arm64: dts: ls2080a: update the DTS for QSPI and DSPI support
[cascardo/linux.git] / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/sched.h>
36 #include <linux/fs.h>
37 #include <linux/path.h>
38 #include <linux/timekeeping.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/tlb.h>
43 #include <asm/exec.h>
44
45 #include <trace/events/task.h>
46 #include "internal.h"
47
48 #include <trace/events/sched.h>
49
50 int core_uses_pid;
51 unsigned int core_pipe_limit;
52 char core_pattern[CORENAME_MAX_SIZE] = "core";
53 static int core_name_size = CORENAME_MAX_SIZE;
54
55 struct core_name {
56         char *corename;
57         int used, size;
58 };
59
60 /* The maximal length of core_pattern is also specified in sysctl.c */
61
62 static int expand_corename(struct core_name *cn, int size)
63 {
64         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
65
66         if (!corename)
67                 return -ENOMEM;
68
69         if (size > core_name_size) /* racy but harmless */
70                 core_name_size = size;
71
72         cn->size = ksize(corename);
73         cn->corename = corename;
74         return 0;
75 }
76
77 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
78                                      va_list arg)
79 {
80         int free, need;
81         va_list arg_copy;
82
83 again:
84         free = cn->size - cn->used;
85
86         va_copy(arg_copy, arg);
87         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
88         va_end(arg_copy);
89
90         if (need < free) {
91                 cn->used += need;
92                 return 0;
93         }
94
95         if (!expand_corename(cn, cn->size + need - free + 1))
96                 goto again;
97
98         return -ENOMEM;
99 }
100
101 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
102 {
103         va_list arg;
104         int ret;
105
106         va_start(arg, fmt);
107         ret = cn_vprintf(cn, fmt, arg);
108         va_end(arg);
109
110         return ret;
111 }
112
113 static __printf(2, 3)
114 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
115 {
116         int cur = cn->used;
117         va_list arg;
118         int ret;
119
120         va_start(arg, fmt);
121         ret = cn_vprintf(cn, fmt, arg);
122         va_end(arg);
123
124         if (ret == 0) {
125                 /*
126                  * Ensure that this coredump name component can't cause the
127                  * resulting corefile path to consist of a ".." or ".".
128                  */
129                 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
130                                 (cn->used - cur == 2 && cn->corename[cur] == '.'
131                                 && cn->corename[cur+1] == '.'))
132                         cn->corename[cur] = '!';
133
134                 /*
135                  * Empty names are fishy and could be used to create a "//" in a
136                  * corefile name, causing the coredump to happen one directory
137                  * level too high. Enforce that all components of the core
138                  * pattern are at least one character long.
139                  */
140                 if (cn->used == cur)
141                         ret = cn_printf(cn, "!");
142         }
143
144         for (; cur < cn->used; ++cur) {
145                 if (cn->corename[cur] == '/')
146                         cn->corename[cur] = '!';
147         }
148         return ret;
149 }
150
151 static int cn_print_exe_file(struct core_name *cn)
152 {
153         struct file *exe_file;
154         char *pathbuf, *path;
155         int ret;
156
157         exe_file = get_mm_exe_file(current->mm);
158         if (!exe_file)
159                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
160
161         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
162         if (!pathbuf) {
163                 ret = -ENOMEM;
164                 goto put_exe_file;
165         }
166
167         path = file_path(exe_file, pathbuf, PATH_MAX);
168         if (IS_ERR(path)) {
169                 ret = PTR_ERR(path);
170                 goto free_buf;
171         }
172
173         ret = cn_esc_printf(cn, "%s", path);
174
175 free_buf:
176         kfree(pathbuf);
177 put_exe_file:
178         fput(exe_file);
179         return ret;
180 }
181
182 /* format_corename will inspect the pattern parameter, and output a
183  * name into corename, which must have space for at least
184  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
185  */
186 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
187 {
188         const struct cred *cred = current_cred();
189         const char *pat_ptr = core_pattern;
190         int ispipe = (*pat_ptr == '|');
191         int pid_in_pattern = 0;
192         int err = 0;
193
194         cn->used = 0;
195         cn->corename = NULL;
196         if (expand_corename(cn, core_name_size))
197                 return -ENOMEM;
198         cn->corename[0] = '\0';
199
200         if (ispipe)
201                 ++pat_ptr;
202
203         /* Repeat as long as we have more pattern to process and more output
204            space */
205         while (*pat_ptr) {
206                 if (*pat_ptr != '%') {
207                         err = cn_printf(cn, "%c", *pat_ptr++);
208                 } else {
209                         switch (*++pat_ptr) {
210                         /* single % at the end, drop that */
211                         case 0:
212                                 goto out;
213                         /* Double percent, output one percent */
214                         case '%':
215                                 err = cn_printf(cn, "%c", '%');
216                                 break;
217                         /* pid */
218                         case 'p':
219                                 pid_in_pattern = 1;
220                                 err = cn_printf(cn, "%d",
221                                               task_tgid_vnr(current));
222                                 break;
223                         /* global pid */
224                         case 'P':
225                                 err = cn_printf(cn, "%d",
