ARM: shmobile: Remove FSF address from copyright headers
[cascardo/linux.git] / fs / ext4 / indirect.c
1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *      (sct@redhat.com), 1993, 1998
21  */
22
23 #include <linux/aio.h>
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26
27 #include <trace/events/ext4.h>
28
29 typedef struct {
30         __le32  *p;
31         __le32  key;
32         struct buffer_head *bh;
33 } Indirect;
34
35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
36 {
37         p->key = *(p->p = v);
38         p->bh = bh;
39 }
40
41 /**
42  *      ext4_block_to_path - parse the block number into array of offsets
43  *      @inode: inode in question (we are only interested in its superblock)
44  *      @i_block: block number to be parsed
45  *      @offsets: array to store the offsets in
46  *      @boundary: set this non-zero if the referred-to block is likely to be
47  *             followed (on disk) by an indirect block.
48  *
49  *      To store the locations of file's data ext4 uses a data structure common
50  *      for UNIX filesystems - tree of pointers anchored in the inode, with
51  *      data blocks at leaves and indirect blocks in intermediate nodes.
52  *      This function translates the block number into path in that tree -
53  *      return value is the path length and @offsets[n] is the offset of
54  *      pointer to (n+1)th node in the nth one. If @block is out of range
55  *      (negative or too large) warning is printed and zero returned.
56  *
57  *      Note: function doesn't find node addresses, so no IO is needed. All
58  *      we need to know is the capacity of indirect blocks (taken from the
59  *      inode->i_sb).
60  */
61
62 /*
63  * Portability note: the last comparison (check that we fit into triple
64  * indirect block) is spelled differently, because otherwise on an
65  * architecture with 32-bit longs and 8Kb pages we might get into trouble
66  * if our filesystem had 8Kb blocks. We might use long long, but that would
67  * kill us on x86. Oh, well, at least the sign propagation does not matter -
68  * i_block would have to be negative in the very beginning, so we would not
69  * get there at all.
70  */
71
72 static int ext4_block_to_path(struct inode *inode,
73                               ext4_lblk_t i_block,
74                               ext4_lblk_t offsets[4], int *boundary)
75 {
76         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78         const long direct_blocks = EXT4_NDIR_BLOCKS,
79                 indirect_blocks = ptrs,
80                 double_blocks = (1 << (ptrs_bits * 2));
81         int n = 0;
82         int final = 0;
83
84         if (i_block < direct_blocks) {
85                 offsets[n++] = i_block;
86                 final = direct_blocks;
87         } else if ((i_block -= direct_blocks) < indirect_blocks) {
88                 offsets[n++] = EXT4_IND_BLOCK;
89                 offsets[n++] = i_block;
90                 final = ptrs;
91         } else if ((i_block -= indirect_blocks) < double_blocks) {
92                 offsets[n++] = EXT4_DIND_BLOCK;
93                 offsets[n++] = i_block >> ptrs_bits;
94                 offsets[n++] = i_block & (ptrs - 1);
95                 final = ptrs;
96         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97                 offsets[n++] = EXT4_TIND_BLOCK;
98                 offsets[n++] = i_block >> (ptrs_bits * 2);
99                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100                 offsets[n++] = i_block & (ptrs - 1);
101                 final = ptrs;
102         } else {
103                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104                              i_block + direct_blocks +
105                              indirect_blocks + double_blocks, inode->i_ino);
106         }
107         if (boundary)
108                 *boundary = final - 1 - (i_block & (ptrs - 1));
109         return n;
110 }
111
112 /**
113  *      ext4_get_branch - read the chain of indirect blocks leading to data
114  *      @inode: inode in question
115  *      @depth: depth of the chain (1 - direct pointer, etc.)
116  *      @offsets: offsets of pointers in inode/indirect blocks
117  *      @chain: place to store the result
118  *      @err: here we store the error value
119  *
120  *      Function fills the array of triples <key, p, bh> and returns %NULL
121  *      if everything went OK or the pointer to the last filled triple
122  *      (incomplete one) otherwise. Upon the return chain[i].key contains
123  *      the number of (i+1)-th block in the chain (as it is stored in memory,
124  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
125  *      number (it points into struct inode for i==0 and into the bh->b_data
126  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127  *      block for i>0 and NULL for i==0. In other words, it holds the block
128  *      numbers of the chain, addresses they were taken from (and where we can
129  *      verify that chain did not change) and buffer_heads hosting these
130  *      numbers.
131  *
132  *      Function stops when it stumbles upon zero pointer (absent block)
133  *              (pointer to last triple returned, *@err == 0)
134  *      or when it gets an IO error reading an indirect block
135  *              (ditto, *@err == -EIO)
136  *      or when it reads all @depth-1 indirect blocks successfully and finds
137  *      the whole chain, all way to the data (returns %NULL, *err == 0).
138  *
139  *      Need to be called with
140  *      down_read(&EXT4_I(inode)->i_data_sem)
141  */
142 static Indirect *ext4_get_branch(struct inode *inode, int depth,
143                                  ext4_lblk_t  *offsets,
144                                  Indirect chain[4], int *err)
145 {
146         struct super_block *sb = inode->i_sb;
147         Indirect *p = chain;
148         struct buffer_head *bh;
149         int ret = -EIO;
150
151         *err = 0;
152         /* i_data is not going away, no lock needed */
153         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
154         if (!p->key)
155                 goto no_block;
156         while (--depth) {
157                 bh = sb_getblk(sb, le32_to_cpu(p->key));
158                 if (unlikely(!bh)) {
159                         ret = -ENOMEM;
160                         goto failure;
161                 }
162
163                 if (!bh_uptodate_or_lock(bh)) {
164                         if (bh_submit_read(bh) < 0) {
165                                 put_bh(bh);
166                                 goto failure;
167                         }
168                         /* validate block references */
169                         if (ext4_check_indirect_blockref(inode, bh)) {
170                                 put_bh(bh);
171                                 goto failure;
172                         }
173                 }
174
175                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
176                 /* Reader: end */
177                 if (!p->key)
178                         goto no_block;
179         }
180         return NULL;
181
182 failure:
183         *err = ret;
184 no_block:
185         return p;
186 }
187
188 /**
189  *      ext4_find_near - find a place for allocation with sufficient locality
190  *      @inode: owner
191  *      @ind: descriptor of indirect block.
192  *
193  *      This function returns the preferred place for block allocation.
