Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[cascardo/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
35
36 struct map_lookup {
37         u64 type;
38         int io_align;
39         int io_width;
40         int stripe_len;
41         int sector_size;
42         int num_stripes;
43         int sub_stripes;
44         struct btrfs_bio_stripe stripes[];
45 };
46
47 static int init_first_rw_device(struct btrfs_trans_handle *trans,
48                                 struct btrfs_root *root,
49                                 struct btrfs_device *device);
50 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
51
52 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
53                             (sizeof(struct btrfs_bio_stripe) * (n)))
54
55 static DEFINE_MUTEX(uuid_mutex);
56 static LIST_HEAD(fs_uuids);
57
58 void btrfs_lock_volumes(void)
59 {
60         mutex_lock(&uuid_mutex);
61 }
62
63 void btrfs_unlock_volumes(void)
64 {
65         mutex_unlock(&uuid_mutex);
66 }
67
68 static void lock_chunks(struct btrfs_root *root)
69 {
70         mutex_lock(&root->fs_info->chunk_mutex);
71 }
72
73 static void unlock_chunks(struct btrfs_root *root)
74 {
75         mutex_unlock(&root->fs_info->chunk_mutex);
76 }
77
78 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
79 {
80         struct btrfs_device *device;
81         WARN_ON(fs_devices->opened);
82         while (!list_empty(&fs_devices->devices)) {
83                 device = list_entry(fs_devices->devices.next,
84                                     struct btrfs_device, dev_list);
85                 list_del(&device->dev_list);
86                 kfree(device->name);
87                 kfree(device);
88         }
89         kfree(fs_devices);
90 }
91
92 int btrfs_cleanup_fs_uuids(void)
93 {
94         struct btrfs_fs_devices *fs_devices;
95
96         while (!list_empty(&fs_uuids)) {
97                 fs_devices = list_entry(fs_uuids.next,
98                                         struct btrfs_fs_devices, list);
99                 list_del(&fs_devices->list);
100                 free_fs_devices(fs_devices);
101         }
102         return 0;
103 }
104
105 static noinline struct btrfs_device *__find_device(struct list_head *head,
106                                                    u64 devid, u8 *uuid)
107 {
108         struct btrfs_device *dev;
109
110         list_for_each_entry(dev, head, dev_list) {
111                 if (dev->devid == devid &&
112                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
113                         return dev;
114                 }
115         }
116         return NULL;
117 }
118
119 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
120 {
121         struct btrfs_fs_devices *fs_devices;
122
123         list_for_each_entry(fs_devices, &fs_uuids, list) {
124                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
125                         return fs_devices;
126         }
127         return NULL;
128 }
129
130 static void requeue_list(struct btrfs_pending_bios *pending_bios,
131                         struct bio *head, struct bio *tail)
132 {
133
134         struct bio *old_head;
135
136         old_head = pending_bios->head;
137         pending_bios->head = head;
138         if (pending_bios->tail)
139                 tail->bi_next = old_head;
140         else
141                 pending_bios->tail = tail;
142 }
143
144 /*
145  * we try to collect pending bios for a device so we don't get a large
146  * number of procs sending bios down to the same device.  This greatly
147  * improves the schedulers ability to collect and merge the bios.
148  *
149  * But, it also turns into a long list of bios to process and that is sure
150  * to eventually make the worker thread block.  The solution here is to
151  * make some progress and then put this work struct back at the end of
152  * the list if the block device is congested.  This way, multiple devices
153  * can make progress from a single worker thread.
154  */
155 static noinline int run_scheduled_bios(struct btrfs_device *device)
156 {
157         struct bio *pending;
158         struct backing_dev_info *bdi;
159         struct btrfs_fs_info *fs_info;
160         struct btrfs_pending_bios *pending_bios;
161         struct bio *tail;
162         struct bio *cur;
163         int again = 0;
164         unsigned long num_run;
165         unsigned long num_sync_run;
166         unsigned long batch_run = 0;
167         unsigned long limit;
168         unsigned long last_waited = 0;
169         int force_reg = 0;
170
171         bdi = blk_get_backing_dev_info(device->bdev);
172         fs_info = device->dev_root->fs_info;
173         limit = btrfs_async_submit_limit(fs_info);
174         limit = limit * 2 / 3;
175
176         /* we want to make sure that every time we switch from the sync
177          * list to the normal list, we unplug
178          */
179         num_sync_run = 0;
180
181 loop:
182         spin_lock(&device->io_lock);
183
184 loop_lock:
185         num_run = 0;
186
187         /* take all the bios off the list at once and process them
188          * later on (without the lock held).  But, remember the
189          * tail and other pointers so the bios can be properly reinserted
190          * into the list if we hit congestion
191          */
192         if (!force_reg && device->pending_sync_bios.head) {
193                 pending_bios = &device->pending_sync_bios;
194                 force_reg = 1;
195         } else {
196                 pending_bios = &device->pending_bios;
197                 force_reg = 0;
198         }
199
200         pending = pending_bios->head;
201         tail = pending_bios->tail;
202         WARN_ON(pending && !tail);
203
204         /*
205          * if pending was null this time around, no bios need processing
206          * at all and we can stop.  Otherwise it'll loop back up again
207          * and do an additional check so no bios are missed.
208          *
209          * device->running_pending is used to synchronize with the
210          * schedule_bio code.
211          */
212         if (device->pending_sync_bios.head == NULL &&
213             device->pending_bios.head == NULL) {
214                 again = 0;
215                 device->running_pending = 0;
216         } else {
217                 again = 1;
218                 device->running_pending = 1;
219         }
220
221         pending_bios->head = NULL;
222         pending_bios->tail = NULL;
223
224         spin_unlock(&device->io_lock);
225
226         /*
227          * if we're doing the regular priority list, make sure we unplug
228          * for any high prio bios we've sent down
229          */
230         if (pending_bios == &device->pending_bios && num_sync_run > 0) {
231                 num_sync_run = 0;
232                 blk_run_backing_dev(bdi, NULL);
233         }
234
235         while (pending) {
236
237                 rmb();
238                 /* we want to work on both lists, but do more bios on the
239                  * sync list than the regular list
240                  */
241                 if ((num_run > 32 &&
242                     pending_bios != &device->pending_sync_bios &&
243                     device->pending_sync_bios.head) ||
244                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
245                     device->pending_bios.head)) {
246                         spin_lock(&device->io_lock);
247                         requeue_list(pending_bios, pending, tail);
248                         goto loop_lock;
249                 }
250
251                 cur = pending;
252                 pending = pending->bi_next;
253                 cur->bi_next = NULL;
254                 atomic_dec(&fs_info->nr_async_bios);
255
256                 if (atomic_read(&fs_info->nr_async_bios) < limit &&
257                     waitqueue_active(&fs_info->async_submit_wait))
258                         wake_up(&fs_info->async_submit_wait);
259
260                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
261
262                 if (cur->bi_rw & REQ_SYNC)
263                         num_sync_run++;
264
265                 submit_bio(cur->bi_rw, cur);
266                 num_run++;
267                 batch_run++;
268                 if (need_resched()) {
269                         if (num_sync_run) {
270                                 blk_run_backing_dev(bdi, NULL);
271                                 num_sync_run = 0;
272                         }
273                         cond_resched();
274                 }
275
276                 /*
277                  * we made progress, there is more work to do and the bdi
278                  * is now congested.  Back off and let other work structs
279                  * run instead
280                  */
281                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
282                     fs_info->fs_devices->open_devices > 1) {
283                         struct io_context *ioc;
284
285                         ioc = current->io_context;
286
287                         /*
288                          * the main goal here is that we don't want to
289                          * block if we're going to be able to submit
290                          * more requests without blocking.
291                          *
292                          * This code does two great things, it pokes into
293                          * the elevator code from a filesystem _and_
294                          * it makes assumptions about how batching works.
295                          */
296                         if (ioc && ioc->nr_batch_requests > 0 &&
297                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
298                             (last_waited == 0 ||
299                              ioc->last_waited == last_waited)) {
300                                 /*
301                                  * we want to go through our batch of
302                                  * requests and stop.  So, we copy out
303                                  * the ioc->last_waited time and test
304                                  * against it before looping
305                                  */
306                                 last_waited = ioc->last_waited;
307                                 if (need_resched()) {
308                                         if (num_sync_run) {
309                                                 blk_run_backing_dev(bdi, NULL);
310                                                 num_sync_run = 0;
311                                         }
312                                         cond_resched();
313                                 }
314                                 continue;
315                         }
316                         spin_lock(&device->io_lock);
317                         requeue_list(pending_bios, pending, tail);
318                         device->running_pending = 1;
319
320                         spin_unlock(&device->io_lock);
321                         btrfs_requeue_work(&device->work);
322                         goto done;
323                 }
324         }
325
326         if (num_sync_run) {
327                 num_sync_run = 0;
328                 blk_run_backing_dev(bdi, NULL);
329         }
330         /*
331          * IO has already been through a long path to get here.  Checksumming,
332          * async helper threads, perhaps compression.  We've done a pretty
333          * good job of collecting a batch of IO and should just unplug
334          * the device right away.
335          *
336          * This will help anyone who is waiting on the IO, they might have
337          * already unplugged, but managed to do so before the bio they
338          * cared about found its way down here.
339          */
340         blk_run_backing_dev(bdi, NULL);
341
342         cond_resched();
343         if (again)
344                 goto loop;
345
346         spin_lock(&device->io_lock);
347         if (device->pending_bios.head || device->pending_sync_bios.head)
348                 goto loop_lock;
349         spin_unlock(&device->io_lock);
350
351 done:
352         return 0;
353 }
354
355 static void pending_bios_fn(struct btrfs_work *work)
356 {
357         struct btrfs_device *device;
358
359         device = container_of(work, struct btrfs_device, work);
360         run_scheduled_bios(device);
361 }
362
363 static noinline int device_list_add(const char *path,
364                            struct btrfs_super_block *disk_super,
365                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
366 {
367         struct btrfs_device *device;
368         struct btrfs_fs_devices *fs_devices;
369         u64 found_transid = btrfs_super_generation(disk_super);
370         char *name;
371
372         fs_devices = find_fsid(disk_super->fsid);
373         if (!fs_devices) {
374                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
375                 if (!fs_devices)
376                         return -ENOMEM;
377                 INIT_LIST_HEAD(&fs_devices->devices);
378                 INIT_LIST_HEAD(&fs_devices->alloc_list);
379                 list_add(&fs_devices->list, &fs_uuids);
380                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
381                 fs_devices->latest_devid = devid;
382                 fs_devices->latest_trans = found_transid;
383                 mutex_init(&fs_devices->device_list_mutex);
384                 device = NULL;
385         } else {
386                 device = __find_device(&fs_devices->devices, devid,
387                                        disk_super->dev_item.uuid);
388         }
389         if (!device) {
390                 if (fs_devices->opened)
391                         return -EBUSY;
392
393                 device = kzalloc(sizeof(*device), GFP_NOFS);
394                 if (!device) {
395                         /* we can safely leave the fs_devices entry around */
396                         return -ENOMEM;
397                 }
398                 device->devid = devid;
399                 device->work.func = pending_bios_fn;
400                 memcpy(device->uuid, disk_super->dev_item.uuid,
401                        BTRFS_UUID_SIZE);
402                 spin_lock_init(&device->io_lock);
403                 device->name = kstrdup(path, GFP_NOFS);
404                 if (!device->name) {
405                         kfree(device);
406                         return -ENOMEM;
407                 }
408                 INIT_LIST_HEAD(&device->dev_alloc_list);
409
410                 mutex_lock(&fs_devices->device_list_mutex);
411                 list_add(&device->dev_list, &fs_devices->devices);
412                 mutex_unlock(&fs_devices->device_list_mutex);
413
414                 device->fs_devices = fs_devices;
415                 fs_devices->num_devices++;
416         } else if (!device->name || strcmp(device->name, path)) {
417                 name = kstrdup(path, GFP_NOFS);
418                 if (!name)
419                         return -ENOMEM;
420                 kfree(device->name);
421                 device->name = name;
422                 if (device->missing) {
423                         fs_devices->missing_devices--;
424                         device->missing = 0;
425                 }
426         }
427
428         if (found_transid > fs_devices->latest_trans) {
429                 fs_devices->latest_devid = devid;
430                 fs_devices->latest_trans = found_transid;
431         }
432         *fs_devices_ret = fs_devices;
433         return 0;
434 }
435
436 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
437 {
438         struct btrfs_fs_devices *fs_devices;
439         struct btrfs_device *device;
440         struct btrfs_device *orig_dev;
441
442         fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
443         if (!fs_devices)
444                 return ERR_PTR(-ENOMEM);
445
446         INIT_LIST_HEAD(&fs_devices->devices);
447         INIT_LIST_HEAD(&fs_devices->alloc_list);
448         INIT_LIST_HEAD(&fs_devices->list);
449         mutex_init(&fs_devices->device_list_mutex);
450         fs_devices->latest_devid = orig->latest_devid;
451         fs_devices->latest_trans = orig->latest_trans;
452         memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
453
454         mutex_lock(&orig->device_list_mutex);
455         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
456                 device = kzalloc(sizeof(*device), GFP_NOFS);
457                 if (!device)
458                         goto error;
459
460                 device->name = kstrdup(orig_dev->name, GFP_NOFS);
461                 if (!device->name) {
462                         kfree(device);
463                         goto error;
464                 }
465
466                 device->devid = orig_dev->devid;
467                 device->work.func = pending_bios_fn;
468                 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
469                 spin_lock_init(&device->io_lock);
