Merge branch 'linux_next' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[cascardo/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46                                 struct btrfs_root *root,
47                                 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55
56 static void lock_chunks(struct btrfs_root *root)
57 {
58         mutex_lock(&root->fs_info->chunk_mutex);
59 }
60
61 static void unlock_chunks(struct btrfs_root *root)
62 {
63         mutex_unlock(&root->fs_info->chunk_mutex);
64 }
65
66 static struct btrfs_fs_devices *__alloc_fs_devices(void)
67 {
68         struct btrfs_fs_devices *fs_devs;
69
70         fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71         if (!fs_devs)
72                 return ERR_PTR(-ENOMEM);
73
74         mutex_init(&fs_devs->device_list_mutex);
75
76         INIT_LIST_HEAD(&fs_devs->devices);
77         INIT_LIST_HEAD(&fs_devs->alloc_list);
78         INIT_LIST_HEAD(&fs_devs->list);
79
80         return fs_devs;
81 }
82
83 /**
84  * alloc_fs_devices - allocate struct btrfs_fs_devices
85  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
86  *              generated.
87  *
88  * Return: a pointer to a new &struct btrfs_fs_devices on success;
89  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
90  * can be destroyed with kfree() right away.
91  */
92 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93 {
94         struct btrfs_fs_devices *fs_devs;
95
96         fs_devs = __alloc_fs_devices();
97         if (IS_ERR(fs_devs))
98                 return fs_devs;
99
100         if (fsid)
101                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102         else
103                 generate_random_uuid(fs_devs->fsid);
104
105         return fs_devs;
106 }
107
108 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109 {
110         struct btrfs_device *device;
111         WARN_ON(fs_devices->opened);
112         while (!list_empty(&fs_devices->devices)) {
113                 device = list_entry(fs_devices->devices.next,
114                                     struct btrfs_device, dev_list);
115                 list_del(&device->dev_list);
116                 rcu_string_free(device->name);
117                 kfree(device);
118         }
119         kfree(fs_devices);
120 }
121
122 static void btrfs_kobject_uevent(struct block_device *bdev,
123                                  enum kobject_action action)
124 {
125         int ret;
126
127         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128         if (ret)
129                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
130                         action,
131                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132                         &disk_to_dev(bdev->bd_disk)->kobj);
133 }
134
135 void btrfs_cleanup_fs_uuids(void)
136 {
137         struct btrfs_fs_devices *fs_devices;
138
139         while (!list_empty(&fs_uuids)) {
140                 fs_devices = list_entry(fs_uuids.next,
141                                         struct btrfs_fs_devices, list);
142                 list_del(&fs_devices->list);
143                 free_fs_devices(fs_devices);
144         }
145 }
146
147 static struct btrfs_device *__alloc_device(void)
148 {
149         struct btrfs_device *dev;
150
151         dev = kzalloc(sizeof(*dev), GFP_NOFS);
152         if (!dev)
153                 return ERR_PTR(-ENOMEM);
154
155         INIT_LIST_HEAD(&dev->dev_list);
156         INIT_LIST_HEAD(&dev->dev_alloc_list);
157
158         spin_lock_init(&dev->io_lock);
159
160         spin_lock_init(&dev->reada_lock);
161         atomic_set(&dev->reada_in_flight, 0);
162         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164
165         return dev;
166 }
167
168 static noinline struct btrfs_device *__find_device(struct list_head *head,
169                                                    u64 devid, u8 *uuid)
170 {
171         struct btrfs_device *dev;
172
173         list_for_each_entry(dev, head, dev_list) {
174                 if (dev->devid == devid &&
175                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
176                         return dev;
177                 }
178         }
179         return NULL;
180 }
181
182 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
183 {
184         struct btrfs_fs_devices *fs_devices;
185
186         list_for_each_entry(fs_devices, &fs_uuids, list) {
187                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188                         return fs_devices;
189         }
190         return NULL;
191 }
192
193 static int
194 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195                       int flush, struct block_device **bdev,
196                       struct buffer_head **bh)
197 {
198         int ret;
199
200         *bdev = blkdev_get_by_path(device_path, flags, holder);
201
202         if (IS_ERR(*bdev)) {
203                 ret = PTR_ERR(*bdev);
204                 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
205                 goto error;
206         }
207
208         if (flush)
209                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210         ret = set_blocksize(*bdev, 4096);
211         if (ret) {
212                 blkdev_put(*bdev, flags);
213                 goto error;
214         }
215         invalidate_bdev(*bdev);
216         *bh = btrfs_read_dev_super(*bdev);
217         if (!*bh) {
218                 ret = -EINVAL;
219                 blkdev_put(*bdev, flags);
220                 goto error;
221         }
222
223         return 0;
224
225 error:
226         *bdev = NULL;
227         *bh = NULL;
228         return ret;
229 }
230
231 static void requeue_list(struct btrfs_pending_bios *pending_bios,
232                         struct bio *head, struct bio *tail)
233 {
234
235         struct bio *old_head;
236
237         old_head = pending_bios->head;
238         pending_bios->head = head;
239         if (pending_bios->tail)
240                 tail->bi_next = old_head;
241         else
242                 pending_bios->tail = tail;
243 }
244
245 /*
246  * we try to collect pending bios for a device so we don't get a large
247  * number of procs sending bios down to the same device.  This greatly
248  * improves the schedulers ability to collect and merge the bios.
249  *
250  * But, it also turns into a long list of bios to process and that is sure
251  * to eventually make the worker thread block.  The solution here is to
252  * make some progress and then put this work struct back at the end of
253  * the list if the block device is congested.  This way, multiple devices
254  * can make progress from a single worker thread.
255  */
256 static noinline void run_scheduled_bios(struct btrfs_device *device)
257 {
258         struct bio *pending;
259         struct backing_dev_info *bdi;
260         struct btrfs_fs_info *fs_info;
261         struct btrfs_pending_bios *pending_bios;
262         struct bio *tail;
263         struct bio *cur;
264         int again = 0;
265         unsigned long num_run;
266         unsigned long batch_run = 0;
267         unsigned long limit;
268         unsigned long last_waited = 0;
269         int force_reg = 0;
270         int sync_pending = 0;
271         struct blk_plug plug;
272
273         /*
274          * this function runs all the bios we've collected for
275          * a particular device.  We don't want to wander off to
276          * another device without first sending all of these down.
277          * So, setup a plug here and finish it off before we return
278          */
279         blk_start_plug(&plug);
280
281         bdi = blk_get_backing_dev_info(device->bdev);
282         fs_info = device->dev_root->fs_info;
283         limit = btrfs_async_submit_limit(fs_info);
284         limit = limit * 2 / 3;
285
286 loop:
287         spin_lock(&device->io_lock);
288
289 loop_lock:
290         num_run = 0;
291
292         /* take all the bios off the list at once and process them
293          * later on (without the lock held).  But, remember the
294          * tail and other pointers so the bios can be properly reinserted
295          * into the list if we hit congestion
296          */
297         if (!force_reg && device->pending_sync_bios.head) {
298                 pending_bios = &device->pending_sync_bios;
299                 force_reg = 1;
300         } else {
301                 pending_bios = &device->pending_bios;
302                 force_reg = 0;
303         }
304
305         pending = pending_bios->head;
306         tail = pending_bios->tail;
307         WARN_ON(pending && !tail);
308
309         /*
310          * if pending was null this time around, no bios need processing
311          * at all and we can stop.  Otherwise it'll loop back up again
312          * and do an additional check so no bios are missed.
313          *
314          * device->running_pending is used to synchronize with the
315          * schedule_bio code.
316          */
317         if (device->pending_sync_bios.head == NULL &&
318             device->pending_bios.head == NULL) {
319                 again = 0;
320                 device->running_pending = 0;
321         } else {
322                 again = 1;
323                 device->running_pending = 1;
324         }
325
326         pending_bios->head = NULL;
327         pending_bios->tail = NULL;
328
329         spin_unlock(&device->io_lock);
330
331         while (pending) {
332
333                 rmb();
334                 /* we want to work on both lists, but do more bios on the
335                  * sync list than the regular list
336                  */
337                 if ((num_run > 32 &&
338                     pending_bios != &device->pending_sync_bios &&
339                     device->pending_sync_bios.head) ||
340                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341                     device->pending_bios.head)) {
342                         spin_lock(&device->io_lock);
343                         requeue_list(pending_bios, pending, tail);
344                         goto loop_lock;
345                 }
346
347                 cur = pending;
348                 pending = pending->bi_next;
349                 cur->bi_next = NULL;
350
351                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
352                     waitqueue_active(&fs_info->async_submit_wait))
353                         wake_up(&fs_info->async_submit_wait);
354
355                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
356
357                 /*
358                  * if we're doing the sync list, record that our
359                  * plug has some sync requests on it
360                  *
361                  * If we're doing the regular list and there are
362                  * sync requests sitting around, unplug before
363                  * we add more
364                  */
365                 if (pending_bios == &device->pending_sync_bios) {
366                         sync_pending = 1;
367                 } else if (sync_pending) {
368                         blk_finish_plug(&plug);
369                         blk_start_plug(&plug);
370                         sync_pending = 0;
371                 }
372
373                 btrfsic_submit_bio(cur->bi_rw, cur);
374                 num_run++;
375                 batch_run++;
376                 if (need_resched())
377                         cond_resched();
378
379                 /*
380                  * we made progress, there is more work to do and the bdi
381                  * is now congested.  Back off and let other work structs
382                  * run instead
383                  */
384                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
385                     fs_info->fs_devices->open_devices > 1) {
386                         struct io_context *ioc;
387
388                         ioc = current->io_context;
389
390                         /*
391                          * the main goal here is that we don't want to
392                          * block if we're going to be able to submit
393                          * more requests without blocking.
394                          *
395                          * This code does two great things, it pokes into
396                          * the elevator code from a filesystem _and_
397                          * it makes assumptions about how batching works.
398                          */
399                         if (ioc && ioc->nr_batch_requests > 0 &&
400                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401                             (last_waited == 0 ||
402                              ioc->last_waited == last_waited)) {
403                                 /*
404                                  * we want to go through our batch of
405                                  * requests and stop.  So, we copy out
406                                  * the ioc->last_waited time and test
407                                  * against it before looping
408                                  */
409                                 last_waited = ioc->last_waited;
410                                 if (need_resched())
411                                         cond_resched();
412                                 continue;
413                         }
414                         spin_lock(&device->io_lock);
415                         requeue_list(pending_bios, pending, tail);
416                         device->running_pending = 1;
417
418                         spin_unlock(&device->io_lock);
419                         btrfs_queue_work(fs_info->submit_workers,
420                                          &device->work);
421                         goto done;
422                 }
423                 /* unplug every 64 requests just for good measure */
424                 if (batch_run % 64 == 0) {
425                         blk_finish_plug(&plug);
426                         blk_start_plug(&plug);
427                         sync_pending = 0;
428                 }
429         }
430
431         cond_resched();
432         if (again)
433                 goto loop;
434
435         spin_lock(&device->io_lock);
436         if (device->pending_bios.head || device->pending_sync_bios.head)
437                 goto loop_lock;
438         spin_unlock(&device->io_lock);
439
440 done:
441         blk_finish_plug(&plug);
442 }
443
444 static void pending_bios_fn(struct btrfs_work *work)
445 {
446         struct btrfs_device *device;
447
448         device = container_of(work, struct btrfs_device, work);
449         run_scheduled_bios(device);
450 }
451
452 /*
453  * Add new device to list of registered devices
454  *
455  * Returns:
456  * 1   - first time device is seen
457  * 0   - device already known
458  * < 0 - error
459  */
460 static noinline int device_list_add(const char *path,
461                            struct btrfs_super_block *disk_super,
462                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
463 {
464         struct btrfs_device *device;
465         struct btrfs_fs_devices *fs_devices;
466         struct rcu_string *name;
467         int ret = 0;
468         u64 found_transid = btrfs_super_generation(disk_super);
469
470         fs_devices = find_fsid(disk_super->fsid);
471         if (!fs_devices) {
472                 fs_devices = alloc_fs_devices(disk_super->fsid);
473                 if (IS_ERR(fs_devices))
474                         return PTR_ERR(fs_devices);
475
476                 list_add(&fs_devices->list, &fs_uuids);
477                 fs_devices->latest_devid = devid;
478                 fs_devices->latest_trans = found_transid;
479
480                 device = NULL;
481         } else {
482                 device = __find_device(&fs_devices->devices, devid,
483                                        disk_super->dev_item.uuid);
484         }
485         if (!device) {
486                 if (fs_devices->opened)
487                         return -EBUSY;
488
489                 device = btrfs_alloc_device(NULL, &devid,
490                                             disk_super->dev_item.uuid);
491                 if (IS_ERR(device)) {
492                         /* we can safely leave the fs_devices entry around */
493                         return PTR_ERR(device);
494                 }
495
496                 name = rcu_string_strdup(path, GFP_NOFS);
497                 if (!name) {
498                         kfree(device);
499                         return -ENOMEM;
500                 }
501                 rcu_assign_pointer(device->name, name);
502
503                 mutex_lock(&fs_devices->device_list_mutex);
504                 list_add_rcu(&device->dev_list, &fs_devices->devices);
505                 fs_devices->num_devices++;
506                 mutex_unlock(&fs_devices->device_list_mutex);
507
508                 ret = 1;
509                 device->fs_devices = fs_devices;
510         } else if (!device->name || strcmp(device->name->str, path)) {
511                 name = rcu_string_strdup(path, GFP_NOFS);
512                 if (!name)
513                         return -ENOMEM;
514                 rcu_string_free(device->name);
515                 rcu_assign_pointer(device->name, name);
516                 if (device->missing) {
517                         fs_devices->missing_devices--;
518                         device->missing = 0;
519                 }
520         }
521
522         if (found_transid > fs_devices->latest_trans) {
523                 fs_devices->latest_devid = devid;
524                 fs_devices->latest_trans = found_transid;
525         }
526         *fs_devices_ret = fs_devices;
527
528         return ret;
529 }
530
531 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
532 {
533         struct btrfs_fs_devices *fs_devices;
534         struct btrfs_device *device;
535         struct btrfs_device *orig_dev;
536
537         fs_devices = alloc_fs_devices(orig->fsid);
538         if (IS_ERR(fs_devices))
539                 return fs_devices;
540
541         fs_devices->latest_devid = orig->latest_devid;
542         fs_devices->latest_trans = orig->latest_trans;
543         fs_devices->total_devices = orig->total_devices;
544
545         /* We have held the volume lock, it is safe to get the devices. */
546         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
547                 struct rcu_string *name;
548
549                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
550                                             orig_dev->uuid);
551                 if (IS_ERR(device))
552                         goto error;
553
554                 /*
555                  * This is ok to do without rcu read locked because we hold the
556                  * uuid mutex so nothing we touch in here is going to disappear.
557                  */
558                 if (orig_dev->name) {
559                         name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
560                         if (!name) {
561                                 kfree(device);
562                                 goto error;
563                         }
564                         rcu_assign_pointer(device->name, name);
565                 }
566
567                 list_add(&device->dev_list, &fs_devices->devices);
568                 device->fs_devices = fs_devices;
569                 fs_devices->num_devices++;
570         }
571         return fs_devices;
572 error:
573         free_fs_devices(fs_devices);
574         return ERR_PTR(-ENOMEM);
575 }
576
577 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
578                                struct btrfs_fs_devices *fs_devices, int step)
579 {
580         struct btrfs_device *device, *next;
581
582         struct block_device *latest_bdev = NULL;
583         u64 latest_devid = 0;
584         u64 latest_transid = 0;
585
586         mutex_lock(&uuid_mutex);
587 again:
588         /* This is the initialized path, it is safe to release the devices. */
589         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
590                 if (device->in_fs_metadata) {
591                         if (!device->is_tgtdev_for_dev_replace &&
592                             (!latest_transid ||
593                              device->generation > latest_transid)) {
594                                 latest_devid = device->devid;
595                                 latest_transid = device->generation;
596                                 latest_bdev = device->bdev;
597                         }
598                         continue;
599                 }
600
601                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
602                         /*
603                          * In the first step, keep the device which has
604                          * the correct fsid and the devid that is used
605                          * for the dev_replace procedure.
606                          * In the second step, the dev_replace state is
607                          * read from the device tree and it is known
608                          * whether the procedure is really active or
609                          * not, which means whether this device is
610                          * used or whether it should be removed.
611                          */
612                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
613                                 continue;
614                         }
615                 }
616                 if (device->bdev) {
617                         blkdev_put(device->bdev, device->mode);
618                         device->bdev = NULL;
619                         fs_devices->open_devices--;
620                 }
621                 if (device->writeable) {
622                         list_del_init(&device->dev_alloc_list);
623                         device->writeable = 0;
624                         if (!device->is_tgtdev_for_dev_replace)
625                                 fs_devices->rw_devices--;
626                 }
627                 list_del_init(&device->dev_list);
628                 fs_devices->num_devices--;
629                 rcu_string_free(device->name);
630                 kfree(device);
631         }
632
633         if (fs_devices->seed) {
634                 fs_devices = fs_devices->seed;
635                 goto again;
636         }
637
638         fs_devices->latest_bdev = latest_bdev;
639         fs_devices->latest_devid = latest_devid;
640         fs_devices->latest_trans = latest_transid;
641
642         mutex_unlock(&uuid_mutex);
643 }
644
645 static void __free_device(struct work_struct *work)
646 {
647         struct btrfs_device *device;
648
649         device = container_of(work, struct btrfs_device, rcu_work);
650
651         if (device->bdev)
652                 blkdev_put(device->bdev, device->mode);
653
654         rcu_string_free(device->name);
655         kfree(device);
656 }
657
658 static void free_device(struct rcu_head *head)
659 {
660         struct btrfs_device *device;
661
662         device = container_of(head, struct btrfs_device, rcu);
663
664         INIT_WORK(&device->rcu_work, __free_device);
665         schedule_work(&device->rcu_work);
666 }
667
668 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
669 {
670         struct btrfs_device *device;
671
672         if (--fs_devices->opened > 0)
673                 return 0;
674
675         mutex_lock(&fs_devices->device_list_mutex);
676         list_for_each_entry(device, &fs_devices->devices, dev_list) {
677                 struct btrfs_device *new_device;
678                 struct rcu_string *name;
679
680                 if (device->bdev)
681                         fs_devices->open_devices--;
682
683                 if (device->writeable &&
684                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
685                         list_del_init(&device->dev_alloc_list);
686                         fs_devices->rw_devices--;
687                 }
688
689                 if (device->can_discard)
690                         fs_devices->num_can_discard--;
691                 if (device->missing)
692                         fs_devices->missing_devices--;
693
694                 new_device = btrfs_alloc_device(NULL, &device->devid,
695                                                 device->uuid);
696                 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
697
698                 /* Safe because we are under uuid_mutex */
699                 if (device->name) {
700                         name = rcu_string_strdup(device->name->str, GFP_NOFS);
701                         BUG_ON(!name); /* -ENOMEM */
702                         rcu_assign_pointer(new_device->name, name);
703                 }
704
705                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
706                 new_device->fs_devices = device->fs_devices;
707
708                 call_rcu(&device->rcu, free_device);
709         }
710         mutex_unlock(&fs_devices->device_list_mutex);
711
712         WARN_ON(fs_devices->open_devices);
713         WARN_ON(fs_devices->rw_devices);
714         fs_devices->opened = 0;
715         fs_devices->seeding = 0;
716
717         return 0;
718 }
719
720 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
721 {
722         struct btrfs_fs_devices *seed_devices = NULL;
723         int ret;
724
725         mutex_lock(&uuid_mutex);
726         ret = __btrfs_close_devices(fs_devices);
727         if (!fs_devices->opened) {
728                 seed_devices = fs_devices->seed;
729                 fs_devices->seed = NULL;
730         }
731         mutex_unlock(&uuid_mutex);
732
733         while (seed_devices) {
734                 fs_devices = seed_devices;
735                 seed_devices = fs_devices->seed;
736                 __btrfs_close_devices(fs_devices);
737                 free_fs_devices(fs_devices);
738         }
739         /*
740          * Wait for rcu kworkers under __btrfs_close_devices
741          * to finish all blkdev_puts so device is really
742          * free when umount is done.
743          */
744         rcu_barrier();
745         return ret;
746 }
747
748 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
749                                 fmode_t flags, void *holder)
750 {
751         struct request_queue *q;
752         struct block_device *bdev;
753         struct list_head *head = &fs_devices->devices;
754         struct btrfs_device *device;
755         struct block_device *latest_bdev = NULL;
756         struct buffer_head *bh;
757         struct btrfs_super_block *disk_super;
758         u64 latest_devid = 0;
759         u64 latest_transid = 0;
760         u64 devid;
761         int seeding = 1;
762         int ret = 0;
763
764         flags |= FMODE_EXCL;
765
766         list_for_each_entry(device, head, dev_list) {
767                 if (device->bdev)
768                         continue;
769                 if (!device->name)
770                         continue;
771
772                 /* Just open everything we can; ignore failures here */
773                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
774                                             &bdev, &bh))
775                         continue;
776
777                 disk_super = (struct btrfs_super_block *)bh->b_data;
778                 devid = btrfs_stack_device_id(&disk_super->dev_item);
779                 if (devid != device->devid)
780                         goto error_brelse;
781
782                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
783                            BTRFS_UUID_SIZE))
784                         goto error_brelse;
785
786                 device->generation = btrfs_super_generation(disk_super);
787                 if (!latest_transid || device->generation > latest_transid) {
788                         latest_devid = devid;
789                         latest_transid = device->generation;
790                         latest_bdev = bdev;
791                 }
792
793                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
794                         device->writeable = 0;
795                 } else {
796                         device->writeable = !bdev_read_only(bdev);
797                         seeding = 0;
798                 }
799
800                 q = bdev_get_queue(bdev);
801                 if (blk_queue_discard(q)) {
802                         device->can_discard = 1;
803                         fs_devices->num_can_discard++;
804                 }
805
806                 device->bdev = bdev;
807                 device->in_fs_metadata = 0;
808                 device->mode = flags;
809
810                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
811                         fs_devices->rotating = 1;
812
813                 fs_devices->open_devices++;
814                 if (device->writeable &&
815                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
816                         fs_devices->rw_devices++;
817                         list_add(&device->dev_alloc_list,
818                                  &fs_devices->alloc_list);
819                 }
820                 brelse(bh);
821                 continue;
822
823 error_brelse:
824                 brelse(bh);
825                 blkdev_put(bdev, flags);
826                 continue;
827         }
828         if (fs_devices->open_devices == 0) {
829                 ret = -EINVAL;
830                 goto out;
831         }
832         fs_devices->seeding = seeding;
833         fs_devices->opened = 1;
834         fs_devices->latest_bdev = latest_bdev;
835         fs_devices->latest_devid = latest_devid;
836         fs_devices->latest_trans = latest_transid;
837         fs_devices->total_rw_bytes = 0;
838 out:
839         return ret;
840 }
841
842 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
843                        fmode_t flags, void *holder)
844 {
845         int ret;
846
847         mutex_lock(&uuid_mutex);
848         if (fs_devices->opened) {
849                 fs_devices->opened++;
850                 ret = 0;
851         } else {
852                 ret = __btrfs_open_devices(fs_devices, flags, holder);
853         }
854         mutex_unlock(&uuid_mutex);
855         return ret;
856 }
857
858 /*
859  * Look for a btrfs signature on a device. This may be called out of the mount path
860  * and we are not allowed to call set_blocksize during the scan. The superblock
861  * is read via pagecache
862  */
863 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
864                           struct btrfs_fs_devices **fs_devices_ret)
865 {
866         struct btrfs_super_block *disk_super;
867         struct block_device *bdev;
868         struct page *page;
869         void *p;
870         int ret = -EINVAL;
871         u64 devid;
872         u64 transid;
873         u64 total_devices;
874         u64 bytenr;
875         pgoff_t index;
876
877         /*
878          * we would like to check all the supers, but that would make
879          * a btrfs mount succeed after a mkfs from a different FS.