194  *      It is used when heuristic for sequential allocation fails.
195  *      Rules are:
196  *        + if there is a block to the left of our position - allocate near it.
197  *        + if pointer will live in indirect block - allocate near that block.
198  *        + if pointer will live in inode - allocate in the same
199  *          cylinder group.
200  *
201  * In the latter case we colour the starting block by the callers PID to
202  * prevent it from clashing with concurrent allocations for a different inode
203  * in the same block group.   The PID is used here so that functionally related
204  * files will be close-by on-disk.
205  *
206  *      Caller must make sure that @ind is valid and will stay that way.
207  */
208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
209 {
210         struct ext4_inode_info *ei = EXT4_I(inode);
211         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
212         __le32 *p;
213
214         /* Try to find previous block */
215         for (p = ind->p - 1; p >= start; p--) {
216                 if (*p)
217                         return le32_to_cpu(*p);
218         }
219
220         /* No such thing, so let's try location of indirect block */
221         if (ind->bh)
222                 return ind->bh->b_blocknr;
223
224         /*
225          * It is going to be referred to from the inode itself? OK, just put it
226          * into the same cylinder group then.
227          */
228         return ext4_inode_to_goal_block(inode);
229 }
230
231 /**
232  *      ext4_find_goal - find a preferred place for allocation.
233  *      @inode: owner
234  *      @block:  block we want
235  *      @partial: pointer to the last triple within a chain
236  *
237  *      Normally this function find the preferred place for block allocation,
238  *      returns it.
239  *      Because this is only used for non-extent files, we limit the block nr
240  *      to 32 bits.
241  */
242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
243                                    Indirect *partial)
244 {
245         ext4_fsblk_t goal;
246
247         /*
248          * XXX need to get goal block from mballoc's data structures
249          */
250
251         goal = ext4_find_near(inode, partial);
252         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
253         return goal;
254 }
255
256 /**
257  *      ext4_blks_to_allocate - Look up the block map and count the number
258  *      of direct blocks need to be allocated for the given branch.
259  *
260  *      @branch: chain of indirect blocks
261  *      @k: number of blocks need for indirect blocks
262  *      @blks: number of data blocks to be mapped.
263  *      @blocks_to_boundary:  the offset in the indirect block
264  *
265  *      return the total number of blocks to be allocate, including the
266  *      direct and indirect blocks.
267  */
268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
269                                  int blocks_to_boundary)
270 {
271         unsigned int count = 0;
272
273         /*
274          * Simple case, [t,d]Indirect block(s) has not allocated yet
275          * then it's clear blocks on that path have not allocated
276          */
277         if (k > 0) {
278                 /* right now we don't handle cross boundary allocation */
279                 if (blks < blocks_to_boundary + 1)
280                         count += blks;
281                 else
282                         count += blocks_to_boundary + 1;
283                 return count;
284         }
285
286         count++;
287         while (count < blks && count <= blocks_to_boundary &&
288                 le32_to_cpu(*(branch[0].p + count)) == 0) {
289                 count++;
290         }
291         return count;
292 }
293
294 /**
295  *      ext4_alloc_branch - allocate and set up a chain of blocks.
296  *      @handle: handle for this transaction
297  *      @inode: owner
298  *      @indirect_blks: number of allocated indirect blocks
299  *      @blks: number of allocated direct blocks
300  *      @goal: preferred place for allocation
301  *      @offsets: offsets (in the blocks) to store the pointers to next.
302  *      @branch: place to store the chain in.
303  *
304  *      This function allocates blocks, zeroes out all but the last one,
305  *      links them into chain and (if we are synchronous) writes them to disk.
306  *      In other words, it prepares a branch that can be spliced onto the
307  *      inode. It stores the information about that chain in the branch[], in
308  *      the same format as ext4_get_branch() would do. We are calling it after
309  *      we had read the existing part of chain and partial points to the last
310  *      triple of that (one with zero ->key). Upon the exit we have the same
311  *      picture as after the successful ext4_get_block(), except that in one
312  *      place chain is disconnected - *branch->p is still zero (we did not
313  *      set the last link), but branch->key contains the number that should
314  *      be placed into *branch->p to fill that gap.
315  *
316  *      If allocation fails we free all blocks we've allocated (and forget
317  *      their buffer_heads) and return the error value the from failed
318  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319  *      as described above and return 0.
320  */
321 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
322                              ext4_lblk_t iblock, int indirect_blks,
323                              int *blks, ext4_fsblk_t goal,
324                              ext4_lblk_t *offsets, Indirect *branch)
325 {
326         struct ext4_allocation_request  ar;
327         struct buffer_head *            bh;
328         ext4_fsblk_t                    b, new_blocks[4];
329         __le32                          *p;
330         int                             i, j, err, len = 1;
331
332         /*
333          * Set up for the direct block allocation
334          */
335         memset(&ar, 0, sizeof(ar));
336         ar.inode = inode;
337         ar.len = *blks;
338         ar.logical = iblock;
339         if (S_ISREG(inode->i_mode))
340                 ar.flags = EXT4_MB_HINT_DATA;
341
342         for (i = 0; i <= indirect_blks; i++) {
343                 if (i == indirect_blks) {
344                         ar.goal = goal;
345                         new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
346                 } else
347                         goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
348                                                         goal, 0, NULL, &err);
349                 if (err) {
350                         i--;
351                         goto failed;
352                 }
353                 branch[i].key = cpu_to_le32(new_blocks[i]);
354                 if (i == 0)
355                         continue;
356
357                 bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
358                 if (unlikely(!bh)) {
359                         err = -ENOMEM;
360                         goto failed;
361                 }
362                 lock_buffer(bh);
363                 BUFFER_TRACE(bh, "call get_create_access");
364                 err = ext4_journal_get_create_access(handle, bh);
365                 if (err) {
366                         unlock_buffer(bh);
367                         goto failed;
368                 }
369
370                 memset(bh->b_data, 0, bh->b_size);
371                 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
372                 b = new_blocks[i];
373
374                 if (i == indirect_blks)
375                         len = ar.len;
376                 for (j = 0; j < len; j++)
377                         *p++ = cpu_to_le32(b++);
378
379                 BUFFER_TRACE(bh, "marking uptodate");
380                 set_buffer_uptodate(bh);
381                 unlock_buffer(bh);
382
383                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
384                 err = ext4_handle_dirty_metadata(handle, inode, bh);
385                 if (err)
386                         goto failed;
387         }
388         *blks = ar.len;
389         return 0;
390 failed:
391         for (; i >= 0; i--) {
392                 /*
393                  * We want to ext4_forget() only freshly allocated indirect
394                  * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
395                  * buffer at branch[0].bh is indirect block / inode already
396                  * existing before ext4_alloc_branch() was called.