470                 INIT_LIST_HEAD(&device->dev_list);
471                 INIT_LIST_HEAD(&device->dev_alloc_list);
472
473                 list_add(&device->dev_list, &fs_devices->devices);
474                 device->fs_devices = fs_devices;
475                 fs_devices->num_devices++;
476         }
477         mutex_unlock(&orig->device_list_mutex);
478         return fs_devices;
479 error:
480         mutex_unlock(&orig->device_list_mutex);
481         free_fs_devices(fs_devices);
482         return ERR_PTR(-ENOMEM);
483 }
484
485 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
486 {
487         struct btrfs_device *device, *next;
488
489         mutex_lock(&uuid_mutex);
490 again:
491         mutex_lock(&fs_devices->device_list_mutex);
492         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
493                 if (device->in_fs_metadata)
494                         continue;
495
496                 if (device->bdev) {
497                         blkdev_put(device->bdev, device->mode);
498                         device->bdev = NULL;
499                         fs_devices->open_devices--;
500                 }
501                 if (device->writeable) {
502                         list_del_init(&device->dev_alloc_list);
503                         device->writeable = 0;
504                         fs_devices->rw_devices--;
505                 }
506                 list_del_init(&device->dev_list);
507                 fs_devices->num_devices--;
508                 kfree(device->name);
509                 kfree(device);
510         }
511         mutex_unlock(&fs_devices->device_list_mutex);
512
513         if (fs_devices->seed) {
514                 fs_devices = fs_devices->seed;
515                 goto again;
516         }
517
518         mutex_unlock(&uuid_mutex);
519         return 0;
520 }
521
522 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
523 {
524         struct btrfs_device *device;
525
526         if (--fs_devices->opened > 0)
527                 return 0;
528
529         list_for_each_entry(device, &fs_devices->devices, dev_list) {
530                 if (device->bdev) {
531                         blkdev_put(device->bdev, device->mode);
532                         fs_devices->open_devices--;
533                 }
534                 if (device->writeable) {
535                         list_del_init(&device->dev_alloc_list);
536                         fs_devices->rw_devices--;
537                 }
538
539                 device->bdev = NULL;
540                 device->writeable = 0;
541                 device->in_fs_metadata = 0;
542         }
543         WARN_ON(fs_devices->open_devices);
544         WARN_ON(fs_devices->rw_devices);
545         fs_devices->opened = 0;
546         fs_devices->seeding = 0;
547
548         return 0;
549 }
550
551 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
552 {
553         struct btrfs_fs_devices *seed_devices = NULL;
554         int ret;
555
556         mutex_lock(&uuid_mutex);
557         ret = __btrfs_close_devices(fs_devices);
558         if (!fs_devices->opened) {
559                 seed_devices = fs_devices->seed;
560                 fs_devices->seed = NULL;
561         }
562         mutex_unlock(&uuid_mutex);
563
564         while (seed_devices) {
565                 fs_devices = seed_devices;
566                 seed_devices = fs_devices->seed;
567                 __btrfs_close_devices(fs_devices);
568                 free_fs_devices(fs_devices);
569         }
570         return ret;
571 }
572
573 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
574                                 fmode_t flags, void *holder)
575 {
576         struct block_device *bdev;
577         struct list_head *head = &fs_devices->devices;
578         struct btrfs_device *device;
579         struct block_device *latest_bdev = NULL;
580         struct buffer_head *bh;
581         struct btrfs_super_block *disk_super;
582         u64 latest_devid = 0;
583         u64 latest_transid = 0;
584         u64 devid;
585         int seeding = 1;
586         int ret = 0;
587
588         flags |= FMODE_EXCL;
589
590         list_for_each_entry(device, head, dev_list) {
591                 if (device->bdev)
592                         continue;
593                 if (!device->name)
594                         continue;
595
596                 bdev = blkdev_get_by_path(device->name, flags, holder);
597                 if (IS_ERR(bdev)) {
598                         printk(KERN_INFO "open %s failed\n", device->name);
599                         goto error;
600                 }
601                 set_blocksize(bdev, 4096);
602
603                 bh = btrfs_read_dev_super(bdev);
604                 if (!bh) {
605                         ret = -EINVAL;
606                         goto error_close;
607                 }
608
609                 disk_super = (struct btrfs_super_block *)bh->b_data;
610                 devid = btrfs_stack_device_id(&disk_super->dev_item);
611                 if (devid != device->devid)
612                         goto error_brelse;
613
614                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
615                            BTRFS_UUID_SIZE))
616                         goto error_brelse;
617
618                 device->generation = btrfs_super_generation(disk_super);
619                 if (!latest_transid || device->generation > latest_transid) {
620                         latest_devid = devid;
621                         latest_transid = device->generation;
622                         latest_bdev = bdev;
623                 }
624
625                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
626                         device->writeable = 0;
627                 } else {
628                         device->writeable = !bdev_read_only(bdev);
629                         seeding = 0;
630                 }
631
632                 device->bdev = bdev;
633                 device->in_fs_metadata = 0;
634                 device->mode = flags;
635
636                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
637                         fs_devices->rotating = 1;
638
639                 fs_devices->open_devices++;
640                 if (device->writeable) {
641                         fs_devices->rw_devices++;
642                         list_add(&device->dev_alloc_list,
643                                  &fs_devices->alloc_list);
644                 }
645                 continue;
646
647 error_brelse:
648                 brelse(bh);
649 error_close:
650                 blkdev_put(bdev, flags);
651 error:
652                 continue;
653         }
654         if (fs_devices->open_devices == 0) {
655                 ret = -EIO;
656                 goto out;
657         }
658         fs_devices->seeding = seeding;
659         fs_devices->opened = 1;
660         fs_devices->latest_bdev = latest_bdev;
661         fs_devices->latest_devid = latest_devid;
662         fs_devices->latest_trans = latest_transid;
663         fs_devices->total_rw_bytes = 0;
664 out:
665         return ret;
666 }
667
668 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
669                        fmode_t flags, void *holder)
670 {
671         int ret;
672
673         mutex_lock(&uuid_mutex);
674         if (fs_devices->opened) {
675                 fs_devices->opened++;
676                 ret = 0;
677         } else {
678                 ret = __btrfs_open_devices(fs_devices, flags, holder);
679         }
680         mutex_unlock(&uuid_mutex);
681         return ret;
682 }
683
684 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
685                           struct btrfs_fs_devices **fs_devices_ret)
686 {
687         struct btrfs_super_block *disk_super;
688         struct block_device *bdev;
689         struct buffer_head *bh;
690         int ret;
691         u64 devid;
692         u64 transid;
693
694         mutex_lock(&uuid_mutex);
695
696         flags |= FMODE_EXCL;
697         bdev = blkdev_get_by_path(path, flags, holder);
698
699         if (IS_ERR(bdev)) {
700                 ret = PTR_ERR(bdev);
701                 goto error;
702         }
703
704         ret = set_blocksize(bdev, 4096);
705         if (ret)
706                 goto error_close;
707         bh = btrfs_read_dev_super(bdev);
708         if (!bh) {
709                 ret = -EINVAL;
710                 goto error_close;
711         }
712         disk_super = (struct btrfs_super_block *)bh->b_data;
713         devid = btrfs_stack_device_id(&disk_super->dev_item);
714         transid = btrfs_super_generation(disk_super);
715         if (disk_super->label[0])
716                 printk(KERN_INFO "device label %s ", disk_super->label);
717         else {
718                 /* FIXME, make a readl uuid parser */
719                 printk(KERN_INFO "device fsid %llx-%llx ",
720                        *(unsigned long long *)disk_super->fsid,
721                        *(unsigned long long *)(disk_super->fsid + 8));
722         }
723         printk(KERN_CONT "devid %llu transid %llu %s\n",
724                (unsigned long long)devid, (unsigned long long)transid, path);
725         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
726
727         brelse(bh);
728 error_close:
729         blkdev_put(bdev, flags);
730 error:
731         mutex_unlock(&uuid_mutex);
732         return ret;
733 }
734
735 /* helper to account the used device space in the range */
736 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
737                                    u64 end, u64 *length)
738 {
739         struct btrfs_key key;
740         struct btrfs_root *root = device->dev_root;
741         struct btrfs_dev_extent *dev_extent;
742         struct btrfs_path *path;
743         u64 extent_end;
744         int ret;
745         int slot;
746         struct extent_buffer *l;
747
748         *length = 0;
749
750         if (start >= device->total_bytes)
751                 return 0;
752
753         path = btrfs_alloc_path();
754         if (!path)
755                 return -ENOMEM;
756         path->reada = 2;
757
758         key.objectid = device->devid;
759         key.offset = start;
760         key.type = BTRFS_DEV_EXTENT_KEY;
761
762         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
763         if (ret < 0)
764                 goto out;
765         if (ret > 0) {
766                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
767                 if (ret < 0)
768                         goto out;
769         }
770
771         while (1) {
772                 l = path->nodes[0];
773                 slot = path->slots[0];
774                 if (slot >= btrfs_header_nritems(l)) {
775                         ret = btrfs_next_leaf(root, path);
776                         if (ret == 0)
777                                 continue;
778                         if (ret < 0)
779                                 goto out;
780
781                         break;
782                 }
783                 btrfs_item_key_to_cpu(l, &key, slot);
784
785                 if (key.objectid < device->devid)
786                         goto next;
787
788                 if (key.objectid > device->devid)
789                         break;
790
791                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
792                         goto next;
793
794                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
795                 extent_end = key.offset + btrfs_dev_extent_length(l,
796                                                                   dev_extent);
797                 if (key.offset <= start && extent_end > end) {
798                         *length = end - start + 1;
799                         break;
800                 } else if (key.offset <= start && extent_end > start)
801                         *length += extent_end - start;
802                 else if (key.offset > start && extent_end <= end)
803                         *length += extent_end - key.offset;
804                 else if (key.offset > start && key.offset <= end) {
805                         *length += end - key.offset + 1;
806                         break;
807                 } else if (key.offset > end)
808                         break;
809
810 next:
811                 path->slots[0]++;
812         }
813         ret = 0;
814 out:
815         btrfs_free_path(path);
816         return ret;
817 }
818
819 /*
820  * find_free_dev_extent - find free space in the specified device
821  * @trans:      transaction handler
822  * @device:     the device which we search the free space in
823  * @num_bytes:  the size of the free space that we need
824  * @start:      store the start of the free space.
825  * @len:        the size of the free space. that we find, or the size of the max
826  *              free space if we don't find suitable free space
827  *
828  * this uses a pretty simple search, the expectation is that it is
829  * called very infrequently and that a given device has a small number
830  * of extents
831  *
832  * @start is used to store the start of the free space if we find. But if we
833  * don't find suitable free space, it will be used to store the start position
834  * of the max free space.
835  *
836  * @len is used to store the size of the free space that we find.
837  * But if we don't find suitable free space, it is used to store the size of
838  * the max free space.
839  */
840 int find_free_dev_extent(struct btrfs_trans_handle *trans,
841                          struct btrfs_device *device, u64 num_bytes,
842                          u64 *start, u64 *len)
843 {
844         struct btrfs_key key;
845         struct btrfs_root *root = device->dev_root;
846         struct btrfs_dev_extent *dev_extent;
847         struct btrfs_path *path;
848         u64 hole_size;
849         u64 max_hole_start;
850         u64 max_hole_size;
851         u64 extent_end;
852         u64 search_start;
853         u64 search_end = device->total_bytes;
854         int ret;
855         int slot;
856         struct extent_buffer *l;
857
858         /* FIXME use last free of some kind */
859
860         /* we don't want to overwrite the superblock on the drive,
861          * so we make sure to start at an offset of at least 1MB
862          */
863         search_start = 1024 * 1024;
864
865         if (root->fs_info->alloc_start + num_bytes <= search_end)
866                 search_start = max(root->fs_info->alloc_start, search_start);
867
868         max_hole_start = search_start;
869         max_hole_size = 0;
870
871         if (search_start >= search_end) {
872                 ret = -ENOSPC;
873                 goto error;
874         }
875
876         path = btrfs_alloc_path();
877         if (!path) {
878                 ret = -ENOMEM;
879                 goto error;
880         }
881         path->reada = 2;
882
883         key.objectid = device->devid;
884         key.offset = search_start;
885         key.type = BTRFS_DEV_EXTENT_KEY;
886
887         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
888         if (ret < 0)
889                 goto out;
890         if (ret > 0) {
891                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
892                 if (ret < 0)
893                         goto out;
894         }
895
896         while (1) {
897                 l = path->nodes[0];
898                 slot = path->slots[0];
899                 if (slot >= btrfs_header_nritems(l)) {
900                         ret = btrfs_next_leaf(root, path);
901                         if (ret == 0)
902                                 continue;
903                         if (ret < 0)
904                                 goto out;
905
906                         break;
907                 }
908                 btrfs_item_key_to_cpu(l, &key, slot);
909
910                 if (key.objectid < device->devid)
911                         goto next;
912
913                 if (key.objectid > device->devid)
914                         break;
915
916                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
917                         goto next;
918
919                 if (key.offset > search_start) {
920                         hole_size = key.offset - search_start;
921
922                         if (hole_size > max_hole_size) {
923                                 max_hole_start = search_start;
924                                 max_hole_size = hole_size;
925                         }
926
927                         /*
928                          * If this free space is greater than which we need,
929                          * it must be the max free space that we have found
930                          * until now, so max_hole_start must point to the start
931                          * of this free space and the length of this free space
932                          * is stored in max_hole_size. Thus, we return
933                          * max_hole_start and max_hole_size and go back to the
934                          * caller.
