Merge branch 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[cascardo/linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34
35 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
36 {
37         struct request_queue *q = bdev->bd_queue;
38         long rc = -EIO;
39
40         dax->addr = (void __pmem *) ERR_PTR(-EIO);
41         if (blk_queue_enter(q, true) != 0)
42                 return rc;
43
44         rc = bdev_direct_access(bdev, dax);
45         if (rc < 0) {
46                 dax->addr = (void __pmem *) ERR_PTR(rc);
47                 blk_queue_exit(q);
48                 return rc;
49         }
50         return rc;
51 }
52
53 static void dax_unmap_atomic(struct block_device *bdev,
54                 const struct blk_dax_ctl *dax)
55 {
56         if (IS_ERR(dax->addr))
57                 return;
58         blk_queue_exit(bdev->bd_queue);
59 }
60
61 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
62 {
63         struct page *page = alloc_pages(GFP_KERNEL, 0);
64         struct blk_dax_ctl dax = {
65                 .size = PAGE_SIZE,
66                 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
67         };
68         long rc;
69
70         if (!page)
71                 return ERR_PTR(-ENOMEM);
72
73         rc = dax_map_atomic(bdev, &dax);
74         if (rc < 0)
75                 return ERR_PTR(rc);
76         memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
77         dax_unmap_atomic(bdev, &dax);
78         return page;
79 }
80
81 /*
82  * dax_clear_sectors() is called from within transaction context from XFS,
83  * and hence this means the stack from this point must follow GFP_NOFS
84  * semantics for all operations.
85  */
86 int dax_clear_sectors(struct block_device *bdev, sector_t _sector, long _size)
87 {
88         struct blk_dax_ctl dax = {
89                 .sector = _sector,
90                 .size = _size,
91         };
92
93         might_sleep();
94         do {
95                 long count, sz;
96
97                 count = dax_map_atomic(bdev, &dax);
98                 if (count < 0)
99                         return count;
100                 sz = min_t(long, count, SZ_128K);
101                 clear_pmem(dax.addr, sz);
102                 dax.size -= sz;
103                 dax.sector += sz / 512;
104                 dax_unmap_atomic(bdev, &dax);
105                 cond_resched();
106         } while (dax.size);
107
108         wmb_pmem();
109         return 0;
110 }
111 EXPORT_SYMBOL_GPL(dax_clear_sectors);
112
113 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
114 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
115                 loff_t pos, loff_t end)
116 {
117         loff_t final = end - pos + first; /* The final byte of the buffer */
118
119         if (first > 0)
120                 clear_pmem(addr, first);
121         if (final < size)
122                 clear_pmem(addr + final, size - final);
123 }
124
125 static bool buffer_written(struct buffer_head *bh)
126 {
127         return buffer_mapped(bh) && !buffer_unwritten(bh);
128 }
129
130 /*
131  * When ext4 encounters a hole, it returns without modifying the buffer_head
132  * which means that we can't trust b_size.  To cope with this, we set b_state
133  * to 0 before calling get_block and, if any bit is set, we know we can trust
134  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
135  * and would save us time calling get_block repeatedly.
136  */
137 static bool buffer_size_valid(struct buffer_head *bh)
138 {
139         return bh->b_state != 0;
140 }
141
142
143 static sector_t to_sector(const struct buffer_head *bh,
144                 const struct inode *inode)
145 {
146         sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
147
148         return sector;
149 }
150
151 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
152                       loff_t start, loff_t end, get_block_t get_block,
153                       struct buffer_head *bh)
154 {
155         loff_t pos = start, max = start, bh_max = start;
156         bool hole = false, need_wmb = false;
157         struct block_device *bdev = NULL;
158         int rw = iov_iter_rw(iter), rc;
159         long map_len = 0;
160         struct blk_dax_ctl dax = {
161                 .addr = (void __pmem *) ERR_PTR(-EIO),
162         };
163
164         if (rw == READ)
165                 end = min(end, i_size_read(inode));
166
167         while (pos < end) {
168                 size_t len;
169                 if (pos == max) {
170                         unsigned blkbits = inode->i_blkbits;
171                         long page = pos >> PAGE_SHIFT;
172                         sector_t block = page << (PAGE_SHIFT - blkbits);
173                         unsigned first = pos - (block << blkbits);
174                         long size;
175
176                         if (pos == bh_max) {
177                                 bh->b_size = PAGE_ALIGN(end - pos);
178                                 bh->b_state = 0;
179                                 rc = get_block(inode, block, bh, rw == WRITE);
180                                 if (rc)
181                                         break;
182                                 if (!buffer_size_valid(bh))