397                  */
398                 if (i > 0 && i != indirect_blks && branch[i].bh)
399                         ext4_forget(handle, 1, inode, branch[i].bh,
400                                     branch[i].bh->b_blocknr);
401                 ext4_free_blocks(handle, inode, NULL, new_blocks[i],
402                                  (i == indirect_blks) ? ar.len : 1, 0);
403         }
404         return err;
405 }
406
407 /**
408  * ext4_splice_branch - splice the allocated branch onto inode.
409  * @handle: handle for this transaction
410  * @inode: owner
411  * @block: (logical) number of block we are adding
412  * @chain: chain of indirect blocks (with a missing link - see
413  *      ext4_alloc_branch)
414  * @where: location of missing link
415  * @num:   number of indirect blocks we are adding
416  * @blks:  number of direct blocks we are adding
417  *
418  * This function fills the missing link and does all housekeeping needed in
419  * inode (->i_blocks, etc.). In case of success we end up with the full
420  * chain to new block and return 0.
421  */
422 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
423                               ext4_lblk_t block, Indirect *where, int num,
424                               int blks)
425 {
426         int i;
427         int err = 0;
428         ext4_fsblk_t current_block;
429
430         /*
431          * If we're splicing into a [td]indirect block (as opposed to the
432          * inode) then we need to get write access to the [td]indirect block
433          * before the splice.
434          */
435         if (where->bh) {
436                 BUFFER_TRACE(where->bh, "get_write_access");
437                 err = ext4_journal_get_write_access(handle, where->bh);
438                 if (err)
439                         goto err_out;
440         }
441         /* That's it */
442
443         *where->p = where->key;
444
445         /*
446          * Update the host buffer_head or inode to point to more just allocated
447          * direct blocks blocks
448          */
449         if (num == 0 && blks > 1) {
450                 current_block = le32_to_cpu(where->key) + 1;
451                 for (i = 1; i < blks; i++)
452                         *(where->p + i) = cpu_to_le32(current_block++);
453         }
454
455         /* We are done with atomic stuff, now do the rest of housekeeping */
456         /* had we spliced it onto indirect block? */
457         if (where->bh) {
458                 /*
459                  * If we spliced it onto an indirect block, we haven't
460                  * altered the inode.  Note however that if it is being spliced
461                  * onto an indirect block at the very end of the file (the
462                  * file is growing) then we *will* alter the inode to reflect
463                  * the new i_size.  But that is not done here - it is done in
464                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
465                  */
466                 jbd_debug(5, "splicing indirect only\n");
467                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
468                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
469                 if (err)
470                         goto err_out;
471         } else {
472                 /*
473                  * OK, we spliced it into the inode itself on a direct block.
474                  */
475                 ext4_mark_inode_dirty(handle, inode);
476                 jbd_debug(5, "splicing direct\n");
477         }
478         return err;
479
480 err_out:
481         for (i = 1; i <= num; i++) {
482                 /*
483                  * branch[i].bh is newly allocated, so there is no
484                  * need to revoke the block, which is why we don't
485                  * need to set EXT4_FREE_BLOCKS_METADATA.
486                  */
487                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
488                                  EXT4_FREE_BLOCKS_FORGET);
489         }
490         ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
491                          blks, 0);
492
493         return err;
494 }
495
496 /*
497  * The ext4_ind_map_blocks() function handles non-extents inodes
498  * (i.e., using the traditional indirect/double-indirect i_blocks
499  * scheme) for ext4_map_blocks().
500  *
501  * Allocation strategy is simple: if we have to allocate something, we will
502  * have to go the whole way to leaf. So let's do it before attaching anything
503  * to tree, set linkage between the newborn blocks, write them if sync is
504  * required, recheck the path, free and repeat if check fails, otherwise
505  * set the last missing link (that will protect us from any truncate-generated
506  * removals - all blocks on the path are immune now) and possibly force the
507  * write on the parent block.
508  * That has a nice additional property: no special recovery from the failed
509  * allocations is needed - we simply release blocks and do not touch anything
510  * reachable from inode.
511  *
512  * `handle' can be NULL if create == 0.
513  *
514  * return > 0, # of blocks mapped or allocated.
515  * return = 0, if plain lookup failed.
516  * return < 0, error case.
517  *
518  * The ext4_ind_get_blocks() function should be called with
519  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
520  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
521  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
522  * blocks.
523  */
524 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
525                         struct ext4_map_blocks *map,
526                         int flags)
527 {
528         int err = -EIO;
529         ext4_lblk_t offsets[4];
530         Indirect chain[4];
531         Indirect *partial;
532         ext4_fsblk_t goal;
533         int indirect_blks;
534         int blocks_to_boundary = 0;
535         int depth;
536         int count = 0;
537         ext4_fsblk_t first_block = 0;
538
539         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
540         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
541         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
542         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
543                                    &blocks_to_boundary);
544
545         if (depth == 0)
546                 goto out;
547
548         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
549
550         /* Simplest case - block found, no allocation needed */
551         if (!partial) {
552                 first_block = le32_to_cpu(chain[depth - 1].key);
553                 count++;
554                 /*map more blocks*/
555                 while (count < map->m_len && count <= blocks_to_boundary) {
556                         ext4_fsblk_t blk;
557
558                         blk = le32_to_cpu(*(chain[depth-1].p + count));
559
560                         if (blk == first_block + count)
561                                 count++;
562                         else
563                                 break;
564                 }
565                 goto got_it;
566         }
567
568         /* Next simple case - plain lookup or failed read of indirect block */
569         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
570                 goto cleanup;
571
572         /*
573          * Okay, we need to do block allocation.
574         */
575         if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
576                                        EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
577                 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
578                                  "non-extent mapped inodes with bigalloc");
579                 return -ENOSPC;
580         }
581
582         goal = ext4_find_goal(inode, map->m_lblk, partial);
583
584         /* the number of blocks need to allocate for [d,t]indirect blocks */
585         indirect_blks = (chain + depth) - partial - 1;
586
587         /*
588          * Next look up the indirect map to count the totoal number of
589          * direct blocks to allocate for this branch.