935                          */
936                         if (hole_size >= num_bytes) {
937                                 ret = 0;
938                                 goto out;
939                         }
940                 }
941
942                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
943                 extent_end = key.offset + btrfs_dev_extent_length(l,
944                                                                   dev_extent);
945                 if (extent_end > search_start)
946                         search_start = extent_end;
947 next:
948                 path->slots[0]++;
949                 cond_resched();
950         }
951
952         hole_size = search_end- search_start;
953         if (hole_size > max_hole_size) {
954                 max_hole_start = search_start;
955                 max_hole_size = hole_size;
956         }
957
958         /* See above. */
959         if (hole_size < num_bytes)
960                 ret = -ENOSPC;
961         else
962                 ret = 0;
963
964 out:
965         btrfs_free_path(path);
966 error:
967         *start = max_hole_start;
968         if (len)
969                 *len = max_hole_size;
970         return ret;
971 }
972
973 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
974                           struct btrfs_device *device,
975                           u64 start)
976 {
977         int ret;
978         struct btrfs_path *path;
979         struct btrfs_root *root = device->dev_root;
980         struct btrfs_key key;
981         struct btrfs_key found_key;
982         struct extent_buffer *leaf = NULL;
983         struct btrfs_dev_extent *extent = NULL;
984
985         path = btrfs_alloc_path();
986         if (!path)
987                 return -ENOMEM;
988
989         key.objectid = device->devid;
990         key.offset = start;
991         key.type = BTRFS_DEV_EXTENT_KEY;
992
993         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
994         if (ret > 0) {
995                 ret = btrfs_previous_item(root, path, key.objectid,
996                                           BTRFS_DEV_EXTENT_KEY);
997                 BUG_ON(ret);
998                 leaf = path->nodes[0];
999                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1000                 extent = btrfs_item_ptr(leaf, path->slots[0],
1001                                         struct btrfs_dev_extent);
1002                 BUG_ON(found_key.offset > start || found_key.offset +
1003                        btrfs_dev_extent_length(leaf, extent) < start);
1004                 ret = 0;
1005         } else if (ret == 0) {
1006                 leaf = path->nodes[0];
1007                 extent = btrfs_item_ptr(leaf, path->slots[0],
1008                                         struct btrfs_dev_extent);
1009         }
1010         BUG_ON(ret);
1011
1012         if (device->bytes_used > 0)
1013                 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
1014         ret = btrfs_del_item(trans, root, path);
1015         BUG_ON(ret);
1016
1017         btrfs_free_path(path);
1018         return ret;
1019 }
1020
1021 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1022                            struct btrfs_device *device,
1023                            u64 chunk_tree, u64 chunk_objectid,
1024                            u64 chunk_offset, u64 start, u64 num_bytes)
1025 {
1026         int ret;
1027         struct btrfs_path *path;
1028         struct btrfs_root *root = device->dev_root;
1029         struct btrfs_dev_extent *extent;
1030         struct extent_buffer *leaf;
1031         struct btrfs_key key;
1032
1033         WARN_ON(!device->in_fs_metadata);
1034         path = btrfs_alloc_path();
1035         if (!path)
1036                 return -ENOMEM;
1037
1038         key.objectid = device->devid;
1039         key.offset = start;
1040         key.type = BTRFS_DEV_EXTENT_KEY;
1041         ret = btrfs_insert_empty_item(trans, root, path, &key,
1042                                       sizeof(*extent));
1043         BUG_ON(ret);
1044
1045         leaf = path->nodes[0];
1046         extent = btrfs_item_ptr(leaf, path->slots[0],
1047                                 struct btrfs_dev_extent);
1048         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1049         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1050         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1051
1052         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1053                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1054                     BTRFS_UUID_SIZE);
1055
1056         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1057         btrfs_mark_buffer_dirty(leaf);
1058         btrfs_free_path(path);
1059         return ret;
1060 }
1061
1062 static noinline int find_next_chunk(struct btrfs_root *root,
1063                                     u64 objectid, u64 *offset)
1064 {
1065         struct btrfs_path *path;
1066         int ret;
1067         struct btrfs_key key;
1068         struct btrfs_chunk *chunk;
1069         struct btrfs_key found_key;
1070
1071         path = btrfs_alloc_path();
1072         BUG_ON(!path);
1073
1074         key.objectid = objectid;
1075         key.offset = (u64)-1;
1076         key.type = BTRFS_CHUNK_ITEM_KEY;
1077
1078         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1079         if (ret < 0)
1080                 goto error;
1081
1082         BUG_ON(ret == 0);
1083
1084         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1085         if (ret) {
1086                 *offset = 0;
1087         } else {
1088                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1089                                       path->slots[0]);
1090                 if (found_key.objectid != objectid)
1091                         *offset = 0;
1092                 else {
1093                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1094                                                struct btrfs_chunk);
1095                         *offset = found_key.offset +
1096                                 btrfs_chunk_length(path->nodes[0], chunk);
1097                 }
1098         }
1099         ret = 0;
1100 error:
1101         btrfs_free_path(path);
1102         return ret;
1103 }
1104
1105 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1106 {
1107         int ret;
1108         struct btrfs_key key;
1109         struct btrfs_key found_key;
1110         struct btrfs_path *path;
1111
1112         root = root->fs_info->chunk_root;
1113
1114         path = btrfs_alloc_path();
1115         if (!path)
1116                 return -ENOMEM;
1117
1118         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1119         key.type = BTRFS_DEV_ITEM_KEY;
1120         key.offset = (u64)-1;
1121
1122         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1123         if (ret < 0)
1124                 goto error;
1125
1126         BUG_ON(ret == 0);
1127
1128         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1129                                   BTRFS_DEV_ITEM_KEY);
1130         if (ret) {
1131                 *objectid = 1;
1132         } else {
1133                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1134                                       path->slots[0]);
1135                 *objectid = found_key.offset + 1;
1136         }
1137         ret = 0;
1138 error:
1139         btrfs_free_path(path);
1140         return ret;
1141 }
1142
1143 /*
1144  * the device information is stored in the chunk root
1145  * the btrfs_device struct should be fully filled in
1146  */
1147 int btrfs_add_device(struct btrfs_trans_handle *trans,
1148                      struct btrfs_root *root,
1149                      struct btrfs_device *device)
1150 {
1151         int ret;
1152         struct btrfs_path *path;
1153         struct btrfs_dev_item *dev_item;
1154         struct extent_buffer *leaf;
1155         struct btrfs_key key;
1156         unsigned long ptr;
1157
1158         root = root->fs_info->chunk_root;
1159
1160         path = btrfs_alloc_path();
1161         if (!path)
1162                 return -ENOMEM;
1163
1164         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1165         key.type = BTRFS_DEV_ITEM_KEY;
1166         key.offset = device->devid;
1167
1168         ret = btrfs_insert_empty_item(trans, root, path, &key,
1169                                       sizeof(*dev_item));
1170         if (ret)
1171                 goto out;
1172
1173         leaf = path->nodes[0];
1174         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1175
1176         btrfs_set_device_id(leaf, dev_item, device->devid);
1177         btrfs_set_device_generation(leaf, dev_item, 0);
1178         btrfs_set_device_type(leaf, dev_item, device->type);
1179         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1180         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1181         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1182         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1183         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1184         btrfs_set_device_group(leaf, dev_item, 0);
1185         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1186         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1187         btrfs_set_device_start_offset(leaf, dev_item, 0);
1188
1189         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1190         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1191         ptr = (unsigned long)btrfs_device_fsid(dev_item);
1192         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1193         btrfs_mark_buffer_dirty(leaf);
1194
1195         ret = 0;
1196 out:
1197         btrfs_free_path(path);
1198         return ret;
1199 }
1200
1201 static int btrfs_rm_dev_item(struct btrfs_root *root,
1202                              struct btrfs_device *device)
1203 {
1204         int ret;
1205         struct btrfs_path *path;
1206         struct btrfs_key key;
1207         struct btrfs_trans_handle *trans;
1208
1209         root = root->fs_info->chunk_root;
1210
1211         path = btrfs_alloc_path();
1212         if (!path)
1213                 return -ENOMEM;
1214
1215         trans = btrfs_start_transaction(root, 0);
1216         if (IS_ERR(trans)) {
1217                 btrfs_free_path(path);
1218                 return PTR_ERR(trans);
1219         }
1220         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1221         key.type = BTRFS_DEV_ITEM_KEY;
1222         key.offset = device->devid;
1223         lock_chunks(root);
1224
1225         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226         if (ret < 0)
1227                 goto out;
1228
1229         if (ret > 0) {
1230                 ret = -ENOENT;
1231                 goto out;
1232         }
1233
1234         ret = btrfs_del_item(trans, root, path);
1235         if (ret)
1236                 goto out;
1237 out:
1238         btrfs_free_path(path);
1239         unlock_chunks(root);
1240         btrfs_commit_transaction(trans, root);
1241         return ret;
1242 }
1243
1244 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1245 {
1246         struct btrfs_device *device;
1247         struct btrfs_device *next_device;
1248         struct block_device *bdev;
1249         struct buffer_head *bh = NULL;
1250         struct btrfs_super_block *disk_super;
1251         u64 all_avail;
1252         u64 devid;
1253         u64 num_devices;
1254         u8 *dev_uuid;
1255         int ret = 0;
1256
1257         mutex_lock(&uuid_mutex);
1258         mutex_lock(&root->fs_info->volume_mutex);
1259
1260         all_avail = root->fs_info->avail_data_alloc_bits |
1261                 root->fs_info->avail_system_alloc_bits |
1262                 root->fs_info->avail_metadata_alloc_bits;
1263
1264         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1265             root->fs_info->fs_devices->num_devices <= 4) {
1266                 printk(KERN_ERR "btrfs: unable to go below four devices "
1267                        "on raid10\n");
1268                 ret = -EINVAL;
1269                 goto out;
1270         }
1271
1272         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1273             root->fs_info->fs_devices->num_devices <= 2) {
1274                 printk(KERN_ERR "btrfs: unable to go below two "
1275                        "devices on raid1\n");
1276                 ret = -EINVAL;
1277                 goto out;
1278         }
1279
1280         if (strcmp(device_path, "missing") == 0) {
1281                 struct list_head *devices;
1282                 struct btrfs_device *tmp;
1283
1284                 device = NULL;
1285                 devices = &root->fs_info->fs_devices->devices;
1286                 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1287                 list_for_each_entry(tmp, devices, dev_list) {
1288                         if (tmp->in_fs_metadata && !tmp->bdev) {
1289                                 device = tmp;
1290                                 break;
1291                         }
1292                 }
1293                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1294                 bdev = NULL;
1295                 bh = NULL;
1296                 disk_super = NULL;
1297                 if (!device) {
1298                         printk(KERN_ERR "btrfs: no missing devices found to "
1299                                "remove\n");
1300                         goto out;
1301                 }
1302         } else {
1303                 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1304                                           root->fs_info->bdev_holder);
1305                 if (IS_ERR(bdev)) {
1306                         ret = PTR_ERR(bdev);
1307                         goto out;
1308                 }
1309
1310                 set_blocksize(bdev, 4096);
1311                 bh = btrfs_read_dev_super(bdev);
1312                 if (!bh) {
1313                         ret = -EINVAL;
1314                         goto error_close;
1315                 }
1316                 disk_super = (struct btrfs_super_block *)bh->b_data;
1317                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1318                 dev_uuid = disk_super->dev_item.uuid;
1319                 device = btrfs_find_device(root, devid, dev_uuid,
1320                                            disk_super->fsid);
1321                 if (!device) {
1322                         ret = -ENOENT;
1323                         goto error_brelse;
1324                 }
1325         }
1326
1327         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1328                 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1329                        "device\n");
1330                 ret = -EINVAL;
1331                 goto error_brelse;
1332         }
1333
1334         if (device->writeable) {
1335                 list_del_init(&device->dev_alloc_list);
1336                 root->fs_info->fs_devices->rw_devices--;
1337         }
1338
1339         ret = btrfs_shrink_device(device, 0);
1340         if (ret)
1341                 goto error_undo;
1342
1343         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1344         if (ret)
1345                 goto error_undo;
1346
1347         device->in_fs_metadata = 0;
1348
1349         /*
1350          * the device list mutex makes sure that we don't change
1351          * the device list while someone else is writing out all
1352          * the device supers.
1353          */
1354         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1355         list_del_init(&device->dev_list);
1356         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1357
1358         device->fs_devices->num_devices--;
1359
1360         if (device->missing)
1361                 root->fs_info->fs_devices->missing_devices--;
1362
1363         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1364                                  struct btrfs_device, dev_list);
1365         if (device->bdev == root->fs_info->sb->s_bdev)
1366                 root->fs_info->sb->s_bdev = next_device->bdev;
1367         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1368                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1369
1370         if (device->bdev) {
1371                 blkdev_put(device->bdev, device->mode);
1372                 device->bdev = NULL;
1373                 device->fs_devices->open_devices--;
1374         }
1375
1376         num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1377         btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1378
1379         if (device->fs_devices->open_devices == 0) {
1380                 struct btrfs_fs_devices *fs_devices;
1381                 fs_devices = root->fs_info->fs_devices;
1382                 while (fs_devices) {
1383                         if (fs_devices->seed == device->fs_devices)
1384                                 break;
1385                         fs_devices = fs_devices->seed;
1386                 }
1387                 fs_devices->seed = device->fs_devices->seed;
1388                 device->fs_devices->seed = NULL;
1389                 __btrfs_close_devices(device->fs_devices);
1390                 free_fs_devices(device->fs_devices);
1391         }
1392
1393         /*
1394          * at this point, the device is zero sized.  We want to
1395          * remove it from the devices list and zero out the old super
1396          */
1397         if (device->writeable) {
1398                 /* make sure this device isn't detected as part of
1399                  * the FS anymore
1400                  */
1401                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1402                 set_buffer_dirty(bh);
1403                 sync_dirty_buffer(bh);
1404         }
1405
1406         kfree(device->name);
1407         kfree(device);
1408         ret = 0;
1409
1410 error_brelse:
1411         brelse(bh);
1412 error_close:
1413         if (bdev)
1414                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1415 out:
1416         mutex_unlock(&root->fs_info->volume_mutex);
1417         mutex_unlock(&uuid_mutex);
1418         return ret;
1419 error_undo:
1420         if (device->writeable) {
1421                 list_add(&device->dev_alloc_list,
1422                          &root->fs_info->fs_devices->alloc_list);
1423                 root->fs_info->fs_devices->rw_devices++;
1424         }
1425         goto error_brelse;
1426 }
1427
1428 /*
1429  * does all the dirty work required for changing file system's UUID.
1430  */
1431 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1432                                 struct btrfs_root *root)
1433 {
1434         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1435         struct btrfs_fs_devices *old_devices;
1436         struct btrfs_fs_devices *seed_devices;
1437         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1438         struct btrfs_device *device;
1439         u64 super_flags;
1440
1441         BUG_ON(!mutex_is_locked(&uuid_mutex));
1442         if (!fs_devices->seeding)
1443                 return -EINVAL;
1444
1445         seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1446         if (!seed_devices)
1447                 return -ENOMEM;
1448
1449         old_devices = clone_fs_devices(fs_devices);
1450         if (IS_ERR(old_devices)) {
1451                 kfree(seed_devices);
1452                 return PTR_ERR(old_devices);
1453         }
1454
1455         list_add(&old_devices->list, &fs_uuids);
1456
1457         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1458         seed_devices->opened = 1;
1459         INIT_LIST_HEAD(&seed_devices->devices);
1460         INIT_LIST_HEAD(&seed_devices->alloc_list);
1461         mutex_init(&seed_devices->device_list_mutex);
1462         list_splice_init(&fs_devices->devices, &seed_devices->devices);
1463         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1464         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1465                 device->fs_devices = seed_devices;
1466         }
1467
1468         fs_devices->seeding = 0;
1469         fs_devices->num_devices = 0;
1470         fs_devices->open_devices = 0;
1471         fs_devices->seed = seed_devices;
1472
1473         generate_random_uuid(fs_devices->fsid);
1474         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1475         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1476         super_flags = btrfs_super_flags(disk_super) &
1477                       ~BTRFS_SUPER_FLAG_SEEDING;
1478         btrfs_set_super_flags(disk_super, super_flags);
1479
1480         return 0;
1481 }
1482
1483 /*
1484  * strore the expected generation for seed devices in device items.
