ASoC: Intel: wrap runtime_pm usage count under CONFIG_PM
[cascardo/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46                                 struct btrfs_root *root,
47                                 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55
56 static struct btrfs_fs_devices *__alloc_fs_devices(void)
57 {
58         struct btrfs_fs_devices *fs_devs;
59
60         fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
61         if (!fs_devs)
62                 return ERR_PTR(-ENOMEM);
63
64         mutex_init(&fs_devs->device_list_mutex);
65
66         INIT_LIST_HEAD(&fs_devs->devices);
67         INIT_LIST_HEAD(&fs_devs->resized_devices);
68         INIT_LIST_HEAD(&fs_devs->alloc_list);
69         INIT_LIST_HEAD(&fs_devs->list);
70
71         return fs_devs;
72 }
73
74 /**
75  * alloc_fs_devices - allocate struct btrfs_fs_devices
76  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
77  *              generated.
78  *
79  * Return: a pointer to a new &struct btrfs_fs_devices on success;
80  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
81  * can be destroyed with kfree() right away.
82  */
83 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
84 {
85         struct btrfs_fs_devices *fs_devs;
86
87         fs_devs = __alloc_fs_devices();
88         if (IS_ERR(fs_devs))
89                 return fs_devs;
90
91         if (fsid)
92                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
93         else
94                 generate_random_uuid(fs_devs->fsid);
95
96         return fs_devs;
97 }
98
99 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
100 {
101         struct btrfs_device *device;
102         WARN_ON(fs_devices->opened);
103         while (!list_empty(&fs_devices->devices)) {
104                 device = list_entry(fs_devices->devices.next,
105                                     struct btrfs_device, dev_list);
106                 list_del(&device->dev_list);
107                 rcu_string_free(device->name);
108                 kfree(device);
109         }
110         kfree(fs_devices);
111 }
112
113 static void btrfs_kobject_uevent(struct block_device *bdev,
114                                  enum kobject_action action)
115 {
116         int ret;
117
118         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
119         if (ret)
120                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
121                         action,
122                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
123                         &disk_to_dev(bdev->bd_disk)->kobj);
124 }
125
126 void btrfs_cleanup_fs_uuids(void)
127 {
128         struct btrfs_fs_devices *fs_devices;
129
130         while (!list_empty(&fs_uuids)) {
131                 fs_devices = list_entry(fs_uuids.next,
132                                         struct btrfs_fs_devices, list);
133                 list_del(&fs_devices->list);
134                 free_fs_devices(fs_devices);
135         }
136 }
137
138 static struct btrfs_device *__alloc_device(void)
139 {
140         struct btrfs_device *dev;
141
142         dev = kzalloc(sizeof(*dev), GFP_NOFS);
143         if (!dev)
144                 return ERR_PTR(-ENOMEM);
145
146         INIT_LIST_HEAD(&dev->dev_list);
147         INIT_LIST_HEAD(&dev->dev_alloc_list);
148         INIT_LIST_HEAD(&dev->resized_list);
149
150         spin_lock_init(&dev->io_lock);
151
152         spin_lock_init(&dev->reada_lock);
153         atomic_set(&dev->reada_in_flight, 0);
154         atomic_set(&dev->dev_stats_ccnt, 0);
155         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
156         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
157
158         return dev;
159 }
160
161 static noinline struct btrfs_device *__find_device(struct list_head *head,
162                                                    u64 devid, u8 *uuid)
163 {
164         struct btrfs_device *dev;
165
166         list_for_each_entry(dev, head, dev_list) {
167                 if (dev->devid == devid &&
168                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
169                         return dev;
170                 }
171         }
172         return NULL;
173 }
174
175 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
176 {
177         struct btrfs_fs_devices *fs_devices;
178
179         list_for_each_entry(fs_devices, &fs_uuids, list) {
180                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
181                         return fs_devices;
182         }
183         return NULL;
184 }
185
186 static int
187 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
188                       int flush, struct block_device **bdev,
189                       struct buffer_head **bh)
190 {
191         int ret;
192
193         *bdev = blkdev_get_by_path(device_path, flags, holder);
194
195         if (IS_ERR(*bdev)) {
196                 ret = PTR_ERR(*bdev);
197                 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
198                 goto error;
199         }
200
201         if (flush)
202                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
203         ret = set_blocksize(*bdev, 4096);
204         if (ret) {
205                 blkdev_put(*bdev, flags);
206                 goto error;
207         }
208         invalidate_bdev(*bdev);
209         *bh = btrfs_read_dev_super(*bdev);
210         if (!*bh) {
211                 ret = -EINVAL;
212                 blkdev_put(*bdev, flags);
213                 goto error;
214         }
215
216         return 0;
217
218 error:
219         *bdev = NULL;
220         *bh = NULL;
221         return ret;
222 }
223
224 static void requeue_list(struct btrfs_pending_bios *pending_bios,
225                         struct bio *head, struct bio *tail)
226 {
227
228         struct bio *old_head;
229
230         old_head = pending_bios->head;
231         pending_bios->head = head;
232         if (pending_bios->tail)
233                 tail->bi_next = old_head;
234         else
235                 pending_bios->tail = tail;
236 }
237
238 /*
239  * we try to collect pending bios for a device so we don't get a large
240  * number of procs sending bios down to the same device.  This greatly
241  * improves the schedulers ability to collect and merge the bios.
242  *
243  * But, it also turns into a long list of bios to process and that is sure
244  * to eventually make the worker thread block.  The solution here is to
245  * make some progress and then put this work struct back at the end of
246  * the list if the block device is congested.  This way, multiple devices
247  * can make progress from a single worker thread.
248  */
249 static noinline void run_scheduled_bios(struct btrfs_device *device)
250 {
251         struct bio *pending;
252         struct backing_dev_info *bdi;
253         struct btrfs_fs_info *fs_info;
254         struct btrfs_pending_bios *pending_bios;
255         struct bio *tail;
256         struct bio *cur;
257         int again = 0;
258         unsigned long num_run;
259         unsigned long batch_run = 0;
260         unsigned long limit;
261         unsigned long last_waited = 0;
262         int force_reg = 0;
263         int sync_pending = 0;
264         struct blk_plug plug;
265
266         /*
267          * this function runs all the bios we've collected for
268          * a particular device.  We don't want to wander off to
269          * another device without first sending all of these down.
270          * So, setup a plug here and finish it off before we return
271          */
272         blk_start_plug(&plug);
273
274         bdi = blk_get_backing_dev_info(device->bdev);
275         fs_info = device->dev_root->fs_info;
276         limit = btrfs_async_submit_limit(fs_info);
277         limit = limit * 2 / 3;
278
279 loop:
280         spin_lock(&device->io_lock);
281
282 loop_lock:
283         num_run = 0;
284
285         /* take all the bios off the list at once and process them
286          * later on (without the lock held).  But, remember the
287          * tail and other pointers so the bios can be properly reinserted
288          * into the list if we hit congestion
289          */
290         if (!force_reg && device->pending_sync_bios.head) {
291                 pending_bios = &device->pending_sync_bios;
292                 force_reg = 1;
293         } else {
294                 pending_bios = &device->pending_bios;
295                 force_reg = 0;
296         }
297
298         pending = pending_bios->head;
299         tail = pending_bios->tail;
300         WARN_ON(pending && !tail);
301
302         /*
303          * if pending was null this time around, no bios need processing
304          * at all and we can stop.  Otherwise it'll loop back up again
305          * and do an additional check so no bios are missed.
306          *
307          * device->running_pending is used to synchronize with the
308          * schedule_bio code.
309          */
310         if (device->pending_sync_bios.head == NULL &&
311             device->pending_bios.head == NULL) {
312                 again = 0;
313                 device->running_pending = 0;
314         } else {
315                 again = 1;
316                 device->running_pending = 1;
317         }
318
319         pending_bios->head = NULL;
320         pending_bios->tail = NULL;
321
322         spin_unlock(&device->io_lock);
323
324         while (pending) {
325
326                 rmb();
327                 /* we want to work on both lists, but do more bios on the
328                  * sync list than the regular list
329                  */
330                 if ((num_run > 32 &&
331                     pending_bios != &device->pending_sync_bios &&
332                     device->pending_sync_bios.head) ||
333                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
334                     device->pending_bios.head)) {
335                         spin_lock(&device->io_lock);
336                         requeue_list(pending_bios, pending, tail);
337                         goto loop_lock;
338                 }
339
340                 cur = pending;
341                 pending = pending->bi_next;
342                 cur->bi_next = NULL;
343
344                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
345                     waitqueue_active(&fs_info->async_submit_wait))
346                         wake_up(&fs_info->async_submit_wait);
347
348                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
349
350                 /*
351                  * if we're doing the sync list, record that our
352                  * plug has some sync requests on it
353                  *
354                  * If we're doing the regular list and there are
355                  * sync requests sitting around, unplug before
356                  * we add more
357                  */
358                 if (pending_bios == &device->pending_sync_bios) {
359                         sync_pending = 1;
360                 } else if (sync_pending) {
361                         blk_finish_plug(&plug);
362                         blk_start_plug(&plug);
363                         sync_pending = 0;
364                 }
365
366                 btrfsic_submit_bio(cur->bi_rw, cur);
367                 num_run++;
368                 batch_run++;
369                 if (need_resched())
370                         cond_resched();
371
372                 /*
373                  * we made progress, there is more work to do and the bdi
374                  * is now congested.  Back off and let other work structs
375                  * run instead
376                  */
377                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
378                     fs_info->fs_devices->open_devices > 1) {
379                         struct io_context *ioc;
380
381                         ioc = current->io_context;
382
383                         /*
384                          * the main goal here is that we don't want to
385                          * block if we're going to be able to submit
386                          * more requests without blocking.
387                          *
388                          * This code does two great things, it pokes into
389                          * the elevator code from a filesystem _and_
390                          * it makes assumptions about how batching works.
391                          */
392                         if (ioc && ioc->nr_batch_requests > 0 &&
393                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
394                             (last_waited == 0 ||
395                              ioc->last_waited == last_waited)) {
396                                 /*
397                                  * we want to go through our batch of
398                                  * requests and stop.  So, we copy out
399                                  * the ioc->last_waited time and test
400                                  * against it before looping
401                                  */
402                                 last_waited = ioc->last_waited;
403                                 if (need_resched())
404                                         cond_resched();
405                                 continue;
406                         }
407                         spin_lock(&device->io_lock);
408                         requeue_list(pending_bios, pending, tail);
409                         device->running_pending = 1;
410
411                         spin_unlock(&device->io_lock);
412                         btrfs_queue_work(fs_info->submit_workers,
413                                          &device->work);
414                         goto done;
415                 }
416                 /* unplug every 64 requests just for good measure */
417                 if (batch_run % 64 == 0) {
418                         blk_finish_plug(&plug);
419                         blk_start_plug(&plug);
420                         sync_pending = 0;
421                 }
422         }
423
424         cond_resched();
425         if (again)
426                 goto loop;
427
428         spin_lock(&device->io_lock);
429         if (device->pending_bios.head || device->pending_sync_bios.head)
430                 goto loop_lock;
431         spin_unlock(&device->io_lock);
432
433 done:
434         blk_finish_plug(&plug);
435 }
436
437 static void pending_bios_fn(struct btrfs_work *work)
438 {
439         struct btrfs_device *device;
440
441         device = container_of(work, struct btrfs_device, work);
442         run_scheduled_bios(device);
443 }
444
445 /*
446  * Add new device to list of registered devices
447  *
448  * Returns:
449  * 1   - first time device is seen
450  * 0   - device already known
451  * < 0 - error
452  */
453 static noinline int device_list_add(const char *path,
454                            struct btrfs_super_block *disk_super,
455                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
456 {
457         struct btrfs_device *device;
458         struct btrfs_fs_devices *fs_devices;
459         struct rcu_string *name;
460         int ret = 0;
461         u64 found_transid = btrfs_super_generation(disk_super);
462
463         fs_devices = find_fsid(disk_super->fsid);
464         if (!fs_devices) {
465                 fs_devices = alloc_fs_devices(disk_super->fsid);
466                 if (IS_ERR(fs_devices))
467                         return PTR_ERR(fs_devices);
468
469                 list_add(&fs_devices->list, &fs_uuids);
470
471                 device = NULL;
472         } else {
473                 device = __find_device(&fs_devices->devices, devid,
474                                        disk_super->dev_item.uuid);
475         }
476
477         if (!device) {
478                 if (fs_devices->opened)
479                         return -EBUSY;
480
481                 device = btrfs_alloc_device(NULL, &devid,
482                                             disk_super->dev_item.uuid);
483                 if (IS_ERR(device)) {
484                         /* we can safely leave the fs_devices entry around */
485                         return PTR_ERR(device);
486                 }
487
488                 name = rcu_string_strdup(path, GFP_NOFS);
489                 if (!name) {
490                         kfree(device);
491                         return -ENOMEM;
492                 }
493                 rcu_assign_pointer(device->name, name);
494
495                 mutex_lock(&fs_devices->device_list_mutex);
496                 list_add_rcu(&device->dev_list, &fs_devices->devices);
497                 fs_devices->num_devices++;
498                 mutex_unlock(&fs_devices->device_list_mutex);
499
500                 ret = 1;
501                 device->fs_devices = fs_devices;
502         } else if (!device->name || strcmp(device->name->str, path)) {
503                 /*
504                  * When FS is already mounted.
505                  * 1. If you are here and if the device->name is NULL that
506                  *    means this device was missing at time of FS mount.
507                  * 2. If you are here and if the device->name is different
508                  *    from 'path' that means either
509                  *      a. The same device disappeared and reappeared with
510                  *         different name. or
511                  *      b. The missing-disk-which-was-replaced, has
512                  *         reappeared now.
513                  *
514                  * We must allow 1 and 2a above. But 2b would be a spurious
515                  * and unintentional.
516                  *
517                  * Further in case of 1 and 2a above, the disk at 'path'
518                  * would have missed some transaction when it was away and
519                  * in case of 2a the stale bdev has to be updated as well.
520                  * 2b must not be allowed at all time.
521                  */
522
523                 /*
524                  * For now, we do allow update to btrfs_fs_device through the
525                  * btrfs dev scan cli after FS has been mounted.  We're still
526                  * tracking a problem where systems fail mount by subvolume id
527                  * when we reject replacement on a mounted FS.
528                  */
529                 if (!fs_devices->opened && found_transid < device->generation) {
530                         /*
531                          * That is if the FS is _not_ mounted and if you
532                          * are here, that means there is more than one
533                          * disk with same uuid and devid.We keep the one
534                          * with larger generation number or the last-in if
535                          * generation are equal.
536                          */
537                         return -EEXIST;
538                 }
539
540                 name = rcu_string_strdup(path, GFP_NOFS);
541                 if (!name)
542                         return -ENOMEM;
543                 rcu_string_free(device->name);
544                 rcu_assign_pointer(device->name, name);
545                 if (device->missing) {
546                         fs_devices->missing_devices--;
547                         device->missing = 0;
548                 }
549         }
550
551         /*
552          * Unmount does not free the btrfs_device struct but would zero
553          * generation along with most of the other members. So just update
554          * it back. We need it to pick the disk with largest generation
555          * (as above).
556          */
557         if (!fs_devices->opened)
558                 device->generation = found_transid;
559
560         *fs_devices_ret = fs_devices;
561
562         return ret;
563 }
564
565 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
566 {
567         struct btrfs_fs_devices *fs_devices;
568         struct btrfs_device *device;
569         struct btrfs_device *orig_dev;
570
571         fs_devices = alloc_fs_devices(orig->fsid);
572         if (IS_ERR(fs_devices))
573                 return fs_devices;
574
575         mutex_lock(&orig->device_list_mutex);
576         fs_devices->total_devices = orig->total_devices;
577
578         /* We have held the volume lock, it is safe to get the devices. */
579         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
580                 struct rcu_string *name;
581
582                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
583                                             orig_dev->uuid);
584                 if (IS_ERR(device))
585                         goto error;
586
587                 /*
588                  * This is ok to do without rcu read locked because we hold the
589                  * uuid mutex so nothing we touch in here is going to disappear.
590                  */
591                 if (orig_dev->name) {
592                         name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
593                         if (!name) {
594                                 kfree(device);
595                                 goto error;
596                         }
597                         rcu_assign_pointer(device->name, name);
598                 }
599
600                 list_add(&device->dev_list, &fs_devices->devices);
601                 device->fs_devices = fs_devices;
602                 fs_devices->num_devices++;
603         }
604         mutex_unlock(&orig->device_list_mutex);
605         return fs_devices;
606 error:
607         mutex_unlock(&orig->device_list_mutex);
608         free_fs_devices(fs_devices);
609         return ERR_PTR(-ENOMEM);
610 }
611
612 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
613                                struct btrfs_fs_devices *fs_devices, int step)
614 {
615         struct btrfs_device *device, *next;
616         struct btrfs_device *latest_dev = NULL;
617
618         mutex_lock(&uuid_mutex);
619 again:
620         /* This is the initialized path, it is safe to release the devices. */
621         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
622                 if (device->in_fs_metadata) {
623                         if (!device->is_tgtdev_for_dev_replace &&
624                             (!latest_dev ||
625                              device->generation > latest_dev->generation)) {
626                                 latest_dev = device;
627                         }
628                         continue;
629                 }
630
631                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
632                         /*
633                          * In the first step, keep the device which has
634                          * the correct fsid and the devid that is used
635                          * for the dev_replace procedure.
636                          * In the second step, the dev_replace state is
637                          * read from the device tree and it is known
638                          * whether the procedure is really active or
639                          * not, which means whether this device is
640                          * used or whether it should be removed.
641                          */
642                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
643                                 continue;
644                         }
645                 }
646                 if (device->bdev) {
647                         blkdev_put(device->bdev, device->mode);
648                         device->bdev = NULL;
649                         fs_devices->open_devices--;
650                 }
651                 if (device->writeable) {
652                         list_del_init(&device->dev_alloc_list);
653                         device->writeable = 0;
654                         if (!device->is_tgtdev_for_dev_replace)
655                                 fs_devices->rw_devices--;
656                 }
657                 list_del_init(&device->dev_list);
658                 fs_devices->num_devices--;
659                 rcu_string_free(device->name);
660                 kfree(device);
661         }
662
663         if (fs_devices->seed) {
664                 fs_devices = fs_devices->seed;
665                 goto again;
666         }
667
668         fs_devices->latest_bdev = latest_dev->bdev;
669
670         mutex_unlock(&uuid_mutex);
671 }
672
673 static void __free_device(struct work_struct *work)
674 {
675         struct btrfs_device *device;
676
677         device = container_of(work, struct btrfs_device, rcu_work);
678
679         if (device->bdev)
680                 blkdev_put(device->bdev, device->mode);
681
682         rcu_string_free(device->name);
683         kfree(device);
684 }
685
686 static void free_device(struct rcu_head *head)
687 {
688         struct btrfs_device *device;
689
690         device = container_of(head, struct btrfs_device, rcu);
691
692         INIT_WORK(&device->rcu_work, __free_device);
693         schedule_work(&device->rcu_work);
694 }
695
696 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
697 {
698         struct btrfs_device *device;
699
700         if (--fs_devices->opened > 0)
701                 return 0;
702
703         mutex_lock(&fs_devices->device_list_mutex);
704         list_for_each_entry(device, &fs_devices->devices, dev_list) {
705                 struct btrfs_device *new_device;
706                 struct rcu_string *name;
707
708                 if (device->bdev)
709                         fs_devices->open_devices--;
710
711                 if (device->writeable &&
712                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
713                         list_del_init(&device->dev_alloc_list);
714                         fs_devices->rw_devices--;
715                 }
716
717                 if (device->missing)
718                         fs_devices->missing_devices--;
719
720                 new_device = btrfs_alloc_device(NULL, &device->devid,
721                                                 device->uuid);
722                 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
723
724                 /* Safe because we are under uuid_mutex */
725                 if (device->name) {
726                         name = rcu_string_strdup(device->name->str, GFP_NOFS);
727                         BUG_ON(!name); /* -ENOMEM */
728                         rcu_assign_pointer(new_device->name, name);
729                 }
730
731                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
732                 new_device->fs_devices = device->fs_devices;
733
734                 call_rcu(&device->rcu, free_device);
735         }
736         mutex_unlock(&fs_devices->device_list_mutex);
737
738         WARN_ON(fs_devices->open_devices);
739         WARN_ON(fs_devices->rw_devices);
740         fs_devices->opened = 0;
741         fs_devices->seeding = 0;
742
743         return 0;
744 }
745
746 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
747 {
748         struct btrfs_fs_devices *seed_devices = NULL;
749         int ret;
750
751         mutex_lock(&uuid_mutex);
752         ret = __btrfs_close_devices(fs_devices);
753         if (!fs_devices->opened) {
754                 seed_devices = fs_devices->seed;
755                 fs_devices->seed = NULL;
756         }
757         mutex_unlock(&uuid_mutex);
758
759         while (seed_devices) {
760                 fs_devices = seed_devices;
761                 seed_devices = fs_devices->seed;
762                 __btrfs_close_devices(fs_devices);
763                 free_fs_devices(fs_devices);
764         }
765         /*
766          * Wait for rcu kworkers under __btrfs_close_devices
767          * to finish all blkdev_puts so device is really
768          * free when umount is done.
769          */
770         rcu_barrier();
771         return ret;
772 }
773
774 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
775                                 fmode_t flags, void *holder)
776 {
777         struct request_queue *q;
778         struct block_device *bdev;
779         struct list_head *head = &fs_devices->devices;
780         struct btrfs_device *device;
781         struct btrfs_device *latest_dev = NULL;
782         struct buffer_head *bh;
783         struct btrfs_super_block *disk_super;
784         u64 devid;
785         int seeding = 1;
786         int ret = 0;
787
788         flags |= FMODE_EXCL;
789
790         list_for_each_entry(device, head, dev_list) {
791                 if (device->bdev)
792                         continue;
793                 if (!device->name)
794                         continue;
795
796                 /* Just open everything we can; ignore failures here */
797                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
798                                             &bdev, &bh))
799                         continue;
800
801                 disk_super = (struct btrfs_super_block *)bh->b_data;
802                 devid = btrfs_stack_device_id(&disk_super->dev_item);
803                 if (devid != device->devid)
804                         goto error_brelse;
805
806                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
807                            BTRFS_UUID_SIZE))
808                         goto error_brelse;
809
810                 device->generation = btrfs_super_generation(disk_super);
811                 if (!latest_dev ||
812                     device->generation > latest_dev->generation)
813                         latest_dev = device;
814
815                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
816                         device->writeable = 0;
817                 } else {
818                         device->writeable = !bdev_read_only(bdev);
819                         seeding = 0;
820                 }
821
822                 q = bdev_get_queue(bdev);
823                 if (blk_queue_discard(q))
824                         device->can_discard = 1;
825
826                 device->bdev = bdev;
827                 device->in_fs_metadata = 0;
828                 device->mode = flags;
829
830                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
831                         fs_devices->rotating = 1;
832
833                 fs_devices->open_devices++;
834                 if (device->writeable &&
835                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
836                         fs_devices->rw_devices++;
837                         list_add(&device->dev_alloc_list,
838                                  &fs_devices->alloc_list);
839                 }
840                 brelse(bh);
841                 continue;
842
843 error_brelse:
844                 brelse(bh);
845                 blkdev_put(bdev, flags);
846                 continue;
847         }
848         if (fs_devices->open_devices == 0) {
849                 ret = -EINVAL;
850                 goto out;
851         }
852         fs_devices->seeding = seeding;
853         fs_devices->opened = 1;
854         fs_devices->latest_bdev = latest_dev->bdev;
855         fs_devices->total_rw_bytes = 0;
856 out:
857         return ret;
858 }
859
860 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
861                        fmode_t flags, void *holder)
862 {
863         int ret;
864
865         mutex_lock(&uuid_mutex);
866         if (fs_devices->opened) {
867                 fs_devices->opened++;
868                 ret = 0;
869         } else {
870                 ret = __btrfs_open_devices(fs_devices, flags, holder);
871         }
872         mutex_unlock(&uuid_mutex);
873         return ret;
874 }
875
876 /*
877  * Look for a btrfs signature on a device. This may be called out of the mount path
878  * and we are not allowed to call set_blocksize during the scan. The superblock
879  * is read via pagecache
880  */
881 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
882                           struct btrfs_fs_devices **fs_devices_ret)
883 {
884         struct btrfs_super_block *disk_super;
885         struct block_device *bdev;
886         struct page *page;
887         void *p;
888         int ret = -EINVAL;
889         u64 devid;
890         u64 transid;
891         u64 total_devices;
892         u64 bytenr;
893         pgoff_t index;
894
895         /*
896          * we would like to check all the supers, but that would make
897          * a btrfs mount succeed after a mkfs from a different FS.
