ext2: stop passing buffer_head to ext2_get_blocks
[cascardo/linux.git] / fs / ext2 / inode.c
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/dax.h>
29 #include <linux/blkdev.h>
30 #include <linux/quotaops.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include <linux/fiemap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include "ext2.h"
38 #include "acl.h"
39 #include "xattr.h"
40
41 static int __ext2_write_inode(struct inode *inode, int do_sync);
42
43 /*
44  * Test whether an inode is a fast symlink.
45  */
46 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
47 {
48         int ea_blocks = EXT2_I(inode)->i_file_acl ?
49                 (inode->i_sb->s_blocksize >> 9) : 0;
50
51         return (S_ISLNK(inode->i_mode) &&
52                 inode->i_blocks - ea_blocks == 0);
53 }
54
55 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
56
57 static void ext2_write_failed(struct address_space *mapping, loff_t to)
58 {
59         struct inode *inode = mapping->host;
60
61         if (to > inode->i_size) {
62                 truncate_pagecache(inode, inode->i_size);
63                 ext2_truncate_blocks(inode, inode->i_size);
64         }
65 }
66
67 /*
68  * Called at the last iput() if i_nlink is zero.
69  */
70 void ext2_evict_inode(struct inode * inode)
71 {
72         struct ext2_block_alloc_info *rsv;
73         int want_delete = 0;
74
75         if (!inode->i_nlink && !is_bad_inode(inode)) {
76                 want_delete = 1;
77                 dquot_initialize(inode);
78         } else {
79                 dquot_drop(inode);
80         }
81
82         truncate_inode_pages_final(&inode->i_data);
83
84         if (want_delete) {
85                 sb_start_intwrite(inode->i_sb);
86                 /* set dtime */
87                 EXT2_I(inode)->i_dtime  = get_seconds();
88                 mark_inode_dirty(inode);
89                 __ext2_write_inode(inode, inode_needs_sync(inode));
90                 /* truncate to 0 */
91                 inode->i_size = 0;
92                 if (inode->i_blocks)
93                         ext2_truncate_blocks(inode, 0);
94                 ext2_xattr_delete_inode(inode);
95         }
96
97         invalidate_inode_buffers(inode);
98         clear_inode(inode);
99
100         ext2_discard_reservation(inode);
101         rsv = EXT2_I(inode)->i_block_alloc_info;
102         EXT2_I(inode)->i_block_alloc_info = NULL;
103         if (unlikely(rsv))
104                 kfree(rsv);
105
106         if (want_delete) {
107                 ext2_free_inode(inode);
108                 sb_end_intwrite(inode->i_sb);
109         }
110 }
111
112 typedef struct {
113         __le32  *p;
114         __le32  key;
115         struct buffer_head *bh;
116 } Indirect;
117
118 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
119 {
120         p->key = *(p->p = v);
121         p->bh = bh;
122 }
123
124 static inline int verify_chain(Indirect *from, Indirect *to)
125 {
126         while (from <= to && from->key == *from->p)
127                 from++;
128         return (from > to);
129 }
130
131 /**
132  *      ext2_block_to_path - parse the block number into array of offsets
133  *      @inode: inode in question (we are only interested in its superblock)
134  *      @i_block: block number to be parsed
135  *      @offsets: array to store the offsets in
136  *      @boundary: set this non-zero if the referred-to block is likely to be
137  *             followed (on disk) by an indirect block.
138  *      To store the locations of file's data ext2 uses a data structure common
139  *      for UNIX filesystems - tree of pointers anchored in the inode, with
140  *      data blocks at leaves and indirect blocks in intermediate nodes.
141  *      This function translates the block number into path in that tree -
142  *      return value is the path length and @offsets[n] is the offset of
143  *      pointer to (n+1)th node in the nth one. If @block is out of range
144  *      (negative or too large) warning is printed and zero returned.
145  *
146  *      Note: function doesn't find node addresses, so no IO is needed. All
147  *      we need to know is the capacity of indirect blocks (taken from the
148  *      inode->i_sb).
149  */
150
151 /*
152  * Portability note: the last comparison (check that we fit into triple
153  * indirect block) is spelled differently, because otherwise on an
154  * architecture with 32-bit longs and 8Kb pages we might get into trouble
155  * if our filesystem had 8Kb blocks. We might use long long, but that would
156  * kill us on x86. Oh, well, at least the sign propagation does not matter -
157  * i_block would have to be negative in the very beginning, so we would not
158  * get there at all.
159  */
160
161 static int ext2_block_to_path(struct inode *inode,
162                         long i_block, int offsets[4], int *boundary)
163 {
164         int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
165         int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
166         const long direct_blocks = EXT2_NDIR_BLOCKS,
167                 indirect_blocks = ptrs,
168                 double_blocks = (1 << (ptrs_bits * 2));
169         int n = 0;
170         int final = 0;
171
172         if (i_block < 0) {
173                 ext2_msg(inode->i_sb, KERN_WARNING,
174                         "warning: %s: block < 0", __func__);
175         } else if (i_block < direct_blocks) {
176                 offsets[n++] = i_block;
177                 final = direct_blocks;
178         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
179                 offsets[n++] = EXT2_IND_BLOCK;
180                 offsets[n++] = i_block;
181                 final = ptrs;
182         } else if ((i_block -= indirect_blocks) < double_blocks) {
183                 offsets[n++] = EXT2_DIND_BLOCK;
184                 offsets[n++] = i_block >> ptrs_bits;
185                 offsets[n++] = i_block & (ptrs - 1);
186                 final = ptrs;
187         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
188                 offsets[n++] = EXT2_TIND_BLOCK;
189                 offsets[n++] = i_block >> (ptrs_bits * 2);
190                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
191                 offsets[n++] = i_block & (ptrs - 1);
192                 final = ptrs;
193         } else {
194                 ext2_msg(inode->i_sb, KERN_WARNING,
195                         "warning: %s: block is too big", __func__);
196         }
197         if (boundary)
198                 *boundary = final - 1 - (i_block & (ptrs - 1));
199
200         return n;
201 }
202
203 /**
204  *      ext2_get_branch - read the chain of indirect blocks leading to data
205  *      @inode: inode in question
206  *      @depth: depth of the chain (1 - direct pointer, etc.)
207  *      @offsets: offsets of pointers in inode/indirect blocks
208  *      @chain: place to store the result
209  *      @err: here we store the error value
210  *
211  *      Function fills the array of triples <key, p, bh> and returns %NULL
212  *      if everything went OK or the pointer to the last filled triple
213  *      (incomplete one) otherwise. Upon the return chain[i].key contains
214  *      the number of (i+1)-th block in the chain (as it is stored in memory,
215  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
216  *      number (it points into struct inode for i==0 and into the bh->b_data
217  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
218  *      block for i>0 and NULL for i==0. In other words, it holds the block
219  *      numbers of the chain, addresses they were taken from (and where we can
220  *      verify that chain did not change) and buffer_heads hosting these
221  *      numbers.