183                                         bh->b_size = 1 << blkbits;
184                                 bh_max = pos - first + bh->b_size;
185                                 bdev = bh->b_bdev;
186                         } else {
187                                 unsigned done = bh->b_size -
188                                                 (bh_max - (pos - first));
189                                 bh->b_blocknr += done >> blkbits;
190                                 bh->b_size -= done;
191                         }
192
193                         hole = rw == READ && !buffer_written(bh);
194                         if (hole) {
195                                 size = bh->b_size - first;
196                         } else {
197                                 dax_unmap_atomic(bdev, &dax);
198                                 dax.sector = to_sector(bh, inode);
199                                 dax.size = bh->b_size;
200                                 map_len = dax_map_atomic(bdev, &dax);
201                                 if (map_len < 0) {
202                                         rc = map_len;
203                                         break;
204                                 }
205                                 if (buffer_unwritten(bh) || buffer_new(bh)) {
206                                         dax_new_buf(dax.addr, map_len, first,
207                                                         pos, end);
208                                         need_wmb = true;
209                                 }
210                                 dax.addr += first;
211                                 size = map_len - first;
212                         }
213                         max = min(pos + size, end);
214                 }
215
216                 if (iov_iter_rw(iter) == WRITE) {
217                         len = copy_from_iter_pmem(dax.addr, max - pos, iter);
218                         need_wmb = true;
219                 } else if (!hole)
220                         len = copy_to_iter((void __force *) dax.addr, max - pos,
221                                         iter);
222                 else
223                         len = iov_iter_zero(max - pos, iter);
224
225                 if (!len) {
226                         rc = -EFAULT;
227                         break;
228                 }
229
230                 pos += len;
231                 if (!IS_ERR(dax.addr))
232                         dax.addr += len;
233         }
234
235         if (need_wmb)
236                 wmb_pmem();
237         dax_unmap_atomic(bdev, &dax);
238
239         return (pos == start) ? rc : pos - start;
240 }
241
242 /**
243  * dax_do_io - Perform I/O to a DAX file
244  * @iocb: The control block for this I/O
245  * @inode: The file which the I/O is directed at
246  * @iter: The addresses to do I/O from or to
247  * @pos: The file offset where the I/O starts
248  * @get_block: The filesystem method used to translate file offsets to blocks
249  * @end_io: A filesystem callback for I/O completion
250  * @flags: See below
251  *
252  * This function uses the same locking scheme as do_blockdev_direct_IO:
253  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
254  * caller for writes.  For reads, we take and release the i_mutex ourselves.
255  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
256  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
257  * is in progress.
258  */
259 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
260                   struct iov_iter *iter, loff_t pos, get_block_t get_block,
261                   dio_iodone_t end_io, int flags)
262 {
263         struct buffer_head bh;
264         ssize_t retval = -EINVAL;
265         loff_t end = pos + iov_iter_count(iter);
266
267         memset(&bh, 0, sizeof(bh));
268         bh.b_bdev = inode->i_sb->s_bdev;
269
270         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
271                 struct address_space *mapping = inode->i_mapping;
272                 inode_lock(inode);
273                 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
274                 if (retval) {
275                         inode_unlock(inode);
276                         goto out;
277                 }
278         }
279
280         /* Protects against truncate */
281         if (!(flags & DIO_SKIP_DIO_COUNT))
282                 inode_dio_begin(inode);
283
284         retval = dax_io(inode, iter, pos, end, get_block, &bh);
285
286         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
287                 inode_unlock(inode);
288
289         if ((retval > 0) && end_io)
290                 end_io(iocb, pos, retval, bh.b_private);
291
292         if (!(flags & DIO_SKIP_DIO_COUNT))
293                 inode_dio_end(inode);
294  out:
295         return retval;
296 }
297 EXPORT_SYMBOL_GPL(dax_do_io);
298
299 /*
300  * The user has performed a load from a hole in the file.  Allocating
301  * a new page in the file would cause excessive storage usage for
302  * workloads with sparse files.  We allocate a page cache page instead.
303  * We'll kick it out of the page cache if it's ever written to,
304  * otherwise it will simply fall out of the page cache under memory
305  * pressure without ever having been dirtied.