898          * So, we need to add a special mount option to scan for
899          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
900          */
901         bytenr = btrfs_sb_offset(0);
902         flags |= FMODE_EXCL;
903         mutex_lock(&uuid_mutex);
904
905         bdev = blkdev_get_by_path(path, flags, holder);
906
907         if (IS_ERR(bdev)) {
908                 ret = PTR_ERR(bdev);
909                 goto error;
910         }
911
912         /* make sure our super fits in the device */
913         if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
914                 goto error_bdev_put;
915
916         /* make sure our super fits in the page */
917         if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
918                 goto error_bdev_put;
919
920         /* make sure our super doesn't straddle pages on disk */
921         index = bytenr >> PAGE_CACHE_SHIFT;
922         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
923                 goto error_bdev_put;
924
925         /* pull in the page with our super */
926         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
927                                    index, GFP_NOFS);
928
929         if (IS_ERR_OR_NULL(page))
930                 goto error_bdev_put;
931
932         p = kmap(page);
933
934         /* align our pointer to the offset of the super block */
935         disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
936
937         if (btrfs_super_bytenr(disk_super) != bytenr ||
938             btrfs_super_magic(disk_super) != BTRFS_MAGIC)
939                 goto error_unmap;
940
941         devid = btrfs_stack_device_id(&disk_super->dev_item);
942         transid = btrfs_super_generation(disk_super);
943         total_devices = btrfs_super_num_devices(disk_super);
944
945         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
946         if (ret > 0) {
947                 if (disk_super->label[0]) {
948                         if (disk_super->label[BTRFS_LABEL_SIZE - 1])
949                                 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
950                         printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
951                 } else {
952                         printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
953                 }
954
955                 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
956                 ret = 0;
957         }
958         if (!ret && fs_devices_ret)
959                 (*fs_devices_ret)->total_devices = total_devices;
960
961 error_unmap:
962         kunmap(page);
963         page_cache_release(page);
964
965 error_bdev_put:
966         blkdev_put(bdev, flags);
967 error:
968         mutex_unlock(&uuid_mutex);
969         return ret;
970 }
971
972 /* helper to account the used device space in the range */
973 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
974                                    u64 end, u64 *length)
975 {
976         struct btrfs_key key;
977         struct btrfs_root *root = device->dev_root;
978         struct btrfs_dev_extent *dev_extent;
979         struct btrfs_path *path;
980         u64 extent_end;
981         int ret;
982         int slot;
983         struct extent_buffer *l;
984
985         *length = 0;
986
987         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
988                 return 0;
989
990         path = btrfs_alloc_path();
991         if (!path)
992                 return -ENOMEM;
993         path->reada = 2;
994
995         key.objectid = device->devid;
996         key.offset = start;
997         key.type = BTRFS_DEV_EXTENT_KEY;
998
999         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1000         if (ret < 0)
1001                 goto out;
1002         if (ret > 0) {
1003                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1004                 if (ret < 0)
1005                         goto out;
1006         }
1007
1008         while (1) {
1009                 l = path->nodes[0];
1010                 slot = path->slots[0];
1011                 if (slot >= btrfs_header_nritems(l)) {
1012                         ret = btrfs_next_leaf(root, path);
1013                         if (ret == 0)
1014                                 continue;
1015                         if (ret < 0)
1016                                 goto out;
1017
1018                         break;
1019                 }
1020                 btrfs_item_key_to_cpu(l, &key, slot);
1021
1022                 if (key.objectid < device->devid)
1023                         goto next;
1024
1025                 if (key.objectid > device->devid)
1026                         break;
1027
1028                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1029                         goto next;
1030
1031                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1032                 extent_end = key.offset + btrfs_dev_extent_length(l,
1033                                                                   dev_extent);
1034                 if (key.offset <= start && extent_end > end) {
1035                         *length = end - start + 1;
1036                         break;
1037                 } else if (key.offset <= start && extent_end > start)
1038                         *length += extent_end - start;
1039                 else if (key.offset > start && extent_end <= end)
1040                         *length += extent_end - key.offset;
1041                 else if (key.offset > start && key.offset <= end) {
1042                         *length += end - key.offset + 1;
1043                         break;
1044                 } else if (key.offset > end)
1045                         break;
1046
1047 next:
1048                 path->slots[0]++;
1049         }
1050         ret = 0;
1051 out:
1052         btrfs_free_path(path);
1053         return ret;
1054 }
1055
1056 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1057                                    struct btrfs_device *device,
1058                                    u64 *start, u64 len)
1059 {
1060         struct extent_map *em;
1061         struct list_head *search_list = &trans->transaction->pending_chunks;
1062         int ret = 0;
1063
1064 again:
1065         list_for_each_entry(em, search_list, list) {
1066                 struct map_lookup *map;
1067                 int i;
1068
1069                 map = (struct map_lookup *)em->bdev;
1070                 for (i = 0; i < map->num_stripes; i++) {
1071                         if (map->stripes[i].dev != device)
1072                                 continue;
1073                         if (map->stripes[i].physical >= *start + len ||
1074                             map->stripes[i].physical + em->orig_block_len <=
1075                             *start)
1076                                 continue;
1077                         *start = map->stripes[i].physical +
1078                                 em->orig_block_len;
1079                         ret = 1;
1080                 }
1081         }
1082         if (search_list == &trans->transaction->pending_chunks) {
1083                 search_list = &trans->root->fs_info->pinned_chunks;
1084                 goto again;
1085         }
1086
1087         return ret;
1088 }
1089
1090
1091 /*
1092  * find_free_dev_extent - find free space in the specified device
1093  * @device:     the device which we search the free space in
1094  * @num_bytes:  the size of the free space that we need
1095  * @start:      store the start of the free space.
1096  * @len:        the size of the free space. that we find, or the size of the max
1097  *              free space if we don't find suitable free space
1098  *
1099  * this uses a pretty simple search, the expectation is that it is
1100  * called very infrequently and that a given device has a small number
1101  * of extents
1102  *
1103  * @start is used to store the start of the free space if we find. But if we
1104  * don't find suitable free space, it will be used to store the start position
1105  * of the max free space.
1106  *
1107  * @len is used to store the size of the free space that we find.
1108  * But if we don't find suitable free space, it is used to store the size of
1109  * the max free space.
1110  */
1111 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1112                          struct btrfs_device *device, u64 num_bytes,
1113                          u64 *start, u64 *len)
1114 {
1115         struct btrfs_key key;
1116         struct btrfs_root *root = device->dev_root;
1117         struct btrfs_dev_extent *dev_extent;
1118         struct btrfs_path *path;
1119         u64 hole_size;
1120         u64 max_hole_start;
1121         u64 max_hole_size;
1122         u64 extent_end;
1123         u64 search_start;
1124         u64 search_end = device->total_bytes;
1125         int ret;
1126         int slot;
1127         struct extent_buffer *l;
1128
1129         /* FIXME use last free of some kind */
1130
1131         /* we don't want to overwrite the superblock on the drive,
1132          * so we make sure to start at an offset of at least 1MB
1133          */
1134         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1135
1136         path = btrfs_alloc_path();
1137         if (!path)
1138                 return -ENOMEM;
1139 again:
1140         max_hole_start = search_start;
1141         max_hole_size = 0;
1142         hole_size = 0;
1143
1144         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1145                 ret = -ENOSPC;
1146                 goto out;
1147         }
1148
1149         path->reada = 2;
1150         path->search_commit_root = 1;
1151         path->skip_locking = 1;
1152
1153         key.objectid = device->devid;
1154         key.offset = search_start;
1155         key.type = BTRFS_DEV_EXTENT_KEY;
1156
1157         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1158         if (ret < 0)
1159                 goto out;
1160         if (ret > 0) {
1161                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1162                 if (ret < 0)
1163                         goto out;
1164         }
1165
1166         while (1) {
1167                 l = path->nodes[0];
1168                 slot = path->slots[0];
1169                 if (slot >= btrfs_header_nritems(l)) {
1170                         ret = btrfs_next_leaf(root, path);
1171                         if (ret == 0)
1172                                 continue;
1173                         if (ret < 0)
1174                                 goto out;
1175
1176                         break;
1177                 }
1178                 btrfs_item_key_to_cpu(l, &key, slot);
1179
1180                 if (key.objectid < device->devid)
1181                         goto next;
1182
1183                 if (key.objectid > device->devid)
1184                         break;
1185
1186                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1187                         goto next;
1188
1189                 if (key.offset > search_start) {
1190                         hole_size = key.offset - search_start;
1191
1192                         /*
1193                          * Have to check before we set max_hole_start, otherwise
1194                          * we could end up sending back this offset anyway.
1195                          */
1196                         if (contains_pending_extent(trans, device,
1197                                                     &search_start,
1198                                                     hole_size))
1199                                 hole_size = 0;
1200
1201                         if (hole_size > max_hole_size) {
1202                                 max_hole_start = search_start;
1203                                 max_hole_size = hole_size;
1204                         }
1205
1206                         /*
1207                          * If this free space is greater than which we need,
1208                          * it must be the max free space that we have found
1209                          * until now, so max_hole_start must point to the start
1210                          * of this free space and the length of this free space
1211                          * is stored in max_hole_size. Thus, we return
1212                          * max_hole_start and max_hole_size and go back to the
1213                          * caller.
1214                          */
1215                         if (hole_size >= num_bytes) {
1216                                 ret = 0;
1217                                 goto out;
1218                         }
1219                 }
1220
1221                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1222                 extent_end = key.offset + btrfs_dev_extent_length(l,
1223                                                                   dev_extent);
1224                 if (extent_end > search_start)
1225                         search_start = extent_end;
1226 next:
1227                 path->slots[0]++;
1228                 cond_resched();
1229         }
1230
1231         /*
1232          * At this point, search_start should be the end of
1233          * allocated dev extents, and when shrinking the device,
1234          * search_end may be smaller than search_start.
1235          */
1236         if (search_end > search_start)
1237                 hole_size = search_end - search_start;
1238
1239         if (hole_size > max_hole_size) {
1240                 max_hole_start = search_start;
1241                 max_hole_size = hole_size;
1242         }
1243
1244         if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1245                 btrfs_release_path(path);
1246                 goto again;
1247         }
1248
1249         /* See above. */
1250         if (hole_size < num_bytes)
1251                 ret = -ENOSPC;
1252         else
1253                 ret = 0;
1254
1255 out:
1256         btrfs_free_path(path);
1257         *start = max_hole_start;
1258         if (len)
1259                 *len = max_hole_size;
1260         return ret;
1261 }
1262
1263 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1264                           struct btrfs_device *device,
1265                           u64 start, u64 *dev_extent_len)
1266 {
1267         int ret;
1268         struct btrfs_path *path;
1269         struct btrfs_root *root = device->dev_root;
1270         struct btrfs_key key;
1271         struct btrfs_key found_key;
1272         struct extent_buffer *leaf = NULL;
1273         struct btrfs_dev_extent *extent = NULL;
1274
1275         path = btrfs_alloc_path();
1276         if (!path)
1277                 return -ENOMEM;
1278
1279         key.objectid = device->devid;
1280         key.offset = start;
1281         key.type = BTRFS_DEV_EXTENT_KEY;
1282 again:
1283         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1284         if (ret > 0) {
1285                 ret = btrfs_previous_item(root, path, key.objectid,
1286                                           BTRFS_DEV_EXTENT_KEY);
1287                 if (ret)
1288                         goto out;
1289                 leaf = path->nodes[0];
1290                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1291                 extent = btrfs_item_ptr(leaf, path->slots[0],
1292                                         struct btrfs_dev_extent);
1293                 BUG_ON(found_key.offset > start || found_key.offset +
1294                        btrfs_dev_extent_length(leaf, extent) < start);
1295                 key = found_key;
1296                 btrfs_release_path(path);
1297                 goto again;
1298         } else if (ret == 0) {
1299                 leaf = path->nodes[0];
1300                 extent = btrfs_item_ptr(leaf, path->slots[0],
1301                                         struct btrfs_dev_extent);
1302         } else {
1303                 btrfs_error(root->fs_info, ret, "Slot search failed");
1304                 goto out;
1305         }
1306
1307         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1308
1309         ret = btrfs_del_item(trans, root, path);
1310         if (ret) {
1311                 btrfs_error(root->fs_info, ret,
1312                             "Failed to remove dev extent item");
1313         } else {
1314                 trans->transaction->have_free_bgs = 1;
1315         }
1316 out:
1317         btrfs_free_path(path);
1318         return ret;
1319 }
1320
1321 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1322                                   struct btrfs_device *device,
1323                                   u64 chunk_tree, u64 chunk_objectid,
1324                                   u64 chunk_offset, u64 start, u64 num_bytes)
1325 {
1326         int ret;
1327         struct btrfs_path *path;
1328         struct btrfs_root *root = device->dev_root;
1329         struct btrfs_dev_extent *extent;
1330         struct extent_buffer *leaf;
1331         struct btrfs_key key;
1332
1333         WARN_ON(!device->in_fs_metadata);
1334         WARN_ON(device->is_tgtdev_for_dev_replace);
1335         path = btrfs_alloc_path();
1336         if (!path)
1337                 return -ENOMEM;
1338
1339         key.objectid = device->devid;
1340         key.offset = start;
1341         key.type = BTRFS_DEV_EXTENT_KEY;
1342         ret = btrfs_insert_empty_item(trans, root, path, &key,
1343                                       sizeof(*extent));
1344         if (ret)
1345                 goto out;
1346
1347         leaf = path->nodes[0];
1348         extent = btrfs_item_ptr(leaf, path->slots[0],
1349                                 struct btrfs_dev_extent);
1350         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1351         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1352         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1353
1354         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1355                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1356
1357         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1358         btrfs_mark_buffer_dirty(leaf);
1359 out:
1360         btrfs_free_path(path);
1361         return ret;
1362 }
1363
1364 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1365 {
1366         struct extent_map_tree *em_tree;
1367         struct extent_map *em;
1368         struct rb_node *n;
1369         u64 ret = 0;
1370
1371         em_tree = &fs_info->mapping_tree.map_tree;
1372         read_lock(&em_tree->lock);
1373         n = rb_last(&em_tree->map);
1374         if (n) {
1375                 em = rb_entry(n, struct extent_map, rb_node);
1376                 ret = em->start + em->len;
1377         }
1378         read_unlock(&em_tree->lock);
1379
1380         return ret;
1381 }
1382
1383 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1384                                     u64 *devid_ret)
1385 {
1386         int ret;
1387         struct btrfs_key key;
1388         struct btrfs_key found_key;
1389         struct btrfs_path *path;
1390
1391         path = btrfs_alloc_path();
1392         if (!path)
1393                 return -ENOMEM;
1394
1395         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1396         key.type = BTRFS_DEV_ITEM_KEY;
1397         key.offset = (u64)-1;
1398
1399         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1400         if (ret < 0)
1401                 goto error;
1402
1403         BUG_ON(ret == 0); /* Corruption */
1404
1405         ret = btrfs_previous_item(fs_info->chunk_root, path,
1406                                   BTRFS_DEV_ITEMS_OBJECTID,
1407                                   BTRFS_DEV_ITEM_KEY);
1408         if (ret) {
1409                 *devid_ret = 1;
1410         } else {
1411                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1412                                       path->slots[0]);
1413                 *devid_ret = found_key.offset + 1;
1414         }
1415         ret = 0;
1416 error:
1417         btrfs_free_path(path);
1418         return ret;
1419 }
1420
1421 /*
1422  * the device information is stored in the chunk root
1423  * the btrfs_device struct should be fully filled in
1424  */
1425 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1426                             struct btrfs_root *root,
1427                             struct btrfs_device *device)
1428 {
1429         int ret;
1430         struct btrfs_path *path;
1431         struct btrfs_dev_item *dev_item;
1432         struct extent_buffer *leaf;
1433         struct btrfs_key key;
1434         unsigned long ptr;
1435
1436         root = root->fs_info->chunk_root;
1437
1438         path = btrfs_alloc_path();
1439         if (!path)
1440                 return -ENOMEM;
1441
1442         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1443         key.type = BTRFS_DEV_ITEM_KEY;
1444         key.offset = device->devid;
1445
1446         ret = btrfs_insert_empty_item(trans, root, path, &key,
1447                                       sizeof(*dev_item));
1448         if (ret)
1449                 goto out;
1450
1451         leaf = path->nodes[0];
1452         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1453
1454         btrfs_set_device_id(leaf, dev_item, device->devid);
1455         btrfs_set_device_generation(leaf, dev_item, 0);
1456         btrfs_set_device_type(leaf, dev_item, device->type);
1457         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1458         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1459         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1460         btrfs_set_device_total_bytes(leaf, dev_item,
1461                                      btrfs_device_get_disk_total_bytes(device));
1462         btrfs_set_device_bytes_used(leaf, dev_item,
1463                                     btrfs_device_get_bytes_used(device));
1464         btrfs_set_device_group(leaf, dev_item, 0);
1465         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1466         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1467         btrfs_set_device_start_offset(leaf, dev_item, 0);
1468
1469         ptr = btrfs_device_uuid(dev_item);
1470         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1471         ptr = btrfs_device_fsid(dev_item);
1472         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1473         btrfs_mark_buffer_dirty(leaf);
1474
1475         ret = 0;
1476 out:
1477         btrfs_free_path(path);
1478         return ret;
1479 }
1480
1481 /*
1482  * Function to update ctime/mtime for a given device path.
1483  * Mainly used for ctime/mtime based probe like libblkid.
1484  */
1485 static void update_dev_time(char *path_name)
1486 {
1487         struct file *filp;
1488
1489         filp = filp_open(path_name, O_RDWR, 0);
1490         if (IS_ERR(filp))
1491                 return;
1492         file_update_time(filp);
1493         filp_close(filp, NULL);
1494         return;
1495 }
1496
1497 static int btrfs_rm_dev_item(struct btrfs_root *root,
1498                              struct btrfs_device *device)
1499 {
1500         int ret;
1501         struct btrfs_path *path;
1502         struct btrfs_key key;
1503         struct btrfs_trans_handle *trans;
1504
1505         root = root->fs_info->chunk_root;
1506
1507         path = btrfs_alloc_path();
1508         if (!path)
1509                 return -ENOMEM;
1510
1511         trans = btrfs_start_transaction(root, 0);
1512         if (IS_ERR(trans)) {
1513                 btrfs_free_path(path);
1514                 return PTR_ERR(trans);
1515         }
1516         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1517         key.type = BTRFS_DEV_ITEM_KEY;
1518         key.offset = device->devid;
1519
1520         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1521         if (ret < 0)
1522                 goto out;
1523
1524         if (ret > 0) {
1525                 ret = -ENOENT;
1526                 goto out;
1527         }
1528
1529         ret = btrfs_del_item(trans, root, path);
1530         if (ret)
1531                 goto out;
1532 out:
1533         btrfs_free_path(path);
1534         btrfs_commit_transaction(trans, root);
1535         return ret;
1536 }
1537
1538 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1539 {
1540         struct btrfs_device *device;
1541         struct btrfs_device *next_device;
1542         struct block_device *bdev;
1543         struct buffer_head *bh = NULL;
1544         struct btrfs_super_block *disk_super;
1545         struct btrfs_fs_devices *cur_devices;
1546         u64 all_avail;
1547         u64 devid;
1548         u64 num_devices;
1549         u8 *dev_uuid;
1550         unsigned seq;
1551         int ret = 0;
1552         bool clear_super = false;
1553
1554         mutex_lock(&uuid_mutex);
1555
1556         do {
1557                 seq = read_seqbegin(&root->fs_info->profiles_lock);
1558
1559                 all_avail = root->fs_info->avail_data_alloc_bits |
1560                             root->fs_info->avail_system_alloc_bits |
1561                             root->fs_info->avail_metadata_alloc_bits;
1562         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1563
1564         num_devices = root->fs_info->fs_devices->num_devices;
1565         btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1566         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1567                 WARN_ON(num_devices < 1);
1568                 num_devices--;
1569         }
1570         btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1571
1572         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1573                 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1574                 goto out;
1575         }
1576
1577         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1578                 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1579                 goto out;
1580         }
1581
1582         if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1583             root->fs_info->fs_devices->rw_devices <= 2) {
1584                 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1585                 goto out;
1586         }
1587         if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1588             root->fs_info->fs_devices->rw_devices <= 3) {
1589                 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1590                 goto out;
1591         }
1592
1593         if (strcmp(device_path, "missing") == 0) {
1594                 struct list_head *devices;
1595                 struct btrfs_device *tmp;
1596
1597                 device = NULL;
1598                 devices = &root->fs_info->fs_devices->devices;
1599                 /*
1600                  * It is safe to read the devices since the volume_mutex
1601                  * is held.
1602                  */
1603                 list_for_each_entry(tmp, devices, dev_list) {
1604                         if (tmp->in_fs_metadata &&
1605                             !tmp->is_tgtdev_for_dev_replace &&
1606                             !tmp->bdev) {
1607                                 device = tmp;
1608                                 break;
1609                         }
1610                 }
1611                 bdev = NULL;
1612                 bh = NULL;
1613                 disk_super = NULL;
1614                 if (!device) {
1615                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1616                         goto out;
1617                 }
1618         } else {
1619                 ret = btrfs_get_bdev_and_sb(device_path,
1620                                             FMODE_WRITE | FMODE_EXCL,
1621                                             root->fs_info->bdev_holder, 0,
1622                                             &bdev, &bh);
1623                 if (ret)
1624                         goto out;
1625                 disk_super = (struct btrfs_super_block *)bh->b_data;
1626                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1627                 dev_uuid = disk_super->dev_item.uuid;
1628                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1629                                            disk_super->fsid);
1630                 if (!device) {
1631                         ret = -ENOENT;
1632                         goto error_brelse;
1633                 }
1634         }
1635
1636         if (device->is_tgtdev_for_dev_replace) {
1637                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1638                 goto error_brelse;
1639         }
1640
1641         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1642                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1643                 goto error_brelse;
1644         }
1645
1646         if (device->writeable) {
1647                 lock_chunks(root);
1648                 list_del_init(&device->dev_alloc_list);
1649                 device->fs_devices->rw_devices--;
1650                 unlock_chunks(root);
1651                 clear_super = true;
1652         }
1653
1654         mutex_unlock(&uuid_mutex);
1655         ret = btrfs_shrink_device(device, 0);
1656         mutex_lock(&uuid_mutex);
1657         if (ret)
1658                 goto error_undo;
1659
1660         /*
1661          * TODO: the superblock still includes this device in its num_devices
1662          * counter although write_all_supers() is not locked out. This
1663          * could give a filesystem state which requires a degraded mount.
1664          */
1665         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1666         if (ret)
1667                 goto error_undo;
1668
1669         device->in_fs_metadata = 0;
1670         btrfs_scrub_cancel_dev(root->fs_info, device);
1671
1672         /*
1673          * the device list mutex makes sure that we don't change
1674          * the device list while someone else is writing out all
1675          * the device supers. Whoever is writing all supers, should
1676          * lock the device list mutex before getting the number of
1677          * devices in the super block (super_copy). Conversely,
1678          * whoever updates the number of devices in the super block
1679          * (super_copy) should hold the device list mutex.
1680          */
1681
1682         cur_devices = device->fs_devices;
1683         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1684         list_del_rcu(&device->dev_list);
1685
1686         device->fs_devices->num_devices--;
1687         device->fs_devices->total_devices--;
1688
1689         if (device->missing)
1690                 device->fs_devices->missing_devices--;
1691
1692         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1693                                  struct btrfs_device, dev_list);
1694         if (device->bdev == root->fs_info->sb->s_bdev)
1695                 root->fs_info->sb->s_bdev = next_device->bdev;
1696         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1697                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1698
1699         if (device->bdev) {
1700                 device->fs_devices->open_devices--;
1701                 /* remove sysfs entry */
1702                 btrfs_kobj_rm_device(root->fs_info, device);
1703         }
1704
1705         call_rcu(&device->rcu, free_device);
1706
1707         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1708         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1709         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1710
1711         if (cur_devices->open_devices == 0) {
1712                 struct btrfs_fs_devices *fs_devices;
1713                 fs_devices = root->fs_info->fs_devices;
1714                 while (fs_devices) {
1715                         if (fs_devices->seed == cur_devices) {
1716                                 fs_devices->seed = cur_devices->seed;
1717                                 break;
1718                         }
1719                         fs_devices = fs_devices->seed;
1720                 }
1721                 cur_devices->seed = NULL;
1722                 __btrfs_close_devices(cur_devices);
1723                 free_fs_devices(cur_devices);
1724         }
1725
1726         root->fs_info->num_tolerated_disk_barrier_failures =
1727                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1728
1729         /*
1730          * at this point, the device is zero sized.  We want to
1731          * remove it from the devices list and zero out the old super
1732          */
1733         if (clear_super && disk_super) {
1734                 u64 bytenr;
1735                 int i;
1736
1737                 /* make sure this device isn't detected as part of
1738                  * the FS anymore
1739                  */
1740                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1741                 set_buffer_dirty(bh);
1742                 sync_dirty_buffer(bh);
1743
1744                 /* clear the mirror copies of super block on the disk
1745                  * being removed, 0th copy is been taken care above and
1746                  * the below would take of the rest
1747                  */
1748                 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1749                         bytenr = btrfs_sb_offset(i);
1750                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1751                                         i_size_read(bdev->bd_inode))
1752                                 break;
1753
1754                         brelse(bh);
1755                         bh = __bread(bdev, bytenr / 4096,
1756                                         BTRFS_SUPER_INFO_SIZE);
1757                         if (!bh)
1758                                 continue;
1759
1760                         disk_super = (struct btrfs_super_block *)bh->b_data;
1761
1762                         if (btrfs_super_bytenr(disk_super) != bytenr ||
1763                                 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1764                                 continue;
1765                         }
1766                         memset(&disk_super->magic, 0,
1767                                                 sizeof(disk_super->magic));
1768                         set_buffer_dirty(bh);
1769                         sync_dirty_buffer(bh);
1770                 }
1771         }
1772
1773         ret = 0;
1774
1775         if (bdev) {
1776                 /* Notify udev that device has changed */
1777                 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1778
1779                 /* Update ctime/mtime for device path for libblkid */
1780                 update_dev_time(device_path);
1781         }
1782
1783 error_brelse:
1784         brelse(bh);
1785         if (bdev)
1786                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1787 out:
1788         mutex_unlock(&uuid_mutex);
1789         return ret;
1790 error_undo:
1791         if (device->writeable) {
1792                 lock_chunks(root);
1793                 list_add(&device->dev_alloc_list,
1794                          &root->fs_info->fs_devices->alloc_list);
1795                 device->fs_devices->rw_devices++;
1796                 unlock_chunks(root);
1797         }
1798         goto error_brelse;
1799 }
1800
1801 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1802                                         struct btrfs_device *srcdev)
1803 {
1804         struct btrfs_fs_devices *fs_devices;
1805
1806         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1807
1808         /*
1809          * in case of fs with no seed, srcdev->fs_devices will point
1810          * to fs_devices of fs_info. However when the dev being replaced is
1811          * a seed dev it will point to the seed's local fs_devices. In short
1812          * srcdev will have its correct fs_devices in both the cases.