222  *
223  *      Function stops when it stumbles upon zero pointer (absent block)
224  *              (pointer to last triple returned, *@err == 0)
225  *      or when it gets an IO error reading an indirect block
226  *              (ditto, *@err == -EIO)
227  *      or when it notices that chain had been changed while it was reading
228  *              (ditto, *@err == -EAGAIN)
229  *      or when it reads all @depth-1 indirect blocks successfully and finds
230  *      the whole chain, all way to the data (returns %NULL, *err == 0).
231  */
232 static Indirect *ext2_get_branch(struct inode *inode,
233                                  int depth,
234                                  int *offsets,
235                                  Indirect chain[4],
236                                  int *err)
237 {
238         struct super_block *sb = inode->i_sb;
239         Indirect *p = chain;
240         struct buffer_head *bh;
241
242         *err = 0;
243         /* i_data is not going away, no lock needed */
244         add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
245         if (!p->key)
246                 goto no_block;
247         while (--depth) {
248                 bh = sb_bread(sb, le32_to_cpu(p->key));
249                 if (!bh)
250                         goto failure;
251                 read_lock(&EXT2_I(inode)->i_meta_lock);
252                 if (!verify_chain(chain, p))
253                         goto changed;
254                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
255                 read_unlock(&EXT2_I(inode)->i_meta_lock);
256                 if (!p->key)
257                         goto no_block;
258         }
259         return NULL;
260
261 changed:
262         read_unlock(&EXT2_I(inode)->i_meta_lock);
263         brelse(bh);
264         *err = -EAGAIN;
265         goto no_block;
266 failure:
267         *err = -EIO;
268 no_block:
269         return p;
270 }
271
272 /**
273  *      ext2_find_near - find a place for allocation with sufficient locality
274  *      @inode: owner
275  *      @ind: descriptor of indirect block.
276  *
277  *      This function returns the preferred place for block allocation.
278  *      It is used when heuristic for sequential allocation fails.
279  *      Rules are:
280  *        + if there is a block to the left of our position - allocate near it.
281  *        + if pointer will live in indirect block - allocate near that block.
282  *        + if pointer will live in inode - allocate in the same cylinder group.
283  *
284  * In the latter case we colour the starting block by the callers PID to
285  * prevent it from clashing with concurrent allocations for a different inode
286  * in the same block group.   The PID is used here so that functionally related
287  * files will be close-by on-disk.
288  *
289  *      Caller must make sure that @ind is valid and will stay that way.
290  */
291
292 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
293 {
294         struct ext2_inode_info *ei = EXT2_I(inode);
295         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
296         __le32 *p;
297         ext2_fsblk_t bg_start;
298         ext2_fsblk_t colour;
299
300         /* Try to find previous block */
301         for (p = ind->p - 1; p >= start; p--)
302                 if (*p)
303                         return le32_to_cpu(*p);
304
305         /* No such thing, so let's try location of indirect block */
306         if (ind->bh)
307                 return ind->bh->b_blocknr;
308
309         /*
310          * It is going to be referred from inode itself? OK, just put it into
311          * the same cylinder group then.
312          */
313         bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
314         colour = (current->pid % 16) *
315                         (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
316         return bg_start + colour;
317 }
318
319 /**
320  *      ext2_find_goal - find a preferred place for allocation.
321  *      @inode: owner
322  *      @block:  block we want
323  *      @partial: pointer to the last triple within a chain
324  *
325  *      Returns preferred place for a block (the goal).
326  */
327
328 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
329                                           Indirect *partial)
330 {
331         struct ext2_block_alloc_info *block_i;
332
333         block_i = EXT2_I(inode)->i_block_alloc_info;
334
335         /*
336          * try the heuristic for sequential allocation,
337          * failing that at least try to get decent locality.
338          */
339         if (block_i && (block == block_i->last_alloc_logical_block + 1)
340                 && (block_i->last_alloc_physical_block != 0)) {
341                 return block_i->last_alloc_physical_block + 1;
342         }
343
344         return ext2_find_near(inode, partial);
345 }
346
347 /**
348  *      ext2_blks_to_allocate: Look up the block map and count the number
349  *      of direct blocks need to be allocated for the given branch.
350  *
351  *      @branch: chain of indirect blocks
352  *      @k: number of blocks need for indirect blocks
353  *      @blks: number of data blocks to be mapped.
354  *      @blocks_to_boundary:  the offset in the indirect block
355  *
356  *      return the total number of blocks to be allocate, including the
357  *      direct and indirect blocks.
358  */
359 static int
360 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
361                 int blocks_to_boundary)
362 {
363         unsigned long count = 0;
364
365         /*
366          * Simple case, [t,d]Indirect block(s) has not allocated yet
367          * then it's clear blocks on that path have not allocated
368          */
369         if (k > 0) {
370                 /* right now don't hanel cross boundary allocation */
371                 if (blks < blocks_to_boundary + 1)
372                         count += blks;
373                 else
374                         count += blocks_to_boundary + 1;
375                 return count;
376         }
377
378         count++;
379         while (count < blks && count <= blocks_to_boundary
380                 && le32_to_cpu(*(branch[0].p + count)) == 0) {
381                 count++;
382         }
383         return count;
384 }
385
386 /**
387  *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
388  *      @indirect_blks: the number of blocks need to allocate for indirect
389  *                      blocks
390  *
391  *      @new_blocks: on return it will store the new block numbers for
392  *      the indirect blocks(if needed) and the first direct block,
393  *      @blks:  on return it will store the total number of allocated
394  *              direct blocks
395  */
396 static int ext2_alloc_blocks(struct inode *inode,
397                         ext2_fsblk_t goal, int indirect_blks, int blks,
398                         ext2_fsblk_t new_blocks[4], int *err)
399 {
400         int target, i;
401         unsigned long count = 0;
402         int index = 0;
403         ext2_fsblk_t current_block = 0;
404         int ret = 0;
405
406         /*
407          * Here we try to allocate the requested multiple blocks at once,
408          * on a best-effort basis.
