_array_offset;
6252         int ret = 0;
6253         u32 num_stripes;
6254         u32 array_size;
6255         u32 len = 0;
6256         u32 cur_offset;
6257         struct btrfs_key key;
6258
6259         ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6260         /*
6261          * This will create extent buffer of nodesize, superblock size is
6262          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6263          * overallocate but we can keep it as-is, only the first page is used.
6264          */
6265         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6266         if (!sb)
6267                 return -ENOMEM;
6268         btrfs_set_buffer_uptodate(sb);
6269         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6270         /*
6271          * The sb extent buffer is artifical and just used to read the system array.
6272          * btrfs_set_buffer_uptodate() call does not properly mark all it's
6273          * pages up-to-date when the page is larger: extent does not cover the
6274          * whole page and consequently check_page_uptodate does not find all
6275          * the page's extents up-to-date (the hole beyond sb),
6276          * write_extent_buffer then triggers a WARN_ON.
6277          *
6278          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6279          * but sb spans only this function. Add an explicit SetPageUptodate call
6280          * to silence the warning eg. on PowerPC 64.
6281          */
6282         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6283                 SetPageUptodate(sb->pages[0]);
6284
6285         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6286         array_size = btrfs_super_sys_array_size(super_copy);
6287
6288         array_ptr = super_copy->sys_chunk_array;
6289         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6290         cur_offset = 0;
6291
6292         while (cur_offset < array_size) {
6293                 disk_key = (struct btrfs_disk_key *)array_ptr;
6294                 len = sizeof(*disk_key);
6295                 if (cur_offset + len > array_size)
6296                         goto out_short_read;
6297
6298                 btrfs_disk_key_to_cpu(&key, disk_key);
6299
6300                 array_ptr += len;
6301                 sb_array_offset += len;
6302                 cur_offset += len;
6303
6304                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6305                         chunk = (struct btrfs_chunk *)sb_array_offset;
6306                         /*
6307                          * At least one btrfs_chunk with one stripe must be
6308                          * present, exact stripe count check comes afterwards
6309                          */
6310                         len = btrfs_chunk_item_size(1);
6311                         if (cur_offset + len > array_size)
6312                                 goto out_short_read;
6313
6314                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6315                         len = btrfs_chunk_item_size(num_stripes);
6316                         if (cur_offset + len > array_size)
6317                                 goto out_short_read;
6318
6319                         ret = read_one_chunk(root, &key, sb, chunk);
6320                         if (ret)
6321                                 break;
6322                 } else {
6323                         ret = -EIO;
6324                         break;
6325                 }
6326                 array_ptr += len;
6327                 sb_array_offset += len;
6328                 cur_offset += len;
6329         }
6330         free_extent_buffer(sb);
6331         return ret;
6332
6333 out_short_read:
6334         printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6335                         len, cur_offset);
6336         free_extent_buffer(sb);
6337         return -EIO;
6338 }
6339
6340 int btrfs_read_chunk_tree(struct btrfs_root *root)
6341 {
6342         struct btrfs_path *path;
6343         struct extent_buffer *leaf;
6344         struct btrfs_key key;
6345         struct btrfs_key found_key;
6346         int ret;
6347         int slot;
6348
6349         root = root->fs_info->chunk_root;
6350
6351         path = btrfs_alloc_path();
6352         if (!path)
6353                 return -ENOMEM;
6354
6355         mutex_lock(&uuid_mutex);
6356         lock_chunks(root);
6357
6358         /*
6359          * Read all device items, and then all the chunk items. All
6360          * device items are found before any chunk item (their object id
6361          * is smaller than the lowest possible object id for a chunk
6362          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6363          */
6364         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6365         key.offset = 0;
6366         key.type = 0;
6367         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6368         if (ret < 0)
6369                 goto error;
6370         while (1) {
6371                 leaf = path->nodes[0];
6372                 slot = path->slots[0];
6373                 if (slot >= btrfs_header_nritems(leaf)) {
6374                         ret = btrfs_next_leaf(root, path);
6375                         if (ret == 0)
6376                                 continue;
6377                         if (ret < 0)
6378                                 goto error;
6379                         break;
6380                 }
6381                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6382                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6383                         struct btrfs_dev_item *dev_item;
6384                         dev_item = btrfs_item_ptr(leaf, slot,
6385                                                   struct btrfs_dev_item);
6386                         ret = read_one_dev(root, leaf, dev_item);
6387                         if (ret)
6388                                 goto error;
6389                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6390                         struct btrfs_chunk *chunk;
6391                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6392                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6393                         if (ret)