226                                               task_tgid_nr(current));
227                                 break;
228                         case 'i':
229                                 err = cn_printf(cn, "%d",
230                                               task_pid_vnr(current));
231                                 break;
232                         case 'I':
233                                 err = cn_printf(cn, "%d",
234                                               task_pid_nr(current));
235                                 break;
236                         /* uid */
237                         case 'u':
238                                 err = cn_printf(cn, "%u",
239                                                 from_kuid(&init_user_ns,
240                                                           cred->uid));
241                                 break;
242                         /* gid */
243                         case 'g':
244                                 err = cn_printf(cn, "%u",
245                                                 from_kgid(&init_user_ns,
246                                                           cred->gid));
247                                 break;
248                         case 'd':
249                                 err = cn_printf(cn, "%d",
250                                         __get_dumpable(cprm->mm_flags));
251                                 break;
252                         /* signal that caused the coredump */
253                         case 's':
254                                 err = cn_printf(cn, "%d",
255                                                 cprm->siginfo->si_signo);
256                                 break;
257                         /* UNIX time of coredump */
258                         case 't': {
259                                 time64_t time;
260
261                                 time = ktime_get_real_seconds();
262                                 err = cn_printf(cn, "%lld", time);
263                                 break;
264                         }
265                         /* hostname */
266                         case 'h':
267                                 down_read(&uts_sem);
268                                 err = cn_esc_printf(cn, "%s",
269                                               utsname()->nodename);
270                                 up_read(&uts_sem);
271                                 break;
272                         /* executable */
273                         case 'e':
274                                 err = cn_esc_printf(cn, "%s", current->comm);
275                                 break;
276                         case 'E':
277                                 err = cn_print_exe_file(cn);
278                                 break;
279                         /* core limit size */
280                         case 'c':
281                                 err = cn_printf(cn, "%lu",
282                                               rlimit(RLIMIT_CORE));
283                                 break;
284                         default:
285                                 break;
286                         }
287                         ++pat_ptr;
288                 }
289
290                 if (err)
291                         return err;
292         }
293
294 out:
295         /* Backward compatibility with core_uses_pid:
296          *
297          * If core_pattern does not include a %p (as is the default)
298          * and core_uses_pid is set, then .%pid will be appended to
299          * the filename. Do not do this for piped commands. */
300         if (!ispipe && !pid_in_pattern && core_uses_pid) {
301                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
302                 if (err)
303                         return err;
304         }
305         return ispipe;
306 }
307
308 static int zap_process(struct task_struct *start, int exit_code, int flags)
309 {
310         struct task_struct *t;
311         int nr = 0;
312
313         /* ignore all signals except SIGKILL, see prepare_signal() */
314         start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
315         start->signal->group_exit_code = exit_code;
316         start->signal->group_stop_count = 0;
317
318         for_each_thread(start, t) {
319                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
320                 if (t != current && t->mm) {
321                         sigaddset(&t->pending.signal, SIGKILL);
322                         signal_wake_up(t, 1);
323                         nr++;
324                 }
325         }
326
327         return nr;
328 }
329
330 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
331                         struct core_state *core_state, int exit_code)
332 {
333         struct task_struct *g, *p;
334         unsigned long flags;
335         int nr = -EAGAIN;
336
337         spin_lock_irq(&tsk->sighand->siglock);
338         if (!signal_group_exit(tsk->signal)) {
339                 mm->core_state = core_state;
340                 tsk->signal->group_exit_task = tsk;
341                 nr = zap_process(tsk, exit_code, 0);
342                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
343         }
344         spin_unlock_irq(&tsk->sighand->siglock);
345         if (unlikely(nr < 0))
346                 return nr;
347
348         tsk->flags |= PF_DUMPCORE;
349         if (atomic_read(&mm->mm_users) == nr + 1)
350                 goto done;
351         /*
352          * We should find and kill all tasks which use this mm, and we should
353          * count them correctly into ->nr_threads. We don't take tasklist
354          * lock, but this is safe wrt:
355          *
356          * fork:
357          *      None of sub-threads can fork after zap_process(leader). All
358          *      processes which were created before this point should be
359          *      visible to zap_threads() because copy_process() adds the new
360          *      process to the tail of init_task.tasks list, and lock/unlock
361          *      of ->siglock provides a memory barrier.