409          * To build a branch, we should allocate blocks for
410          * the indirect blocks(if not allocated yet), and at least
411          * the first direct block of this branch.  That's the
412          * minimum number of blocks need to allocate(required)
413          */
414         target = blks + indirect_blks;
415
416         while (1) {
417                 count = target;
418                 /* allocating blocks for indirect blocks and direct blocks */
419                 current_block = ext2_new_blocks(inode,goal,&count,err);
420                 if (*err)
421                         goto failed_out;
422
423                 target -= count;
424                 /* allocate blocks for indirect blocks */
425                 while (index < indirect_blks && count) {
426                         new_blocks[index++] = current_block++;
427                         count--;
428                 }
429
430                 if (count > 0)
431                         break;
432         }
433
434         /* save the new block number for the first direct block */
435         new_blocks[index] = current_block;
436
437         /* total number of blocks allocated for direct blocks */
438         ret = count;
439         *err = 0;
440         return ret;
441 failed_out:
442         for (i = 0; i <index; i++)
443                 ext2_free_blocks(inode, new_blocks[i], 1);
444         if (index)
445                 mark_inode_dirty(inode);
446         return ret;
447 }
448
449 /**
450  *      ext2_alloc_branch - allocate and set up a chain of blocks.
451  *      @inode: owner
452  *      @num: depth of the chain (number of blocks to allocate)
453  *      @offsets: offsets (in the blocks) to store the pointers to next.
454  *      @branch: place to store the chain in.
455  *
456  *      This function allocates @num blocks, zeroes out all but the last one,
457  *      links them into chain and (if we are synchronous) writes them to disk.
458  *      In other words, it prepares a branch that can be spliced onto the
459  *      inode. It stores the information about that chain in the branch[], in
460  *      the same format as ext2_get_branch() would do. We are calling it after
461  *      we had read the existing part of chain and partial points to the last
462  *      triple of that (one with zero ->key). Upon the exit we have the same
463  *      picture as after the successful ext2_get_block(), except that in one
464  *      place chain is disconnected - *branch->p is still zero (we did not
465  *      set the last link), but branch->key contains the number that should
466  *      be placed into *branch->p to fill that gap.
467  *
468  *      If allocation fails we free all blocks we've allocated (and forget
469  *      their buffer_heads) and return the error value the from failed
470  *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
471  *      as described above and return 0.
472  */
473
474 static int ext2_alloc_branch(struct inode *inode,
475                         int indirect_blks, int *blks, ext2_fsblk_t goal,
476                         int *offsets, Indirect *branch)
477 {
478         int blocksize = inode->i_sb->s_blocksize;
479         int i, n = 0;
480         int err = 0;
481         struct buffer_head *bh;
482         int num;
483         ext2_fsblk_t new_blocks[4];
484         ext2_fsblk_t current_block;
485
486         num = ext2_alloc_blocks(inode, goal, indirect_blks,
487                                 *blks, new_blocks, &err);
488         if (err)
489                 return err;
490
491         branch[0].key = cpu_to_le32(new_blocks[0]);
492         /*
493          * metadata blocks and data blocks are allocated.
494          */
495         for (n = 1; n <= indirect_blks;  n++) {
496                 /*
497                  * Get buffer_head for parent block, zero it out
498                  * and set the pointer to new one, then send
499                  * parent to disk.
500                  */
501                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
502                 if (unlikely(!bh)) {
503                         err = -ENOMEM;
504                         goto failed;
505                 }
506                 branch[n].bh = bh;
507                 lock_buffer(bh);
508                 memset(bh->b_data, 0, blocksize);
509                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
510                 branch[n].key = cpu_to_le32(new_blocks[n]);
511                 *branch[n].p = branch[n].key;
512                 if ( n == indirect_blks) {
513                         current_block = new_blocks[n];
514                         /*
515                          * End of chain, update the last new metablock of
516                          * the chain to point to the new allocated
517                          * data blocks numbers
518                          */
519                         for (i=1; i < num; i++)
520                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
521                 }
522                 set_buffer_uptodate(bh);
523                 unlock_buffer(bh);
524                 mark_buffer_dirty_inode(bh, inode);
525                 /* We used to sync bh here if IS_SYNC(inode).
526                  * But we now rely upon generic_write_sync()
527                  * and b_inode_buffers.  But not for directories.
528                  */
529                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
530                         sync_dirty_buffer(bh);
531         }
532         *blks = num;
533         return err;
534
535 failed:
536         for (i = 1; i < n; i++)
537                 bforget(branch[i].bh);
538         for (i = 0; i < indirect_blks; i++)
539                 ext2_free_blocks(inode, new_blocks[i], 1);
540         ext2_free_blocks(inode, new_blocks[i], num);
541         return err;
542 }
543
544 /**
545  * ext2_splice_branch - splice the allocated branch onto inode.
546  * @inode: owner
547  * @block: (logical) number of block we are adding
548  * @where: location of missing link
549  * @num:   number of indirect blocks we are adding
550  * @blks:  number of direct blocks we are adding
551  *
552  * This function fills the missing link and does all housekeeping needed in
553  * inode (->i_blocks, etc.). In case of success we end up with the full
554  * chain to new block and return 0.
555  */
556 static void ext2_splice_branch(struct inode *inode,
557                         long block, Indirect *where, int num, int blks)
558 {
559         int i;
560         struct ext2_block_alloc_info *block_i;
561         ext2_fsblk_t current_block;
562
563         block_i = EXT2_I(inode)->i_block_alloc_info;
564
565         /* XXX LOCKING probably should have i_meta_lock ?*/
566         /* That's it */
567
568         *where->p = where->key;
569
570         /*
571          * Update the host buffer_head or inode to point to more just allocated
572          * direct blocks blocks
573          */
574         if (num == 0 && blks > 1) {
575                 current_block = le32_to_cpu(where->key) + 1;
576                 for (i = 1; i < blks; i++)
577                         *(where->p + i ) = cpu_to_le32(current_block++);
578         }
579
580         /*
581          * update the most recently allocated logical & physical block
582          * in i_block_alloc_info, to assist find the proper goal block for next
583          * allocation
584          */
585         if (block_i) {
586                 block_i->last_alloc_logical_block = block + blks - 1;
587                 block_i->last_alloc_physical_block =
588                                 le32_to_cpu(where[num].key) + blks - 1;
589         }
590
591         /* We are done with atomic stuff, now do the rest of housekeeping */
592
593         /* had we spliced it onto indirect block? */
594         if (where->bh)
595                 mark_buffer_dirty_inode(where->bh, inode);
596
597         inode->i_ctime = CURRENT_TIME_SEC;
598         mark_inode_dirty(inode);
599 }
600
601 /*
602  * Allocation strategy is simple: if we have to allocate something, we will
603  * have to go the whole way to leaf. So let's do it before attaching anything
604  * to tree, set linkage between the newborn blocks, write them if sync is
605  * required, recheck the path, free and repeat if check fails, otherwise
606  * set the last missing link (that will protect us from any truncate-generated
607  * removals - all blocks on the path are immune now) and possibly force the
608  * write on the parent block.