6394                                 goto error;
6395                 }
6396                 path->slots[0]++;
6397         }
6398         ret = 0;
6399 error:
6400         unlock_chunks(root);
6401         mutex_unlock(&uuid_mutex);
6402
6403         btrfs_free_path(path);
6404         return ret;
6405 }
6406
6407 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6408 {
6409         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6410         struct btrfs_device *device;
6411
6412         while (fs_devices) {
6413                 mutex_lock(&fs_devices->device_list_mutex);
6414                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6415                         device->dev_root = fs_info->dev_root;
6416                 mutex_unlock(&fs_devices->device_list_mutex);
6417
6418                 fs_devices = fs_devices->seed;
6419         }
6420 }
6421
6422 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6423 {
6424         int i;
6425
6426         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6427                 btrfs_dev_stat_reset(dev, i);
6428 }
6429
6430 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6431 {
6432         struct btrfs_key key;
6433         struct btrfs_key found_key;
6434         struct btrfs_root *dev_root = fs_info->dev_root;
6435         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6436         struct extent_buffer *eb;
6437         int slot;
6438         int ret = 0;
6439         struct btrfs_device *device;
6440         struct btrfs_path *path = NULL;
6441         int i;
6442
6443         path = btrfs_alloc_path();
6444         if (!path) {
6445                 ret = -ENOMEM;
6446                 goto out;
6447         }
6448
6449         mutex_lock(&fs_devices->device_list_mutex);
6450         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6451                 int item_size;
6452                 struct btrfs_dev_stats_item *ptr;
6453
6454                 key.objectid = 0;
6455                 key.type = BTRFS_DEV_STATS_KEY;
6456                 key.offset = device->devid;
6457                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6458                 if (ret) {
6459                         __btrfs_reset_dev_stats(device);
6460                         device->dev_stats_valid = 1;
6461                         btrfs_release_path(path);
6462                         continue;
6463                 }
6464                 slot = path->slots[0];
6465                 eb = path->nodes[0];
6466                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6467                 item_size = btrfs_item_size_nr(eb, slot);
6468
6469                 ptr = btrfs_item_ptr(eb, slot,
6470                                      struct btrfs_dev_stats_item);
6471
6472                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6473                         if (item_size >= (1 + i) * sizeof(__le64))
6474                                 btrfs_dev_stat_set(device, i,
6475                                         btrfs_dev_stats_value(eb, ptr, i));
6476                         else
6477                                 btrfs_dev_stat_reset(device, i);
6478                 }
6479
6480                 device->dev_stats_valid = 1;
6481                 btrfs_dev_stat_print_on_load(device);
6482                 btrfs_release_path(path);
6483         }
6484         mutex_unlock(&fs_devices->device_list_mutex);
6485
6486 out:
6487         btrfs_free_path(path);
6488         return ret < 0 ? ret : 0;
6489 }
6490
6491 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6492                                 struct btrfs_root *dev_root,
6493                                 struct btrfs_device *device)
6494 {
6495         struct btrfs_path *path;
6496         struct btrfs_key key;
6497         struct extent_buffer *eb;
6498         struct btrfs_dev_stats_item *ptr;
6499         int ret;
6500         int i;
6501
6502         key.objectid = 0;
6503         key.type = BTRFS_DEV_STATS_KEY;
6504         key.offset = device->devid;
6505
6506         path = btrfs_alloc_path();
6507         BUG_ON(!path);
6508         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6509         if (ret < 0) {
6510                 printk_in_rcu(KERN_WARNING "BTRFS: "
6511                         "error %d while searching for dev_stats item for device %s!\n",
6512                               ret, rcu_str_deref(device->name));
6513                 goto out;
6514         }
6515
6516         if (ret == 0 &&
6517             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6518                 /* need to delete old one and insert a new one */
6519                 ret = btrfs_del_item(trans, dev_root, path);
6520                 if (ret != 0) {
6521                         printk_in_rcu(KERN_WARNING "BTRFS: "
6522                                 "delete too small dev_stats item for device %s failed %d!\n",
6523                                       rcu_str_deref(device->name), ret);
6524                         goto out;
6525                 }
6526                 ret = 1;
6527         }
6528
6529         if (ret == 1) {
6530                 /* need to insert a new item */
6531                 btrfs_release_path(path);
6532                 ret = btrfs_insert_empty_item(trans, dev_root, path,
6533                                               &key, sizeof(*ptr));
6534                 if (ret < 0) {
6535                         printk_in_rcu(KERN_WARNING "BTRFS: "
6536                                           "insert dev_stats item for device %s failed %d!\n",
6537                                       rcu_str_deref(device->name), ret);
6538                         goto out;
6539                 }
6540         }
6541
6542         eb = path->nodes[0];
6543         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6544         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6545                 btrfs_set_dev_stats_value(eb, ptr, i,
6546                                           btrfs_dev_stat_read(device, i));
6547         btrfs_mark_buffer_dirty(eb);
6548
6549 out:
6550         btrfs_free_path(path);
6551         return ret;
6552 }
6553
6554 /*
6555  * called from commit_transaction. Writes all changed device stats to disk.
