ASoC: max98926: Constify max98926_reg and max98926_regmap
[cascardo/linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34
35 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
36 {
37         struct request_queue *q = bdev->bd_queue;
38         long rc = -EIO;
39
40         dax->addr = (void __pmem *) ERR_PTR(-EIO);
41         if (blk_queue_enter(q, true) != 0)
42                 return rc;
43
44         rc = bdev_direct_access(bdev, dax);
45         if (rc < 0) {
46                 dax->addr = (void __pmem *) ERR_PTR(rc);
47                 blk_queue_exit(q);
48                 return rc;
49         }
50         return rc;
51 }
52
53 static void dax_unmap_atomic(struct block_device *bdev,
54                 const struct blk_dax_ctl *dax)
55 {
56         if (IS_ERR(dax->addr))
57                 return;
58         blk_queue_exit(bdev->bd_queue);
59 }
60
61 /*
62  * dax_clear_blocks() is called from within transaction context from XFS,
63  * and hence this means the stack from this point must follow GFP_NOFS
64  * semantics for all operations.
65  */
66 int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
67 {
68         struct block_device *bdev = inode->i_sb->s_bdev;
69         struct blk_dax_ctl dax = {
70                 .sector = block << (inode->i_blkbits - 9),
71                 .size = _size,
72         };
73
74         might_sleep();
75         do {
76                 long count, sz;
77
78                 count = dax_map_atomic(bdev, &dax);
79                 if (count < 0)
80                         return count;
81                 sz = min_t(long, count, SZ_128K);
82                 clear_pmem(dax.addr, sz);
83                 dax.size -= sz;
84                 dax.sector += sz / 512;
85                 dax_unmap_atomic(bdev, &dax);
86                 cond_resched();
87         } while (dax.size);
88
89         wmb_pmem();
90         return 0;
91 }
92 EXPORT_SYMBOL_GPL(dax_clear_blocks);
93
94 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
95 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
96                 loff_t pos, loff_t end)
97 {
98         loff_t final = end - pos + first; /* The final byte of the buffer */
99
100         if (first > 0)
101                 clear_pmem(addr, first);
102         if (final < size)
103                 clear_pmem(addr + final, size - final);
104 }
105
106 static bool buffer_written(struct buffer_head *bh)
107 {
108         return buffer_mapped(bh) && !buffer_unwritten(bh);
109 }
110
111 /*
112  * When ext4 encounters a hole, it returns without modifying the buffer_head
113  * which means that we can't trust b_size.  To cope with this, we set b_state
114  * to 0 before calling get_block and, if any bit is set, we know we can trust
115  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
116  * and would save us time calling get_block repeatedly.
117  */
118 static bool buffer_size_valid(struct buffer_head *bh)
119 {
120         return bh->b_state != 0;
121 }
122
123
124 static sector_t to_sector(const struct buffer_head *bh,
125                 const struct inode *inode)
126 {
127         sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
128
129         return sector;
130 }
131
132 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
133                       loff_t start, loff_t end, get_block_t get_block,
134                       struct buffer_head *bh)
135 {
136         loff_t pos = start, max = start, bh_max = start;
137         bool hole = false, need_wmb = false;
138         struct block_device *bdev = NULL;
139         int rw = iov_iter_rw(iter), rc;
140         long map_len = 0;
141         struct blk_dax_ctl dax = {
142                 .addr = (void __pmem *) ERR_PTR(-EIO),
143         };
144
145         if (rw == READ)
146                 end = min(end, i_size_read(inode));
147
148         while (pos < end) {
149                 size_t len;
150                 if (pos == max) {
151                         unsigned blkbits = inode->i_blkbits;
152                         long page = pos >> PAGE_SHIFT;
153                         sector_t block = page << (PAGE_SHIFT - blkbits);
154                         unsigned first = pos - (block << blkbits);
155                         long size;
156
157                         if (pos == bh_max) {
158                                 bh->b_size = PAGE_ALIGN(end - pos);
159                                 bh->b_state = 0;
160                                 rc = get_block(inode, block, bh, rw == WRITE);
161                                 if (rc)
162                                         break;
163                                 if (!buffer_size_valid(bh))
164                                         bh->b_size = 1 << blkbits;
165                                 bh_max = pos - first + bh->b_size;
166                                 bdev = bh->b_bdev;
167                         } else {
168                                 unsigned done = bh->b_size -