306  */
307 static int dax_load_hole(struct address_space *mapping, struct page *page,
308                                                         struct vm_fault *vmf)
309 {
310         unsigned long size;
311         struct inode *inode = mapping->host;
312         if (!page)
313                 page = find_or_create_page(mapping, vmf->pgoff,
314                                                 GFP_KERNEL | __GFP_ZERO);
315         if (!page)
316                 return VM_FAULT_OOM;
317         /* Recheck i_size under page lock to avoid truncate race */
318         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
319         if (vmf->pgoff >= size) {
320                 unlock_page(page);
321                 page_cache_release(page);
322                 return VM_FAULT_SIGBUS;
323         }
324
325         vmf->page = page;
326         return VM_FAULT_LOCKED;
327 }
328
329 static int copy_user_bh(struct page *to, struct inode *inode,
330                 struct buffer_head *bh, unsigned long vaddr)
331 {
332         struct blk_dax_ctl dax = {
333                 .sector = to_sector(bh, inode),
334                 .size = bh->b_size,
335         };
336         struct block_device *bdev = bh->b_bdev;
337         void *vto;
338
339         if (dax_map_atomic(bdev, &dax) < 0)
340                 return PTR_ERR(dax.addr);
341         vto = kmap_atomic(to);
342         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
343         kunmap_atomic(vto);
344         dax_unmap_atomic(bdev, &dax);
345         return 0;
346 }
347
348 #define NO_SECTOR -1
349 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
350
351 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
352                 sector_t sector, bool pmd_entry, bool dirty)
353 {
354         struct radix_tree_root *page_tree = &mapping->page_tree;
355         pgoff_t pmd_index = DAX_PMD_INDEX(index);
356         int type, error = 0;
357         void *entry;
358
359         WARN_ON_ONCE(pmd_entry && !dirty);
360         if (dirty)
361                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
362
363         spin_lock_irq(&mapping->tree_lock);
364
365         entry = radix_tree_lookup(page_tree, pmd_index);
366         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
367                 index = pmd_index;
368                 goto dirty;
369         }
370
371         entry = radix_tree_lookup(page_tree, index);
372         if (entry) {
373                 type = RADIX_DAX_TYPE(entry);
374                 if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
375                                         type != RADIX_DAX_PMD)) {
376                         error = -EIO;
377                         goto unlock;
378                 }
379
380                 if (!pmd_entry || type == RADIX_DAX_PMD)
381                         goto dirty;
382
383                 /*
384                  * We only insert dirty PMD entries into the radix tree.  This
385                  * means we don't need to worry about removing a dirty PTE
386                  * entry and inserting a clean PMD entry, thus reducing the
387                  * range we would flush with a follow-up fsync/msync call.
388                  */
389                 radix_tree_delete(&mapping->page_tree, index);
390                 mapping->nrexceptional--;
391         }
392
393         if (sector == NO_SECTOR) {
394                 /*
395                  * This can happen during correct operation if our pfn_mkwrite
396                  * fault raced against a hole punch operation.  If this
397                  * happens the pte that was hole punched will have been
398                  * unmapped and the radix tree entry will have been removed by
399                  * the time we are called, but the call will still happen.  We
400                  * will return all the way up to wp_pfn_shared(), where the
401                  * pte_same() check will fail, eventually causing page fault
402                  * to be retried by the CPU.
403                  */
404                 goto unlock;
405         }
406
407         error = radix_tree_insert(page_tree, index,
408                         RADIX_DAX_ENTRY(sector, pmd_entry));
409         if (error)
410                 goto unlock;
411
412         mapping->nrexceptional++;
413  dirty:
414         if (dirty)
415                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
416  unlock:
417         spin_unlock_irq(&mapping->tree_lock);
418         return error;
419 }
420
421 static int dax_writeback_one(struct block_device *bdev,
422                 struct address_space *mapping, pgoff_t index, void *entry)
423 {
424         struct radix_tree_root *page_tree = &mapping->page_tree;
425         int type = RADIX_DAX_TYPE(entry);
426         struct radix_tree_node *node;
427         struct blk_dax_ctl dax;
428         void **slot;
429         int ret = 0;
430
431         spin_lock_irq(&mapping->tree_lock);
432         /*
433          * Regular page slots are stabilized by the page lock even
434          * without the tree itself locked.  These unlocked entries
435          * need verification under the tree lock.
436          */
437         if (!__radix_tree_lookup(page_tree, index, &node, &slot))
438                 goto unlock;
439         if (*slot != entry)
440                 goto unlock;
441
442         /* another fsync thread may have already written back this entry */
443         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
444                 goto unlock;
445
446         if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
447                 ret = -EIO;
448                 goto unlock;
449         }
450
451         dax.sector = RADIX_DAX_SECTOR(entry);
452         dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
453         spin_unlock_irq(&mapping->tree_lock);
454
455         /*
456          * We cannot hold tree_lock while calling dax_map_atomic() because it
457          * eventually calls cond_resched().