1813          */
1814         fs_devices = srcdev->fs_devices;
1815
1816         list_del_rcu(&srcdev->dev_list);
1817         list_del_rcu(&srcdev->dev_alloc_list);
1818         fs_devices->num_devices--;
1819         if (srcdev->missing)
1820                 fs_devices->missing_devices--;
1821
1822         if (srcdev->writeable) {
1823                 fs_devices->rw_devices--;
1824                 /* zero out the old super if it is writable */
1825                 btrfs_scratch_superblock(srcdev);
1826         }
1827
1828         if (srcdev->bdev)
1829                 fs_devices->open_devices--;
1830 }
1831
1832 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1833                                       struct btrfs_device *srcdev)
1834 {
1835         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1836
1837         call_rcu(&srcdev->rcu, free_device);
1838
1839         /*
1840          * unless fs_devices is seed fs, num_devices shouldn't go
1841          * zero
1842          */
1843         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1844
1845         /* if this is no devs we rather delete the fs_devices */
1846         if (!fs_devices->num_devices) {
1847                 struct btrfs_fs_devices *tmp_fs_devices;
1848
1849                 tmp_fs_devices = fs_info->fs_devices;
1850                 while (tmp_fs_devices) {
1851                         if (tmp_fs_devices->seed == fs_devices) {
1852                                 tmp_fs_devices->seed = fs_devices->seed;
1853                                 break;
1854                         }
1855                         tmp_fs_devices = tmp_fs_devices->seed;
1856                 }
1857                 fs_devices->seed = NULL;
1858                 __btrfs_close_devices(fs_devices);
1859                 free_fs_devices(fs_devices);
1860         }
1861 }
1862
1863 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1864                                       struct btrfs_device *tgtdev)
1865 {
1866         struct btrfs_device *next_device;
1867
1868         mutex_lock(&uuid_mutex);
1869         WARN_ON(!tgtdev);
1870         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1871         if (tgtdev->bdev) {
1872                 btrfs_scratch_superblock(tgtdev);
1873                 fs_info->fs_devices->open_devices--;
1874         }
1875         fs_info->fs_devices->num_devices--;
1876
1877         next_device = list_entry(fs_info->fs_devices->devices.next,
1878                                  struct btrfs_device, dev_list);
1879         if (tgtdev->bdev == fs_info->sb->s_bdev)
1880                 fs_info->sb->s_bdev = next_device->bdev;
1881         if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1882                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1883         list_del_rcu(&tgtdev->dev_list);
1884
1885         call_rcu(&tgtdev->rcu, free_device);
1886
1887         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1888         mutex_unlock(&uuid_mutex);
1889 }
1890
1891 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1892                                      struct btrfs_device **device)
1893 {
1894         int ret = 0;
1895         struct btrfs_super_block *disk_super;
1896         u64 devid;
1897         u8 *dev_uuid;
1898         struct block_device *bdev;
1899         struct buffer_head *bh;
1900
1901         *device = NULL;
1902         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1903                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
1904         if (ret)
1905                 return ret;
1906         disk_super = (struct btrfs_super_block *)bh->b_data;
1907         devid = btrfs_stack_device_id(&disk_super->dev_item);
1908         dev_uuid = disk_super->dev_item.uuid;
1909         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1910                                     disk_super->fsid);
1911         brelse(bh);
1912         if (!*device)
1913                 ret = -ENOENT;
1914         blkdev_put(bdev, FMODE_READ);
1915         return ret;
1916 }
1917
1918 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1919                                          char *device_path,
1920                                          struct btrfs_device **device)
1921 {
1922         *device = NULL;
1923         if (strcmp(device_path, "missing") == 0) {
1924                 struct list_head *devices;
1925                 struct btrfs_device *tmp;
1926
1927                 devices = &root->fs_info->fs_devices->devices;
1928                 /*
1929                  * It is safe to read the devices since the volume_mutex
1930                  * is held by the caller.
1931                  */
1932                 list_for_each_entry(tmp, devices, dev_list) {
1933                         if (tmp->in_fs_metadata && !tmp->bdev) {
1934                                 *device = tmp;
1935                                 break;
1936                         }
1937                 }
1938
1939                 if (!*device) {
1940                         btrfs_err(root->fs_info, "no missing device found");
1941                         return -ENOENT;
1942                 }
1943
1944                 return 0;
1945         } else {
1946                 return btrfs_find_device_by_path(root, device_path, device);
1947         }
1948 }
1949
1950 /*
1951  * does all the dirty work required for changing file system's UUID.
1952  */
1953 static int btrfs_prepare_sprout(struct btrfs_root *root)
1954 {
1955         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1956         struct btrfs_fs_devices *old_devices;
1957         struct btrfs_fs_devices *seed_devices;
1958         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1959         struct btrfs_device *device;
1960         u64 super_flags;
1961
1962         BUG_ON(!mutex_is_locked(&uuid_mutex));
1963         if (!fs_devices->seeding)
1964                 return -EINVAL;
1965
1966         seed_devices = __alloc_fs_devices();
1967         if (IS_ERR(seed_devices))
1968                 return PTR_ERR(seed_devices);
1969
1970         old_devices = clone_fs_devices(fs_devices);
1971         if (IS_ERR(old_devices)) {
1972                 kfree(seed_devices);
1973                 return PTR_ERR(old_devices);
1974         }
1975
1976         list_add(&old_devices->list, &fs_uuids);
1977
1978         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1979         seed_devices->opened = 1;
1980         INIT_LIST_HEAD(&seed_devices->devices);
1981         INIT_LIST_HEAD(&seed_devices->alloc_list);
1982         mutex_init(&seed_devices->device_list_mutex);
1983
1984         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1985         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1986                               synchronize_rcu);
1987         list_for_each_entry(device, &seed_devices->devices, dev_list)
1988                 device->fs_devices = seed_devices;
1989
1990         lock_chunks(root);
1991         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1992         unlock_chunks(root);
1993
1994         fs_devices->seeding = 0;
1995         fs_devices->num_devices = 0;
1996         fs_devices->open_devices = 0;
1997         fs_devices->missing_devices = 0;
1998         fs_devices->rotating = 0;
1999         fs_devices->seed = seed_devices;
2000
2001         generate_random_uuid(fs_devices->fsid);
2002         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2003         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2004         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2005
2006         super_flags = btrfs_super_flags(disk_super) &
2007                       ~BTRFS_SUPER_FLAG_SEEDING;
2008         btrfs_set_super_flags(disk_super, super_flags);
2009
2010         return 0;
2011 }
2012
2013 /*
2014  * strore the expected generation for seed devices in device items.
2015  */
2016 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2017                                struct btrfs_root *root)
2018 {
2019         struct btrfs_path *path;
2020         struct extent_buffer *leaf;
2021         struct btrfs_dev_item *dev_item;
2022         struct btrfs_device *device;
2023         struct btrfs_key key;
2024         u8 fs_uuid[BTRFS_UUID_SIZE];
2025         u8 dev_uuid[BTRFS_UUID_SIZE];
2026         u64 devid;
2027         int ret;
2028
2029         path = btrfs_alloc_path();
2030         if (!path)
2031                 return -ENOMEM;
2032
2033         root = root->fs_info->chunk_root;
2034         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2035         key.offset = 0;
2036         key.type = BTRFS_DEV_ITEM_KEY;
2037
2038         while (1) {
2039                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2040                 if (ret < 0)
2041                         goto error;
2042
2043                 leaf = path->nodes[0];
2044 next_slot:
2045                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2046                         ret = btrfs_next_leaf(root, path);
2047                         if (ret > 0)
2048                                 break;
2049                         if (ret < 0)
2050                                 goto error;
2051                         leaf = path->nodes[0];
2052                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2053                         btrfs_release_path(path);
2054                         continue;
2055                 }
2056
2057                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2058                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2059                     key.type != BTRFS_DEV_ITEM_KEY)
2060                         break;
2061
2062                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2063                                           struct btrfs_dev_item);
2064                 devid = btrfs_device_id(leaf, dev_item);
2065                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2066                                    BTRFS_UUID_SIZE);
2067                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2068                                    BTRFS_UUID_SIZE);
2069                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2070                                            fs_uuid);
2071                 BUG_ON(!device); /* Logic error */
2072
2073                 if (device->fs_devices->seeding) {
2074                         btrfs_set_device_generation(leaf, dev_item,
2075                                                     device->generation);
2076                         btrfs_mark_buffer_dirty(leaf);
2077                 }
2078
2079                 path->slots[0]++;
2080                 goto next_slot;
2081         }
2082         ret = 0;
2083 error:
2084         btrfs_free_path(path);
2085         return ret;
2086 }
2087
2088 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2089 {
2090         struct request_queue *q;
2091         struct btrfs_trans_handle *trans;
2092         struct btrfs_device *device;
2093         struct block_device *bdev;
2094         struct list_head *devices;
2095         struct super_block *sb = root->fs_info->sb;
2096         struct rcu_string *name;
2097         u64 tmp;
2098         int seeding_dev = 0;
2099         int ret = 0;
2100
2101         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2102                 return -EROFS;
2103
2104         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2105                                   root->fs_info->bdev_holder);
2106         if (IS_ERR(bdev))
2107                 return PTR_ERR(bdev);
2108
2109         if (root->fs_info->fs_devices->seeding) {
2110                 seeding_dev = 1;
2111                 down_write(&sb->s_umount);
2112                 mutex_lock(&uuid_mutex);
2113         }
2114
2115         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2116
2117         devices = &root->fs_info->fs_devices->devices;
2118
2119         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2120         list_for_each_entry(device, devices, dev_list) {
2121                 if (device->bdev == bdev) {
2122                         ret = -EEXIST;
2123                         mutex_unlock(
2124                                 &root->fs_info->fs_devices->device_list_mutex);
2125                         goto error;
2126                 }
2127         }
2128         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2129
2130         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2131         if (IS_ERR(device)) {
2132                 /* we can safely leave the fs_devices entry around */
2133                 ret = PTR_ERR(device);
2134                 goto error;
2135         }
2136
2137         name = rcu_string_strdup(device_path, GFP_NOFS);
2138         if (!name) {
2139                 kfree(device);
2140                 ret = -ENOMEM;
2141                 goto error;
2142         }
2143         rcu_assign_pointer(device->name, name);
2144
2145         trans = btrfs_start_transaction(root, 0);
2146         if (IS_ERR(trans)) {
2147                 rcu_string_free(device->name);
2148                 kfree(device);
2149                 ret = PTR_ERR(trans);
2150                 goto error;
2151         }
2152
2153         q = bdev_get_queue(bdev);
2154         if (blk_queue_discard(q))
2155                 device->can_discard = 1;
2156         device->writeable = 1;
2157         device->generation = trans->transid;
2158         device->io_width = root->sectorsize;
2159         device->io_align = root->sectorsize;
2160         device->sector_size = root->sectorsize;
2161         device->total_bytes = i_size_read(bdev->bd_inode);
2162         device->disk_total_bytes = device->total_bytes;
2163         device->commit_total_bytes = device->total_bytes;
2164         device->dev_root = root->fs_info->dev_root;
2165         device->bdev = bdev;
2166         device->in_fs_metadata = 1;
2167         device->is_tgtdev_for_dev_replace = 0;
2168         device->mode = FMODE_EXCL;
2169         device->dev_stats_valid = 1;
2170         set_blocksize(device->bdev, 4096);
2171
2172         if (seeding_dev) {
2173                 sb->s_flags &= ~MS_RDONLY;
2174                 ret = btrfs_prepare_sprout(root);
2175                 BUG_ON(ret); /* -ENOMEM */
2176         }
2177
2178         device->fs_devices = root->fs_info->fs_devices;
2179
2180         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2181         lock_chunks(root);
2182         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2183         list_add(&device->dev_alloc_list,
2184                  &root->fs_info->fs_devices->alloc_list);
2185         root->fs_info->fs_devices->num_devices++;
2186         root->fs_info->fs_devices->open_devices++;
2187         root->fs_info->fs_devices->rw_devices++;
2188         root->fs_info->fs_devices->total_devices++;
2189         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2190
2191         spin_lock(&root->fs_info->free_chunk_lock);
2192         root->fs_info->free_chunk_space += device->total_bytes;
2193         spin_unlock(&root->fs_info->free_chunk_lock);
2194
2195         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2196                 root->fs_info->fs_devices->rotating = 1;
2197
2198         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2199         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2200                                     tmp + device->total_bytes);
2201
2202         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2203         btrfs_set_super_num_devices(root->fs_info->super_copy,
2204                                     tmp + 1);
2205
2206         /* add sysfs device entry */
2207         btrfs_kobj_add_device(root->fs_info, device);
2208
2209         /*
2210          * we've got more storage, clear any full flags on the space
2211          * infos
2212          */
2213         btrfs_clear_space_info_full(root->fs_info);
2214
2215         unlock_chunks(root);
2216         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2217
2218         if (seeding_dev) {
2219                 lock_chunks(root);
2220                 ret = init_first_rw_device(trans, root, device);
2221                 unlock_chunks(root);
2222                 if (ret) {
2223                         btrfs_abort_transaction(trans, root, ret);
2224                         goto error_trans;
2225                 }
2226         }
2227
2228         ret = btrfs_add_device(trans, root, device);
2229         if (ret) {
2230                 btrfs_abort_transaction(trans, root, ret);
2231                 goto error_trans;
2232         }
2233
2234         if (seeding_dev) {
2235                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2236
2237                 ret = btrfs_finish_sprout(trans, root);
2238                 if (ret) {
2239                         btrfs_abort_transaction(trans, root, ret);
2240                         goto error_trans;
2241                 }
2242
2243                 /* Sprouting would change fsid of the mounted root,
2244                  * so rename the fsid on the sysfs
2245                  */
2246                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2247                                                 root->fs_info->fsid);
2248                 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2249                         goto error_trans;
2250         }
2251
2252         root->fs_info->num_tolerated_disk_barrier_failures =
2253                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2254         ret = btrfs_commit_transaction(trans, root);
2255
2256         if (seeding_dev) {
2257                 mutex_unlock(&uuid_mutex);
2258                 up_write(&sb->s_umount);
2259
2260                 if (ret) /* transaction commit */
2261                         return ret;
2262
2263                 ret = btrfs_relocate_sys_chunks(root);
2264                 if (ret < 0)
2265                         btrfs_error(root->fs_info, ret,
2266                                     "Failed to relocate sys chunks after "
2267                                     "device initialization. This can be fixed "
2268                                     "using the \"btrfs balance\" command.");
2269                 trans = btrfs_attach_transaction(root);
2270                 if (IS_ERR(trans)) {
2271                         if (PTR_ERR(trans) == -ENOENT)
2272                                 return 0;
2273                         return PTR_ERR(trans);
2274                 }
2275                 ret = btrfs_commit_transaction(trans, root);
2276         }
2277
2278         /* Update ctime/mtime for libblkid */
2279         update_dev_time(device_path);
2280         return ret;
2281
2282 error_trans:
2283         btrfs_end_transaction(trans, root);
2284         rcu_string_free(device->name);
2285         btrfs_kobj_rm_device(root->fs_info, device);
2286         kfree(device);
2287 error:
2288         blkdev_put(bdev, FMODE_EXCL);
2289         if (seeding_dev) {
2290                 mutex_unlock(&uuid_mutex);
2291                 up_write(&sb->s_umount);
2292         }
2293         return ret;
2294 }
2295
2296 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2297                                   struct btrfs_device *srcdev,
2298                                   struct btrfs_device **device_out)
2299 {
2300         struct request_queue *q;
2301         struct btrfs_device *device;
2302         struct block_device *bdev;
2303         struct btrfs_fs_info *fs_info = root->fs_info;
2304         struct list_head *devices;
2305         struct rcu_string *name;
2306         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2307         int ret = 0;
2308
2309         *device_out = NULL;
2310         if (fs_info->fs_devices->seeding) {
2311                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2312                 return -EINVAL;
2313         }
2314
2315         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2316                                   fs_info->bdev_holder);
2317         if (IS_ERR(bdev)) {
2318                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2319                 return PTR_ERR(bdev);
2320         }
2321
2322         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2323
2324         devices = &fs_info->fs_devices->devices;
2325         list_for_each_entry(device, devices, dev_list) {
2326                 if (device->bdev == bdev) {
2327                         btrfs_err(fs_info, "target device is in the filesystem!");
2328                         ret = -EEXIST;
2329                         goto error;
2330                 }
2331         }
2332
2333
2334         if (i_size_read(bdev->bd_inode) <
2335             btrfs_device_get_total_bytes(srcdev)) {
2336                 btrfs_err(fs_info, "target device is smaller than source device!");
2337                 ret = -EINVAL;
2338                 goto error;
2339         }
2340
2341
2342         device = btrfs_alloc_device(NULL, &devid, NULL);
2343         if (IS_ERR(device)) {
2344                 ret = PTR_ERR(device);
2345                 goto error;
2346         }
2347
2348         name = rcu_string_strdup(device_path, GFP_NOFS);
2349         if (!name) {
2350                 kfree(device);
2351                 ret = -ENOMEM;
2352                 goto error;
2353         }
2354         rcu_assign_pointer(device->name, name);
2355
2356         q = bdev_get_queue(bdev);
2357         if (blk_queue_discard(q))
2358                 device->can_discard = 1;
2359         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2360         device->writeable = 1;
2361         device->generation = 0;
2362         device->io_width = root->sectorsize;
2363         device->io_align = root->sectorsize;
2364         device->sector_size = root->sectorsize;
2365         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2366         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2367         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2368         ASSERT(list_empty(&srcdev->resized_list));
2369         device->commit_total_bytes = srcdev->commit_total_bytes;
2370         device->commit_bytes_used = device->bytes_used;
2371         device->dev_root = fs_info->dev_root;
2372         device->bdev = bdev;
2373         device->in_fs_metadata = 1;
2374         device->is_tgtdev_for_dev_replace = 1;
2375         device->mode = FMODE_EXCL;
2376         device->dev_stats_valid = 1;
2377         set_blocksize(device->bdev, 4096);
2378         device->fs_devices = fs_info->fs_devices;
2379         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2380         fs_info->fs_devices->num_devices++;
2381         fs_info->fs_devices->open_devices++;
2382         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2383
2384         *device_out = device;
2385         return ret;
2386
2387 error:
2388         blkdev_put(bdev, FMODE_EXCL);
2389         return ret;
2390 }
2391
2392 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2393                                               struct btrfs_device *tgtdev)
2394 {
2395         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2396         tgtdev->io_width = fs_info->dev_root->sectorsize;
2397         tgtdev->io_align = fs_info->dev_root->sectorsize;
2398         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2399         tgtdev->dev_root = fs_info->dev_root;
2400         tgtdev->in_fs_metadata = 1;
2401 }
2402
2403 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2404                                         struct btrfs_device *device)
2405 {
2406         int ret;
2407         struct btrfs_path *path;
2408         struct btrfs_root *root;
2409         struct btrfs_dev_item *dev_item;
2410         struct extent_buffer *leaf;
2411         struct btrfs_key key;
2412
2413         root = device->dev_root->fs_info->chunk_root;
2414
2415         path = btrfs_alloc_path();
2416         if (!path)
2417                 return -ENOMEM;
2418
2419         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2420         key.type = BTRFS_DEV_ITEM_KEY;
2421         key.offset = device->devid;
2422
2423         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2424         if (ret < 0)
2425                 goto out;
2426
2427         if (ret > 0) {
2428                 ret = -ENOENT;
2429                 goto out;
2430         }
2431
2432         leaf = path->nodes[0];
2433         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2434
2435         btrfs_set_device_id(leaf, dev_item, device->devid);
2436         btrfs_set_device_type(leaf, dev_item, device->type);
2437         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2438         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2439         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2440         btrfs_set_device_total_bytes(leaf, dev_item,
2441                                      btrfs_device_get_disk_total_bytes(device));
2442         btrfs_set_device_bytes_used(leaf, dev_item,
2443                                     btrfs_device_get_bytes_used(device));
2444         btrfs_mark_buffer_dirty(leaf);
2445
2446 out:
2447         btrfs_free_path(path);
2448         return ret;
2449 }
2450
2451 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2452                       struct btrfs_device *device, u64 new_size)
2453 {
2454         struct btrfs_super_block *super_copy =
2455                 device->dev_root->fs_info->super_copy;
2456         struct btrfs_fs_devices *fs_devices;
2457         u64 old_total;
2458         u64 diff;
2459
2460         if (!device->writeable)
2461                 return -EACCES;
2462
2463         lock_chunks(device->dev_root);
2464         old_total = btrfs_super_total_bytes(super_copy);
2465         diff = new_size - device->total_bytes;
2466
2467         if (new_size <= device->total_bytes ||
2468             device->is_tgtdev_for_dev_replace) {
2469                 unlock_chunks(device->dev_root);
2470                 return -EINVAL;
2471         }
2472
2473         fs_devices = device->dev_root->fs_info->fs_devices;
2474
2475         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2476         device->fs_devices->total_rw_bytes += diff;
2477
2478         btrfs_device_set_total_bytes(device, new_size);
2479         btrfs_device_set_disk_total_bytes(device, new_size);
2480         btrfs_clear_space_info_full(device->dev_root->fs_info);
2481         if (list_empty(&device->resized_list))
2482                 list_add_tail(&device->resized_list,
2483                               &fs_devices->resized_devices);
2484         unlock_chunks(device->dev_root);
2485
2486         return btrfs_update_device(trans, device);
2487 }
2488
2489 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2490                             struct btrfs_root *root,
2491                             u64 chunk_tree, u64 chunk_objectid,
2492                             u64 chunk_offset)
2493 {
2494         int ret;
2495         struct btrfs_path *path;
2496         struct btrfs_key key;
2497
2498         root = root->fs_info->chunk_root;
2499         path = btrfs_alloc_path();
2500         if (!path)
2501                 return -ENOMEM;
2502
2503         key.objectid = chunk_objectid;
2504         key.offset = chunk_offset;
2505         key.type = BTRFS_CHUNK_ITEM_KEY;
2506
2507         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2508         if (ret < 0)
2509                 goto out;
2510         else if (ret > 0) { /* Logic error or corruption */
2511                 btrfs_error(root->fs_info, -ENOENT,
2512                             "Failed lookup while freeing chunk.");
2513                 ret = -ENOENT;
2514                 goto out;
2515         }
2516
2517         ret = btrfs_del_item(trans, root, path);
2518         if (ret < 0)
2519                 btrfs_error(root->fs_info, ret,
2520                             "Failed to delete chunk item.");
2521 out:
2522         btrfs_free_path(path);
2523         return ret;
2524 }
2525
2526 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2527                         chunk_offset)
2528 {
2529         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2530         struct btrfs_disk_key *disk_key;
2531         struct btrfs_chunk *chunk;
2532         u8 *ptr;
2533         int ret = 0;
2534         u32 num_stripes;
2535         u32 array_size;
2536         u32 len = 0;
2537         u32 cur;
2538         struct btrfs_key key;
2539
2540         lock_chunks(root);
2541         array_size = btrfs_super_sys_array_size(super_copy);
2542
2543         ptr = super_copy->sys_chunk_array;
2544         cur = 0;
2545
2546         while (cur < array_size) {
2547                 disk_key = (struct btrfs_disk_key *)ptr;
2548                 btrfs_disk_key_to_cpu(&key, disk_key);
2549
2550                 len = sizeof(*disk_key);
2551
2552                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2553                         chunk = (struct btrfs_chunk *)(ptr + len);
2554                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2555                         len += btrfs_chunk_item_size(num_stripes);
2556                 } else {
2557                         ret = -EIO;
2558                         break;
2559                 }
2560                 if (key.objectid == chunk_objectid &&
2561                     key.offset == chunk_offset) {
2562                         memmove(ptr, ptr + len, array_size - (cur + len));
2563                         array_size -= len;
2564                         btrfs_set_super_sys_array_size(super_copy, array_size);
2565                 } else {
2566                         ptr += len;
2567                         cur += len;
2568                 }
2569         }
2570         unlock_chunks(root);
2571         return ret;
2572 }
2573
2574 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2575                        struct btrfs_root *root, u64 chunk_offset)
2576 {
2577         struct extent_map_tree *em_tree;
2578         struct extent_map *em;
2579         struct btrfs_root *extent_root = root->fs_info->extent_root;
2580         struct map_lookup *map;
2581         u64 dev_extent_len = 0;
2582         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2583         u64 chunk_tree = root->fs_info->chunk_root->objectid;
2584         int i, ret = 0;
2585
2586         /* Just in case */
2587         root = root->fs_info->chunk_root;
2588         em_tree = &root->fs_info->mapping_tree.map_tree;
2589
2590         read_lock(&em_tree->lock);
2591         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2592         read_unlock(&em_tree->lock);
2593
2594         if (!em || em->start > chunk_offset ||
2595             em->start + em->len < chunk_offset) {
2596                 /*
2597                  * This is a logic error, but we don't want to just rely on the
2598                  * user having built with ASSERT enabled, so if ASSERT doens't
2599                  * do anything we still error out.