169                                                 (bh_max - (pos - first));
170                                 bh->b_blocknr += done >> blkbits;
171                                 bh->b_size -= done;
172                         }
173
174                         hole = rw == READ && !buffer_written(bh);
175                         if (hole) {
176                                 size = bh->b_size - first;
177                         } else {
178                                 dax_unmap_atomic(bdev, &dax);
179                                 dax.sector = to_sector(bh, inode);
180                                 dax.size = bh->b_size;
181                                 map_len = dax_map_atomic(bdev, &dax);
182                                 if (map_len < 0) {
183                                         rc = map_len;
184                                         break;
185                                 }
186                                 if (buffer_unwritten(bh) || buffer_new(bh)) {
187                                         dax_new_buf(dax.addr, map_len, first,
188                                                         pos, end);
189                                         need_wmb = true;
190                                 }
191                                 dax.addr += first;
192                                 size = map_len - first;
193                         }
194                         max = min(pos + size, end);
195                 }
196
197                 if (iov_iter_rw(iter) == WRITE) {
198                         len = copy_from_iter_pmem(dax.addr, max - pos, iter);
199                         need_wmb = true;
200                 } else if (!hole)
201                         len = copy_to_iter((void __force *) dax.addr, max - pos,
202                                         iter);
203                 else
204                         len = iov_iter_zero(max - pos, iter);
205
206                 if (!len) {
207                         rc = -EFAULT;
208                         break;
209                 }
210
211                 pos += len;
212                 if (!IS_ERR(dax.addr))
213                         dax.addr += len;
214         }
215
216         if (need_wmb)
217                 wmb_pmem();
218         dax_unmap_atomic(bdev, &dax);
219
220         return (pos == start) ? rc : pos - start;
221 }
222
223 /**
224  * dax_do_io - Perform I/O to a DAX file
225  * @iocb: The control block for this I/O
226  * @inode: The file which the I/O is directed at
227  * @iter: The addresses to do I/O from or to
228  * @pos: The file offset where the I/O starts
229  * @get_block: The filesystem method used to translate file offsets to blocks
230  * @end_io: A filesystem callback for I/O completion
231  * @flags: See below
232  *
233  * This function uses the same locking scheme as do_blockdev_direct_IO:
234  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
235  * caller for writes.  For reads, we take and release the i_mutex ourselves.
236  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
237  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
238  * is in progress.
239  */
240 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
241                   struct iov_iter *iter, loff_t pos, get_block_t get_block,
242                   dio_iodone_t end_io, int flags)
243 {
244         struct buffer_head bh;
245         ssize_t retval = -EINVAL;
246         loff_t end = pos + iov_iter_count(iter);
247
248         memset(&bh, 0, sizeof(bh));
249         bh.b_bdev = inode->i_sb->s_bdev;
250
251         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
252                 struct address_space *mapping = inode->i_mapping;
253                 inode_lock(inode);
254                 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
255                 if (retval) {
256                         inode_unlock(inode);
257                         goto out;
258                 }
259         }
260
261         /* Protects against truncate */
262         if (!(flags & DIO_SKIP_DIO_COUNT))
263                 inode_dio_begin(inode);
264
265         retval = dax_io(inode, iter, pos, end, get_block, &bh);
266
267         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
268                 inode_unlock(inode);
269
270         if ((retval > 0) && end_io)
271                 end_io(iocb, pos, retval, bh.b_private);
272
273         if (!(flags & DIO_SKIP_DIO_COUNT))
274                 inode_dio_end(inode);
275  out:
276         return retval;
277 }
278 EXPORT_SYMBOL_GPL(dax_do_io);
279
280 /*
281  * The user has performed a load from a hole in the file.  Allocating
282  * a new page in the file would cause excessive storage usage for
283  * workloads with sparse files.  We allocate a page cache page instead.
284  * We'll kick it out of the page cache if it's ever written to,
285  * otherwise it will simply fall out of the page cache under memory
286  * pressure without ever having been dirtied.