1485  */
1486 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1487                                struct btrfs_root *root)
1488 {
1489         struct btrfs_path *path;
1490         struct extent_buffer *leaf;
1491         struct btrfs_dev_item *dev_item;
1492         struct btrfs_device *device;
1493         struct btrfs_key key;
1494         u8 fs_uuid[BTRFS_UUID_SIZE];
1495         u8 dev_uuid[BTRFS_UUID_SIZE];
1496         u64 devid;
1497         int ret;
1498
1499         path = btrfs_alloc_path();
1500         if (!path)
1501                 return -ENOMEM;
1502
1503         root = root->fs_info->chunk_root;
1504         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1505         key.offset = 0;
1506         key.type = BTRFS_DEV_ITEM_KEY;
1507
1508         while (1) {
1509                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1510                 if (ret < 0)
1511                         goto error;
1512
1513                 leaf = path->nodes[0];
1514 next_slot:
1515                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1516                         ret = btrfs_next_leaf(root, path);
1517                         if (ret > 0)
1518                                 break;
1519                         if (ret < 0)
1520                                 goto error;
1521                         leaf = path->nodes[0];
1522                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1523                         btrfs_release_path(root, path);
1524                         continue;
1525                 }
1526
1527                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1528                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1529                     key.type != BTRFS_DEV_ITEM_KEY)
1530                         break;
1531
1532                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1533                                           struct btrfs_dev_item);
1534                 devid = btrfs_device_id(leaf, dev_item);
1535                 read_extent_buffer(leaf, dev_uuid,
1536                                    (unsigned long)btrfs_device_uuid(dev_item),
1537                                    BTRFS_UUID_SIZE);
1538                 read_extent_buffer(leaf, fs_uuid,
1539                                    (unsigned long)btrfs_device_fsid(dev_item),
1540                                    BTRFS_UUID_SIZE);
1541                 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1542                 BUG_ON(!device);
1543
1544                 if (device->fs_devices->seeding) {
1545                         btrfs_set_device_generation(leaf, dev_item,
1546                                                     device->generation);
1547                         btrfs_mark_buffer_dirty(leaf);
1548                 }
1549
1550                 path->slots[0]++;
1551                 goto next_slot;
1552         }
1553         ret = 0;
1554 error:
1555         btrfs_free_path(path);
1556         return ret;
1557 }
1558
1559 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1560 {
1561         struct btrfs_trans_handle *trans;
1562         struct btrfs_device *device;
1563         struct block_device *bdev;
1564         struct list_head *devices;
1565         struct super_block *sb = root->fs_info->sb;
1566         u64 total_bytes;
1567         int seeding_dev = 0;
1568         int ret = 0;
1569
1570         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1571                 return -EINVAL;
1572
1573         bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1574                                   root->fs_info->bdev_holder);
1575         if (IS_ERR(bdev))
1576                 return PTR_ERR(bdev);
1577
1578         if (root->fs_info->fs_devices->seeding) {
1579                 seeding_dev = 1;
1580                 down_write(&sb->s_umount);
1581                 mutex_lock(&uuid_mutex);
1582         }
1583
1584         filemap_write_and_wait(bdev->bd_inode->i_mapping);
1585         mutex_lock(&root->fs_info->volume_mutex);
1586
1587         devices = &root->fs_info->fs_devices->devices;
1588         /*
1589          * we have the volume lock, so we don't need the extra
1590          * device list mutex while reading the list here.
1591          */
1592         list_for_each_entry(device, devices, dev_list) {
1593                 if (device->bdev == bdev) {
1594                         ret = -EEXIST;
1595                         goto error;
1596                 }
1597         }
1598
1599         device = kzalloc(sizeof(*device), GFP_NOFS);
1600         if (!device) {
1601                 /* we can safely leave the fs_devices entry around */
1602                 ret = -ENOMEM;
1603                 goto error;
1604         }
1605
1606         device->name = kstrdup(device_path, GFP_NOFS);
1607         if (!device->name) {
1608                 kfree(device);
1609                 ret = -ENOMEM;
1610                 goto error;
1611         }
1612
1613         ret = find_next_devid(root, &device->devid);
1614         if (ret) {
1615                 kfree(device->name);
1616                 kfree(device);
1617                 goto error;
1618         }
1619
1620         trans = btrfs_start_transaction(root, 0);
1621         if (IS_ERR(trans)) {
1622                 kfree(device->name);
1623                 kfree(device);
1624                 ret = PTR_ERR(trans);
1625                 goto error;
1626         }
1627
1628         lock_chunks(root);
1629
1630         device->writeable = 1;
1631         device->work.func = pending_bios_fn;
1632         generate_random_uuid(device->uuid);
1633         spin_lock_init(&device->io_lock);
1634         device->generation = trans->transid;
1635         device->io_width = root->sectorsize;
1636         device->io_align = root->sectorsize;
1637         device->sector_size = root->sectorsize;
1638         device->total_bytes = i_size_read(bdev->bd_inode);
1639         device->disk_total_bytes = device->total_bytes;
1640         device->dev_root = root->fs_info->dev_root;
1641         device->bdev = bdev;
1642         device->in_fs_metadata = 1;
1643         device->mode = FMODE_EXCL;
1644         set_blocksize(device->bdev, 4096);
1645
1646         if (seeding_dev) {
1647                 sb->s_flags &= ~MS_RDONLY;
1648                 ret = btrfs_prepare_sprout(trans, root);
1649                 BUG_ON(ret);
1650         }
1651
1652         device->fs_devices = root->fs_info->fs_devices;
1653
1654         /*
1655          * we don't want write_supers to jump in here with our device
1656          * half setup
1657          */
1658         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1659         list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1660         list_add(&device->dev_alloc_list,
1661                  &root->fs_info->fs_devices->alloc_list);
1662         root->fs_info->fs_devices->num_devices++;
1663         root->fs_info->fs_devices->open_devices++;
1664         root->fs_info->fs_devices->rw_devices++;
1665         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1666
1667         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1668                 root->fs_info->fs_devices->rotating = 1;
1669
1670         total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1671         btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1672                                     total_bytes + device->total_bytes);
1673
1674         total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1675         btrfs_set_super_num_devices(&root->fs_info->super_copy,
1676                                     total_bytes + 1);
1677         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1678
1679         if (seeding_dev) {
1680                 ret = init_first_rw_device(trans, root, device);
1681                 BUG_ON(ret);
1682                 ret = btrfs_finish_sprout(trans, root);
1683                 BUG_ON(ret);
1684         } else {
1685                 ret = btrfs_add_device(trans, root, device);
1686         }
1687
1688         /*
1689          * we've got more storage, clear any full flags on the space
1690          * infos
1691          */
1692         btrfs_clear_space_info_full(root->fs_info);
1693
1694         unlock_chunks(root);
1695         btrfs_commit_transaction(trans, root);
1696
1697         if (seeding_dev) {
1698                 mutex_unlock(&uuid_mutex);
1699                 up_write(&sb->s_umount);
1700
1701                 ret = btrfs_relocate_sys_chunks(root);
1702                 BUG_ON(ret);
1703         }
1704 out:
1705         mutex_unlock(&root->fs_info->volume_mutex);
1706         return ret;
1707 error:
1708         blkdev_put(bdev, FMODE_EXCL);
1709         if (seeding_dev) {
1710                 mutex_unlock(&uuid_mutex);
1711                 up_write(&sb->s_umount);
1712         }
1713         goto out;
1714 }
1715
1716 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1717                                         struct btrfs_device *device)
1718 {
1719         int ret;
1720         struct btrfs_path *path;
1721         struct btrfs_root *root;
1722         struct btrfs_dev_item *dev_item;
1723         struct extent_buffer *leaf;
1724         struct btrfs_key key;
1725
1726         root = device->dev_root->fs_info->chunk_root;
1727
1728         path = btrfs_alloc_path();
1729         if (!path)
1730                 return -ENOMEM;
1731
1732         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1733         key.type = BTRFS_DEV_ITEM_KEY;
1734         key.offset = device->devid;
1735
1736         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1737         if (ret < 0)
1738                 goto out;
1739
1740         if (ret > 0) {
1741                 ret = -ENOENT;
1742                 goto out;
1743         }
1744
1745         leaf = path->nodes[0];
1746         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1747
1748         btrfs_set_device_id(leaf, dev_item, device->devid);
1749         btrfs_set_device_type(leaf, dev_item, device->type);
1750         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1751         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1752         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1753         btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1754         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1755         btrfs_mark_buffer_dirty(leaf);
1756
1757 out:
1758         btrfs_free_path(path);
1759         return ret;
1760 }
1761
1762 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1763                       struct btrfs_device *device, u64 new_size)
1764 {
1765         struct btrfs_super_block *super_copy =
1766                 &device->dev_root->fs_info->super_copy;
1767         u64 old_total = btrfs_super_total_bytes(super_copy);
1768         u64 diff = new_size - device->total_bytes;
1769
1770         if (!device->writeable)
1771                 return -EACCES;
1772         if (new_size <= device->total_bytes)
1773                 return -EINVAL;
1774
1775         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1776         device->fs_devices->total_rw_bytes += diff;
1777
1778         device->total_bytes = new_size;
1779         device->disk_total_bytes = new_size;
1780         btrfs_clear_space_info_full(device->dev_root->fs_info);
1781
1782         return btrfs_update_device(trans, device);
1783 }
1784
1785 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1786                       struct btrfs_device *device, u64 new_size)
1787 {
1788         int ret;
1789         lock_chunks(device->dev_root);
1790         ret = __btrfs_grow_device(trans, device, new_size);
1791         unlock_chunks(device->dev_root);
1792         return ret;
1793 }
1794
1795 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1796                             struct btrfs_root *root,
1797                             u64 chunk_tree, u64 chunk_objectid,
1798                             u64 chunk_offset)
1799 {
1800         int ret;
1801         struct btrfs_path *path;
1802         struct btrfs_key key;
1803
1804         root = root->fs_info->chunk_root;
1805         path = btrfs_alloc_path();
1806         if (!path)
1807                 return -ENOMEM;
1808
1809         key.objectid = chunk_objectid;
1810         key.offset = chunk_offset;
1811         key.type = BTRFS_CHUNK_ITEM_KEY;
1812
1813         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1814         BUG_ON(ret);
1815
1816         ret = btrfs_del_item(trans, root, path);
1817         BUG_ON(ret);
1818
1819         btrfs_free_path(path);
1820         return 0;
1821 }
1822
1823 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1824                         chunk_offset)
1825 {
1826         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1827         struct btrfs_disk_key *disk_key;
1828         struct btrfs_chunk *chunk;
1829         u8 *ptr;
1830         int ret = 0;
1831         u32 num_stripes;
1832         u32 array_size;
1833         u32 len = 0;
1834         u32 cur;
1835         struct btrfs_key key;
1836
1837         array_size = btrfs_super_sys_array_size(super_copy);
1838
1839         ptr = super_copy->sys_chunk_array;
1840         cur = 0;
1841
1842         while (cur < array_size) {
1843                 disk_key = (struct btrfs_disk_key *)ptr;
1844                 btrfs_disk_key_to_cpu(&key, disk_key);
1845
1846                 len = sizeof(*disk_key);
1847
1848                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1849                         chunk = (struct btrfs_chunk *)(ptr + len);
1850                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1851                         len += btrfs_chunk_item_size(num_stripes);
1852                 } else {
1853                         ret = -EIO;
1854                         break;
1855                 }
1856                 if (key.objectid == chunk_objectid &&
1857                     key.offset == chunk_offset) {
1858                         memmove(ptr, ptr + len, array_size - (cur + len));
1859                         array_size -= len;
1860                         btrfs_set_super_sys_array_size(super_copy, array_size);
1861                 } else {
1862                         ptr += len;
1863                         cur += len;
1864                 }
1865         }
1866         return ret;
1867 }
1868
1869 static int btrfs_relocate_chunk(struct btrfs_root *root,
1870                          u64 chunk_tree, u64 chunk_objectid,
1871                          u64 chunk_offset)
1872 {
1873         struct extent_map_tree *em_tree;
1874         struct btrfs_root *extent_root;
1875         struct btrfs_trans_handle *trans;
1876         struct extent_map *em;
1877         struct map_lookup *map;
1878         int ret;
1879         int i;
1880
1881         root = root->fs_info->chunk_root;
1882         extent_root = root->fs_info->extent_root;
1883         em_tree = &root->fs_info->mapping_tree.map_tree;
1884
1885         ret = btrfs_can_relocate(extent_root, chunk_offset);
1886         if (ret)
1887                 return -ENOSPC;
1888
1889         /* step one, relocate all the extents inside this chunk */
1890         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1891         if (ret)
1892                 return ret;
1893
1894         trans = btrfs_start_transaction(root, 0);
1895         BUG_ON(IS_ERR(trans));
1896
1897         lock_chunks(root);
1898
1899         /*
1900          * step two, delete the device extents and the
1901          * chunk tree entries
1902          */
1903         read_lock(&em_tree->lock);
1904         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1905         read_unlock(&em_tree->lock);
1906
1907         BUG_ON(em->start > chunk_offset ||
1908                em->start + em->len < chunk_offset);
1909         map = (struct map_lookup *)em->bdev;
1910
1911         for (i = 0; i < map->num_stripes; i++) {
1912                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1913                                             map->stripes[i].physical);
1914                 BUG_ON(ret);
1915
1916                 if (map->stripes[i].dev) {
1917                         ret = btrfs_update_device(trans, map->stripes[i].dev);
1918                         BUG_ON(ret);
1919                 }
1920         }
1921         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1922                                chunk_offset);
1923
1924         BUG_ON(ret);
1925
1926         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1927                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1928                 BUG_ON(ret);
1929         }
1930
1931         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1932         BUG_ON(ret);
1933
1934         write_lock(&em_tree->lock);
1935         remove_extent_mapping(em_tree, em);
1936         write_unlock(&em_tree->lock);
1937
1938         kfree(map);
1939         em->bdev = NULL;
1940
1941         /* once for the tree */
1942         free_extent_map(em);
1943         /* once for us */
1944         free_extent_map(em);
1945
1946         unlock_chunks(root);
1947         btrfs_end_transaction(trans, root);
1948         return 0;
1949 }
1950
1951 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1952 {
1953         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1954         struct btrfs_path *path;
1955         struct extent_buffer *leaf;
1956         struct btrfs_chunk *chunk;
1957         struct btrfs_key key;
1958         struct btrfs_key found_key;