590          */
591         count = ext4_blks_to_allocate(partial, indirect_blks,
592                                       map->m_len, blocks_to_boundary);
593         /*
594          * Block out ext4_truncate while we alter the tree
595          */
596         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
597                                 &count, goal,
598                                 offsets + (partial - chain), partial);
599
600         /*
601          * The ext4_splice_branch call will free and forget any buffers
602          * on the new chain if there is a failure, but that risks using
603          * up transaction credits, especially for bitmaps where the
604          * credits cannot be returned.  Can we handle this somehow?  We
605          * may need to return -EAGAIN upwards in the worst case.  --sct
606          */
607         if (!err)
608                 err = ext4_splice_branch(handle, inode, map->m_lblk,
609                                          partial, indirect_blks, count);
610         if (err)
611                 goto cleanup;
612
613         map->m_flags |= EXT4_MAP_NEW;
614
615         ext4_update_inode_fsync_trans(handle, inode, 1);
616 got_it:
617         map->m_flags |= EXT4_MAP_MAPPED;
618         map->m_pblk = le32_to_cpu(chain[depth-1].key);
619         map->m_len = count;
620         if (count > blocks_to_boundary)
621                 map->m_flags |= EXT4_MAP_BOUNDARY;
622         err = count;
623         /* Clean up and exit */
624         partial = chain + depth - 1;    /* the whole chain */
625 cleanup:
626         while (partial > chain) {
627                 BUFFER_TRACE(partial->bh, "call brelse");
628                 brelse(partial->bh);
629                 partial--;
630         }
631 out:
632         trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
633         return err;
634 }
635
636 /*
637  * O_DIRECT for ext3 (or indirect map) based files
638  *
639  * If the O_DIRECT write will extend the file then add this inode to the
640  * orphan list.  So recovery will truncate it back to the original size
641  * if the machine crashes during the write.
642  *
643  * If the O_DIRECT write is intantiating holes inside i_size and the machine
644  * crashes then stale disk data _may_ be exposed inside the file. But current
645  * VFS code falls back into buffered path in that case so we are safe.
646  */
647 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
648                            struct iov_iter *iter, loff_t offset)
649 {
650         struct file *file = iocb->ki_filp;
651         struct inode *inode = file->f_mapping->host;
652         struct ext4_inode_info *ei = EXT4_I(inode);
653         handle_t *handle;
654         ssize_t ret;
655         int orphan = 0;
656         size_t count = iov_iter_count(iter);
657         int retries = 0;
658
659         if (rw == WRITE) {
660                 loff_t final_size = offset + count;
661
662                 if (final_size > inode->i_size) {
663                         /* Credits for sb + inode write */
664                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
665                         if (IS_ERR(handle)) {
666                                 ret = PTR_ERR(handle);
667                                 goto out;
668                         }
669                         ret = ext4_orphan_add(handle, inode);
670                         if (ret) {
671                                 ext4_journal_stop(handle);
672                                 goto out;
673                         }
674                         orphan = 1;
675                         ei->i_disksize = inode->i_size;
676                         ext4_journal_stop(handle);
677                 }
678         }
679
680 retry:
681         if (rw == READ && ext4_should_dioread_nolock(inode)) {
682                 /*
683                  * Nolock dioread optimization may be dynamically disabled
684                  * via ext4_inode_block_unlocked_dio(). Check inode's state
685                  * while holding extra i_dio_count ref.
686                  */
687                 atomic_inc(&inode->i_dio_count);
688                 smp_mb();
689                 if (unlikely(ext4_test_inode_state(inode,
690                                                     EXT4_STATE_DIOREAD_LOCK))) {
691                         inode_dio_done(inode);
692                         goto locked;
693                 }
694                 ret = __blockdev_direct_IO(rw, iocb, inode,
695                                  inode->i_sb->s_bdev, iter, offset,
696                                  ext4_get_block, NULL, NULL, 0);
697                 inode_dio_done(inode);
698         } else {
699 locked:
700                 ret = blockdev_direct_IO(rw, iocb, inode, iter,
701                                  offset, ext4_get_block);
702
703                 if (unlikely((rw & WRITE) && ret < 0)) {
704                         loff_t isize = i_size_read(inode);
705                         loff_t end = offset + count;
706
707                         if (end > isize)
708                                 ext4_truncate_failed_write(inode);
709                 }
710         }
711         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
712                 goto retry;
713
714         if (orphan) {
715                 int err;
716
717                 /* Credits for sb + inode write */
718                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
719                 if (IS_ERR(handle)) {
720                         /* This is really bad luck. We've written the data
721                          * but cannot extend i_size. Bail out and pretend
722                          * the write failed... */
723                         ret = PTR_ERR(handle);
724                         if (inode->i_nlink)
725                                 ext4_orphan_del(NULL, inode);
726
727                         goto out;
728                 }
729                 if (inode->i_nlink)
730                         ext4_orphan_del(handle, inode);
731                 if (ret > 0) {
732                         loff_t end = offset + ret;
733                         if (end > inode->i_size) {
734                                 ei->i_disksize = end;
735                                 i_size_write(inode, end);
736                                 /*
737                                  * We're going to return a positive `ret'
738                                  * here due to non-zero-length I/O, so there's
739                                  * no way of reporting error returns from
740                                  * ext4_mark_inode_dirty() to userspace.  So
741                                  * ignore it.
742                                  */
743                                 ext4_mark_inode_dirty(handle, inode);
744                         }
745                 }
746                 err = ext4_journal_stop(handle);
747                 if (ret == 0)
748                         ret = err;
749         }
750 out:
751         return ret;
752 }
753
754 /*
755  * Calculate the number of metadata blocks need to reserve
756  * to allocate a new block at @lblocks for non extent file based file
757  */
758 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
759 {
760         struct ext4_inode_info *ei = EXT4_I(inode);
761         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
762         int blk_bits;
763
764         if (lblock < EXT4_NDIR_BLOCKS)
765                 return 0;
766
767         lblock -= EXT4_NDIR_BLOCKS;
768
769         if (ei->i_da_metadata_calc_len &&
770             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
771                 ei->i_da_metadata_calc_len++;
772                 return 0;
773         }
774         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
775         ei->i_da_metadata_calc_len = 1;
776         blk_bits = order_base_2(lblock);
777         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
778 }
779
780 /*
781  * Calculate number of indirect blocks touched by mapping @nrblocks logically
782  * contiguous blocks
783  */
784 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
785 {
786         /*
787          * With N contiguous data blocks, we need at most
788          * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
789          * 2 dindirect blocks, and 1 tindirect block
790          */
791         return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
792 }
793
794 /*
795  * Truncate transactions can be complex and absolutely huge.  So we need to
796  * be able to restart the transaction at a conventient checkpoint to make
797  * sure we don't overflow the journal.