880          * So, we need to add a special mount option to scan for
881          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
882          */
883         bytenr = btrfs_sb_offset(0);
884         flags |= FMODE_EXCL;
885         mutex_lock(&uuid_mutex);
886
887         bdev = blkdev_get_by_path(path, flags, holder);
888
889         if (IS_ERR(bdev)) {
890                 ret = PTR_ERR(bdev);
891                 goto error;
892         }
893
894         /* make sure our super fits in the device */
895         if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
896                 goto error_bdev_put;
897
898         /* make sure our super fits in the page */
899         if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
900                 goto error_bdev_put;
901
902         /* make sure our super doesn't straddle pages on disk */
903         index = bytenr >> PAGE_CACHE_SHIFT;
904         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
905                 goto error_bdev_put;
906
907         /* pull in the page with our super */
908         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
909                                    index, GFP_NOFS);
910
911         if (IS_ERR_OR_NULL(page))
912                 goto error_bdev_put;
913
914         p = kmap(page);
915
916         /* align our pointer to the offset of the super block */
917         disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
918
919         if (btrfs_super_bytenr(disk_super) != bytenr ||
920             btrfs_super_magic(disk_super) != BTRFS_MAGIC)
921                 goto error_unmap;
922
923         devid = btrfs_stack_device_id(&disk_super->dev_item);
924         transid = btrfs_super_generation(disk_super);
925         total_devices = btrfs_super_num_devices(disk_super);
926
927         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
928         if (ret > 0) {
929                 if (disk_super->label[0]) {
930                         if (disk_super->label[BTRFS_LABEL_SIZE - 1])
931                                 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
932                         printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
933                 } else {
934                         printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
935                 }
936
937                 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
938                 ret = 0;
939         }
940         if (!ret && fs_devices_ret)
941                 (*fs_devices_ret)->total_devices = total_devices;
942
943 error_unmap:
944         kunmap(page);
945         page_cache_release(page);
946
947 error_bdev_put:
948         blkdev_put(bdev, flags);
949 error:
950         mutex_unlock(&uuid_mutex);
951         return ret;
952 }
953
954 /* helper to account the used device space in the range */
955 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
956                                    u64 end, u64 *length)
957 {
958         struct btrfs_key key;
959         struct btrfs_root *root = device->dev_root;
960         struct btrfs_dev_extent *dev_extent;
961         struct btrfs_path *path;
962         u64 extent_end;
963         int ret;
964         int slot;
965         struct extent_buffer *l;
966
967         *length = 0;
968
969         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
970                 return 0;
971
972         path = btrfs_alloc_path();
973         if (!path)
974                 return -ENOMEM;
975         path->reada = 2;
976
977         key.objectid = device->devid;
978         key.offset = start;
979         key.type = BTRFS_DEV_EXTENT_KEY;
980
981         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
982         if (ret < 0)
983                 goto out;
984         if (ret > 0) {
985                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
986                 if (ret < 0)
987                         goto out;
988         }
989
990         while (1) {
991                 l = path->nodes[0];
992                 slot = path->slots[0];
993                 if (slot >= btrfs_header_nritems(l)) {
994                         ret = btrfs_next_leaf(root, path);
995                         if (ret == 0)
996                                 continue;
997                         if (ret < 0)
998                                 goto out;
999
1000                         break;
1001                 }
1002                 btrfs_item_key_to_cpu(l, &key, slot);
1003
1004                 if (key.objectid < device->devid)
1005                         goto next;
1006
1007                 if (key.objectid > device->devid)
1008                         break;
1009
1010                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1011                         goto next;
1012
1013                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1014                 extent_end = key.offset + btrfs_dev_extent_length(l,
1015                                                                   dev_extent);
1016                 if (key.offset <= start && extent_end > end) {
1017                         *length = end - start + 1;
1018                         break;
1019                 } else if (key.offset <= start && extent_end > start)
1020                         *length += extent_end - start;
1021                 else if (key.offset > start && extent_end <= end)
1022                         *length += extent_end - key.offset;
1023                 else if (key.offset > start && key.offset <= end) {
1024                         *length += end - key.offset + 1;
1025                         break;
1026                 } else if (key.offset > end)
1027                         break;
1028
1029 next:
1030                 path->slots[0]++;
1031         }
1032         ret = 0;
1033 out:
1034         btrfs_free_path(path);
1035         return ret;
1036 }
1037
1038 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1039                                    struct btrfs_device *device,
1040                                    u64 *start, u64 len)
1041 {
1042         struct extent_map *em;
1043         int ret = 0;
1044
1045         list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1046                 struct map_lookup *map;
1047                 int i;
1048
1049                 map = (struct map_lookup *)em->bdev;
1050                 for (i = 0; i < map->num_stripes; i++) {
1051                         if (map->stripes[i].dev != device)
1052                                 continue;
1053                         if (map->stripes[i].physical >= *start + len ||
1054                             map->stripes[i].physical + em->orig_block_len <=
1055                             *start)
1056                                 continue;
1057                         *start = map->stripes[i].physical +
1058                                 em->orig_block_len;
1059                         ret = 1;
1060                 }
1061         }
1062
1063         return ret;
1064 }
1065
1066
1067 /*
1068  * find_free_dev_extent - find free space in the specified device
1069  * @device:     the device which we search the free space in
1070  * @num_bytes:  the size of the free space that we need
1071  * @start:      store the start of the free space.
1072  * @len:        the size of the free space. that we find, or the size of the max
1073  *              free space if we don't find suitable free space
1074  *
1075  * this uses a pretty simple search, the expectation is that it is
1076  * called very infrequently and that a given device has a small number
1077  * of extents
1078  *
1079  * @start is used to store the start of the free space if we find. But if we
1080  * don't find suitable free space, it will be used to store the start position
1081  * of the max free space.
1082  *
1083  * @len is used to store the size of the free space that we find.
1084  * But if we don't find suitable free space, it is used to store the size of
1085  * the max free space.
1086  */
1087 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1088                          struct btrfs_device *device, u64 num_bytes,
1089                          u64 *start, u64 *len)
1090 {
1091         struct btrfs_key key;
1092         struct btrfs_root *root = device->dev_root;
1093         struct btrfs_dev_extent *dev_extent;
1094         struct btrfs_path *path;
1095         u64 hole_size;
1096         u64 max_hole_start;
1097         u64 max_hole_size;
1098         u64 extent_end;
1099         u64 search_start;
1100         u64 search_end = device->total_bytes;
1101         int ret;
1102         int slot;
1103         struct extent_buffer *l;
1104
1105         /* FIXME use last free of some kind */
1106
1107         /* we don't want to overwrite the superblock on the drive,
1108          * so we make sure to start at an offset of at least 1MB
1109          */
1110         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1111
1112         path = btrfs_alloc_path();
1113         if (!path)
1114                 return -ENOMEM;
1115 again:
1116         max_hole_start = search_start;
1117         max_hole_size = 0;
1118         hole_size = 0;
1119
1120         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1121                 ret = -ENOSPC;
1122                 goto out;
1123         }
1124
1125         path->reada = 2;
1126         path->search_commit_root = 1;
1127         path->skip_locking = 1;
1128
1129         key.objectid = device->devid;
1130         key.offset = search_start;
1131         key.type = BTRFS_DEV_EXTENT_KEY;
1132
1133         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1134         if (ret < 0)
1135                 goto out;
1136         if (ret > 0) {
1137                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1138                 if (ret < 0)
1139                         goto out;
1140         }
1141
1142         while (1) {
1143                 l = path->nodes[0];
1144                 slot = path->slots[0];
1145                 if (slot >= btrfs_header_nritems(l)) {
1146                         ret = btrfs_next_leaf(root, path);
1147                         if (ret == 0)
1148                                 continue;
1149                         if (ret < 0)
1150                                 goto out;
1151
1152                         break;
1153                 }
1154                 btrfs_item_key_to_cpu(l, &key, slot);
1155
1156                 if (key.objectid < device->devid)
1157                         goto next;
1158
1159                 if (key.objectid > device->devid)
1160                         break;
1161
1162                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1163                         goto next;
1164
1165                 if (key.offset > search_start) {
1166                         hole_size = key.offset - search_start;
1167
1168                         /*
1169                          * Have to check before we set max_hole_start, otherwise
1170                          * we could end up sending back this offset anyway.
1171                          */
1172                         if (contains_pending_extent(trans, device,
1173                                                     &search_start,
1174                                                     hole_size))
1175                                 hole_size = 0;
1176
1177                         if (hole_size > max_hole_size) {
1178                                 max_hole_start = search_start;
1179                                 max_hole_size = hole_size;
1180                         }
1181
1182                         /*
1183                          * If this free space is greater than which we need,
1184                          * it must be the max free space that we have found
1185                          * until now, so max_hole_start must point to the start
1186                          * of this free space and the length of this free space
1187                          * is stored in max_hole_size. Thus, we return
1188                          * max_hole_start and max_hole_size and go back to the
1189                          * caller.
1190                          */
1191                         if (hole_size >= num_bytes) {
1192                                 ret = 0;
1193                                 goto out;
1194                         }
1195                 }
1196
1197                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1198                 extent_end = key.offset + btrfs_dev_extent_length(l,
1199                                                                   dev_extent);
1200                 if (extent_end > search_start)
1201                         search_start = extent_end;
1202 next:
1203                 path->slots[0]++;
1204                 cond_resched();
1205         }
1206
1207         /*
1208          * At this point, search_start should be the end of
1209          * allocated dev extents, and when shrinking the device,
1210          * search_end may be smaller than search_start.
1211          */
1212         if (search_end > search_start)
1213                 hole_size = search_end - search_start;
1214
1215         if (hole_size > max_hole_size) {
1216                 max_hole_start = search_start;
1217                 max_hole_size = hole_size;
1218         }
1219
1220         if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1221                 btrfs_release_path(path);
1222                 goto again;
1223         }
1224
1225         /* See above. */
1226         if (hole_size < num_bytes)
1227                 ret = -ENOSPC;
1228         else
1229                 ret = 0;
1230
1231 out:
1232         btrfs_free_path(path);
1233         *start = max_hole_start;
1234         if (len)
1235                 *len = max_hole_size;
1236         return ret;
1237 }
1238
1239 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1240                           struct btrfs_device *device,
1241                           u64 start)
1242 {
1243         int ret;
1244         struct btrfs_path *path;
1245         struct btrfs_root *root = device->dev_root;
1246         struct btrfs_key key;
1247         struct btrfs_key found_key;
1248         struct extent_buffer *leaf = NULL;
1249         struct btrfs_dev_extent *extent = NULL;
1250
1251         path = btrfs_alloc_path();
1252         if (!path)
1253                 return -ENOMEM;
1254
1255         key.objectid = device->devid;
1256         key.offset = start;
1257         key.type = BTRFS_DEV_EXTENT_KEY;
1258 again:
1259         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260         if (ret > 0) {
1261                 ret = btrfs_previous_item(root, path, key.objectid,
1262                                           BTRFS_DEV_EXTENT_KEY);
1263                 if (ret)
1264                         goto out;
1265                 leaf = path->nodes[0];
1266                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1267                 extent = btrfs_item_ptr(leaf, path->slots[0],
1268                                         struct btrfs_dev_extent);
1269                 BUG_ON(found_key.offset > start || found_key.offset +
1270                        btrfs_dev_extent_length(leaf, extent) < start);
1271                 key = found_key;
1272                 btrfs_release_path(path);
1273                 goto again;
1274         } else if (ret == 0) {
1275                 leaf = path->nodes[0];
1276                 extent = btrfs_item_ptr(leaf, path->slots[0],
1277                                         struct btrfs_dev_extent);
1278         } else {
1279                 btrfs_error(root->fs_info, ret, "Slot search failed");
1280                 goto out;
1281         }
1282
1283         if (device->bytes_used > 0) {
1284                 u64 len = btrfs_dev_extent_length(leaf, extent);
1285                 device->bytes_used -= len;
1286                 spin_lock(&root->fs_info->free_chunk_lock);
1287                 root->fs_info->free_chunk_space += len;
1288                 spin_unlock(&root->fs_info->free_chunk_lock);
1289         }
1290         ret = btrfs_del_item(trans, root, path);
1291         if (ret) {
1292                 btrfs_error(root->fs_info, ret,
1293                             "Failed to remove dev extent item");
1294         }
1295 out:
1296         btrfs_free_path(path);
1297         return ret;
1298 }
1299
1300 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1301                                   struct btrfs_device *device,
1302                                   u64 chunk_tree, u64 chunk_objectid,
1303                                   u64 chunk_offset, u64 start, u64 num_bytes)
1304 {
1305         int ret;
1306         struct btrfs_path *path;
1307         struct btrfs_root *root = device->dev_root;
1308         struct btrfs_dev_extent *extent;
1309         struct extent_buffer *leaf;
1310         struct btrfs_key key;
1311
1312         WARN_ON(!device->in_fs_metadata);
1313         WARN_ON(device->is_tgtdev_for_dev_replace);
1314         path = btrfs_alloc_path();
1315         if (!path)
1316                 return -ENOMEM;
1317
1318         key.objectid = device->devid;
1319         key.offset = start;
1320         key.type = BTRFS_DEV_EXTENT_KEY;
1321         ret = btrfs_insert_empty_item(trans, root, path, &key,
1322                                       sizeof(*extent));
1323         if (ret)
1324                 goto out;
1325
1326         leaf = path->nodes[0];
1327         extent = btrfs_item_ptr(leaf, path->slots[0],
1328                                 struct btrfs_dev_extent);
1329         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1330         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1331         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1332
1333         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1334                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1335
1336         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1337         btrfs_mark_buffer_dirty(leaf);
1338 out:
1339         btrfs_free_path(path);
1340         return ret;
1341 }
1342
1343 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1344 {
1345         struct extent_map_tree *em_tree;
1346         struct extent_map *em;
1347         struct rb_node *n;
1348         u64 ret = 0;
1349
1350         em_tree = &fs_info->mapping_tree.map_tree;
1351         read_lock(&em_tree->lock);
1352         n = rb_last(&em_tree->map);
1353         if (n) {
1354                 em = rb_entry(n, struct extent_map, rb_node);
1355                 ret = em->start + em->len;
1356         }
1357         read_unlock(&em_tree->lock);
1358
1359         return ret;
1360 }
1361
1362 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1363                                     u64 *devid_ret)
1364 {
1365         int ret;
1366         struct btrfs_key key;
1367         struct btrfs_key found_key;
1368         struct btrfs_path *path;
1369
1370         path = btrfs_alloc_path();
1371         if (!path)
1372                 return -ENOMEM;
1373
1374         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1375         key.type = BTRFS_DEV_ITEM_KEY;
1376         key.offset = (u64)-1;
1377
1378         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1379         if (ret < 0)
1380                 goto error;
1381
1382         BUG_ON(ret == 0); /* Corruption */
1383
1384         ret = btrfs_previous_item(fs_info->chunk_root, path,
1385                                   BTRFS_DEV_ITEMS_OBJECTID,
1386                                   BTRFS_DEV_ITEM_KEY);
1387         if (ret) {
1388                 *devid_ret = 1;
1389         } else {
1390                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1391                                       path->slots[0]);
1392                 *devid_ret = found_key.offset + 1;
1393         }
1394         ret = 0;
1395 error:
1396         btrfs_free_path(path);
1397         return ret;
1398 }
1399
1400 /*
1401  * the device information is stored in the chunk root
1402  * the btrfs_device struct should be fully filled in
1403  */
1404 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1405                             struct btrfs_root *root,
1406                             struct btrfs_device *device)
1407 {
1408         int ret;
1409         struct btrfs_path *path;
1410         struct btrfs_dev_item *dev_item;
1411         struct extent_buffer *leaf;
1412         struct btrfs_key key;
1413         unsigned long ptr;
1414
1415         root = root->fs_info->chunk_root;
1416
1417         path = btrfs_alloc_path();
1418         if (!path)
1419                 return -ENOMEM;
1420
1421         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1422         key.type = BTRFS_DEV_ITEM_KEY;
1423         key.offset = device->devid;
1424
1425         ret = btrfs_insert_empty_item(trans, root, path, &key,
1426                                       sizeof(*dev_item));
1427         if (ret)
1428                 goto out;
1429
1430         leaf = path->nodes[0];
1431         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1432
1433         btrfs_set_device_id(leaf, dev_item, device->devid);
1434         btrfs_set_device_generation(leaf, dev_item, 0);
1435         btrfs_set_device_type(leaf, dev_item, device->type);
1436         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1437         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1438         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1439         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1440         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1441         btrfs_set_device_group(leaf, dev_item, 0);
1442         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1443         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1444         btrfs_set_device_start_offset(leaf, dev_item, 0);
1445
1446         ptr = btrfs_device_uuid(dev_item);
1447         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1448         ptr = btrfs_device_fsid(dev_item);
1449         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1450         btrfs_mark_buffer_dirty(leaf);
1451
1452         ret = 0;
1453 out:
1454         btrfs_free_path(path);
1455         return ret;
1456 }
1457
1458 /*
1459  * Function to update ctime/mtime for a given device path.
1460  * Mainly used for ctime/mtime based probe like libblkid.
1461  */
1462 static void update_dev_time(char *path_name)
1463 {
1464         struct file *filp;
1465
1466         filp = filp_open(path_name, O_RDWR, 0);
1467         if (!filp)
1468                 return;
1469         file_update_time(filp);
1470         filp_close(filp, NULL);
1471         return;
1472 }
1473
1474 static int btrfs_rm_dev_item(struct btrfs_root *root,
1475                              struct btrfs_device *device)
1476 {
1477         int ret;
1478         struct btrfs_path *path;
1479         struct btrfs_key key;
1480         struct btrfs_trans_handle *trans;
1481
1482         root = root->fs_info->chunk_root;
1483
1484         path = btrfs_alloc_path();
1485         if (!path)
1486                 return -ENOMEM;
1487
1488         trans = btrfs_start_transaction(root, 0);
1489         if (IS_ERR(trans)) {
1490                 btrfs_free_path(path);
1491                 return PTR_ERR(trans);
1492         }
1493         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1494         key.type = BTRFS_DEV_ITEM_KEY;
1495         key.offset = device->devid;
1496         lock_chunks(root);
1497
1498         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1499         if (ret < 0)
1500                 goto out;
1501
1502         if (ret > 0) {
1503                 ret = -ENOENT;
1504                 goto out;
1505         }
1506
1507         ret = btrfs_del_item(trans, root, path);
1508         if (ret)
1509                 goto out;
1510 out:
1511         btrfs_free_path(path);
1512         unlock_chunks(root);
1513         btrfs_commit_transaction(trans, root);
1514         return ret;
1515 }
1516
1517 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1518 {
1519         struct btrfs_device *device;
1520         struct btrfs_device *next_device;
1521         struct block_device *bdev;
1522         struct buffer_head *bh = NULL;
1523         struct btrfs_super_block *disk_super;
1524         struct btrfs_fs_devices *cur_devices;
1525         u64 all_avail;
1526         u64 devid;
1527         u64 num_devices;
1528         u8 *dev_uuid;
1529         unsigned seq;
1530         int ret = 0;
1531         bool clear_super = false;
1532
1533         mutex_lock(&uuid_mutex);
1534
1535         do {
1536                 seq = read_seqbegin(&root->fs_info->profiles_lock);
1537
1538                 all_avail = root->fs_info->avail_data_alloc_bits |
1539                             root->fs_info->avail_system_alloc_bits |
1540                             root->fs_info->avail_metadata_alloc_bits;
1541         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1542
1543         num_devices = root->fs_info->fs_devices->num_devices;
1544         btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1545         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1546                 WARN_ON(num_devices < 1);
1547                 num_devices--;
1548         }
1549         btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1550
1551         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1552                 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1553                 goto out;
1554         }
1555
1556         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1557                 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1558                 goto out;
1559         }
1560
1561         if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1562             root->fs_info->fs_devices->rw_devices <= 2) {
1563                 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1564                 goto out;
1565         }
1566         if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1567             root->fs_info->fs_devices->rw_devices <= 3) {
1568                 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1569                 goto out;
1570         }
1571
1572         if (strcmp(device_path, "missing") == 0) {
1573                 struct list_head *devices;
1574                 struct btrfs_device *tmp;
1575
1576                 device = NULL;
1577                 devices = &root->fs_info->fs_devices->devices;
1578                 /*
1579                  * It is safe to read the devices since the volume_mutex
1580                  * is held.
1581                  */
1582                 list_for_each_entry(tmp, devices, dev_list) {
1583                         if (tmp->in_fs_metadata &&
1584                             !tmp->is_tgtdev_for_dev_replace &&
1585                             !tmp->bdev) {
1586                                 device = tmp;
1587                                 break;
1588                         }
1589                 }
1590                 bdev = NULL;
1591                 bh = NULL;
1592                 disk_super = NULL;
1593                 if (!device) {
1594                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1595                         goto out;
1596                 }
1597         } else {
1598                 ret = btrfs_get_bdev_and_sb(device_path,
1599                                             FMODE_WRITE | FMODE_EXCL,
1600                                             root->fs_info->bdev_holder, 0,
1601                                             &bdev, &bh);
1602                 if (ret)
1603                         goto out;
1604                 disk_super = (struct btrfs_super_block *)bh->b_data;
1605                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1606                 dev_uuid = disk_super->dev_item.uuid;
1607                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1608                                            disk_super->fsid);
1609                 if (!device) {
1610                         ret = -ENOENT;
1611                         goto error_brelse;
1612                 }
1613         }
1614
1615         if (device->is_tgtdev_for_dev_replace) {
1616                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1617                 goto error_brelse;
1618         }
1619
1620         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1621                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1622                 goto error_brelse;
1623         }
1624
1625         if (device->writeable) {
1626                 lock_chunks(root);
1627                 list_del_init(&device->dev_alloc_list);
1628                 unlock_chunks(root);
1629                 root->fs_info->fs_devices->rw_devices--;
1630                 clear_super = true;
1631         }
1632
1633         mutex_unlock(&uuid_mutex);
1634         ret = btrfs_shrink_device(device, 0);
1635         mutex_lock(&uuid_mutex);
1636         if (ret)
1637                 goto error_undo;
1638
1639         /*
1640          * TODO: the superblock still includes this device in its num_devices
1641          * counter although write_all_supers() is not locked out. This
1642          * could give a filesystem state which requires a degraded mount.
1643          */
1644         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1645         if (ret)
1646                 goto error_undo;
1647
1648         spin_lock(&root->fs_info->free_chunk_lock);
1649         root->fs_info->free_chunk_space = device->total_bytes -
1650                 device->bytes_used;
1651         spin_unlock(&root->fs_info->free_chunk_lock);
1652
1653         device->in_fs_metadata = 0;
1654         btrfs_scrub_cancel_dev(root->fs_info, device);
1655
1656         /*
1657          * the device list mutex makes sure that we don't change
1658          * the device list while someone else is writing out all
1659          * the device supers. Whoever is writing all supers, should
1660          * lock the device list mutex before getting the number of
1661          * devices in the super block (super_copy). Conversely,
1662          * whoever updates the number of devices in the super block
1663          * (super_copy) should hold the device list mutex.