609  * That has a nice additional property: no special recovery from the failed
610  * allocations is needed - we simply release blocks and do not touch anything
611  * reachable from inode.
612  *
613  * `handle' can be NULL if create == 0.
614  *
615  * return > 0, # of blocks mapped or allocated.
616  * return = 0, if plain lookup failed.
617  * return < 0, error case.
618  */
619 static int ext2_get_blocks(struct inode *inode,
620                            sector_t iblock, unsigned long maxblocks,
621                            u32 *bno, bool *new, bool *boundary,
622                            int create)
623 {
624         int err = -EIO;
625         int offsets[4];
626         Indirect chain[4];
627         Indirect *partial;
628         ext2_fsblk_t goal;
629         int indirect_blks;
630         int blocks_to_boundary = 0;
631         int depth;
632         struct ext2_inode_info *ei = EXT2_I(inode);
633         int count = 0;
634         ext2_fsblk_t first_block = 0;
635
636         BUG_ON(maxblocks == 0);
637
638         depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
639
640         if (depth == 0)
641                 return (err);
642
643         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
644         /* Simplest case - block found, no allocation needed */
645         if (!partial) {
646                 first_block = le32_to_cpu(chain[depth - 1].key);
647                 count++;
648                 /*map more blocks*/
649                 while (count < maxblocks && count <= blocks_to_boundary) {
650                         ext2_fsblk_t blk;
651
652                         if (!verify_chain(chain, chain + depth - 1)) {
653                                 /*
654                                  * Indirect block might be removed by
655                                  * truncate while we were reading it.
656                                  * Handling of that case: forget what we've
657                                  * got now, go to reread.
658                                  */
659                                 err = -EAGAIN;
660                                 count = 0;
661                                 break;
662                         }
663                         blk = le32_to_cpu(*(chain[depth-1].p + count));
664                         if (blk == first_block + count)
665                                 count++;
666                         else
667                                 break;
668                 }
669                 if (err != -EAGAIN)
670                         goto got_it;
671         }
672
673         /* Next simple case - plain lookup or failed read of indirect block */
674         if (!create || err == -EIO)
675                 goto cleanup;
676
677         mutex_lock(&ei->truncate_mutex);
678         /*
679          * If the indirect block is missing while we are reading
680          * the chain(ext2_get_branch() returns -EAGAIN err), or
681          * if the chain has been changed after we grab the semaphore,
682          * (either because another process truncated this branch, or
683          * another get_block allocated this branch) re-grab the chain to see if
684          * the request block has been allocated or not.
685          *
686          * Since we already block the truncate/other get_block
687          * at this point, we will have the current copy of the chain when we
688          * splice the branch into the tree.
689          */
690         if (err == -EAGAIN || !verify_chain(chain, partial)) {
691                 while (partial > chain) {
692                         brelse(partial->bh);
693                         partial--;
694                 }
695                 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
696                 if (!partial) {
697                         count++;
698                         mutex_unlock(&ei->truncate_mutex);
699                         if (err)
700                                 goto cleanup;
701                         goto got_it;
702                 }
703         }
704
705         /*
706          * Okay, we need to do block allocation.  Lazily initialize the block
707          * allocation info here if necessary
708         */
709         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
710                 ext2_init_block_alloc_info(inode);
711
712         goal = ext2_find_goal(inode, iblock, partial);
713
714         /* the number of blocks need to allocate for [d,t]indirect blocks */
715         indirect_blks = (chain + depth) - partial - 1;
716         /*
717          * Next look up the indirect map to count the totoal number of
718          * direct blocks to allocate for this branch.
719          */
720         count = ext2_blks_to_allocate(partial, indirect_blks,
721                                         maxblocks, blocks_to_boundary);
722         /*
723          * XXX ???? Block out ext2_truncate while we alter the tree
724          */
725         err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
726                                 offsets + (partial - chain), partial);
727
728         if (err) {
729                 mutex_unlock(&ei->truncate_mutex);
730                 goto cleanup;
731         }
732
733         if (IS_DAX(inode)) {
734                 /*
735                  * block must be initialised before we put it in the tree
736                  * so that it's not found by another thread before it's
737                  * initialised
738                  */
739                 err = sb_issue_zeroout(inode->i_sb,
740                                 le32_to_cpu(chain[depth-1].key), count,
741                                 GFP_NOFS);
742                 if (err) {
743                         mutex_unlock(&ei->truncate_mutex);
744                         goto cleanup;
745                 }
746         } else {
747                 *new = true;
748         }
749
750         ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
751         mutex_unlock(&ei->truncate_mutex);
752 got_it:
753         *bno = le32_to_cpu(chain[depth-1].key);
754         if (count > blocks_to_boundary)
755                 *boundary = true;
756         err = count;
757         /* Clean up and exit */
758         partial = chain + depth - 1;    /* the whole chain */
759 cleanup:
760         while (partial > chain) {
761                 brelse(partial->bh);
762                 partial--;
763         }
764         return err;
765 }
766
767 int ext2_get_block(struct inode *inode, sector_t iblock,
768                 struct buffer_head *bh_result, int create)
769 {
770         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
771         bool new = false, boundary = false;
772         u32 bno;
773         int ret;
774
775         ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
776                         create);
777         if (ret <= 0)
778                 return ret;
779
780         map_bh(bh_result, inode->i_sb, bno);
781         bh_result->b_size = (ret << inode->i_blkbits);
782         if (new)
783                 set_buffer_new(bh_result);
784         if (boundary)
785                 set_buffer_boundary(bh_result);
786         return 0;
787
788 }
789
790 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
791                 u64 start, u64 len)
792 {
793         return generic_block_fiemap(inode, fieinfo, start, len,
794                                     ext2_get_block);
795 }
796
797 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
798 {
799         return block_write_full_page(page, ext2_get_block, wbc);
800 }
801
802 static int ext2_readpage(struct file *file, struct page *page)
803 {
804         return mpage_readpage(page, ext2_get_block);
805 }
806
807 static int
808 ext2_readpages(struct file *file, struct address_space *mapping,
809                 struct list_head *pages, unsigned nr_pages)
810 {
811         return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