362          *
363          * do_exit:
364          *      The caller holds mm->mmap_sem. This means that the task which
365          *      uses this mm can't pass exit_mm(), so it can't exit or clear
366          *      its ->mm.
367          *
368          * de_thread:
369          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
370          *      we must see either old or new leader, this does not matter.
371          *      However, it can change p->sighand, so lock_task_sighand(p)
372          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
373          *      it can't fail.
374          *
375          *      Note also that "g" can be the old leader with ->mm == NULL
376          *      and already unhashed and thus removed from ->thread_group.
377          *      This is OK, __unhash_process()->list_del_rcu() does not
378          *      clear the ->next pointer, we will find the new leader via
379          *      next_thread().
380          */
381         rcu_read_lock();
382         for_each_process(g) {
383                 if (g == tsk->group_leader)
384                         continue;
385                 if (g->flags & PF_KTHREAD)
386                         continue;
387
388                 for_each_thread(g, p) {
389                         if (unlikely(!p->mm))
390                                 continue;
391                         if (unlikely(p->mm == mm)) {
392                                 lock_task_sighand(p, &flags);
393                                 nr += zap_process(p, exit_code,
394                                                         SIGNAL_GROUP_EXIT);
395                                 unlock_task_sighand(p, &flags);
396                         }
397                         break;
398                 }
399         }
400         rcu_read_unlock();
401 done:
402         atomic_set(&core_state->nr_threads, nr);
403         return nr;
404 }
405
406 static int coredump_wait(int exit_code, struct core_state *core_state)
407 {
408         struct task_struct *tsk = current;
409         struct mm_struct *mm = tsk->mm;
410         int core_waiters = -EBUSY;
411
412         init_completion(&core_state->startup);
413         core_state->dumper.task = tsk;
414         core_state->dumper.next = NULL;
415
416         down_write(&mm->mmap_sem);
417         if (!mm->core_state)
418                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
419         up_write(&mm->mmap_sem);
420
421         if (core_waiters > 0) {
422                 struct core_thread *ptr;
423
424                 wait_for_completion(&core_state->startup);
425                 /*
426                  * Wait for all the threads to become inactive, so that
427                  * all the thread context (extended register state, like
428                  * fpu etc) gets copied to the memory.
429                  */
430                 ptr = core_state->dumper.next;
431                 while (ptr != NULL) {
432                         wait_task_inactive(ptr->task, 0);
433                         ptr = ptr->next;
434                 }
435         }
436
437         return core_waiters;
438 }
439
440 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
441 {
442         struct core_thread *curr, *next;
443         struct task_struct *task;
444
445         spin_lock_irq(&current->sighand->siglock);
446         if (core_dumped && !__fatal_signal_pending(current))
447                 current->signal->group_exit_code |= 0x80;
448         current->signal->group_exit_task = NULL;
449         current->signal->flags = SIGNAL_GROUP_EXIT;
450         spin_unlock_irq(&current->sighand->siglock);
451
452         next = mm->core_state->dumper.next;
453         while ((curr = next) != NULL) {
454                 next = curr->next;
455                 task = curr->task;
456                 /*
457                  * see exit_mm(), curr->task must not see
458                  * ->task == NULL before we read ->next.
