ath10k: rename board_data in struct ath10k
[cascardo/linux.git] / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40
41 #include <trace/events/task.h>
42 #include "internal.h"
43 #include "coredump.h"
44
45 #include <trace/events/sched.h>
46
47 int core_uses_pid;
48 unsigned int core_pipe_limit;
49 char core_pattern[CORENAME_MAX_SIZE] = "core";
50 static int core_name_size = CORENAME_MAX_SIZE;
51
52 struct core_name {
53         char *corename;
54         int used, size;
55 };
56
57 /* The maximal length of core_pattern is also specified in sysctl.c */
58
59 static int expand_corename(struct core_name *cn, int size)
60 {
61         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
62
63         if (!corename)
64                 return -ENOMEM;
65
66         if (size > core_name_size) /* racy but harmless */
67                 core_name_size = size;
68
69         cn->size = ksize(corename);
70         cn->corename = corename;
71         return 0;
72 }
73
74 static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg)
75 {
76         int free, need;
77
78 again:
79         free = cn->size - cn->used;
80         need = vsnprintf(cn->corename + cn->used, free, fmt, arg);
81         if (need < free) {
82                 cn->used += need;
83                 return 0;
84         }
85
86         if (!expand_corename(cn, cn->size + need - free + 1))
87                 goto again;
88
89         return -ENOMEM;
90 }
91
92 static int cn_printf(struct core_name *cn, const char *fmt, ...)
93 {
94         va_list arg;
95         int ret;
96
97         va_start(arg, fmt);
98         ret = cn_vprintf(cn, fmt, arg);
99         va_end(arg);
100
101         return ret;
102 }
103
104 static int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
105 {
106         int cur = cn->used;
107         va_list arg;
108         int ret;
109
110         va_start(arg, fmt);
111         ret = cn_vprintf(cn, fmt, arg);
112         va_end(arg);
113
114         for (; cur < cn->used; ++cur) {
115                 if (cn->corename[cur] == '/')
116                         cn->corename[cur] = '!';
117         }
118         return ret;
119 }
120
121 static int cn_print_exe_file(struct core_name *cn)
122 {
123         struct file *exe_file;
124         char *pathbuf, *path;
125         int ret;
126
127         exe_file = get_mm_exe_file(current->mm);
128         if (!exe_file)
129                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
130
131         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
132         if (!pathbuf) {
133                 ret = -ENOMEM;
134                 goto put_exe_file;
135         }
136
137         path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
138         if (IS_ERR(path)) {
139                 ret = PTR_ERR(path);
140                 goto free_buf;
141         }
142
143         ret = cn_esc_printf(cn, "%s", path);
144
145 free_buf:
146         kfree(pathbuf);
147 put_exe_file:
148         fput(exe_file);
149         return ret;
150 }
151
152 /* format_corename will inspect the pattern parameter, and output a
153  * name into corename, which must have space for at least
154  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
155  */
156 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
157 {
158         const struct cred *cred = current_cred();
159         const char *pat_ptr = core_pattern;
160         int ispipe = (*pat_ptr == '|');
161         int pid_in_pattern = 0;
162         int err = 0;
163
164         cn->used = 0;
165         cn->corename = NULL;
166         if (expand_corename(cn, core_name_size))
167                 return -ENOMEM;
168         cn->corename[0] = '\0';
169
170         if (ispipe)
171                 ++pat_ptr;
172
173         /* Repeat as long as we have more pattern to process and more output
174            space */
175         while (*pat_ptr) {
176                 if (*pat_ptr != '%') {
177                         err = cn_printf(cn, "%c", *pat_ptr++);
178                 } else {
179                         switch (*++pat_ptr) {
180                         /* single % at the end, drop that */
181                         case 0:
182                                 goto out;
183                         /* Double percent, output one percent */
184                         case '%':
185                                 err = cn_printf(cn, "%c", '%');
186                                 break;
187                         /* pid */
188                         case 'p':
189                                 pid_in_pattern = 1;
190                                 err = cn_printf(cn, "%d",
191                                               task_tgid_vnr(current));
192                                 break;
193                         /* uid */
194                         case 'u':
195                                 err = cn_printf(cn, "%d", cred->uid);
196                                 break;
197                         /* gid */
198                         case 'g':
199                                 err = cn_printf(cn, "%d", cred->gid);
200                                 break;
201                         case 'd':
202                                 err = cn_printf(cn, "%d",
203                                         __get_dumpable(cprm->mm_flags));
204                                 break;
205                         /* signal that caused the coredump */