812 }
813
814 static int
815 ext2_write_begin(struct file *file, struct address_space *mapping,
816                 loff_t pos, unsigned len, unsigned flags,
817                 struct page **pagep, void **fsdata)
818 {
819         int ret;
820
821         ret = block_write_begin(mapping, pos, len, flags, pagep,
822                                 ext2_get_block);
823         if (ret < 0)
824                 ext2_write_failed(mapping, pos + len);
825         return ret;
826 }
827
828 static int ext2_write_end(struct file *file, struct address_space *mapping,
829                         loff_t pos, unsigned len, unsigned copied,
830                         struct page *page, void *fsdata)
831 {
832         int ret;
833
834         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
835         if (ret < len)
836                 ext2_write_failed(mapping, pos + len);
837         return ret;
838 }
839
840 static int
841 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
842                 loff_t pos, unsigned len, unsigned flags,
843                 struct page **pagep, void **fsdata)
844 {
845         int ret;
846
847         ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
848                                ext2_get_block);
849         if (ret < 0)
850                 ext2_write_failed(mapping, pos + len);
851         return ret;
852 }
853
854 static int ext2_nobh_writepage(struct page *page,
855                         struct writeback_control *wbc)
856 {
857         return nobh_writepage(page, ext2_get_block, wbc);
858 }
859
860 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
861 {
862         return generic_block_bmap(mapping,block,ext2_get_block);
863 }
864
865 static ssize_t
866 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
867 {
868         struct file *file = iocb->ki_filp;
869         struct address_space *mapping = file->f_mapping;
870         struct inode *inode = mapping->host;
871         size_t count = iov_iter_count(iter);
872         loff_t offset = iocb->ki_pos;
873         ssize_t ret;
874
875         if (IS_DAX(inode))
876                 ret = dax_do_io(iocb, inode, iter, ext2_get_block, NULL,
877                                 DIO_LOCKING);
878         else
879                 ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
880         if (ret < 0 && iov_iter_rw(iter) == WRITE)
881                 ext2_write_failed(mapping, offset + count);
882         return ret;
883 }
884
885 static int
886 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
887 {
888 #ifdef CONFIG_FS_DAX
889         if (dax_mapping(mapping)) {
890                 return dax_writeback_mapping_range(mapping,
891                                                    mapping->host->i_sb->s_bdev,
892                                                    wbc);
893         }
894 #endif
895
896         return mpage_writepages(mapping, wbc, ext2_get_block);
897 }
898
899 const struct address_space_operations ext2_aops = {
900         .readpage               = ext2_readpage,
901         .readpages              = ext2_readpages,
902         .writepage              = ext2_writepage,
903         .write_begin            = ext2_write_begin,
904         .write_end              = ext2_write_end,
905         .bmap                   = ext2_bmap,
906         .direct_IO              = ext2_direct_IO,
907         .writepages             = ext2_writepages,
908         .migratepage            = buffer_migrate_page,
909         .is_partially_uptodate  = block_is_partially_uptodate,
910         .error_remove_page      = generic_error_remove_page,
911 };
912
913 const struct address_space_operations ext2_nobh_aops = {
914         .readpage               = ext2_readpage,
915         .readpages              = ext2_readpages,
916         .writepage              = ext2_nobh_writepage,
917         .write_begin            = ext2_nobh_write_begin,
918         .write_end              = nobh_write_end,
919         .bmap                   = ext2_bmap,
920         .direct_IO              = ext2_direct_IO,
921         .writepages             = ext2_writepages,
922         .migratepage            = buffer_migrate_page,
923         .error_remove_page      = generic_error_remove_page,
924 };
925
926 /*
927  * Probably it should be a library function... search for first non-zero word
928  * or memcmp with zero_page, whatever is better for particular architecture.
929  * Linus?
930  */
931 static inline int all_zeroes(__le32 *p, __le32 *q)
932 {
933         while (p < q)
934                 if (*p++)
935                         return 0;
936         return 1;
937 }
938
939 /**
940  *      ext2_find_shared - find the indirect blocks for partial truncation.
941  *      @inode:   inode in question
942  *      @depth:   depth of the affected branch
943  *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
944  *      @chain:   place to store the pointers to partial indirect blocks
945  *      @top:     place to the (detached) top of branch
946  *
947  *      This is a helper function used by ext2_truncate().
948  *
949  *      When we do truncate() we may have to clean the ends of several indirect
950  *      blocks but leave the blocks themselves alive. Block is partially
951  *      truncated if some data below the new i_size is referred from it (and
952  *      it is on the path to the first completely truncated data block, indeed).
953  *      We have to free the top of that path along with everything to the right
954  *      of the path. Since no allocation past the truncation point is possible
955  *      until ext2_truncate() finishes, we may safely do the latter, but top
956  *      of branch may require special attention - pageout below the truncation
957  *      point might try to populate it.
958  *
959  *      We atomically detach the top of branch from the tree, store the block
960  *      number of its root in *@top, pointers to buffer_heads of partially
961  *      truncated blocks - in @chain[].bh and pointers to their last elements
962  *      that should not be removed - in @chain[].p. Return value is the pointer
963  *      to last filled element of @chain.
964  *
965  *      The work left to caller to do the actual freeing of subtrees:
966  *              a) free the subtree starting from *@top
967  *              b) free the subtrees whose roots are stored in
968  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
969  *              c) free the subtrees growing from the inode past the @chain[0].p
970  *                      (no partially truncated stuff there).
971  */
972
973 static Indirect *ext2_find_shared(struct inode *inode,
974                                 int depth,
975                                 int offsets[4],
976                                 Indirect chain[4],
977                                 __le32 *top)
978 {
979         Indirect *partial, *p;
980         int k, err;
981
982         *top = 0;
983         for (k = depth; k > 1 && !offsets[k-1]; k--)
984                 ;
985         partial = ext2_get_branch(inode, k, offsets, chain, &err);
986         if (!partial)
987                 partial = chain + k-1;
988         /*
989          * If the branch acquired continuation since we've looked at it -
990          * fine, it should all survive and (new) top doesn't belong to us.
991          */
992         write_lock(&EXT2_I(inode)->i_meta_lock);
993         if (!partial->key && *partial->p) {
994                 write_unlock(&EXT2_I(inode)->i_meta_lock);
995                 goto no_top;
996         }
997         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
998                 ;
999         /*
1000          * OK, we've found the last block that must survive. The rest of our
1001          * branch should be detached before unlocking. However, if that rest
1002          * of branch is all ours and does not grow immediately from the inode
1003          * it's easier to cheat and just decrement partial->p.