459                  */
460                 smp_mb();
461                 curr->task = NULL;
462                 wake_up_process(task);
463         }
464
465         mm->core_state = NULL;
466 }
467
468 static bool dump_interrupted(void)
469 {
470         /*
471          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
472          * can do try_to_freeze() and check __fatal_signal_pending(),
473          * but then we need to teach dump_write() to restart and clear
474          * TIF_SIGPENDING.
475          */
476         return signal_pending(current);
477 }
478
479 static void wait_for_dump_helpers(struct file *file)
480 {
481         struct pipe_inode_info *pipe = file->private_data;
482
483         pipe_lock(pipe);
484         pipe->readers++;
485         pipe->writers--;
486         wake_up_interruptible_sync(&pipe->wait);
487         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
488         pipe_unlock(pipe);
489
490         /*
491          * We actually want wait_event_freezable() but then we need
492          * to clear TIF_SIGPENDING and improve dump_interrupted().
493          */
494         wait_event_interruptible(pipe->wait, pipe->readers == 1);
495
496         pipe_lock(pipe);
497         pipe->readers--;
498         pipe->writers++;
499         pipe_unlock(pipe);
500 }
501
502 /*
503  * umh_pipe_setup
504  * helper function to customize the process used
505  * to collect the core in userspace.  Specifically
506  * it sets up a pipe and installs it as fd 0 (stdin)
507  * for the process.  Returns 0 on success, or
508  * PTR_ERR on failure.
509  * Note that it also sets the core limit to 1.  This
510  * is a special value that we use to trap recursive
511  * core dumps
512  */
513 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
514 {
515         struct file *files[2];
516         struct coredump_params *cp = (struct coredump_params *)info->data;
517         int err = create_pipe_files(files, 0);
518         if (err)
519                 return err;
520
521         cp->file = files[1];
522
523         err = replace_fd(0, files[0], 0);
524         fput(files[0]);
525         /* and disallow core files too */
526         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
527
528         return err;
529 }
530
531 void do_coredump(const siginfo_t *siginfo)
532 {
533         struct core_state core_state;
534         struct core_name cn;
535         struct mm_struct *mm = current->mm;
536         struct linux_binfmt * binfmt;
537         const struct cred *old_cred;
538         struct cred *cred;
539         int retval = 0;
540         int ispipe;
541         struct files_struct *displaced;
542         /* require nonrelative corefile path and be extra careful */
543         bool need_suid_safe = false;
544         bool core_dumped = false;
545         static atomic_t core_dump_count = ATOMIC_INIT(0);
546         struct coredump_params cprm = {
547                 .siginfo = siginfo,
548                 .regs = signal_pt_regs(),
549                 .limit = rlimit(RLIMIT_CORE),
550                 /*
551                  * We must use the same mm->flags while dumping core to avoid
552                  * inconsistency of bit flags, since this flag is not protected
553                  * by any locks.
554                  */
555                 .mm_flags = mm->flags,
556         };
557
558         audit_core_dumps(siginfo->si_signo);
559
560         binfmt = mm->binfmt;
561         if (!binfmt || !binfmt->core_dump)
562                 goto fail;
563         if (!__get_dumpable(cprm.mm_flags))
564                 goto fail;
565
566         cred = prepare_creds();
567         if (!cred)
568                 goto fail;
569         /*
570          * We cannot trust fsuid as being the "true" uid of the process
571          * nor do we know its entire history. We only know it was tainted
572          * so we dump it as root in mode 2, and only into a controlled
573          * environment (pipe handler or fully qualified path).