206                         case 's':
207                                 err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
208                                 break;
209                         /* UNIX time of coredump */
210                         case 't': {
211                                 struct timeval tv;
212                                 do_gettimeofday(&tv);
213                                 err = cn_printf(cn, "%lu", tv.tv_sec);
214                                 break;
215                         }
216                         /* hostname */
217                         case 'h':
218                                 down_read(&uts_sem);
219                                 err = cn_esc_printf(cn, "%s",
220                                               utsname()->nodename);
221                                 up_read(&uts_sem);
222                                 break;
223                         /* executable */
224                         case 'e':
225                                 err = cn_esc_printf(cn, "%s", current->comm);
226                                 break;
227                         case 'E':
228                                 err = cn_print_exe_file(cn);
229                                 break;
230                         /* core limit size */
231                         case 'c':
232                                 err = cn_printf(cn, "%lu",
233                                               rlimit(RLIMIT_CORE));
234                                 break;
235                         default:
236                                 break;
237                         }
238                         ++pat_ptr;
239                 }
240
241                 if (err)
242                         return err;
243         }
244
245 out:
246         /* Backward compatibility with core_uses_pid:
247          *
248          * If core_pattern does not include a %p (as is the default)
249          * and core_uses_pid is set, then .%pid will be appended to
250          * the filename. Do not do this for piped commands. */
251         if (!ispipe && !pid_in_pattern && core_uses_pid) {
252                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
253                 if (err)
254                         return err;
255         }
256         return ispipe;
257 }
258
259 static int zap_process(struct task_struct *start, int exit_code)
260 {
261         struct task_struct *t;
262         int nr = 0;
263
264         start->signal->group_exit_code = exit_code;
265         start->signal->group_stop_count = 0;
266
267         t = start;
268         do {
269                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
270                 if (t != current && t->mm) {
271                         sigaddset(&t->pending.signal, SIGKILL);
272                         signal_wake_up(t, 1);
273                         nr++;
274                 }
275         } while_each_thread(start, t);
276
277         return nr;
278 }
279
280 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
281                         struct core_state *core_state, int exit_code)
282 {
283         struct task_struct *g, *p;
284         unsigned long flags;
285         int nr = -EAGAIN;
286
287         spin_lock_irq(&tsk->sighand->siglock);
288         if (!signal_group_exit(tsk->signal)) {
289                 mm->core_state = core_state;
290                 nr = zap_process(tsk, exit_code);
291                 tsk->signal->group_exit_task = tsk;
292                 /* ignore all signals except SIGKILL, see prepare_signal() */
293                 tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
294                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
295         }
296         spin_unlock_irq(&tsk->sighand->siglock);
297         if (unlikely(nr < 0))
298                 return nr;
299
300         tsk->flags = PF_DUMPCORE;
301         if (atomic_read(&mm->mm_users) == nr + 1)
302                 goto done;
303         /*
304          * We should find and kill all tasks which use this mm, and we should
305          * count them correctly into ->nr_threads. We don't take tasklist
306          * lock, but this is safe wrt:
307          *
308          * fork:
309          *      None of sub-threads can fork after zap_process(leader). All
310          *      processes which were created before this point should be
311          *      visible to zap_threads() because copy_process() adds the new
312          *      process to the tail of init_task.tasks list, and lock/unlock
313          *      of ->siglock provides a memory barrier.
314          *
315          * do_exit:
316          *      The caller holds mm->mmap_sem. This means that the task which
317          *      uses this mm can't pass exit_mm(), so it can't exit or clear
318          *      its ->mm.
319          *
320          * de_thread:
321          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
322          *      we must see either old or new leader, this does not matter.
323          *      However, it can change p->sighand, so lock_task_sighand(p)
324          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
325          *      it can't fail.
326          *
327          *      Note also that "g" can be the old leader with ->mm == NULL
328          *      and already unhashed and thus removed from ->thread_group.