1664          */
1665
1666         cur_devices = device->fs_devices;
1667         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1668         list_del_rcu(&device->dev_list);
1669
1670         device->fs_devices->num_devices--;
1671         device->fs_devices->total_devices--;
1672
1673         if (device->missing)
1674                 root->fs_info->fs_devices->missing_devices--;
1675
1676         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1677                                  struct btrfs_device, dev_list);
1678         if (device->bdev == root->fs_info->sb->s_bdev)
1679                 root->fs_info->sb->s_bdev = next_device->bdev;
1680         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1681                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1682
1683         if (device->bdev) {
1684                 device->fs_devices->open_devices--;
1685                 /* remove sysfs entry */
1686                 btrfs_kobj_rm_device(root->fs_info, device);
1687         }
1688
1689         call_rcu(&device->rcu, free_device);
1690
1691         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1692         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1693         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1694
1695         if (cur_devices->open_devices == 0) {
1696                 struct btrfs_fs_devices *fs_devices;
1697                 fs_devices = root->fs_info->fs_devices;
1698                 while (fs_devices) {
1699                         if (fs_devices->seed == cur_devices) {
1700                                 fs_devices->seed = cur_devices->seed;
1701                                 break;
1702                         }
1703                         fs_devices = fs_devices->seed;
1704                 }
1705                 cur_devices->seed = NULL;
1706                 lock_chunks(root);
1707                 __btrfs_close_devices(cur_devices);
1708                 unlock_chunks(root);
1709                 free_fs_devices(cur_devices);
1710         }
1711
1712         root->fs_info->num_tolerated_disk_barrier_failures =
1713                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1714
1715         /*
1716          * at this point, the device is zero sized.  We want to
1717          * remove it from the devices list and zero out the old super
1718          */
1719         if (clear_super && disk_super) {
1720                 u64 bytenr;
1721                 int i;
1722
1723                 /* make sure this device isn't detected as part of
1724                  * the FS anymore
1725                  */
1726                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1727                 set_buffer_dirty(bh);
1728                 sync_dirty_buffer(bh);
1729
1730                 /* clear the mirror copies of super block on the disk
1731                  * being removed, 0th copy is been taken care above and
1732                  * the below would take of the rest
1733                  */
1734                 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1735                         bytenr = btrfs_sb_offset(i);
1736                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1737                                         i_size_read(bdev->bd_inode))
1738                                 break;
1739
1740                         brelse(bh);
1741                         bh = __bread(bdev, bytenr / 4096,
1742                                         BTRFS_SUPER_INFO_SIZE);
1743                         if (!bh)
1744                                 continue;
1745
1746                         disk_super = (struct btrfs_super_block *)bh->b_data;
1747
1748                         if (btrfs_super_bytenr(disk_super) != bytenr ||
1749                                 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1750                                 continue;
1751                         }
1752                         memset(&disk_super->magic, 0,
1753                                                 sizeof(disk_super->magic));
1754                         set_buffer_dirty(bh);
1755                         sync_dirty_buffer(bh);
1756                 }
1757         }
1758
1759         ret = 0;
1760
1761         if (bdev) {
1762                 /* Notify udev that device has changed */
1763                 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1764
1765                 /* Update ctime/mtime for device path for libblkid */
1766                 update_dev_time(device_path);
1767         }
1768
1769 error_brelse:
1770         brelse(bh);
1771         if (bdev)
1772                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1773 out:
1774         mutex_unlock(&uuid_mutex);
1775         return ret;
1776 error_undo:
1777         if (device->writeable) {
1778                 lock_chunks(root);
1779                 list_add(&device->dev_alloc_list,
1780                          &root->fs_info->fs_devices->alloc_list);
1781                 unlock_chunks(root);
1782                 root->fs_info->fs_devices->rw_devices++;
1783         }
1784         goto error_brelse;
1785 }
1786
1787 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1788                                  struct btrfs_device *srcdev)
1789 {
1790         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1791
1792         list_del_rcu(&srcdev->dev_list);
1793         list_del_rcu(&srcdev->dev_alloc_list);
1794         fs_info->fs_devices->num_devices--;
1795         if (srcdev->missing) {
1796                 fs_info->fs_devices->missing_devices--;
1797                 fs_info->fs_devices->rw_devices++;
1798         }
1799         if (srcdev->can_discard)
1800                 fs_info->fs_devices->num_can_discard--;
1801         if (srcdev->bdev) {
1802                 fs_info->fs_devices->open_devices--;
1803
1804                 /* zero out the old super */
1805                 btrfs_scratch_superblock(srcdev);
1806         }
1807
1808         call_rcu(&srcdev->rcu, free_device);
1809 }
1810
1811 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1812                                       struct btrfs_device *tgtdev)
1813 {
1814         struct btrfs_device *next_device;
1815
1816         WARN_ON(!tgtdev);
1817         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1818         if (tgtdev->bdev) {
1819                 btrfs_scratch_superblock(tgtdev);
1820                 fs_info->fs_devices->open_devices--;
1821         }
1822         fs_info->fs_devices->num_devices--;
1823         if (tgtdev->can_discard)
1824                 fs_info->fs_devices->num_can_discard++;
1825
1826         next_device = list_entry(fs_info->fs_devices->devices.next,
1827                                  struct btrfs_device, dev_list);
1828         if (tgtdev->bdev == fs_info->sb->s_bdev)
1829                 fs_info->sb->s_bdev = next_device->bdev;
1830         if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1831                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1832         list_del_rcu(&tgtdev->dev_list);
1833
1834         call_rcu(&tgtdev->rcu, free_device);
1835
1836         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1837 }
1838
1839 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1840                                      struct btrfs_device **device)
1841 {
1842         int ret = 0;
1843         struct btrfs_super_block *disk_super;
1844         u64 devid;
1845         u8 *dev_uuid;
1846         struct block_device *bdev;
1847         struct buffer_head *bh;
1848
1849         *device = NULL;
1850         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1851                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
1852         if (ret)
1853                 return ret;
1854         disk_super = (struct btrfs_super_block *)bh->b_data;
1855         devid = btrfs_stack_device_id(&disk_super->dev_item);
1856         dev_uuid = disk_super->dev_item.uuid;
1857         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1858                                     disk_super->fsid);
1859         brelse(bh);
1860         if (!*device)
1861                 ret = -ENOENT;
1862         blkdev_put(bdev, FMODE_READ);
1863         return ret;
1864 }
1865
1866 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1867                                          char *device_path,
1868                                          struct btrfs_device **device)
1869 {
1870         *device = NULL;
1871         if (strcmp(device_path, "missing") == 0) {
1872                 struct list_head *devices;
1873                 struct btrfs_device *tmp;
1874
1875                 devices = &root->fs_info->fs_devices->devices;
1876                 /*
1877                  * It is safe to read the devices since the volume_mutex
1878                  * is held by the caller.
1879                  */
1880                 list_for_each_entry(tmp, devices, dev_list) {
1881                         if (tmp->in_fs_metadata && !tmp->bdev) {
1882                                 *device = tmp;
1883                                 break;
1884                         }
1885                 }
1886
1887                 if (!*device) {
1888                         btrfs_err(root->fs_info, "no missing device found");
1889                         return -ENOENT;
1890                 }
1891
1892                 return 0;
1893         } else {
1894                 return btrfs_find_device_by_path(root, device_path, device);
1895         }
1896 }
1897
1898 /*
1899  * does all the dirty work required for changing file system's UUID.
1900  */
1901 static int btrfs_prepare_sprout(struct btrfs_root *root)
1902 {
1903         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1904         struct btrfs_fs_devices *old_devices;
1905         struct btrfs_fs_devices *seed_devices;
1906         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1907         struct btrfs_device *device;
1908         u64 super_flags;
1909
1910         BUG_ON(!mutex_is_locked(&uuid_mutex));
1911         if (!fs_devices->seeding)
1912                 return -EINVAL;
1913
1914         seed_devices = __alloc_fs_devices();
1915         if (IS_ERR(seed_devices))
1916                 return PTR_ERR(seed_devices);
1917
1918         old_devices = clone_fs_devices(fs_devices);
1919         if (IS_ERR(old_devices)) {
1920                 kfree(seed_devices);
1921                 return PTR_ERR(old_devices);
1922         }
1923
1924         list_add(&old_devices->list, &fs_uuids);
1925
1926         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1927         seed_devices->opened = 1;
1928         INIT_LIST_HEAD(&seed_devices->devices);
1929         INIT_LIST_HEAD(&seed_devices->alloc_list);
1930         mutex_init(&seed_devices->device_list_mutex);
1931
1932         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1933         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1934                               synchronize_rcu);
1935
1936         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1937         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1938                 device->fs_devices = seed_devices;
1939         }
1940
1941         fs_devices->seeding = 0;
1942         fs_devices->num_devices = 0;
1943         fs_devices->open_devices = 0;
1944         fs_devices->seed = seed_devices;
1945
1946         generate_random_uuid(fs_devices->fsid);
1947         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1948         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1949         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1950
1951         super_flags = btrfs_super_flags(disk_super) &
1952                       ~BTRFS_SUPER_FLAG_SEEDING;
1953         btrfs_set_super_flags(disk_super, super_flags);
1954
1955         return 0;
1956 }
1957
1958 /*
1959  * strore the expected generation for seed devices in device items.
1960  */
1961 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1962                                struct btrfs_root *root)
1963 {
1964         struct btrfs_path *path;
1965         struct extent_buffer *leaf;
1966         struct btrfs_dev_item *dev_item;
1967         struct btrfs_device *device;
1968         struct btrfs_key key;
1969         u8 fs_uuid[BTRFS_UUID_SIZE];
1970         u8 dev_uuid[BTRFS_UUID_SIZE];
1971         u64 devid;
1972         int ret;
1973
1974         path = btrfs_alloc_path();
1975         if (!path)
1976                 return -ENOMEM;
1977
1978         root = root->fs_info->chunk_root;
1979         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1980         key.offset = 0;
1981         key.type = BTRFS_DEV_ITEM_KEY;
1982
1983         while (1) {
1984                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1985                 if (ret < 0)
1986                         goto error;
1987
1988                 leaf = path->nodes[0];
1989 next_slot:
1990                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1991                         ret = btrfs_next_leaf(root, path);
1992                         if (ret > 0)
1993                                 break;
1994                         if (ret < 0)
1995                                 goto error;
1996                         leaf = path->nodes[0];
1997                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1998                         btrfs_release_path(path);
1999                         continue;
2000                 }
2001
2002                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2003                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2004                     key.type != BTRFS_DEV_ITEM_KEY)
2005                         break;
2006
2007                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2008                                           struct btrfs_dev_item);
2009                 devid = btrfs_device_id(leaf, dev_item);
2010                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2011                                    BTRFS_UUID_SIZE);
2012                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2013                                    BTRFS_UUID_SIZE);
2014                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2015                                            fs_uuid);
2016                 BUG_ON(!device); /* Logic error */
2017
2018                 if (device->fs_devices->seeding) {
2019                         btrfs_set_device_generation(leaf, dev_item,
2020                                                     device->generation);
2021                         btrfs_mark_buffer_dirty(leaf);
2022                 }
2023
2024                 path->slots[0]++;
2025                 goto next_slot;
2026         }
2027         ret = 0;
2028 error:
2029         btrfs_free_path(path);
2030         return ret;
2031 }
2032
2033 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2034 {
2035         struct request_queue *q;
2036         struct btrfs_trans_handle *trans;
2037         struct btrfs_device *device;
2038         struct block_device *bdev;
2039         struct list_head *devices;
2040         struct super_block *sb = root->fs_info->sb;
2041         struct rcu_string *name;
2042         u64 total_bytes;
2043         int seeding_dev = 0;
2044         int ret = 0;
2045
2046         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2047                 return -EROFS;
2048
2049         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2050                                   root->fs_info->bdev_holder);
2051         if (IS_ERR(bdev))
2052                 return PTR_ERR(bdev);
2053
2054         if (root->fs_info->fs_devices->seeding) {
2055                 seeding_dev = 1;
2056                 down_write(&sb->s_umount);
2057                 mutex_lock(&uuid_mutex);
2058         }
2059
2060         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2061
2062         devices = &root->fs_info->fs_devices->devices;
2063
2064         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2065         list_for_each_entry(device, devices, dev_list) {
2066                 if (device->bdev == bdev) {
2067                         ret = -EEXIST;
2068                         mutex_unlock(
2069                                 &root->fs_info->fs_devices->device_list_mutex);
2070                         goto error;
2071                 }
2072         }
2073         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2074
2075         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2076         if (IS_ERR(device)) {
2077                 /* we can safely leave the fs_devices entry around */
2078                 ret = PTR_ERR(device);
2079                 goto error;
2080         }
2081
2082         name = rcu_string_strdup(device_path, GFP_NOFS);
2083         if (!name) {
2084                 kfree(device);
2085                 ret = -ENOMEM;
2086                 goto error;
2087         }
2088         rcu_assign_pointer(device->name, name);
2089
2090         trans = btrfs_start_transaction(root, 0);
2091         if (IS_ERR(trans)) {
2092                 rcu_string_free(device->name);
2093                 kfree(device);
2094                 ret = PTR_ERR(trans);
2095                 goto error;
2096         }
2097
2098         lock_chunks(root);
2099
2100         q = bdev_get_queue(bdev);
2101         if (blk_queue_discard(q))
2102                 device->can_discard = 1;
2103         device->writeable = 1;
2104         device->generation = trans->transid;
2105         device->io_width = root->sectorsize;
2106         device->io_align = root->sectorsize;
2107         device->sector_size = root->sectorsize;
2108         device->total_bytes = i_size_read(bdev->bd_inode);
2109         device->disk_total_bytes = device->total_bytes;
2110         device->dev_root = root->fs_info->dev_root;
2111         device->bdev = bdev;
2112         device->in_fs_metadata = 1;
2113         device->is_tgtdev_for_dev_replace = 0;
2114         device->mode = FMODE_EXCL;
2115         device->dev_stats_valid = 1;
2116         set_blocksize(device->bdev, 4096);
2117
2118         if (seeding_dev) {
2119                 sb->s_flags &= ~MS_RDONLY;
2120                 ret = btrfs_prepare_sprout(root);
2121                 BUG_ON(ret); /* -ENOMEM */
2122         }
2123
2124         device->fs_devices = root->fs_info->fs_devices;
2125
2126         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2127         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2128         list_add(&device->dev_alloc_list,
2129                  &root->fs_info->fs_devices->alloc_list);
2130         root->fs_info->fs_devices->num_devices++;
2131         root->fs_info->fs_devices->open_devices++;
2132         root->fs_info->fs_devices->rw_devices++;
2133         root->fs_info->fs_devices->total_devices++;
2134         if (device->can_discard)
2135                 root->fs_info->fs_devices->num_can_discard++;
2136         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2137
2138         spin_lock(&root->fs_info->free_chunk_lock);
2139         root->fs_info->free_chunk_space += device->total_bytes;
2140         spin_unlock(&root->fs_info->free_chunk_lock);
2141
2142         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2143                 root->fs_info->fs_devices->rotating = 1;
2144
2145         total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2146         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2147                                     total_bytes + device->total_bytes);
2148
2149         total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2150         btrfs_set_super_num_devices(root->fs_info->super_copy,
2151                                     total_bytes + 1);
2152
2153         /* add sysfs device entry */
2154         btrfs_kobj_add_device(root->fs_info, device);
2155
2156         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2157
2158         if (seeding_dev) {
2159                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2160                 ret = init_first_rw_device(trans, root, device);
2161                 if (ret) {
2162                         btrfs_abort_transaction(trans, root, ret);
2163                         goto error_trans;
2164                 }
2165                 ret = btrfs_finish_sprout(trans, root);
2166                 if (ret) {
2167                         btrfs_abort_transaction(trans, root, ret);
2168                         goto error_trans;
2169                 }
2170
2171                 /* Sprouting would change fsid of the mounted root,
2172                  * so rename the fsid on the sysfs
2173                  */
2174                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2175                                                 root->fs_info->fsid);
2176                 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2177                         goto error_trans;
2178         } else {
2179                 ret = btrfs_add_device(trans, root, device);
2180                 if (ret) {
2181                         btrfs_abort_transaction(trans, root, ret);
2182                         goto error_trans;
2183                 }
2184         }
2185
2186         /*
2187          * we've got more storage, clear any full flags on the space
2188          * infos
2189          */
2190         btrfs_clear_space_info_full(root->fs_info);
2191
2192         unlock_chunks(root);
2193         root->fs_info->num_tolerated_disk_barrier_failures =
2194                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2195         ret = btrfs_commit_transaction(trans, root);
2196
2197         if (seeding_dev) {
2198                 mutex_unlock(&uuid_mutex);
2199                 up_write(&sb->s_umount);
2200
2201                 if (ret) /* transaction commit */
2202                         return ret;
2203
2204                 ret = btrfs_relocate_sys_chunks(root);
2205                 if (ret < 0)
2206                         btrfs_error(root->fs_info, ret,
2207                                     "Failed to relocate sys chunks after "
2208                                     "device initialization. This can be fixed "
2209                                     "using the \"btrfs balance\" command.");
2210                 trans = btrfs_attach_transaction(root);
2211                 if (IS_ERR(trans)) {
2212                         if (PTR_ERR(trans) == -ENOENT)
2213                                 return 0;
2214                         return PTR_ERR(trans);
2215                 }
2216                 ret = btrfs_commit_transaction(trans, root);
2217         }
2218
2219         /* Update ctime/mtime for libblkid */
2220         update_dev_time(device_path);
2221         return ret;
2222
2223 error_trans:
2224         unlock_chunks(root);
2225         btrfs_end_transaction(trans, root);
2226         rcu_string_free(device->name);
2227         btrfs_kobj_rm_device(root->fs_info, device);
2228         kfree(device);
2229 error:
2230         blkdev_put(bdev, FMODE_EXCL);
2231         if (seeding_dev) {
2232                 mutex_unlock(&uuid_mutex);
2233                 up_write(&sb->s_umount);
2234         }
2235         return ret;
2236 }
2237
2238 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2239                                   struct btrfs_device **device_out)
2240 {
2241         struct request_queue *q;
2242         struct btrfs_device *device;
2243         struct block_device *bdev;
2244         struct btrfs_fs_info *fs_info = root->fs_info;
2245         struct list_head *devices;
2246         struct rcu_string *name;
2247         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2248         int ret = 0;
2249
2250         *device_out = NULL;
2251         if (fs_info->fs_devices->seeding)
2252                 return -EINVAL;
2253
2254         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2255                                   fs_info->bdev_holder);
2256         if (IS_ERR(bdev))
2257                 return PTR_ERR(bdev);
2258
2259         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2260
2261         devices = &fs_info->fs_devices->devices;
2262         list_for_each_entry(device, devices, dev_list) {
2263                 if (device->bdev == bdev) {
2264                         ret = -EEXIST;
2265                         goto error;
2266                 }
2267         }
2268
2269         device = btrfs_alloc_device(NULL, &devid, NULL);
2270         if (IS_ERR(device)) {
2271                 ret = PTR_ERR(device);
2272                 goto error;
2273         }
2274
2275         name = rcu_string_strdup(device_path, GFP_NOFS);
2276         if (!name) {
2277                 kfree(device);
2278                 ret = -ENOMEM;
2279                 goto error;
2280         }
2281         rcu_assign_pointer(device->name, name);
2282
2283         q = bdev_get_queue(bdev);
2284         if (blk_queue_discard(q))
2285                 device->can_discard = 1;
2286         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2287         device->writeable = 1;
2288         device->generation = 0;
2289         device->io_width = root->sectorsize;
2290         device->io_align = root->sectorsize;
2291         device->sector_size = root->sectorsize;
2292         device->total_bytes = i_size_read(bdev->bd_inode);
2293         device->disk_total_bytes = device->total_bytes;
2294         device->dev_root = fs_info->dev_root;
2295         device->bdev = bdev;
2296         device->in_fs_metadata = 1;
2297         device->is_tgtdev_for_dev_replace = 1;
2298         device->mode = FMODE_EXCL;
2299         device->dev_stats_valid = 1;
2300         set_blocksize(device->bdev, 4096);
2301         device->fs_devices = fs_info->fs_devices;
2302         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2303         fs_info->fs_devices->num_devices++;
2304         fs_info->fs_devices->open_devices++;
2305         if (device->can_discard)
2306                 fs_info->fs_devices->num_can_discard++;
2307         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2308
2309         *device_out = device;
2310         return ret;
2311
2312 error:
2313         blkdev_put(bdev, FMODE_EXCL);
2314         return ret;
2315 }
2316
2317 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2318                                               struct btrfs_device *tgtdev)
2319 {
2320         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2321         tgtdev->io_width = fs_info->dev_root->sectorsize;
2322         tgtdev->io_align = fs_info->dev_root->sectorsize;
2323         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2324         tgtdev->dev_root = fs_info->dev_root;
2325         tgtdev->in_fs_metadata = 1;
2326 }
2327
2328 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2329                                         struct btrfs_device *device)
2330 {
2331         int ret;
2332         struct btrfs_path *path;
2333         struct btrfs_root *root;
2334         struct btrfs_dev_item *dev_item;
2335         struct extent_buffer *leaf;
2336         struct btrfs_key key;
2337
2338         root = device->dev_root->fs_info->chunk_root;
2339
2340         path = btrfs_alloc_path();
2341         if (!path)
2342                 return -ENOMEM;
2343
2344         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2345         key.type = BTRFS_DEV_ITEM_KEY;
2346         key.offset = device->devid;
2347
2348         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2349         if (ret < 0)
2350                 goto out;
2351
2352         if (ret > 0) {
2353                 ret = -ENOENT;
2354                 goto out;
2355         }
2356
2357         leaf = path->nodes[0];
2358         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2359
2360         btrfs_set_device_id(leaf, dev_item, device->devid);
2361         btrfs_set_device_type(leaf, dev_item, device->type);
2362         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2363         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2364         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2365         btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2366         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2367         btrfs_mark_buffer_dirty(leaf);
2368
2369 out:
2370         btrfs_free_path(path);
2371         return ret;
2372 }
2373
2374 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2375                       struct btrfs_device *device, u64 new_size)
2376 {
2377         struct btrfs_super_block *super_copy =
2378                 device->dev_root->fs_info->super_copy;
2379         u64 old_total = btrfs_super_total_bytes(super_copy);
2380         u64 diff = new_size - device->total_bytes;
2381
2382         if (!device->writeable)
2383                 return -EACCES;
2384         if (new_size <= device->total_bytes ||
2385             device->is_tgtdev_for_dev_replace)
2386                 return -EINVAL;
2387
2388         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2389         device->fs_devices->total_rw_bytes += diff;
2390
2391         device->total_bytes = new_size;
2392         device->disk_total_bytes = new_size;
2393         btrfs_clear_space_info_full(device->dev_root->fs_info);
2394
2395         return btrfs_update_device(trans, device);
2396 }
2397
2398 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2399                       struct btrfs_device *device, u64 new_size)
2400 {
2401         int ret;
2402         lock_chunks(device->dev_root);
2403         ret = __btrfs_grow_device(trans, device, new_size);
2404         unlock_chunks(device->dev_root);
2405         return ret;
2406 }
2407
2408 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2409                             struct btrfs_root *root,
2410                             u64 chunk_tree, u64 chunk_objectid,
2411                             u64 chunk_offset)
2412 {
2413         int ret;
2414         struct btrfs_path *path;
2415         struct btrfs_key key;
2416
2417         root = root->fs_info->chunk_root;
2418         path = btrfs_alloc_path();
2419         if (!path)
2420                 return -ENOMEM;
2421
2422         key.objectid = chunk_objectid;
2423         key.offset = chunk_offset;
2424         key.type = BTRFS_CHUNK_ITEM_KEY;
2425
2426         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2427         if (ret < 0)
2428                 goto out;
2429         else if (ret > 0) { /* Logic error or corruption */
2430                 btrfs_error(root->fs_info, -ENOENT,
2431                             "Failed lookup while freeing chunk.");
2432                 ret = -ENOENT;
2433                 goto out;
2434         }
2435
2436         ret = btrfs_del_item(trans, root, path);
2437         if (ret < 0)
2438                 btrfs_error(root->fs_info, ret,
2439                             "Failed to delete chunk item.");
2440 out:
2441         btrfs_free_path(path);
2442         return ret;
2443 }
2444
2445 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2446                         chunk_offset)
2447 {
2448         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2449         struct btrfs_disk_key *disk_key;
2450         struct btrfs_chunk *chunk;
2451         u8 *ptr;
2452         int ret = 0;
2453         u32 num_stripes;
2454         u32 array_size;
2455         u32 len = 0;
2456         u32 cur;
2457         struct btrfs_key key;
2458
2459         array_size = btrfs_super_sys_array_size(super_copy);
2460
2461         ptr = super_copy->sys_chunk_array;
2462         cur = 0;
2463
2464         while (cur < array_size) {
2465                 disk_key = (struct btrfs_disk_key *)ptr;
2466                 btrfs_disk_key_to_cpu(&key, disk_key);
2467
2468                 len = sizeof(*disk_key);
2469
2470                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2471                         chunk = (struct btrfs_chunk *)(ptr + len);
2472                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2473                         len += btrfs_chunk_item_size(num_stripes);
2474                 } else {
2475                         ret = -EIO;
2476                         break;
2477                 }
2478                 if (key.objectid == chunk_objectid &&
2479                     key.offset == chunk_offset) {
2480                         memmove(ptr, ptr + len, array_size - (cur + len));
2481                         array_size -= len;
2482                         btrfs_set_super_sys_array_size(super_copy, array_size);
2483                 } else {
2484                         ptr += len;
2485                         cur += len;
2486                 }
2487         }
2488         return ret;
2489 }
2490
2491 static int btrfs_relocate_chunk(struct btrfs_root *root,
2492                          u64 chunk_tree, u64 chunk_objectid,
2493                          u64 chunk_offset)
2494 {
2495         struct extent_map_tree *em_tree;
2496         struct btrfs_root *extent_root;
2497         struct btrfs_trans_handle *trans;
2498         struct extent_map *em;
2499         struct map_lookup *map;
2500         int ret;
2501         int i;
2502
2503         root = root->fs_info->chunk_root;
2504         extent_root = root->fs_info->extent_root;
2505         em_tree = &root->fs_info->mapping_tree.map_tree;
2506
2507         ret = btrfs_can_relocate(extent_root, chunk_offset);
2508         if (ret)
2509                 return -ENOSPC;
2510
2511         /* step one, relocate all the extents inside this chunk */
2512         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2513         if (ret)
2514                 return ret;
2515
2516         trans = btrfs_start_transaction(root, 0);
2517         if (IS_ERR(trans)) {
2518                 ret = PTR_ERR(trans);
2519                 btrfs_std_error(root->fs_info, ret);
2520                 return ret;
2521         }
2522
2523         lock_chunks(root);
2524
2525         /*
2526          * step two, delete the device extents and the
2527          * chunk tree entries
2528          */
2529         read_lock(&em_tree->lock);
2530         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2531         read_unlock(&em_tree->lock);
2532
2533         BUG_ON(!em || em->start > chunk_offset ||
2534                em->start + em->len < chunk_offset);
2535         map = (struct map_lookup *)em->bdev;
2536
2537         for (i = 0; i < map->num_stripes; i++) {
2538                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2539                                             map->stripes[i].physical);
2540                 BUG_ON(ret);
2541
2542                 if (map->stripes[i].dev) {
2543                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2544                         BUG_ON(ret);
2545                 }
2546         }
2547         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2548                                chunk_offset);
2549
2550         BUG_ON(ret);
2551
2552         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2553
2554         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2555                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2556                 BUG_ON(ret);
2557         }
2558
2559         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2560         BUG_ON(ret);
2561
2562         write_lock(&em_tree->lock);
2563         remove_extent_mapping(em_tree, em);
2564         write_unlock(&em_tree->lock);
2565
2566         /* once for the tree */
2567         free_extent_map(em);
2568         /* once for us */
2569         free_extent_map(em);
2570
2571         unlock_chunks(root);
2572         btrfs_end_transaction(trans, root);
2573         return 0;
2574 }
2575
2576 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2577 {
2578         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2579         struct btrfs_path *path;
2580         struct extent_buffer *leaf;
2581         struct btrfs_chunk *chunk;
2582         struct btrfs_key key;
2583         struct btrfs_key found_key;
2584         u64 chunk_tree = chunk_root->root_key.objectid;
2585         u64 chunk_type;
2586         bool retried = false;
2587         int failed = 0;
2588         int ret;
2589
2590         path = btrfs_alloc_path();
2591         if (!path)
2592                 return -ENOMEM;
2593
2594 again:
2595         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2596         key.offset = (u64)-1;
2597         key.type = BTRFS_CHUNK_ITEM_KEY;
2598
2599         while (1) {
2600                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2601                 if (ret < 0)
2602                         goto error;
2603                 BUG_ON(ret == 0); /* Corruption */
2604
2605                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2606                                           key.type);
2607                 if (ret < 0)
2608                         goto error;
2609                 if (ret > 0)
2610                         break;
2611
2612                 leaf = path->nodes[0];
2613                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2614
2615                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2616                                        struct btrfs_chunk);
2617                 chunk_type = btrfs_chunk_type(leaf, chunk);
2618                 btrfs_release_path(path);
2619
2620                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2621                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2622                                                    found_key.objectid,
2623                                                    found_key.offset);
2624                         if (ret == -ENOSPC)
2625                                 failed++;
2626                         else if (ret)
2627                                 BUG();
2628                 }
2629
2630                 if (found_key.offset == 0)
2631                         break;
2632                 key.offset = found_key.offset - 1;
2633         }
2634         ret = 0;
2635         if (failed && !retried) {
2636                 failed = 0;
2637                 retried = true;
2638                 goto again;
2639         } else if (WARN_ON(failed && retried)) {
2640                 ret = -ENOSPC;
2641         }
2642 error:
2643         btrfs_free_path(path);
2644         return ret;
2645 }
2646
2647 static int insert_balance_item(struct btrfs_root *root,
2648                                struct btrfs_balance_control *bctl)
2649 {
2650         struct btrfs_trans_handle *trans;
2651         struct btrfs_balance_item *item;
2652         struct btrfs_disk_balance_args disk_bargs;
2653         struct btrfs_path *path;
2654         struct extent_buffer *leaf;
2655         struct btrfs_key key;
2656         int ret, err;
2657
2658         path = btrfs_alloc_path();
2659         if (!path)
2660                 return -ENOMEM;
2661
2662         trans = btrfs_start_transaction(root, 0);
2663         if (IS_ERR(trans)) {
2664                 btrfs_free_path(path);
2665                 return PTR_ERR(trans);
2666         }
2667
2668         key.objectid = BTRFS_BALANCE_OBJECTID;
2669         key.type = BTRFS_BALANCE_ITEM_KEY;
2670         key.offset = 0;
2671
2672         ret = btrfs_insert_empty_item(trans, root, path, &key,
2673                                       sizeof(*item));
2674         if (ret)
2675                 goto out;
2676
2677         leaf = path->nodes[0];
2678         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2679
2680         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2681
2682         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2683         btrfs_set_balance_data(leaf, item, &disk_bargs);
2684         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2685         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2686         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2687         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2688
2689         btrfs_set_balance_flags(leaf, item, bctl->flags);
2690
2691         btrfs_mark_buffer_dirty(leaf);
2692 out:
2693         btrfs_free_path(path);
2694         err = btrfs_commit_transaction(trans, root);
2695         if (err && !ret)
2696                 ret = err;
2697         return ret;
2698 }
2699
2700 static int del_balance_item(struct btrfs_root *root)
2701 {
2702         struct btrfs_trans_handle *trans;
2703         struct btrfs_path *path;
2704         struct btrfs_key key;
2705         int ret, err;
2706
2707         path = btrfs_alloc_path();
2708         if (!path)
2709                 return -ENOMEM;
2710
2711         trans = btrfs_start_transaction(root, 0);
2712         if (IS_ERR(trans)) {
2713                 btrfs_free_path(path);
2714                 return PTR_ERR(trans);
2715         }
2716
2717         key.objectid = BTRFS_BALANCE_OBJECTID;
2718         key.type = BTRFS_BALANCE_ITEM_KEY;
2719         key.offset = 0;
2720
2721         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2722         if (ret < 0)
2723                 goto out;
2724         if (ret > 0) {
2725                 ret = -ENOENT;
2726                 goto out;
2727         }
2728
2729         ret = btrfs_del_item(trans, root, path);
2730 out:
2731         btrfs_free_path(path);
2732         err = btrfs_commit_transaction(trans, root);
2733         if (err && !ret)
2734                 ret = err;
2735         return ret;
2736 }
2737
2738 /*
2739  * This is a heuristic used to reduce the number of chunks balanced on
2740  * resume after balance was interrupted.