287  */
288 static int dax_load_hole(struct address_space *mapping, struct page *page,
289                                                         struct vm_fault *vmf)
290 {
291         unsigned long size;
292         struct inode *inode = mapping->host;
293         if (!page)
294                 page = find_or_create_page(mapping, vmf->pgoff,
295                                                 GFP_KERNEL | __GFP_ZERO);
296         if (!page)
297                 return VM_FAULT_OOM;
298         /* Recheck i_size under page lock to avoid truncate race */
299         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
300         if (vmf->pgoff >= size) {
301                 unlock_page(page);
302                 page_cache_release(page);
303                 return VM_FAULT_SIGBUS;
304         }
305
306         vmf->page = page;
307         return VM_FAULT_LOCKED;
308 }
309
310 static int copy_user_bh(struct page *to, struct inode *inode,
311                 struct buffer_head *bh, unsigned long vaddr)
312 {
313         struct blk_dax_ctl dax = {
314                 .sector = to_sector(bh, inode),
315                 .size = bh->b_size,
316         };
317         struct block_device *bdev = bh->b_bdev;
318         void *vto;
319
320         if (dax_map_atomic(bdev, &dax) < 0)
321                 return PTR_ERR(dax.addr);
322         vto = kmap_atomic(to);
323         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
324         kunmap_atomic(vto);
325         dax_unmap_atomic(bdev, &dax);
326         return 0;
327 }
328
329 #define NO_SECTOR -1
330 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
331
332 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
333                 sector_t sector, bool pmd_entry, bool dirty)
334 {
335         struct radix_tree_root *page_tree = &mapping->page_tree;
336         pgoff_t pmd_index = DAX_PMD_INDEX(index);
337         int type, error = 0;
338         void *entry;
339
340         WARN_ON_ONCE(pmd_entry && !dirty);
341         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
342
343         spin_lock_irq(&mapping->tree_lock);
344
345         entry = radix_tree_lookup(page_tree, pmd_index);
346         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
347                 index = pmd_index;
348                 goto dirty;
349         }
350
351         entry = radix_tree_lookup(page_tree, index);
352         if (entry) {
353                 type = RADIX_DAX_TYPE(entry);
354                 if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
355                                         type != RADIX_DAX_PMD)) {
356                         error = -EIO;
357                         goto unlock;
358                 }
359
360                 if (!pmd_entry || type == RADIX_DAX_PMD)
361                         goto dirty;
362
363                 /*
364                  * We only insert dirty PMD entries into the radix tree.  This
365                  * means we don't need to worry about removing a dirty PTE
366                  * entry and inserting a clean PMD entry, thus reducing the
367                  * range we would flush with a follow-up fsync/msync call.
368                  */
369                 radix_tree_delete(&mapping->page_tree, index);
370                 mapping->nrexceptional--;
371         }
372
373         if (sector == NO_SECTOR) {
374                 /*
375                  * This can happen during correct operation if our pfn_mkwrite
376                  * fault raced against a hole punch operation.  If this
377                  * happens the pte that was hole punched will have been
378                  * unmapped and the radix tree entry will have been removed by
379                  * the time we are called, but the call will still happen.  We
380                  * will return all the way up to wp_pfn_shared(), where the
381                  * pte_same() check will fail, eventually causing page fault
382                  * to be retried by the CPU.
383                  */
384                 goto unlock;
385         }
386
387         error = radix_tree_insert(page_tree, index,
388                         RADIX_DAX_ENTRY(sector, pmd_entry));
389         if (error)
390                 goto unlock;
391
392         mapping->nrexceptional++;
393  dirty:
394         if (dirty)
395                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
396  unlock:
397         spin_unlock_irq(&mapping->tree_lock);
398         return error;
399 }
400
401 static int dax_writeback_one(struct block_device *bdev,
402                 struct address_space *mapping, pgoff_t index, void *entry)
403 {
404         struct radix_tree_root *page_tree = &mapping->page_tree;
405         int type = RADIX_DAX_TYPE(entry);
406         struct radix_tree_node *node;
407         struct blk_dax_ctl dax;
408         void **slot;
409         int ret = 0;
410
411         spin_lock_irq(&mapping->tree_lock);
412         /*
413          * Regular page slots are stabilized by the page lock even
414          * without the tree itself locked.  These unlocked entries
415          * need verification under the tree lock.
416          */
417         if (!__radix_tree_lookup(page_tree, index, &node, &slot))
418                 goto unlock;
419         if (*slot != entry)
420                 goto unlock;
421
422         /* another fsync thread may have already written back this entry */
423         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
424                 goto unlock;
425
426         if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
427                 ret = -EIO;
428                 goto unlock;
429         }
430
431         dax.sector = RADIX_DAX_SECTOR(entry);
432         dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
433         spin_unlock_irq(&mapping->tree_lock);
434
435         /*
436          * We cannot hold tree_lock while calling dax_map_atomic() because it
437          * eventually calls cond_resched().
438          */
439         ret = dax_map_atomic(bdev, &dax);
440         if (ret < 0)
441                 return ret;
442
443         if (WARN_ON_ONCE(ret < dax.size)) {
444                 ret = -EIO;
445                 goto unmap;
446         }
447
448         wb_cache_pmem(dax.addr, dax.size);
449
450         spin_lock_irq(&mapping->tree_lock);
451         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
452         spin_unlock_irq(&mapping->tree_lock);
453  unmap:
454         dax_unmap_atomic(bdev, &dax);
455         return ret;
456
457  unlock:
458         spin_unlock_irq(&mapping->tree_lock);
459         return ret;
460 }
461
462 /*
463  * Flush the mapping to the persistent domain within the byte range of [start,
464  * end]. This is required by data integrity operations to ensure file data is
465  * on persistent storage prior to completion of the operation.