329          *      This is OK, __unhash_process()->list_del_rcu() does not
330          *      clear the ->next pointer, we will find the new leader via
331          *      next_thread().
332          */
333         rcu_read_lock();
334         for_each_process(g) {
335                 if (g == tsk->group_leader)
336                         continue;
337                 if (g->flags & PF_KTHREAD)
338                         continue;
339                 p = g;
340                 do {
341                         if (p->mm) {
342                                 if (unlikely(p->mm == mm)) {
343                                         lock_task_sighand(p, &flags);
344                                         nr += zap_process(p, exit_code);
345                                         p->signal->flags = SIGNAL_GROUP_EXIT;
346                                         unlock_task_sighand(p, &flags);
347                                 }
348                                 break;
349                         }
350                 } while_each_thread(g, p);
351         }
352         rcu_read_unlock();
353 done:
354         atomic_set(&core_state->nr_threads, nr);
355         return nr;
356 }
357
358 static int coredump_wait(int exit_code, struct core_state *core_state)
359 {
360         struct task_struct *tsk = current;
361         struct mm_struct *mm = tsk->mm;
362         int core_waiters = -EBUSY;
363
364         init_completion(&core_state->startup);
365         core_state->dumper.task = tsk;
366         core_state->dumper.next = NULL;
367
368         down_write(&mm->mmap_sem);
369         if (!mm->core_state)
370                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
371         up_write(&mm->mmap_sem);
372
373         if (core_waiters > 0) {
374                 struct core_thread *ptr;
375
376                 wait_for_completion(&core_state->startup);
377                 /*
378                  * Wait for all the threads to become inactive, so that
379                  * all the thread context (extended register state, like
380                  * fpu etc) gets copied to the memory.
381                  */
382                 ptr = core_state->dumper.next;
383                 while (ptr != NULL) {
384                         wait_task_inactive(ptr->task, 0);
385                         ptr = ptr->next;
386                 }
387         }
388
389         return core_waiters;
390 }
391
392 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
393 {
394         struct core_thread *curr, *next;
395         struct task_struct *task;
396
397         spin_lock_irq(&current->sighand->siglock);
398         if (core_dumped && !__fatal_signal_pending(current))
399                 current->signal->group_exit_code |= 0x80;
400         current->signal->group_exit_task = NULL;
401         current->signal->flags = SIGNAL_GROUP_EXIT;
402         spin_unlock_irq(&current->sighand->siglock);
403
404         next = mm->core_state->dumper.next;
405         while ((curr = next) != NULL) {
406                 next = curr->next;
407                 task = curr->task;
408                 /*
409                  * see exit_mm(), curr->task must not see
410                  * ->task == NULL before we read ->next.
411                  */
412                 smp_mb();
413                 curr->task = NULL;
414                 wake_up_process(task);
415         }
416
417         mm->core_state = NULL;
418 }
419
420 static bool dump_interrupted(void)
421 {
422         /*
423          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
424          * can do try_to_freeze() and check __fatal_signal_pending(),
425          * but then we need to teach dump_write() to restart and clear
426          * TIF_SIGPENDING.
427          */
428         return signal_pending(current);
429 }
430
431 static void wait_for_dump_helpers(struct file *file)
432 {
433         struct pipe_inode_info *pipe = file->private_data;
434
435         pipe_lock(pipe);
436         pipe->readers++;
437         pipe->writers--;
438         wake_up_interruptible_sync(&pipe->wait);
439         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
440         pipe_unlock(pipe);
441
442         /*
443          * We actually want wait_event_freezable() but then we need
444          * to clear TIF_SIGPENDING and improve dump_interrupted().
445          */
446         wait_event_interruptible(pipe->wait, pipe->readers == 1);
447
448         pipe_lock(pipe);
449         pipe->readers--;
450         pipe->writers++;
451         pipe_unlock(pipe);
452 }
453
454 /*
455  * umh_pipe_setup
456  * helper function to customize the process used
457  * to collect the core in userspace.  Specifically
458  * it sets up a pipe and installs it as fd 0 (stdin)
459  * for the process.  Returns 0 on success, or
460  * PTR_ERR on failure.