2600                  */
2601                 ASSERT(0);
2602                 if (em)
2603                         free_extent_map(em);
2604                 return -EINVAL;
2605         }
2606         map = (struct map_lookup *)em->bdev;
2607
2608         for (i = 0; i < map->num_stripes; i++) {
2609                 struct btrfs_device *device = map->stripes[i].dev;
2610                 ret = btrfs_free_dev_extent(trans, device,
2611                                             map->stripes[i].physical,
2612                                             &dev_extent_len);
2613                 if (ret) {
2614                         btrfs_abort_transaction(trans, root, ret);
2615                         goto out;
2616                 }
2617
2618                 if (device->bytes_used > 0) {
2619                         lock_chunks(root);
2620                         btrfs_device_set_bytes_used(device,
2621                                         device->bytes_used - dev_extent_len);
2622                         spin_lock(&root->fs_info->free_chunk_lock);
2623                         root->fs_info->free_chunk_space += dev_extent_len;
2624                         spin_unlock(&root->fs_info->free_chunk_lock);
2625                         btrfs_clear_space_info_full(root->fs_info);
2626                         unlock_chunks(root);
2627                 }
2628
2629                 if (map->stripes[i].dev) {
2630                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2631                         if (ret) {
2632                                 btrfs_abort_transaction(trans, root, ret);
2633                                 goto out;
2634                         }
2635                 }
2636         }
2637         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2638                                chunk_offset);
2639         if (ret) {
2640                 btrfs_abort_transaction(trans, root, ret);
2641                 goto out;
2642         }
2643
2644         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2645
2646         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2647                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2648                 if (ret) {
2649                         btrfs_abort_transaction(trans, root, ret);
2650                         goto out;
2651                 }
2652         }
2653
2654         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2655         if (ret) {
2656                 btrfs_abort_transaction(trans, extent_root, ret);
2657                 goto out;
2658         }
2659
2660 out:
2661         /* once for us */
2662         free_extent_map(em);
2663         return ret;
2664 }
2665
2666 static int btrfs_relocate_chunk(struct btrfs_root *root,
2667                          u64 chunk_tree, u64 chunk_objectid,
2668                          u64 chunk_offset)
2669 {
2670         struct btrfs_root *extent_root;
2671         struct btrfs_trans_handle *trans;
2672         int ret;
2673
2674         root = root->fs_info->chunk_root;
2675         extent_root = root->fs_info->extent_root;
2676
2677         ret = btrfs_can_relocate(extent_root, chunk_offset);
2678         if (ret)
2679                 return -ENOSPC;
2680
2681         /* step one, relocate all the extents inside this chunk */
2682         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2683         if (ret)
2684                 return ret;
2685
2686         trans = btrfs_start_transaction(root, 0);
2687         if (IS_ERR(trans)) {
2688                 ret = PTR_ERR(trans);
2689                 btrfs_std_error(root->fs_info, ret);
2690                 return ret;
2691         }
2692
2693         /*
2694          * step two, delete the device extents and the
2695          * chunk tree entries
2696          */
2697         ret = btrfs_remove_chunk(trans, root, chunk_offset);
2698         btrfs_end_transaction(trans, root);
2699         return ret;
2700 }
2701
2702 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2703 {
2704         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2705         struct btrfs_path *path;
2706         struct extent_buffer *leaf;
2707         struct btrfs_chunk *chunk;
2708         struct btrfs_key key;
2709         struct btrfs_key found_key;
2710         u64 chunk_tree = chunk_root->root_key.objectid;
2711         u64 chunk_type;
2712         bool retried = false;
2713         int failed = 0;
2714         int ret;
2715
2716         path = btrfs_alloc_path();
2717         if (!path)
2718                 return -ENOMEM;
2719
2720 again:
2721         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2722         key.offset = (u64)-1;
2723         key.type = BTRFS_CHUNK_ITEM_KEY;
2724
2725         while (1) {
2726                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2727                 if (ret < 0)
2728                         goto error;
2729                 BUG_ON(ret == 0); /* Corruption */
2730
2731                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2732                                           key.type);
2733                 if (ret < 0)
2734                         goto error;
2735                 if (ret > 0)
2736                         break;
2737
2738                 leaf = path->nodes[0];
2739                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2740
2741                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2742                                        struct btrfs_chunk);
2743                 chunk_type = btrfs_chunk_type(leaf, chunk);
2744                 btrfs_release_path(path);
2745
2746                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2747                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2748                                                    found_key.objectid,
2749                                                    found_key.offset);
2750                         if (ret == -ENOSPC)
2751                                 failed++;
2752                         else
2753                                 BUG_ON(ret);
2754                 }
2755
2756                 if (found_key.offset == 0)
2757                         break;
2758                 key.offset = found_key.offset - 1;
2759         }
2760         ret = 0;
2761         if (failed && !retried) {
2762                 failed = 0;
2763                 retried = true;
2764                 goto again;
2765         } else if (WARN_ON(failed && retried)) {
2766                 ret = -ENOSPC;
2767         }
2768 error:
2769         btrfs_free_path(path);
2770         return ret;
2771 }
2772
2773 static int insert_balance_item(struct btrfs_root *root,
2774                                struct btrfs_balance_control *bctl)
2775 {
2776         struct btrfs_trans_handle *trans;
2777         struct btrfs_balance_item *item;
2778         struct btrfs_disk_balance_args disk_bargs;
2779         struct btrfs_path *path;
2780         struct extent_buffer *leaf;
2781         struct btrfs_key key;
2782         int ret, err;
2783
2784         path = btrfs_alloc_path();
2785         if (!path)
2786                 return -ENOMEM;
2787
2788         trans = btrfs_start_transaction(root, 0);
2789         if (IS_ERR(trans)) {
2790                 btrfs_free_path(path);
2791                 return PTR_ERR(trans);
2792         }
2793
2794         key.objectid = BTRFS_BALANCE_OBJECTID;
2795         key.type = BTRFS_BALANCE_ITEM_KEY;
2796         key.offset = 0;
2797
2798         ret = btrfs_insert_empty_item(trans, root, path, &key,
2799                                       sizeof(*item));
2800         if (ret)
2801                 goto out;
2802
2803         leaf = path->nodes[0];
2804         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2805
2806         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2807
2808         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2809         btrfs_set_balance_data(leaf, item, &disk_bargs);
2810         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2811         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2812         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2813         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2814
2815         btrfs_set_balance_flags(leaf, item, bctl->flags);
2816
2817         btrfs_mark_buffer_dirty(leaf);
2818 out:
2819         btrfs_free_path(path);
2820         err = btrfs_commit_transaction(trans, root);
2821         if (err && !ret)
2822                 ret = err;
2823         return ret;
2824 }
2825
2826 static int del_balance_item(struct btrfs_root *root)
2827 {
2828         struct btrfs_trans_handle *trans;
2829         struct btrfs_path *path;
2830         struct btrfs_key key;
2831         int ret, err;
2832
2833         path = btrfs_alloc_path();
2834         if (!path)
2835                 return -ENOMEM;
2836
2837         trans = btrfs_start_transaction(root, 0);
2838         if (IS_ERR(trans)) {
2839                 btrfs_free_path(path);
2840                 return PTR_ERR(trans);
2841         }
2842
2843         key.objectid = BTRFS_BALANCE_OBJECTID;
2844         key.type = BTRFS_BALANCE_ITEM_KEY;
2845         key.offset = 0;
2846
2847         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2848         if (ret < 0)
2849                 goto out;
2850         if (ret > 0) {
2851                 ret = -ENOENT;
2852                 goto out;
2853         }
2854
2855         ret = btrfs_del_item(trans, root, path);
2856 out:
2857         btrfs_free_path(path);
2858         err = btrfs_commit_transaction(trans, root);
2859         if (err && !ret)
2860                 ret = err;
2861         return ret;
2862 }
2863
2864 /*
2865  * This is a heuristic used to reduce the number of chunks balanced on
2866  * resume after balance was interrupted.
2867  */
2868 static void update_balance_args(struct btrfs_balance_control *bctl)
2869 {
2870         /*
2871          * Turn on soft mode for chunk types that were being converted.
2872          */
2873         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2874                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2875         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2876                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2877         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2878                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2879
2880         /*
2881          * Turn on usage filter if is not already used.  The idea is
2882          * that chunks that we have already balanced should be
2883          * reasonably full.  Don't do it for chunks that are being
2884          * converted - that will keep us from relocating unconverted
2885          * (albeit full) chunks.
2886          */
2887         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2888             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2889                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2890                 bctl->data.usage = 90;
2891         }
2892         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2893             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2894                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2895                 bctl->sys.usage = 90;
2896         }
2897         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2898             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2899                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2900                 bctl->meta.usage = 90;
2901         }
2902 }
2903
2904 /*
2905  * Should be called with both balance and volume mutexes held to
2906  * serialize other volume operations (add_dev/rm_dev/resize) with
2907  * restriper.  Same goes for unset_balance_control.
2908  */
2909 static void set_balance_control(struct btrfs_balance_control *bctl)
2910 {
2911         struct btrfs_fs_info *fs_info = bctl->fs_info;
2912
2913         BUG_ON(fs_info->balance_ctl);
2914
2915         spin_lock(&fs_info->balance_lock);
2916         fs_info->balance_ctl = bctl;
2917         spin_unlock(&fs_info->balance_lock);
2918 }
2919
2920 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2921 {
2922         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2923
2924         BUG_ON(!fs_info->balance_ctl);
2925
2926         spin_lock(&fs_info->balance_lock);
2927         fs_info->balance_ctl = NULL;
2928         spin_unlock(&fs_info->balance_lock);
2929
2930         kfree(bctl);
2931 }
2932
2933 /*
2934  * Balance filters.  Return 1 if chunk should be filtered out
2935  * (should not be balanced).
2936  */
2937 static int chunk_profiles_filter(u64 chunk_type,
2938                                  struct btrfs_balance_args *bargs)
2939 {
2940         chunk_type = chunk_to_extended(chunk_type) &
2941                                 BTRFS_EXTENDED_PROFILE_MASK;
2942
2943         if (bargs->profiles & chunk_type)
2944                 return 0;
2945
2946         return 1;
2947 }
2948
2949 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2950                               struct btrfs_balance_args *bargs)
2951 {
2952         struct btrfs_block_group_cache *cache;
2953         u64 chunk_used, user_thresh;
2954         int ret = 1;
2955
2956         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2957         chunk_used = btrfs_block_group_used(&cache->item);
2958
2959         if (bargs->usage == 0)
2960                 user_thresh = 1;
2961         else if (bargs->usage > 100)
2962                 user_thresh = cache->key.offset;
2963         else
2964                 user_thresh = div_factor_fine(cache->key.offset,
2965                                               bargs->usage);
2966
2967         if (chunk_used < user_thresh)
2968                 ret = 0;
2969
2970         btrfs_put_block_group(cache);
2971         return ret;
2972 }
2973
2974 static int chunk_devid_filter(struct extent_buffer *leaf,
2975                               struct btrfs_chunk *chunk,
2976                               struct btrfs_balance_args *bargs)
2977 {
2978         struct btrfs_stripe *stripe;
2979         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2980         int i;
2981
2982         for (i = 0; i < num_stripes; i++) {
2983                 stripe = btrfs_stripe_nr(chunk, i);
2984                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2985                         return 0;
2986         }
2987
2988         return 1;
2989 }
2990
2991 /* [pstart, pend) */
2992 static int chunk_drange_filter(struct extent_buffer *leaf,
2993                                struct btrfs_chunk *chunk,
2994                                u64 chunk_offset,
2995                                struct btrfs_balance_args *bargs)
2996 {
2997         struct btrfs_stripe *stripe;
2998         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2999         u64 stripe_offset;
3000         u64 stripe_length;
3001         int factor;
3002         int i;
3003
3004         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3005                 return 0;
3006
3007         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3008              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3009                 factor = num_stripes / 2;
3010         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3011                 factor = num_stripes - 1;
3012         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3013                 factor = num_stripes - 2;
3014         } else {
3015                 factor = num_stripes;
3016         }
3017
3018         for (i = 0; i < num_stripes; i++) {
3019                 stripe = btrfs_stripe_nr(chunk, i);
3020                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3021                         continue;
3022
3023                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3024                 stripe_length = btrfs_chunk_length(leaf, chunk);
3025                 do_div(stripe_length, factor);
3026
3027                 if (stripe_offset < bargs->pend &&
3028                     stripe_offset + stripe_length > bargs->pstart)
3029                         return 0;
3030         }
3031
3032         return 1;
3033 }
3034
3035 /* [vstart, vend) */
3036 static int chunk_vrange_filter(struct extent_buffer *leaf,
3037                                struct btrfs_chunk *chunk,
3038                                u64 chunk_offset,
3039                                struct btrfs_balance_args *bargs)
3040 {
3041         if (chunk_offset < bargs->vend &&
3042             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3043                 /* at least part of the chunk is inside this vrange */
3044                 return 0;
3045
3046         return 1;
3047 }
3048
3049 static int chunk_soft_convert_filter(u64 chunk_type,
3050                                      struct btrfs_balance_args *bargs)
3051 {
3052         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3053                 return 0;
3054
3055         chunk_type = chunk_to_extended(chunk_type) &
3056                                 BTRFS_EXTENDED_PROFILE_MASK;
3057
3058         if (bargs->target == chunk_type)
3059                 return 1;
3060
3061         return 0;
3062 }
3063
3064 static int should_balance_chunk(struct btrfs_root *root,
3065                                 struct extent_buffer *leaf,
3066                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3067 {
3068         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3069         struct btrfs_balance_args *bargs = NULL;
3070         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3071
3072         /* type filter */
3073         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3074               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3075                 return 0;
3076         }
3077
3078         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3079                 bargs = &bctl->data;
3080         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3081                 bargs = &bctl->sys;
3082         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3083                 bargs = &bctl->meta;
3084
3085         /* profiles filter */
3086         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3087             chunk_profiles_filter(chunk_type, bargs)) {
3088                 return 0;
3089         }
3090
3091         /* usage filter */
3092         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3093             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3094                 return 0;
3095         }
3096
3097         /* devid filter */
3098         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3099             chunk_devid_filter(leaf, chunk, bargs)) {
3100                 return 0;
3101         }
3102
3103         /* drange filter, makes sense only with devid filter */
3104         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3105             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3106                 return 0;
3107         }
3108
3109         /* vrange filter */
3110         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3111             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3112                 return 0;
3113         }
3114
3115         /* soft profile changing mode */
3116         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3117             chunk_soft_convert_filter(chunk_type, bargs)) {
3118                 return 0;
3119         }
3120
3121         /*
3122          * limited by count, must be the last filter
3123          */
3124         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3125                 if (bargs->limit == 0)
3126                         return 0;
3127                 else
3128                         bargs->limit--;
3129         }
3130
3131         return 1;
3132 }
3133
3134 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3135 {
3136         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3137         struct btrfs_root *chunk_root = fs_info->chunk_root;
3138         struct btrfs_root *dev_root = fs_info->dev_root;
3139         struct list_head *devices;
3140         struct btrfs_device *device;
3141         u64 old_size;
3142         u64 size_to_free;
3143         struct btrfs_chunk *chunk;
3144         struct btrfs_path *path;
3145         struct btrfs_key key;
3146         struct btrfs_key found_key;
3147         struct btrfs_trans_handle *trans;
3148         struct extent_buffer *leaf;
3149         int slot;
3150         int ret;
3151         int enospc_errors = 0;
3152         bool counting = true;
3153         u64 limit_data = bctl->data.limit;
3154         u64 limit_meta = bctl->meta.limit;
3155         u64 limit_sys = bctl->sys.limit;
3156
3157         /* step one make some room on all the devices */
3158         devices = &fs_info->fs_devices->devices;
3159         list_for_each_entry(device, devices, dev_list) {
3160                 old_size = btrfs_device_get_total_bytes(device);
3161                 size_to_free = div_factor(old_size, 1);
3162                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3163                 if (!device->writeable ||
3164                     btrfs_device_get_total_bytes(device) -
3165                     btrfs_device_get_bytes_used(device) > size_to_free ||
3166                     device->is_tgtdev_for_dev_replace)
3167                         continue;
3168
3169                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3170                 if (ret == -ENOSPC)
3171                         break;
3172                 BUG_ON(ret);
3173
3174                 trans = btrfs_start_transaction(dev_root, 0);
3175                 BUG_ON(IS_ERR(trans));
3176
3177                 ret = btrfs_grow_device(trans, device, old_size);
3178                 BUG_ON(ret);
3179
3180                 btrfs_end_transaction(trans, dev_root);
3181         }
3182
3183         /* step two, relocate all the chunks */
3184         path = btrfs_alloc_path();
3185         if (!path) {
3186                 ret = -ENOMEM;
3187                 goto error;
3188         }
3189
3190         /* zero out stat counters */
3191         spin_lock(&fs_info->balance_lock);
3192         memset(&bctl->stat, 0, sizeof(bctl->stat));
3193         spin_unlock(&fs_info->balance_lock);
3194 again:
3195         if (!counting) {
3196                 bctl->data.limit = limit_data;
3197                 bctl->meta.limit = limit_meta;
3198                 bctl->sys.limit = limit_sys;
3199         }
3200         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3201         key.offset = (u64)-1;
3202         key.type = BTRFS_CHUNK_ITEM_KEY;
3203
3204         while (1) {
3205                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3206                     atomic_read(&fs_info->balance_cancel_req)) {
3207                         ret = -ECANCELED;
3208                         goto error;
3209                 }
3210
3211                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3212                 if (ret < 0)
3213                         goto error;
3214
3215                 /*
3216                  * this shouldn't happen, it means the last relocate
3217                  * failed
3218                  */
3219                 if (ret == 0)
3220                         BUG(); /* FIXME break ? */
3221
3222                 ret = btrfs_previous_item(chunk_root, path, 0,
3223                                           BTRFS_CHUNK_ITEM_KEY);
3224                 if (ret) {
3225                         ret = 0;
3226                         break;
3227                 }
3228
3229                 leaf = path->nodes[0];
3230                 slot = path->slots[0];
3231                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3232
3233                 if (found_key.objectid != key.objectid)
3234                         break;
3235
3236                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3237
3238                 if (!counting) {
3239                         spin_lock(&fs_info->balance_lock);
3240                         bctl->stat.considered++;
3241                         spin_unlock(&fs_info->balance_lock);
3242                 }
3243
3244                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3245                                            found_key.offset);
3246                 btrfs_release_path(path);
3247                 if (!ret)
3248                         goto loop;
3249
3250                 if (counting) {
3251                         spin_lock(&fs_info->balance_lock);
3252                         bctl->stat.expected++;
3253                         spin_unlock(&fs_info->balance_lock);
3254                         goto loop;
3255                 }
3256
3257                 ret = btrfs_relocate_chunk(chunk_root,
3258                                            chunk_root->root_key.objectid,
3259                                            found_key.objectid,
3260                                            found_key.offset);
3261                 if (ret && ret != -ENOSPC)
3262                         goto error;
3263                 if (ret == -ENOSPC) {
3264                         enospc_errors++;
3265                 } else {
3266                         spin_lock(&fs_info->balance_lock);
3267                         bctl->stat.completed++;
3268                         spin_unlock(&fs_info->balance_lock);
3269                 }
3270 loop:
3271                 if (found_key.offset == 0)
3272                         break;
3273                 key.offset = found_key.offset - 1;
3274         }
3275
3276         if (counting) {
3277                 btrfs_release_path(path);
3278                 counting = false;
3279                 goto again;
3280         }
3281 error:
3282         btrfs_free_path(path);
3283         if (enospc_errors) {
3284                 btrfs_info(fs_info, "%d enospc errors during balance",
3285                        enospc_errors);
3286                 if (!ret)
3287                         ret = -ENOSPC;
3288         }
3289
3290         return ret;
3291 }
3292
3293 /**
3294  * alloc_profile_is_valid - see if a given profile is valid and reduced
3295  * @flags: profile to validate
3296  * @extended: if true @flags is treated as an extended profile
3297  */
3298 static int alloc_profile_is_valid(u64 flags, int extended)
3299 {
3300         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3301                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3302
3303         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3304
3305         /* 1) check that all other bits are zeroed */
3306         if (flags & ~mask)
3307                 return 0;
3308
3309         /* 2) see if profile is reduced */
3310         if (flags == 0)
3311                 return !extended; /* "0" is valid for usual profiles */
3312
3313         /* true if exactly one bit set */
3314         return (flags & (flags - 1)) == 0;
3315 }
3316
3317 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3318 {
3319         /* cancel requested || normal exit path */
3320         return atomic_read(&fs_info->balance_cancel_req) ||
3321                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3322                  atomic_read(&fs_info->balance_cancel_req) == 0);
3323 }
3324
3325 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3326 {
3327         int ret;
3328
3329         unset_balance_control(fs_info);
3330         ret = del_balance_item(fs_info->tree_root);
3331         if (ret)
3332                 btrfs_std_error(fs_info, ret);
3333
3334         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3335 }
3336
3337 /*
3338  * Should be called with both balance and volume mutexes held
3339  */
3340 int btrfs_balance(struct btrfs_balance_control *bctl,
3341                   struct btrfs_ioctl_balance_args *bargs)
3342 {
3343         struct btrfs_fs_info *fs_info = bctl->fs_info;
3344         u64 allowed;
3345         int mixed = 0;
3346         int ret;
3347         u64 num_devices;
3348         unsigned seq;
3349
3350         if (btrfs_fs_closing(fs_info) ||
3351             atomic_read(&fs_info->balance_pause_req) ||
3352             atomic_read(&fs_info->balance_cancel_req)) {
3353                 ret = -EINVAL;
3354                 goto out;
3355         }
3356
3357         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3358         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3359                 mixed = 1;
3360
3361         /*
3362          * In case of mixed groups both data and meta should be picked,
3363          * and identical options should be given for both of them.