2741  */
2742 static void update_balance_args(struct btrfs_balance_control *bctl)
2743 {
2744         /*
2745          * Turn on soft mode for chunk types that were being converted.
2746          */
2747         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2748                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2749         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2750                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2751         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2752                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2753
2754         /*
2755          * Turn on usage filter if is not already used.  The idea is
2756          * that chunks that we have already balanced should be
2757          * reasonably full.  Don't do it for chunks that are being
2758          * converted - that will keep us from relocating unconverted
2759          * (albeit full) chunks.
2760          */
2761         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2762             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2763                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2764                 bctl->data.usage = 90;
2765         }
2766         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2767             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2768                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2769                 bctl->sys.usage = 90;
2770         }
2771         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2772             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2773                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2774                 bctl->meta.usage = 90;
2775         }
2776 }
2777
2778 /*
2779  * Should be called with both balance and volume mutexes held to
2780  * serialize other volume operations (add_dev/rm_dev/resize) with
2781  * restriper.  Same goes for unset_balance_control.
2782  */
2783 static void set_balance_control(struct btrfs_balance_control *bctl)
2784 {
2785         struct btrfs_fs_info *fs_info = bctl->fs_info;
2786
2787         BUG_ON(fs_info->balance_ctl);
2788
2789         spin_lock(&fs_info->balance_lock);
2790         fs_info->balance_ctl = bctl;
2791         spin_unlock(&fs_info->balance_lock);
2792 }
2793
2794 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2795 {
2796         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2797
2798         BUG_ON(!fs_info->balance_ctl);
2799
2800         spin_lock(&fs_info->balance_lock);
2801         fs_info->balance_ctl = NULL;
2802         spin_unlock(&fs_info->balance_lock);
2803
2804         kfree(bctl);
2805 }
2806
2807 /*
2808  * Balance filters.  Return 1 if chunk should be filtered out
2809  * (should not be balanced).
2810  */
2811 static int chunk_profiles_filter(u64 chunk_type,
2812                                  struct btrfs_balance_args *bargs)
2813 {
2814         chunk_type = chunk_to_extended(chunk_type) &
2815                                 BTRFS_EXTENDED_PROFILE_MASK;
2816
2817         if (bargs->profiles & chunk_type)
2818                 return 0;
2819
2820         return 1;
2821 }
2822
2823 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2824                               struct btrfs_balance_args *bargs)
2825 {
2826         struct btrfs_block_group_cache *cache;
2827         u64 chunk_used, user_thresh;
2828         int ret = 1;
2829
2830         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2831         chunk_used = btrfs_block_group_used(&cache->item);
2832
2833         if (bargs->usage == 0)
2834                 user_thresh = 1;
2835         else if (bargs->usage > 100)
2836                 user_thresh = cache->key.offset;
2837         else
2838                 user_thresh = div_factor_fine(cache->key.offset,
2839                                               bargs->usage);
2840
2841         if (chunk_used < user_thresh)
2842                 ret = 0;
2843
2844         btrfs_put_block_group(cache);
2845         return ret;
2846 }
2847
2848 static int chunk_devid_filter(struct extent_buffer *leaf,
2849                               struct btrfs_chunk *chunk,
2850                               struct btrfs_balance_args *bargs)
2851 {
2852         struct btrfs_stripe *stripe;
2853         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2854         int i;
2855
2856         for (i = 0; i < num_stripes; i++) {
2857                 stripe = btrfs_stripe_nr(chunk, i);
2858                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2859                         return 0;
2860         }
2861
2862         return 1;
2863 }
2864
2865 /* [pstart, pend) */
2866 static int chunk_drange_filter(struct extent_buffer *leaf,
2867                                struct btrfs_chunk *chunk,
2868                                u64 chunk_offset,
2869                                struct btrfs_balance_args *bargs)
2870 {
2871         struct btrfs_stripe *stripe;
2872         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2873         u64 stripe_offset;
2874         u64 stripe_length;
2875         int factor;
2876         int i;
2877
2878         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2879                 return 0;
2880
2881         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2882              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2883                 factor = num_stripes / 2;
2884         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2885                 factor = num_stripes - 1;
2886         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2887                 factor = num_stripes - 2;
2888         } else {
2889                 factor = num_stripes;
2890         }
2891
2892         for (i = 0; i < num_stripes; i++) {
2893                 stripe = btrfs_stripe_nr(chunk, i);
2894                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2895                         continue;
2896
2897                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2898                 stripe_length = btrfs_chunk_length(leaf, chunk);
2899                 do_div(stripe_length, factor);
2900
2901                 if (stripe_offset < bargs->pend &&
2902                     stripe_offset + stripe_length > bargs->pstart)
2903                         return 0;
2904         }
2905
2906         return 1;
2907 }
2908
2909 /* [vstart, vend) */
2910 static int chunk_vrange_filter(struct extent_buffer *leaf,
2911                                struct btrfs_chunk *chunk,
2912                                u64 chunk_offset,
2913                                struct btrfs_balance_args *bargs)
2914 {
2915         if (chunk_offset < bargs->vend &&
2916             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2917                 /* at least part of the chunk is inside this vrange */
2918                 return 0;
2919
2920         return 1;
2921 }
2922
2923 static int chunk_soft_convert_filter(u64 chunk_type,
2924                                      struct btrfs_balance_args *bargs)
2925 {
2926         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2927                 return 0;
2928
2929         chunk_type = chunk_to_extended(chunk_type) &
2930                                 BTRFS_EXTENDED_PROFILE_MASK;
2931
2932         if (bargs->target == chunk_type)
2933                 return 1;
2934
2935         return 0;
2936 }
2937
2938 static int should_balance_chunk(struct btrfs_root *root,
2939                                 struct extent_buffer *leaf,
2940                                 struct btrfs_chunk *chunk, u64 chunk_offset)
2941 {
2942         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2943         struct btrfs_balance_args *bargs = NULL;
2944         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2945
2946         /* type filter */
2947         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2948               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2949                 return 0;
2950         }
2951
2952         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2953                 bargs = &bctl->data;
2954         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2955                 bargs = &bctl->sys;
2956         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2957                 bargs = &bctl->meta;
2958
2959         /* profiles filter */
2960         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2961             chunk_profiles_filter(chunk_type, bargs)) {
2962                 return 0;
2963         }
2964
2965         /* usage filter */
2966         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2967             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2968                 return 0;
2969         }
2970
2971         /* devid filter */
2972         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2973             chunk_devid_filter(leaf, chunk, bargs)) {
2974                 return 0;
2975         }
2976
2977         /* drange filter, makes sense only with devid filter */
2978         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2979             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2980                 return 0;
2981         }
2982
2983         /* vrange filter */
2984         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2985             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2986                 return 0;
2987         }
2988
2989         /* soft profile changing mode */
2990         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2991             chunk_soft_convert_filter(chunk_type, bargs)) {
2992                 return 0;
2993         }
2994
2995         /*
2996          * limited by count, must be the last filter
2997          */
2998         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
2999                 if (bargs->limit == 0)
3000                         return 0;
3001                 else
3002                         bargs->limit--;
3003         }
3004
3005         return 1;
3006 }
3007
3008 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3009 {
3010         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3011         struct btrfs_root *chunk_root = fs_info->chunk_root;
3012         struct btrfs_root *dev_root = fs_info->dev_root;
3013         struct list_head *devices;
3014         struct btrfs_device *device;
3015         u64 old_size;
3016         u64 size_to_free;
3017         struct btrfs_chunk *chunk;
3018         struct btrfs_path *path;
3019         struct btrfs_key key;
3020         struct btrfs_key found_key;
3021         struct btrfs_trans_handle *trans;
3022         struct extent_buffer *leaf;
3023         int slot;
3024         int ret;
3025         int enospc_errors = 0;
3026         bool counting = true;
3027         u64 limit_data = bctl->data.limit;
3028         u64 limit_meta = bctl->meta.limit;
3029         u64 limit_sys = bctl->sys.limit;
3030
3031         /* step one make some room on all the devices */
3032         devices = &fs_info->fs_devices->devices;
3033         list_for_each_entry(device, devices, dev_list) {
3034                 old_size = device->total_bytes;
3035                 size_to_free = div_factor(old_size, 1);
3036                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3037                 if (!device->writeable ||
3038                     device->total_bytes - device->bytes_used > size_to_free ||
3039                     device->is_tgtdev_for_dev_replace)
3040                         continue;
3041
3042                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3043                 if (ret == -ENOSPC)
3044                         break;
3045                 BUG_ON(ret);
3046
3047                 trans = btrfs_start_transaction(dev_root, 0);
3048                 BUG_ON(IS_ERR(trans));
3049
3050                 ret = btrfs_grow_device(trans, device, old_size);
3051                 BUG_ON(ret);
3052
3053                 btrfs_end_transaction(trans, dev_root);
3054         }
3055
3056         /* step two, relocate all the chunks */
3057         path = btrfs_alloc_path();
3058         if (!path) {
3059                 ret = -ENOMEM;
3060                 goto error;
3061         }
3062
3063         /* zero out stat counters */
3064         spin_lock(&fs_info->balance_lock);
3065         memset(&bctl->stat, 0, sizeof(bctl->stat));
3066         spin_unlock(&fs_info->balance_lock);
3067 again:
3068         if (!counting) {
3069                 bctl->data.limit = limit_data;
3070                 bctl->meta.limit = limit_meta;
3071                 bctl->sys.limit = limit_sys;
3072         }
3073         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3074         key.offset = (u64)-1;
3075         key.type = BTRFS_CHUNK_ITEM_KEY;
3076
3077         while (1) {
3078                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3079                     atomic_read(&fs_info->balance_cancel_req)) {
3080                         ret = -ECANCELED;
3081                         goto error;
3082                 }
3083
3084                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3085                 if (ret < 0)
3086                         goto error;
3087
3088                 /*
3089                  * this shouldn't happen, it means the last relocate
3090                  * failed
3091                  */
3092                 if (ret == 0)
3093                         BUG(); /* FIXME break ? */
3094
3095                 ret = btrfs_previous_item(chunk_root, path, 0,
3096                                           BTRFS_CHUNK_ITEM_KEY);
3097                 if (ret) {
3098                         ret = 0;
3099                         break;
3100                 }
3101
3102                 leaf = path->nodes[0];
3103                 slot = path->slots[0];
3104                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3105
3106                 if (found_key.objectid != key.objectid)
3107                         break;
3108
3109                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3110
3111                 if (!counting) {
3112                         spin_lock(&fs_info->balance_lock);
3113                         bctl->stat.considered++;
3114                         spin_unlock(&fs_info->balance_lock);
3115                 }
3116
3117                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3118                                            found_key.offset);
3119                 btrfs_release_path(path);
3120                 if (!ret)
3121                         goto loop;
3122
3123                 if (counting) {
3124                         spin_lock(&fs_info->balance_lock);
3125                         bctl->stat.expected++;
3126                         spin_unlock(&fs_info->balance_lock);
3127                         goto loop;
3128                 }
3129
3130                 ret = btrfs_relocate_chunk(chunk_root,
3131                                            chunk_root->root_key.objectid,
3132                                            found_key.objectid,
3133                                            found_key.offset);
3134                 if (ret && ret != -ENOSPC)
3135                         goto error;
3136                 if (ret == -ENOSPC) {
3137                         enospc_errors++;
3138                 } else {
3139                         spin_lock(&fs_info->balance_lock);
3140                         bctl->stat.completed++;
3141                         spin_unlock(&fs_info->balance_lock);
3142                 }
3143 loop:
3144                 if (found_key.offset == 0)
3145                         break;
3146                 key.offset = found_key.offset - 1;
3147         }
3148
3149         if (counting) {
3150                 btrfs_release_path(path);
3151                 counting = false;
3152                 goto again;
3153         }
3154 error:
3155         btrfs_free_path(path);
3156         if (enospc_errors) {
3157                 btrfs_info(fs_info, "%d enospc errors during balance",
3158                        enospc_errors);
3159                 if (!ret)
3160                         ret = -ENOSPC;
3161         }
3162
3163         return ret;
3164 }
3165
3166 /**
3167  * alloc_profile_is_valid - see if a given profile is valid and reduced
3168  * @flags: profile to validate
3169  * @extended: if true @flags is treated as an extended profile
3170  */
3171 static int alloc_profile_is_valid(u64 flags, int extended)
3172 {
3173         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3174                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3175
3176         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3177
3178         /* 1) check that all other bits are zeroed */
3179         if (flags & ~mask)
3180                 return 0;
3181
3182         /* 2) see if profile is reduced */
3183         if (flags == 0)
3184                 return !extended; /* "0" is valid for usual profiles */
3185
3186         /* true if exactly one bit set */
3187         return (flags & (flags - 1)) == 0;
3188 }
3189
3190 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3191 {
3192         /* cancel requested || normal exit path */
3193         return atomic_read(&fs_info->balance_cancel_req) ||
3194                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3195                  atomic_read(&fs_info->balance_cancel_req) == 0);
3196 }
3197
3198 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3199 {
3200         int ret;
3201
3202         unset_balance_control(fs_info);
3203         ret = del_balance_item(fs_info->tree_root);
3204         if (ret)
3205                 btrfs_std_error(fs_info, ret);
3206
3207         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3208 }
3209
3210 /*
3211  * Should be called with both balance and volume mutexes held
3212  */
3213 int btrfs_balance(struct btrfs_balance_control *bctl,
3214                   struct btrfs_ioctl_balance_args *bargs)
3215 {
3216         struct btrfs_fs_info *fs_info = bctl->fs_info;
3217         u64 allowed;
3218         int mixed = 0;
3219         int ret;
3220         u64 num_devices;
3221         unsigned seq;
3222
3223         if (btrfs_fs_closing(fs_info) ||
3224             atomic_read(&fs_info->balance_pause_req) ||
3225             atomic_read(&fs_info->balance_cancel_req)) {
3226                 ret = -EINVAL;
3227                 goto out;
3228         }
3229
3230         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3231         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3232                 mixed = 1;
3233
3234         /*
3235          * In case of mixed groups both data and meta should be picked,
3236          * and identical options should be given for both of them.