574          */
575         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
576                 /* Setuid core dump mode */
577                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
578                 need_suid_safe = true;
579         }
580
581         retval = coredump_wait(siginfo->si_signo, &core_state);
582         if (retval < 0)
583                 goto fail_creds;
584
585         old_cred = override_creds(cred);
586
587         ispipe = format_corename(&cn, &cprm);
588
589         if (ispipe) {
590                 int dump_count;
591                 char **helper_argv;
592                 struct subprocess_info *sub_info;
593
594                 if (ispipe < 0) {
595                         printk(KERN_WARNING "format_corename failed\n");
596                         printk(KERN_WARNING "Aborting core\n");
597                         goto fail_unlock;
598                 }
599
600                 if (cprm.limit == 1) {
601                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
602                          *
603                          * Normally core limits are irrelevant to pipes, since
604                          * we're not writing to the file system, but we use
605                          * cprm.limit of 1 here as a special value, this is a
606                          * consistent way to catch recursive crashes.
607                          * We can still crash if the core_pattern binary sets
608                          * RLIM_CORE = !1, but it runs as root, and can do
609                          * lots of stupid things.
610                          *
611                          * Note that we use task_tgid_vnr here to grab the pid
612                          * of the process group leader.  That way we get the
613                          * right pid if a thread in a multi-threaded
614                          * core_pattern process dies.
615                          */
616                         printk(KERN_WARNING
617                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
618                                 task_tgid_vnr(current), current->comm);
619                         printk(KERN_WARNING "Aborting core\n");
620                         goto fail_unlock;
621                 }
622                 cprm.limit = RLIM_INFINITY;
623
624                 dump_count = atomic_inc_return(&core_dump_count);
625                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
626                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
627                                task_tgid_vnr(current), current->comm);
628                         printk(KERN_WARNING "Skipping core dump\n");
629                         goto fail_dropcount;
630                 }
631
632                 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
633                 if (!helper_argv) {
634                         printk(KERN_WARNING "%s failed to allocate memory\n",
635                                __func__);
636                         goto fail_dropcount;
637                 }
638
639                 retval = -ENOMEM;
640                 sub_info = call_usermodehelper_setup(helper_argv[0],
641                                                 helper_argv, NULL, GFP_KERNEL,
642                                                 umh_pipe_setup, NULL, &cprm);
643                 if (sub_info)
644                         retval = call_usermodehelper_exec(sub_info,
645                                                           UMH_WAIT_EXEC);
646
647                 argv_free(helper_argv);
648                 if (retval) {
649                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
650                                cn.corename);
651                         goto close_fail;
652                 }
653         } else {
654                 struct inode *inode;
655                 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
656                                  O_LARGEFILE | O_EXCL;
657
658                 if (cprm.limit < binfmt->min_coredump)
659                         goto fail_unlock;
660
661                 if (need_suid_safe && cn.corename[0] != '/') {
662                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
663                                 "to fully qualified path!\n",
664                                 task_tgid_vnr(current), current->comm);
665                         printk(KERN_WARNING "Skipping core dump\n");
666                         goto fail_unlock;
667                 }
668
669                 /*
670                  * Unlink the file if it exists unless this is a SUID
671                  * binary - in that case, we're running around with root
672                  * privs and don't want to unlink another user's coredump.
673                  */
674                 if (!need_suid_safe) {
675                         mm_segment_t old_fs;
676
677                         old_fs = get_fs();
678                         set_fs(KERNEL_DS);
679                         /*
680                          * If it doesn't exist, that's fine. If there's some
681                          * other problem, we'll catch it at the filp_open().
682                          */
683                         (void) sys_unlink((const char __user *)cn.corename);
684                         set_fs(old_fs);
685                 }
686
687                 /*
688                  * There is a race between unlinking and creating the
689                  * file, but if that causes an EEXIST here, that's
690                  * fine - another process raced with us while creating
691                  * the corefile, and the other process won. To userspace,
692                  * what matters is that at least one of the two processes
693                  * writes its coredump successfully, not which one.
694                  */
695                 if (need_suid_safe) {
696                         /*
697                          * Using user namespaces, normal user tasks can change
698                          * their current->fs->root to point to arbitrary
699                          * directories. Since the intention of the "only dump
700                          * with a fully qualified path" rule is to control where
701                          * coredumps may be placed using root privileges,
702                          * current->fs->root must not be used. Instead, use the
703                          * root directory of init_task.