3364          */
3365         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3366         if (mixed && (bctl->flags & allowed)) {
3367                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3368                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3369                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3370                         btrfs_err(fs_info, "with mixed groups data and "
3371                                    "metadata balance options must be the same");
3372                         ret = -EINVAL;
3373                         goto out;
3374                 }
3375         }
3376
3377         num_devices = fs_info->fs_devices->num_devices;
3378         btrfs_dev_replace_lock(&fs_info->dev_replace);
3379         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3380                 BUG_ON(num_devices < 1);
3381                 num_devices--;
3382         }
3383         btrfs_dev_replace_unlock(&fs_info->dev_replace);
3384         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3385         if (num_devices == 1)
3386                 allowed |= BTRFS_BLOCK_GROUP_DUP;
3387         else if (num_devices > 1)
3388                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3389         if (num_devices > 2)
3390                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3391         if (num_devices > 3)
3392                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3393                             BTRFS_BLOCK_GROUP_RAID6);
3394         if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3395             (!alloc_profile_is_valid(bctl->data.target, 1) ||
3396              (bctl->data.target & ~allowed))) {
3397                 btrfs_err(fs_info, "unable to start balance with target "
3398                            "data profile %llu",
3399                        bctl->data.target);
3400                 ret = -EINVAL;
3401                 goto out;
3402         }
3403         if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3404             (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3405              (bctl->meta.target & ~allowed))) {
3406                 btrfs_err(fs_info,
3407                            "unable to start balance with target metadata profile %llu",
3408                        bctl->meta.target);
3409                 ret = -EINVAL;
3410                 goto out;
3411         }
3412         if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3413             (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3414              (bctl->sys.target & ~allowed))) {
3415                 btrfs_err(fs_info,
3416                            "unable to start balance with target system profile %llu",
3417                        bctl->sys.target);
3418                 ret = -EINVAL;
3419                 goto out;
3420         }
3421
3422         /* allow dup'ed data chunks only in mixed mode */
3423         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3424             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3425                 btrfs_err(fs_info, "dup for data is not allowed");
3426                 ret = -EINVAL;
3427                 goto out;
3428         }
3429
3430         /* allow to reduce meta or sys integrity only if force set */
3431         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3432                         BTRFS_BLOCK_GROUP_RAID10 |
3433                         BTRFS_BLOCK_GROUP_RAID5 |
3434                         BTRFS_BLOCK_GROUP_RAID6;
3435         do {
3436                 seq = read_seqbegin(&fs_info->profiles_lock);
3437
3438                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3439                      (fs_info->avail_system_alloc_bits & allowed) &&
3440                      !(bctl->sys.target & allowed)) ||
3441                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3442                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3443                      !(bctl->meta.target & allowed))) {
3444                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3445                                 btrfs_info(fs_info, "force reducing metadata integrity");
3446                         } else {
3447                                 btrfs_err(fs_info, "balance will reduce metadata "
3448                                            "integrity, use force if you want this");
3449                                 ret = -EINVAL;
3450                                 goto out;
3451                         }
3452                 }
3453         } while (read_seqretry(&fs_info->profiles_lock, seq));
3454
3455         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3456                 int num_tolerated_disk_barrier_failures;
3457                 u64 target = bctl->sys.target;
3458
3459                 num_tolerated_disk_barrier_failures =
3460                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3461                 if (num_tolerated_disk_barrier_failures > 0 &&
3462                     (target &
3463                      (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3464                       BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3465                         num_tolerated_disk_barrier_failures = 0;
3466                 else if (num_tolerated_disk_barrier_failures > 1 &&
3467                          (target &
3468                           (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3469                         num_tolerated_disk_barrier_failures = 1;
3470
3471                 fs_info->num_tolerated_disk_barrier_failures =
3472                         num_tolerated_disk_barrier_failures;
3473         }
3474
3475         ret = insert_balance_item(fs_info->tree_root, bctl);
3476         if (ret && ret != -EEXIST)
3477                 goto out;
3478
3479         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3480                 BUG_ON(ret == -EEXIST);
3481                 set_balance_control(bctl);
3482         } else {
3483                 BUG_ON(ret != -EEXIST);
3484                 spin_lock(&fs_info->balance_lock);
3485                 update_balance_args(bctl);
3486                 spin_unlock(&fs_info->balance_lock);
3487         }
3488
3489         atomic_inc(&fs_info->balance_running);
3490         mutex_unlock(&fs_info->balance_mutex);
3491
3492         ret = __btrfs_balance(fs_info);
3493
3494         mutex_lock(&fs_info->balance_mutex);
3495         atomic_dec(&fs_info->balance_running);
3496
3497         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3498                 fs_info->num_tolerated_disk_barrier_failures =
3499                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3500         }
3501
3502         if (bargs) {
3503                 memset(bargs, 0, sizeof(*bargs));
3504                 update_ioctl_balance_args(fs_info, 0, bargs);
3505         }
3506
3507         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3508             balance_need_close(fs_info)) {
3509                 __cancel_balance(fs_info);
3510         }
3511
3512         wake_up(&fs_info->balance_wait_q);
3513
3514         return ret;
3515 out:
3516         if (bctl->flags & BTRFS_BALANCE_RESUME)
3517                 __cancel_balance(fs_info);
3518         else {
3519                 kfree(bctl);
3520                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3521         }
3522         return ret;
3523 }
3524
3525 static int balance_kthread(void *data)
3526 {
3527         struct btrfs_fs_info *fs_info = data;
3528         int ret = 0;
3529
3530         mutex_lock(&fs_info->volume_mutex);
3531         mutex_lock(&fs_info->balance_mutex);
3532
3533         if (fs_info->balance_ctl) {
3534                 btrfs_info(fs_info, "continuing balance");
3535                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3536         }
3537
3538         mutex_unlock(&fs_info->balance_mutex);
3539         mutex_unlock(&fs_info->volume_mutex);
3540
3541         return ret;
3542 }
3543
3544 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3545 {
3546         struct task_struct *tsk;
3547
3548         spin_lock(&fs_info->balance_lock);
3549         if (!fs_info->balance_ctl) {
3550                 spin_unlock(&fs_info->balance_lock);
3551                 return 0;
3552         }
3553         spin_unlock(&fs_info->balance_lock);
3554
3555         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3556                 btrfs_info(fs_info, "force skipping balance");
3557                 return 0;
3558         }
3559
3560         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3561         return PTR_ERR_OR_ZERO(tsk);
3562 }
3563
3564 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3565 {
3566         struct btrfs_balance_control *bctl;
3567         struct btrfs_balance_item *item;
3568         struct btrfs_disk_balance_args disk_bargs;
3569         struct btrfs_path *path;
3570         struct extent_buffer *leaf;
3571         struct btrfs_key key;
3572         int ret;
3573
3574         path = btrfs_alloc_path();
3575         if (!path)
3576                 return -ENOMEM;
3577
3578         key.objectid = BTRFS_BALANCE_OBJECTID;
3579         key.type = BTRFS_BALANCE_ITEM_KEY;
3580         key.offset = 0;
3581
3582         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3583         if (ret < 0)
3584                 goto out;
3585         if (ret > 0) { /* ret = -ENOENT; */
3586                 ret = 0;
3587                 goto out;
3588         }
3589
3590         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3591         if (!bctl) {
3592                 ret = -ENOMEM;
3593                 goto out;
3594         }
3595
3596         leaf = path->nodes[0];
3597         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3598
3599         bctl->fs_info = fs_info;
3600         bctl->flags = btrfs_balance_flags(leaf, item);
3601         bctl->flags |= BTRFS_BALANCE_RESUME;
3602
3603         btrfs_balance_data(leaf, item, &disk_bargs);
3604         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3605         btrfs_balance_meta(leaf, item, &disk_bargs);
3606         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3607         btrfs_balance_sys(leaf, item, &disk_bargs);
3608         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3609
3610         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3611
3612         mutex_lock(&fs_info->volume_mutex);
3613         mutex_lock(&fs_info->balance_mutex);
3614
3615         set_balance_control(bctl);
3616
3617         mutex_unlock(&fs_info->balance_mutex);
3618         mutex_unlock(&fs_info->volume_mutex);
3619 out:
3620         btrfs_free_path(path);
3621         return ret;
3622 }
3623
3624 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3625 {
3626         int ret = 0;
3627
3628         mutex_lock(&fs_info->balance_mutex);
3629         if (!fs_info->balance_ctl) {
3630                 mutex_unlock(&fs_info->balance_mutex);
3631                 return -ENOTCONN;
3632         }
3633
3634         if (atomic_read(&fs_info->balance_running)) {
3635                 atomic_inc(&fs_info->balance_pause_req);
3636                 mutex_unlock(&fs_info->balance_mutex);
3637
3638                 wait_event(fs_info->balance_wait_q,
3639                            atomic_read(&fs_info->balance_running) == 0);
3640
3641                 mutex_lock(&fs_info->balance_mutex);
3642                 /* we are good with balance_ctl ripped off from under us */
3643                 BUG_ON(atomic_read(&fs_info->balance_running));
3644                 atomic_dec(&fs_info->balance_pause_req);
3645         } else {
3646                 ret = -ENOTCONN;
3647         }
3648
3649         mutex_unlock(&fs_info->balance_mutex);
3650         return ret;
3651 }
3652
3653 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3654 {
3655         if (fs_info->sb->s_flags & MS_RDONLY)
3656                 return -EROFS;
3657
3658         mutex_lock(&fs_info->balance_mutex);
3659         if (!fs_info->balance_ctl) {
3660                 mutex_unlock(&fs_info->balance_mutex);
3661                 return -ENOTCONN;
3662         }
3663
3664         atomic_inc(&fs_info->balance_cancel_req);
3665         /*
3666          * if we are running just wait and return, balance item is
3667          * deleted in btrfs_balance in this case
3668          */
3669         if (atomic_read(&fs_info->balance_running)) {
3670                 mutex_unlock(&fs_info->balance_mutex);
3671                 wait_event(fs_info->balance_wait_q,
3672                            atomic_read(&fs_info->balance_running) == 0);
3673                 mutex_lock(&fs_info->balance_mutex);
3674         } else {
3675                 /* __cancel_balance needs volume_mutex */
3676                 mutex_unlock(&fs_info->balance_mutex);
3677                 mutex_lock(&fs_info->volume_mutex);
3678                 mutex_lock(&fs_info->balance_mutex);
3679
3680                 if (fs_info->balance_ctl)
3681                         __cancel_balance(fs_info);
3682
3683                 mutex_unlock(&fs_info->volume_mutex);
3684         }
3685
3686         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3687         atomic_dec(&fs_info->balance_cancel_req);
3688         mutex_unlock(&fs_info->balance_mutex);
3689         return 0;
3690 }
3691
3692 static int btrfs_uuid_scan_kthread(void *data)
3693 {
3694         struct btrfs_fs_info *fs_info = data;
3695         struct btrfs_root *root = fs_info->tree_root;
3696         struct btrfs_key key;
3697         struct btrfs_key max_key;
3698         struct btrfs_path *path = NULL;
3699         int ret = 0;
3700         struct extent_buffer *eb;
3701         int slot;
3702         struct btrfs_root_item root_item;
3703         u32 item_size;
3704         struct btrfs_trans_handle *trans = NULL;
3705
3706         path = btrfs_alloc_path();
3707         if (!path) {
3708                 ret = -ENOMEM;
3709                 goto out;
3710         }
3711
3712         key.objectid = 0;
3713         key.type = BTRFS_ROOT_ITEM_KEY;
3714         key.offset = 0;
3715
3716         max_key.objectid = (u64)-1;
3717         max_key.type = BTRFS_ROOT_ITEM_KEY;
3718         max_key.offset = (u64)-1;
3719
3720         while (1) {
3721                 ret = btrfs_search_forward(root, &key, path, 0);
3722                 if (ret) {
3723                         if (ret > 0)
3724                                 ret = 0;
3725                         break;
3726                 }
3727
3728                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3729                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3730                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3731                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
3732                         goto skip;
3733
3734                 eb = path->nodes[0];
3735                 slot = path->slots[0];
3736                 item_size = btrfs_item_size_nr(eb, slot);
3737                 if (item_size < sizeof(root_item))
3738                         goto skip;
3739
3740                 read_extent_buffer(eb, &root_item,
3741                                    btrfs_item_ptr_offset(eb, slot),
3742                                    (int)sizeof(root_item));
3743                 if (btrfs_root_refs(&root_item) == 0)
3744                         goto skip;
3745
3746                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3747                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
3748                         if (trans)
3749                                 goto update_tree;
3750
3751                         btrfs_release_path(path);
3752                         /*
3753                          * 1 - subvol uuid item
3754                          * 1 - received_subvol uuid item
3755                          */
3756                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3757                         if (IS_ERR(trans)) {
3758                                 ret = PTR_ERR(trans);
3759                                 break;
3760                         }
3761                         continue;
3762                 } else {
3763                         goto skip;
3764                 }
3765 update_tree:
3766                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3767                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3768                                                   root_item.uuid,
3769                                                   BTRFS_UUID_KEY_SUBVOL,
3770                                                   key.objectid);
3771                         if (ret < 0) {
3772                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3773                                         ret);
3774                                 break;
3775                         }
3776                 }
3777
3778                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3779                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3780                                                   root_item.received_uuid,
3781                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3782                                                   key.objectid);
3783                         if (ret < 0) {
3784                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3785                                         ret);
3786                                 break;
3787                         }
3788                 }
3789
3790 skip:
3791                 if (trans) {
3792                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3793                         trans = NULL;
3794                         if (ret)
3795                                 break;
3796                 }
3797
3798                 btrfs_release_path(path);
3799                 if (key.offset < (u64)-1) {
3800                         key.offset++;
3801                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3802                         key.offset = 0;
3803                         key.type = BTRFS_ROOT_ITEM_KEY;
3804                 } else if (key.objectid < (u64)-1) {
3805                         key.offset = 0;
3806                         key.type = BTRFS_ROOT_ITEM_KEY;
3807                         key.objectid++;
3808                 } else {
3809                         break;
3810                 }
3811                 cond_resched();
3812         }
3813
3814 out:
3815         btrfs_free_path(path);
3816         if (trans && !IS_ERR(trans))
3817                 btrfs_end_transaction(trans, fs_info->uuid_root);
3818         if (ret)
3819                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3820         else
3821                 fs_info->update_uuid_tree_gen = 1;
3822         up(&fs_info->uuid_tree_rescan_sem);
3823         return 0;
3824 }
3825
3826 /*
3827  * Callback for btrfs_uuid_tree_iterate().
3828  * returns:
3829  * 0    check succeeded, the entry is not outdated.
3830  * < 0  if an error occured.
3831  * > 0  if the check failed, which means the caller shall remove the entry.
3832  */
3833 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3834                                        u8 *uuid, u8 type, u64 subid)
3835 {
3836         struct btrfs_key key;
3837         int ret = 0;
3838         struct btrfs_root *subvol_root;
3839
3840         if (type != BTRFS_UUID_KEY_SUBVOL &&
3841             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3842                 goto out;
3843
3844         key.objectid = subid;
3845         key.type = BTRFS_ROOT_ITEM_KEY;
3846         key.offset = (u64)-1;
3847         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3848         if (IS_ERR(subvol_root)) {
3849                 ret = PTR_ERR(subvol_root);
3850                 if (ret == -ENOENT)
3851                         ret = 1;
3852                 goto out;
3853         }
3854
3855         switch (type) {
3856         case BTRFS_UUID_KEY_SUBVOL:
3857                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3858                         ret = 1;
3859                 break;
3860         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3861                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3862                            BTRFS_UUID_SIZE))
3863                         ret = 1;
3864                 break;
3865         }
3866
3867 out:
3868         return ret;
3869 }
3870
3871 static int btrfs_uuid_rescan_kthread(void *data)
3872 {
3873         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3874         int ret;
3875
3876         /*
3877          * 1st step is to iterate through the existing UUID tree and
3878          * to delete all entries that contain outdated data.
3879          * 2nd step is to add all missing entries to the UUID tree.
3880          */
3881         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3882         if (ret < 0) {
3883                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3884                 up(&fs_info->uuid_tree_rescan_sem);
3885                 return ret;
3886         }
3887         return btrfs_uuid_scan_kthread(data);
3888 }
3889
3890 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3891 {
3892         struct btrfs_trans_handle *trans;
3893         struct btrfs_root *tree_root = fs_info->tree_root;
3894         struct btrfs_root *uuid_root;
3895         struct task_struct *task;
3896         int ret;
3897
3898         /*
3899          * 1 - root node
3900          * 1 - root item
3901          */
3902         trans = btrfs_start_transaction(tree_root, 2);
3903         if (IS_ERR(trans))
3904                 return PTR_ERR(trans);
3905
3906         uuid_root = btrfs_create_tree(trans, fs_info,
3907                                       BTRFS_UUID_TREE_OBJECTID);
3908         if (IS_ERR(uuid_root)) {
3909                 btrfs_abort_transaction(trans, tree_root,
3910                                         PTR_ERR(uuid_root));
3911                 return PTR_ERR(uuid_root);
3912         }
3913
3914         fs_info->uuid_root = uuid_root;
3915
3916         ret = btrfs_commit_transaction(trans, tree_root);
3917         if (ret)
3918                 return ret;
3919
3920         down(&fs_info->uuid_tree_rescan_sem);
3921         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3922         if (IS_ERR(task)) {
3923                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3924                 btrfs_warn(fs_info, "failed to start uuid_scan task");
3925                 up(&fs_info->uuid_tree_rescan_sem);
3926                 return PTR_ERR(task);
3927         }
3928
3929         return 0;
3930 }
3931
3932 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3933 {
3934         struct task_struct *task;
3935
3936         down(&fs_info->uuid_tree_rescan_sem);
3937         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3938         if (IS_ERR(task)) {
3939                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3940                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3941                 up(&fs_info->uuid_tree_rescan_sem);
3942                 return PTR_ERR(task);
3943         }
3944
3945         return 0;
3946 }
3947
3948 /*
3949  * shrinking a device means finding all of the device extents past
3950  * the new size, and then following the back refs to the chunks.
3951  * The chunk relocation code actually frees the device extent
3952  */
3953 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3954 {
3955         struct btrfs_trans_handle *trans;
3956         struct btrfs_root *root = device->dev_root;
3957         struct btrfs_dev_extent *dev_extent = NULL;
3958         struct btrfs_path *path;
3959         u64 length;
3960         u64 chunk_tree;
3961         u64 chunk_objectid;
3962         u64 chunk_offset;
3963         int ret;
3964         int slot;
3965         int failed = 0;
3966         bool retried = false;
3967         struct extent_buffer *l;
3968         struct btrfs_key key;
3969         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3970         u64 old_total = btrfs_super_total_bytes(super_copy);
3971         u64 old_size = btrfs_device_get_total_bytes(device);
3972         u64 diff = old_size - new_size;
3973
3974         if (device->is_tgtdev_for_dev_replace)
3975                 return -EINVAL;
3976
3977         path = btrfs_alloc_path();
3978         if (!path)
3979                 return -ENOMEM;
3980
3981         path->reada = 2;
3982
3983         lock_chunks(root);
3984
3985         btrfs_device_set_total_bytes(device, new_size);
3986         if (device->writeable) {
3987                 device->fs_devices->total_rw_bytes -= diff;
3988                 spin_lock(&root->fs_info->free_chunk_lock);
3989                 root->fs_info->free_chunk_space -= diff;
3990                 spin_unlock(&root->fs_info->free_chunk_lock);
3991         }
3992         unlock_chunks(root);
3993
3994 again:
3995         key.objectid = device->devid;
3996         key.offset = (u64)-1;
3997         key.type = BTRFS_DEV_EXTENT_KEY;
3998
3999         do {
4000                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4001                 if (ret < 0)
4002                         goto done;
4003
4004                 ret = btrfs_previous_item(root, path, 0, key.type);
4005                 if (ret < 0)
4006                         goto done;
4007                 if (ret) {
4008                         ret = 0;
4009                         btrfs_release_path(path);
4010                         break;
4011                 }
4012
4013                 l = path->nodes[0];
4014                 slot = path->slots[0];
4015                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4016
4017                 if (key.objectid != device->devid) {
4018                         btrfs_release_path(path);
4019                         break;
4020                 }
4021
4022                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4023                 length = btrfs_dev_extent_length(l, dev_extent);
4024
4025                 if (key.offset + length <= new_size) {
4026                         btrfs_release_path(path);
4027                         break;
4028                 }
4029
4030                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
4031                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4032                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4033                 btrfs_release_path(path);
4034
4035                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
4036                                            chunk_offset);
4037                 if (ret && ret != -ENOSPC)
4038                         goto done;
4039                 if (ret == -ENOSPC)
4040                         failed++;
4041         } while (key.offset-- > 0);
4042
4043         if (failed && !retried) {
4044                 failed = 0;
4045                 retried = true;
4046                 goto again;
4047         } else if (failed && retried) {
4048                 ret = -ENOSPC;
4049                 lock_chunks(root);
4050
4051                 btrfs_device_set_total_bytes(device, old_size);
4052                 if (device->writeable)
4053                         device->fs_devices->total_rw_bytes += diff;
4054                 spin_lock(&root->fs_info->free_chunk_lock);
4055                 root->fs_info->free_chunk_space += diff;
4056                 spin_unlock(&root->fs_info->free_chunk_lock);
4057                 unlock_chunks(root);
4058                 goto done;
4059         }
4060
4061         /* Shrinking succeeded, else we would be at "done". */
4062         trans = btrfs_start_transaction(root, 0);
4063         if (IS_ERR(trans)) {
4064                 ret = PTR_ERR(trans);
4065                 goto done;
4066         }
4067
4068         lock_chunks(root);
4069         btrfs_device_set_disk_total_bytes(device, new_size);
4070         if (list_empty(&device->resized_list))
4071                 list_add_tail(&device->resized_list,
4072                               &root->fs_info->fs_devices->resized_devices);
4073
4074         WARN_ON(diff > old_total);
4075         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4076         unlock_chunks(root);
4077
4078         /* Now btrfs_update_device() will change the on-disk size. */
4079         ret = btrfs_update_device(trans, device);
4080         btrfs_end_transaction(trans, root);
4081 done:
4082         btrfs_free_path(path);
4083         return ret;
4084 }
4085
4086 static int btrfs_add_system_chunk(struct btrfs_root *root,
4087                            struct btrfs_key *key,
4088                            struct btrfs_chunk *chunk, int item_size)
4089 {
4090         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4091         struct btrfs_disk_key disk_key;
4092         u32 array_size;
4093         u8 *ptr;
4094
4095         lock_chunks(root);
4096         array_size = btrfs_super_sys_array_size(super_copy);
4097         if (array_size + item_size + sizeof(disk_key)
4098                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4099                 unlock_chunks(root);
4100                 return -EFBIG;
4101         }
4102
4103         ptr = super_copy->sys_chunk_array + array_size;
4104         btrfs_cpu_key_to_disk(&disk_key, key);
4105         memcpy(ptr, &disk_key, sizeof(disk_key));
4106         ptr += sizeof(disk_key);
4107         memcpy(ptr, chunk, item_size);
4108         item_size += sizeof(disk_key);
4109         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4110         unlock_chunks(root);
4111
4112         return 0;
4113 }
4114
4115 /*
4116  * sort the devices in descending order by max_avail, total_avail
4117  */
4118 static int btrfs_cmp_device_info(const void *a, const void *b)
4119 {
4120         const struct btrfs_device_info *di_a = a;
4121         const struct btrfs_device_info *di_b = b;
4122
4123         if (di_a->max_avail > di_b->max_avail)
4124                 return -1;
4125         if (di_a->max_avail < di_b->max_avail)
4126                 return 1;
4127         if (di_a->total_avail > di_b->total_avail)
4128                 return -1;
4129         if (di_a->total_avail < di_b->total_avail)
4130                 return 1;
4131         return 0;
4132 }
4133
4134 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4135         [BTRFS_RAID_RAID10] = {
4136                 .sub_stripes    = 2,
4137                 .dev_stripes    = 1,
4138                 .devs_max       = 0,    /* 0 == as many as possible */
4139                 .devs_min       = 4,
4140                 .devs_increment = 2,
4141                 .ncopies        = 2,
4142         },
4143         [BTRFS_RAID_RAID1] = {
4144                 .sub_stripes    = 1,
4145                 .dev_stripes    = 1,
4146                 .devs_max       = 2,
4147                 .devs_min       = 2,
4148                 .devs_increment = 2,
4149                 .ncopies        = 2,
4150         },
4151         [BTRFS_RAID_DUP] = {
4152                 .sub_stripes    = 1,
4153                 .dev_stripes    = 2,
4154                 .devs_max       = 1,
4155                 .devs_min       = 1,
4156                 .devs_increment = 1,
4157                 .ncopies        = 2,
4158         },
4159         [BTRFS_RAID_RAID0] = {
4160                 .sub_stripes    = 1,
4161                 .dev_stripes    = 1,
4162                 .devs_max       = 0,
4163                 .devs_min       = 2,
4164                 .devs_increment = 1,
4165                 .ncopies        = 1,
4166         },
4167         [BTRFS_RAID_SINGLE] = {
4168                 .sub_stripes    = 1,
4169                 .dev_stripes    = 1,
4170                 .devs_max       = 1,
4171                 .devs_min       = 1,
4172                 .devs_increment = 1,
4173                 .ncopies        = 1,
4174         },
4175         [BTRFS_RAID_RAID5] = {
4176                 .sub_stripes    = 1,
4177                 .dev_stripes    = 1,
4178                 .devs_max       = 0,
4179                 .devs_min       = 2,
4180                 .devs_increment = 1,
4181                 .ncopies        = 2,
4182         },
4183         [BTRFS_RAID_RAID6] = {
4184                 .sub_stripes    = 1,
4185                 .dev_stripes    = 1,
4186                 .devs_max       = 0,
4187                 .devs_min       = 3,
4188                 .devs_increment = 1,
4189                 .ncopies        = 3,
4190         },
4191 };
4192
4193 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4194 {
4195         /* TODO allow them to set a preferred stripe size */
4196         return 64 * 1024;
4197 }
4198
4199 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4200 {
4201         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4202                 return;
4203
4204         btrfs_set_fs_incompat(info, RAID56);
4205 }
4206
4207 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4208                         - sizeof(struct btrfs_item)             \
4209                         - sizeof(struct btrfs_chunk))           \
4210                         / sizeof(struct btrfs_stripe) + 1)
4211
4212 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4213                                 - 2 * sizeof(struct btrfs_disk_key)     \
4214                                 - 2 * sizeof(struct btrfs_chunk))       \
4215                                 / sizeof(struct btrfs_stripe) + 1)
4216
4217 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4218                                struct btrfs_root *extent_root, u64 start,
4219                                u64 type)
4220 {
4221         struct btrfs_fs_info *info = extent_root->fs_info;
4222         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4223         struct list_head *cur;
4224         struct map_lookup *map = NULL;
4225         struct extent_map_tree *em_tree;
4226         struct extent_map *em;
4227         struct btrfs_device_info *devices_info = NULL;
4228         u64 total_avail;
4229         int num_stripes;        /* total number of stripes to allocate */
4230         int data_stripes;       /* number of stripes that count for
4231                                    block group size */
4232         int sub_stripes;        /* sub_stripes info for map */
4233         int dev_stripes;        /* stripes per dev */
4234         int devs_max;           /* max devs to use */
4235         int devs_min;           /* min devs needed */
4236         int devs_increment;     /* ndevs has to be a multiple of this */
4237         int ncopies;            /* how many copies to data has */
4238         int ret;
4239         u64 max_stripe_size;
4240         u64 max_chunk_size;
4241         u64 stripe_size;
4242         u64 num_bytes;
4243         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4244         int ndevs;
4245         int i;
4246         int j;
4247         int index;
4248
4249         BUG_ON(!alloc_profile_is_valid(type, 0));
4250
4251         if (list_empty(&fs_devices->alloc_list))
4252                 return -ENOSPC;
4253
4254         index = __get_raid_index(type);
4255
4256         sub_stripes = btrfs_raid_array[index].sub_stripes;
4257         dev_stripes = btrfs_raid_array[index].dev_stripes;
4258         devs_max = btrfs_raid_array[index].devs_max;
4259         devs_min = btrfs_raid_array[index].devs_min;
4260         devs_increment = btrfs_raid_array[index].devs_increment;
4261         ncopies = btrfs_raid_array[index].ncopies;
4262
4263         if (type & BTRFS_BLOCK_GROUP_DATA) {
4264                 max_stripe_size = 1024 * 1024 * 1024;
4265                 max_chunk_size = 10 * max_stripe_size;
4266                 if (!devs_max)
4267                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4268         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4269                 /* for larger filesystems, use larger metadata chunks */
4270                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4271                         max_stripe_size = 1024 * 1024 * 1024;
4272                 else
4273                         max_stripe_size = 256 * 1024 * 1024;
4274                 max_chunk_size = max_stripe_size;
4275                 if (!devs_max)
4276                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4277         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4278                 max_stripe_size = 32 * 1024 * 1024;
4279                 max_chunk_size = 2 * max_stripe_size;
4280                 if (!devs_max)
4281                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4282         } else {
4283                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4284                        type);
4285                 BUG_ON(1);
4286         }
4287
4288         /* we don't want a chunk larger than 10% of writeable space */
4289         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4290                              max_chunk_size);
4291
4292         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4293                                GFP_NOFS);
4294         if (!devices_info)
4295                 return -ENOMEM;
4296
4297         cur = fs_devices->alloc_list.next;
4298
4299         /*
4300          * in the first pass through the devices list, we gather information
4301          * about the available holes on each device.