3237          */
3238         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3239         if (mixed && (bctl->flags & allowed)) {
3240                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3241                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3242                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3243                         btrfs_err(fs_info, "with mixed groups data and "
3244                                    "metadata balance options must be the same");
3245                         ret = -EINVAL;
3246                         goto out;
3247                 }
3248         }
3249
3250         num_devices = fs_info->fs_devices->num_devices;
3251         btrfs_dev_replace_lock(&fs_info->dev_replace);
3252         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3253                 BUG_ON(num_devices < 1);
3254                 num_devices--;
3255         }
3256         btrfs_dev_replace_unlock(&fs_info->dev_replace);
3257         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3258         if (num_devices == 1)
3259                 allowed |= BTRFS_BLOCK_GROUP_DUP;
3260         else if (num_devices > 1)
3261                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3262         if (num_devices > 2)
3263                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3264         if (num_devices > 3)
3265                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3266                             BTRFS_BLOCK_GROUP_RAID6);
3267         if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3268             (!alloc_profile_is_valid(bctl->data.target, 1) ||
3269              (bctl->data.target & ~allowed))) {
3270                 btrfs_err(fs_info, "unable to start balance with target "
3271                            "data profile %llu",
3272                        bctl->data.target);
3273                 ret = -EINVAL;
3274                 goto out;
3275         }
3276         if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3277             (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3278              (bctl->meta.target & ~allowed))) {
3279                 btrfs_err(fs_info,
3280                            "unable to start balance with target metadata profile %llu",
3281                        bctl->meta.target);
3282                 ret = -EINVAL;
3283                 goto out;
3284         }
3285         if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3286             (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3287              (bctl->sys.target & ~allowed))) {
3288                 btrfs_err(fs_info,
3289                            "unable to start balance with target system profile %llu",
3290                        bctl->sys.target);
3291                 ret = -EINVAL;
3292                 goto out;
3293         }
3294
3295         /* allow dup'ed data chunks only in mixed mode */
3296         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3297             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3298                 btrfs_err(fs_info, "dup for data is not allowed");
3299                 ret = -EINVAL;
3300                 goto out;
3301         }
3302
3303         /* allow to reduce meta or sys integrity only if force set */
3304         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3305                         BTRFS_BLOCK_GROUP_RAID10 |
3306                         BTRFS_BLOCK_GROUP_RAID5 |
3307                         BTRFS_BLOCK_GROUP_RAID6;
3308         do {
3309                 seq = read_seqbegin(&fs_info->profiles_lock);
3310
3311                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3312                      (fs_info->avail_system_alloc_bits & allowed) &&
3313                      !(bctl->sys.target & allowed)) ||
3314                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3315                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3316                      !(bctl->meta.target & allowed))) {
3317                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3318                                 btrfs_info(fs_info, "force reducing metadata integrity");
3319                         } else {
3320                                 btrfs_err(fs_info, "balance will reduce metadata "
3321                                            "integrity, use force if you want this");
3322                                 ret = -EINVAL;
3323                                 goto out;
3324                         }
3325                 }
3326         } while (read_seqretry(&fs_info->profiles_lock, seq));
3327
3328         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3329                 int num_tolerated_disk_barrier_failures;
3330                 u64 target = bctl->sys.target;
3331
3332                 num_tolerated_disk_barrier_failures =
3333                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3334                 if (num_tolerated_disk_barrier_failures > 0 &&
3335                     (target &
3336                      (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3337                       BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3338                         num_tolerated_disk_barrier_failures = 0;
3339                 else if (num_tolerated_disk_barrier_failures > 1 &&
3340                          (target &
3341                           (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3342                         num_tolerated_disk_barrier_failures = 1;
3343
3344                 fs_info->num_tolerated_disk_barrier_failures =
3345                         num_tolerated_disk_barrier_failures;
3346         }
3347
3348         ret = insert_balance_item(fs_info->tree_root, bctl);
3349         if (ret && ret != -EEXIST)
3350                 goto out;
3351
3352         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3353                 BUG_ON(ret == -EEXIST);
3354                 set_balance_control(bctl);
3355         } else {
3356                 BUG_ON(ret != -EEXIST);
3357                 spin_lock(&fs_info->balance_lock);
3358                 update_balance_args(bctl);
3359                 spin_unlock(&fs_info->balance_lock);
3360         }
3361
3362         atomic_inc(&fs_info->balance_running);
3363         mutex_unlock(&fs_info->balance_mutex);
3364
3365         ret = __btrfs_balance(fs_info);
3366
3367         mutex_lock(&fs_info->balance_mutex);
3368         atomic_dec(&fs_info->balance_running);
3369
3370         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3371                 fs_info->num_tolerated_disk_barrier_failures =
3372                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3373         }
3374
3375         if (bargs) {
3376                 memset(bargs, 0, sizeof(*bargs));
3377                 update_ioctl_balance_args(fs_info, 0, bargs);
3378         }
3379
3380         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3381             balance_need_close(fs_info)) {
3382                 __cancel_balance(fs_info);
3383         }
3384
3385         wake_up(&fs_info->balance_wait_q);
3386
3387         return ret;
3388 out:
3389         if (bctl->flags & BTRFS_BALANCE_RESUME)
3390                 __cancel_balance(fs_info);
3391         else {
3392                 kfree(bctl);
3393                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3394         }
3395         return ret;
3396 }
3397
3398 static int balance_kthread(void *data)
3399 {
3400         struct btrfs_fs_info *fs_info = data;
3401         int ret = 0;
3402
3403         mutex_lock(&fs_info->volume_mutex);
3404         mutex_lock(&fs_info->balance_mutex);
3405
3406         if (fs_info->balance_ctl) {
3407                 btrfs_info(fs_info, "continuing balance");
3408                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3409         }
3410
3411         mutex_unlock(&fs_info->balance_mutex);
3412         mutex_unlock(&fs_info->volume_mutex);
3413
3414         return ret;
3415 }
3416
3417 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3418 {
3419         struct task_struct *tsk;
3420
3421         spin_lock(&fs_info->balance_lock);
3422         if (!fs_info->balance_ctl) {
3423                 spin_unlock(&fs_info->balance_lock);
3424                 return 0;
3425         }
3426         spin_unlock(&fs_info->balance_lock);
3427
3428         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3429                 btrfs_info(fs_info, "force skipping balance");
3430                 return 0;
3431         }
3432
3433         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3434         return PTR_ERR_OR_ZERO(tsk);
3435 }
3436
3437 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3438 {
3439         struct btrfs_balance_control *bctl;
3440         struct btrfs_balance_item *item;
3441         struct btrfs_disk_balance_args disk_bargs;
3442         struct btrfs_path *path;
3443         struct extent_buffer *leaf;
3444         struct btrfs_key key;
3445         int ret;
3446
3447         path = btrfs_alloc_path();
3448         if (!path)
3449                 return -ENOMEM;
3450
3451         key.objectid = BTRFS_BALANCE_OBJECTID;
3452         key.type = BTRFS_BALANCE_ITEM_KEY;
3453         key.offset = 0;
3454
3455         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3456         if (ret < 0)
3457                 goto out;
3458         if (ret > 0) { /* ret = -ENOENT; */
3459                 ret = 0;
3460                 goto out;
3461         }
3462
3463         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3464         if (!bctl) {
3465                 ret = -ENOMEM;
3466                 goto out;
3467         }
3468
3469         leaf = path->nodes[0];
3470         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3471
3472         bctl->fs_info = fs_info;
3473         bctl->flags = btrfs_balance_flags(leaf, item);
3474         bctl->flags |= BTRFS_BALANCE_RESUME;
3475
3476         btrfs_balance_data(leaf, item, &disk_bargs);
3477         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3478         btrfs_balance_meta(leaf, item, &disk_bargs);
3479         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3480         btrfs_balance_sys(leaf, item, &disk_bargs);
3481         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3482
3483         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3484
3485         mutex_lock(&fs_info->volume_mutex);
3486         mutex_lock(&fs_info->balance_mutex);
3487
3488         set_balance_control(bctl);
3489
3490         mutex_unlock(&fs_info->balance_mutex);
3491         mutex_unlock(&fs_info->volume_mutex);
3492 out:
3493         btrfs_free_path(path);
3494         return ret;
3495 }
3496
3497 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3498 {
3499         int ret = 0;
3500
3501         mutex_lock(&fs_info->balance_mutex);
3502         if (!fs_info->balance_ctl) {
3503                 mutex_unlock(&fs_info->balance_mutex);
3504                 return -ENOTCONN;
3505         }
3506
3507         if (atomic_read(&fs_info->balance_running)) {
3508                 atomic_inc(&fs_info->balance_pause_req);
3509                 mutex_unlock(&fs_info->balance_mutex);
3510
3511                 wait_event(fs_info->balance_wait_q,
3512                            atomic_read(&fs_info->balance_running) == 0);
3513
3514                 mutex_lock(&fs_info->balance_mutex);
3515                 /* we are good with balance_ctl ripped off from under us */
3516                 BUG_ON(atomic_read(&fs_info->balance_running));
3517                 atomic_dec(&fs_info->balance_pause_req);
3518         } else {
3519                 ret = -ENOTCONN;
3520         }
3521
3522         mutex_unlock(&fs_info->balance_mutex);
3523         return ret;
3524 }
3525
3526 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3527 {
3528         if (fs_info->sb->s_flags & MS_RDONLY)
3529                 return -EROFS;
3530
3531         mutex_lock(&fs_info->balance_mutex);
3532         if (!fs_info->balance_ctl) {
3533                 mutex_unlock(&fs_info->balance_mutex);
3534                 return -ENOTCONN;
3535         }
3536
3537         atomic_inc(&fs_info->balance_cancel_req);
3538         /*
3539          * if we are running just wait and return, balance item is
3540          * deleted in btrfs_balance in this case
3541          */
3542         if (atomic_read(&fs_info->balance_running)) {
3543                 mutex_unlock(&fs_info->balance_mutex);
3544                 wait_event(fs_info->balance_wait_q,
3545                            atomic_read(&fs_info->balance_running) == 0);
3546                 mutex_lock(&fs_info->balance_mutex);
3547         } else {
3548                 /* __cancel_balance needs volume_mutex */
3549                 mutex_unlock(&fs_info->balance_mutex);
3550                 mutex_lock(&fs_info->volume_mutex);
3551                 mutex_lock(&fs_info->balance_mutex);
3552
3553                 if (fs_info->balance_ctl)
3554                         __cancel_balance(fs_info);
3555
3556                 mutex_unlock(&fs_info->volume_mutex);
3557         }
3558
3559         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3560         atomic_dec(&fs_info->balance_cancel_req);
3561         mutex_unlock(&fs_info->balance_mutex);
3562         return 0;
3563 }
3564
3565 static int btrfs_uuid_scan_kthread(void *data)
3566 {
3567         struct btrfs_fs_info *fs_info = data;
3568         struct btrfs_root *root = fs_info->tree_root;
3569         struct btrfs_key key;
3570         struct btrfs_key max_key;
3571         struct btrfs_path *path = NULL;
3572         int ret = 0;
3573         struct extent_buffer *eb;
3574         int slot;
3575         struct btrfs_root_item root_item;
3576         u32 item_size;
3577         struct btrfs_trans_handle *trans = NULL;
3578
3579         path = btrfs_alloc_path();
3580         if (!path) {
3581                 ret = -ENOMEM;
3582                 goto out;
3583         }
3584
3585         key.objectid = 0;
3586         key.type = BTRFS_ROOT_ITEM_KEY;
3587         key.offset = 0;
3588
3589         max_key.objectid = (u64)-1;
3590         max_key.type = BTRFS_ROOT_ITEM_KEY;
3591         max_key.offset = (u64)-1;
3592
3593         path->keep_locks = 1;
3594
3595         while (1) {
3596                 ret = btrfs_search_forward(root, &key, path, 0);
3597                 if (ret) {
3598                         if (ret > 0)
3599                                 ret = 0;
3600                         break;
3601                 }
3602
3603                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3604                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3605                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3606                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
3607                         goto skip;
3608
3609                 eb = path->nodes[0];
3610                 slot = path->slots[0];
3611                 item_size = btrfs_item_size_nr(eb, slot);
3612                 if (item_size < sizeof(root_item))
3613                         goto skip;
3614
3615                 read_extent_buffer(eb, &root_item,
3616                                    btrfs_item_ptr_offset(eb, slot),
3617                                    (int)sizeof(root_item));
3618                 if (btrfs_root_refs(&root_item) == 0)
3619                         goto skip;
3620
3621                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3622                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
3623                         if (trans)
3624                                 goto update_tree;
3625
3626                         btrfs_release_path(path);
3627                         /*
3628                          * 1 - subvol uuid item
3629                          * 1 - received_subvol uuid item
3630                          */
3631                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3632                         if (IS_ERR(trans)) {
3633                                 ret = PTR_ERR(trans);
3634                                 break;
3635                         }
3636                         continue;
3637                 } else {
3638                         goto skip;
3639                 }
3640 update_tree:
3641                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3642                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3643                                                   root_item.uuid,
3644                                                   BTRFS_UUID_KEY_SUBVOL,
3645                                                   key.objectid);
3646                         if (ret < 0) {
3647                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3648                                         ret);
3649                                 break;
3650                         }
3651                 }
3652
3653                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3654                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3655                                                   root_item.received_uuid,
3656                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3657                                                   key.objectid);
3658                         if (ret < 0) {
3659                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3660                                         ret);
3661                                 break;
3662                         }
3663                 }
3664
3665 skip:
3666                 if (trans) {
3667                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3668                         trans = NULL;
3669                         if (ret)
3670                                 break;
3671                 }
3672
3673                 btrfs_release_path(path);
3674                 if (key.offset < (u64)-1) {
3675                         key.offset++;
3676                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3677                         key.offset = 0;
3678                         key.type = BTRFS_ROOT_ITEM_KEY;
3679                 } else if (key.objectid < (u64)-1) {
3680                         key.offset = 0;
3681                         key.type = BTRFS_ROOT_ITEM_KEY;
3682                         key.objectid++;
3683                 } else {
3684                         break;
3685                 }
3686                 cond_resched();
3687         }
3688
3689 out:
3690         btrfs_free_path(path);
3691         if (trans && !IS_ERR(trans))
3692                 btrfs_end_transaction(trans, fs_info->uuid_root);
3693         if (ret)
3694                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3695         else
3696                 fs_info->update_uuid_tree_gen = 1;
3697         up(&fs_info->uuid_tree_rescan_sem);
3698         return 0;
3699 }
3700
3701 /*
3702  * Callback for btrfs_uuid_tree_iterate().
3703  * returns:
3704  * 0    check succeeded, the entry is not outdated.
3705  * < 0  if an error occured.
3706  * > 0  if the check failed, which means the caller shall remove the entry.
3707  */
3708 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3709                                        u8 *uuid, u8 type, u64 subid)
3710 {
3711         struct btrfs_key key;
3712         int ret = 0;
3713         struct btrfs_root *subvol_root;
3714
3715         if (type != BTRFS_UUID_KEY_SUBVOL &&
3716             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3717                 goto out;
3718
3719         key.objectid = subid;
3720         key.type = BTRFS_ROOT_ITEM_KEY;
3721         key.offset = (u64)-1;
3722         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3723         if (IS_ERR(subvol_root)) {
3724                 ret = PTR_ERR(subvol_root);
3725                 if (ret == -ENOENT)
3726                         ret = 1;
3727                 goto out;
3728         }
3729
3730         switch (type) {
3731         case BTRFS_UUID_KEY_SUBVOL:
3732                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3733                         ret = 1;
3734                 break;
3735         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3736                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3737                            BTRFS_UUID_SIZE))
3738                         ret = 1;
3739                 break;
3740         }
3741
3742 out:
3743         return ret;
3744 }
3745
3746 static int btrfs_uuid_rescan_kthread(void *data)
3747 {
3748         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3749         int ret;
3750
3751         /*
3752          * 1st step is to iterate through the existing UUID tree and
3753          * to delete all entries that contain outdated data.
3754          * 2nd step is to add all missing entries to the UUID tree.
3755          */
3756         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3757         if (ret < 0) {
3758                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3759                 up(&fs_info->uuid_tree_rescan_sem);
3760                 return ret;
3761         }
3762         return btrfs_uuid_scan_kthread(data);
3763 }
3764
3765 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3766 {
3767         struct btrfs_trans_handle *trans;
3768         struct btrfs_root *tree_root = fs_info->tree_root;
3769         struct btrfs_root *uuid_root;
3770         struct task_struct *task;
3771         int ret;
3772
3773         /*
3774          * 1 - root node
3775          * 1 - root item
3776          */
3777         trans = btrfs_start_transaction(tree_root, 2);
3778         if (IS_ERR(trans))
3779                 return PTR_ERR(trans);
3780
3781         uuid_root = btrfs_create_tree(trans, fs_info,
3782                                       BTRFS_UUID_TREE_OBJECTID);
3783         if (IS_ERR(uuid_root)) {
3784                 btrfs_abort_transaction(trans, tree_root,
3785                                         PTR_ERR(uuid_root));
3786                 return PTR_ERR(uuid_root);
3787         }
3788
3789         fs_info->uuid_root = uuid_root;
3790
3791         ret = btrfs_commit_transaction(trans, tree_root);
3792         if (ret)
3793                 return ret;
3794
3795         down(&fs_info->uuid_tree_rescan_sem);
3796         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3797         if (IS_ERR(task)) {
3798                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3799                 btrfs_warn(fs_info, "failed to start uuid_scan task");
3800                 up(&fs_info->uuid_tree_rescan_sem);
3801                 return PTR_ERR(task);
3802         }
3803
3804         return 0;
3805 }
3806
3807 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3808 {
3809         struct task_struct *task;
3810
3811         down(&fs_info->uuid_tree_rescan_sem);
3812         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3813         if (IS_ERR(task)) {
3814                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3815                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3816                 up(&fs_info->uuid_tree_rescan_sem);
3817                 return PTR_ERR(task);
3818         }
3819
3820         return 0;
3821 }
3822
3823 /*
3824  * shrinking a device means finding all of the device extents past
3825  * the new size, and then following the back refs to the chunks.
3826  * The chunk relocation code actually frees the device extent
3827  */
3828 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3829 {
3830         struct btrfs_trans_handle *trans;
3831         struct btrfs_root *root = device->dev_root;
3832         struct btrfs_dev_extent *dev_extent = NULL;
3833         struct btrfs_path *path;
3834         u64 length;
3835         u64 chunk_tree;
3836         u64 chunk_objectid;
3837         u64 chunk_offset;
3838         int ret;
3839         int slot;
3840         int failed = 0;
3841         bool retried = false;
3842         struct extent_buffer *l;
3843         struct btrfs_key key;
3844         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3845         u64 old_total = btrfs_super_total_bytes(super_copy);
3846         u64 old_size = device->total_bytes;
3847         u64 diff = device->total_bytes - new_size;
3848
3849         if (device->is_tgtdev_for_dev_replace)
3850                 return -EINVAL;
3851
3852         path = btrfs_alloc_path();
3853         if (!path)
3854                 return -ENOMEM;
3855
3856         path->reada = 2;
3857
3858         lock_chunks(root);
3859
3860         device->total_bytes = new_size;
3861         if (device->writeable) {
3862                 device->fs_devices->total_rw_bytes -= diff;
3863                 spin_lock(&root->fs_info->free_chunk_lock);
3864                 root->fs_info->free_chunk_space -= diff;
3865                 spin_unlock(&root->fs_info->free_chunk_lock);
3866         }
3867         unlock_chunks(root);
3868
3869 again:
3870         key.objectid = device->devid;
3871         key.offset = (u64)-1;
3872         key.type = BTRFS_DEV_EXTENT_KEY;
3873
3874         do {
3875                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3876                 if (ret < 0)
3877                         goto done;
3878
3879                 ret = btrfs_previous_item(root, path, 0, key.type);
3880                 if (ret < 0)
3881                         goto done;
3882                 if (ret) {
3883                         ret = 0;
3884                         btrfs_release_path(path);
3885                         break;
3886                 }
3887
3888                 l = path->nodes[0];
3889                 slot = path->slots[0];
3890                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3891
3892                 if (key.objectid != device->devid) {
3893                         btrfs_release_path(path);
3894                         break;
3895                 }
3896
3897                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3898                 length = btrfs_dev_extent_length(l, dev_extent);
3899
3900                 if (key.offset + length <= new_size) {
3901                         btrfs_release_path(path);
3902                         break;
3903                 }
3904
3905                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3906                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3907                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3908                 btrfs_release_path(path);
3909
3910                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3911                                            chunk_offset);
3912                 if (ret && ret != -ENOSPC)
3913                         goto done;
3914                 if (ret == -ENOSPC)
3915                         failed++;
3916         } while (key.offset-- > 0);
3917
3918         if (failed && !retried) {
3919                 failed = 0;
3920                 retried = true;
3921                 goto again;
3922         } else if (failed && retried) {
3923                 ret = -ENOSPC;
3924                 lock_chunks(root);
3925
3926                 device->total_bytes = old_size;
3927                 if (device->writeable)
3928                         device->fs_devices->total_rw_bytes += diff;
3929                 spin_lock(&root->fs_info->free_chunk_lock);
3930                 root->fs_info->free_chunk_space += diff;
3931                 spin_unlock(&root->fs_info->free_chunk_lock);
3932                 unlock_chunks(root);
3933                 goto done;
3934         }
3935
3936         /* Shrinking succeeded, else we would be at "done". */
3937         trans = btrfs_start_transaction(root, 0);
3938         if (IS_ERR(trans)) {
3939                 ret = PTR_ERR(trans);
3940                 goto done;
3941         }
3942
3943         lock_chunks(root);
3944
3945         device->disk_total_bytes = new_size;
3946         /* Now btrfs_update_device() will change the on-disk size. */
3947         ret = btrfs_update_device(trans, device);
3948         if (ret) {
3949                 unlock_chunks(root);
3950                 btrfs_end_transaction(trans, root);
3951                 goto done;
3952         }
3953         WARN_ON(diff > old_total);
3954         btrfs_set_super_total_bytes(super_copy, old_total - diff);
3955         unlock_chunks(root);
3956         btrfs_end_transaction(trans, root);
3957 done:
3958         btrfs_free_path(path);
3959         return ret;
3960 }
3961
3962 static int btrfs_add_system_chunk(struct btrfs_root *root,
3963                            struct btrfs_key *key,
3964                            struct btrfs_chunk *chunk, int item_size)
3965 {
3966         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3967         struct btrfs_disk_key disk_key;
3968         u32 array_size;
3969         u8 *ptr;
3970
3971         array_size = btrfs_super_sys_array_size(super_copy);
3972         if (array_size + item_size + sizeof(disk_key)
3973                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3974                 return -EFBIG;
3975
3976         ptr = super_copy->sys_chunk_array + array_size;
3977         btrfs_cpu_key_to_disk(&disk_key, key);
3978         memcpy(ptr, &disk_key, sizeof(disk_key));
3979         ptr += sizeof(disk_key);
3980         memcpy(ptr, chunk, item_size);
3981         item_size += sizeof(disk_key);
3982         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3983         return 0;
3984 }
3985
3986 /*
3987  * sort the devices in descending order by max_avail, total_avail
3988  */
3989 static int btrfs_cmp_device_info(const void *a, const void *b)
3990 {
3991         const struct btrfs_device_info *di_a = a;
3992         const struct btrfs_device_info *di_b = b;
3993
3994         if (di_a->max_avail > di_b->max_avail)
3995                 return -1;
3996         if (di_a->max_avail < di_b->max_avail)
3997                 return 1;
3998         if (di_a->total_avail > di_b->total_avail)
3999                 return -1;
4000         if (di_a->total_avail < di_b->total_avail)
4001                 return 1;
4002         return 0;
4003 }
4004
4005 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4006         [BTRFS_RAID_RAID10] = {
4007                 .sub_stripes    = 2,
4008                 .dev_stripes    = 1,
4009                 .devs_max       = 0,    /* 0 == as many as possible */
4010                 .devs_min       = 4,
4011                 .devs_increment = 2,
4012                 .ncopies        = 2,
4013         },
4014         [BTRFS_RAID_RAID1] = {
4015                 .sub_stripes    = 1,
4016                 .dev_stripes    = 1,
4017                 .devs_max       = 2,
4018                 .devs_min       = 2,
4019                 .devs_increment = 2,
4020                 .ncopies        = 2,
4021         },
4022         [BTRFS_RAID_DUP] = {
4023                 .sub_stripes    = 1,
4024                 .dev_stripes    = 2,
4025                 .devs_max       = 1,
4026                 .devs_min       = 1,
4027                 .devs_increment = 1,
4028                 .ncopies        = 2,
4029         },
4030         [BTRFS_RAID_RAID0] = {
4031                 .sub_stripes    = 1,
4032                 .dev_stripes    = 1,
4033                 .devs_max       = 0,
4034                 .devs_min       = 2,
4035                 .devs_increment = 1,
4036                 .ncopies        = 1,
4037         },
4038         [BTRFS_RAID_SINGLE] = {
4039                 .sub_stripes    = 1,
4040                 .dev_stripes    = 1,
4041                 .devs_max       = 1,
4042                 .devs_min       = 1,
4043                 .devs_increment = 1,
4044                 .ncopies        = 1,
4045         },
4046         [BTRFS_RAID_RAID5] = {
4047                 .sub_stripes    = 1,
4048                 .dev_stripes    = 1,
4049                 .devs_max       = 0,
4050                 .devs_min       = 2,
4051                 .devs_increment = 1,
4052                 .ncopies        = 2,
4053         },
4054         [BTRFS_RAID_RAID6] = {
4055                 .sub_stripes    = 1,
4056                 .dev_stripes    = 1,
4057                 .devs_max       = 0,
4058                 .devs_min       = 3,
4059                 .devs_increment = 1,
4060                 .ncopies        = 3,
4061         },
4062 };
4063
4064 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4065 {
4066         /* TODO allow them to set a preferred stripe size */
4067         return 64 * 1024;
4068 }
4069
4070 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4071 {
4072         if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4073                 return;
4074
4075         btrfs_set_fs_incompat(info, RAID56);
4076 }
4077
4078 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4079                         - sizeof(struct btrfs_item)             \
4080                         - sizeof(struct btrfs_chunk))           \
4081                         / sizeof(struct btrfs_stripe) + 1)
4082
4083 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4084                                 - 2 * sizeof(struct btrfs_disk_key)     \
4085                                 - 2 * sizeof(struct btrfs_chunk))       \
4086                                 / sizeof(struct btrfs_stripe) + 1)
4087
4088 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4089                                struct btrfs_root *extent_root, u64 start,
4090                                u64 type)
4091 {
4092         struct btrfs_fs_info *info = extent_root->fs_info;
4093         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4094         struct list_head *cur;
4095         struct map_lookup *map = NULL;
4096         struct extent_map_tree *em_tree;
4097         struct extent_map *em;
4098         struct btrfs_device_info *devices_info = NULL;
4099         u64 total_avail;
4100         int num_stripes;        /* total number of stripes to allocate */
4101         int data_stripes;       /* number of stripes that count for
4102                                    block group size */
4103         int sub_stripes;        /* sub_stripes info for map */
4104         int dev_stripes;        /* stripes per dev */
4105         int devs_max;           /* max devs to use */
4106         int devs_min;           /* min devs needed */
4107         int devs_increment;     /* ndevs has to be a multiple of this */
4108         int ncopies;            /* how many copies to data has */
4109         int ret;
4110         u64 max_stripe_size;
4111         u64 max_chunk_size;
4112         u64 stripe_size;
4113         u64 num_bytes;
4114         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4115         int ndevs;
4116         int i;
4117         int j;
4118         int index;
4119
4120         BUG_ON(!alloc_profile_is_valid(type, 0));
4121
4122         if (list_empty(&fs_devices->alloc_list))
4123                 return -ENOSPC;
4124
4125         index = __get_raid_index(type);
4126
4127         sub_stripes = btrfs_raid_array[index].sub_stripes;
4128         dev_stripes = btrfs_raid_array[index].dev_stripes;
4129         devs_max = btrfs_raid_array[index].devs_max;
4130         devs_min = btrfs_raid_array[index].devs_min;
4131         devs_increment = btrfs_raid_array[index].devs_increment;
4132         ncopies = btrfs_raid_array[index].ncopies;
4133
4134         if (type & BTRFS_BLOCK_GROUP_DATA) {
4135                 max_stripe_size = 1024 * 1024 * 1024;
4136                 max_chunk_size = 10 * max_stripe_size;
4137                 if (!devs_max)
4138                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4139         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4140                 /* for larger filesystems, use larger metadata chunks */
4141                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4142                         max_stripe_size = 1024 * 1024 * 1024;
4143                 else
4144                         max_stripe_size = 256 * 1024 * 1024;
4145                 max_chunk_size = max_stripe_size;
4146                 if (!devs_max)
4147                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4148         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4149                 max_stripe_size = 32 * 1024 * 1024;
4150                 max_chunk_size = 2 * max_stripe_size;
4151                 if (!devs_max)
4152                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4153         } else {
4154                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4155                        type);
4156                 BUG_ON(1);
4157         }
4158
4159         /* we don't want a chunk larger than 10% of writeable space */
4160         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4161                              max_chunk_size);
4162
4163         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4164                                GFP_NOFS);
4165         if (!devices_info)
4166                 return -ENOMEM;
4167
4168         cur = fs_devices->alloc_list.next;
4169
4170         /*
4171          * in the first pass through the devices list, we gather information
4172          * about the available holes on each device.