1959         u64 chunk_tree = chunk_root->root_key.objectid;
1960         u64 chunk_type;
1961         bool retried = false;
1962         int failed = 0;
1963         int ret;
1964
1965         path = btrfs_alloc_path();
1966         if (!path)
1967                 return -ENOMEM;
1968
1969 again:
1970         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1971         key.offset = (u64)-1;
1972         key.type = BTRFS_CHUNK_ITEM_KEY;
1973
1974         while (1) {
1975                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1976                 if (ret < 0)
1977                         goto error;
1978                 BUG_ON(ret == 0);
1979
1980                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1981                                           key.type);
1982                 if (ret < 0)
1983                         goto error;
1984                 if (ret > 0)
1985                         break;
1986
1987                 leaf = path->nodes[0];
1988                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1989
1990                 chunk = btrfs_item_ptr(leaf, path->slots[0],
1991                                        struct btrfs_chunk);
1992                 chunk_type = btrfs_chunk_type(leaf, chunk);
1993                 btrfs_release_path(chunk_root, path);
1994
1995                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1996                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1997                                                    found_key.objectid,
1998                                                    found_key.offset);
1999                         if (ret == -ENOSPC)
2000                                 failed++;
2001                         else if (ret)
2002                                 BUG();
2003                 }
2004
2005                 if (found_key.offset == 0)
2006                         break;
2007                 key.offset = found_key.offset - 1;
2008         }
2009         ret = 0;
2010         if (failed && !retried) {
2011                 failed = 0;
2012                 retried = true;
2013                 goto again;
2014         } else if (failed && retried) {
2015                 WARN_ON(1);
2016                 ret = -ENOSPC;
2017         }
2018 error:
2019         btrfs_free_path(path);
2020         return ret;
2021 }
2022
2023 static u64 div_factor(u64 num, int factor)
2024 {
2025         if (factor == 10)
2026                 return num;
2027         num *= factor;
2028         do_div(num, 10);
2029         return num;
2030 }
2031
2032 int btrfs_balance(struct btrfs_root *dev_root)
2033 {
2034         int ret;
2035         struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2036         struct btrfs_device *device;
2037         u64 old_size;
2038         u64 size_to_free;
2039         struct btrfs_path *path;
2040         struct btrfs_key key;
2041         struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2042         struct btrfs_trans_handle *trans;
2043         struct btrfs_key found_key;
2044
2045         if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2046                 return -EROFS;
2047
2048         if (!capable(CAP_SYS_ADMIN))
2049                 return -EPERM;
2050
2051         mutex_lock(&dev_root->fs_info->volume_mutex);
2052         dev_root = dev_root->fs_info->dev_root;
2053
2054         /* step one make some room on all the devices */
2055         list_for_each_entry(device, devices, dev_list) {
2056                 old_size = device->total_bytes;
2057                 size_to_free = div_factor(old_size, 1);
2058                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2059                 if (!device->writeable ||
2060                     device->total_bytes - device->bytes_used > size_to_free)
2061                         continue;
2062
2063                 ret = btrfs_shrink_device(device, old_size - size_to_free);
2064                 if (ret == -ENOSPC)
2065                         break;
2066                 BUG_ON(ret);
2067
2068                 trans = btrfs_start_transaction(dev_root, 0);
2069                 BUG_ON(IS_ERR(trans));
2070
2071                 ret = btrfs_grow_device(trans, device, old_size);
2072                 BUG_ON(ret);
2073
2074                 btrfs_end_transaction(trans, dev_root);
2075         }
2076
2077         /* step two, relocate all the chunks */
2078         path = btrfs_alloc_path();
2079         BUG_ON(!path);
2080
2081         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2082         key.offset = (u64)-1;
2083         key.type = BTRFS_CHUNK_ITEM_KEY;
2084
2085         while (1) {
2086                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2087                 if (ret < 0)
2088                         goto error;
2089
2090                 /*
2091                  * this shouldn't happen, it means the last relocate
2092                  * failed
2093                  */
2094                 if (ret == 0)
2095                         break;
2096
2097                 ret = btrfs_previous_item(chunk_root, path, 0,
2098                                           BTRFS_CHUNK_ITEM_KEY);
2099                 if (ret)
2100                         break;
2101
2102                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2103                                       path->slots[0]);
2104                 if (found_key.objectid != key.objectid)
2105                         break;
2106
2107                 /* chunk zero is special */
2108                 if (found_key.offset == 0)
2109                         break;
2110
2111                 btrfs_release_path(chunk_root, path);
2112                 ret = btrfs_relocate_chunk(chunk_root,
2113                                            chunk_root->root_key.objectid,
2114                                            found_key.objectid,
2115                                            found_key.offset);
2116                 BUG_ON(ret && ret != -ENOSPC);
2117                 key.offset = found_key.offset - 1;
2118         }
2119         ret = 0;
2120 error:
2121         btrfs_free_path(path);
2122         mutex_unlock(&dev_root->fs_info->volume_mutex);
2123         return ret;
2124 }
2125
2126 /*
2127  * shrinking a device means finding all of the device extents past
2128  * the new size, and then following the back refs to the chunks.
2129  * The chunk relocation code actually frees the device extent
2130  */
2131 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2132 {
2133         struct btrfs_trans_handle *trans;
2134         struct btrfs_root *root = device->dev_root;
2135         struct btrfs_dev_extent *dev_extent = NULL;
2136         struct btrfs_path *path;
2137         u64 length;
2138         u64 chunk_tree;
2139         u64 chunk_objectid;
2140         u64 chunk_offset;
2141         int ret;
2142         int slot;
2143         int failed = 0;
2144         bool retried = false;
2145         struct extent_buffer *l;
2146         struct btrfs_key key;
2147         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2148         u64 old_total = btrfs_super_total_bytes(super_copy);
2149         u64 old_size = device->total_bytes;
2150         u64 diff = device->total_bytes - new_size;
2151
2152         if (new_size >= device->total_bytes)
2153                 return -EINVAL;
2154
2155         path = btrfs_alloc_path();
2156         if (!path)
2157                 return -ENOMEM;
2158
2159         path->reada = 2;
2160
2161         lock_chunks(root);
2162
2163         device->total_bytes = new_size;
2164         if (device->writeable)
2165                 device->fs_devices->total_rw_bytes -= diff;
2166         unlock_chunks(root);
2167
2168 again:
2169         key.objectid = device->devid;
2170         key.offset = (u64)-1;
2171         key.type = BTRFS_DEV_EXTENT_KEY;
2172
2173         while (1) {
2174                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2175                 if (ret < 0)
2176                         goto done;
2177
2178                 ret = btrfs_previous_item(root, path, 0, key.type);
2179                 if (ret < 0)
2180                         goto done;
2181                 if (ret) {
2182                         ret = 0;
2183                         btrfs_release_path(root, path);
2184                         break;
2185                 }
2186
2187                 l = path->nodes[0];
2188                 slot = path->slots[0];
2189                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2190
2191                 if (key.objectid != device->devid) {
2192                         btrfs_release_path(root, path);
2193                         break;
2194                 }
2195
2196                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2197                 length = btrfs_dev_extent_length(l, dev_extent);
2198
2199                 if (key.offset + length <= new_size) {
2200                         btrfs_release_path(root, path);
2201                         break;
2202                 }
2203
2204                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2205                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2206                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2207                 btrfs_release_path(root, path);
2208
2209                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2210                                            chunk_offset);
2211                 if (ret && ret != -ENOSPC)
2212                         goto done;
2213                 if (ret == -ENOSPC)
2214                         failed++;
2215                 key.offset -= 1;
2216         }
2217
2218         if (failed && !retried) {
2219                 failed = 0;
2220                 retried = true;
2221                 goto again;
2222         } else if (failed && retried) {
2223                 ret = -ENOSPC;
2224                 lock_chunks(root);
2225
2226                 device->total_bytes = old_size;
2227                 if (device->writeable)
2228                         device->fs_devices->total_rw_bytes += diff;
2229                 unlock_chunks(root);
2230                 goto done;
2231         }
2232
2233         /* Shrinking succeeded, else we would be at "done". */
2234         trans = btrfs_start_transaction(root, 0);
2235         if (IS_ERR(trans)) {
2236                 ret = PTR_ERR(trans);
2237                 goto done;
2238         }
2239
2240         lock_chunks(root);
2241
2242         device->disk_total_bytes = new_size;
2243         /* Now btrfs_update_device() will change the on-disk size. */
2244         ret = btrfs_update_device(trans, device);
2245         if (ret) {
2246                 unlock_chunks(root);
2247                 btrfs_end_transaction(trans, root);
2248                 goto done;
2249         }
2250         WARN_ON(diff > old_total);
2251         btrfs_set_super_total_bytes(super_copy, old_total - diff);
2252         unlock_chunks(root);
2253         btrfs_end_transaction(trans, root);
2254 done:
2255         btrfs_free_path(path);
2256         return ret;
2257 }
2258
2259 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2260                            struct btrfs_root *root,
2261                            struct btrfs_key *key,
2262                            struct btrfs_chunk *chunk, int item_size)
2263 {
2264         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2265         struct btrfs_disk_key disk_key;
2266         u32 array_size;
2267         u8 *ptr;
2268
2269         array_size = btrfs_super_sys_array_size(super_copy);
2270         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2271                 return -EFBIG;
2272
2273         ptr = super_copy->sys_chunk_array + array_size;
2274         btrfs_cpu_key_to_disk(&disk_key, key);
2275         memcpy(ptr, &disk_key, sizeof(disk_key));
2276         ptr += sizeof(disk_key);
2277         memcpy(ptr, chunk, item_size);
2278         item_size += sizeof(disk_key);
2279         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2280         return 0;
2281 }
2282
2283 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2284                                         int num_stripes, int sub_stripes)
2285 {
2286         if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2287                 return calc_size;
2288         else if (type & BTRFS_BLOCK_GROUP_RAID10)
2289                 return calc_size * (num_stripes / sub_stripes);
2290         else
2291                 return calc_size * num_stripes;
2292 }
2293
2294 /* Used to sort the devices by max_avail(descending sort) */
2295 int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
2296 {
2297         if (((struct btrfs_device_info *)dev_info1)->max_avail >
2298             ((struct btrfs_device_info *)dev_info2)->max_avail)
2299                 return -1;
2300         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2301                  ((struct btrfs_device_info *)dev_info2)->max_avail)
2302                 return 1;
2303         else
2304                 return 0;
2305 }
2306
2307 static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2308                                  int *num_stripes, int *min_stripes,
2309                                  int *sub_stripes)
2310 {
2311         *num_stripes = 1;
2312         *min_stripes = 1;
2313         *sub_stripes = 0;
2314
2315         if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2316                 *num_stripes = fs_devices->rw_devices;
2317                 *min_stripes = 2;
2318         }
2319         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2320                 *num_stripes = 2;
2321                 *min_stripes = 2;
2322         }
2323         if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2324                 if (fs_devices->rw_devices < 2)
2325                         return -ENOSPC;
2326                 *num_stripes = 2;
2327                 *min_stripes = 2;
2328         }
2329         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2330                 *num_stripes = fs_devices->rw_devices;
2331                 if (*num_stripes < 4)
2332                         return -ENOSPC;
2333                 *num_stripes &= ~(u32)1;
2334                 *sub_stripes = 2;
2335                 *min_stripes = 4;
2336         }
2337
2338         return 0;
2339 }
2340
2341 static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2342                                     u64 proposed_size, u64 type,
2343                                     int num_stripes, int small_stripe)
2344 {
2345         int min_stripe_size = 1 * 1024 * 1024;
2346         u64 calc_size = proposed_size;
2347         u64 max_chunk_size = calc_size;
2348         int ncopies = 1;
2349
2350         if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2351                     BTRFS_BLOCK_GROUP_DUP |
2352                     BTRFS_BLOCK_GROUP_RAID10))
2353                 ncopies = 2;
2354
2355         if (type & BTRFS_BLOCK_GROUP_DATA) {
2356                 max_chunk_size = 10 * calc_size;
2357                 min_stripe_size = 64 * 1024 * 1024;
2358         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2359                 max_chunk_size = 256 * 1024 * 1024;
2360                 min_stripe_size = 32 * 1024 * 1024;
2361         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2362                 calc_size = 8 * 1024 * 1024;
2363                 max_chunk_size = calc_size * 2;
2364                 min_stripe_size = 1 * 1024 * 1024;
2365         }
2366
2367         /* we don't want a chunk larger than 10% of writeable space */
2368         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2369                              max_chunk_size);
2370
2371         if (calc_size * num_stripes > max_chunk_size * ncopies) {
2372                 calc_size = max_chunk_size * ncopies;
2373                 do_div(calc_size, num_stripes);
2374                 do_div(calc_size, BTRFS_STRIPE_LEN);
2375                 calc_size *= BTRFS_STRIPE_LEN;
2376         }
2377
2378         /* we don't want tiny stripes */
2379         if (!small_stripe)
2380                 calc_size = max_t(u64, min_stripe_size, calc_size);
2381
2382         /*
2383          * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
2384          * we end up with something bigger than a stripe
2385          */
2386         calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2387
2388         do_div(calc_size, BTRFS_STRIPE_LEN);
2389         calc_size *= BTRFS_STRIPE_LEN;
2390
2391         return calc_size;
2392 }
2393
2394 static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2395                                                       int num_stripes)
2396 {
2397         struct map_lookup *new;
2398         size_t len = map_lookup_size(num_stripes);
2399
2400         BUG_ON(map->num_stripes < num_stripes);
2401
2402         if (map->num_stripes == num_stripes)
2403                 return map;
2404
2405         new = kmalloc(len, GFP_NOFS);
2406         if (!new) {
2407                 /* just change map->num_stripes */
2408                 map->num_stripes = num_stripes;
2409                 return map;
2410         }
2411
2412         memcpy(new, map, len);
2413         new->num_stripes = num_stripes;
2414         kfree(map);
2415         return new;
2416 }
2417
2418 /*
2419  * helper to allocate device space from btrfs_device_info, in which we stored
2420  * max free space information of every device. It is used when we can not
2421  * allocate chunks by default size.