4302          */
4303         ndevs = 0;
4304         while (cur != &fs_devices->alloc_list) {
4305                 struct btrfs_device *device;
4306                 u64 max_avail;
4307                 u64 dev_offset;
4308
4309                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4310
4311                 cur = cur->next;
4312
4313                 if (!device->writeable) {
4314                         WARN(1, KERN_ERR
4315                                "BTRFS: read-only device in alloc_list\n");
4316                         continue;
4317                 }
4318
4319                 if (!device->in_fs_metadata ||
4320                     device->is_tgtdev_for_dev_replace)
4321                         continue;
4322
4323                 if (device->total_bytes > device->bytes_used)
4324                         total_avail = device->total_bytes - device->bytes_used;
4325                 else
4326                         total_avail = 0;
4327
4328                 /* If there is no space on this device, skip it. */
4329                 if (total_avail == 0)
4330                         continue;
4331
4332                 ret = find_free_dev_extent(trans, device,
4333                                            max_stripe_size * dev_stripes,
4334                                            &dev_offset, &max_avail);
4335                 if (ret && ret != -ENOSPC)
4336                         goto error;
4337
4338                 if (ret == 0)
4339                         max_avail = max_stripe_size * dev_stripes;
4340
4341                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4342                         continue;
4343
4344                 if (ndevs == fs_devices->rw_devices) {
4345                         WARN(1, "%s: found more than %llu devices\n",
4346                              __func__, fs_devices->rw_devices);
4347                         break;
4348                 }
4349                 devices_info[ndevs].dev_offset = dev_offset;
4350                 devices_info[ndevs].max_avail = max_avail;
4351                 devices_info[ndevs].total_avail = total_avail;
4352                 devices_info[ndevs].dev = device;
4353                 ++ndevs;
4354         }
4355
4356         /*
4357          * now sort the devices by hole size / available space
4358          */
4359         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4360              btrfs_cmp_device_info, NULL);
4361
4362         /* round down to number of usable stripes */
4363         ndevs -= ndevs % devs_increment;
4364
4365         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4366                 ret = -ENOSPC;
4367                 goto error;
4368         }
4369
4370         if (devs_max && ndevs > devs_max)
4371                 ndevs = devs_max;
4372         /*
4373          * the primary goal is to maximize the number of stripes, so use as many
4374          * devices as possible, even if the stripes are not maximum sized.
4375          */
4376         stripe_size = devices_info[ndevs-1].max_avail;
4377         num_stripes = ndevs * dev_stripes;
4378
4379         /*
4380          * this will have to be fixed for RAID1 and RAID10 over
4381          * more drives
4382          */
4383         data_stripes = num_stripes / ncopies;
4384
4385         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4386                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4387                                  btrfs_super_stripesize(info->super_copy));
4388                 data_stripes = num_stripes - 1;
4389         }
4390         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4391                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4392                                  btrfs_super_stripesize(info->super_copy));
4393                 data_stripes = num_stripes - 2;
4394         }
4395
4396         /*
4397          * Use the number of data stripes to figure out how big this chunk
4398          * is really going to be in terms of logical address space,
4399          * and compare that answer with the max chunk size
4400          */
4401         if (stripe_size * data_stripes > max_chunk_size) {
4402                 u64 mask = (1ULL << 24) - 1;
4403                 stripe_size = max_chunk_size;
4404                 do_div(stripe_size, data_stripes);
4405
4406                 /* bump the answer up to a 16MB boundary */
4407                 stripe_size = (stripe_size + mask) & ~mask;
4408
4409                 /* but don't go higher than the limits we found
4410                  * while searching for free extents
4411                  */
4412                 if (stripe_size > devices_info[ndevs-1].max_avail)
4413                         stripe_size = devices_info[ndevs-1].max_avail;
4414         }
4415
4416         do_div(stripe_size, dev_stripes);
4417
4418         /* align to BTRFS_STRIPE_LEN */
4419         do_div(stripe_size, raid_stripe_len);
4420         stripe_size *= raid_stripe_len;
4421
4422         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4423         if (!map) {
4424                 ret = -ENOMEM;
4425                 goto error;
4426         }
4427         map->num_stripes = num_stripes;
4428
4429         for (i = 0; i < ndevs; ++i) {
4430                 for (j = 0; j < dev_stripes; ++j) {
4431                         int s = i * dev_stripes + j;
4432                         map->stripes[s].dev = devices_info[i].dev;
4433                         map->stripes[s].physical = devices_info[i].dev_offset +
4434                                                    j * stripe_size;
4435                 }
4436         }
4437         map->sector_size = extent_root->sectorsize;
4438         map->stripe_len = raid_stripe_len;
4439         map->io_align = raid_stripe_len;
4440         map->io_width = raid_stripe_len;
4441         map->type = type;
4442         map->sub_stripes = sub_stripes;
4443
4444         num_bytes = stripe_size * data_stripes;
4445
4446         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4447
4448         em = alloc_extent_map();
4449         if (!em) {
4450                 kfree(map);
4451                 ret = -ENOMEM;
4452                 goto error;
4453         }
4454         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4455         em->bdev = (struct block_device *)map;
4456         em->start = start;
4457         em->len = num_bytes;
4458         em->block_start = 0;
4459         em->block_len = em->len;
4460         em->orig_block_len = stripe_size;
4461
4462         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4463         write_lock(&em_tree->lock);
4464         ret = add_extent_mapping(em_tree, em, 0);
4465         if (!ret) {
4466                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4467                 atomic_inc(&em->refs);
4468         }
4469         write_unlock(&em_tree->lock);
4470         if (ret) {
4471                 free_extent_map(em);
4472                 goto error;
4473         }
4474
4475         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4476                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4477                                      start, num_bytes);
4478         if (ret)
4479                 goto error_del_extent;
4480
4481         for (i = 0; i < map->num_stripes; i++) {
4482                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4483                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4484         }
4485
4486         spin_lock(&extent_root->fs_info->free_chunk_lock);
4487         extent_root->fs_info->free_chunk_space -= (stripe_size *
4488                                                    map->num_stripes);
4489         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4490
4491         free_extent_map(em);
4492         check_raid56_incompat_flag(extent_root->fs_info, type);
4493
4494         kfree(devices_info);
4495         return 0;
4496
4497 error_del_extent:
4498         write_lock(&em_tree->lock);
4499         remove_extent_mapping(em_tree, em);
4500         write_unlock(&em_tree->lock);
4501
4502         /* One for our allocation */
4503         free_extent_map(em);
4504         /* One for the tree reference */
4505         free_extent_map(em);
4506         /* One for the pending_chunks list reference */
4507         free_extent_map(em);
4508 error:
4509         kfree(devices_info);
4510         return ret;
4511 }
4512
4513 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4514                                 struct btrfs_root *extent_root,
4515                                 u64 chunk_offset, u64 chunk_size)
4516 {
4517         struct btrfs_key key;
4518         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4519         struct btrfs_device *device;
4520         struct btrfs_chunk *chunk;
4521         struct btrfs_stripe *stripe;
4522         struct extent_map_tree *em_tree;
4523         struct extent_map *em;
4524         struct map_lookup *map;
4525         size_t item_size;
4526         u64 dev_offset;
4527         u64 stripe_size;
4528         int i = 0;
4529         int ret;
4530
4531         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4532         read_lock(&em_tree->lock);
4533         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4534         read_unlock(&em_tree->lock);
4535
4536         if (!em) {
4537                 btrfs_crit(extent_root->fs_info, "unable to find logical "
4538                            "%Lu len %Lu", chunk_offset, chunk_size);
4539                 return -EINVAL;
4540         }
4541
4542         if (em->start != chunk_offset || em->len != chunk_size) {
4543                 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4544                           " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4545                           chunk_size, em->start, em->len);
4546                 free_extent_map(em);
4547                 return -EINVAL;
4548         }
4549
4550         map = (struct map_lookup *)em->bdev;
4551         item_size = btrfs_chunk_item_size(map->num_stripes);
4552         stripe_size = em->orig_block_len;
4553
4554         chunk = kzalloc(item_size, GFP_NOFS);
4555         if (!chunk) {
4556                 ret = -ENOMEM;
4557                 goto out;
4558         }
4559
4560         for (i = 0; i < map->num_stripes; i++) {
4561                 device = map->stripes[i].dev;
4562                 dev_offset = map->stripes[i].physical;
4563
4564                 ret = btrfs_update_device(trans, device);
4565                 if (ret)
4566                         goto out;
4567                 ret = btrfs_alloc_dev_extent(trans, device,
4568                                              chunk_root->root_key.objectid,
4569                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4570                                              chunk_offset, dev_offset,
4571                                              stripe_size);
4572                 if (ret)
4573                         goto out;
4574         }
4575
4576         stripe = &chunk->stripe;
4577         for (i = 0; i < map->num_stripes; i++) {
4578                 device = map->stripes[i].dev;
4579                 dev_offset = map->stripes[i].physical;
4580
4581                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4582                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4583                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4584                 stripe++;
4585         }
4586
4587         btrfs_set_stack_chunk_length(chunk, chunk_size);
4588         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4589         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4590         btrfs_set_stack_chunk_type(chunk, map->type);
4591         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4592         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4593         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4594         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4595         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4596
4597         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4598         key.type = BTRFS_CHUNK_ITEM_KEY;
4599         key.offset = chunk_offset;
4600
4601         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4602         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4603                 /*
4604                  * TODO: Cleanup of inserted chunk root in case of
4605                  * failure.
4606                  */
4607                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4608                                              item_size);
4609         }
4610
4611 out:
4612         kfree(chunk);
4613         free_extent_map(em);
4614         return ret;
4615 }
4616
4617 /*
4618  * Chunk allocation falls into two parts. The first part does works
4619  * that make the new allocated chunk useable, but not do any operation
4620  * that modifies the chunk tree. The second part does the works that
4621  * require modifying the chunk tree. This division is important for the
4622  * bootstrap process of adding storage to a seed btrfs.
4623  */
4624 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4625                       struct btrfs_root *extent_root, u64 type)
4626 {
4627         u64 chunk_offset;
4628
4629         chunk_offset = find_next_chunk(extent_root->fs_info);
4630         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4631 }
4632
4633 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4634                                          struct btrfs_root *root,
4635                                          struct btrfs_device *device)
4636 {
4637         u64 chunk_offset;
4638         u64 sys_chunk_offset;
4639         u64 alloc_profile;
4640         struct btrfs_fs_info *fs_info = root->fs_info;
4641         struct btrfs_root *extent_root = fs_info->extent_root;
4642         int ret;
4643
4644         chunk_offset = find_next_chunk(fs_info);
4645         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4646         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4647                                   alloc_profile);
4648         if (ret)
4649                 return ret;
4650
4651         sys_chunk_offset = find_next_chunk(root->fs_info);
4652         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4653         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4654                                   alloc_profile);
4655         return ret;
4656 }
4657
4658 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4659 {
4660         int max_errors;
4661
4662         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4663                          BTRFS_BLOCK_GROUP_RAID10 |
4664                          BTRFS_BLOCK_GROUP_RAID5 |
4665                          BTRFS_BLOCK_GROUP_DUP)) {
4666                 max_errors = 1;
4667         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4668                 max_errors = 2;
4669         } else {
4670                 max_errors = 0;
4671         }
4672
4673         return max_errors;
4674 }
4675
4676 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4677 {
4678         struct extent_map *em;
4679         struct map_lookup *map;
4680         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4681         int readonly = 0;
4682         int miss_ndevs = 0;
4683         int i;
4684
4685         read_lock(&map_tree->map_tree.lock);
4686         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4687         read_unlock(&map_tree->map_tree.lock);
4688         if (!em)
4689                 return 1;
4690
4691         map = (struct map_lookup *)em->bdev;
4692         for (i = 0; i < map->num_stripes; i++) {
4693                 if (map->stripes[i].dev->missing) {
4694                         miss_ndevs++;
4695                         continue;
4696                 }
4697
4698                 if (!map->stripes[i].dev->writeable) {
4699                         readonly = 1;
4700                         goto end;
4701                 }
4702         }
4703
4704         /*
4705          * If the number of missing devices is larger than max errors,
4706          * we can not write the data into that chunk successfully, so
4707          * set it readonly.
4708          */
4709         if (miss_ndevs > btrfs_chunk_max_errors(map))
4710                 readonly = 1;
4711 end:
4712         free_extent_map(em);
4713         return readonly;
4714 }
4715
4716 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4717 {
4718         extent_map_tree_init(&tree->map_tree);
4719 }
4720
4721 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4722 {
4723         struct extent_map *em;
4724
4725         while (1) {
4726                 write_lock(&tree->map_tree.lock);
4727                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4728                 if (em)
4729                         remove_extent_mapping(&tree->map_tree, em);
4730                 write_unlock(&tree->map_tree.lock);
4731                 if (!em)
4732                         break;
4733                 /* once for us */
4734                 free_extent_map(em);
4735                 /* once for the tree */
4736                 free_extent_map(em);
4737         }
4738 }
4739
4740 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4741 {
4742         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4743         struct extent_map *em;
4744         struct map_lookup *map;
4745         struct extent_map_tree *em_tree = &map_tree->map_tree;
4746         int ret;
4747
4748         read_lock(&em_tree->lock);
4749         em = lookup_extent_mapping(em_tree, logical, len);
4750         read_unlock(&em_tree->lock);
4751
4752         /*
4753          * We could return errors for these cases, but that could get ugly and
4754          * we'd probably do the same thing which is just not do anything else
4755          * and exit, so return 1 so the callers don't try to use other copies.
4756          */
4757         if (!em) {
4758                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4759                             logical+len);
4760                 return 1;
4761         }
4762
4763         if (em->start > logical || em->start + em->len < logical) {
4764                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4765                             "%Lu-%Lu", logical, logical+len, em->start,
4766                             em->start + em->len);
4767                 free_extent_map(em);
4768                 return 1;
4769         }
4770
4771         map = (struct map_lookup *)em->bdev;
4772         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4773                 ret = map->num_stripes;
4774         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4775                 ret = map->sub_stripes;
4776         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4777                 ret = 2;
4778         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4779                 ret = 3;
4780         else
4781                 ret = 1;
4782         free_extent_map(em);
4783
4784         btrfs_dev_replace_lock(&fs_info->dev_replace);
4785         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4786                 ret++;
4787         btrfs_dev_replace_unlock(&fs_info->dev_replace);
4788
4789         return ret;
4790 }
4791
4792 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4793                                     struct btrfs_mapping_tree *map_tree,
4794                                     u64 logical)
4795 {
4796         struct extent_map *em;
4797         struct map_lookup *map;
4798         struct extent_map_tree *em_tree = &map_tree->map_tree;
4799         unsigned long len = root->sectorsize;
4800
4801         read_lock(&em_tree->lock);
4802         em = lookup_extent_mapping(em_tree, logical, len);
4803         read_unlock(&em_tree->lock);
4804         BUG_ON(!em);
4805
4806         BUG_ON(em->start > logical || em->start + em->len < logical);
4807         map = (struct map_lookup *)em->bdev;
4808         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4809                 len = map->stripe_len * nr_data_stripes(map);
4810         free_extent_map(em);
4811         return len;
4812 }
4813
4814 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4815                            u64 logical, u64 len, int mirror_num)
4816 {
4817         struct extent_map *em;
4818         struct map_lookup *map;
4819         struct extent_map_tree *em_tree = &map_tree->map_tree;
4820         int ret = 0;
4821
4822         read_lock(&em_tree->lock);
4823         em = lookup_extent_mapping(em_tree, logical, len);
4824         read_unlock(&em_tree->lock);
4825         BUG_ON(!em);
4826
4827         BUG_ON(em->start > logical || em->start + em->len < logical);
4828         map = (struct map_lookup *)em->bdev;
4829         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4830                 ret = 1;
4831         free_extent_map(em);
4832         return ret;
4833 }
4834
4835 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4836                             struct map_lookup *map, int first, int num,
4837                             int optimal, int dev_replace_is_ongoing)
4838 {
4839         int i;
4840         int tolerance;
4841         struct btrfs_device *srcdev;
4842
4843         if (dev_replace_is_ongoing &&
4844             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4845              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4846                 srcdev = fs_info->dev_replace.srcdev;
4847         else
4848                 srcdev = NULL;
4849
4850         /*
4851          * try to avoid the drive that is the source drive for a
4852          * dev-replace procedure, only choose it if no other non-missing
4853          * mirror is available
4854          */
4855         for (tolerance = 0; tolerance < 2; tolerance++) {
4856                 if (map->stripes[optimal].dev->bdev &&
4857                     (tolerance || map->stripes[optimal].dev != srcdev))
4858                         return optimal;
4859                 for (i = first; i < first + num; i++) {
4860                         if (map->stripes[i].dev->bdev &&
4861                             (tolerance || map->stripes[i].dev != srcdev))
4862                                 return i;
4863                 }
4864         }
4865
4866         /* we couldn't find one that doesn't fail.  Just return something
4867          * and the io error handling code will clean up eventually
4868          */
4869         return optimal;
4870 }
4871
4872 static inline int parity_smaller(u64 a, u64 b)
4873 {
4874         return a > b;
4875 }
4876
4877 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4878 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
4879 {
4880         struct btrfs_bio_stripe s;
4881         int i;
4882         u64 l;
4883         int again = 1;
4884
4885         while (again) {
4886                 again = 0;
4887                 for (i = 0; i < num_stripes - 1; i++) {
4888                         if (parity_smaller(bbio->raid_map[i],
4889                                            bbio->raid_map[i+1])) {
4890                                 s = bbio->stripes[i];
4891                                 l = bbio->raid_map[i];
4892                                 bbio->stripes[i] = bbio->stripes[i+1];
4893                                 bbio->raid_map[i] = bbio->raid_map[i+1];
4894                                 bbio->stripes[i+1] = s;
4895                                 bbio->raid_map[i+1] = l;
4896
4897                                 again = 1;
4898                         }
4899                 }
4900         }
4901 }
4902
4903 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
4904 {
4905         struct btrfs_bio *bbio = kzalloc(
4906                 sizeof(struct btrfs_bio) +
4907                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
4908                 sizeof(int) * (real_stripes) +
4909                 sizeof(u64) * (real_stripes),
4910                 GFP_NOFS);
4911         if (!bbio)
4912                 return NULL;
4913
4914         atomic_set(&bbio->error, 0);
4915         atomic_set(&bbio->refs, 1);
4916
4917         return bbio;
4918 }
4919
4920 void btrfs_get_bbio(struct btrfs_bio *bbio)
4921 {
4922         WARN_ON(!atomic_read(&bbio->refs));
4923         atomic_inc(&bbio->refs);
4924 }
4925
4926 void btrfs_put_bbio(struct btrfs_bio *bbio)
4927 {
4928         if (!bbio)
4929                 return;
4930         if (atomic_dec_and_test(&bbio->refs))
4931                 kfree(bbio);
4932 }
4933
4934 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4935                              u64 logical, u64 *length,
4936                              struct btrfs_bio **bbio_ret,
4937                              int mirror_num, int need_raid_map)
4938 {
4939         struct extent_map *em;
4940         struct map_lookup *map;
4941         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4942         struct extent_map_tree *em_tree = &map_tree->map_tree;
4943         u64 offset;
4944         u64 stripe_offset;
4945         u64 stripe_end_offset;
4946         u64 stripe_nr;
4947         u64 stripe_nr_orig;
4948         u64 stripe_nr_end;
4949         u64 stripe_len;
4950         int stripe_index;
4951         int i;
4952         int ret = 0;
4953         int num_stripes;
4954         int max_errors = 0;
4955         int tgtdev_indexes = 0;
4956         struct btrfs_bio *bbio = NULL;
4957         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4958         int dev_replace_is_ongoing = 0;
4959         int num_alloc_stripes;
4960         int patch_the_first_stripe_for_dev_replace = 0;
4961         u64 physical_to_patch_in_first_stripe = 0;
4962         u64 raid56_full_stripe_start = (u64)-1;
4963
4964         read_lock(&em_tree->lock);
4965         em = lookup_extent_mapping(em_tree, logical, *length);
4966         read_unlock(&em_tree->lock);
4967
4968         if (!em) {
4969                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4970                         logical, *length);
4971                 return -EINVAL;
4972         }
4973
4974         if (em->start > logical || em->start + em->len < logical) {
4975                 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4976                            "found %Lu-%Lu", logical, em->start,
4977                            em->start + em->len);
4978                 free_extent_map(em);
4979                 return -EINVAL;
4980         }
4981
4982         map = (struct map_lookup *)em->bdev;
4983         offset = logical - em->start;
4984
4985         stripe_len = map->stripe_len;
4986         stripe_nr = offset;
4987         /*
4988          * stripe_nr counts the total number of stripes we have to stride
4989          * to get to this block
4990          */
4991         do_div(stripe_nr, stripe_len);
4992
4993         stripe_offset = stripe_nr * stripe_len;
4994         BUG_ON(offset < stripe_offset);
4995
4996         /* stripe_offset is the offset of this block in its stripe*/
4997         stripe_offset = offset - stripe_offset;
4998
4999         /* if we're here for raid56, we need to know the stripe aligned start */
5000         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5001                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5002                 raid56_full_stripe_start = offset;
5003
5004                 /* allow a write of a full stripe, but make sure we don't
5005                  * allow straddling of stripes
5006                  */
5007                 do_div(raid56_full_stripe_start, full_stripe_len);
5008                 raid56_full_stripe_start *= full_stripe_len;
5009         }
5010
5011         if (rw & REQ_DISCARD) {
5012                 /* we don't discard raid56 yet */
5013                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5014                         ret = -EOPNOTSUPP;
5015                         goto out;
5016                 }
5017                 *length = min_t(u64, em->len - offset, *length);
5018         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5019                 u64 max_len;
5020                 /* For writes to RAID[56], allow a full stripeset across all disks.
5021                    For other RAID types and for RAID[56] reads, just allow a single
5022                    stripe (on a single disk). */
5023                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5024                     (rw & REQ_WRITE)) {
5025                         max_len = stripe_len * nr_data_stripes(map) -
5026                                 (offset - raid56_full_stripe_start);
5027                 } else {
5028                         /* we limit the length of each bio to what fits in a stripe */
5029                         max_len = stripe_len - stripe_offset;
5030                 }
5031                 *length = min_t(u64, em->len - offset, max_len);
5032         } else {
5033                 *length = em->len - offset;
5034         }
5035
5036         /* This is for when we're called from btrfs_merge_bio_hook() and all
5037            it cares about is the length */
5038         if (!bbio_ret)
5039                 goto out;
5040
5041         btrfs_dev_replace_lock(dev_replace);
5042         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5043         if (!dev_replace_is_ongoing)
5044                 btrfs_dev_replace_unlock(dev_replace);
5045
5046         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5047             !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5048             dev_replace->tgtdev != NULL) {
5049                 /*
5050                  * in dev-replace case, for repair case (that's the only
5051                  * case where the mirror is selected explicitly when
5052                  * calling btrfs_map_block), blocks left of the left cursor
5053                  * can also be read from the target drive.
5054                  * For REQ_GET_READ_MIRRORS, the target drive is added as
5055                  * the last one to the array of stripes. For READ, it also
5056                  * needs to be supported using the same mirror number.
5057                  * If the requested block is not left of the left cursor,
5058                  * EIO is returned. This can happen because btrfs_num_copies()
5059                  * returns one more in the dev-replace case.
5060                  */
5061                 u64 tmp_length = *length;
5062                 struct btrfs_bio *tmp_bbio = NULL;
5063                 int tmp_num_stripes;
5064                 u64 srcdev_devid = dev_replace->srcdev->devid;
5065                 int index_srcdev = 0;
5066                 int found = 0;
5067                 u64 physical_of_found = 0;
5068
5069                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5070                              logical, &tmp_length, &tmp_bbio, 0, 0);
5071                 if (ret) {
5072                         WARN_ON(tmp_bbio != NULL);
5073                         goto out;
5074                 }
5075
5076                 tmp_num_stripes = tmp_bbio->num_stripes;
5077                 if (mirror_num > tmp_num_stripes) {
5078                         /*
5079                          * REQ_GET_READ_MIRRORS does not contain this
5080                          * mirror, that means that the requested area
5081                          * is not left of the left cursor
5082                          */
5083                         ret = -EIO;
5084                         btrfs_put_bbio(tmp_bbio);
5085                         goto out;
5086                 }
5087
5088                 /*
5089                  * process the rest of the function using the mirror_num
5090                  * of the source drive. Therefore look it up first.
5091                  * At the end, patch the device pointer to the one of the
5092                  * target drive.