461  * Note that it also sets the core limit to 1.  This
462  * is a special value that we use to trap recursive
463  * core dumps
464  */
465 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
466 {
467         struct file *files[2];
468         struct coredump_params *cp = (struct coredump_params *)info->data;
469         int err = create_pipe_files(files, 0);
470         if (err)
471                 return err;
472
473         cp->file = files[1];
474
475         err = replace_fd(0, files[0], 0);
476         fput(files[0]);
477         /* and disallow core files too */
478         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
479
480         return err;
481 }
482
483 void do_coredump(siginfo_t *siginfo)
484 {
485         struct core_state core_state;
486         struct core_name cn;
487         struct mm_struct *mm = current->mm;
488         struct linux_binfmt * binfmt;
489         const struct cred *old_cred;
490         struct cred *cred;
491         int retval = 0;
492         int flag = 0;
493         int ispipe;
494         struct files_struct *displaced;
495         bool need_nonrelative = false;
496         bool core_dumped = false;
497         static atomic_t core_dump_count = ATOMIC_INIT(0);
498         struct coredump_params cprm = {
499                 .siginfo = siginfo,
500                 .regs = signal_pt_regs(),
501                 .limit = rlimit(RLIMIT_CORE),
502                 /*
503                  * We must use the same mm->flags while dumping core to avoid
504                  * inconsistency of bit flags, since this flag is not protected
505                  * by any locks.
506                  */
507                 .mm_flags = mm->flags,
508         };
509
510         audit_core_dumps(siginfo->si_signo);
511
512         binfmt = mm->binfmt;
513         if (!binfmt || !binfmt->core_dump)
514                 goto fail;
515         if (!__get_dumpable(cprm.mm_flags))
516                 goto fail;
517
518         cred = prepare_creds();
519         if (!cred)
520                 goto fail;
521         /*
522          * We cannot trust fsuid as being the "true" uid of the process
523          * nor do we know its entire history. We only know it was tainted
524          * so we dump it as root in mode 2, and only into a controlled
525          * environment (pipe handler or fully qualified path).
526          */
527         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
528                 /* Setuid core dump mode */
529                 flag = O_EXCL;          /* Stop rewrite attacks */
530                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
531                 need_nonrelative = true;
532         }
533
534         retval = coredump_wait(siginfo->si_signo, &core_state);
535         if (retval < 0)
536                 goto fail_creds;
537
538         old_cred = override_creds(cred);
539
540         ispipe = format_corename(&cn, &cprm);
541
542         if (ispipe) {
543                 int dump_count;
544                 char **helper_argv;
545                 struct subprocess_info *sub_info;
546
547                 if (ispipe < 0) {
548                         printk(KERN_WARNING "format_corename failed\n");
549                         printk(KERN_WARNING "Aborting core\n");
550                         goto fail_unlock;
551                 }
552
553                 if (cprm.limit == 1) {
554                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
555                          *
556                          * Normally core limits are irrelevant to pipes, since
557                          * we're not writing to the file system, but we use
558                          * cprm.limit of 1 here as a speacial value, this is a
559                          * consistent way to catch recursive crashes.
560                          * We can still crash if the core_pattern binary sets
561                          * RLIM_CORE = !1, but it runs as root, and can do
562                          * lots of stupid things.
563                          *
564                          * Note that we use task_tgid_vnr here to grab the pid
565                          * of the process group leader.  That way we get the
566                          * right pid if a thread in a multi-threaded
567                          * core_pattern process dies.