798  *
799  * Try to extend this transaction for the purposes of truncation.  If
800  * extend fails, we need to propagate the failure up and restart the
801  * transaction in the top-level truncate loop. --sct
802  *
803  * Returns 0 if we managed to create more room.  If we can't create more
804  * room, and the transaction must be restarted we return 1.
805  */
806 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
807 {
808         if (!ext4_handle_valid(handle))
809                 return 0;
810         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
811                 return 0;
812         if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
813                 return 0;
814         return 1;
815 }
816
817 /*
818  * Probably it should be a library function... search for first non-zero word
819  * or memcmp with zero_page, whatever is better for particular architecture.
820  * Linus?
821  */
822 static inline int all_zeroes(__le32 *p, __le32 *q)
823 {
824         while (p < q)
825                 if (*p++)
826                         return 0;
827         return 1;
828 }
829
830 /**
831  *      ext4_find_shared - find the indirect blocks for partial truncation.
832  *      @inode:   inode in question
833  *      @depth:   depth of the affected branch
834  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
835  *      @chain:   place to store the pointers to partial indirect blocks
836  *      @top:     place to the (detached) top of branch
837  *
838  *      This is a helper function used by ext4_truncate().
839  *
840  *      When we do truncate() we may have to clean the ends of several
841  *      indirect blocks but leave the blocks themselves alive. Block is
842  *      partially truncated if some data below the new i_size is referred
843  *      from it (and it is on the path to the first completely truncated
844  *      data block, indeed).  We have to free the top of that path along
845  *      with everything to the right of the path. Since no allocation
846  *      past the truncation point is possible until ext4_truncate()
847  *      finishes, we may safely do the latter, but top of branch may
848  *      require special attention - pageout below the truncation point
849  *      might try to populate it.
850  *
851  *      We atomically detach the top of branch from the tree, store the
852  *      block number of its root in *@top, pointers to buffer_heads of
853  *      partially truncated blocks - in @chain[].bh and pointers to
854  *      their last elements that should not be removed - in
855  *      @chain[].p. Return value is the pointer to last filled element
856  *      of @chain.
857  *
858  *      The work left to caller to do the actual freeing of subtrees:
859  *              a) free the subtree starting from *@top
860  *              b) free the subtrees whose roots are stored in
861  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
862  *              c) free the subtrees growing from the inode past the @chain[0].
863  *                      (no partially truncated stuff there).  */
864
865 static Indirect *ext4_find_shared(struct inode *inode, int depth,
866                                   ext4_lblk_t offsets[4], Indirect chain[4],
867                                   __le32 *top)
868 {
869         Indirect *partial, *p;
870         int k, err;
871
872         *top = 0;
873         /* Make k index the deepest non-null offset + 1 */
874         for (k = depth; k > 1 && !offsets[k-1]; k--)
875                 ;
876         partial = ext4_get_branch(inode, k, offsets, chain, &err);
877         /* Writer: pointers */
878         if (!partial)
879                 partial = chain + k-1;
880         /*
881          * If the branch acquired continuation since we've looked at it -
882          * fine, it should all survive and (new) top doesn't belong to us.
883          */
884         if (!partial->key && *partial->p)
885                 /* Writer: end */
886                 goto no_top;
887         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
888                 ;
889         /*
890          * OK, we've found the last block that must survive. The rest of our
891          * branch should be detached before unlocking. However, if that rest
892          * of branch is all ours and does not grow immediately from the inode
893          * it's easier to cheat and just decrement partial->p.
894          */
895         if (p == chain + k - 1 && p > chain) {
896                 p->p--;
897         } else {
898                 *top = *p->p;
899                 /* Nope, don't do this in ext4.  Must leave the tree intact */
900 #if 0
901                 *p->p = 0;
902 #endif
903         }
904         /* Writer: end */
905
906         while (partial > p) {
907                 brelse(partial->bh);
908                 partial--;
909         }
910 no_top:
911         return partial;
912 }
913
914 /*
915  * Zero a number of block pointers in either an inode or an indirect block.
916  * If we restart the transaction we must again get write access to the
917  * indirect block for further modification.
918  *
919  * We release `count' blocks on disk, but (last - first) may be greater
920  * than `count' because there can be holes in there.
921  *
922  * Return 0 on success, 1 on invalid block range
923  * and < 0 on fatal error.
924  */
925 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
926                              struct buffer_head *bh,
927                              ext4_fsblk_t block_to_free,
928                              unsigned long count, __le32 *first,
929                              __le32 *last)
930 {
931         __le32 *p;
932         int     flags = EXT4_FREE_BLOCKS_VALIDATED;
933         int     err;
934
935         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
936                 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
937         else if (ext4_should_journal_data(inode))
938                 flags |= EXT4_FREE_BLOCKS_FORGET;
939
940         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
941                                    count)) {
942                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
943                                  "blocks %llu len %lu",
944                                  (unsigned long long) block_to_free, count);
945                 return 1;
946         }
947
948         if (try_to_extend_transaction(handle, inode)) {
949                 if (bh) {
950                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
951                         err = ext4_handle_dirty_metadata(handle, inode, bh);
952                         if (unlikely(err))
953                                 goto out_err;
954                 }
955                 err = ext4_mark_inode_dirty(handle, inode);
956                 if (unlikely(err))
957                         goto out_err;
958                 err = ext4_truncate_restart_trans(handle, inode,
959                                         ext4_blocks_for_truncate(inode));
960                 if (unlikely(err))
961                         goto out_err;
962                 if (bh) {
963                         BUFFER_TRACE(bh, "retaking write access");
964                         err = ext4_journal_get_write_access(handle, bh);
965                         if (unlikely(err))
966                                 goto out_err;
967                 }
968         }
969
970         for (p = first; p < last; p++)
971                 *p = 0;
972
973         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
974         return 0;
975 out_err:
976         ext4_std_error(inode->i_sb, err);
977         return err;
978 }
979
980 /**
981  * ext4_free_data - free a list of data blocks
982  * @handle:     handle for this transaction
983  * @inode:      inode we are dealing with
984  * @this_bh:    indirect buffer_head which contains *@first and *@last
985  * @first:      array of block numbers
986  * @last:       points immediately past the end of array
987  *
988  * We are freeing all blocks referred from that array (numbers are stored as
989  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
990  *
991  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
992  * blocks are contiguous then releasing them at one time will only affect one
993  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
994  * actually use a lot of journal space.
