44ee5d933b362ac6bda994a2dbad71e68fffe134
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u32 csum;
55         __u16 dummy_csum = 0;
56         int offset = offsetof(struct ext4_inode, i_checksum_lo);
57         unsigned int csum_size = sizeof(dummy_csum);
58
59         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61         offset += csum_size;
62         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63                            EXT4_GOOD_OLD_INODE_SIZE - offset);
64
65         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66                 offset = offsetof(struct ext4_inode, i_checksum_hi);
67                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68                                    EXT4_GOOD_OLD_INODE_SIZE,
69                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
70                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72                                            csum_size);
73                         offset += csum_size;
74                         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
75                                            EXT4_INODE_SIZE(inode->i_sb) -
76                                            offset);
77                 }
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153         if (ext4_has_inline_data(inode))
154                 return 0;
155
156         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165                                  int nblocks)
166 {
167         int ret;
168
169         /*
170          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171          * moment, get_block can be called only for blocks inside i_size since
172          * page cache has been already dropped and writes are blocked by
173          * i_mutex. So we can safely drop the i_data_sem here.
174          */
175         BUG_ON(EXT4_JOURNAL(inode) == NULL);
176         jbd_debug(2, "restarting handle %p\n", handle);
177         up_write(&EXT4_I(inode)->i_data_sem);
178         ret = ext4_journal_restart(handle, nblocks);
179         down_write(&EXT4_I(inode)->i_data_sem);
180         ext4_discard_preallocations(inode);
181
182         return ret;
183 }
184
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190         handle_t *handle;
191         int err;
192
193         trace_ext4_evict_inode(inode);
194
195         if (inode->i_nlink) {
196                 /*
197                  * When journalling data dirty buffers are tracked only in the
198                  * journal. So although mm thinks everything is clean and
199                  * ready for reaping the inode might still have some pages to
200                  * write in the running transaction or waiting to be
201                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
202                  * (via truncate_inode_pages()) to discard these buffers can
203                  * cause data loss. Also even if we did not discard these
204                  * buffers, we would have no way to find them after the inode
205                  * is reaped and thus user could see stale data if he tries to
206                  * read them before the transaction is checkpointed. So be
207                  * careful and force everything to disk here... We use
208                  * ei->i_datasync_tid to store the newest transaction
209                  * containing inode's data.
210                  *
211                  * Note that directories do not have this problem because they
212                  * don't use page cache.
213                  */
214                 if (ext4_should_journal_data(inode) &&
215                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
216                     inode->i_ino != EXT4_JOURNAL_INO) {
217                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220                         jbd2_complete_transaction(journal, commit_tid);
221                         filemap_write_and_wait(&inode->i_data);
222                 }
223                 truncate_inode_pages_final(&inode->i_data);
224
225                 goto no_delete;
226         }
227
228         if (is_bad_inode(inode))
229                 goto no_delete;
230         dquot_initialize(inode);
231
232         if (ext4_should_order_data(inode))
233                 ext4_begin_ordered_truncate(inode, 0);
234         truncate_inode_pages_final(&inode->i_data);
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242                                     ext4_blocks_for_truncate(inode)+3);
243         if (IS_ERR(handle)) {
244                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245                 /*
246                  * If we're going to skip the normal cleanup, we still need to
247                  * make sure that the in-core orphan linked list is properly
248                  * cleaned up.
249                  */
250                 ext4_orphan_del(NULL, inode);
251                 sb_end_intwrite(inode->i_sb);
252                 goto no_delete;
253         }
254
255         if (IS_SYNC(inode))
256                 ext4_handle_sync(handle);
257         inode->i_size = 0;
258         err = ext4_mark_inode_dirty(handle, inode);
259         if (err) {
260                 ext4_warning(inode->i_sb,
261                              "couldn't mark inode dirty (err %d)", err);
262                 goto stop_handle;
263         }
264         if (inode->i_blocks)
265                 ext4_truncate(inode);
266
267         /*
268          * ext4_ext_truncate() doesn't reserve any slop when it
269          * restarts journal transactions; therefore there may not be
270          * enough credits left in the handle to remove the inode from
271          * the orphan list and set the dtime field.