458          */
459         ret = dax_map_atomic(bdev, &dax);
460         if (ret < 0)
461                 return ret;
462
463         if (WARN_ON_ONCE(ret < dax.size)) {
464                 ret = -EIO;
465                 goto unmap;
466         }
467
468         wb_cache_pmem(dax.addr, dax.size);
469
470         spin_lock_irq(&mapping->tree_lock);
471         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
472         spin_unlock_irq(&mapping->tree_lock);
473  unmap:
474         dax_unmap_atomic(bdev, &dax);
475         return ret;
476
477  unlock:
478         spin_unlock_irq(&mapping->tree_lock);
479         return ret;
480 }
481
482 /*
483  * Flush the mapping to the persistent domain within the byte range of [start,
484  * end]. This is required by data integrity operations to ensure file data is
485  * on persistent storage prior to completion of the operation.
486  */
487 int dax_writeback_mapping_range(struct address_space *mapping,
488                 struct block_device *bdev, struct writeback_control *wbc)
489 {
490         struct inode *inode = mapping->host;
491         pgoff_t start_index, end_index, pmd_index;
492         pgoff_t indices[PAGEVEC_SIZE];
493         struct pagevec pvec;
494         bool done = false;
495         int i, ret = 0;
496         void *entry;
497
498         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
499                 return -EIO;
500
501         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
502                 return 0;
503
504         start_index = wbc->range_start >> PAGE_CACHE_SHIFT;
505         end_index = wbc->range_end >> PAGE_CACHE_SHIFT;
506         pmd_index = DAX_PMD_INDEX(start_index);
507
508         rcu_read_lock();
509         entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
510         rcu_read_unlock();
511
512         /* see if the start of our range is covered by a PMD entry */
513         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
514                 start_index = pmd_index;
515
516         tag_pages_for_writeback(mapping, start_index, end_index);
517
518         pagevec_init(&pvec, 0);
519         while (!done) {
520                 pvec.nr = find_get_entries_tag(mapping, start_index,
521                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
522                                 pvec.pages, indices);
523
524                 if (pvec.nr == 0)
525                         break;
526
527                 for (i = 0; i < pvec.nr; i++) {
528                         if (indices[i] > end_index) {
529                                 done = true;
530                                 break;
531                         }
532
533                         ret = dax_writeback_one(bdev, mapping, indices[i],
534                                         pvec.pages[i]);
535                         if (ret < 0)
536                                 return ret;
537                 }
538         }
539         wmb_pmem();
540         return 0;
541 }
542 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
543
544 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
545                         struct vm_area_struct *vma, struct vm_fault *vmf)
546 {
547         unsigned long vaddr = (unsigned long)vmf->virtual_address;
548         struct address_space *mapping = inode->i_mapping;
549         struct block_device *bdev = bh->b_bdev;
550         struct blk_dax_ctl dax = {
551                 .sector = to_sector(bh, inode),
552                 .size = bh->b_size,
553         };
554         pgoff_t size;
555         int error;
556
557         i_mmap_lock_read(mapping);
558
559         /*
560          * Check truncate didn't happen while we were allocating a block.
561          * If it did, this block may or may not be still allocated to the
562          * file.  We can't tell the filesystem to free it because we can't
563          * take i_mutex here.  In the worst case, the file still has blocks
564          * allocated past the end of the file.
565          */
566         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
567         if (unlikely(vmf->pgoff >= size)) {
568                 error = -EIO;
569                 goto out;
570         }
571
572         if (dax_map_atomic(bdev, &dax) < 0) {
573                 error = PTR_ERR(dax.addr);
574                 goto out;
575         }
576
577         if (buffer_unwritten(bh) || buffer_new(bh)) {
578                 clear_pmem(dax.addr, PAGE_SIZE);
579                 wmb_pmem();
580         }
581         dax_unmap_atomic(bdev, &dax);
582
583         error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
584                         vmf->flags & FAULT_FLAG_WRITE);
585         if (error)
586                 goto out;
587
588         error = vm_insert_mixed(vma, vaddr, dax.pfn);
589
590  out:
591         i_mmap_unlock_read(mapping);
592
593         return error;
594 }
595
596 /**
597  * __dax_fault - handle a page fault on a DAX file
598  * @vma: The virtual memory area where the fault occurred
599  * @vmf: The description of the fault
600  * @get_block: The filesystem method used to translate file offsets to blocks
601  * @complete_unwritten: The filesystem method used to convert unwritten blocks
602  *      to written so the data written to them is exposed. This is required for
603  *      required by write faults for filesystems that will return unwritten
604  *      extent mappings from @get_block, but it is optional for reads as
605  *      dax_insert_mapping() will always zero unwritten blocks. If the fs does
606  *      not support unwritten extents, the it should pass NULL.
607  *
608  * When a page fault occurs, filesystems may call this helper in their
609  * fault handler for DAX files. __dax_fault() assumes the caller has done all
610  * the necessary locking for the page fault to proceed successfully.