995  *
996  * @this_bh will be %NULL if @first and @last point into the inode's direct
997  * block pointers.
998  */
999 static void ext4_free_data(handle_t *handle, struct inode *inode,
1000                            struct buffer_head *this_bh,
1001                            __le32 *first, __le32 *last)
1002 {
1003         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1004         unsigned long count = 0;            /* Number of blocks in the run */
1005         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1006                                                corresponding to
1007                                                block_to_free */
1008         ext4_fsblk_t nr;                    /* Current block # */
1009         __le32 *p;                          /* Pointer into inode/ind
1010                                                for current block */
1011         int err = 0;
1012
1013         if (this_bh) {                          /* For indirect block */
1014                 BUFFER_TRACE(this_bh, "get_write_access");
1015                 err = ext4_journal_get_write_access(handle, this_bh);
1016                 /* Important: if we can't update the indirect pointers
1017                  * to the blocks, we can't free them. */
1018                 if (err)
1019                         return;
1020         }
1021
1022         for (p = first; p < last; p++) {
1023                 nr = le32_to_cpu(*p);
1024                 if (nr) {
1025                         /* accumulate blocks to free if they're contiguous */
1026                         if (count == 0) {
1027                                 block_to_free = nr;
1028                                 block_to_free_p = p;
1029                                 count = 1;
1030                         } else if (nr == block_to_free + count) {
1031                                 count++;
1032                         } else {
1033                                 err = ext4_clear_blocks(handle, inode, this_bh,
1034                                                         block_to_free, count,
1035                                                         block_to_free_p, p);
1036                                 if (err)
1037                                         break;
1038                                 block_to_free = nr;
1039                                 block_to_free_p = p;
1040                                 count = 1;
1041                         }
1042                 }
1043         }
1044
1045         if (!err && count > 0)
1046                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1047                                         count, block_to_free_p, p);
1048         if (err < 0)
1049                 /* fatal error */
1050                 return;
1051
1052         if (this_bh) {
1053                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1054
1055                 /*
1056                  * The buffer head should have an attached journal head at this
1057                  * point. However, if the data is corrupted and an indirect
1058                  * block pointed to itself, it would have been detached when
1059                  * the block was cleared. Check for this instead of OOPSing.
1060                  */
1061                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1062                         ext4_handle_dirty_metadata(handle, inode, this_bh);
1063                 else
1064                         EXT4_ERROR_INODE(inode,
1065                                          "circular indirect block detected at "
1066                                          "block %llu",
1067                                 (unsigned long long) this_bh->b_blocknr);
1068         }
1069 }
1070
1071 /**
1072  *      ext4_free_branches - free an array of branches
1073  *      @handle: JBD handle for this transaction
1074  *      @inode: inode we are dealing with
1075  *      @parent_bh: the buffer_head which contains *@first and *@last
1076  *      @first: array of block numbers
1077  *      @last:  pointer immediately past the end of array
1078  *      @depth: depth of the branches to free
1079  *
1080  *      We are freeing all blocks referred from these branches (numbers are
1081  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1082  *      appropriately.
1083  */
1084 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1085                                struct buffer_head *parent_bh,
1086                                __le32 *first, __le32 *last, int depth)
1087 {
1088         ext4_fsblk_t nr;
1089         __le32 *p;
1090
1091         if (ext4_handle_is_aborted(handle))
1092                 return;
1093
1094         if (depth--) {
1095                 struct buffer_head *bh;
1096                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1097                 p = last;
1098                 while (--p >= first) {
1099                         nr = le32_to_cpu(*p);
1100                         if (!nr)
1101                                 continue;               /* A hole */
1102
1103                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1104                                                    nr, 1)) {
1105                                 EXT4_ERROR_INODE(inode,
1106                                                  "invalid indirect mapped "
1107                                                  "block %lu (level %d)",
1108                                                  (unsigned long) nr, depth);
1109                                 break;
1110                         }
1111
1112                         /* Go read the buffer for the next level down */
1113                         bh = sb_bread(inode->i_sb, nr);
1114
1115                         /*
1116                          * A read failure? Report error and clear slot
1117                          * (should be rare).
1118                          */
1119                         if (!bh) {
1120                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
1121                                                        "Read failure");
1122                                 continue;
1123                         }
1124
1125                         /* This zaps the entire block.  Bottom up. */
1126                         BUFFER_TRACE(bh, "free child branches");
1127                         ext4_free_branches(handle, inode, bh,
1128                                         (__le32 *) bh->b_data,
1129                                         (__le32 *) bh->b_data + addr_per_block,
1130                                         depth);
1131                         brelse(bh);
1132
1133                         /*
1134                          * Everything below this this pointer has been
1135                          * released.  Now let this top-of-subtree go.
1136                          *
1137                          * We want the freeing of this indirect block to be
1138                          * atomic in the journal with the updating of the
1139                          * bitmap block which owns it.  So make some room in
1140                          * the journal.
1141                          *
1142                          * We zero the parent pointer *after* freeing its
1143                          * pointee in the bitmaps, so if extend_transaction()
1144                          * for some reason fails to put the bitmap changes and
1145                          * the release into the same transaction, recovery
1146                          * will merely complain about releasing a free block,
1147                          * rather than leaking blocks.
1148                          */
1149                         if (ext4_handle_is_aborted(handle))
1150                                 return;
1151                         if (try_to_extend_transaction(handle, inode)) {
1152                                 ext4_mark_inode_dirty(handle, inode);
1153                                 ext4_truncate_restart_trans(handle, inode,
1154                                             ext4_blocks_for_truncate(inode));
1155                         }
1156
1157                         /*
1158                          * The forget flag here is critical because if
1159                          * we are journaling (and not doing data
1160                          * journaling), we have to make sure a revoke
1161                          * record is written to prevent the journal
1162                          * replay from overwriting the (former)
1163                          * indirect block if it gets reallocated as a
1164                          * data block.  This must happen in the same
1165                          * transaction where the data blocks are
1166                          * actually freed.