1004          */
1005         if (p == chain + k - 1 && p > chain) {
1006                 p->p--;
1007         } else {
1008                 *top = *p->p;
1009                 *p->p = 0;
1010         }
1011         write_unlock(&EXT2_I(inode)->i_meta_lock);
1012
1013         while(partial > p)
1014         {
1015                 brelse(partial->bh);
1016                 partial--;
1017         }
1018 no_top:
1019         return partial;
1020 }
1021
1022 /**
1023  *      ext2_free_data - free a list of data blocks
1024  *      @inode: inode we are dealing with
1025  *      @p:     array of block numbers
1026  *      @q:     points immediately past the end of array
1027  *
1028  *      We are freeing all blocks referred from that array (numbers are
1029  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1030  *      appropriately.
1031  */
1032 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1033 {
1034         unsigned long block_to_free = 0, count = 0;
1035         unsigned long nr;
1036
1037         for ( ; p < q ; p++) {
1038                 nr = le32_to_cpu(*p);
1039                 if (nr) {
1040                         *p = 0;
1041                         /* accumulate blocks to free if they're contiguous */
1042                         if (count == 0)
1043                                 goto free_this;
1044                         else if (block_to_free == nr - count)
1045                                 count++;
1046                         else {
1047                                 ext2_free_blocks (inode, block_to_free, count);
1048                                 mark_inode_dirty(inode);
1049                         free_this:
1050                                 block_to_free = nr;
1051                                 count = 1;
1052                         }
1053                 }
1054         }
1055         if (count > 0) {
1056                 ext2_free_blocks (inode, block_to_free, count);
1057                 mark_inode_dirty(inode);
1058         }
1059 }
1060
1061 /**
1062  *      ext2_free_branches - free an array of branches
1063  *      @inode: inode we are dealing with
1064  *      @p:     array of block numbers
1065  *      @q:     pointer immediately past the end of array
1066  *      @depth: depth of the branches to free
1067  *
1068  *      We are freeing all blocks referred from these branches (numbers are
1069  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1070  *      appropriately.
1071  */
1072 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1073 {
1074         struct buffer_head * bh;
1075         unsigned long nr;
1076
1077         if (depth--) {
1078                 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1079                 for ( ; p < q ; p++) {
1080                         nr = le32_to_cpu(*p);
1081                         if (!nr)
1082                                 continue;
1083                         *p = 0;
1084                         bh = sb_bread(inode->i_sb, nr);
1085                         /*
1086                          * A read failure? Report error and clear slot
1087                          * (should be rare).
1088                          */ 
1089                         if (!bh) {
1090                                 ext2_error(inode->i_sb, "ext2_free_branches",
1091                                         "Read failure, inode=%ld, block=%ld",
1092                                         inode->i_ino, nr);
1093                                 continue;
1094                         }
1095                         ext2_free_branches(inode,
1096                                            (__le32*)bh->b_data,
1097                                            (__le32*)bh->b_data + addr_per_block,
1098                                            depth);
1099                         bforget(bh);
1100                         ext2_free_blocks(inode, nr, 1);
1101                         mark_inode_dirty(inode);
1102                 }
1103         } else
1104                 ext2_free_data(inode, p, q);
1105 }
1106
1107 /* dax_sem must be held when calling this function */
1108 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1109 {
1110         __le32 *i_data = EXT2_I(inode)->i_data;
1111         struct ext2_inode_info *ei = EXT2_I(inode);
1112         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1113         int offsets[4];
1114         Indirect chain[4];
1115         Indirect *partial;
1116         __le32 nr = 0;
1117         int n;
1118         long iblock;
1119         unsigned blocksize;
1120         blocksize = inode->i_sb->s_blocksize;
1121         iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1122
1123 #ifdef CONFIG_FS_DAX
1124         WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1125 #endif
1126
1127         n = ext2_block_to_path(inode, iblock, offsets, NULL);
1128         if (n == 0)
1129                 return;
1130
1131         /*
1132          * From here we block out all ext2_get_block() callers who want to
1133          * modify the block allocation tree.
1134          */
1135         mutex_lock(&ei->truncate_mutex);
1136
1137         if (n == 1) {
1138                 ext2_free_data(inode, i_data+offsets[0],
1139                                         i_data + EXT2_NDIR_BLOCKS);
1140                 goto do_indirects;
1141         }
1142
1143         partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1144         /* Kill the top of shared branch (already detached) */
1145         if (nr) {
1146                 if (partial == chain)
1147                         mark_inode_dirty(inode);
1148                 else
1149                         mark_buffer_dirty_inode(partial->bh, inode);
1150                 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1151         }
1152         /* Clear the ends of indirect blocks on the shared branch */
1153         while (partial > chain) {
1154                 ext2_free_branches(inode,
1155                                    partial->p + 1,
1156                                    (__le32*)partial->bh->b_data+addr_per_block,
1157                                    (chain+n-1) - partial);
1158                 mark_buffer_dirty_inode(partial->bh, inode);
1159                 brelse (partial->bh);
1160                 partial--;
1161         }
1162 do_indirects:
1163         /* Kill the remaining (whole) subtrees */
1164         switch (offsets[0]) {
1165                 default:
1166                         nr = i_data[EXT2_IND_BLOCK];
1167                         if (nr) {
1168                                 i_data[EXT2_IND_BLOCK] = 0;
1169                                 mark_inode_dirty(inode);
1170                                 ext2_free_branches(inode, &nr, &nr+1, 1);
1171                         }
1172                 case EXT2_IND_BLOCK:
1173                         nr = i_data[EXT2_DIND_BLOCK];
1174                         if (nr) {
1175                                 i_data[EXT2_DIND_BLOCK] = 0;
1176                                 mark_inode_dirty(inode);
1177                                 ext2_free_branches(inode, &nr, &nr+1, 2);
1178                         }
1179                 case EXT2_DIND_BLOCK:
1180                         nr = i_data[EXT2_TIND_BLOCK];
1181                         if (nr) {
1182                                 i_data[EXT2_TIND_BLOCK] = 0;
1183                                 mark_inode_dirty(inode);
1184                                 ext2_free_branches(inode, &nr, &nr+1, 3);
1185                         }
1186                 case EXT2_TIND_BLOCK:
1187                         ;
1188         }
1189
1190         ext2_discard_reservation(inode);
1191
1192         mutex_unlock(&ei->truncate_mutex);
1193 }
1194
1195 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1196 {
1197         /*
1198          * XXX: it seems like a bug here that we don't allow
1199          * IS_APPEND inode to have blocks-past-i_size trimmed off.
1200          * review and fix this.
1201          *
1202          * Also would be nice to be able to handle IO errors and such,
1203          * but that's probably too much to ask.