5093                  */
5094                 for (i = 0; i < tmp_num_stripes; i++) {
5095                         if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5096                                 /*
5097                                  * In case of DUP, in order to keep it
5098                                  * simple, only add the mirror with the
5099                                  * lowest physical address
5100                                  */
5101                                 if (found &&
5102                                     physical_of_found <=
5103                                      tmp_bbio->stripes[i].physical)
5104                                         continue;
5105                                 index_srcdev = i;
5106                                 found = 1;
5107                                 physical_of_found =
5108                                         tmp_bbio->stripes[i].physical;
5109                         }
5110                 }
5111
5112                 if (found) {
5113                         mirror_num = index_srcdev + 1;
5114                         patch_the_first_stripe_for_dev_replace = 1;
5115                         physical_to_patch_in_first_stripe = physical_of_found;
5116                 } else {
5117                         WARN_ON(1);
5118                         ret = -EIO;
5119                         btrfs_put_bbio(tmp_bbio);
5120                         goto out;
5121                 }
5122
5123                 btrfs_put_bbio(tmp_bbio);
5124         } else if (mirror_num > map->num_stripes) {
5125                 mirror_num = 0;
5126         }
5127
5128         num_stripes = 1;
5129         stripe_index = 0;
5130         stripe_nr_orig = stripe_nr;
5131         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5132         do_div(stripe_nr_end, map->stripe_len);
5133         stripe_end_offset = stripe_nr_end * map->stripe_len -
5134                             (offset + *length);
5135
5136         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5137                 if (rw & REQ_DISCARD)
5138                         num_stripes = min_t(u64, map->num_stripes,
5139                                             stripe_nr_end - stripe_nr_orig);
5140                 stripe_index = do_div(stripe_nr, map->num_stripes);
5141                 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5142                         mirror_num = 1;
5143         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5144                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5145                         num_stripes = map->num_stripes;
5146                 else if (mirror_num)
5147                         stripe_index = mirror_num - 1;
5148                 else {
5149                         stripe_index = find_live_mirror(fs_info, map, 0,
5150                                             map->num_stripes,
5151                                             current->pid % map->num_stripes,
5152                                             dev_replace_is_ongoing);
5153                         mirror_num = stripe_index + 1;
5154                 }
5155
5156         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5157                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5158                         num_stripes = map->num_stripes;
5159                 } else if (mirror_num) {
5160                         stripe_index = mirror_num - 1;
5161                 } else {
5162                         mirror_num = 1;
5163                 }
5164
5165         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5166                 int factor = map->num_stripes / map->sub_stripes;
5167
5168                 stripe_index = do_div(stripe_nr, factor);
5169                 stripe_index *= map->sub_stripes;
5170
5171                 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5172                         num_stripes = map->sub_stripes;
5173                 else if (rw & REQ_DISCARD)
5174                         num_stripes = min_t(u64, map->sub_stripes *
5175                                             (stripe_nr_end - stripe_nr_orig),
5176                                             map->num_stripes);
5177                 else if (mirror_num)
5178                         stripe_index += mirror_num - 1;
5179                 else {
5180                         int old_stripe_index = stripe_index;
5181                         stripe_index = find_live_mirror(fs_info, map,
5182                                               stripe_index,
5183                                               map->sub_stripes, stripe_index +
5184                                               current->pid % map->sub_stripes,
5185                                               dev_replace_is_ongoing);
5186                         mirror_num = stripe_index - old_stripe_index + 1;
5187                 }
5188
5189         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5190                 if (need_raid_map &&
5191                     ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5192                      mirror_num > 1)) {
5193                         /* push stripe_nr back to the start of the full stripe */
5194                         stripe_nr = raid56_full_stripe_start;
5195                         do_div(stripe_nr, stripe_len * nr_data_stripes(map));
5196
5197                         /* RAID[56] write or recovery. Return all stripes */
5198                         num_stripes = map->num_stripes;
5199                         max_errors = nr_parity_stripes(map);
5200
5201                         *length = map->stripe_len;
5202                         stripe_index = 0;
5203                         stripe_offset = 0;
5204                 } else {
5205                         u64 tmp;
5206
5207                         /*
5208                          * Mirror #0 or #1 means the original data block.
5209                          * Mirror #2 is RAID5 parity block.
5210                          * Mirror #3 is RAID6 Q block.
5211                          */
5212                         stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5213                         if (mirror_num > 1)
5214                                 stripe_index = nr_data_stripes(map) +
5215                                                 mirror_num - 2;
5216
5217                         /* We distribute the parity blocks across stripes */
5218                         tmp = stripe_nr + stripe_index;
5219                         stripe_index = do_div(tmp, map->num_stripes);
5220                         if (!(rw & (REQ_WRITE | REQ_DISCARD |
5221                                     REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5222                                 mirror_num = 1;
5223                 }
5224         } else {
5225                 /*
5226                  * after this do_div call, stripe_nr is the number of stripes
5227                  * on this device we have to walk to find the data, and
5228                  * stripe_index is the number of our device in the stripe array
5229                  */
5230                 stripe_index = do_div(stripe_nr, map->num_stripes);
5231                 mirror_num = stripe_index + 1;
5232         }
5233         BUG_ON(stripe_index >= map->num_stripes);
5234
5235         num_alloc_stripes = num_stripes;
5236         if (dev_replace_is_ongoing) {
5237                 if (rw & (REQ_WRITE | REQ_DISCARD))
5238                         num_alloc_stripes <<= 1;
5239                 if (rw & REQ_GET_READ_MIRRORS)
5240                         num_alloc_stripes++;
5241                 tgtdev_indexes = num_stripes;
5242         }
5243
5244         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5245         if (!bbio) {
5246                 ret = -ENOMEM;
5247                 goto out;
5248         }
5249         if (dev_replace_is_ongoing)
5250                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5251
5252         /* build raid_map */
5253         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5254             need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5255             mirror_num > 1)) {
5256                 u64 tmp;
5257                 int i, rot;
5258
5259                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5260                                  sizeof(struct btrfs_bio_stripe) *
5261                                  num_alloc_stripes +
5262                                  sizeof(int) * tgtdev_indexes);
5263
5264                 /* Work out the disk rotation on this stripe-set */
5265                 tmp = stripe_nr;
5266                 rot = do_div(tmp, num_stripes);
5267
5268                 /* Fill in the logical address of each stripe */
5269                 tmp = stripe_nr * nr_data_stripes(map);
5270                 for (i = 0; i < nr_data_stripes(map); i++)
5271                         bbio->raid_map[(i+rot) % num_stripes] =
5272                                 em->start + (tmp + i) * map->stripe_len;
5273
5274                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5275                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5276                         bbio->raid_map[(i+rot+1) % num_stripes] =
5277                                 RAID6_Q_STRIPE;
5278         }
5279
5280         if (rw & REQ_DISCARD) {
5281                 int factor = 0;
5282                 int sub_stripes = 0;
5283                 u64 stripes_per_dev = 0;
5284                 u32 remaining_stripes = 0;
5285                 u32 last_stripe = 0;
5286
5287                 if (map->type &
5288                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5289                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5290                                 sub_stripes = 1;
5291                         else
5292                                 sub_stripes = map->sub_stripes;
5293
5294                         factor = map->num_stripes / sub_stripes;
5295                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5296                                                       stripe_nr_orig,
5297                                                       factor,
5298                                                       &remaining_stripes);
5299                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5300                         last_stripe *= sub_stripes;
5301                 }
5302
5303                 for (i = 0; i < num_stripes; i++) {
5304                         bbio->stripes[i].physical =
5305                                 map->stripes[stripe_index].physical +
5306                                 stripe_offset + stripe_nr * map->stripe_len;
5307                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5308
5309                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5310                                          BTRFS_BLOCK_GROUP_RAID10)) {
5311                                 bbio->stripes[i].length = stripes_per_dev *
5312                                                           map->stripe_len;
5313
5314                                 if (i / sub_stripes < remaining_stripes)
5315                                         bbio->stripes[i].length +=
5316                                                 map->stripe_len;
5317
5318                                 /*
5319                                  * Special for the first stripe and
5320                                  * the last stripe:
5321                                  *
5322                                  * |-------|...|-------|
5323                                  *     |----------|
5324                                  *    off     end_off
5325                                  */
5326                                 if (i < sub_stripes)
5327                                         bbio->stripes[i].length -=
5328                                                 stripe_offset;
5329
5330                                 if (stripe_index >= last_stripe &&
5331                                     stripe_index <= (last_stripe +
5332                                                      sub_stripes - 1))
5333                                         bbio->stripes[i].length -=
5334                                                 stripe_end_offset;
5335
5336                                 if (i == sub_stripes - 1)
5337                                         stripe_offset = 0;
5338                         } else
5339                                 bbio->stripes[i].length = *length;
5340
5341                         stripe_index++;
5342                         if (stripe_index == map->num_stripes) {
5343                                 /* This could only happen for RAID0/10 */
5344                                 stripe_index = 0;
5345                                 stripe_nr++;
5346                         }
5347                 }
5348         } else {
5349                 for (i = 0; i < num_stripes; i++) {
5350                         bbio->stripes[i].physical =
5351                                 map->stripes[stripe_index].physical +
5352                                 stripe_offset +
5353                                 stripe_nr * map->stripe_len;
5354                         bbio->stripes[i].dev =
5355                                 map->stripes[stripe_index].dev;
5356                         stripe_index++;
5357                 }
5358         }
5359
5360         if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5361                 max_errors = btrfs_chunk_max_errors(map);
5362
5363         if (bbio->raid_map)
5364                 sort_parity_stripes(bbio, num_stripes);
5365
5366         tgtdev_indexes = 0;
5367         if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5368             dev_replace->tgtdev != NULL) {
5369                 int index_where_to_add;
5370                 u64 srcdev_devid = dev_replace->srcdev->devid;
5371
5372                 /*
5373                  * duplicate the write operations while the dev replace
5374                  * procedure is running. Since the copying of the old disk
5375                  * to the new disk takes place at run time while the
5376                  * filesystem is mounted writable, the regular write
5377                  * operations to the old disk have to be duplicated to go
5378                  * to the new disk as well.
5379                  * Note that device->missing is handled by the caller, and
5380                  * that the write to the old disk is already set up in the
5381                  * stripes array.
5382                  */
5383                 index_where_to_add = num_stripes;
5384                 for (i = 0; i < num_stripes; i++) {
5385                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5386                                 /* write to new disk, too */
5387                                 struct btrfs_bio_stripe *new =
5388                                         bbio->stripes + index_where_to_add;
5389                                 struct btrfs_bio_stripe *old =
5390                                         bbio->stripes + i;
5391
5392                                 new->physical = old->physical;
5393                                 new->length = old->length;
5394                                 new->dev = dev_replace->tgtdev;
5395                                 bbio->tgtdev_map[i] = index_where_to_add;
5396                                 index_where_to_add++;
5397                                 max_errors++;
5398                                 tgtdev_indexes++;
5399                         }
5400                 }
5401                 num_stripes = index_where_to_add;
5402         } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5403                    dev_replace->tgtdev != NULL) {
5404                 u64 srcdev_devid = dev_replace->srcdev->devid;
5405                 int index_srcdev = 0;
5406                 int found = 0;
5407                 u64 physical_of_found = 0;
5408
5409                 /*
5410                  * During the dev-replace procedure, the target drive can
5411                  * also be used to read data in case it is needed to repair
5412                  * a corrupt block elsewhere. This is possible if the
5413                  * requested area is left of the left cursor. In this area,
5414                  * the target drive is a full copy of the source drive.
5415                  */
5416                 for (i = 0; i < num_stripes; i++) {
5417                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5418                                 /*
5419                                  * In case of DUP, in order to keep it
5420                                  * simple, only add the mirror with the
5421                                  * lowest physical address
5422                                  */
5423                                 if (found &&
5424                                     physical_of_found <=
5425                                      bbio->stripes[i].physical)
5426                                         continue;
5427                                 index_srcdev = i;
5428                                 found = 1;
5429                                 physical_of_found = bbio->stripes[i].physical;
5430                         }
5431                 }
5432                 if (found) {
5433                         u64 length = map->stripe_len;
5434
5435                         if (physical_of_found + length <=
5436                             dev_replace->cursor_left) {
5437                                 struct btrfs_bio_stripe *tgtdev_stripe =
5438                                         bbio->stripes + num_stripes;
5439
5440                                 tgtdev_stripe->physical = physical_of_found;
5441                                 tgtdev_stripe->length =
5442                                         bbio->stripes[index_srcdev].length;
5443                                 tgtdev_stripe->dev = dev_replace->tgtdev;
5444                                 bbio->tgtdev_map[index_srcdev] = num_stripes;
5445
5446                                 tgtdev_indexes++;
5447                                 num_stripes++;
5448                         }
5449                 }
5450         }
5451
5452         *bbio_ret = bbio;
5453         bbio->map_type = map->type;
5454         bbio->num_stripes = num_stripes;
5455         bbio->max_errors = max_errors;
5456         bbio->mirror_num = mirror_num;
5457         bbio->num_tgtdevs = tgtdev_indexes;
5458
5459         /*
5460          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5461          * mirror_num == num_stripes + 1 && dev_replace target drive is
5462          * available as a mirror
5463          */
5464         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5465                 WARN_ON(num_stripes > 1);
5466                 bbio->stripes[0].dev = dev_replace->tgtdev;
5467                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5468                 bbio->mirror_num = map->num_stripes + 1;
5469         }
5470 out:
5471         if (dev_replace_is_ongoing)
5472                 btrfs_dev_replace_unlock(dev_replace);
5473         free_extent_map(em);
5474         return ret;
5475 }
5476
5477 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5478                       u64 logical, u64 *length,
5479                       struct btrfs_bio **bbio_ret, int mirror_num)
5480 {
5481         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5482                                  mirror_num, 0);
5483 }
5484
5485 /* For Scrub/replace */
5486 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5487                      u64 logical, u64 *length,
5488                      struct btrfs_bio **bbio_ret, int mirror_num,
5489                      int need_raid_map)
5490 {
5491         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5492                                  mirror_num, need_raid_map);
5493 }
5494
5495 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5496                      u64 chunk_start, u64 physical, u64 devid,
5497                      u64 **logical, int *naddrs, int *stripe_len)
5498 {
5499         struct extent_map_tree *em_tree = &map_tree->map_tree;
5500         struct extent_map *em;
5501         struct map_lookup *map;
5502         u64 *buf;
5503         u64 bytenr;
5504         u64 length;
5505         u64 stripe_nr;
5506         u64 rmap_len;
5507         int i, j, nr = 0;
5508
5509         read_lock(&em_tree->lock);
5510         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5511         read_unlock(&em_tree->lock);
5512
5513         if (!em) {
5514                 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5515                        chunk_start);
5516                 return -EIO;
5517         }
5518
5519         if (em->start != chunk_start) {
5520                 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5521                        em->start, chunk_start);
5522                 free_extent_map(em);
5523                 return -EIO;
5524         }
5525         map = (struct map_lookup *)em->bdev;
5526
5527         length = em->len;
5528         rmap_len = map->stripe_len;
5529
5530         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5531                 do_div(length, map->num_stripes / map->sub_stripes);
5532         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5533                 do_div(length, map->num_stripes);
5534         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5535                 do_div(length, nr_data_stripes(map));
5536                 rmap_len = map->stripe_len * nr_data_stripes(map);
5537         }
5538
5539         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5540         BUG_ON(!buf); /* -ENOMEM */
5541
5542         for (i = 0; i < map->num_stripes; i++) {
5543                 if (devid && map->stripes[i].dev->devid != devid)
5544                         continue;
5545                 if (map->stripes[i].physical > physical ||
5546                     map->stripes[i].physical + length <= physical)
5547                         continue;
5548
5549                 stripe_nr = physical - map->stripes[i].physical;
5550                 do_div(stripe_nr, map->stripe_len);
5551
5552                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5553                         stripe_nr = stripe_nr * map->num_stripes + i;
5554                         do_div(stripe_nr, map->sub_stripes);
5555                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5556                         stripe_nr = stripe_nr * map->num_stripes + i;
5557                 } /* else if RAID[56], multiply by nr_data_stripes().
5558                    * Alternatively, just use rmap_len below instead of
5559                    * map->stripe_len */
5560
5561                 bytenr = chunk_start + stripe_nr * rmap_len;
5562                 WARN_ON(nr >= map->num_stripes);
5563                 for (j = 0; j < nr; j++) {
5564                         if (buf[j] == bytenr)
5565                                 break;
5566                 }
5567                 if (j == nr) {
5568                         WARN_ON(nr >= map->num_stripes);
5569                         buf[nr++] = bytenr;
5570                 }
5571         }
5572
5573         *logical = buf;
5574         *naddrs = nr;
5575         *stripe_len = rmap_len;
5576
5577         free_extent_map(em);
5578         return 0;
5579 }
5580
5581 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5582 {
5583         if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5584                 bio_endio_nodec(bio, err);
5585         else
5586                 bio_endio(bio, err);
5587         btrfs_put_bbio(bbio);
5588 }
5589
5590 static void btrfs_end_bio(struct bio *bio, int err)
5591 {
5592         struct btrfs_bio *bbio = bio->bi_private;
5593         struct btrfs_device *dev = bbio->stripes[0].dev;
5594         int is_orig_bio = 0;
5595
5596         if (err) {
5597                 atomic_inc(&bbio->error);
5598                 if (err == -EIO || err == -EREMOTEIO) {
5599                         unsigned int stripe_index =
5600                                 btrfs_io_bio(bio)->stripe_index;
5601
5602                         BUG_ON(stripe_index >= bbio->num_stripes);
5603                         dev = bbio->stripes[stripe_index].dev;
5604                         if (dev->bdev) {
5605                                 if (bio->bi_rw & WRITE)
5606                                         btrfs_dev_stat_inc(dev,
5607                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5608                                 else
5609                                         btrfs_dev_stat_inc(dev,
5610                                                 BTRFS_DEV_STAT_READ_ERRS);
5611                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5612                                         btrfs_dev_stat_inc(dev,
5613                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
5614                                 btrfs_dev_stat_print_on_error(dev);
5615                         }
5616                 }
5617         }
5618
5619         if (bio == bbio->orig_bio)
5620                 is_orig_bio = 1;
5621
5622         btrfs_bio_counter_dec(bbio->fs_info);
5623
5624         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5625                 if (!is_orig_bio) {
5626                         bio_put(bio);
5627                         bio = bbio->orig_bio;
5628                 }
5629
5630                 bio->bi_private = bbio->private;
5631                 bio->bi_end_io = bbio->end_io;
5632                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5633                 /* only send an error to the higher layers if it is
5634                  * beyond the tolerance of the btrfs bio
5635                  */
5636                 if (atomic_read(&bbio->error) > bbio->max_errors) {
5637                         err = -EIO;
5638                 } else {
5639                         /*
5640                          * this bio is actually up to date, we didn't
5641                          * go over the max number of errors
5642                          */
5643                         set_bit(BIO_UPTODATE, &bio->bi_flags);
5644                         err = 0;
5645                 }
5646
5647                 btrfs_end_bbio(bbio, bio, err);
5648         } else if (!is_orig_bio) {
5649                 bio_put(bio);
5650         }
5651 }
5652
5653 /*
5654  * see run_scheduled_bios for a description of why bios are collected for
5655  * async submit.
5656  *
5657  * This will add one bio to the pending list for a device and make sure
5658  * the work struct is scheduled.
5659  */
5660 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5661                                         struct btrfs_device *device,
5662                                         int rw, struct bio *bio)
5663 {
5664         int should_queue = 1;
5665         struct btrfs_pending_bios *pending_bios;
5666
5667         if (device->missing || !device->bdev) {
5668                 bio_endio(bio, -EIO);
5669                 return;
5670         }
5671
5672         /* don't bother with additional async steps for reads, right now */
5673         if (!(rw & REQ_WRITE)) {
5674                 bio_get(bio);
5675                 btrfsic_submit_bio(rw, bio);
5676                 bio_put(bio);
5677                 return;
5678         }
5679
5680         /*
5681          * nr_async_bios allows us to reliably return congestion to the
5682          * higher layers.  Otherwise, the async bio makes it appear we have
5683          * made progress against dirty pages when we've really just put it
5684          * on a queue for later
5685          */
5686         atomic_inc(&root->fs_info->nr_async_bios);
5687         WARN_ON(bio->bi_next);
5688         bio->bi_next = NULL;
5689         bio->bi_rw |= rw;
5690
5691         spin_lock(&device->io_lock);
5692         if (bio->bi_rw & REQ_SYNC)
5693                 pending_bios = &device->pending_sync_bios;
5694         else
5695                 pending_bios = &device->pending_bios;
5696
5697         if (pending_bios->tail)
5698                 pending_bios->tail->bi_next = bio;
5699
5700         pending_bios->tail = bio;
5701         if (!pending_bios->head)
5702                 pending_bios->head = bio;
5703         if (device->running_pending)
5704                 should_queue = 0;
5705
5706         spin_unlock(&device->io_lock);
5707
5708         if (should_queue)
5709                 btrfs_queue_work(root->fs_info->submit_workers,
5710                                  &device->work);
5711 }
5712
5713 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5714                        sector_t sector)
5715 {
5716         struct bio_vec *prev;
5717         struct request_queue *q = bdev_get_queue(bdev);
5718         unsigned int max_sectors = queue_max_sectors(q);
5719         struct bvec_merge_data bvm = {
5720                 .bi_bdev = bdev,
5721                 .bi_sector = sector,
5722                 .bi_rw = bio->bi_rw,
5723         };
5724
5725         if (WARN_ON(bio->bi_vcnt == 0))
5726                 return 1;
5727
5728         prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5729         if (bio_sectors(bio) > max_sectors)
5730                 return 0;
5731
5732         if (!q->merge_bvec_fn)
5733                 return 1;
5734
5735         bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5736         if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5737                 return 0;
5738         return 1;
5739 }
5740
5741 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5742                               struct bio *bio, u64 physical, int dev_nr,
5743                               int rw, int async)
5744 {
5745         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5746
5747         bio->bi_private = bbio;
5748         btrfs_io_bio(bio)->stripe_index = dev_nr;
5749         bio->bi_end_io = btrfs_end_bio;
5750         bio->bi_iter.bi_sector = physical >> 9;
5751 #ifdef DEBUG
5752         {
5753                 struct rcu_string *name;
5754
5755                 rcu_read_lock();
5756                 name = rcu_dereference(dev->name);
5757                 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5758                          "(%s id %llu), size=%u\n", rw,
5759                          (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5760                          name->str, dev->devid, bio->bi_iter.bi_size);
5761                 rcu_read_unlock();
5762         }
5763 #endif
5764         bio->bi_bdev = dev->bdev;
5765
5766         btrfs_bio_counter_inc_noblocked(root->fs_info);
5767
5768         if (async)
5769                 btrfs_schedule_bio(root, dev, rw, bio);
5770         else
5771                 btrfsic_submit_bio(rw, bio);
5772 }
5773
5774 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5775                               struct bio *first_bio, struct btrfs_device *dev,
5776                               int dev_nr, int rw, int async)
5777 {
5778         struct bio_vec *bvec = first_bio->bi_io_vec;
5779         struct bio *bio;
5780         int nr_vecs = bio_get_nr_vecs(dev->bdev);
5781         u64 physical = bbio->stripes[dev_nr].physical;
5782
5783 again:
5784         bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5785         if (!bio)
5786                 return -ENOMEM;
5787
5788         while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5789                 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5790                                  bvec->bv_offset) < bvec->bv_len) {
5791                         u64 len = bio->bi_iter.bi_size;
5792
5793                         atomic_inc(&bbio->stripes_pending);
5794                         submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5795                                           rw, async);
5796                         physical += len;
5797                         goto again;
5798                 }
5799                 bvec++;
5800         }
5801
5802         submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5803         return 0;
5804 }
5805
5806 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5807 {
5808         atomic_inc(&bbio->error);
5809         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5810                 /* Shoud be the original bio. */
5811                 WARN_ON(bio != bbio->orig_bio);
5812
5813                 bio->bi_private = bbio->private;
5814                 bio->bi_end_io = bbio->end_io;
5815                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5816                 bio->bi_iter.bi_sector = logical >> 9;
5817
5818                 btrfs_end_bbio(bbio, bio, -EIO);
5819         }
5820 }
5821
5822 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5823                   int mirror_num, int async_submit)
5824 {
5825         struct btrfs_device *dev;
5826         struct bio *first_bio = bio;
5827         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5828         u64 length = 0;
5829         u64 map_length;
5830         int ret;
5831         int dev_nr = 0;
5832         int total_devs = 1;
5833         struct btrfs_bio *bbio = NULL;
5834
5835         length = bio->bi_iter.bi_size;
5836         map_length = length;
5837
5838         btrfs_bio_counter_inc_blocked(root->fs_info);
5839         ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5840                               mirror_num, 1);
5841         if (ret) {
5842                 btrfs_bio_counter_dec(root->fs_info);
5843                 return ret;
5844         }
5845
5846         total_devs = bbio->num_stripes;
5847         bbio->orig_bio = first_bio;
5848         bbio->private = first_bio->bi_private;
5849         bbio->end_io = first_bio->bi_end_io;
5850         bbio->fs_info = root->fs_info;
5851         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5852
5853         if (bbio->raid_map) {
5854                 /* In this case, map_length has been set to the length of
5855                    a single stripe; not the whole write */
5856                 if (rw & WRITE) {
5857                         ret = raid56_parity_write(root, bio, bbio, map_length);
5858                 } else {
5859                         ret = raid56_parity_recover(root, bio, bbio, map_length,
5860                                                     mirror_num, 1);
5861                 }
5862
5863                 btrfs_bio_counter_dec(root->fs_info);
5864                 return ret;
5865         }
5866
5867         if (map_length < length) {
5868                 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5869                         logical, length, map_length);
5870                 BUG();
5871         }
5872
5873         while (dev_nr < total_devs) {
5874                 dev = bbio->stripes[dev_nr].dev;
5875                 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5876                         bbio_error(bbio, first_bio, logical);
5877                         dev_nr++;
5878                         continue;
5879                 }
5880
5881                 /*
5882                  * Check and see if we're ok with this bio based on it's size
5883                  * and offset with the given device.