6556  */
6557 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6558                         struct btrfs_fs_info *fs_info)
6559 {
6560         struct btrfs_root *dev_root = fs_info->dev_root;
6561         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6562         struct btrfs_device *device;
6563         int stats_cnt;
6564         int ret = 0;
6565
6566         mutex_lock(&fs_devices->device_list_mutex);
6567         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6568                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6569                         continue;
6570
6571                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6572                 ret = update_dev_stat_item(trans, dev_root, device);
6573                 if (!ret)
6574                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6575         }
6576         mutex_unlock(&fs_devices->device_list_mutex);
6577
6578         return ret;
6579 }
6580
6581 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6582 {
6583         btrfs_dev_stat_inc(dev, index);
6584         btrfs_dev_stat_print_on_error(dev);
6585 }
6586
6587 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6588 {
6589         if (!dev->dev_stats_valid)
6590                 return;
6591         printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6592                            "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6593                            rcu_str_deref(dev->name),
6594                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6595                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6596                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6597                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6598                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6599 }
6600
6601 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6602 {
6603         int i;
6604
6605         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6606                 if (btrfs_dev_stat_read(dev, i) != 0)
6607                         break;
6608         if (i == BTRFS_DEV_STAT_VALUES_MAX)
6609                 return; /* all values == 0, suppress message */
6610
6611         printk_in_rcu(KERN_INFO "BTRFS: "
6612                    "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6613                rcu_str_deref(dev->name),
6614                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6615                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6616                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6617                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6618                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6619 }
6620
6621 int btrfs_get_dev_stats(struct btrfs_root *root,
6622                         struct btrfs_ioctl_get_dev_stats *stats)
6623 {
6624         struct btrfs_device *dev;
6625         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6626         int i;
6627
6628         mutex_lock(&fs_devices->device_list_mutex);
6629         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6630         mutex_unlock(&fs_devices->device_list_mutex);
6631
6632         if (!dev) {
6633                 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6634                 return -ENODEV;
6635         } else if (!dev->dev_stats_valid) {
6636                 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6637                 return -ENODEV;
6638         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6639                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6640                         if (stats->nr_items > i)
6641                                 stats->values[i] =
6642                                         btrfs_dev_stat_read_and_reset(dev, i);
6643                         else
6644                                 btrfs_dev_stat_reset(dev, i);
6645                 }
6646         } else {
6647                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6648                         if (stats->nr_items > i)
6649                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
6650         }
6651         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6652                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6653         return 0;
6654 }
6655
6656 int btrfs_scratch_superblock(struct btrfs_device *device)
6657 {
6658         struct buffer_head *bh;
6659         struct btrfs_super_block *disk_super;
6660
6661         bh = btrfs_read_dev_super(device->bdev);
6662         if (!bh)
6663                 return -EINVAL;
6664         disk_super = (struct btrfs_super_block *)bh->b_data;
6665
6666         memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6667         set_buffer_dirty(bh);
6668         sync_dirty_buffer(bh);
6669         brelse(bh);
6670
6671         return 0;
6672 }
6673
6674 /*
6675  * Update the size of all devices, which is used for writing out the
6676  * super blocks.
6677  */
6678 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6679 {
6680         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6681         struct btrfs_device *curr, *next;
6682
6683         if (list_empty(&fs_devices->resized_devices))
6684                 return;
6685
6686         mutex_lock(&fs_devices->device_list_mutex);
6687         lock_chunks(fs_info->dev_root);
6688         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6689                                  resized_list) {
6690                 list_del_init(&curr->resized_list);
6691                 curr->commit_total_bytes = curr->disk_total_bytes;
6692         }
6693         unlock_chunks(fs_info->dev_root);
6694         mutex_unlock(&fs_devices->device_list_mutex);
6695 }
6696
6697 /* Must be invoked during the transaction commit */
6698 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6699                                         struct btrfs_transaction *transaction)
6700 {
6701         struct extent_map *em;
6702         struct map_lookup *map;
6703         struct btrfs_device *dev;
6704         int i;
6705
6706         if (list_empty(&transaction->pending_chunks))
6707                 return;
6708
6709         /* In order to kick the device replace finish process */
6710         lock_chunks(root);
6711         list_for_each_entry(em, &transaction->pending_chunks, list) {
6712                 map = (struct map_lookup *)em->bdev;
6713
6714                 for (i = 0; i < map->num_stripes; i++) {
6715                         dev = map->stripes[i].dev;
6716                         dev->commit_bytes_used = dev->bytes_used;
6717                 }
6718         }
6719         unlock_chunks(root);
6720 }