611  */
612 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
613                         get_block_t get_block, dax_iodone_t complete_unwritten)
614 {
615         struct file *file = vma->vm_file;
616         struct address_space *mapping = file->f_mapping;
617         struct inode *inode = mapping->host;
618         struct page *page;
619         struct buffer_head bh;
620         unsigned long vaddr = (unsigned long)vmf->virtual_address;
621         unsigned blkbits = inode->i_blkbits;
622         sector_t block;
623         pgoff_t size;
624         int error;
625         int major = 0;
626
627         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
628         if (vmf->pgoff >= size)
629                 return VM_FAULT_SIGBUS;
630
631         memset(&bh, 0, sizeof(bh));
632         block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
633         bh.b_bdev = inode->i_sb->s_bdev;
634         bh.b_size = PAGE_SIZE;
635
636  repeat:
637         page = find_get_page(mapping, vmf->pgoff);
638         if (page) {
639                 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
640                         page_cache_release(page);
641                         return VM_FAULT_RETRY;
642                 }
643                 if (unlikely(page->mapping != mapping)) {
644                         unlock_page(page);
645                         page_cache_release(page);
646                         goto repeat;
647                 }
648                 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
649                 if (unlikely(vmf->pgoff >= size)) {
650                         /*
651                          * We have a struct page covering a hole in the file
652                          * from a read fault and we've raced with a truncate
653                          */
654                         error = -EIO;
655                         goto unlock_page;
656                 }
657         }
658
659         error = get_block(inode, block, &bh, 0);
660         if (!error && (bh.b_size < PAGE_SIZE))
661                 error = -EIO;           /* fs corruption? */
662         if (error)
663                 goto unlock_page;
664
665         if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
666                 if (vmf->flags & FAULT_FLAG_WRITE) {
667                         error = get_block(inode, block, &bh, 1);
668                         count_vm_event(PGMAJFAULT);
669                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
670                         major = VM_FAULT_MAJOR;
671                         if (!error && (bh.b_size < PAGE_SIZE))
672                                 error = -EIO;
673                         if (error)
674                                 goto unlock_page;
675                 } else {
676                         return dax_load_hole(mapping, page, vmf);
677                 }
678         }
679
680         if (vmf->cow_page) {
681                 struct page *new_page = vmf->cow_page;
682                 if (buffer_written(&bh))
683                         error = copy_user_bh(new_page, inode, &bh, vaddr);
684                 else
685                         clear_user_highpage(new_page, vaddr);
686                 if (error)
687                         goto unlock_page;
688                 vmf->page = page;
689                 if (!page) {
690                         i_mmap_lock_read(mapping);
691                         /* Check we didn't race with truncate */
692                         size = (i_size_read(inode) + PAGE_SIZE - 1) >>
693                                                                 PAGE_SHIFT;
694                         if (vmf->pgoff >= size) {
695                                 i_mmap_unlock_read(mapping);
696                                 error = -EIO;
697                                 goto out;
698                         }
699                 }
700                 return VM_FAULT_LOCKED;
701         }
702
703         /* Check we didn't race with a read fault installing a new page */
704         if (!page && major)
705                 page = find_lock_page(mapping, vmf->pgoff);
706
707         if (page) {
708                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
709                                                         PAGE_CACHE_SIZE, 0);
710                 delete_from_page_cache(page);
711                 unlock_page(page);
712                 page_cache_release(page);
713                 page = NULL;
714         }
715
716         /*
717          * If we successfully insert the new mapping over an unwritten extent,
718          * we need to ensure we convert the unwritten extent. If there is an
719          * error inserting the mapping, the filesystem needs to leave it as
720          * unwritten to prevent exposure of the stale underlying data to
721          * userspace, but we still need to call the completion function so
722          * the private resources on the mapping buffer can be released. We
723          * indicate what the callback should do via the uptodate variable, same
724          * as for normal BH based IO completions.
725          */
726         error = dax_insert_mapping(inode, &bh, vma, vmf);
727         if (buffer_unwritten(&bh)) {
728                 if (complete_unwritten)
729                         complete_unwritten(&bh, !error);
730                 else
731                         WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
732         }
733
734  out:
735         if (error == -ENOMEM)
736                 return VM_FAULT_OOM | major;
737         /* -EBUSY is fine, somebody else faulted on the same PTE */
738         if ((error < 0) && (error != -EBUSY))
739                 return VM_FAULT_SIGBUS | major;
740         return VM_FAULT_NOPAGE | major;
741
742  unlock_page:
743         if (page) {
744                 unlock_page(page);
745                 page_cache_release(page);
746         }
747         goto out;
748 }
749 EXPORT_SYMBOL(__dax_fault);
750
751 /**
752  * dax_fault - handle a page fault on a DAX file
753  * @vma: The virtual memory area where the fault occurred
754  * @vmf: The description of the fault
755  * @get_block: The filesystem method used to translate file offsets to blocks
756  *
757  * When a page fault occurs, filesystems may call this helper in their
758  * fault handler for DAX files.