2422  *
2423  * By this helper, we can allocate a new chunk as larger as possible.
2424  */
2425 static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2426                                     struct btrfs_fs_devices *fs_devices,
2427                                     struct btrfs_device_info *devices,
2428                                     int nr_device, u64 type,
2429                                     struct map_lookup **map_lookup,
2430                                     int min_stripes, u64 *stripe_size)
2431 {
2432         int i, index, sort_again = 0;
2433         int min_devices = min_stripes;
2434         u64 max_avail, min_free;
2435         struct map_lookup *map = *map_lookup;
2436         int ret;
2437
2438         if (nr_device < min_stripes)
2439                 return -ENOSPC;
2440
2441         btrfs_descending_sort_devices(devices, nr_device);
2442
2443         max_avail = devices[0].max_avail;
2444         if (!max_avail)
2445                 return -ENOSPC;
2446
2447         for (i = 0; i < nr_device; i++) {
2448                 /*
2449                  * if dev_offset = 0, it means the free space of this device
2450                  * is less than what we need, and we didn't search max avail
2451                  * extent on this device, so do it now.
2452                  */
2453                 if (!devices[i].dev_offset) {
2454                         ret = find_free_dev_extent(trans, devices[i].dev,
2455                                                    max_avail,
2456                                                    &devices[i].dev_offset,
2457                                                    &devices[i].max_avail);
2458                         if (ret != 0 && ret != -ENOSPC)
2459                                 return ret;
2460                         sort_again = 1;
2461                 }
2462         }
2463
2464         /* we update the max avail free extent of each devices, sort again */
2465         if (sort_again)
2466                 btrfs_descending_sort_devices(devices, nr_device);
2467
2468         if (type & BTRFS_BLOCK_GROUP_DUP)
2469                 min_devices = 1;
2470
2471         if (!devices[min_devices - 1].max_avail)
2472                 return -ENOSPC;
2473
2474         max_avail = devices[min_devices - 1].max_avail;
2475         if (type & BTRFS_BLOCK_GROUP_DUP)
2476                 do_div(max_avail, 2);
2477
2478         max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2479                                              min_stripes, 1);
2480         if (type & BTRFS_BLOCK_GROUP_DUP)
2481                 min_free = max_avail * 2;
2482         else
2483                 min_free = max_avail;
2484
2485         if (min_free > devices[min_devices - 1].max_avail)
2486                 return -ENOSPC;
2487
2488         map = __shrink_map_lookup_stripes(map, min_stripes);
2489         *stripe_size = max_avail;
2490
2491         index = 0;
2492         for (i = 0; i < min_stripes; i++) {
2493                 map->stripes[i].dev = devices[index].dev;
2494                 map->stripes[i].physical = devices[index].dev_offset;
2495                 if (type & BTRFS_BLOCK_GROUP_DUP) {
2496                         i++;
2497                         map->stripes[i].dev = devices[index].dev;
2498                         map->stripes[i].physical = devices[index].dev_offset +
2499                                                    max_avail;
2500                 }
2501                 index++;
2502         }
2503         *map_lookup = map;
2504
2505         return 0;
2506 }
2507
2508 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2509                                struct btrfs_root *extent_root,
2510                                struct map_lookup **map_ret,
2511                                u64 *num_bytes, u64 *stripe_size,
2512                                u64 start, u64 type)
2513 {
2514         struct btrfs_fs_info *info = extent_root->fs_info;
2515         struct btrfs_device *device = NULL;
2516         struct btrfs_fs_devices *fs_devices = info->fs_devices;
2517         struct list_head *cur;
2518         struct map_lookup *map;
2519         struct extent_map_tree *em_tree;
2520         struct extent_map *em;
2521         struct btrfs_device_info *devices_info;
2522         struct list_head private_devs;
2523         u64 calc_size = 1024 * 1024 * 1024;
2524         u64 min_free;
2525         u64 avail;
2526         u64 dev_offset;
2527         int num_stripes;
2528         int min_stripes;
2529         int sub_stripes;
2530         int min_devices;        /* the min number of devices we need */
2531         int i;
2532         int ret;
2533         int index;
2534
2535         if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2536             (type & BTRFS_BLOCK_GROUP_DUP)) {
2537                 WARN_ON(1);
2538                 type &= ~BTRFS_BLOCK_GROUP_DUP;
2539         }
2540         if (list_empty(&fs_devices->alloc_list))
2541                 return -ENOSPC;
2542
2543         ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2544                                     &min_stripes, &sub_stripes);
2545         if (ret)
2546                 return ret;
2547
2548         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2549                                GFP_NOFS);
2550         if (!devices_info)
2551                 return -ENOMEM;
2552
2553         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2554         if (!map) {
2555                 ret = -ENOMEM;
2556                 goto error;
2557         }
2558         map->num_stripes = num_stripes;
2559
2560         cur = fs_devices->alloc_list.next;
2561         index = 0;
2562         i = 0;
2563
2564         calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2565                                              num_stripes, 0);
2566
2567         if (type & BTRFS_BLOCK_GROUP_DUP) {
2568                 min_free = calc_size * 2;
2569                 min_devices = 1;
2570         } else {
2571                 min_free = calc_size;
2572                 min_devices = min_stripes;
2573         }
2574
2575         INIT_LIST_HEAD(&private_devs);
2576         while (index < num_stripes) {
2577                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2578                 BUG_ON(!device->writeable);
2579                 if (device->total_bytes > device->bytes_used)
2580                         avail = device->total_bytes - device->bytes_used;
2581                 else
2582                         avail = 0;
2583                 cur = cur->next;
2584
2585                 if (device->in_fs_metadata && avail >= min_free) {
2586                         ret = find_free_dev_extent(trans, device, min_free,
2587                                                    &devices_info[i].dev_offset,
2588                                                    &devices_info[i].max_avail);
2589                         if (ret == 0) {
2590                                 list_move_tail(&device->dev_alloc_list,
2591                                                &private_devs);
2592                                 map->stripes[index].dev = device;
2593                                 map->stripes[index].physical =
2594                                                 devices_info[i].dev_offset;
2595                                 index++;
2596                                 if (type & BTRFS_BLOCK_GROUP_DUP) {
2597                                         map->stripes[index].dev = device;
2598                                         map->stripes[index].physical =
2599                                                 devices_info[i].dev_offset +
2600                                                 calc_size;
2601                                         index++;
2602                                 }
2603                         } else if (ret != -ENOSPC)
2604                                 goto error;
2605
2606                         devices_info[i].dev = device;
2607                         i++;
2608                 } else if (device->in_fs_metadata &&
2609                            avail >= BTRFS_STRIPE_LEN) {
2610                         devices_info[i].dev = device;
2611                         devices_info[i].max_avail = avail;
2612                         i++;
2613                 }
2614
2615                 if (cur == &fs_devices->alloc_list)
2616                         break;
2617         }
2618
2619         list_splice(&private_devs, &fs_devices->alloc_list);
2620         if (index < num_stripes) {
2621                 if (index >= min_stripes) {
2622                         num_stripes = index;
2623                         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2624                                 num_stripes /= sub_stripes;
2625                                 num_stripes *= sub_stripes;
2626                         }
2627
2628                         map = __shrink_map_lookup_stripes(map, num_stripes);
2629                 } else if (i >= min_devices) {
2630                         ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2631                                                        devices_info, i, type,
2632                                                        &map, min_stripes,
2633                                                        &calc_size);
2634                         if (ret)
2635                                 goto error;
2636                 } else {
2637                         ret = -ENOSPC;
2638                         goto error;
2639                 }
2640         }
2641         map->sector_size = extent_root->sectorsize;
2642         map->stripe_len = BTRFS_STRIPE_LEN;
2643         map->io_align = BTRFS_STRIPE_LEN;
2644         map->io_width = BTRFS_STRIPE_LEN;
2645         map->type = type;
2646         map->sub_stripes = sub_stripes;
2647
2648         *map_ret = map;
2649         *stripe_size = calc_size;
2650         *num_bytes = chunk_bytes_by_type(type, calc_size,
2651                                          map->num_stripes, sub_stripes);
2652
2653         em = alloc_extent_map(GFP_NOFS);
2654         if (!em) {
2655                 ret = -ENOMEM;
2656                 goto error;
2657         }
2658         em->bdev = (struct block_device *)map;
2659         em->start = start;
2660         em->len = *num_bytes;
2661         em->block_start = 0;
2662         em->block_len = em->len;
2663
2664         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2665         write_lock(&em_tree->lock);
2666         ret = add_extent_mapping(em_tree, em);
2667         write_unlock(&em_tree->lock);
2668         BUG_ON(ret);
2669         free_extent_map(em);
2670
2671         ret = btrfs_make_block_group(trans, extent_root, 0, type,
2672                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2673                                      start, *num_bytes);
2674         BUG_ON(ret);
2675
2676         index = 0;
2677         while (index < map->num_stripes) {
2678                 device = map->stripes[index].dev;
2679                 dev_offset = map->stripes[index].physical;
2680
2681                 ret = btrfs_alloc_dev_extent(trans, device,
2682                                 info->chunk_root->root_key.objectid,
2683                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2684                                 start, dev_offset, calc_size);
2685                 BUG_ON(ret);
2686                 index++;
2687         }
2688
2689         kfree(devices_info);
2690         return 0;
2691
2692 error:
2693         kfree(map);
2694         kfree(devices_info);
2695         return ret;
2696 }
2697
2698 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2699                                 struct btrfs_root *extent_root,
2700                                 struct map_lookup *map, u64 chunk_offset,
2701                                 u64 chunk_size, u64 stripe_size)
2702 {
2703         u64 dev_offset;
2704         struct btrfs_key key;
2705         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2706         struct btrfs_device *device;
2707         struct btrfs_chunk *chunk;
2708         struct btrfs_stripe *stripe;
2709         size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2710         int index = 0;
2711         int ret;
2712
2713         chunk = kzalloc(item_size, GFP_NOFS);
2714         if (!chunk)
2715                 return -ENOMEM;
2716
2717         index = 0;
2718         while (index < map->num_stripes) {
2719                 device = map->stripes[index].dev;
2720                 device->bytes_used += stripe_size;
2721                 ret = btrfs_update_device(trans, device);
2722                 BUG_ON(ret);
2723                 index++;
2724         }
2725
2726         index = 0;
2727         stripe = &chunk->stripe;
2728         while (index < map->num_stripes) {
2729                 device = map->stripes[index].dev;
2730                 dev_offset = map->stripes[index].physical;
2731
2732                 btrfs_set_stack_stripe_devid(stripe, device->devid);
2733                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2734                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2735                 stripe++;
2736                 index++;
2737         }
2738
2739         btrfs_set_stack_chunk_length(chunk, chunk_size);
2740         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2741         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2742         btrfs_set_stack_chunk_type(chunk, map->type);
2743         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2744         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2745         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2746         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2747         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2748
2749         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2750         key.type = BTRFS_CHUNK_ITEM_KEY;
2751         key.offset = chunk_offset;
2752
2753         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2754         BUG_ON(ret);
2755
2756         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2757                 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2758                                              item_size);
2759                 BUG_ON(ret);
2760         }
2761         kfree(chunk);
2762         return 0;
2763 }
2764
2765 /*
2766  * Chunk allocation falls into two parts. The first part does works
2767  * that make the new allocated chunk useable, but not do any operation
2768  * that modifies the chunk tree. The second part does the works that
2769  * require modifying the chunk tree. This division is important for the
2770  * bootstrap process of adding storage to a seed btrfs.
2771  */
2772 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2773                       struct btrfs_root *extent_root, u64 type)
2774 {
2775         u64 chunk_offset;
2776         u64 chunk_size;
2777         u64 stripe_size;
2778         struct map_lookup *map;
2779         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2780         int ret;
2781
2782         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2783                               &chunk_offset);
2784         if (ret)
2785                 return ret;
2786
2787         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2788                                   &stripe_size, chunk_offset, type);
2789         if (ret)
2790                 return ret;
2791
2792         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2793                                    chunk_size, stripe_size);
2794         BUG_ON(ret);
2795         return 0;
2796 }
2797
2798 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2799                                          struct btrfs_root *root,
2800                                          struct btrfs_device *device)
2801 {
2802         u64 chunk_offset;
2803         u64 sys_chunk_offset;
2804         u64 chunk_size;
2805         u64 sys_chunk_size;
2806         u64 stripe_size;
2807         u64 sys_stripe_size;
2808         u64 alloc_profile;
2809         struct map_lookup *map;
2810         struct map_lookup *sys_map;
2811         struct btrfs_fs_info *fs_info = root->fs_info;
2812         struct btrfs_root *extent_root = fs_info->extent_root;
2813         int ret;
2814
2815         ret = find_next_chunk(fs_info->chunk_root,
2816                               BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2817         BUG_ON(ret);
2818
2819         alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2820                         (fs_info->metadata_alloc_profile &
2821                          fs_info->avail_metadata_alloc_bits);
2822         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2823
2824         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2825                                   &stripe_size, chunk_offset, alloc_profile);
2826         BUG_ON(ret);
2827
2828         sys_chunk_offset = chunk_offset + chunk_size;
2829
2830         alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2831                         (fs_info->system_alloc_profile &
2832                          fs_info->avail_system_alloc_bits);
2833         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2834
2835         ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2836                                   &sys_chunk_size, &sys_stripe_size,
2837                                   sys_chunk_offset, alloc_profile);
2838         BUG_ON(ret);
2839
2840         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2841         BUG_ON(ret);
2842
2843         /*
2844          * Modifying chunk tree needs allocating new blocks from both
2845          * system block group and metadata block group. So we only can
2846          * do operations require modifying the chunk tree after both
2847          * block groups were created.