466  */
467 int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
468                 loff_t end)
469 {
470         struct inode *inode = mapping->host;
471         struct block_device *bdev = inode->i_sb->s_bdev;
472         pgoff_t start_index, end_index, pmd_index;
473         pgoff_t indices[PAGEVEC_SIZE];
474         struct pagevec pvec;
475         bool done = false;
476         int i, ret = 0;
477         void *entry;
478
479         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
480                 return -EIO;
481
482         start_index = start >> PAGE_CACHE_SHIFT;
483         end_index = end >> PAGE_CACHE_SHIFT;
484         pmd_index = DAX_PMD_INDEX(start_index);
485
486         rcu_read_lock();
487         entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
488         rcu_read_unlock();
489
490         /* see if the start of our range is covered by a PMD entry */
491         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
492                 start_index = pmd_index;
493
494         tag_pages_for_writeback(mapping, start_index, end_index);
495
496         pagevec_init(&pvec, 0);
497         while (!done) {
498                 pvec.nr = find_get_entries_tag(mapping, start_index,
499                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
500                                 pvec.pages, indices);
501
502                 if (pvec.nr == 0)
503                         break;
504
505                 for (i = 0; i < pvec.nr; i++) {
506                         if (indices[i] > end_index) {
507                                 done = true;
508                                 break;
509                         }
510
511                         ret = dax_writeback_one(bdev, mapping, indices[i],
512                                         pvec.pages[i]);
513                         if (ret < 0)
514                                 return ret;
515                 }
516         }
517         wmb_pmem();
518         return 0;
519 }
520 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
521
522 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
523                         struct vm_area_struct *vma, struct vm_fault *vmf)
524 {
525         unsigned long vaddr = (unsigned long)vmf->virtual_address;
526         struct address_space *mapping = inode->i_mapping;
527         struct block_device *bdev = bh->b_bdev;
528         struct blk_dax_ctl dax = {
529                 .sector = to_sector(bh, inode),
530                 .size = bh->b_size,
531         };
532         pgoff_t size;
533         int error;
534
535         i_mmap_lock_read(mapping);
536
537         /*
538          * Check truncate didn't happen while we were allocating a block.
539          * If it did, this block may or may not be still allocated to the
540          * file.  We can't tell the filesystem to free it because we can't
541          * take i_mutex here.  In the worst case, the file still has blocks
542          * allocated past the end of the file.
543          */
544         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
545         if (unlikely(vmf->pgoff >= size)) {
546                 error = -EIO;
547                 goto out;
548         }
549
550         if (dax_map_atomic(bdev, &dax) < 0) {
551                 error = PTR_ERR(dax.addr);
552                 goto out;
553         }
554
555         if (buffer_unwritten(bh) || buffer_new(bh)) {
556                 clear_pmem(dax.addr, PAGE_SIZE);
557                 wmb_pmem();
558         }
559         dax_unmap_atomic(bdev, &dax);
560
561         error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
562                         vmf->flags & FAULT_FLAG_WRITE);
563         if (error)
564                 goto out;
565
566         error = vm_insert_mixed(vma, vaddr, dax.pfn);
567
568  out:
569         i_mmap_unlock_read(mapping);
570
571         return error;
572 }
573
574 /**
575  * __dax_fault - handle a page fault on a DAX file
576  * @vma: The virtual memory area where the fault occurred
577  * @vmf: The description of the fault
578  * @get_block: The filesystem method used to translate file offsets to blocks
579  * @complete_unwritten: The filesystem method used to convert unwritten blocks
580  *      to written so the data written to them is exposed. This is required for
581  *      required by write faults for filesystems that will return unwritten
582  *      extent mappings from @get_block, but it is optional for reads as
583  *      dax_insert_mapping() will always zero unwritten blocks. If the fs does
584  *      not support unwritten extents, the it should pass NULL.
585  *
586  * When a page fault occurs, filesystems may call this helper in their
587  * fault handler for DAX files. __dax_fault() assumes the caller has done all
588  * the necessary locking for the page fault to proceed successfully.