4173          */
4174         ndevs = 0;
4175         while (cur != &fs_devices->alloc_list) {
4176                 struct btrfs_device *device;
4177                 u64 max_avail;
4178                 u64 dev_offset;
4179
4180                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4181
4182                 cur = cur->next;
4183
4184                 if (!device->writeable) {
4185                         WARN(1, KERN_ERR
4186                                "BTRFS: read-only device in alloc_list\n");
4187                         continue;
4188                 }
4189
4190                 if (!device->in_fs_metadata ||
4191                     device->is_tgtdev_for_dev_replace)
4192                         continue;
4193
4194                 if (device->total_bytes > device->bytes_used)
4195                         total_avail = device->total_bytes - device->bytes_used;
4196                 else
4197                         total_avail = 0;
4198
4199                 /* If there is no space on this device, skip it. */
4200                 if (total_avail == 0)
4201                         continue;
4202
4203                 ret = find_free_dev_extent(trans, device,
4204                                            max_stripe_size * dev_stripes,
4205                                            &dev_offset, &max_avail);
4206                 if (ret && ret != -ENOSPC)
4207                         goto error;
4208
4209                 if (ret == 0)
4210                         max_avail = max_stripe_size * dev_stripes;
4211
4212                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4213                         continue;
4214
4215                 if (ndevs == fs_devices->rw_devices) {
4216                         WARN(1, "%s: found more than %llu devices\n",
4217                              __func__, fs_devices->rw_devices);
4218                         break;
4219                 }
4220                 devices_info[ndevs].dev_offset = dev_offset;
4221                 devices_info[ndevs].max_avail = max_avail;
4222                 devices_info[ndevs].total_avail = total_avail;
4223                 devices_info[ndevs].dev = device;
4224                 ++ndevs;
4225         }
4226
4227         /*
4228          * now sort the devices by hole size / available space
4229          */
4230         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4231              btrfs_cmp_device_info, NULL);
4232
4233         /* round down to number of usable stripes */
4234         ndevs -= ndevs % devs_increment;
4235
4236         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4237                 ret = -ENOSPC;
4238                 goto error;
4239         }
4240
4241         if (devs_max && ndevs > devs_max)
4242                 ndevs = devs_max;
4243         /*
4244          * the primary goal is to maximize the number of stripes, so use as many
4245          * devices as possible, even if the stripes are not maximum sized.
4246          */
4247         stripe_size = devices_info[ndevs-1].max_avail;
4248         num_stripes = ndevs * dev_stripes;
4249
4250         /*
4251          * this will have to be fixed for RAID1 and RAID10 over
4252          * more drives
4253          */
4254         data_stripes = num_stripes / ncopies;
4255
4256         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4257                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4258                                  btrfs_super_stripesize(info->super_copy));
4259                 data_stripes = num_stripes - 1;
4260         }
4261         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4262                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4263                                  btrfs_super_stripesize(info->super_copy));
4264                 data_stripes = num_stripes - 2;
4265         }
4266
4267         /*
4268          * Use the number of data stripes to figure out how big this chunk
4269          * is really going to be in terms of logical address space,
4270          * and compare that answer with the max chunk size
4271          */
4272         if (stripe_size * data_stripes > max_chunk_size) {
4273                 u64 mask = (1ULL << 24) - 1;
4274                 stripe_size = max_chunk_size;
4275                 do_div(stripe_size, data_stripes);
4276
4277                 /* bump the answer up to a 16MB boundary */
4278                 stripe_size = (stripe_size + mask) & ~mask;
4279
4280                 /* but don't go higher than the limits we found
4281                  * while searching for free extents
4282                  */
4283                 if (stripe_size > devices_info[ndevs-1].max_avail)
4284                         stripe_size = devices_info[ndevs-1].max_avail;
4285         }
4286
4287         do_div(stripe_size, dev_stripes);
4288
4289         /* align to BTRFS_STRIPE_LEN */
4290         do_div(stripe_size, raid_stripe_len);
4291         stripe_size *= raid_stripe_len;
4292
4293         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4294         if (!map) {
4295                 ret = -ENOMEM;
4296                 goto error;
4297         }
4298         map->num_stripes = num_stripes;
4299
4300         for (i = 0; i < ndevs; ++i) {
4301                 for (j = 0; j < dev_stripes; ++j) {
4302                         int s = i * dev_stripes + j;
4303                         map->stripes[s].dev = devices_info[i].dev;
4304                         map->stripes[s].physical = devices_info[i].dev_offset +
4305                                                    j * stripe_size;
4306                 }
4307         }
4308         map->sector_size = extent_root->sectorsize;
4309         map->stripe_len = raid_stripe_len;
4310         map->io_align = raid_stripe_len;
4311         map->io_width = raid_stripe_len;
4312         map->type = type;
4313         map->sub_stripes = sub_stripes;
4314
4315         num_bytes = stripe_size * data_stripes;
4316
4317         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4318
4319         em = alloc_extent_map();
4320         if (!em) {
4321                 kfree(map);
4322                 ret = -ENOMEM;
4323                 goto error;
4324         }
4325         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4326         em->bdev = (struct block_device *)map;
4327         em->start = start;
4328         em->len = num_bytes;
4329         em->block_start = 0;
4330         em->block_len = em->len;
4331         em->orig_block_len = stripe_size;
4332
4333         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4334         write_lock(&em_tree->lock);
4335         ret = add_extent_mapping(em_tree, em, 0);
4336         if (!ret) {
4337                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4338                 atomic_inc(&em->refs);
4339         }
4340         write_unlock(&em_tree->lock);
4341         if (ret) {
4342                 free_extent_map(em);
4343                 goto error;
4344         }
4345
4346         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4347                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4348                                      start, num_bytes);
4349         if (ret)
4350                 goto error_del_extent;
4351
4352         free_extent_map(em);
4353         check_raid56_incompat_flag(extent_root->fs_info, type);
4354
4355         kfree(devices_info);
4356         return 0;
4357
4358 error_del_extent:
4359         write_lock(&em_tree->lock);
4360         remove_extent_mapping(em_tree, em);
4361         write_unlock(&em_tree->lock);
4362
4363         /* One for our allocation */
4364         free_extent_map(em);
4365         /* One for the tree reference */
4366         free_extent_map(em);
4367 error:
4368         kfree(devices_info);
4369         return ret;
4370 }
4371
4372 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4373                                 struct btrfs_root *extent_root,
4374                                 u64 chunk_offset, u64 chunk_size)
4375 {
4376         struct btrfs_key key;
4377         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4378         struct btrfs_device *device;
4379         struct btrfs_chunk *chunk;
4380         struct btrfs_stripe *stripe;
4381         struct extent_map_tree *em_tree;
4382         struct extent_map *em;
4383         struct map_lookup *map;
4384         size_t item_size;
4385         u64 dev_offset;
4386         u64 stripe_size;
4387         int i = 0;
4388         int ret;
4389
4390         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4391         read_lock(&em_tree->lock);
4392         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4393         read_unlock(&em_tree->lock);
4394
4395         if (!em) {
4396                 btrfs_crit(extent_root->fs_info, "unable to find logical "
4397                            "%Lu len %Lu", chunk_offset, chunk_size);
4398                 return -EINVAL;
4399         }
4400
4401         if (em->start != chunk_offset || em->len != chunk_size) {
4402                 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4403                           " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4404                           chunk_size, em->start, em->len);
4405                 free_extent_map(em);
4406                 return -EINVAL;
4407         }
4408
4409         map = (struct map_lookup *)em->bdev;
4410         item_size = btrfs_chunk_item_size(map->num_stripes);
4411         stripe_size = em->orig_block_len;
4412
4413         chunk = kzalloc(item_size, GFP_NOFS);
4414         if (!chunk) {
4415                 ret = -ENOMEM;
4416                 goto out;
4417         }
4418
4419         for (i = 0; i < map->num_stripes; i++) {
4420                 device = map->stripes[i].dev;
4421                 dev_offset = map->stripes[i].physical;
4422
4423                 device->bytes_used += stripe_size;
4424                 ret = btrfs_update_device(trans, device);
4425                 if (ret)
4426                         goto out;
4427                 ret = btrfs_alloc_dev_extent(trans, device,
4428                                              chunk_root->root_key.objectid,
4429                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4430                                              chunk_offset, dev_offset,
4431                                              stripe_size);
4432                 if (ret)
4433                         goto out;
4434         }
4435
4436         spin_lock(&extent_root->fs_info->free_chunk_lock);
4437         extent_root->fs_info->free_chunk_space -= (stripe_size *
4438                                                    map->num_stripes);
4439         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4440
4441         stripe = &chunk->stripe;
4442         for (i = 0; i < map->num_stripes; i++) {
4443                 device = map->stripes[i].dev;
4444                 dev_offset = map->stripes[i].physical;
4445
4446                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4447                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4448                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4449                 stripe++;
4450         }
4451
4452         btrfs_set_stack_chunk_length(chunk, chunk_size);
4453         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4454         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4455         btrfs_set_stack_chunk_type(chunk, map->type);
4456         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4457         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4458         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4459         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4460         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4461
4462         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4463         key.type = BTRFS_CHUNK_ITEM_KEY;
4464         key.offset = chunk_offset;
4465
4466         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4467         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4468                 /*
4469                  * TODO: Cleanup of inserted chunk root in case of
4470                  * failure.
4471                  */
4472                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4473                                              item_size);
4474         }
4475
4476 out:
4477         kfree(chunk);
4478         free_extent_map(em);
4479         return ret;
4480 }
4481
4482 /*
4483  * Chunk allocation falls into two parts. The first part does works
4484  * that make the new allocated chunk useable, but not do any operation
4485  * that modifies the chunk tree. The second part does the works that
4486  * require modifying the chunk tree. This division is important for the
4487  * bootstrap process of adding storage to a seed btrfs.
4488  */
4489 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4490                       struct btrfs_root *extent_root, u64 type)
4491 {
4492         u64 chunk_offset;
4493
4494         chunk_offset = find_next_chunk(extent_root->fs_info);
4495         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4496 }
4497
4498 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4499                                          struct btrfs_root *root,
4500                                          struct btrfs_device *device)
4501 {
4502         u64 chunk_offset;
4503         u64 sys_chunk_offset;
4504         u64 alloc_profile;
4505         struct btrfs_fs_info *fs_info = root->fs_info;
4506         struct btrfs_root *extent_root = fs_info->extent_root;
4507         int ret;
4508
4509         chunk_offset = find_next_chunk(fs_info);
4510         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4511         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4512                                   alloc_profile);
4513         if (ret)
4514                 return ret;
4515
4516         sys_chunk_offset = find_next_chunk(root->fs_info);
4517         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4518         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4519                                   alloc_profile);
4520         if (ret) {
4521                 btrfs_abort_transaction(trans, root, ret);
4522                 goto out;
4523         }
4524
4525         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4526         if (ret)
4527                 btrfs_abort_transaction(trans, root, ret);
4528 out:
4529         return ret;
4530 }
4531
4532 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4533 {
4534         struct extent_map *em;
4535         struct map_lookup *map;
4536         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4537         int readonly = 0;
4538         int i;
4539
4540         read_lock(&map_tree->map_tree.lock);
4541         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4542         read_unlock(&map_tree->map_tree.lock);
4543         if (!em)
4544                 return 1;
4545
4546         if (btrfs_test_opt(root, DEGRADED)) {
4547                 free_extent_map(em);
4548                 return 0;
4549         }
4550
4551         map = (struct map_lookup *)em->bdev;
4552         for (i = 0; i < map->num_stripes; i++) {
4553                 if (!map->stripes[i].dev->writeable) {
4554                         readonly = 1;
4555                         break;
4556                 }
4557         }
4558         free_extent_map(em);
4559         return readonly;
4560 }
4561
4562 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4563 {
4564         extent_map_tree_init(&tree->map_tree);
4565 }
4566
4567 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4568 {
4569         struct extent_map *em;
4570
4571         while (1) {
4572                 write_lock(&tree->map_tree.lock);
4573                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4574                 if (em)
4575                         remove_extent_mapping(&tree->map_tree, em);
4576                 write_unlock(&tree->map_tree.lock);
4577                 if (!em)
4578                         break;
4579                 /* once for us */
4580                 free_extent_map(em);
4581                 /* once for the tree */
4582                 free_extent_map(em);
4583         }
4584 }
4585
4586 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4587 {
4588         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4589         struct extent_map *em;
4590         struct map_lookup *map;
4591         struct extent_map_tree *em_tree = &map_tree->map_tree;
4592         int ret;
4593
4594         read_lock(&em_tree->lock);
4595         em = lookup_extent_mapping(em_tree, logical, len);
4596         read_unlock(&em_tree->lock);
4597
4598         /*
4599          * We could return errors for these cases, but that could get ugly and
4600          * we'd probably do the same thing which is just not do anything else
4601          * and exit, so return 1 so the callers don't try to use other copies.
4602          */
4603         if (!em) {
4604                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4605                             logical+len);
4606                 return 1;
4607         }
4608
4609         if (em->start > logical || em->start + em->len < logical) {
4610                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4611                             "%Lu-%Lu", logical, logical+len, em->start,
4612                             em->start + em->len);
4613                 free_extent_map(em);
4614                 return 1;
4615         }
4616
4617         map = (struct map_lookup *)em->bdev;
4618         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4619                 ret = map->num_stripes;
4620         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4621                 ret = map->sub_stripes;
4622         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4623                 ret = 2;
4624         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4625                 ret = 3;
4626         else
4627                 ret = 1;
4628         free_extent_map(em);
4629
4630         btrfs_dev_replace_lock(&fs_info->dev_replace);
4631         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4632                 ret++;
4633         btrfs_dev_replace_unlock(&fs_info->dev_replace);
4634
4635         return ret;
4636 }
4637
4638 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4639                                     struct btrfs_mapping_tree *map_tree,
4640                                     u64 logical)
4641 {
4642         struct extent_map *em;
4643         struct map_lookup *map;
4644         struct extent_map_tree *em_tree = &map_tree->map_tree;
4645         unsigned long len = root->sectorsize;
4646
4647         read_lock(&em_tree->lock);
4648         em = lookup_extent_mapping(em_tree, logical, len);
4649         read_unlock(&em_tree->lock);
4650         BUG_ON(!em);
4651
4652         BUG_ON(em->start > logical || em->start + em->len < logical);
4653         map = (struct map_lookup *)em->bdev;
4654         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4655                          BTRFS_BLOCK_GROUP_RAID6)) {
4656                 len = map->stripe_len * nr_data_stripes(map);
4657         }
4658         free_extent_map(em);
4659         return len;
4660 }
4661
4662 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4663                            u64 logical, u64 len, int mirror_num)
4664 {
4665         struct extent_map *em;
4666         struct map_lookup *map;
4667         struct extent_map_tree *em_tree = &map_tree->map_tree;
4668         int ret = 0;
4669
4670         read_lock(&em_tree->lock);
4671         em = lookup_extent_mapping(em_tree, logical, len);
4672         read_unlock(&em_tree->lock);
4673         BUG_ON(!em);
4674
4675         BUG_ON(em->start > logical || em->start + em->len < logical);
4676         map = (struct map_lookup *)em->bdev;
4677         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4678                          BTRFS_BLOCK_GROUP_RAID6))
4679                 ret = 1;
4680         free_extent_map(em);
4681         return ret;
4682 }
4683
4684 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4685                             struct map_lookup *map, int first, int num,
4686                             int optimal, int dev_replace_is_ongoing)
4687 {
4688         int i;
4689         int tolerance;
4690         struct btrfs_device *srcdev;
4691
4692         if (dev_replace_is_ongoing &&
4693             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4694              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4695                 srcdev = fs_info->dev_replace.srcdev;
4696         else
4697                 srcdev = NULL;
4698
4699         /*
4700          * try to avoid the drive that is the source drive for a
4701          * dev-replace procedure, only choose it if no other non-missing
4702          * mirror is available
4703          */
4704         for (tolerance = 0; tolerance < 2; tolerance++) {
4705                 if (map->stripes[optimal].dev->bdev &&
4706                     (tolerance || map->stripes[optimal].dev != srcdev))
4707                         return optimal;
4708                 for (i = first; i < first + num; i++) {
4709                         if (map->stripes[i].dev->bdev &&
4710                             (tolerance || map->stripes[i].dev != srcdev))
4711                                 return i;
4712                 }
4713         }
4714
4715         /* we couldn't find one that doesn't fail.  Just return something
4716          * and the io error handling code will clean up eventually
4717          */
4718         return optimal;
4719 }
4720
4721 static inline int parity_smaller(u64 a, u64 b)
4722 {
4723         return a > b;
4724 }
4725
4726 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4727 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4728 {
4729         struct btrfs_bio_stripe s;
4730         int i;
4731         u64 l;
4732         int again = 1;
4733
4734         while (again) {
4735                 again = 0;
4736                 for (i = 0; i < bbio->num_stripes - 1; i++) {
4737                         if (parity_smaller(raid_map[i], raid_map[i+1])) {
4738                                 s = bbio->stripes[i];
4739                                 l = raid_map[i];
4740                                 bbio->stripes[i] = bbio->stripes[i+1];
4741                                 raid_map[i] = raid_map[i+1];
4742                                 bbio->stripes[i+1] = s;
4743                                 raid_map[i+1] = l;
4744                                 again = 1;
4745                         }
4746                 }
4747         }
4748 }
4749
4750 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4751                              u64 logical, u64 *length,
4752                              struct btrfs_bio **bbio_ret,
4753                              int mirror_num, u64 **raid_map_ret)
4754 {
4755         struct extent_map *em;
4756         struct map_lookup *map;
4757         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4758         struct extent_map_tree *em_tree = &map_tree->map_tree;
4759         u64 offset;
4760         u64 stripe_offset;
4761         u64 stripe_end_offset;
4762         u64 stripe_nr;
4763         u64 stripe_nr_orig;
4764         u64 stripe_nr_end;
4765         u64 stripe_len;
4766         u64 *raid_map = NULL;
4767         int stripe_index;
4768         int i;
4769         int ret = 0;
4770         int num_stripes;
4771         int max_errors = 0;
4772         struct btrfs_bio *bbio = NULL;
4773         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4774         int dev_replace_is_ongoing = 0;
4775         int num_alloc_stripes;
4776         int patch_the_first_stripe_for_dev_replace = 0;
4777         u64 physical_to_patch_in_first_stripe = 0;
4778         u64 raid56_full_stripe_start = (u64)-1;
4779
4780         read_lock(&em_tree->lock);
4781         em = lookup_extent_mapping(em_tree, logical, *length);
4782         read_unlock(&em_tree->lock);
4783
4784         if (!em) {
4785                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4786                         logical, *length);
4787                 return -EINVAL;
4788         }
4789
4790         if (em->start > logical || em->start + em->len < logical) {
4791                 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4792                            "found %Lu-%Lu", logical, em->start,
4793                            em->start + em->len);
4794                 free_extent_map(em);
4795                 return -EINVAL;
4796         }
4797
4798         map = (struct map_lookup *)em->bdev;
4799         offset = logical - em->start;
4800
4801         stripe_len = map->stripe_len;
4802         stripe_nr = offset;
4803         /*
4804          * stripe_nr counts the total number of stripes we have to stride
4805          * to get to this block
4806          */
4807         do_div(stripe_nr, stripe_len);
4808
4809         stripe_offset = stripe_nr * stripe_len;
4810         BUG_ON(offset < stripe_offset);
4811
4812         /* stripe_offset is the offset of this block in its stripe*/
4813         stripe_offset = offset - stripe_offset;
4814
4815         /* if we're here for raid56, we need to know the stripe aligned start */
4816         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4817                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4818                 raid56_full_stripe_start = offset;
4819
4820                 /* allow a write of a full stripe, but make sure we don't
4821                  * allow straddling of stripes
4822                  */
4823                 do_div(raid56_full_stripe_start, full_stripe_len);
4824                 raid56_full_stripe_start *= full_stripe_len;
4825         }
4826
4827         if (rw & REQ_DISCARD) {
4828                 /* we don't discard raid56 yet */
4829                 if (map->type &
4830                     (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4831                         ret = -EOPNOTSUPP;
4832                         goto out;
4833                 }
4834                 *length = min_t(u64, em->len - offset, *length);
4835         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4836                 u64 max_len;
4837                 /* For writes to RAID[56], allow a full stripeset across all disks.
4838                    For other RAID types and for RAID[56] reads, just allow a single
4839                    stripe (on a single disk). */
4840                 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4841                     (rw & REQ_WRITE)) {
4842                         max_len = stripe_len * nr_data_stripes(map) -
4843                                 (offset - raid56_full_stripe_start);
4844                 } else {
4845                         /* we limit the length of each bio to what fits in a stripe */
4846                         max_len = stripe_len - stripe_offset;
4847                 }
4848                 *length = min_t(u64, em->len - offset, max_len);
4849         } else {
4850                 *length = em->len - offset;
4851         }
4852
4853         /* This is for when we're called from btrfs_merge_bio_hook() and all
4854            it cares about is the length */
4855         if (!bbio_ret)
4856                 goto out;
4857
4858         btrfs_dev_replace_lock(dev_replace);
4859         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4860         if (!dev_replace_is_ongoing)
4861                 btrfs_dev_replace_unlock(dev_replace);
4862
4863         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4864             !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4865             dev_replace->tgtdev != NULL) {
4866                 /*
4867                  * in dev-replace case, for repair case (that's the only
4868                  * case where the mirror is selected explicitly when
4869                  * calling btrfs_map_block), blocks left of the left cursor
4870                  * can also be read from the target drive.
4871                  * For REQ_GET_READ_MIRRORS, the target drive is added as
4872                  * the last one to the array of stripes. For READ, it also
4873                  * needs to be supported using the same mirror number.
4874                  * If the requested block is not left of the left cursor,
4875                  * EIO is returned. This can happen because btrfs_num_copies()
4876                  * returns one more in the dev-replace case.