759  */
760 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
761               get_block_t get_block, dax_iodone_t complete_unwritten)
762 {
763         int result;
764         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
765
766         if (vmf->flags & FAULT_FLAG_WRITE) {
767                 sb_start_pagefault(sb);
768                 file_update_time(vma->vm_file);
769         }
770         result = __dax_fault(vma, vmf, get_block, complete_unwritten);
771         if (vmf->flags & FAULT_FLAG_WRITE)
772                 sb_end_pagefault(sb);
773
774         return result;
775 }
776 EXPORT_SYMBOL_GPL(dax_fault);
777
778 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
779 /*
780  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
781  * more often than one might expect in the below function.
782  */
783 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
784
785 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
786                 const char *reason, const char *fn)
787 {
788         if (bh) {
789                 char bname[BDEVNAME_SIZE];
790                 bdevname(bh->b_bdev, bname);
791                 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
792                         "length %zd fallback: %s\n", fn, current->comm,
793                         address, bname, bh->b_state, (u64)bh->b_blocknr,
794                         bh->b_size, reason);
795         } else {
796                 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
797                         current->comm, address, reason);
798         }
799 }
800
801 #define dax_pmd_dbg(bh, address, reason)        __dax_dbg(bh, address, reason, "dax_pmd")
802
803 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
804                 pmd_t *pmd, unsigned int flags, get_block_t get_block,
805                 dax_iodone_t complete_unwritten)
806 {
807         struct file *file = vma->vm_file;
808         struct address_space *mapping = file->f_mapping;
809         struct inode *inode = mapping->host;
810         struct buffer_head bh;
811         unsigned blkbits = inode->i_blkbits;
812         unsigned long pmd_addr = address & PMD_MASK;
813         bool write = flags & FAULT_FLAG_WRITE;
814         struct block_device *bdev;
815         pgoff_t size, pgoff;
816         sector_t block;
817         int error, result = 0;
818         bool alloc = false;
819
820         /* dax pmd mappings require pfn_t_devmap() */
821         if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
822                 return VM_FAULT_FALLBACK;
823
824         /* Fall back to PTEs if we're going to COW */
825         if (write && !(vma->vm_flags & VM_SHARED)) {
826                 split_huge_pmd(vma, pmd, address);
827                 dax_pmd_dbg(NULL, address, "cow write");
828                 return VM_FAULT_FALLBACK;
829         }
830         /* If the PMD would extend outside the VMA */
831         if (pmd_addr < vma->vm_start) {
832                 dax_pmd_dbg(NULL, address, "vma start unaligned");
833                 return VM_FAULT_FALLBACK;
834         }
835         if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
836                 dax_pmd_dbg(NULL, address, "vma end unaligned");
837                 return VM_FAULT_FALLBACK;
838         }
839
840         pgoff = linear_page_index(vma, pmd_addr);
841         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
842         if (pgoff >= size)
843                 return VM_FAULT_SIGBUS;
844         /* If the PMD would cover blocks out of the file */
845         if ((pgoff | PG_PMD_COLOUR) >= size) {
846                 dax_pmd_dbg(NULL, address,
847                                 "offset + huge page size > file size");
848                 return VM_FAULT_FALLBACK;
849         }
850
851         memset(&bh, 0, sizeof(bh));
852         bh.b_bdev = inode->i_sb->s_bdev;
853         block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
854
855         bh.b_size = PMD_SIZE;
856
857         if (get_block(inode, block, &bh, 0) != 0)
858                 return VM_FAULT_SIGBUS;
859
860         if (!buffer_mapped(&bh) && write) {
861                 if (get_block(inode, block, &bh, 1) != 0)
862                         return VM_FAULT_SIGBUS;
863                 alloc = true;
864         }
865
866         bdev = bh.b_bdev;
867
868         /*
869          * If the filesystem isn't willing to tell us the length of a hole,
870          * just fall back to PTEs.  Calling get_block 512 times in a loop
871          * would be silly.
872          */
873         if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
874                 dax_pmd_dbg(&bh, address, "allocated block too small");
875                 return VM_FAULT_FALLBACK;
876         }
877
878         /*
879          * If we allocated new storage, make sure no process has any
880          * zero pages covering this hole
881          */
882         if (alloc) {
883                 loff_t lstart = pgoff << PAGE_SHIFT;
884                 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
885
886                 truncate_pagecache_range(inode, lstart, lend);
887         }
888
889         i_mmap_lock_read(mapping);
890
891         /*
892          * If a truncate happened while we were allocating blocks, we may
893          * leave blocks allocated to the file that are beyond EOF.  We can't
894          * take i_mutex here, so just leave them hanging; they'll be freed
895          * when the file is deleted.