589  */
590 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
591                         get_block_t get_block, dax_iodone_t complete_unwritten)
592 {
593         struct file *file = vma->vm_file;
594         struct address_space *mapping = file->f_mapping;
595         struct inode *inode = mapping->host;
596         struct page *page;
597         struct buffer_head bh;
598         unsigned long vaddr = (unsigned long)vmf->virtual_address;
599         unsigned blkbits = inode->i_blkbits;
600         sector_t block;
601         pgoff_t size;
602         int error;
603         int major = 0;
604
605         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
606         if (vmf->pgoff >= size)
607                 return VM_FAULT_SIGBUS;
608
609         memset(&bh, 0, sizeof(bh));
610         block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
611         bh.b_bdev = inode->i_sb->s_bdev;
612         bh.b_size = PAGE_SIZE;
613
614  repeat:
615         page = find_get_page(mapping, vmf->pgoff);
616         if (page) {
617                 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
618                         page_cache_release(page);
619                         return VM_FAULT_RETRY;
620                 }
621                 if (unlikely(page->mapping != mapping)) {
622                         unlock_page(page);
623                         page_cache_release(page);
624                         goto repeat;
625                 }
626                 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
627                 if (unlikely(vmf->pgoff >= size)) {
628                         /*
629                          * We have a struct page covering a hole in the file
630                          * from a read fault and we've raced with a truncate
631                          */
632                         error = -EIO;
633                         goto unlock_page;
634                 }
635         }
636
637         error = get_block(inode, block, &bh, 0);
638         if (!error && (bh.b_size < PAGE_SIZE))
639                 error = -EIO;           /* fs corruption? */
640         if (error)
641                 goto unlock_page;
642
643         if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
644                 if (vmf->flags & FAULT_FLAG_WRITE) {
645                         error = get_block(inode, block, &bh, 1);
646                         count_vm_event(PGMAJFAULT);
647                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
648                         major = VM_FAULT_MAJOR;
649                         if (!error && (bh.b_size < PAGE_SIZE))
650                                 error = -EIO;
651                         if (error)
652                                 goto unlock_page;
653                 } else {
654                         return dax_load_hole(mapping, page, vmf);
655                 }
656         }
657
658         if (vmf->cow_page) {
659                 struct page *new_page = vmf->cow_page;
660                 if (buffer_written(&bh))
661                         error = copy_user_bh(new_page, inode, &bh, vaddr);
662                 else
663                         clear_user_highpage(new_page, vaddr);
664                 if (error)
665                         goto unlock_page;
666                 vmf->page = page;
667                 if (!page) {
668                         i_mmap_lock_read(mapping);
669                         /* Check we didn't race with truncate */
670                         size = (i_size_read(inode) + PAGE_SIZE - 1) >>
671                                                                 PAGE_SHIFT;
672                         if (vmf->pgoff >= size) {
673                                 i_mmap_unlock_read(mapping);
674                                 error = -EIO;
675                                 goto out;
676                         }
677                 }
678                 return VM_FAULT_LOCKED;
679         }
680
681         /* Check we didn't race with a read fault installing a new page */
682         if (!page && major)
683                 page = find_lock_page(mapping, vmf->pgoff);
684
685         if (page) {
686                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
687                                                         PAGE_CACHE_SIZE, 0);
688                 delete_from_page_cache(page);
689                 unlock_page(page);
690                 page_cache_release(page);
691                 page = NULL;
692         }
693
694         /*
695          * If we successfully insert the new mapping over an unwritten extent,
696          * we need to ensure we convert the unwritten extent. If there is an
697          * error inserting the mapping, the filesystem needs to leave it as
698          * unwritten to prevent exposure of the stale underlying data to
699          * userspace, but we still need to call the completion function so
700          * the private resources on the mapping buffer can be released. We
701          * indicate what the callback should do via the uptodate variable, same
702          * as for normal BH based IO completions.
703          */
704         error = dax_insert_mapping(inode, &bh, vma, vmf);
705         if (buffer_unwritten(&bh)) {
706                 if (complete_unwritten)
707                         complete_unwritten(&bh, !error);
708                 else
709                         WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
710         }
711
712  out:
713         if (error == -ENOMEM)
714                 return VM_FAULT_OOM | major;
715         /* -EBUSY is fine, somebody else faulted on the same PTE */
716         if ((error < 0) && (error != -EBUSY))
717                 return VM_FAULT_SIGBUS | major;
718         return VM_FAULT_NOPAGE | major;
719
720  unlock_page:
721         if (page) {
722                 unlock_page(page);
723                 page_cache_release(page);
724         }
725         goto out;
726 }
727 EXPORT_SYMBOL(__dax_fault);
728
729 /**
730  * dax_fault - handle a page fault on a DAX file
731  * @vma: The virtual memory area where the fault occurred
732  * @vmf: The description of the fault
733  * @get_block: The filesystem method used to translate file offsets to blocks
734  *
735  * When a page fault occurs, filesystems may call this helper in their
736  * fault handler for DAX files.