1167                          */
1168                         ext4_free_blocks(handle, inode, NULL, nr, 1,
1169                                          EXT4_FREE_BLOCKS_METADATA|
1170                                          EXT4_FREE_BLOCKS_FORGET);
1171
1172                         if (parent_bh) {
1173                                 /*
1174                                  * The block which we have just freed is
1175                                  * pointed to by an indirect block: journal it
1176                                  */
1177                                 BUFFER_TRACE(parent_bh, "get_write_access");
1178                                 if (!ext4_journal_get_write_access(handle,
1179                                                                    parent_bh)){
1180                                         *p = 0;
1181                                         BUFFER_TRACE(parent_bh,
1182                                         "call ext4_handle_dirty_metadata");
1183                                         ext4_handle_dirty_metadata(handle,
1184                                                                    inode,
1185                                                                    parent_bh);
1186                                 }
1187                         }
1188                 }
1189         } else {
1190                 /* We have reached the bottom of the tree. */
1191                 BUFFER_TRACE(parent_bh, "free data blocks");
1192                 ext4_free_data(handle, inode, parent_bh, first, last);
1193         }
1194 }
1195
1196 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1197 {
1198         struct ext4_inode_info *ei = EXT4_I(inode);
1199         __le32 *i_data = ei->i_data;
1200         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1201         ext4_lblk_t offsets[4];
1202         Indirect chain[4];
1203         Indirect *partial;
1204         __le32 nr = 0;
1205         int n = 0;
1206         ext4_lblk_t last_block, max_block;
1207         unsigned blocksize = inode->i_sb->s_blocksize;
1208
1209         last_block = (inode->i_size + blocksize-1)
1210                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1211         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1212                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1213
1214         if (last_block != max_block) {
1215                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1216                 if (n == 0)
1217                         return;
1218         }
1219
1220         ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1221
1222         /*
1223          * The orphan list entry will now protect us from any crash which
1224          * occurs before the truncate completes, so it is now safe to propagate
1225          * the new, shorter inode size (held for now in i_size) into the
1226          * on-disk inode. We do this via i_disksize, which is the value which
1227          * ext4 *really* writes onto the disk inode.
1228          */
1229         ei->i_disksize = inode->i_size;
1230
1231         if (last_block == max_block) {
1232                 /*
1233                  * It is unnecessary to free any data blocks if last_block is
1234                  * equal to the indirect block limit.
1235                  */
1236                 return;
1237         } else if (n == 1) {            /* direct blocks */
1238                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1239                                i_data + EXT4_NDIR_BLOCKS);
1240                 goto do_indirects;
1241         }
1242
1243         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1244         /* Kill the top of shared branch (not detached) */
1245         if (nr) {
1246                 if (partial == chain) {
1247                         /* Shared branch grows from the inode */
1248                         ext4_free_branches(handle, inode, NULL,
1249                                            &nr, &nr+1, (chain+n-1) - partial);
1250                         *partial->p = 0;
1251                         /*
1252                          * We mark the inode dirty prior to restart,
1253                          * and prior to stop.  No need for it here.
1254                          */
1255                 } else {
1256                         /* Shared branch grows from an indirect block */
1257                         BUFFER_TRACE(partial->bh, "get_write_access");
1258                         ext4_free_branches(handle, inode, partial->bh,
1259                                         partial->p,
1260                                         partial->p+1, (chain+n-1) - partial);
1261                 }
1262         }
1263         /* Clear the ends of indirect blocks on the shared branch */
1264         while (partial > chain) {
1265                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1266                                    (__le32*)partial->bh->b_data+addr_per_block,
1267                                    (chain+n-1) - partial);
1268                 BUFFER_TRACE(partial->bh, "call brelse");
1269                 brelse(partial->bh);
1270                 partial--;
1271         }
1272 do_indirects:
1273         /* Kill the remaining (whole) subtrees */
1274         switch (offsets[0]) {
1275         default:
1276                 nr = i_data[EXT4_IND_BLOCK];
1277                 if (nr) {
1278                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1279                         i_data[EXT4_IND_BLOCK] = 0;
1280                 }
1281         case EXT4_IND_BLOCK:
1282                 nr = i_data[EXT4_DIND_BLOCK];
1283                 if (nr) {
1284                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1285                         i_data[EXT4_DIND_BLOCK] = 0;
1286                 }
1287         case EXT4_DIND_BLOCK:
1288                 nr = i_data[EXT4_TIND_BLOCK];
1289                 if (nr) {
1290                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1291                         i_data[EXT4_TIND_BLOCK] = 0;
1292                 }
1293         case EXT4_TIND_BLOCK:
1294                 ;
1295         }
1296 }
1297
1298 /**
1299  *      ext4_ind_remove_space - remove space from the range
1300  *      @handle: JBD handle for this transaction
1301  *      @inode: inode we are dealing with
1302  *      @start: First block to remove
1303  *      @end:   One block after the last block to remove (exclusive)
1304  *
1305  *      Free the blocks in the defined range (end is exclusive endpoint of
1306  *      range). This is used by ext4_punch_hole().
1307  */
1308 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1309                           ext4_lblk_t start, ext4_lblk_t end)
1310 {
1311         struct ext4_inode_info *ei = EXT4_I(inode);
1312         __le32 *i_data = ei->i_data;
1313         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1314         ext4_lblk_t offsets[4], offsets2[4];
1315         Indirect chain[4], chain2[4];
1316         Indirect *partial, *partial2;
1317         ext4_lblk_t max_block;
1318         __le32 nr = 0, nr2 = 0;
1319         int n = 0, n2 = 0;
1320         unsigned blocksize = inode->i_sb->s_blocksize;
1321
1322         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1323                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1324         if (end >= max_block)
1325                 end = max_block;
1326         if ((start >= end) || (start > max_block))
1327                 return 0;
1328
1329         n = ext4_block_to_path(inode, start, offsets, NULL);
1330         n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1331
1332         BUG_ON(n > n2);
1333
1334         if ((n == 1) && (n == n2)) {
1335                 /* We're punching only within direct block range */
1336                 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1337                                i_data + offsets2[0]);
1338                 return 0;
1339         } else if (n2 > n) {
1340                 /*
1341                  * Start and end are on a different levels so we're going to
1342                  * free partial block at start, and partial block at end of
1343                  * the range. If there are some levels in between then
1344                  * do_indirects label will take care of that.