2848          */
2849         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2850                                    chunk_size, stripe_size);
2851         BUG_ON(ret);
2852
2853         ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2854                                    sys_chunk_offset, sys_chunk_size,
2855                                    sys_stripe_size);
2856         BUG_ON(ret);
2857         return 0;
2858 }
2859
2860 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2861 {
2862         struct extent_map *em;
2863         struct map_lookup *map;
2864         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2865         int readonly = 0;
2866         int i;
2867
2868         read_lock(&map_tree->map_tree.lock);
2869         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2870         read_unlock(&map_tree->map_tree.lock);
2871         if (!em)
2872                 return 1;
2873
2874         if (btrfs_test_opt(root, DEGRADED)) {
2875                 free_extent_map(em);
2876                 return 0;
2877         }
2878
2879         map = (struct map_lookup *)em->bdev;
2880         for (i = 0; i < map->num_stripes; i++) {
2881                 if (!map->stripes[i].dev->writeable) {
2882                         readonly = 1;
2883                         break;
2884                 }
2885         }
2886         free_extent_map(em);
2887         return readonly;
2888 }
2889
2890 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2891 {
2892         extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2893 }
2894
2895 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2896 {
2897         struct extent_map *em;
2898
2899         while (1) {
2900                 write_lock(&tree->map_tree.lock);
2901                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2902                 if (em)
2903                         remove_extent_mapping(&tree->map_tree, em);
2904                 write_unlock(&tree->map_tree.lock);
2905                 if (!em)
2906                         break;
2907                 kfree(em->bdev);
2908                 /* once for us */
2909                 free_extent_map(em);
2910                 /* once for the tree */
2911                 free_extent_map(em);
2912         }
2913 }
2914
2915 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2916 {
2917         struct extent_map *em;
2918         struct map_lookup *map;
2919         struct extent_map_tree *em_tree = &map_tree->map_tree;
2920         int ret;
2921
2922         read_lock(&em_tree->lock);
2923         em = lookup_extent_mapping(em_tree, logical, len);
2924         read_unlock(&em_tree->lock);
2925         BUG_ON(!em);
2926
2927         BUG_ON(em->start > logical || em->start + em->len < logical);
2928         map = (struct map_lookup *)em->bdev;
2929         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2930                 ret = map->num_stripes;
2931         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2932                 ret = map->sub_stripes;
2933         else
2934                 ret = 1;
2935         free_extent_map(em);
2936         return ret;
2937 }
2938
2939 static int find_live_mirror(struct map_lookup *map, int first, int num,
2940                             int optimal)
2941 {
2942         int i;
2943         if (map->stripes[optimal].dev->bdev)
2944                 return optimal;
2945         for (i = first; i < first + num; i++) {
2946                 if (map->stripes[i].dev->bdev)
2947                         return i;
2948         }
2949         /* we couldn't find one that doesn't fail.  Just return something
2950          * and the io error handling code will clean up eventually
2951          */
2952         return optimal;
2953 }
2954
2955 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2956                              u64 logical, u64 *length,
2957                              struct btrfs_multi_bio **multi_ret,
2958                              int mirror_num, struct page *unplug_page)
2959 {
2960         struct extent_map *em;
2961         struct map_lookup *map;
2962         struct extent_map_tree *em_tree = &map_tree->map_tree;
2963         u64 offset;
2964         u64 stripe_offset;
2965         u64 stripe_nr;
2966         int stripes_allocated = 8;
2967         int stripes_required = 1;
2968         int stripe_index;
2969         int i;
2970         int num_stripes;
2971         int max_errors = 0;
2972         struct btrfs_multi_bio *multi = NULL;
2973
2974         if (multi_ret && !(rw & REQ_WRITE))
2975                 stripes_allocated = 1;
2976 again:
2977         if (multi_ret) {
2978                 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2979                                 GFP_NOFS);
2980                 if (!multi)
2981                         return -ENOMEM;
2982
2983                 atomic_set(&multi->error, 0);
2984         }
2985
2986         read_lock(&em_tree->lock);
2987         em = lookup_extent_mapping(em_tree, logical, *length);
2988         read_unlock(&em_tree->lock);
2989
2990         if (!em && unplug_page) {
2991                 kfree(multi);
2992                 return 0;
2993         }
2994
2995         if (!em) {
2996                 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2997                        (unsigned long long)logical,
2998                        (unsigned long long)*length);
2999                 BUG();
3000         }
3001
3002         BUG_ON(em->start > logical || em->start + em->len < logical);
3003         map = (struct map_lookup *)em->bdev;
3004         offset = logical - em->start;
3005
3006         if (mirror_num > map->num_stripes)
3007                 mirror_num = 0;
3008
3009         /* if our multi bio struct is too small, back off and try again */
3010         if (rw & REQ_WRITE) {
3011                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3012                                  BTRFS_BLOCK_GROUP_DUP)) {
3013                         stripes_required = map->num_stripes;
3014                         max_errors = 1;
3015                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3016                         stripes_required = map->sub_stripes;
3017                         max_errors = 1;
3018                 }
3019         }
3020         if (multi_ret && (rw & REQ_WRITE) &&
3021             stripes_allocated < stripes_required) {
3022                 stripes_allocated = map->num_stripes;
3023                 free_extent_map(em);
3024                 kfree(multi);
3025                 goto again;
3026         }
3027         stripe_nr = offset;
3028         /*
3029          * stripe_nr counts the total number of stripes we have to stride
3030          * to get to this block
3031          */
3032         do_div(stripe_nr, map->stripe_len);
3033
3034         stripe_offset = stripe_nr * map->stripe_len;
3035         BUG_ON(offset < stripe_offset);
3036
3037         /* stripe_offset is the offset of this block in its stripe*/
3038         stripe_offset = offset - stripe_offset;
3039
3040         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
3041                          BTRFS_BLOCK_GROUP_RAID10 |
3042                          BTRFS_BLOCK_GROUP_DUP)) {
3043                 /* we limit the length of each bio to what fits in a stripe */
3044                 *length = min_t(u64, em->len - offset,
3045                               map->stripe_len - stripe_offset);
3046         } else {
3047                 *length = em->len - offset;
3048         }
3049
3050         if (!multi_ret && !unplug_page)
3051                 goto out;
3052
3053         num_stripes = 1;
3054         stripe_index = 0;
3055         if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3056                 if (unplug_page || (rw & REQ_WRITE))
3057                         num_stripes = map->num_stripes;
3058                 else if (mirror_num)
3059                         stripe_index = mirror_num - 1;
3060                 else {
3061                         stripe_index = find_live_mirror(map, 0,
3062                                             map->num_stripes,
3063                                             current->pid % map->num_stripes);
3064                 }
3065
3066         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3067                 if (rw & REQ_WRITE)
3068                         num_stripes = map->num_stripes;
3069                 else if (mirror_num)
3070                         stripe_index = mirror_num - 1;
3071
3072         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3073                 int factor = map->num_stripes / map->sub_stripes;
3074
3075                 stripe_index = do_div(stripe_nr, factor);
3076                 stripe_index *= map->sub_stripes;
3077
3078                 if (unplug_page || (rw & REQ_WRITE))
3079                         num_stripes = map->sub_stripes;
3080                 else if (mirror_num)
3081                         stripe_index += mirror_num - 1;
3082                 else {
3083                         stripe_index = find_live_mirror(map, stripe_index,
3084                                               map->sub_stripes, stripe_index +
3085                                               current->pid % map->sub_stripes);
3086                 }
3087         } else {
3088                 /*
3089                  * after this do_div call, stripe_nr is the number of stripes
3090                  * on this device we have to walk to find the data, and
3091                  * stripe_index is the number of our device in the stripe array
3092                  */
3093                 stripe_index = do_div(stripe_nr, map->num_stripes);
3094         }
3095         BUG_ON(stripe_index >= map->num_stripes);
3096
3097         for (i = 0; i < num_stripes; i++) {
3098                 if (unplug_page) {
3099                         struct btrfs_device *device;
3100                         struct backing_dev_info *bdi;
3101
3102                         device = map->stripes[stripe_index].dev;
3103                         if (device->bdev) {
3104                                 bdi = blk_get_backing_dev_info(device->bdev);
3105                                 if (bdi->unplug_io_fn)
3106                                         bdi->unplug_io_fn(bdi, unplug_page);
3107                         }
3108                 } else {
3109                         multi->stripes[i].physical =
3110                                 map->stripes[stripe_index].physical +
3111                                 stripe_offset + stripe_nr * map->stripe_len;
3112                         multi->stripes[i].dev = map->stripes[stripe_index].dev;
3113                 }
3114                 stripe_index++;
3115         }
3116         if (multi_ret) {
3117                 *multi_ret = multi;
3118                 multi->num_stripes = num_stripes;
3119                 multi->max_errors = max_errors;
3120         }
3121 out:
3122         free_extent_map(em);
3123         return 0;
3124 }
3125
3126 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3127                       u64 logical, u64 *length,
3128                       struct btrfs_multi_bio **multi_ret, int mirror_num)
3129 {
3130         return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3131                                  mirror_num, NULL);
3132 }
3133
3134 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3135                      u64 chunk_start, u64 physical, u64 devid,
3136                      u64 **logical, int *naddrs, int *stripe_len)
3137 {
3138         struct extent_map_tree *em_tree = &map_tree->map_tree;
3139         struct extent_map *em;
3140         struct map_lookup *map;
3141         u64 *buf;
3142         u64 bytenr;
3143         u64 length;
3144         u64 stripe_nr;
3145         int i, j, nr = 0;
3146
3147         read_lock(&em_tree->lock);
3148         em = lookup_extent_mapping(em_tree, chunk_start, 1);
3149         read_unlock(&em_tree->lock);
3150
3151         BUG_ON(!em || em->start != chunk_start);
3152         map = (struct map_lookup *)em->bdev;
3153
3154         length = em->len;
3155         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3156                 do_div(length, map->num_stripes / map->sub_stripes);
3157         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3158                 do_div(length, map->num_stripes);
3159
3160         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3161         BUG_ON(!buf);
3162
3163         for (i = 0; i < map->num_stripes; i++) {
3164                 if (devid && map->stripes[i].dev->devid != devid)
3165                         continue;
3166                 if (map->stripes[i].physical > physical ||
3167                     map->stripes[i].physical + length <= physical)
3168                         continue;
3169
3170                 stripe_nr = physical - map->stripes[i].physical;
3171                 do_div(stripe_nr, map->stripe_len);
3172
3173                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3174                         stripe_nr = stripe_nr * map->num_stripes + i;
3175                         do_div(stripe_nr, map->sub_stripes);
3176                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3177                         stripe_nr = stripe_nr * map->num_stripes + i;
3178                 }
3179                 bytenr = chunk_start + stripe_nr * map->stripe_len;
3180                 WARN_ON(nr >= map->num_stripes);
3181                 for (j = 0; j < nr; j++) {
3182                         if (buf[j] == bytenr)
3183                                 break;
3184                 }
3185                 if (j == nr) {
3186                         WARN_ON(nr >= map->num_stripes);
3187                         buf[nr++] = bytenr;
3188                 }
3189         }
3190
3191         *logical = buf;
3192         *naddrs = nr;
3193         *stripe_len = map->stripe_len;
3194
3195         free_extent_map(em);
3196         return 0;
3197 }
3198
3199 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
3200                       u64 logical, struct page *page)
3201 {
3202         u64 length = PAGE_CACHE_SIZE;
3203         return __btrfs_map_block(map_tree, READ, logical, &length,
3204                                  NULL, 0, page);
3205 }
3206
3207 static void end_bio_multi_stripe(struct bio *bio, int err)
3208 {
3209         struct btrfs_multi_bio *multi = bio->bi_private;
3210         int is_orig_bio = 0;
3211
3212         if (err)
3213                 atomic_inc(&multi->error);
3214
3215         if (bio == multi->orig_bio)
3216                 is_orig_bio = 1;
3217
3218         if (atomic_dec_and_test(&multi->stripes_pending)) {
3219                 if (!is_orig_bio) {
3220                         bio_put(bio);
3221                         bio = multi->orig_bio;
3222                 }
3223                 bio->bi_private = multi->private;
3224                 bio->bi_end_io = multi->end_io;
3225                 /* only send an error to the higher layers if it is
3226                  * beyond the tolerance of the multi-bio
3227                  */
3228                 if (atomic_read(&multi->error) > multi->max_errors) {
3229                         err = -EIO;
3230                 } else if (err) {
3231                         /*
3232                          * this bio is actually up to date, we didn't
3233                          * go over the max number of errors
3234                          */
3235                         set_bit(BIO_UPTODATE, &bio->bi_flags);
3236                         err = 0;
3237                 }
3238                 kfree(multi);
3239
3240                 bio_endio(bio, err);
3241         } else if (!is_orig_bio) {
3242                 bio_put(bio);
3243         }
3244 }
3245
3246 struct async_sched {
3247         struct bio *bio;
3248         int rw;
3249         struct btrfs_fs_info *info;
3250         struct btrfs_work work;
3251 };
3252
3253 /*
3254  * see run_scheduled_bios for a description of why bios are collected for
3255  * async submit.
3256  *
3257  * This will add one bio to the pending list for a device and make sure
3258  * the work struct is scheduled.