737  */
738 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
739               get_block_t get_block, dax_iodone_t complete_unwritten)
740 {
741         int result;
742         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
743
744         if (vmf->flags & FAULT_FLAG_WRITE) {
745                 sb_start_pagefault(sb);
746                 file_update_time(vma->vm_file);
747         }
748         result = __dax_fault(vma, vmf, get_block, complete_unwritten);
749         if (vmf->flags & FAULT_FLAG_WRITE)
750                 sb_end_pagefault(sb);
751
752         return result;
753 }
754 EXPORT_SYMBOL_GPL(dax_fault);
755
756 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
757 /*
758  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
759  * more often than one might expect in the below function.
760  */
761 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
762
763 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
764                 const char *reason, const char *fn)
765 {
766         if (bh) {
767                 char bname[BDEVNAME_SIZE];
768                 bdevname(bh->b_bdev, bname);
769                 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
770                         "length %zd fallback: %s\n", fn, current->comm,
771                         address, bname, bh->b_state, (u64)bh->b_blocknr,
772                         bh->b_size, reason);
773         } else {
774                 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
775                         current->comm, address, reason);
776         }
777 }
778
779 #define dax_pmd_dbg(bh, address, reason)        __dax_dbg(bh, address, reason, "dax_pmd")
780
781 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
782                 pmd_t *pmd, unsigned int flags, get_block_t get_block,
783                 dax_iodone_t complete_unwritten)
784 {
785         struct file *file = vma->vm_file;
786         struct address_space *mapping = file->f_mapping;
787         struct inode *inode = mapping->host;
788         struct buffer_head bh;
789         unsigned blkbits = inode->i_blkbits;
790         unsigned long pmd_addr = address & PMD_MASK;
791         bool write = flags & FAULT_FLAG_WRITE;
792         struct block_device *bdev;
793         pgoff_t size, pgoff;
794         sector_t block;
795         int error, result = 0;
796         bool alloc = false;
797
798         /* dax pmd mappings require pfn_t_devmap() */
799         if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
800                 return VM_FAULT_FALLBACK;
801
802         /* Fall back to PTEs if we're going to COW */
803         if (write && !(vma->vm_flags & VM_SHARED)) {
804                 split_huge_pmd(vma, pmd, address);
805                 dax_pmd_dbg(NULL, address, "cow write");
806                 return VM_FAULT_FALLBACK;
807         }
808         /* If the PMD would extend outside the VMA */
809         if (pmd_addr < vma->vm_start) {
810                 dax_pmd_dbg(NULL, address, "vma start unaligned");
811                 return VM_FAULT_FALLBACK;
812         }
813         if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
814                 dax_pmd_dbg(NULL, address, "vma end unaligned");
815                 return VM_FAULT_FALLBACK;
816         }
817
818         pgoff = linear_page_index(vma, pmd_addr);
819         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
820         if (pgoff >= size)
821                 return VM_FAULT_SIGBUS;
822         /* If the PMD would cover blocks out of the file */
823         if ((pgoff | PG_PMD_COLOUR) >= size) {
824                 dax_pmd_dbg(NULL, address,
825                                 "offset + huge page size > file size");
826                 return VM_FAULT_FALLBACK;
827         }
828
829         memset(&bh, 0, sizeof(bh));
830         bh.b_bdev = inode->i_sb->s_bdev;
831         block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
832
833         bh.b_size = PMD_SIZE;
834
835         if (get_block(inode, block, &bh, 0) != 0)
836                 return VM_FAULT_SIGBUS;
837
838         if (!buffer_mapped(&bh) && write) {
839                 if (get_block(inode, block, &bh, 1) != 0)
840                         return VM_FAULT_SIGBUS;
841                 alloc = true;
842         }
843
844         bdev = bh.b_bdev;
845
846         /*
847          * If the filesystem isn't willing to tell us the length of a hole,
848          * just fall back to PTEs.  Calling get_block 512 times in a loop
849          * would be silly.