1345                  */
1346
1347                 if (n == 1) {
1348                         /*
1349                          * Start is at the direct block level, free
1350                          * everything to the end of the level.
1351                          */
1352                         ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1353                                        i_data + EXT4_NDIR_BLOCKS);
1354                         goto end_range;
1355                 }
1356
1357
1358                 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1359                 if (nr) {
1360                         if (partial == chain) {
1361                                 /* Shared branch grows from the inode */
1362                                 ext4_free_branches(handle, inode, NULL,
1363                                            &nr, &nr+1, (chain+n-1) - partial);
1364                                 *partial->p = 0;
1365                         } else {
1366                                 /* Shared branch grows from an indirect block */
1367                                 BUFFER_TRACE(partial->bh, "get_write_access");
1368                                 ext4_free_branches(handle, inode, partial->bh,
1369                                         partial->p,
1370                                         partial->p+1, (chain+n-1) - partial);
1371                         }
1372                 }
1373
1374                 /*
1375                  * Clear the ends of indirect blocks on the shared branch
1376                  * at the start of the range
1377                  */
1378                 while (partial > chain) {
1379                         ext4_free_branches(handle, inode, partial->bh,
1380                                 partial->p + 1,
1381                                 (__le32 *)partial->bh->b_data+addr_per_block,
1382                                 (chain+n-1) - partial);
1383                         BUFFER_TRACE(partial->bh, "call brelse");
1384                         brelse(partial->bh);
1385                         partial--;
1386                 }
1387
1388 end_range:
1389                 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1390                 if (nr2) {
1391                         if (partial2 == chain2) {
1392                                 /*
1393                                  * Remember, end is exclusive so here we're at
1394                                  * the start of the next level we're not going
1395                                  * to free. Everything was covered by the start
1396                                  * of the range.
1397                                  */
1398                                 return 0;
1399                         } else {
1400                                 /* Shared branch grows from an indirect block */
1401                                 partial2--;
1402                         }
1403                 } else {
1404                         /*
1405                          * ext4_find_shared returns Indirect structure which
1406                          * points to the last element which should not be
1407                          * removed by truncate. But this is end of the range
1408                          * in punch_hole so we need to point to the next element
1409                          */
1410                         partial2->p++;
1411                 }
1412
1413                 /*
1414                  * Clear the ends of indirect blocks on the shared branch
1415                  * at the end of the range
1416                  */
1417                 while (partial2 > chain2) {
1418                         ext4_free_branches(handle, inode, partial2->bh,
1419                                            (__le32 *)partial2->bh->b_data,
1420                                            partial2->p,
1421                                            (chain2+n2-1) - partial2);
1422                         BUFFER_TRACE(partial2->bh, "call brelse");
1423                         brelse(partial2->bh);
1424                         partial2--;
1425                 }
1426                 goto do_indirects;
1427         }
1428
1429         /* Punch happened within the same level (n == n2) */
1430         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1431         partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1432         /*
1433          * ext4_find_shared returns Indirect structure which
1434          * points to the last element which should not be
1435          * removed by truncate. But this is end of the range
1436          * in punch_hole so we need to point to the next element
1437          */
1438         partial2->p++;
1439         while ((partial > chain) || (partial2 > chain2)) {
1440                 /* We're at the same block, so we're almost finished */
1441                 if ((partial->bh && partial2->bh) &&
1442                     (partial->bh->b_blocknr == partial2->bh->b_blocknr)) {
1443                         if ((partial > chain) && (partial2 > chain2)) {
1444                                 ext4_free_branches(handle, inode, partial->bh,
1445                                                    partial->p + 1,
1446                                                    partial2->p,
1447                                                    (chain+n-1) - partial);
1448                                 BUFFER_TRACE(partial->bh, "call brelse");
1449                                 brelse(partial->bh);
1450                                 BUFFER_TRACE(partial2->bh, "call brelse");
1451                                 brelse(partial2->bh);
1452                         }
1453                         return 0;
1454                 }
1455                 /*
1456                  * Clear the ends of indirect blocks on the shared branch
1457                  * at the start of the range
1458                  */
1459                 if (partial > chain) {
1460                         ext4_free_branches(handle, inode, partial->bh,
1461                                    partial->p + 1,
1462                                    (__le32 *)partial->bh->b_data+addr_per_block,
1463                                    (chain+n-1) - partial);
1464                         BUFFER_TRACE(partial->bh, "call brelse");
1465                         brelse(partial->bh);
1466                         partial--;
1467                 }
1468                 /*
1469                  * Clear the ends of indirect blocks on the shared branch
1470                  * at the end of the range
1471                  */
1472                 if (partial2 > chain2) {
1473                         ext4_free_branches(handle, inode, partial2->bh,
1474                                            (__le32 *)partial2->bh->b_data,
1475                                            partial2->p,
1476                                            (chain2+n-1) - partial2);
1477                         BUFFER_TRACE(partial2->bh, "call brelse");
1478                         brelse(partial2->bh);
1479                         partial2--;
1480                 }
1481         }
1482
1483 do_indirects:
1484         /* Kill the remaining (whole) subtrees */
1485         switch (offsets[0]) {
1486         default:
1487                 if (++n >= n2)
1488                         return 0;
1489                 nr = i_data[EXT4_IND_BLOCK];
1490                 if (nr) {
1491                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1492                         i_data[EXT4_IND_BLOCK] = 0;
1493                 }
1494         case EXT4_IND_BLOCK:
1495                 if (++n >= n2)
1496                         return 0;
1497                 nr = i_data[EXT4_DIND_BLOCK];
1498                 if (nr) {
1499                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1500                         i_data[EXT4_DIND_BLOCK] = 0;
1501                 }
1502         case EXT4_DIND_BLOCK:
1503                 if (++n >= n2)
1504                         return 0;
1505                 nr = i_data[EXT4_TIND_BLOCK];
1506                 if (nr) {
1507                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1508                         i_data[EXT4_TIND_BLOCK] = 0;
1509                 }
1510         case EXT4_TIND_BLOCK:
1511                 ;
1512         }
1513         return 0;
1514 }