5884                  */
5885                 if (!bio_size_ok(dev->bdev, first_bio,
5886                                  bbio->stripes[dev_nr].physical >> 9)) {
5887                         ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5888                                                  dev_nr, rw, async_submit);
5889                         BUG_ON(ret);
5890                         dev_nr++;
5891                         continue;
5892                 }
5893
5894                 if (dev_nr < total_devs - 1) {
5895                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5896                         BUG_ON(!bio); /* -ENOMEM */
5897                 } else {
5898                         bio = first_bio;
5899                         bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5900                 }
5901
5902                 submit_stripe_bio(root, bbio, bio,
5903                                   bbio->stripes[dev_nr].physical, dev_nr, rw,
5904                                   async_submit);
5905                 dev_nr++;
5906         }
5907         btrfs_bio_counter_dec(root->fs_info);
5908         return 0;
5909 }
5910
5911 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5912                                        u8 *uuid, u8 *fsid)
5913 {
5914         struct btrfs_device *device;
5915         struct btrfs_fs_devices *cur_devices;
5916
5917         cur_devices = fs_info->fs_devices;
5918         while (cur_devices) {
5919                 if (!fsid ||
5920                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5921                         device = __find_device(&cur_devices->devices,
5922                                                devid, uuid);
5923                         if (device)
5924                                 return device;
5925                 }
5926                 cur_devices = cur_devices->seed;
5927         }
5928         return NULL;
5929 }
5930
5931 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5932                                             struct btrfs_fs_devices *fs_devices,
5933                                             u64 devid, u8 *dev_uuid)
5934 {
5935         struct btrfs_device *device;
5936
5937         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5938         if (IS_ERR(device))
5939                 return NULL;
5940
5941         list_add(&device->dev_list, &fs_devices->devices);
5942         device->fs_devices = fs_devices;
5943         fs_devices->num_devices++;
5944
5945         device->missing = 1;
5946         fs_devices->missing_devices++;
5947
5948         return device;
5949 }
5950
5951 /**
5952  * btrfs_alloc_device - allocate struct btrfs_device
5953  * @fs_info:    used only for generating a new devid, can be NULL if
5954  *              devid is provided (i.e. @devid != NULL).
5955  * @devid:      a pointer to devid for this device.  If NULL a new devid
5956  *              is generated.
5957  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
5958  *              is generated.
5959  *
5960  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5961  * on error.  Returned struct is not linked onto any lists and can be
5962  * destroyed with kfree() right away.
5963  */
5964 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5965                                         const u64 *devid,
5966                                         const u8 *uuid)
5967 {
5968         struct btrfs_device *dev;
5969         u64 tmp;
5970
5971         if (WARN_ON(!devid && !fs_info))
5972                 return ERR_PTR(-EINVAL);
5973
5974         dev = __alloc_device();
5975         if (IS_ERR(dev))
5976                 return dev;
5977
5978         if (devid)
5979                 tmp = *devid;
5980         else {
5981                 int ret;
5982
5983                 ret = find_next_devid(fs_info, &tmp);
5984                 if (ret) {
5985                         kfree(dev);
5986                         return ERR_PTR(ret);
5987                 }
5988         }
5989         dev->devid = tmp;
5990
5991         if (uuid)
5992                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5993         else
5994                 generate_random_uuid(dev->uuid);
5995
5996         btrfs_init_work(&dev->work, btrfs_submit_helper,
5997                         pending_bios_fn, NULL, NULL);
5998
5999         return dev;
6000 }
6001
6002 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6003                           struct extent_buffer *leaf,
6004                           struct btrfs_chunk *chunk)
6005 {
6006         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6007         struct map_lookup *map;
6008         struct extent_map *em;
6009         u64 logical;
6010         u64 length;
6011         u64 devid;
6012         u8 uuid[BTRFS_UUID_SIZE];
6013         int num_stripes;
6014         int ret;
6015         int i;
6016
6017         logical = key->offset;
6018         length = btrfs_chunk_length(leaf, chunk);
6019
6020         read_lock(&map_tree->map_tree.lock);
6021         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6022         read_unlock(&map_tree->map_tree.lock);
6023
6024         /* already mapped? */
6025         if (em && em->start <= logical && em->start + em->len > logical) {
6026                 free_extent_map(em);
6027                 return 0;
6028         } else if (em) {
6029                 free_extent_map(em);
6030         }
6031
6032         em = alloc_extent_map();
6033         if (!em)
6034                 return -ENOMEM;
6035         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6036         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6037         if (!map) {
6038                 free_extent_map(em);
6039                 return -ENOMEM;
6040         }
6041
6042         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6043         em->bdev = (struct block_device *)map;
6044         em->start = logical;
6045         em->len = length;
6046         em->orig_start = 0;
6047         em->block_start = 0;
6048         em->block_len = em->len;
6049
6050         map->num_stripes = num_stripes;
6051         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6052         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6053         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6054         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6055         map->type = btrfs_chunk_type(leaf, chunk);
6056         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6057         for (i = 0; i < num_stripes; i++) {
6058                 map->stripes[i].physical =
6059                         btrfs_stripe_offset_nr(leaf, chunk, i);
6060                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6061                 read_extent_buffer(leaf, uuid, (unsigned long)
6062                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6063                                    BTRFS_UUID_SIZE);
6064                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6065                                                         uuid, NULL);
6066                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6067                         free_extent_map(em);
6068                         return -EIO;
6069                 }
6070                 if (!map->stripes[i].dev) {
6071                         map->stripes[i].dev =
6072                                 add_missing_dev(root, root->fs_info->fs_devices,
6073                                                 devid, uuid);
6074                         if (!map->stripes[i].dev) {
6075                                 free_extent_map(em);
6076                                 return -EIO;
6077                         }
6078                 }
6079                 map->stripes[i].dev->in_fs_metadata = 1;
6080         }
6081
6082         write_lock(&map_tree->map_tree.lock);
6083         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6084         write_unlock(&map_tree->map_tree.lock);
6085         BUG_ON(ret); /* Tree corruption */
6086         free_extent_map(em);
6087
6088         return 0;
6089 }
6090
6091 static void fill_device_from_item(struct extent_buffer *leaf,
6092                                  struct btrfs_dev_item *dev_item,
6093                                  struct btrfs_device *device)
6094 {
6095         unsigned long ptr;
6096
6097         device->devid = btrfs_device_id(leaf, dev_item);
6098         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6099         device->total_bytes = device->disk_total_bytes;
6100         device->commit_total_bytes = device->disk_total_bytes;
6101         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6102         device->commit_bytes_used = device->bytes_used;
6103         device->type = btrfs_device_type(leaf, dev_item);
6104         device->io_align = btrfs_device_io_align(leaf, dev_item);
6105         device->io_width = btrfs_device_io_width(leaf, dev_item);
6106         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6107         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6108         device->is_tgtdev_for_dev_replace = 0;
6109
6110         ptr = btrfs_device_uuid(dev_item);
6111         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6112 }
6113
6114 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6115                                                   u8 *fsid)
6116 {
6117         struct btrfs_fs_devices *fs_devices;
6118         int ret;
6119
6120         BUG_ON(!mutex_is_locked(&uuid_mutex));
6121
6122         fs_devices = root->fs_info->fs_devices->seed;
6123         while (fs_devices) {
6124                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6125                         return fs_devices;
6126
6127                 fs_devices = fs_devices->seed;
6128         }
6129
6130         fs_devices = find_fsid(fsid);
6131         if (!fs_devices) {
6132                 if (!btrfs_test_opt(root, DEGRADED))
6133                         return ERR_PTR(-ENOENT);
6134
6135                 fs_devices = alloc_fs_devices(fsid);
6136                 if (IS_ERR(fs_devices))
6137                         return fs_devices;
6138
6139                 fs_devices->seeding = 1;
6140                 fs_devices->opened = 1;
6141                 return fs_devices;
6142         }
6143
6144         fs_devices = clone_fs_devices(fs_devices);
6145         if (IS_ERR(fs_devices))
6146                 return fs_devices;
6147
6148         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6149                                    root->fs_info->bdev_holder);
6150         if (ret) {
6151                 free_fs_devices(fs_devices);
6152                 fs_devices = ERR_PTR(ret);
6153                 goto out;
6154         }
6155
6156         if (!fs_devices->seeding) {
6157                 __btrfs_close_devices(fs_devices);
6158                 free_fs_devices(fs_devices);
6159                 fs_devices = ERR_PTR(-EINVAL);
6160                 goto out;
6161         }
6162
6163         fs_devices->seed = root->fs_info->fs_devices->seed;
6164         root->fs_info->fs_devices->seed = fs_devices;
6165 out:
6166         return fs_devices;
6167 }
6168
6169 static int read_one_dev(struct btrfs_root *root,
6170                         struct extent_buffer *leaf,
6171                         struct btrfs_dev_item *dev_item)
6172 {
6173         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6174         struct btrfs_device *device;
6175         u64 devid;
6176         int ret;
6177         u8 fs_uuid[BTRFS_UUID_SIZE];
6178         u8 dev_uuid[BTRFS_UUID_SIZE];
6179
6180         devid = btrfs_device_id(leaf, dev_item);
6181         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6182                            BTRFS_UUID_SIZE);
6183         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6184                            BTRFS_UUID_SIZE);
6185
6186         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6187                 fs_devices = open_seed_devices(root, fs_uuid);
6188                 if (IS_ERR(fs_devices))
6189                         return PTR_ERR(fs_devices);
6190         }
6191
6192         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6193         if (!device) {
6194                 if (!btrfs_test_opt(root, DEGRADED))
6195                         return -EIO;
6196
6197                 btrfs_warn(root->fs_info, "devid %llu missing", devid);
6198                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6199                 if (!device)
6200                         return -ENOMEM;
6201         } else {
6202                 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6203                         return -EIO;
6204
6205                 if(!device->bdev && !device->missing) {
6206                         /*
6207                          * this happens when a device that was properly setup
6208                          * in the device info lists suddenly goes bad.
6209                          * device->bdev is NULL, and so we have to set
6210                          * device->missing to one here
6211                          */
6212                         device->fs_devices->missing_devices++;
6213                         device->missing = 1;
6214                 }
6215
6216                 /* Move the device to its own fs_devices */
6217                 if (device->fs_devices != fs_devices) {
6218                         ASSERT(device->missing);
6219
6220                         list_move(&device->dev_list, &fs_devices->devices);
6221                         device->fs_devices->num_devices--;
6222                         fs_devices->num_devices++;
6223
6224                         device->fs_devices->missing_devices--;
6225                         fs_devices->missing_devices++;
6226
6227                         device->fs_devices = fs_devices;
6228                 }
6229         }
6230
6231         if (device->fs_devices != root->fs_info->fs_devices) {
6232                 BUG_ON(device->writeable);
6233                 if (device->generation !=
6234                     btrfs_device_generation(leaf, dev_item))
6235                         return -EINVAL;
6236         }
6237
6238         fill_device_from_item(leaf, dev_item, device);
6239         device->in_fs_metadata = 1;
6240         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6241                 device->fs_devices->total_rw_bytes += device->total_bytes;
6242                 spin_lock(&root->fs_info->free_chunk_lock);
6243                 root->fs_info->free_chunk_space += device->total_bytes -
6244                         device->bytes_used;
6245                 spin_unlock(&root->fs_info->free_chunk_lock);
6246         }
6247         ret = 0;
6248         return ret;
6249 }
6250
6251 int btrfs_read_sys_array(struct btrfs_root *root)
6252 {
6253         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6254         struct extent_buffer *sb;
6255         struct btrfs_disk_key *disk_key;
6256         struct btrfs_chunk *chunk;
6257         u8 *array_ptr;
6258         unsigned long sb_array_offset;
6259         int ret = 0;
6260         u32 num_stripes;
6261         u32 array_size;
6262         u32 len = 0;
6263         u32 cur_offset;
6264         struct btrfs_key key;
6265
6266         ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6267         /*
6268          * This will create extent buffer of nodesize, superblock size is
6269          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6270          * overallocate but we can keep it as-is, only the first page is used.
6271          */
6272         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6273         if (!sb)
6274                 return -ENOMEM;
6275         btrfs_set_buffer_uptodate(sb);
6276         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6277         /*
6278          * The sb extent buffer is artifical and just used to read the system array.
6279          * btrfs_set_buffer_uptodate() call does not properly mark all it's
6280          * pages up-to-date when the page is larger: extent does not cover the
6281          * whole page and consequently check_page_uptodate does not find all
6282          * the page's extents up-to-date (the hole beyond sb),
6283          * write_extent_buffer then triggers a WARN_ON.
6284          *
6285          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6286          * but sb spans only this function. Add an explicit SetPageUptodate call
6287          * to silence the warning eg. on PowerPC 64.
6288          */
6289         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6290                 SetPageUptodate(sb->pages[0]);
6291
6292         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6293         array_size = btrfs_super_sys_array_size(super_copy);
6294
6295         array_ptr = super_copy->sys_chunk_array;
6296         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6297         cur_offset = 0;
6298
6299         while (cur_offset < array_size) {
6300                 disk_key = (struct btrfs_disk_key *)array_ptr;
6301                 len = sizeof(*disk_key);
6302                 if (cur_offset + len > array_size)
6303                         goto out_short_read;
6304
6305                 btrfs_disk_key_to_cpu(&key, disk_key);
6306
6307                 array_ptr += len;
6308                 sb_array_offset += len;
6309                 cur_offset += len;
6310
6311                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6312                         chunk = (struct btrfs_chunk *)sb_array_offset;
6313                         /*
6314                          * At least one btrfs_chunk with one stripe must be
6315                          * present, exact stripe count check comes afterwards
6316                          */
6317                         len = btrfs_chunk_item_size(1);
6318                         if (cur_offset + len > array_size)
6319                                 goto out_short_read;
6320
6321                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6322                         len = btrfs_chunk_item_size(num_stripes);
6323                         if (cur_offset + len > array_size)
6324                                 goto out_short_read;
6325
6326                         ret = read_one_chunk(root, &key, sb, chunk);
6327                         if (ret)
6328                                 break;
6329                 } else {
6330                         ret = -EIO;
6331                         break;
6332                 }
6333                 array_ptr += len;
6334                 sb_array_offset += len;
6335                 cur_offset += len;
6336         }
6337         free_extent_buffer(sb);
6338         return ret;
6339
6340 out_short_read:
6341         printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6342                         len, cur_offset);
6343         free_extent_buffer(sb);
6344         return -EIO;
6345 }
6346
6347 int btrfs_read_chunk_tree(struct btrfs_root *root)
6348 {
6349         struct btrfs_path *path;
6350         struct extent_buffer *leaf;
6351         struct btrfs_key key;
6352         struct btrfs_key found_key;
6353         int ret;
6354         int slot;
6355
6356         root = root->fs_info->chunk_root;
6357
6358         path = btrfs_alloc_path();
6359         if (!path)
6360                 return -ENOMEM;
6361
6362         mutex_lock(&uuid_mutex);
6363         lock_chunks(root);
6364
6365         /*
6366          * Read all device items, and then all the chunk items. All
6367          * device items are found before any chunk item (their object id
6368          * is smaller than the lowest possible object id for a chunk
6369          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6370          */
6371         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6372         key.offset = 0;
6373         key.type = 0;
6374         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6375         if (ret < 0)
6376                 goto error;
6377         while (1) {
6378                 leaf = path->nodes[0];
6379                 slot = path->slots[0];
6380                 if (slot >= btrfs_header_nritems(leaf)) {
6381                         ret = btrfs_next_leaf(root, path);
6382                         if (ret == 0)
6383                                 continue;
6384                         if (ret < 0)
6385                                 goto error;
6386                         break;
6387                 }
6388                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6389                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6390                         struct btrfs_dev_item *dev_item;
6391                         dev_item = btrfs_item_ptr(leaf, slot,
6392                                                   struct btrfs_dev_item);
6393                         ret = read_one_dev(root, leaf, dev_item);
6394                         if (ret)
6395                                 goto error;
6396                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6397                         struct btrfs_chunk *chunk;
6398                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6399                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6400                         if (ret)
6401                                 goto error;
6402                 }
6403                 path->slots[0]++;
6404         }
6405         ret = 0;
6406 error:
6407         unlock_chunks(root);
6408         mutex_unlock(&uuid_mutex);
6409
6410         btrfs_free_path(path);
6411         return ret;
6412 }
6413
6414 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6415 {
6416         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6417         struct btrfs_device *device;
6418
6419         while (fs_devices) {
6420                 mutex_lock(&fs_devices->device_list_mutex);
6421                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6422                         device->dev_root = fs_info->dev_root;
6423                 mutex_unlock(&fs_devices->device_list_mutex);
6424
6425                 fs_devices = fs_devices->seed;
6426         }
6427 }
6428
6429 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6430 {
6431         int i;
6432
6433         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6434                 btrfs_dev_stat_reset(dev, i);
6435 }
6436
6437 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6438 {
6439         struct btrfs_key key;
6440         struct btrfs_key found_key;
6441         struct btrfs_root *dev_root = fs_info->dev_root;
6442         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6443         struct extent_buffer *eb;
6444         int slot;
6445         int ret = 0;
6446         struct btrfs_device *device;
6447         struct btrfs_path *path = NULL;
6448         int i;
6449
6450         path = btrfs_alloc_path();
6451         if (!path) {
6452                 ret = -ENOMEM;
6453                 goto out;
6454         }
6455
6456         mutex_lock(&fs_devices->device_list_mutex);
6457         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6458                 int item_size;
6459                 struct btrfs_dev_stats_item *ptr;
6460
6461                 key.objectid = 0;
6462                 key.type = BTRFS_DEV_STATS_KEY;
6463                 key.offset = device->devid;
6464                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6465                 if (ret) {
6466                         __btrfs_reset_dev_stats(device);
6467                         device->dev_stats_valid = 1;
6468                         btrfs_release_path(path);
6469                         continue;
6470                 }
6471                 slot = path->slots[0];
6472                 eb = path->nodes[0];
6473                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6474                 item_size = btrfs_item_size_nr(eb, slot);
6475
6476                 ptr = btrfs_item_ptr(eb, slot,
6477                                      struct btrfs_dev_stats_item);
6478
6479                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6480                         if (item_size >= (1 + i) * sizeof(__le64))
6481                                 btrfs_dev_stat_set(device, i,
6482                                         btrfs_dev_stats_value(eb, ptr, i));
6483                         else
6484                                 btrfs_dev_stat_reset(device, i);
6485                 }
6486
6487                 device->dev_stats_valid = 1;
6488                 btrfs_dev_stat_print_on_load(device);
6489                 btrfs_release_path(path);
6490         }
6491         mutex_unlock(&fs_devices->device_list_mutex);
6492
6493 out:
6494         btrfs_free_path(path);
6495         return ret < 0 ? ret : 0;
6496 }
6497
6498 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6499                                 struct btrfs_root *dev_root,
6500                                 struct btrfs_device *device)
6501 {
6502         struct btrfs_path *path;
6503         struct btrfs_key key;
6504         struct extent_buffer *eb;
6505         struct btrfs_dev_stats_item *ptr;
6506         int ret;
6507         int i;
6508
6509         key.objectid = 0;
6510         key.type = BTRFS_DEV_STATS_KEY;
6511         key.offset = device->devid;
6512
6513         path = btrfs_alloc_path();
6514         BUG_ON(!path);
6515         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6516         if (ret < 0) {
6517                 printk_in_rcu(KERN_WARNING "BTRFS: "
6518                         "error %d while searching for dev_stats item for device %s!\n",
6519                               ret, rcu_str_deref(device->name));
6520                 goto out;
6521         }
6522
6523         if (ret == 0 &&
6524             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6525                 /* need to delete old one and insert a new one */
6526                 ret = btrfs_del_item(trans, dev_root, path);
6527                 if (ret != 0) {
6528                         printk_in_rcu(KERN_WARNING "BTRFS: "
6529                                 "delete too small dev_stats item for device %s failed %d!\n",
6530                                       rcu_str_deref(device->name), ret);
6531                         goto out;
6532                 }
6533                 ret = 1;
6534         }
6535
6536         if (ret == 1) {
6537                 /* need to insert a new item */
6538                 btrfs_release_path(path);
6539                 ret = btrfs_insert_empty_item(trans, dev_root, path,
6540                                               &key, sizeof(*ptr));
6541                 if (ret < 0) {
6542                         printk_in_rcu(KERN_WARNING "BTRFS: "
6543                                           "insert dev_stats item for device %s failed %d!\n",
6544                                       rcu_str_deref(device->name), ret);
6545                         goto out;
6546                 }
6547         }
6548
6549         eb = path->nodes[0];
6550         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6551         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6552                 btrfs_set_dev_stats_value(eb, ptr, i,
6553                                           btrfs_dev_stat_read(device, i));
6554         btrfs_mark_buffer_dirty(eb);
6555
6556 out:
6557         btrfs_free_path(path);
6558         return ret;
6559 }
6560
6561 /*
6562  * called from commit_transaction. Writes all changed device stats to disk.
6563  */
6564 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6565                         struct btrfs_fs_info *fs_info)
6566 {
6567         struct btrfs_root *dev_root = fs_info->dev_root;
6568         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6569         struct btrfs_device *device;
6570         int stats_cnt;
6571         int ret = 0;
6572
6573         mutex_lock(&fs_devices->device_list_mutex);
6574         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6575                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6576                         continue;
6577
6578                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6579                 ret = update_dev_stat_item(trans, dev_root, device);
6580                 if (!ret)
6581                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6582         }
6583         mutex_unlock(&fs_devices->device_list_mutex);
6584
6585         return ret;
6586 }
6587
6588 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6589 {
6590         btrfs_dev_stat_inc(dev, index);
6591         btrfs_dev_stat_print_on_error(dev);
6592 }
6593
6594 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6595 {
6596         if (!dev->dev_stats_valid)
6597                 return;
6598         printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6599                            "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6600                            rcu_str_deref(dev->name),
6601                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6602                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6603                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6604                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6605                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6606 }
6607
6608 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6609 {
6610         int i;
6611
6612         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6613                 if (btrfs_dev_stat_read(dev, i) != 0)
6614                         break;
6615         if (i == BTRFS_DEV_STAT_VALUES_MAX)
6616                 return; /* all values == 0, suppress message */
6617
6618         printk_in_rcu(KERN_INFO "BTRFS: "
6619                    "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6620                rcu_str_deref(dev->name),
6621                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6622                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6623                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6624                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6625                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6626 }
6627
6628 int btrfs_get_dev_stats(struct btrfs_root *root,
6629                         struct btrfs_ioctl_get_dev_stats *stats)
6630 {
6631         struct btrfs_device *dev;
6632         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6633         int i;
6634
6635         mutex_lock(&fs_devices->device_list_mutex);
6636         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6637         mutex_unlock(&fs_devices->device_list_mutex);
6638
6639         if (!dev) {
6640                 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6641                 return -ENODEV;
6642         } else if (!dev->dev_stats_valid) {
6643                 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6644                 return -ENODEV;
6645         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6646                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6647                         if (stats->nr_items > i)
6648                                 stats->values[i] =
6649                                         btrfs_dev_stat_read_and_reset(dev, i);
6650                         else
6651                                 btrfs_dev_stat_reset(dev, i);
6652                 }
6653         } else {
6654                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6655                         if (stats->nr_items > i)
6656                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
6657         }
6658         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6659                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6660         return 0;
6661 }
6662
6663 int btrfs_scratch_superblock(struct btrfs_device *device)
6664 {
6665         struct buffer_head *bh;
6666         struct btrfs_super_block *disk_super;
6667
6668         bh = btrfs_read_dev_super(device->bdev);
6669         if (!bh)
6670                 return -EINVAL;
6671         disk_super = (struct btrfs_super_block *)bh->b_data;
6672
6673         memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6674         set_buffer_dirty(bh);
6675         sync_dirty_buffer(bh);
6676         brelse(bh);
6677
6678         return 0;
6679 }
6680
6681 /*
6682  * Update the size of all devices, which is used for writing out the
6683  * super blocks.
6684  */
6685 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6686 {
6687         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6688         struct btrfs_device *curr, *next;
6689
6690         if (list_empty(&fs_devices->resized_devices))
6691                 return;
6692
6693         mutex_lock(&fs_devices->device_list_mutex);
6694         lock_chunks(fs_info->dev_root);
6695         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6696                                  resized_list) {
6697                 list_del_init(&curr->resized_list);
6698                 curr->commit_total_bytes = curr->disk_total_bytes;
6699         }
6700         unlock_chunks(fs_info->dev_root);
6701         mutex_unlock(&fs_devices->device_list_mutex);
6702 }
6703
6704 /* Must be invoked during the transaction commit */
6705 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6706                                         struct btrfs_transaction *transaction)
6707 {
6708         struct extent_map *em;
6709         struct map_lookup *map;
6710         struct btrfs_device *dev;
6711         int i;
6712
6713         if (list_empty(&transaction->pending_chunks))
6714                 return;
6715
6716         /* In order to kick the device replace finish process */
6717         lock_chunks(root);
6718         list_for_each_entry(em, &transaction->pending_chunks, list) {
6719                 map = (struct map_lookup *)em->bdev;
6720
6721                 for (i = 0; i < map->num_stripes; i++) {
6722                         dev = map->stripes[i].dev;
6723                         dev->commit_bytes_used = dev->bytes_used;
6724                 }
6725         }
6726         unlock_chunks(root);
6727 }