850          */
851         if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
852                 dax_pmd_dbg(&bh, address, "allocated block too small");
853                 return VM_FAULT_FALLBACK;
854         }
855
856         /*
857          * If we allocated new storage, make sure no process has any
858          * zero pages covering this hole
859          */
860         if (alloc) {
861                 loff_t lstart = pgoff << PAGE_SHIFT;
862                 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
863
864                 truncate_pagecache_range(inode, lstart, lend);
865         }
866
867         i_mmap_lock_read(mapping);
868
869         /*
870          * If a truncate happened while we were allocating blocks, we may
871          * leave blocks allocated to the file that are beyond EOF.  We can't
872          * take i_mutex here, so just leave them hanging; they'll be freed
873          * when the file is deleted.
874          */
875         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
876         if (pgoff >= size) {
877                 result = VM_FAULT_SIGBUS;
878                 goto out;
879         }
880         if ((pgoff | PG_PMD_COLOUR) >= size) {
881                 dax_pmd_dbg(&bh, address,
882                                 "offset + huge page size > file size");
883                 goto fallback;
884         }
885
886         if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
887                 spinlock_t *ptl;
888                 pmd_t entry;
889                 struct page *zero_page = get_huge_zero_page();
890
891                 if (unlikely(!zero_page)) {
892                         dax_pmd_dbg(&bh, address, "no zero page");
893                         goto fallback;
894                 }
895
896                 ptl = pmd_lock(vma->vm_mm, pmd);
897                 if (!pmd_none(*pmd)) {
898                         spin_unlock(ptl);
899                         dax_pmd_dbg(&bh, address, "pmd already present");
900                         goto fallback;
901                 }
902
903                 dev_dbg(part_to_dev(bdev->bd_part),
904                                 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
905                                 __func__, current->comm, address,
906                                 (unsigned long long) to_sector(&bh, inode));
907
908                 entry = mk_pmd(zero_page, vma->vm_page_prot);
909                 entry = pmd_mkhuge(entry);
910                 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
911                 result = VM_FAULT_NOPAGE;
912                 spin_unlock(ptl);
913         } else {
914                 struct blk_dax_ctl dax = {
915                         .sector = to_sector(&bh, inode),
916                         .size = PMD_SIZE,
917                 };
918                 long length = dax_map_atomic(bdev, &dax);
919
920                 if (length < 0) {
921                         result = VM_FAULT_SIGBUS;
922                         goto out;
923                 }
924                 if (length < PMD_SIZE) {
925                         dax_pmd_dbg(&bh, address, "dax-length too small");
926                         dax_unmap_atomic(bdev, &dax);
927                         goto fallback;
928                 }
929                 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
930                         dax_pmd_dbg(&bh, address, "pfn unaligned");
931                         dax_unmap_atomic(bdev, &dax);
932                         goto fallback;
933                 }
934
935                 if (!pfn_t_devmap(dax.pfn)) {
936                         dax_unmap_atomic(bdev, &dax);
937                         dax_pmd_dbg(&bh, address, "pfn not in memmap");
938                         goto fallback;
939                 }
940
941                 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
942                         clear_pmem(dax.addr, PMD_SIZE);
943                         wmb_pmem();
944                         count_vm_event(PGMAJFAULT);
945                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
946                         result |= VM_FAULT_MAJOR;
947                 }
948                 dax_unmap_atomic(bdev, &dax);
949
950                 /*
951                  * For PTE faults we insert a radix tree entry for reads, and
952                  * leave it clean.  Then on the first write we dirty the radix
953                  * tree entry via the dax_pfn_mkwrite() path.  This sequence
954                  * allows the dax_pfn_mkwrite() call to be simpler and avoid a
955                  * call into get_block() to translate the pgoff to a sector in
956                  * order to be able to create a new radix tree entry.
957                  *
958                  * The PMD path doesn't have an equivalent to
959                  * dax_pfn_mkwrite(), though, so for a read followed by a
960                  * write we traverse all the way through __dax_pmd_fault()
961                  * twice.  This means we can just skip inserting a radix tree
962                  * entry completely on the initial read and just wait until
963                  * the write to insert a dirty entry.
964                  */
965                 if (write) {
966                         error = dax_radix_entry(mapping, pgoff, dax.sector,
967                                         true, true);
968                         if (error) {
969                                 dax_pmd_dbg(&bh, address,
970                                                 "PMD radix insertion failed");
971                                 goto fallback;
972                         }
973                 }
974
975                 dev_dbg(part_to_dev(bdev->bd_part),
976                                 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
977                                 __func__, current->comm, address,
978                                 pfn_t_to_pfn(dax.pfn),
979                                 (unsigned long long) dax.sector);
980                 result |= vmf_insert_pfn_pmd(vma, address, pmd,
981                                 dax.pfn, write);
982         }
983
984  out:
985         i_mmap_unlock_read(mapping);
986
987         if (buffer_unwritten(&bh))
988                 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
989
990         return result;
991
992  fallback:
993         count_vm_event(THP_FAULT_FALLBACK);
994         result = VM_FAULT_FALLBACK;
995         goto out;
996 }
997 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
998
999 /**
1000  * dax_pmd_fault - handle a PMD fault on a DAX file
1001  * @vma: The virtual memory area where the fault occurred
1002  * @vmf: The description of the fault
1003  * @get_block: The filesystem method used to translate file offsets to blocks
1004  *
1005  * When a page fault occurs, filesystems may call this helper in their
1006  * pmd_fault handler for DAX files.