896          */
897         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
898         if (pgoff >= size) {
899                 result = VM_FAULT_SIGBUS;
900                 goto out;
901         }
902         if ((pgoff | PG_PMD_COLOUR) >= size) {
903                 dax_pmd_dbg(&bh, address,
904                                 "offset + huge page size > file size");
905                 goto fallback;
906         }
907
908         if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
909                 spinlock_t *ptl;
910                 pmd_t entry;
911                 struct page *zero_page = get_huge_zero_page();
912
913                 if (unlikely(!zero_page)) {
914                         dax_pmd_dbg(&bh, address, "no zero page");
915                         goto fallback;
916                 }
917
918                 ptl = pmd_lock(vma->vm_mm, pmd);
919                 if (!pmd_none(*pmd)) {
920                         spin_unlock(ptl);
921                         dax_pmd_dbg(&bh, address, "pmd already present");
922                         goto fallback;
923                 }
924
925                 dev_dbg(part_to_dev(bdev->bd_part),
926                                 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
927                                 __func__, current->comm, address,
928                                 (unsigned long long) to_sector(&bh, inode));
929
930                 entry = mk_pmd(zero_page, vma->vm_page_prot);
931                 entry = pmd_mkhuge(entry);
932                 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
933                 result = VM_FAULT_NOPAGE;
934                 spin_unlock(ptl);
935         } else {
936                 struct blk_dax_ctl dax = {
937                         .sector = to_sector(&bh, inode),
938                         .size = PMD_SIZE,
939                 };
940                 long length = dax_map_atomic(bdev, &dax);
941
942                 if (length < 0) {
943                         result = VM_FAULT_SIGBUS;
944                         goto out;
945                 }
946                 if (length < PMD_SIZE) {
947                         dax_pmd_dbg(&bh, address, "dax-length too small");
948                         dax_unmap_atomic(bdev, &dax);
949                         goto fallback;
950                 }
951                 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
952                         dax_pmd_dbg(&bh, address, "pfn unaligned");
953                         dax_unmap_atomic(bdev, &dax);
954                         goto fallback;
955                 }
956
957                 if (!pfn_t_devmap(dax.pfn)) {
958                         dax_unmap_atomic(bdev, &dax);
959                         dax_pmd_dbg(&bh, address, "pfn not in memmap");
960                         goto fallback;
961                 }
962
963                 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
964                         clear_pmem(dax.addr, PMD_SIZE);
965                         wmb_pmem();
966                         count_vm_event(PGMAJFAULT);
967                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
968                         result |= VM_FAULT_MAJOR;
969                 }
970                 dax_unmap_atomic(bdev, &dax);
971
972                 /*
973                  * For PTE faults we insert a radix tree entry for reads, and
974                  * leave it clean.  Then on the first write we dirty the radix
975                  * tree entry via the dax_pfn_mkwrite() path.  This sequence
976                  * allows the dax_pfn_mkwrite() call to be simpler and avoid a
977                  * call into get_block() to translate the pgoff to a sector in
978                  * order to be able to create a new radix tree entry.
979                  *
980                  * The PMD path doesn't have an equivalent to
981                  * dax_pfn_mkwrite(), though, so for a read followed by a
982                  * write we traverse all the way through __dax_pmd_fault()
983                  * twice.  This means we can just skip inserting a radix tree
984                  * entry completely on the initial read and just wait until
985                  * the write to insert a dirty entry.
986                  */
987                 if (write) {
988                         error = dax_radix_entry(mapping, pgoff, dax.sector,
989                                         true, true);
990                         if (error) {
991                                 dax_pmd_dbg(&bh, address,
992                                                 "PMD radix insertion failed");
993                                 goto fallback;
994                         }
995                 }
996
997                 dev_dbg(part_to_dev(bdev->bd_part),
998                                 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
999                                 __func__, current->comm, address,
1000                                 pfn_t_to_pfn(dax.pfn),
1001                                 (unsigned long long) dax.sector);
1002                 result |= vmf_insert_pfn_pmd(vma, address, pmd,
1003                                 dax.pfn, write);
1004         }
1005
1006  out:
1007         i_mmap_unlock_read(mapping);
1008
1009         if (buffer_unwritten(&bh))
1010                 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
1011
1012         return result;
1013
1014  fallback:
1015         count_vm_event(THP_FAULT_FALLBACK);
1016         result = VM_FAULT_FALLBACK;
1017         goto out;
1018 }
1019 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1020
1021 /**
1022  * dax_pmd_fault - handle a PMD fault on a DAX file
1023  * @vma: The virtual memory area where the fault occurred
1024  * @vmf: The description of the fault
1025  * @get_block: The filesystem method used to translate file offsets to blocks
1026  *
1027  * When a page fault occurs, filesystems may call this helper in their
1028  * pmd_fault handler for DAX files.