4877                  */
4878                 u64 tmp_length = *length;
4879                 struct btrfs_bio *tmp_bbio = NULL;
4880                 int tmp_num_stripes;
4881                 u64 srcdev_devid = dev_replace->srcdev->devid;
4882                 int index_srcdev = 0;
4883                 int found = 0;
4884                 u64 physical_of_found = 0;
4885
4886                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4887                              logical, &tmp_length, &tmp_bbio, 0, NULL);
4888                 if (ret) {
4889                         WARN_ON(tmp_bbio != NULL);
4890                         goto out;
4891                 }
4892
4893                 tmp_num_stripes = tmp_bbio->num_stripes;
4894                 if (mirror_num > tmp_num_stripes) {
4895                         /*
4896                          * REQ_GET_READ_MIRRORS does not contain this
4897                          * mirror, that means that the requested area
4898                          * is not left of the left cursor
4899                          */
4900                         ret = -EIO;
4901                         kfree(tmp_bbio);
4902                         goto out;
4903                 }
4904
4905                 /*
4906                  * process the rest of the function using the mirror_num
4907                  * of the source drive. Therefore look it up first.
4908                  * At the end, patch the device pointer to the one of the
4909                  * target drive.
4910                  */
4911                 for (i = 0; i < tmp_num_stripes; i++) {
4912                         if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4913                                 /*
4914                                  * In case of DUP, in order to keep it
4915                                  * simple, only add the mirror with the
4916                                  * lowest physical address
4917                                  */
4918                                 if (found &&
4919                                     physical_of_found <=
4920                                      tmp_bbio->stripes[i].physical)
4921                                         continue;
4922                                 index_srcdev = i;
4923                                 found = 1;
4924                                 physical_of_found =
4925                                         tmp_bbio->stripes[i].physical;
4926                         }
4927                 }
4928
4929                 if (found) {
4930                         mirror_num = index_srcdev + 1;
4931                         patch_the_first_stripe_for_dev_replace = 1;
4932                         physical_to_patch_in_first_stripe = physical_of_found;
4933                 } else {
4934                         WARN_ON(1);
4935                         ret = -EIO;
4936                         kfree(tmp_bbio);
4937                         goto out;
4938                 }
4939
4940                 kfree(tmp_bbio);
4941         } else if (mirror_num > map->num_stripes) {
4942                 mirror_num = 0;
4943         }
4944
4945         num_stripes = 1;
4946         stripe_index = 0;
4947         stripe_nr_orig = stripe_nr;
4948         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4949         do_div(stripe_nr_end, map->stripe_len);
4950         stripe_end_offset = stripe_nr_end * map->stripe_len -
4951                             (offset + *length);
4952
4953         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4954                 if (rw & REQ_DISCARD)
4955                         num_stripes = min_t(u64, map->num_stripes,
4956                                             stripe_nr_end - stripe_nr_orig);
4957                 stripe_index = do_div(stripe_nr, map->num_stripes);
4958         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4959                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4960                         num_stripes = map->num_stripes;
4961                 else if (mirror_num)
4962                         stripe_index = mirror_num - 1;
4963                 else {
4964                         stripe_index = find_live_mirror(fs_info, map, 0,
4965                                             map->num_stripes,
4966                                             current->pid % map->num_stripes,
4967                                             dev_replace_is_ongoing);
4968                         mirror_num = stripe_index + 1;
4969                 }
4970
4971         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4972                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4973                         num_stripes = map->num_stripes;
4974                 } else if (mirror_num) {
4975                         stripe_index = mirror_num - 1;
4976                 } else {
4977                         mirror_num = 1;
4978                 }
4979
4980         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4981                 int factor = map->num_stripes / map->sub_stripes;
4982
4983                 stripe_index = do_div(stripe_nr, factor);
4984                 stripe_index *= map->sub_stripes;
4985
4986                 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4987                         num_stripes = map->sub_stripes;
4988                 else if (rw & REQ_DISCARD)
4989                         num_stripes = min_t(u64, map->sub_stripes *
4990                                             (stripe_nr_end - stripe_nr_orig),
4991                                             map->num_stripes);
4992                 else if (mirror_num)
4993                         stripe_index += mirror_num - 1;
4994                 else {
4995                         int old_stripe_index = stripe_index;
4996                         stripe_index = find_live_mirror(fs_info, map,
4997                                               stripe_index,
4998                                               map->sub_stripes, stripe_index +
4999                                               current->pid % map->sub_stripes,
5000                                               dev_replace_is_ongoing);
5001                         mirror_num = stripe_index - old_stripe_index + 1;
5002                 }
5003
5004         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5005                                 BTRFS_BLOCK_GROUP_RAID6)) {
5006                 u64 tmp;
5007
5008                 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
5009                     && raid_map_ret) {
5010                         int i, rot;
5011
5012                         /* push stripe_nr back to the start of the full stripe */
5013                         stripe_nr = raid56_full_stripe_start;
5014                         do_div(stripe_nr, stripe_len);
5015
5016                         stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5017
5018                         /* RAID[56] write or recovery. Return all stripes */
5019                         num_stripes = map->num_stripes;
5020                         max_errors = nr_parity_stripes(map);
5021
5022                         raid_map = kmalloc_array(num_stripes, sizeof(u64),
5023                                            GFP_NOFS);
5024                         if (!raid_map) {
5025                                 ret = -ENOMEM;
5026                                 goto out;
5027                         }
5028
5029                         /* Work out the disk rotation on this stripe-set */
5030                         tmp = stripe_nr;
5031                         rot = do_div(tmp, num_stripes);
5032
5033                         /* Fill in the logical address of each stripe */
5034                         tmp = stripe_nr * nr_data_stripes(map);
5035                         for (i = 0; i < nr_data_stripes(map); i++)
5036                                 raid_map[(i+rot) % num_stripes] =
5037                                         em->start + (tmp + i) * map->stripe_len;
5038
5039                         raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5040                         if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5041                                 raid_map[(i+rot+1) % num_stripes] =
5042                                         RAID6_Q_STRIPE;
5043
5044                         *length = map->stripe_len;
5045                         stripe_index = 0;
5046                         stripe_offset = 0;
5047                 } else {
5048                         /*
5049                          * Mirror #0 or #1 means the original data block.
5050                          * Mirror #2 is RAID5 parity block.
5051                          * Mirror #3 is RAID6 Q block.
5052                          */
5053                         stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5054                         if (mirror_num > 1)
5055                                 stripe_index = nr_data_stripes(map) +
5056                                                 mirror_num - 2;
5057
5058                         /* We distribute the parity blocks across stripes */
5059                         tmp = stripe_nr + stripe_index;
5060                         stripe_index = do_div(tmp, map->num_stripes);
5061                 }
5062         } else {
5063                 /*
5064                  * after this do_div call, stripe_nr is the number of stripes
5065                  * on this device we have to walk to find the data, and
5066                  * stripe_index is the number of our device in the stripe array
5067                  */
5068                 stripe_index = do_div(stripe_nr, map->num_stripes);
5069                 mirror_num = stripe_index + 1;
5070         }
5071         BUG_ON(stripe_index >= map->num_stripes);
5072
5073         num_alloc_stripes = num_stripes;
5074         if (dev_replace_is_ongoing) {
5075                 if (rw & (REQ_WRITE | REQ_DISCARD))
5076                         num_alloc_stripes <<= 1;
5077                 if (rw & REQ_GET_READ_MIRRORS)
5078                         num_alloc_stripes++;
5079         }
5080         bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
5081         if (!bbio) {
5082                 kfree(raid_map);
5083                 ret = -ENOMEM;
5084                 goto out;
5085         }
5086         atomic_set(&bbio->error, 0);
5087
5088         if (rw & REQ_DISCARD) {
5089                 int factor = 0;
5090                 int sub_stripes = 0;
5091                 u64 stripes_per_dev = 0;
5092                 u32 remaining_stripes = 0;
5093                 u32 last_stripe = 0;
5094
5095                 if (map->type &
5096                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5097                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5098                                 sub_stripes = 1;
5099                         else
5100                                 sub_stripes = map->sub_stripes;
5101
5102                         factor = map->num_stripes / sub_stripes;
5103                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5104                                                       stripe_nr_orig,
5105                                                       factor,
5106                                                       &remaining_stripes);
5107                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5108                         last_stripe *= sub_stripes;
5109                 }
5110
5111                 for (i = 0; i < num_stripes; i++) {
5112                         bbio->stripes[i].physical =
5113                                 map->stripes[stripe_index].physical +
5114                                 stripe_offset + stripe_nr * map->stripe_len;
5115                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5116
5117                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5118                                          BTRFS_BLOCK_GROUP_RAID10)) {
5119                                 bbio->stripes[i].length = stripes_per_dev *
5120                                                           map->stripe_len;
5121
5122                                 if (i / sub_stripes < remaining_stripes)
5123                                         bbio->stripes[i].length +=
5124                                                 map->stripe_len;
5125
5126                                 /*
5127                                  * Special for the first stripe and
5128                                  * the last stripe:
5129                                  *
5130                                  * |-------|...|-------|
5131                                  *     |----------|
5132                                  *    off     end_off
5133                                  */
5134                                 if (i < sub_stripes)
5135                                         bbio->stripes[i].length -=
5136                                                 stripe_offset;
5137
5138                                 if (stripe_index >= last_stripe &&
5139                                     stripe_index <= (last_stripe +
5140                                                      sub_stripes - 1))
5141                                         bbio->stripes[i].length -=
5142                                                 stripe_end_offset;
5143
5144                                 if (i == sub_stripes - 1)
5145                                         stripe_offset = 0;
5146                         } else
5147                                 bbio->stripes[i].length = *length;
5148
5149                         stripe_index++;
5150                         if (stripe_index == map->num_stripes) {
5151                                 /* This could only happen for RAID0/10 */
5152                                 stripe_index = 0;
5153                                 stripe_nr++;
5154                         }
5155                 }
5156         } else {
5157                 for (i = 0; i < num_stripes; i++) {
5158                         bbio->stripes[i].physical =
5159                                 map->stripes[stripe_index].physical +
5160                                 stripe_offset +
5161                                 stripe_nr * map->stripe_len;
5162                         bbio->stripes[i].dev =
5163                                 map->stripes[stripe_index].dev;
5164                         stripe_index++;
5165                 }
5166         }
5167
5168         if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5169                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5170                                  BTRFS_BLOCK_GROUP_RAID10 |
5171                                  BTRFS_BLOCK_GROUP_RAID5 |
5172                                  BTRFS_BLOCK_GROUP_DUP)) {
5173                         max_errors = 1;
5174                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5175                         max_errors = 2;
5176                 }
5177         }
5178
5179         if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5180             dev_replace->tgtdev != NULL) {
5181                 int index_where_to_add;
5182                 u64 srcdev_devid = dev_replace->srcdev->devid;
5183
5184                 /*
5185                  * duplicate the write operations while the dev replace
5186                  * procedure is running. Since the copying of the old disk
5187                  * to the new disk takes place at run time while the
5188                  * filesystem is mounted writable, the regular write
5189                  * operations to the old disk have to be duplicated to go
5190                  * to the new disk as well.
5191                  * Note that device->missing is handled by the caller, and
5192                  * that the write to the old disk is already set up in the
5193                  * stripes array.
5194                  */
5195                 index_where_to_add = num_stripes;
5196                 for (i = 0; i < num_stripes; i++) {
5197                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5198                                 /* write to new disk, too */
5199                                 struct btrfs_bio_stripe *new =
5200                                         bbio->stripes + index_where_to_add;
5201                                 struct btrfs_bio_stripe *old =
5202                                         bbio->stripes + i;
5203
5204                                 new->physical = old->physical;
5205                                 new->length = old->length;
5206                                 new->dev = dev_replace->tgtdev;
5207                                 index_where_to_add++;
5208                                 max_errors++;
5209                         }
5210                 }
5211                 num_stripes = index_where_to_add;
5212         } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5213                    dev_replace->tgtdev != NULL) {
5214                 u64 srcdev_devid = dev_replace->srcdev->devid;
5215                 int index_srcdev = 0;
5216                 int found = 0;
5217                 u64 physical_of_found = 0;
5218
5219                 /*
5220                  * During the dev-replace procedure, the target drive can
5221                  * also be used to read data in case it is needed to repair
5222                  * a corrupt block elsewhere. This is possible if the
5223                  * requested area is left of the left cursor. In this area,
5224                  * the target drive is a full copy of the source drive.
5225                  */
5226                 for (i = 0; i < num_stripes; i++) {
5227                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5228                                 /*
5229                                  * In case of DUP, in order to keep it
5230                                  * simple, only add the mirror with the
5231                                  * lowest physical address
5232                                  */
5233                                 if (found &&
5234                                     physical_of_found <=
5235                                      bbio->stripes[i].physical)
5236                                         continue;
5237                                 index_srcdev = i;
5238                                 found = 1;
5239                                 physical_of_found = bbio->stripes[i].physical;
5240                         }
5241                 }
5242                 if (found) {
5243                         u64 length = map->stripe_len;
5244
5245                         if (physical_of_found + length <=
5246                             dev_replace->cursor_left) {
5247                                 struct btrfs_bio_stripe *tgtdev_stripe =
5248                                         bbio->stripes + num_stripes;
5249
5250                                 tgtdev_stripe->physical = physical_of_found;
5251                                 tgtdev_stripe->length =
5252                                         bbio->stripes[index_srcdev].length;
5253                                 tgtdev_stripe->dev = dev_replace->tgtdev;
5254
5255                                 num_stripes++;
5256                         }
5257                 }
5258         }
5259
5260         *bbio_ret = bbio;
5261         bbio->num_stripes = num_stripes;
5262         bbio->max_errors = max_errors;
5263         bbio->mirror_num = mirror_num;
5264
5265         /*
5266          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5267          * mirror_num == num_stripes + 1 && dev_replace target drive is
5268          * available as a mirror
5269          */
5270         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5271                 WARN_ON(num_stripes > 1);
5272                 bbio->stripes[0].dev = dev_replace->tgtdev;
5273                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5274                 bbio->mirror_num = map->num_stripes + 1;
5275         }
5276         if (raid_map) {
5277                 sort_parity_stripes(bbio, raid_map);
5278                 *raid_map_ret = raid_map;
5279         }
5280 out:
5281         if (dev_replace_is_ongoing)
5282                 btrfs_dev_replace_unlock(dev_replace);
5283         free_extent_map(em);
5284         return ret;
5285 }
5286
5287 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5288                       u64 logical, u64 *length,
5289                       struct btrfs_bio **bbio_ret, int mirror_num)
5290 {
5291         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5292                                  mirror_num, NULL);
5293 }
5294
5295 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5296                      u64 chunk_start, u64 physical, u64 devid,
5297                      u64 **logical, int *naddrs, int *stripe_len)
5298 {
5299         struct extent_map_tree *em_tree = &map_tree->map_tree;
5300         struct extent_map *em;
5301         struct map_lookup *map;
5302         u64 *buf;
5303         u64 bytenr;
5304         u64 length;
5305         u64 stripe_nr;
5306         u64 rmap_len;
5307         int i, j, nr = 0;
5308
5309         read_lock(&em_tree->lock);
5310         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5311         read_unlock(&em_tree->lock);
5312
5313         if (!em) {
5314                 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5315                        chunk_start);
5316                 return -EIO;
5317         }
5318
5319         if (em->start != chunk_start) {
5320                 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5321                        em->start, chunk_start);
5322                 free_extent_map(em);
5323                 return -EIO;
5324         }
5325         map = (struct map_lookup *)em->bdev;
5326
5327         length = em->len;
5328         rmap_len = map->stripe_len;
5329
5330         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5331                 do_div(length, map->num_stripes / map->sub_stripes);
5332         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5333                 do_div(length, map->num_stripes);
5334         else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5335                               BTRFS_BLOCK_GROUP_RAID6)) {
5336                 do_div(length, nr_data_stripes(map));
5337                 rmap_len = map->stripe_len * nr_data_stripes(map);
5338         }
5339
5340         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5341         BUG_ON(!buf); /* -ENOMEM */
5342
5343         for (i = 0; i < map->num_stripes; i++) {
5344                 if (devid && map->stripes[i].dev->devid != devid)
5345                         continue;
5346                 if (map->stripes[i].physical > physical ||
5347                     map->stripes[i].physical + length <= physical)
5348                         continue;
5349
5350                 stripe_nr = physical - map->stripes[i].physical;
5351                 do_div(stripe_nr, map->stripe_len);
5352
5353                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5354                         stripe_nr = stripe_nr * map->num_stripes + i;
5355                         do_div(stripe_nr, map->sub_stripes);
5356                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5357                         stripe_nr = stripe_nr * map->num_stripes + i;
5358                 } /* else if RAID[56], multiply by nr_data_stripes().
5359                    * Alternatively, just use rmap_len below instead of
5360                    * map->stripe_len */
5361
5362                 bytenr = chunk_start + stripe_nr * rmap_len;
5363                 WARN_ON(nr >= map->num_stripes);
5364                 for (j = 0; j < nr; j++) {
5365                         if (buf[j] == bytenr)
5366                                 break;
5367                 }
5368                 if (j == nr) {
5369                         WARN_ON(nr >= map->num_stripes);
5370                         buf[nr++] = bytenr;
5371                 }
5372         }
5373
5374         *logical = buf;
5375         *naddrs = nr;
5376         *stripe_len = rmap_len;
5377
5378         free_extent_map(em);
5379         return 0;
5380 }
5381
5382 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5383 {
5384         if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5385                 bio_endio_nodec(bio, err);
5386         else
5387                 bio_endio(bio, err);
5388         kfree(bbio);
5389 }
5390
5391 static void btrfs_end_bio(struct bio *bio, int err)
5392 {
5393         struct btrfs_bio *bbio = bio->bi_private;
5394         struct btrfs_device *dev = bbio->stripes[0].dev;
5395         int is_orig_bio = 0;
5396
5397         if (err) {
5398                 atomic_inc(&bbio->error);
5399                 if (err == -EIO || err == -EREMOTEIO) {
5400                         unsigned int stripe_index =
5401                                 btrfs_io_bio(bio)->stripe_index;
5402
5403                         BUG_ON(stripe_index >= bbio->num_stripes);
5404                         dev = bbio->stripes[stripe_index].dev;
5405                         if (dev->bdev) {
5406                                 if (bio->bi_rw & WRITE)
5407                                         btrfs_dev_stat_inc(dev,
5408                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5409                                 else
5410                                         btrfs_dev_stat_inc(dev,
5411                                                 BTRFS_DEV_STAT_READ_ERRS);
5412                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5413                                         btrfs_dev_stat_inc(dev,
5414                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
5415                                 btrfs_dev_stat_print_on_error(dev);
5416                         }
5417                 }
5418         }
5419
5420         if (bio == bbio->orig_bio)
5421                 is_orig_bio = 1;
5422
5423         btrfs_bio_counter_dec(bbio->fs_info);
5424
5425         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5426                 if (!is_orig_bio) {
5427                         bio_put(bio);
5428                         bio = bbio->orig_bio;
5429                 }
5430
5431                 bio->bi_private = bbio->private;
5432                 bio->bi_end_io = bbio->end_io;
5433                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5434                 /* only send an error to the higher layers if it is
5435                  * beyond the tolerance of the btrfs bio
5436                  */
5437                 if (atomic_read(&bbio->error) > bbio->max_errors) {
5438                         err = -EIO;
5439                 } else {
5440                         /*
5441                          * this bio is actually up to date, we didn't
5442                          * go over the max number of errors
5443                          */
5444                         set_bit(BIO_UPTODATE, &bio->bi_flags);
5445                         err = 0;
5446                 }
5447
5448                 btrfs_end_bbio(bbio, bio, err);
5449         } else if (!is_orig_bio) {
5450                 bio_put(bio);
5451         }
5452 }
5453
5454 /*
5455  * see run_scheduled_bios for a description of why bios are collected for
5456  * async submit.
5457  *
5458  * This will add one bio to the pending list for a device and make sure
5459  * the work struct is scheduled.
5460  */
5461 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5462                                         struct btrfs_device *device,
5463                                         int rw, struct bio *bio)
5464 {
5465         int should_queue = 1;
5466         struct btrfs_pending_bios *pending_bios;
5467
5468         if (device->missing || !device->bdev) {
5469                 bio_endio(bio, -EIO);
5470                 return;
5471         }
5472
5473         /* don't bother with additional async steps for reads, right now */
5474         if (!(rw & REQ_WRITE)) {
5475                 bio_get(bio);
5476                 btrfsic_submit_bio(rw, bio);
5477                 bio_put(bio);
5478                 return;
5479         }
5480
5481         /*
5482          * nr_async_bios allows us to reliably return congestion to the
5483          * higher layers.  Otherwise, the async bio makes it appear we have
5484          * made progress against dirty pages when we've really just put it
5485          * on a queue for later
5486          */
5487         atomic_inc(&root->fs_info->nr_async_bios);
5488         WARN_ON(bio->bi_next);
5489         bio->bi_next = NULL;
5490         bio->bi_rw |= rw;
5491
5492         spin_lock(&device->io_lock);
5493         if (bio->bi_rw & REQ_SYNC)
5494                 pending_bios = &device->pending_sync_bios;
5495         else
5496                 pending_bios = &device->pending_bios;
5497
5498         if (pending_bios->tail)
5499                 pending_bios->tail->bi_next = bio;
5500
5501         pending_bios->tail = bio;
5502         if (!pending_bios->head)
5503                 pending_bios->head = bio;
5504         if (device->running_pending)
5505                 should_queue = 0;
5506
5507         spin_unlock(&device->io_lock);
5508
5509         if (should_queue)
5510                 btrfs_queue_work(root->fs_info->submit_workers,
5511                                  &device->work);
5512 }
5513
5514 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5515                        sector_t sector)
5516 {
5517         struct bio_vec *prev;
5518         struct request_queue *q = bdev_get_queue(bdev);
5519         unsigned int max_sectors = queue_max_sectors(q);
5520         struct bvec_merge_data bvm = {
5521                 .bi_bdev = bdev,
5522                 .bi_sector = sector,
5523                 .bi_rw = bio->bi_rw,
5524         };
5525
5526         if (WARN_ON(bio->bi_vcnt == 0))
5527                 return 1;
5528
5529         prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5530         if (bio_sectors(bio) > max_sectors)
5531                 return 0;
5532
5533         if (!q->merge_bvec_fn)
5534                 return 1;
5535
5536         bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5537         if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5538                 return 0;
5539         return 1;
5540 }
5541
5542 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5543                               struct bio *bio, u64 physical, int dev_nr,
5544                               int rw, int async)
5545 {
5546         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5547
5548         bio->bi_private = bbio;
5549         btrfs_io_bio(bio)->stripe_index = dev_nr;
5550         bio->bi_end_io = btrfs_end_bio;
5551         bio->bi_iter.bi_sector = physical >> 9;
5552 #ifdef DEBUG
5553         {
5554                 struct rcu_string *name;
5555
5556                 rcu_read_lock();
5557                 name = rcu_dereference(dev->name);
5558                 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5559                          "(%s id %llu), size=%u\n", rw,
5560                          (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5561                          name->str, dev->devid, bio->bi_size);
5562                 rcu_read_unlock();
5563         }
5564 #endif
5565         bio->bi_bdev = dev->bdev;
5566
5567         btrfs_bio_counter_inc_noblocked(root->fs_info);
5568
5569         if (async)
5570                 btrfs_schedule_bio(root, dev, rw, bio);
5571         else
5572                 btrfsic_submit_bio(rw, bio);
5573 }
5574
5575 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5576                               struct bio *first_bio, struct btrfs_device *dev,
5577                               int dev_nr, int rw, int async)
5578 {
5579         struct bio_vec *bvec = first_bio->bi_io_vec;
5580         struct bio *bio;
5581         int nr_vecs = bio_get_nr_vecs(dev->bdev);
5582         u64 physical = bbio->stripes[dev_nr].physical;
5583
5584 again:
5585         bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5586         if (!bio)
5587                 return -ENOMEM;
5588
5589         while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5590                 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5591                                  bvec->bv_offset) < bvec->bv_len) {
5592                         u64 len = bio->bi_iter.bi_size;
5593
5594                         atomic_inc(&bbio->stripes_pending);
5595                         submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5596                                           rw, async);
5597                         physical += len;
5598                         goto again;
5599                 }
5600                 bvec++;
5601         }
5602
5603         submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5604         return 0;
5605 }
5606
5607 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5608 {
5609         atomic_inc(&bbio->error);
5610         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5611                 /* Shoud be the original bio. */
5612                 WARN_ON(bio != bbio->orig_bio);
5613
5614                 bio->bi_private = bbio->private;
5615                 bio->bi_end_io = bbio->end_io;
5616                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5617                 bio->bi_iter.bi_sector = logical >> 9;
5618
5619                 btrfs_end_bbio(bbio, bio, -EIO);
5620         }
5621 }
5622
5623 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5624                   int mirror_num, int async_submit)
5625 {
5626         struct btrfs_device *dev;
5627         struct bio *first_bio = bio;
5628         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5629         u64 length = 0;
5630         u64 map_length;
5631         u64 *raid_map = NULL;
5632         int ret;
5633         int dev_nr = 0;
5634         int total_devs = 1;
5635         struct btrfs_bio *bbio = NULL;
5636
5637         length = bio->bi_iter.bi_size;
5638         map_length = length;
5639
5640         btrfs_bio_counter_inc_blocked(root->fs_info);
5641         ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5642                               mirror_num, &raid_map);
5643         if (ret) {
5644                 btrfs_bio_counter_dec(root->fs_info);
5645                 return ret;
5646         }
5647
5648         total_devs = bbio->num_stripes;
5649         bbio->orig_bio = first_bio;
5650         bbio->private = first_bio->bi_private;
5651         bbio->end_io = first_bio->bi_end_io;
5652         bbio->fs_info = root->fs_info;
5653         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5654
5655         if (raid_map) {
5656                 /* In this case, map_length has been set to the length of
5657                    a single stripe; not the whole write */
5658                 if (rw & WRITE) {
5659                         ret = raid56_parity_write(root, bio, bbio,
5660                                                   raid_map, map_length);
5661                 } else {
5662                         ret = raid56_parity_recover(root, bio, bbio,
5663                                                     raid_map, map_length,
5664                                                     mirror_num);
5665                 }
5666                 /*
5667                  * FIXME, replace dosen't support raid56 yet, please fix
5668                  * it in the future.