568                          */
569                         printk(KERN_WARNING
570                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
571                                 task_tgid_vnr(current), current->comm);
572                         printk(KERN_WARNING "Aborting core\n");
573                         goto fail_unlock;
574                 }
575                 cprm.limit = RLIM_INFINITY;
576
577                 dump_count = atomic_inc_return(&core_dump_count);
578                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
579                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
580                                task_tgid_vnr(current), current->comm);
581                         printk(KERN_WARNING "Skipping core dump\n");
582                         goto fail_dropcount;
583                 }
584
585                 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
586                 if (!helper_argv) {
587                         printk(KERN_WARNING "%s failed to allocate memory\n",
588                                __func__);
589                         goto fail_dropcount;
590                 }
591
592                 retval = -ENOMEM;
593                 sub_info = call_usermodehelper_setup(helper_argv[0],
594                                                 helper_argv, NULL, GFP_KERNEL,
595                                                 umh_pipe_setup, NULL, &cprm);
596                 if (sub_info)
597                         retval = call_usermodehelper_exec(sub_info,
598                                                           UMH_WAIT_EXEC);
599
600                 argv_free(helper_argv);
601                 if (retval) {
602                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
603                                cn.corename);
604                         goto close_fail;
605                 }
606         } else {
607                 struct inode *inode;
608
609                 if (cprm.limit < binfmt->min_coredump)
610                         goto fail_unlock;
611
612                 if (need_nonrelative && cn.corename[0] != '/') {
613                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
614                                 "to fully qualified path!\n",
615                                 task_tgid_vnr(current), current->comm);
616                         printk(KERN_WARNING "Skipping core dump\n");
617                         goto fail_unlock;
618                 }
619
620                 cprm.file = filp_open(cn.corename,
621                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
622                                  0600);
623                 if (IS_ERR(cprm.file))
624                         goto fail_unlock;
625
626                 inode = file_inode(cprm.file);
627                 if (inode->i_nlink > 1)
628                         goto close_fail;
629                 if (d_unhashed(cprm.file->f_path.dentry))
630                         goto close_fail;
631                 /*
632                  * AK: actually i see no reason to not allow this for named
633                  * pipes etc, but keep the previous behaviour for now.
634                  */
635                 if (!S_ISREG(inode->i_mode))
636                         goto close_fail;
637                 /*
638                  * Dont allow local users get cute and trick others to coredump
639                  * into their pre-created files.
640                  */
641                 if (!uid_eq(inode->i_uid, current_fsuid()))
642                         goto close_fail;
643                 if (!cprm.file->f_op || !cprm.file->f_op->write)
644                         goto close_fail;
645                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
646                         goto close_fail;
647         }
648
649         /* get us an unshared descriptor table; almost always a no-op */
650         retval = unshare_files(&displaced);
651         if (retval)
652                 goto close_fail;
653         if (displaced)
654                 put_files_struct(displaced);
655         if (!dump_interrupted()) {
656                 file_start_write(cprm.file);
657                 core_dumped = binfmt->core_dump(&cprm);
658                 file_end_write(cprm.file);
659         }
660         if (ispipe && core_pipe_limit)
661                 wait_for_dump_helpers(cprm.file);
662 close_fail:
663         if (cprm.file)
664                 filp_close(cprm.file, NULL);
665 fail_dropcount:
666         if (ispipe)
667                 atomic_dec(&core_dump_count);
668 fail_unlock:
669         kfree(cn.corename);
670         coredump_finish(mm, core_dumped);
671         revert_creds(old_cred);
672 fail_creds:
673         put_cred(cred);
674 fail:
675         return;
676 }
677
678 /*
679  * Core dumping helper functions.  These are the only things you should
680  * do on a core-file: use only these functions to write out all the
681  * necessary info.
682  */
683 int dump_write(struct file *file, const void *addr, int nr)
684 {
685         return !dump_interrupted() &&
686                 access_ok(VERIFY_READ, addr, nr) &&
687                 file->f_op->write(file, addr, nr, &file->f_pos) == nr;
688 }
689 EXPORT_SYMBOL(dump_write);
690
691 int dump_seek(struct file *file, loff_t off)
692 {
693         int ret = 1;
694
695         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
696                 if (dump_interrupted() ||
697                     file->f_op->llseek(file, off, SEEK_CUR) < 0)
698                         return 0;
699         } else {
700                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
701
702                 if (!buf)
703                         return 0;
704                 while (off > 0) {
705                         unsigned long n = off;
706
707                         if (n > PAGE_SIZE)
708                                 n = PAGE_SIZE;
709                         if (!dump_write(file, buf, n)) {
710                                 ret = 0;
711                                 break;
712                         }
713                         off -= n;
714                 }
715                 free_page((unsigned long)buf);
716         }
717         return ret;
718 }
719 EXPORT_SYMBOL(dump_seek);