1204          */
1205         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1206             S_ISLNK(inode->i_mode)))
1207                 return;
1208         if (ext2_inode_is_fast_symlink(inode))
1209                 return;
1210         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1211                 return;
1212
1213         dax_sem_down_write(EXT2_I(inode));
1214         __ext2_truncate_blocks(inode, offset);
1215         dax_sem_up_write(EXT2_I(inode));
1216 }
1217
1218 static int ext2_setsize(struct inode *inode, loff_t newsize)
1219 {
1220         int error;
1221
1222         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1223             S_ISLNK(inode->i_mode)))
1224                 return -EINVAL;
1225         if (ext2_inode_is_fast_symlink(inode))
1226                 return -EINVAL;
1227         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1228                 return -EPERM;
1229
1230         inode_dio_wait(inode);
1231
1232         if (IS_DAX(inode))
1233                 error = dax_truncate_page(inode, newsize, ext2_get_block);
1234         else if (test_opt(inode->i_sb, NOBH))
1235                 error = nobh_truncate_page(inode->i_mapping,
1236                                 newsize, ext2_get_block);
1237         else
1238                 error = block_truncate_page(inode->i_mapping,
1239                                 newsize, ext2_get_block);
1240         if (error)
1241                 return error;
1242
1243         dax_sem_down_write(EXT2_I(inode));
1244         truncate_setsize(inode, newsize);
1245         __ext2_truncate_blocks(inode, newsize);
1246         dax_sem_up_write(EXT2_I(inode));
1247
1248         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1249         if (inode_needs_sync(inode)) {
1250                 sync_mapping_buffers(inode->i_mapping);
1251                 sync_inode_metadata(inode, 1);
1252         } else {
1253                 mark_inode_dirty(inode);
1254         }
1255
1256         return 0;
1257 }
1258
1259 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1260                                         struct buffer_head **p)
1261 {
1262         struct buffer_head * bh;
1263         unsigned long block_group;
1264         unsigned long block;
1265         unsigned long offset;
1266         struct ext2_group_desc * gdp;
1267
1268         *p = NULL;
1269         if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1270             ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1271                 goto Einval;
1272
1273         block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1274         gdp = ext2_get_group_desc(sb, block_group, NULL);
1275         if (!gdp)
1276                 goto Egdp;
1277         /*
1278          * Figure out the offset within the block group inode table
1279          */
1280         offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1281         block = le32_to_cpu(gdp->bg_inode_table) +
1282                 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1283         if (!(bh = sb_bread(sb, block)))
1284                 goto Eio;
1285
1286         *p = bh;
1287         offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1288         return (struct ext2_inode *) (bh->b_data + offset);
1289
1290 Einval:
1291         ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1292                    (unsigned long) ino);
1293         return ERR_PTR(-EINVAL);
1294 Eio:
1295         ext2_error(sb, "ext2_get_inode",
1296                    "unable to read inode block - inode=%lu, block=%lu",
1297                    (unsigned long) ino, block);
1298 Egdp:
1299         return ERR_PTR(-EIO);
1300 }
1301
1302 void ext2_set_inode_flags(struct inode *inode)
1303 {
1304         unsigned int flags = EXT2_I(inode)->i_flags;
1305
1306         inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1307                                 S_DIRSYNC | S_DAX);
1308         if (flags & EXT2_SYNC_FL)
1309                 inode->i_flags |= S_SYNC;
1310         if (flags & EXT2_APPEND_FL)
1311                 inode->i_flags |= S_APPEND;
1312         if (flags & EXT2_IMMUTABLE_FL)
1313                 inode->i_flags |= S_IMMUTABLE;
1314         if (flags & EXT2_NOATIME_FL)
1315                 inode->i_flags |= S_NOATIME;
1316         if (flags & EXT2_DIRSYNC_FL)
1317                 inode->i_flags |= S_DIRSYNC;
1318         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1319                 inode->i_flags |= S_DAX;
1320 }
1321
1322 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1323 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1324 {
1325         unsigned int flags = ei->vfs_inode.i_flags;
1326
1327         ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1328                         EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1329         if (flags & S_SYNC)
1330                 ei->i_flags |= EXT2_SYNC_FL;
1331         if (flags & S_APPEND)
1332                 ei->i_flags |= EXT2_APPEND_FL;
1333         if (flags & S_IMMUTABLE)
1334                 ei->i_flags |= EXT2_IMMUTABLE_FL;
1335         if (flags & S_NOATIME)
1336                 ei->i_flags |= EXT2_NOATIME_FL;
1337         if (flags & S_DIRSYNC)
1338                 ei->i_flags |= EXT2_DIRSYNC_FL;
1339 }
1340
1341 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1342 {
1343         struct ext2_inode_info *ei;
1344         struct buffer_head * bh;
1345         struct ext2_inode *raw_inode;
1346         struct inode *inode;
1347         long ret = -EIO;
1348         int n;
1349         uid_t i_uid;
1350         gid_t i_gid;
1351
1352         inode = iget_locked(sb, ino);
1353         if (!inode)
1354                 return ERR_PTR(-ENOMEM);
1355         if (!(inode->i_state & I_NEW))
1356                 return inode;
1357
1358         ei = EXT2_I(inode);
1359         ei->i_block_alloc_info = NULL;
1360
1361         raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1362         if (IS_ERR(raw_inode)) {
1363                 ret = PTR_ERR(raw_inode);
1364                 goto bad_inode;
1365         }
1366
1367         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1368         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1369         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1370         if (!(test_opt (inode->i_sb, NO_UID32))) {
1371                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1372                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1373         }
1374         i_uid_write(inode, i_uid);
1375         i_gid_write(inode, i_gid);
1376         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1377         inode->i_size = le32_to_cpu(raw_inode->i_size);
1378         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1379         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1380         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1381         inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1382         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1383         /* We now have enough fields to check if the inode was active or not.
1384          * This is needed because nfsd might try to access dead inodes
1385          * the test is that same one that e2fsck uses
1386          * NeilBrown 1999oct15
1387          */
1388         if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1389                 /* this inode is deleted */
1390                 brelse (bh);
1391                 ret = -ESTALE;
1392                 goto bad_inode;
1393         }
1394         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1395         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1396         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1397         ei->i_frag_no = raw_inode->i_frag;
1398         ei->i_frag_size = raw_inode->i_fsize;
1399         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1400         ei->i_dir_acl = 0;
1401
1402         if (ei->i_file_acl &&
1403             !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1404                 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1405                            ei->i_file_acl);
1406                 brelse(bh);
1407                 ret = -EFSCORRUPTED;
1408                 goto bad_inode;
1409         }
1410
1411         if (S_ISREG(inode->i_mode))
1412                 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1413         else
1414                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1415         ei->i_dtime = 0;
1416         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1417         ei->i_state = 0;
1418         ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1419         ei->i_dir_start_lookup = 0;
1420
1421         /*
1422          * NOTE! The in-memory inode i_data array is in little-endian order
1423          * even on big-endian machines: we do NOT byteswap the block numbers!