5669                  */
5670                 btrfs_bio_counter_dec(root->fs_info);
5671                 return ret;
5672         }
5673
5674         if (map_length < length) {
5675                 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5676                         logical, length, map_length);
5677                 BUG();
5678         }
5679
5680         while (dev_nr < total_devs) {
5681                 dev = bbio->stripes[dev_nr].dev;
5682                 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5683                         bbio_error(bbio, first_bio, logical);
5684                         dev_nr++;
5685                         continue;
5686                 }
5687
5688                 /*
5689                  * Check and see if we're ok with this bio based on it's size
5690                  * and offset with the given device.
5691                  */
5692                 if (!bio_size_ok(dev->bdev, first_bio,
5693                                  bbio->stripes[dev_nr].physical >> 9)) {
5694                         ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5695                                                  dev_nr, rw, async_submit);
5696                         BUG_ON(ret);
5697                         dev_nr++;
5698                         continue;
5699                 }
5700
5701                 if (dev_nr < total_devs - 1) {
5702                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5703                         BUG_ON(!bio); /* -ENOMEM */
5704                 } else {
5705                         bio = first_bio;
5706                         bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5707                 }
5708
5709                 submit_stripe_bio(root, bbio, bio,
5710                                   bbio->stripes[dev_nr].physical, dev_nr, rw,
5711                                   async_submit);
5712                 dev_nr++;
5713         }
5714         btrfs_bio_counter_dec(root->fs_info);
5715         return 0;
5716 }
5717
5718 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5719                                        u8 *uuid, u8 *fsid)
5720 {
5721         struct btrfs_device *device;
5722         struct btrfs_fs_devices *cur_devices;
5723
5724         cur_devices = fs_info->fs_devices;
5725         while (cur_devices) {
5726                 if (!fsid ||
5727                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5728                         device = __find_device(&cur_devices->devices,
5729                                                devid, uuid);
5730                         if (device)
5731                                 return device;
5732                 }
5733                 cur_devices = cur_devices->seed;
5734         }
5735         return NULL;
5736 }
5737
5738 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5739                                             u64 devid, u8 *dev_uuid)
5740 {
5741         struct btrfs_device *device;
5742         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5743
5744         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5745         if (IS_ERR(device))
5746                 return NULL;
5747
5748         list_add(&device->dev_list, &fs_devices->devices);
5749         device->fs_devices = fs_devices;
5750         fs_devices->num_devices++;
5751
5752         device->missing = 1;
5753         fs_devices->missing_devices++;
5754
5755         return device;
5756 }
5757
5758 /**
5759  * btrfs_alloc_device - allocate struct btrfs_device
5760  * @fs_info:    used only for generating a new devid, can be NULL if
5761  *              devid is provided (i.e. @devid != NULL).
5762  * @devid:      a pointer to devid for this device.  If NULL a new devid
5763  *              is generated.
5764  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
5765  *              is generated.
5766  *
5767  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5768  * on error.  Returned struct is not linked onto any lists and can be
5769  * destroyed with kfree() right away.
5770  */
5771 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5772                                         const u64 *devid,
5773                                         const u8 *uuid)
5774 {
5775         struct btrfs_device *dev;
5776         u64 tmp;
5777
5778         if (WARN_ON(!devid && !fs_info))
5779                 return ERR_PTR(-EINVAL);
5780
5781         dev = __alloc_device();
5782         if (IS_ERR(dev))
5783                 return dev;
5784
5785         if (devid)
5786                 tmp = *devid;
5787         else {
5788                 int ret;
5789
5790                 ret = find_next_devid(fs_info, &tmp);
5791                 if (ret) {
5792                         kfree(dev);
5793                         return ERR_PTR(ret);
5794                 }
5795         }
5796         dev->devid = tmp;
5797
5798         if (uuid)
5799                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5800         else
5801                 generate_random_uuid(dev->uuid);
5802
5803         btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
5804
5805         return dev;
5806 }
5807
5808 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5809                           struct extent_buffer *leaf,
5810                           struct btrfs_chunk *chunk)
5811 {
5812         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5813         struct map_lookup *map;
5814         struct extent_map *em;
5815         u64 logical;
5816         u64 length;
5817         u64 devid;
5818         u8 uuid[BTRFS_UUID_SIZE];
5819         int num_stripes;
5820         int ret;
5821         int i;
5822
5823         logical = key->offset;
5824         length = btrfs_chunk_length(leaf, chunk);
5825
5826         read_lock(&map_tree->map_tree.lock);
5827         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5828         read_unlock(&map_tree->map_tree.lock);
5829
5830         /* already mapped? */
5831         if (em && em->start <= logical && em->start + em->len > logical) {
5832                 free_extent_map(em);
5833                 return 0;
5834         } else if (em) {
5835                 free_extent_map(em);
5836         }
5837
5838         em = alloc_extent_map();
5839         if (!em)
5840                 return -ENOMEM;
5841         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5842         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5843         if (!map) {
5844                 free_extent_map(em);
5845                 return -ENOMEM;
5846         }
5847
5848         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5849         em->bdev = (struct block_device *)map;
5850         em->start = logical;
5851         em->len = length;
5852         em->orig_start = 0;
5853         em->block_start = 0;
5854         em->block_len = em->len;
5855
5856         map->num_stripes = num_stripes;
5857         map->io_width = btrfs_chunk_io_width(leaf, chunk);
5858         map->io_align = btrfs_chunk_io_align(leaf, chunk);
5859         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5860         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5861         map->type = btrfs_chunk_type(leaf, chunk);
5862         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5863         for (i = 0; i < num_stripes; i++) {
5864                 map->stripes[i].physical =
5865                         btrfs_stripe_offset_nr(leaf, chunk, i);
5866                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5867                 read_extent_buffer(leaf, uuid, (unsigned long)
5868                                    btrfs_stripe_dev_uuid_nr(chunk, i),
5869                                    BTRFS_UUID_SIZE);
5870                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5871                                                         uuid, NULL);
5872                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5873                         free_extent_map(em);
5874                         return -EIO;
5875                 }
5876                 if (!map->stripes[i].dev) {
5877                         map->stripes[i].dev =
5878                                 add_missing_dev(root, devid, uuid);
5879                         if (!map->stripes[i].dev) {
5880                                 free_extent_map(em);
5881                                 return -EIO;
5882                         }
5883                 }
5884                 map->stripes[i].dev->in_fs_metadata = 1;
5885         }
5886
5887         write_lock(&map_tree->map_tree.lock);
5888         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5889         write_unlock(&map_tree->map_tree.lock);
5890         BUG_ON(ret); /* Tree corruption */
5891         free_extent_map(em);
5892
5893         return 0;
5894 }
5895
5896 static void fill_device_from_item(struct extent_buffer *leaf,
5897                                  struct btrfs_dev_item *dev_item,
5898                                  struct btrfs_device *device)
5899 {
5900         unsigned long ptr;
5901
5902         device->devid = btrfs_device_id(leaf, dev_item);
5903         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5904         device->total_bytes = device->disk_total_bytes;
5905         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5906         device->type = btrfs_device_type(leaf, dev_item);
5907         device->io_align = btrfs_device_io_align(leaf, dev_item);
5908         device->io_width = btrfs_device_io_width(leaf, dev_item);
5909         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5910         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5911         device->is_tgtdev_for_dev_replace = 0;
5912
5913         ptr = btrfs_device_uuid(dev_item);
5914         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5915 }
5916
5917 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5918 {
5919         struct btrfs_fs_devices *fs_devices;
5920         int ret;
5921
5922         BUG_ON(!mutex_is_locked(&uuid_mutex));
5923
5924         fs_devices = root->fs_info->fs_devices->seed;
5925         while (fs_devices) {
5926                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5927                         ret = 0;
5928                         goto out;
5929                 }
5930                 fs_devices = fs_devices->seed;
5931         }
5932
5933         fs_devices = find_fsid(fsid);
5934         if (!fs_devices) {
5935                 ret = -ENOENT;
5936                 goto out;
5937         }
5938
5939         fs_devices = clone_fs_devices(fs_devices);
5940         if (IS_ERR(fs_devices)) {
5941                 ret = PTR_ERR(fs_devices);
5942                 goto out;
5943         }
5944
5945         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5946                                    root->fs_info->bdev_holder);
5947         if (ret) {
5948                 free_fs_devices(fs_devices);
5949                 goto out;
5950         }
5951
5952         if (!fs_devices->seeding) {
5953                 __btrfs_close_devices(fs_devices);
5954                 free_fs_devices(fs_devices);
5955                 ret = -EINVAL;
5956                 goto out;
5957         }
5958
5959         fs_devices->seed = root->fs_info->fs_devices->seed;
5960         root->fs_info->fs_devices->seed = fs_devices;
5961 out:
5962         return ret;
5963 }
5964
5965 static int read_one_dev(struct btrfs_root *root,
5966                         struct extent_buffer *leaf,
5967                         struct btrfs_dev_item *dev_item)
5968 {
5969         struct btrfs_device *device;
5970         u64 devid;
5971         int ret;
5972         u8 fs_uuid[BTRFS_UUID_SIZE];
5973         u8 dev_uuid[BTRFS_UUID_SIZE];
5974
5975         devid = btrfs_device_id(leaf, dev_item);
5976         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5977                            BTRFS_UUID_SIZE);
5978         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5979                            BTRFS_UUID_SIZE);
5980
5981         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5982                 ret = open_seed_devices(root, fs_uuid);
5983                 if (ret && !btrfs_test_opt(root, DEGRADED))
5984                         return ret;
5985         }
5986
5987         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5988         if (!device || !device->bdev) {
5989                 if (!btrfs_test_opt(root, DEGRADED))
5990                         return -EIO;
5991
5992                 if (!device) {
5993                         btrfs_warn(root->fs_info, "devid %llu missing", devid);
5994                         device = add_missing_dev(root, devid, dev_uuid);
5995                         if (!device)
5996                                 return -ENOMEM;
5997                 } else if (!device->missing) {
5998                         /*
5999                          * this happens when a device that was properly setup
6000                          * in the device info lists suddenly goes bad.
6001                          * device->bdev is NULL, and so we have to set
6002                          * device->missing to one here
6003                          */
6004                         root->fs_info->fs_devices->missing_devices++;
6005                         device->missing = 1;
6006                 }
6007         }
6008
6009         if (device->fs_devices != root->fs_info->fs_devices) {
6010                 BUG_ON(device->writeable);
6011                 if (device->generation !=
6012                     btrfs_device_generation(leaf, dev_item))
6013                         return -EINVAL;
6014         }
6015
6016         fill_device_from_item(leaf, dev_item, device);
6017         device->in_fs_metadata = 1;
6018         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6019                 device->fs_devices->total_rw_bytes += device->total_bytes;
6020                 spin_lock(&root->fs_info->free_chunk_lock);
6021                 root->fs_info->free_chunk_space += device->total_bytes -
6022                         device->bytes_used;
6023                 spin_unlock(&root->fs_info->free_chunk_lock);
6024         }
6025         ret = 0;
6026         return ret;
6027 }
6028
6029 int btrfs_read_sys_array(struct btrfs_root *root)
6030 {
6031         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6032         struct extent_buffer *sb;
6033         struct btrfs_disk_key *disk_key;
6034         struct btrfs_chunk *chunk;
6035         u8 *ptr;
6036         unsigned long sb_ptr;
6037         int ret = 0;
6038         u32 num_stripes;
6039         u32 array_size;
6040         u32 len = 0;
6041         u32 cur;
6042         struct btrfs_key key;
6043
6044         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
6045                                           BTRFS_SUPER_INFO_SIZE);
6046         if (!sb)
6047                 return -ENOMEM;
6048         btrfs_set_buffer_uptodate(sb);
6049         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6050         /*
6051          * The sb extent buffer is artifical and just used to read the system array.
6052          * btrfs_set_buffer_uptodate() call does not properly mark all it's
6053          * pages up-to-date when the page is larger: extent does not cover the
6054          * whole page and consequently check_page_uptodate does not find all
6055          * the page's extents up-to-date (the hole beyond sb),
6056          * write_extent_buffer then triggers a WARN_ON.
6057          *
6058          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6059          * but sb spans only this function. Add an explicit SetPageUptodate call
6060          * to silence the warning eg. on PowerPC 64.
6061          */
6062         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6063                 SetPageUptodate(sb->pages[0]);
6064
6065         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6066         array_size = btrfs_super_sys_array_size(super_copy);
6067
6068         ptr = super_copy->sys_chunk_array;
6069         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6070         cur = 0;
6071
6072         while (cur < array_size) {
6073                 disk_key = (struct btrfs_disk_key *)ptr;
6074                 btrfs_disk_key_to_cpu(&key, disk_key);
6075
6076                 len = sizeof(*disk_key); ptr += len;
6077                 sb_ptr += len;
6078                 cur += len;
6079
6080                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6081                         chunk = (struct btrfs_chunk *)sb_ptr;
6082                         ret = read_one_chunk(root, &key, sb, chunk);
6083                         if (ret)
6084                                 break;
6085                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6086                         len = btrfs_chunk_item_size(num_stripes);
6087                 } else {
6088                         ret = -EIO;
6089                         break;
6090                 }
6091                 ptr += len;
6092                 sb_ptr += len;
6093                 cur += len;
6094         }
6095         free_extent_buffer(sb);
6096         return ret;
6097 }
6098
6099 int btrfs_read_chunk_tree(struct btrfs_root *root)
6100 {
6101         struct btrfs_path *path;
6102         struct extent_buffer *leaf;
6103         struct btrfs_key key;
6104         struct btrfs_key found_key;
6105         int ret;
6106         int slot;
6107
6108         root = root->fs_info->chunk_root;
6109
6110         path = btrfs_alloc_path();
6111         if (!path)
6112                 return -ENOMEM;
6113
6114         mutex_lock(&uuid_mutex);
6115         lock_chunks(root);
6116
6117         /*
6118          * Read all device items, and then all the chunk items. All
6119          * device items are found before any chunk item (their object id
6120          * is smaller than the lowest possible object id for a chunk
6121          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6122          */
6123         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6124         key.offset = 0;
6125         key.type = 0;
6126         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6127         if (ret < 0)
6128                 goto error;
6129         while (1) {
6130                 leaf = path->nodes[0];
6131                 slot = path->slots[0];
6132                 if (slot >= btrfs_header_nritems(leaf)) {
6133                         ret = btrfs_next_leaf(root, path);
6134                         if (ret == 0)
6135                                 continue;
6136                         if (ret < 0)
6137                                 goto error;
6138                         break;
6139                 }
6140                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6141                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6142                         struct btrfs_dev_item *dev_item;
6143                         dev_item = btrfs_item_ptr(leaf, slot,
6144                                                   struct btrfs_dev_item);
6145                         ret = read_one_dev(root, leaf, dev_item);
6146                         if (ret)
6147                                 goto error;
6148                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6149                         struct btrfs_chunk *chunk;
6150                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6151                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6152                         if (ret)
6153                                 goto error;
6154                 }
6155                 path->slots[0]++;
6156         }
6157         ret = 0;
6158 error:
6159         unlock_chunks(root);
6160         mutex_unlock(&uuid_mutex);
6161
6162         btrfs_free_path(path);
6163         return ret;
6164 }
6165
6166 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6167 {
6168         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6169         struct btrfs_device *device;
6170
6171         while (fs_devices) {
6172                 mutex_lock(&fs_devices->device_list_mutex);
6173                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6174                         device->dev_root = fs_info->dev_root;
6175                 mutex_unlock(&fs_devices->device_list_mutex);
6176
6177                 fs_devices = fs_devices->seed;
6178         }
6179 }
6180
6181 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6182 {
6183         int i;
6184
6185         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6186                 btrfs_dev_stat_reset(dev, i);
6187 }
6188
6189 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6190 {
6191         struct btrfs_key key;
6192         struct btrfs_key found_key;
6193         struct btrfs_root *dev_root = fs_info->dev_root;
6194         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6195         struct extent_buffer *eb;
6196         int slot;
6197         int ret = 0;
6198         struct btrfs_device *device;
6199         struct btrfs_path *path = NULL;
6200         int i;
6201
6202         path = btrfs_alloc_path();
6203         if (!path) {
6204                 ret = -ENOMEM;
6205                 goto out;
6206         }
6207
6208         mutex_lock(&fs_devices->device_list_mutex);
6209         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6210                 int item_size;
6211                 struct btrfs_dev_stats_item *ptr;
6212
6213                 key.objectid = 0;
6214                 key.type = BTRFS_DEV_STATS_KEY;
6215                 key.offset = device->devid;
6216                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6217                 if (ret) {
6218                         __btrfs_reset_dev_stats(device);
6219                         device->dev_stats_valid = 1;
6220                         btrfs_release_path(path);
6221                         continue;
6222                 }
6223                 slot = path->slots[0];
6224                 eb = path->nodes[0];
6225                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6226                 item_size = btrfs_item_size_nr(eb, slot);
6227
6228                 ptr = btrfs_item_ptr(eb, slot,
6229                                      struct btrfs_dev_stats_item);
6230
6231                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6232                         if (item_size >= (1 + i) * sizeof(__le64))
6233                                 btrfs_dev_stat_set(device, i,
6234                                         btrfs_dev_stats_value(eb, ptr, i));
6235                         else
6236                                 btrfs_dev_stat_reset(device, i);
6237                 }
6238
6239                 device->dev_stats_valid = 1;
6240                 btrfs_dev_stat_print_on_load(device);
6241                 btrfs_release_path(path);
6242         }
6243         mutex_unlock(&fs_devices->device_list_mutex);
6244
6245 out:
6246         btrfs_free_path(path);
6247         return ret < 0 ? ret : 0;
6248 }
6249
6250 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6251                                 struct btrfs_root *dev_root,
6252                                 struct btrfs_device *device)
6253 {
6254         struct btrfs_path *path;
6255         struct btrfs_key key;
6256         struct extent_buffer *eb;
6257         struct btrfs_dev_stats_item *ptr;
6258         int ret;
6259         int i;
6260
6261         key.objectid = 0;
6262         key.type = BTRFS_DEV_STATS_KEY;
6263         key.offset = device->devid;
6264
6265         path = btrfs_alloc_path();
6266         BUG_ON(!path);
6267         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6268         if (ret < 0) {
6269                 printk_in_rcu(KERN_WARNING "BTRFS: "
6270                         "error %d while searching for dev_stats item for device %s!\n",
6271                               ret, rcu_str_deref(device->name));
6272                 goto out;
6273         }
6274
6275         if (ret == 0 &&
6276             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6277                 /* need to delete old one and insert a new one */
6278                 ret = btrfs_del_item(trans, dev_root, path);
6279                 if (ret != 0) {
6280                         printk_in_rcu(KERN_WARNING "BTRFS: "
6281                                 "delete too small dev_stats item for device %s failed %d!\n",
6282                                       rcu_str_deref(device->name), ret);
6283                         goto out;
6284                 }
6285                 ret = 1;
6286         }
6287
6288         if (ret == 1) {
6289                 /* need to insert a new item */
6290                 btrfs_release_path(path);
6291                 ret = btrfs_insert_empty_item(trans, dev_root, path,
6292                                               &key, sizeof(*ptr));
6293                 if (ret < 0) {
6294                         printk_in_rcu(KERN_WARNING "BTRFS: "
6295                                           "insert dev_stats item for device %s failed %d!\n",
6296                                       rcu_str_deref(device->name), ret);
6297                         goto out;
6298                 }
6299         }
6300
6301         eb = path->nodes[0];
6302         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6303         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6304                 btrfs_set_dev_stats_value(eb, ptr, i,
6305                                           btrfs_dev_stat_read(device, i));
6306         btrfs_mark_buffer_dirty(eb);
6307
6308 out:
6309         btrfs_free_path(path);
6310         return ret;
6311 }
6312
6313 /*
6314  * called from commit_transaction. Writes all changed device stats to disk.
6315  */
6316 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6317                         struct btrfs_fs_info *fs_info)
6318 {
6319         struct btrfs_root *dev_root = fs_info->dev_root;
6320         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6321         struct btrfs_device *device;
6322         int ret = 0;
6323
6324         mutex_lock(&fs_devices->device_list_mutex);
6325         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6326                 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6327                         continue;
6328
6329                 ret = update_dev_stat_item(trans, dev_root, device);
6330                 if (!ret)
6331                         device->dev_stats_dirty = 0;
6332         }
6333         mutex_unlock(&fs_devices->device_list_mutex);
6334
6335         return ret;
6336 }
6337
6338 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6339 {
6340         btrfs_dev_stat_inc(dev, index);
6341         btrfs_dev_stat_print_on_error(dev);
6342 }
6343
6344 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6345 {
6346         if (!dev->dev_stats_valid)
6347                 return;
6348         printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6349                            "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6350                            rcu_str_deref(dev->name),
6351                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6352                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6353                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6354                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6355                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6356 }
6357
6358 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6359 {
6360         int i;
6361
6362         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6363                 if (btrfs_dev_stat_read(dev, i) != 0)
6364                         break;
6365         if (i == BTRFS_DEV_STAT_VALUES_MAX)
6366                 return; /* all values == 0, suppress message */
6367
6368         printk_in_rcu(KERN_INFO "BTRFS: "
6369                    "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6370                rcu_str_deref(dev->name),
6371                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6372                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6373                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6374                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6375                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6376 }
6377
6378 int btrfs_get_dev_stats(struct btrfs_root *root,
6379                         struct btrfs_ioctl_get_dev_stats *stats)
6380 {
6381         struct btrfs_device *dev;
6382         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6383         int i;
6384
6385         mutex_lock(&fs_devices->device_list_mutex);
6386         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6387         mutex_unlock(&fs_devices->device_list_mutex);
6388
6389         if (!dev) {
6390                 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6391                 return -ENODEV;
6392         } else if (!dev->dev_stats_valid) {
6393                 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6394                 return -ENODEV;
6395         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6396                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6397                         if (stats->nr_items > i)
6398                                 stats->values[i] =
6399                                         btrfs_dev_stat_read_and_reset(dev, i);
6400                         else
6401                                 btrfs_dev_stat_reset(dev, i);
6402                 }
6403         } else {
6404                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6405                         if (stats->nr_items > i)
6406                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
6407         }
6408         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6409                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6410         return 0;
6411 }
6412
6413 int btrfs_scratch_superblock(struct btrfs_device *device)
6414 {
6415         struct buffer_head *bh;
6416         struct btrfs_super_block *disk_super;
6417
6418         bh = btrfs_read_dev_super(device->bdev);
6419         if (!bh)
6420                 return -EINVAL;
6421         disk_super = (struct btrfs_super_block *)bh->b_data;
6422
6423         memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6424         set_buffer_dirty(bh);
6425         sync_dirty_buffer(bh);
6426         brelse(bh);
6427
6428         return 0;
6429 }