704                          */
705                         struct path root;
706
707                         task_lock(&init_task);
708                         get_fs_root(init_task.fs, &root);
709                         task_unlock(&init_task);
710                         cprm.file = file_open_root(root.dentry, root.mnt,
711                                 cn.corename, open_flags, 0600);
712                         path_put(&root);
713                 } else {
714                         cprm.file = filp_open(cn.corename, open_flags, 0600);
715                 }
716                 if (IS_ERR(cprm.file))
717                         goto fail_unlock;
718
719                 inode = file_inode(cprm.file);
720                 if (inode->i_nlink > 1)
721                         goto close_fail;
722                 if (d_unhashed(cprm.file->f_path.dentry))
723                         goto close_fail;
724                 /*
725                  * AK: actually i see no reason to not allow this for named
726                  * pipes etc, but keep the previous behaviour for now.
727                  */
728                 if (!S_ISREG(inode->i_mode))
729                         goto close_fail;
730                 /*
731                  * Don't dump core if the filesystem changed owner or mode
732                  * of the file during file creation. This is an issue when
733                  * a process dumps core while its cwd is e.g. on a vfat
734                  * filesystem.
735                  */
736                 if (!uid_eq(inode->i_uid, current_fsuid()))
737                         goto close_fail;
738                 if ((inode->i_mode & 0677) != 0600)
739                         goto close_fail;
740                 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
741                         goto close_fail;
742                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
743                         goto close_fail;
744         }
745
746         /* get us an unshared descriptor table; almost always a no-op */
747         retval = unshare_files(&displaced);
748         if (retval)
749                 goto close_fail;
750         if (displaced)
751                 put_files_struct(displaced);
752         if (!dump_interrupted()) {
753                 file_start_write(cprm.file);
754                 core_dumped = binfmt->core_dump(&cprm);
755                 file_end_write(cprm.file);
756         }
757         if (ispipe && core_pipe_limit)
758                 wait_for_dump_helpers(cprm.file);
759 close_fail:
760         if (cprm.file)
761                 filp_close(cprm.file, NULL);
762 fail_dropcount:
763         if (ispipe)
764                 atomic_dec(&core_dump_count);
765 fail_unlock:
766         kfree(cn.corename);
767         coredump_finish(mm, core_dumped);
768         revert_creds(old_cred);
769 fail_creds:
770         put_cred(cred);
771 fail:
772         return;
773 }
774
775 /*
776  * Core dumping helper functions.  These are the only things you should
777  * do on a core-file: use only these functions to write out all the
778  * necessary info.
779  */
780 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
781 {
782         struct file *file = cprm->file;
783         loff_t pos = file->f_pos;
784         ssize_t n;
785         if (cprm->written + nr > cprm->limit)
786                 return 0;
787         while (nr) {
788                 if (dump_interrupted())
789                         return 0;
790                 n = __kernel_write(file, addr, nr, &pos);
791                 if (n <= 0)
792                         return 0;
793                 file->f_pos = pos;
794                 cprm->written += n;
795                 nr -= n;
796         }
797         return 1;
798 }
799 EXPORT_SYMBOL(dump_emit);
800
801 int dump_skip(struct coredump_params *cprm, size_t nr)
802 {
803         static char zeroes[PAGE_SIZE];
804         struct file *file = cprm->file;
805         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
806                 if (cprm->written + nr > cprm->limit)
807                         return 0;
808                 if (dump_interrupted() ||
809                     file->f_op->llseek(file, nr, SEEK_CUR) < 0)
810                         return 0;
811                 cprm->written += nr;
812                 return 1;
813         } else {
814                 while (nr > PAGE_SIZE) {
815                         if (!dump_emit(cprm, zeroes, PAGE_SIZE))
816                                 return 0;
817                         nr -= PAGE_SIZE;
818                 }
819                 return dump_emit(cprm, zeroes, nr);
820         }
821 }
822 EXPORT_SYMBOL(dump_skip);
823
824 int dump_align(struct coredump_params *cprm, int align)
825 {
826         unsigned mod = cprm->written & (align - 1);
827         if (align & (align - 1))
828                 return 0;
829         return mod ? dump_skip(cprm, align - mod) : 1;
830 }
831 EXPORT_SYMBOL(dump_align);