1424          */
1425         for (n = 0; n < EXT2_N_BLOCKS; n++)
1426                 ei->i_data[n] = raw_inode->i_block[n];
1427
1428         if (S_ISREG(inode->i_mode)) {
1429                 inode->i_op = &ext2_file_inode_operations;
1430                 if (test_opt(inode->i_sb, NOBH)) {
1431                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1432                         inode->i_fop = &ext2_file_operations;
1433                 } else {
1434                         inode->i_mapping->a_ops = &ext2_aops;
1435                         inode->i_fop = &ext2_file_operations;
1436                 }
1437         } else if (S_ISDIR(inode->i_mode)) {
1438                 inode->i_op = &ext2_dir_inode_operations;
1439                 inode->i_fop = &ext2_dir_operations;
1440                 if (test_opt(inode->i_sb, NOBH))
1441                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1442                 else
1443                         inode->i_mapping->a_ops = &ext2_aops;
1444         } else if (S_ISLNK(inode->i_mode)) {
1445                 if (ext2_inode_is_fast_symlink(inode)) {
1446                         inode->i_link = (char *)ei->i_data;
1447                         inode->i_op = &ext2_fast_symlink_inode_operations;
1448                         nd_terminate_link(ei->i_data, inode->i_size,
1449                                 sizeof(ei->i_data) - 1);
1450                 } else {
1451                         inode->i_op = &ext2_symlink_inode_operations;
1452                         inode_nohighmem(inode);
1453                         if (test_opt(inode->i_sb, NOBH))
1454                                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1455                         else
1456                                 inode->i_mapping->a_ops = &ext2_aops;
1457                 }
1458         } else {
1459                 inode->i_op = &ext2_special_inode_operations;
1460                 if (raw_inode->i_block[0])
1461                         init_special_inode(inode, inode->i_mode,
1462                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1463                 else 
1464                         init_special_inode(inode, inode->i_mode,
1465                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1466         }
1467         brelse (bh);
1468         ext2_set_inode_flags(inode);
1469         unlock_new_inode(inode);
1470         return inode;
1471         
1472 bad_inode:
1473         iget_failed(inode);
1474         return ERR_PTR(ret);
1475 }
1476
1477 static int __ext2_write_inode(struct inode *inode, int do_sync)
1478 {
1479         struct ext2_inode_info *ei = EXT2_I(inode);
1480         struct super_block *sb = inode->i_sb;
1481         ino_t ino = inode->i_ino;
1482         uid_t uid = i_uid_read(inode);
1483         gid_t gid = i_gid_read(inode);
1484         struct buffer_head * bh;
1485         struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1486         int n;
1487         int err = 0;
1488
1489         if (IS_ERR(raw_inode))
1490                 return -EIO;
1491
1492         /* For fields not not tracking in the in-memory inode,
1493          * initialise them to zero for new inodes. */
1494         if (ei->i_state & EXT2_STATE_NEW)
1495                 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1496
1497         ext2_get_inode_flags(ei);
1498         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1499         if (!(test_opt(sb, NO_UID32))) {
1500                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1501                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1502 /*
1503  * Fix up interoperability with old kernels. Otherwise, old inodes get
1504  * re-used with the upper 16 bits of the uid/gid intact
1505  */
1506                 if (!ei->i_dtime) {
1507                         raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1508                         raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1509                 } else {
1510                         raw_inode->i_uid_high = 0;
1511                         raw_inode->i_gid_high = 0;
1512                 }
1513         } else {
1514                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1515                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1516                 raw_inode->i_uid_high = 0;
1517                 raw_inode->i_gid_high = 0;
1518         }
1519         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1520         raw_inode->i_size = cpu_to_le32(inode->i_size);
1521         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1522         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1523         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1524
1525         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1526         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1527         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1528         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1529         raw_inode->i_frag = ei->i_frag_no;
1530         raw_inode->i_fsize = ei->i_frag_size;
1531         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1532         if (!S_ISREG(inode->i_mode))
1533                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1534         else {
1535                 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1536                 if (inode->i_size > 0x7fffffffULL) {
1537                         if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1538                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1539                             EXT2_SB(sb)->s_es->s_rev_level ==
1540                                         cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1541                                /* If this is the first large file
1542                                 * created, add a flag to the superblock.
1543                                 */
1544                                 spin_lock(&EXT2_SB(sb)->s_lock);
1545                                 ext2_update_dynamic_rev(sb);
1546                                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1547                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1548                                 spin_unlock(&EXT2_SB(sb)->s_lock);
1549                                 ext2_write_super(sb);
1550                         }
1551                 }
1552         }
1553         
1554         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1555         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1556                 if (old_valid_dev(inode->i_rdev)) {
1557                         raw_inode->i_block[0] =
1558                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1559                         raw_inode->i_block[1] = 0;
1560                 } else {
1561                         raw_inode->i_block[0] = 0;
1562                         raw_inode->i_block[1] =
1563                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1564                         raw_inode->i_block[2] = 0;
1565                 }
1566         } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1567                 raw_inode->i_block[n] = ei->i_data[n];
1568         mark_buffer_dirty(bh);
1569         if (do_sync) {
1570                 sync_dirty_buffer(bh);
1571                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1572                         printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1573                                 sb->s_id, (unsigned long) ino);
1574                         err = -EIO;
1575                 }
1576         }
1577         ei->i_state &= ~EXT2_STATE_NEW;
1578         brelse (bh);
1579         return err;
1580 }
1581
1582 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1583 {
1584         return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1585 }
1586
1587 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1588 {
1589         struct inode *inode = d_inode(dentry);
1590         int error;
1591
1592         error = inode_change_ok(inode, iattr);
1593         if (error)
1594                 return error;
1595
1596         if (is_quota_modification(inode, iattr)) {
1597                 error = dquot_initialize(inode);
1598                 if (error)
1599                         return error;
1600         }
1601         if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1602             (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1603                 error = dquot_transfer(inode, iattr);
1604                 if (error)
1605                         return error;
1606         }
1607         if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1608                 error = ext2_setsize(inode, iattr->ia_size);
1609                 if (error)
1610                         return error;
1611         }
1612         setattr_copy(inode, iattr);
1613         if (iattr->ia_valid & ATTR_MODE)
1614                 error = posix_acl_chmod(inode, inode->i_mode);
1615         mark_inode_dirty(inode);
1616
1617         return error;
1618 }