3259  */
3260 static noinline int schedule_bio(struct btrfs_root *root,
3261                                  struct btrfs_device *device,
3262                                  int rw, struct bio *bio)
3263 {
3264         int should_queue = 1;
3265         struct btrfs_pending_bios *pending_bios;
3266
3267         /* don't bother with additional async steps for reads, right now */
3268         if (!(rw & REQ_WRITE)) {
3269                 bio_get(bio);
3270                 submit_bio(rw, bio);
3271                 bio_put(bio);
3272                 return 0;
3273         }
3274
3275         /*
3276          * nr_async_bios allows us to reliably return congestion to the
3277          * higher layers.  Otherwise, the async bio makes it appear we have
3278          * made progress against dirty pages when we've really just put it
3279          * on a queue for later
3280          */
3281         atomic_inc(&root->fs_info->nr_async_bios);
3282         WARN_ON(bio->bi_next);
3283         bio->bi_next = NULL;
3284         bio->bi_rw |= rw;
3285
3286         spin_lock(&device->io_lock);
3287         if (bio->bi_rw & REQ_SYNC)
3288                 pending_bios = &device->pending_sync_bios;
3289         else
3290                 pending_bios = &device->pending_bios;
3291
3292         if (pending_bios->tail)
3293                 pending_bios->tail->bi_next = bio;
3294
3295         pending_bios->tail = bio;
3296         if (!pending_bios->head)
3297                 pending_bios->head = bio;
3298         if (device->running_pending)
3299                 should_queue = 0;
3300
3301         spin_unlock(&device->io_lock);
3302
3303         if (should_queue)
3304                 btrfs_queue_worker(&root->fs_info->submit_workers,
3305                                    &device->work);
3306         return 0;
3307 }
3308
3309 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3310                   int mirror_num, int async_submit)
3311 {
3312         struct btrfs_mapping_tree *map_tree;
3313         struct btrfs_device *dev;
3314         struct bio *first_bio = bio;
3315         u64 logical = (u64)bio->bi_sector << 9;
3316         u64 length = 0;
3317         u64 map_length;
3318         struct btrfs_multi_bio *multi = NULL;
3319         int ret;
3320         int dev_nr = 0;
3321         int total_devs = 1;
3322
3323         length = bio->bi_size;
3324         map_tree = &root->fs_info->mapping_tree;
3325         map_length = length;
3326
3327         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3328                               mirror_num);
3329         BUG_ON(ret);
3330
3331         total_devs = multi->num_stripes;
3332         if (map_length < length) {
3333                 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3334                        "len %llu\n", (unsigned long long)logical,
3335                        (unsigned long long)length,
3336                        (unsigned long long)map_length);
3337                 BUG();
3338         }
3339         multi->end_io = first_bio->bi_end_io;
3340         multi->private = first_bio->bi_private;
3341         multi->orig_bio = first_bio;
3342         atomic_set(&multi->stripes_pending, multi->num_stripes);
3343
3344         while (dev_nr < total_devs) {
3345                 if (total_devs > 1) {
3346                         if (dev_nr < total_devs - 1) {
3347                                 bio = bio_clone(first_bio, GFP_NOFS);
3348                                 BUG_ON(!bio);
3349                         } else {
3350                                 bio = first_bio;
3351                         }
3352                         bio->bi_private = multi;
3353                         bio->bi_end_io = end_bio_multi_stripe;
3354                 }
3355                 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3356                 dev = multi->stripes[dev_nr].dev;
3357                 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3358                         bio->bi_bdev = dev->bdev;
3359                         if (async_submit)
3360                                 schedule_bio(root, dev, rw, bio);
3361                         else
3362                                 submit_bio(rw, bio);
3363                 } else {
3364                         bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3365                         bio->bi_sector = logical >> 9;
3366                         bio_endio(bio, -EIO);
3367                 }
3368                 dev_nr++;
3369         }
3370         if (total_devs == 1)
3371                 kfree(multi);
3372         return 0;
3373 }
3374
3375 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3376                                        u8 *uuid, u8 *fsid)
3377 {
3378         struct btrfs_device *device;
3379         struct btrfs_fs_devices *cur_devices;
3380
3381         cur_devices = root->fs_info->fs_devices;
3382         while (cur_devices) {
3383                 if (!fsid ||
3384                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3385                         device = __find_device(&cur_devices->devices,
3386                                                devid, uuid);
3387                         if (device)
3388                                 return device;
3389                 }
3390                 cur_devices = cur_devices->seed;
3391         }
3392         return NULL;
3393 }
3394
3395 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3396                                             u64 devid, u8 *dev_uuid)
3397 {
3398         struct btrfs_device *device;
3399         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3400
3401         device = kzalloc(sizeof(*device), GFP_NOFS);
3402         if (!device)
3403                 return NULL;
3404         list_add(&device->dev_list,
3405                  &fs_devices->devices);
3406         device->dev_root = root->fs_info->dev_root;
3407         device->devid = devid;
3408         device->work.func = pending_bios_fn;
3409         device->fs_devices = fs_devices;
3410         device->missing = 1;
3411         fs_devices->num_devices++;
3412         fs_devices->missing_devices++;
3413         spin_lock_init(&device->io_lock);
3414         INIT_LIST_HEAD(&device->dev_alloc_list);
3415         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3416         return device;
3417 }
3418
3419 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3420                           struct extent_buffer *leaf,
3421                           struct btrfs_chunk *chunk)
3422 {
3423         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3424         struct map_lookup *map;
3425         struct extent_map *em;
3426         u64 logical;
3427         u64 length;
3428         u64 devid;
3429         u8 uuid[BTRFS_UUID_SIZE];
3430         int num_stripes;
3431         int ret;
3432         int i;
3433
3434         logical = key->offset;
3435         length = btrfs_chunk_length(leaf, chunk);
3436
3437         read_lock(&map_tree->map_tree.lock);
3438         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3439         read_unlock(&map_tree->map_tree.lock);
3440
3441         /* already mapped? */
3442         if (em && em->start <= logical && em->start + em->len > logical) {
3443                 free_extent_map(em);
3444                 return 0;
3445         } else if (em) {
3446                 free_extent_map(em);
3447         }
3448
3449         em = alloc_extent_map(GFP_NOFS);
3450         if (!em)
3451                 return -ENOMEM;
3452         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3453         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3454         if (!map) {
3455                 free_extent_map(em);
3456                 return -ENOMEM;
3457         }
3458
3459         em->bdev = (struct block_device *)map;
3460         em->start = logical;
3461         em->len = length;
3462         em->block_start = 0;
3463         em->block_len = em->len;
3464
3465         map->num_stripes = num_stripes;
3466         map->io_width = btrfs_chunk_io_width(leaf, chunk);
3467         map->io_align = btrfs_chunk_io_align(leaf, chunk);
3468         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3469         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3470         map->type = btrfs_chunk_type(leaf, chunk);
3471         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3472         for (i = 0; i < num_stripes; i++) {
3473                 map->stripes[i].physical =
3474                         btrfs_stripe_offset_nr(leaf, chunk, i);
3475                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3476                 read_extent_buffer(leaf, uuid, (unsigned long)
3477                                    btrfs_stripe_dev_uuid_nr(chunk, i),
3478                                    BTRFS_UUID_SIZE);
3479                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3480                                                         NULL);
3481                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3482                         kfree(map);
3483                         free_extent_map(em);
3484                         return -EIO;
3485                 }
3486                 if (!map->stripes[i].dev) {
3487                         map->stripes[i].dev =
3488                                 add_missing_dev(root, devid, uuid);
3489                         if (!map->stripes[i].dev) {
3490                                 kfree(map);
3491                                 free_extent_map(em);
3492                                 return -EIO;
3493                         }
3494                 }
3495                 map->stripes[i].dev->in_fs_metadata = 1;
3496         }
3497
3498         write_lock(&map_tree->map_tree.lock);
3499         ret = add_extent_mapping(&map_tree->map_tree, em);
3500         write_unlock(&map_tree->map_tree.lock);
3501         BUG_ON(ret);
3502         free_extent_map(em);
3503
3504         return 0;
3505 }
3506
3507 static int fill_device_from_item(struct extent_buffer *leaf,
3508                                  struct btrfs_dev_item *dev_item,
3509                                  struct btrfs_device *device)
3510 {
3511         unsigned long ptr;
3512
3513         device->devid = btrfs_device_id(leaf, dev_item);
3514         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3515         device->total_bytes = device->disk_total_bytes;
3516         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3517         device->type = btrfs_device_type(leaf, dev_item);
3518         device->io_align = btrfs_device_io_align(leaf, dev_item);
3519         device->io_width = btrfs_device_io_width(leaf, dev_item);
3520         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3521
3522         ptr = (unsigned long)btrfs_device_uuid(dev_item);
3523         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3524
3525         return 0;
3526 }
3527
3528 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3529 {
3530         struct btrfs_fs_devices *fs_devices;
3531         int ret;
3532
3533         mutex_lock(&uuid_mutex);
3534
3535         fs_devices = root->fs_info->fs_devices->seed;
3536         while (fs_devices) {
3537                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3538                         ret = 0;
3539                         goto out;
3540                 }
3541                 fs_devices = fs_devices->seed;
3542         }
3543
3544         fs_devices = find_fsid(fsid);
3545         if (!fs_devices) {
3546                 ret = -ENOENT;
3547                 goto out;
3548         }
3549
3550         fs_devices = clone_fs_devices(fs_devices);
3551         if (IS_ERR(fs_devices)) {
3552                 ret = PTR_ERR(fs_devices);
3553                 goto out;
3554         }
3555
3556         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3557                                    root->fs_info->bdev_holder);
3558         if (ret)
3559                 goto out;
3560
3561         if (!fs_devices->seeding) {
3562                 __btrfs_close_devices(fs_devices);
3563                 free_fs_devices(fs_devices);
3564                 ret = -EINVAL;
3565                 goto out;
3566         }
3567
3568         fs_devices->seed = root->fs_info->fs_devices->seed;
3569         root->fs_info->fs_devices->seed = fs_devices;
3570 out:
3571         mutex_unlock(&uuid_mutex);
3572         return ret;
3573 }
3574
3575 static int read_one_dev(struct btrfs_root *root,
3576                         struct extent_buffer *leaf,
3577                         struct btrfs_dev_item *dev_item)
3578 {
3579         struct btrfs_device *device;
3580         u64 devid;
3581         int ret;
3582         u8 fs_uuid[BTRFS_UUID_SIZE];
3583         u8 dev_uuid[BTRFS_UUID_SIZE];
3584
3585         devid = btrfs_device_id(leaf, dev_item);
3586         read_extent_buffer(leaf, dev_uuid,
3587                            (unsigned long)btrfs_device_uuid(dev_item),
3588                            BTRFS_UUID_SIZE);
3589         read_extent_buffer(leaf, fs_uuid,
3590                            (unsigned long)btrfs_device_fsid(dev_item),
3591                            BTRFS_UUID_SIZE);
3592
3593         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3594                 ret = open_seed_devices(root, fs_uuid);
3595                 if (ret && !btrfs_test_opt(root, DEGRADED))
3596                         return ret;
3597         }
3598
3599         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3600         if (!device || !device->bdev) {
3601                 if (!btrfs_test_opt(root, DEGRADED))
3602                         return -EIO;
3603
3604                 if (!device) {
3605                         printk(KERN_WARNING "warning devid %llu missing\n",
3606                                (unsigned long long)devid);
3607                         device = add_missing_dev(root, devid, dev_uuid);
3608                         if (!device)
3609                                 return -ENOMEM;
3610                 } else if (!device->missing) {
3611                         /*
3612                          * this happens when a device that was properly setup
3613                          * in the device info lists suddenly goes bad.
3614                          * device->bdev is NULL, and so we have to set
3615                          * device->missing to one here
3616                          */
3617                         root->fs_info->fs_devices->missing_devices++;
3618                         device->missing = 1;
3619                 }
3620         }
3621
3622         if (device->fs_devices != root->fs_info->fs_devices) {
3623                 BUG_ON(device->writeable);
3624                 if (device->generation !=
3625                     btrfs_device_generation(leaf, dev_item))
3626                         return -EINVAL;
3627         }
3628
3629         fill_device_from_item(leaf, dev_item, device);
3630         device->dev_root = root->fs_info->dev_root;
3631         device->in_fs_metadata = 1;
3632         if (device->writeable)
3633                 device->fs_devices->total_rw_bytes += device->total_bytes;
3634         ret = 0;
3635         return ret;
3636 }
3637
3638 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3639 {
3640         struct btrfs_dev_item *dev_item;
3641
3642         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3643                                                      dev_item);
3644         return read_one_dev(root, buf, dev_item);
3645 }
3646
3647 int btrfs_read_sys_array(struct btrfs_root *root)
3648 {
3649         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3650         struct extent_buffer *sb;
3651         struct btrfs_disk_key *disk_key;
3652         struct btrfs_chunk *chunk;
3653         u8 *ptr;
3654         unsigned long sb_ptr;
3655         int ret = 0;
3656         u32 num_stripes;
3657         u32 array_size;
3658         u32 len = 0;
3659         u32 cur;
3660         struct btrfs_key key;
3661
3662         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3663                                           BTRFS_SUPER_INFO_SIZE);
3664         if (!sb)
3665                 return -ENOMEM;
3666         btrfs_set_buffer_uptodate(sb);
3667         btrfs_set_buffer_lockdep_class(sb, 0);
3668
3669         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3670         array_size = btrfs_super_sys_array_size(super_copy);
3671
3672         ptr = super_copy->sys_chunk_array;
3673         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3674         cur = 0;
3675
3676         while (cur < array_size) {
3677                 disk_key = (struct btrfs_disk_key *)ptr;
3678                 btrfs_disk_key_to_cpu(&key, disk_key);
3679
3680                 len = sizeof(*disk_key); ptr += len;
3681                 sb_ptr += len;
3682                 cur += len;
3683
3684                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3685                         chunk = (struct btrfs_chunk *)sb_ptr;
3686                         ret = read_one_chunk(root, &key, sb, chunk);
3687                         if (ret)
3688                                 break;
3689                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3690                         len = btrfs_chunk_item_size(num_stripes);
3691                 } else {
3692                         ret = -EIO;
3693                         break;
3694                 }
3695                 ptr += len;
3696                 sb_ptr += len;
3697                 cur += len;
3698         }
3699         free_extent_buffer(sb);
3700         return ret;
3701 }
3702
3703 int btrfs_read_chunk_tree(struct btrfs_root *root)
3704 {
3705         struct btrfs_path *path;
3706         struct extent_buffer *leaf;
3707         struct btrfs_key key;
3708         struct btrfs_key found_key;
3709         int ret;
3710         int slot;
3711
3712         root = root->fs_info->chunk_root;
3713
3714         path = btrfs_alloc_path();
3715         if (!path)
3716                 return -ENOMEM;
3717
3718         /* first we search for all of the device items, and then we
3719          * read in all of the chunk items.  This way we can create chunk
3720          * mappings that reference all of the devices that are afound
3721          */
3722         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3723         key.offset = 0;
3724         key.type = 0;
3725 again:
3726         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3727         if (ret < 0)
3728                 goto error;
3729         while (1) {
3730                 leaf = path->nodes[0];
3731                 slot = path->slots[0];
3732                 if (slot >= btrfs_header_nritems(leaf)) {
3733                         ret = btrfs_next_leaf(root, path);
3734                         if (ret == 0)
3735                                 continue;
3736                         if (ret < 0)
3737                                 goto error;
3738                         break;
3739                 }
3740                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3741                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3742                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3743                                 break;
3744                         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3745                                 struct btrfs_dev_item *dev_item;
3746                                 dev_item = btrfs_item_ptr(leaf, slot,
3747                                                   struct btrfs_dev_item);
3748                                 ret = read_one_dev(root, leaf, dev_item);
3749                                 if (ret)
3750                                         goto error;
3751                         }
3752                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3753                         struct btrfs_chunk *chunk;
3754                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3755                         ret = read_one_chunk(root, &found_key, leaf, chunk);
3756                         if (ret)
3757                                 goto error;
3758                 }
3759                 path->slots[0]++;
3760         }
3761         if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3762                 key.objectid = 0;
3763                 btrfs_release_path(root, path);
3764                 goto again;
3765         }
3766         ret = 0;
3767 error:
3768         btrfs_free_path(path);
3769         return ret;
3770 }