1029  */
1030 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1031                         pmd_t *pmd, unsigned int flags, get_block_t get_block,
1032                         dax_iodone_t complete_unwritten)
1033 {
1034         int result;
1035         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1036
1037         if (flags & FAULT_FLAG_WRITE) {
1038                 sb_start_pagefault(sb);
1039                 file_update_time(vma->vm_file);
1040         }
1041         result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1042                                 complete_unwritten);
1043         if (flags & FAULT_FLAG_WRITE)
1044                 sb_end_pagefault(sb);
1045
1046         return result;
1047 }
1048 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1049 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1050
1051 /**
1052  * dax_pfn_mkwrite - handle first write to DAX page
1053  * @vma: The virtual memory area where the fault occurred
1054  * @vmf: The description of the fault
1055  */
1056 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1057 {
1058         struct file *file = vma->vm_file;
1059         int error;
1060
1061         /*
1062          * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1063          * RADIX_DAX_PTE entry already exists in the radix tree from a
1064          * previous call to __dax_fault().  We just want to look up that PTE
1065          * entry using vmf->pgoff and make sure the dirty tag is set.  This
1066          * saves us from having to make a call to get_block() here to look
1067          * up the sector.
1068          */
1069         error = dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false,
1070                         true);
1071
1072         if (error == -ENOMEM)
1073                 return VM_FAULT_OOM;
1074         if (error)
1075                 return VM_FAULT_SIGBUS;
1076         return VM_FAULT_NOPAGE;
1077 }
1078 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1079
1080 /**
1081  * dax_zero_page_range - zero a range within a page of a DAX file
1082  * @inode: The file being truncated
1083  * @from: The file offset that is being truncated to
1084  * @length: The number of bytes to zero
1085  * @get_block: The filesystem method used to translate file offsets to blocks
1086  *
1087  * This function can be called by a filesystem when it is zeroing part of a
1088  * page in a DAX file.  This is intended for hole-punch operations.  If
1089  * you are truncating a file, the helper function dax_truncate_page() may be
1090  * more convenient.
1091  *
1092  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1093  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1094  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1095  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1096  * since the file might be mmapped.
1097  */
1098 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1099                                                         get_block_t get_block)
1100 {
1101         struct buffer_head bh;
1102         pgoff_t index = from >> PAGE_CACHE_SHIFT;
1103         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1104         int err;
1105
1106         /* Block boundary? Nothing to do */
1107         if (!length)
1108                 return 0;
1109         BUG_ON((offset + length) > PAGE_CACHE_SIZE);
1110
1111         memset(&bh, 0, sizeof(bh));
1112         bh.b_bdev = inode->i_sb->s_bdev;
1113         bh.b_size = PAGE_CACHE_SIZE;
1114         err = get_block(inode, index, &bh, 0);
1115         if (err < 0)
1116                 return err;
1117         if (buffer_written(&bh)) {
1118                 struct block_device *bdev = bh.b_bdev;
1119                 struct blk_dax_ctl dax = {
1120                         .sector = to_sector(&bh, inode),
1121                         .size = PAGE_CACHE_SIZE,
1122                 };
1123
1124                 if (dax_map_atomic(bdev, &dax) < 0)
1125                         return PTR_ERR(dax.addr);
1126                 clear_pmem(dax.addr + offset, length);
1127                 wmb_pmem();
1128                 dax_unmap_atomic(bdev, &dax);
1129         }
1130
1131         return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1134
1135 /**
1136  * dax_truncate_page - handle a partial page being truncated in a DAX file
1137  * @inode: The file being truncated
1138  * @from: The file offset that is being truncated to
1139  * @get_block: The filesystem method used to translate file offsets to blocks
1140  *
1141  * Similar to block_truncate_page(), this function can be called by a
1142  * filesystem when it is truncating a DAX file to handle the partial page.
1143  *
1144  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1145  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1146  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1147  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1148  * since the file might be mmapped.
1149  */
1150 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1151 {
1152         unsigned length = PAGE_CACHE_ALIGN(from) - from;
1153         return dax_zero_page_range(inode, from, length, get_block);
1154 }
1155 EXPORT_SYMBOL_GPL(dax_truncate_page);