1007  */
1008 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1009                         pmd_t *pmd, unsigned int flags, get_block_t get_block,
1010                         dax_iodone_t complete_unwritten)
1011 {
1012         int result;
1013         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1014
1015         if (flags & FAULT_FLAG_WRITE) {
1016                 sb_start_pagefault(sb);
1017                 file_update_time(vma->vm_file);
1018         }
1019         result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1020                                 complete_unwritten);
1021         if (flags & FAULT_FLAG_WRITE)
1022                 sb_end_pagefault(sb);
1023
1024         return result;
1025 }
1026 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1027 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1028
1029 /**
1030  * dax_pfn_mkwrite - handle first write to DAX page
1031  * @vma: The virtual memory area where the fault occurred
1032  * @vmf: The description of the fault
1033  */
1034 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1035 {
1036         struct file *file = vma->vm_file;
1037
1038         /*
1039          * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1040          * RADIX_DAX_PTE entry already exists in the radix tree from a
1041          * previous call to __dax_fault().  We just want to look up that PTE
1042          * entry using vmf->pgoff and make sure the dirty tag is set.  This
1043          * saves us from having to make a call to get_block() here to look
1044          * up the sector.
1045          */
1046         dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
1047         return VM_FAULT_NOPAGE;
1048 }
1049 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1050
1051 /**
1052  * dax_zero_page_range - zero a range within a page of a DAX file
1053  * @inode: The file being truncated
1054  * @from: The file offset that is being truncated to
1055  * @length: The number of bytes to zero
1056  * @get_block: The filesystem method used to translate file offsets to blocks
1057  *
1058  * This function can be called by a filesystem when it is zeroing part of a
1059  * page in a DAX file.  This is intended for hole-punch operations.  If
1060  * you are truncating a file, the helper function dax_truncate_page() may be
1061  * more convenient.
1062  *
1063  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1064  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1065  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1066  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1067  * since the file might be mmapped.
1068  */
1069 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1070                                                         get_block_t get_block)
1071 {
1072         struct buffer_head bh;
1073         pgoff_t index = from >> PAGE_CACHE_SHIFT;
1074         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1075         int err;
1076
1077         /* Block boundary? Nothing to do */
1078         if (!length)
1079                 return 0;
1080         BUG_ON((offset + length) > PAGE_CACHE_SIZE);
1081
1082         memset(&bh, 0, sizeof(bh));
1083         bh.b_bdev = inode->i_sb->s_bdev;
1084         bh.b_size = PAGE_CACHE_SIZE;
1085         err = get_block(inode, index, &bh, 0);
1086         if (err < 0)
1087                 return err;
1088         if (buffer_written(&bh)) {
1089                 struct block_device *bdev = bh.b_bdev;
1090                 struct blk_dax_ctl dax = {
1091                         .sector = to_sector(&bh, inode),
1092                         .size = PAGE_CACHE_SIZE,
1093                 };
1094
1095                 if (dax_map_atomic(bdev, &dax) < 0)
1096                         return PTR_ERR(dax.addr);
1097                 clear_pmem(dax.addr + offset, length);
1098                 wmb_pmem();
1099                 dax_unmap_atomic(bdev, &dax);
1100         }
1101
1102         return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1105
1106 /**
1107  * dax_truncate_page - handle a partial page being truncated in a DAX file
1108  * @inode: The file being truncated
1109  * @from: The file offset that is being truncated to
1110  * @get_block: The filesystem method used to translate file offsets to blocks
1111  *
1112  * Similar to block_truncate_page(), this function can be called by a
1113  * filesystem when it is truncating a DAX file to handle the partial page.
1114  *
1115  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1116  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1117  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1118  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1119  * since the file might be mmapped.
1120  */
1121 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1122 {
1123         unsigned length = PAGE_CACHE_ALIGN(from) - from;
1124         return dax_zero_page_range(inode, from, length, get_block);
1125 }
1126 EXPORT_SYMBOL_GPL(dax_truncate_page);