272          */
273         if (!ext4_handle_has_enough_credits(handle, 3)) {
274                 err = ext4_journal_extend(handle, 3);
275                 if (err > 0)
276                         err = ext4_journal_restart(handle, 3);
277                 if (err != 0) {
278                         ext4_warning(inode->i_sb,
279                                      "couldn't extend journal (err %d)", err);
280                 stop_handle:
281                         ext4_journal_stop(handle);
282                         ext4_orphan_del(NULL, inode);
283                         sb_end_intwrite(inode->i_sb);
284                         goto no_delete;
285                 }
286         }
287
288         /*
289          * Kill off the orphan record which ext4_truncate created.
290          * AKPM: I think this can be inside the above `if'.
291          * Note that ext4_orphan_del() has to be able to cope with the
292          * deletion of a non-existent orphan - this is because we don't
293          * know if ext4_truncate() actually created an orphan record.
294          * (Well, we could do this if we need to, but heck - it works)
295          */
296         ext4_orphan_del(handle, inode);
297         EXT4_I(inode)->i_dtime  = get_seconds();
298
299         /*
300          * One subtle ordering requirement: if anything has gone wrong
301          * (transaction abort, IO errors, whatever), then we can still
302          * do these next steps (the fs will already have been marked as
303          * having errors), but we can't free the inode if the mark_dirty
304          * fails.
305          */
306         if (ext4_mark_inode_dirty(handle, inode))
307                 /* If that failed, just do the required in-core inode clear. */
308                 ext4_clear_inode(inode);
309         else
310                 ext4_free_inode(handle, inode);
311         ext4_journal_stop(handle);
312         sb_end_intwrite(inode->i_sb);
313         return;
314 no_delete:
315         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
316 }
317
318 #ifdef CONFIG_QUOTA
319 qsize_t *ext4_get_reserved_space(struct inode *inode)
320 {
321         return &EXT4_I(inode)->i_reserved_quota;
322 }
323 #endif
324
325 /*
326  * Called with i_data_sem down, which is important since we can call
327  * ext4_discard_preallocations() from here.
328  */
329 void ext4_da_update_reserve_space(struct inode *inode,
330                                         int used, int quota_claim)
331 {
332         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333         struct ext4_inode_info *ei = EXT4_I(inode);
334
335         spin_lock(&ei->i_block_reservation_lock);
336         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
337         if (unlikely(used > ei->i_reserved_data_blocks)) {
338                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
339                          "with only %d reserved data blocks",
340                          __func__, inode->i_ino, used,
341                          ei->i_reserved_data_blocks);
342                 WARN_ON(1);
343                 used = ei->i_reserved_data_blocks;
344         }
345
346         /* Update per-inode reservations */
347         ei->i_reserved_data_blocks -= used;
348         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
349
350         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
351
352         /* Update quota subsystem for data blocks */
353         if (quota_claim)
354                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
355         else {
356                 /*
357                  * We did fallocate with an offset that is already delayed
358                  * allocated. So on delayed allocated writeback we should
359                  * not re-claim the quota for fallocated blocks.
360                  */
361                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362         }
363
364         /*
365          * If we have done all the pending block allocations and if
366          * there aren't any writers on the inode, we can discard the
367          * inode's preallocations.
368          */
369         if ((ei->i_reserved_data_blocks == 0) &&
370             (atomic_read(&inode->i_writecount) == 0))
371                 ext4_discard_preallocations(inode);
372 }
373
374 static int __check_block_validity(struct inode *inode, const char *func,
375                                 unsigned int line,
376                                 struct ext4_map_blocks *map)
377 {
378         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
379                                    map->m_len)) {
380                 ext4_error_inode(inode, func, line, map->m_pblk,
381                                  "lblock %lu mapped to illegal pblock "
382                                  "(length %d)", (unsigned long) map->m_lblk,
383                                  map->m_len);
384                 return -EFSCORRUPTED;
385         }
386         return 0;
387 }
388
389 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
390                        ext4_lblk_t len)
391 {
392         int ret;
393
394         if (ext4_encrypted_inode(inode))
395                 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
396
397         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
398         if (ret > 0)
399                 ret = 0;
400
401         return ret;
402 }
403
404 #define check_block_validity(inode, map)        \
405         __check_block_validity((inode), __func__, __LINE__, (map))
406
407 #ifdef ES_AGGRESSIVE_TEST
408 static void ext4_map_blocks_es_recheck(handle_t *handle,
409                                        struct inode *inode,
410                                        struct ext4_map_blocks *es_map,
411                                        struct ext4_map_blocks *map,
412                                        int flags)
413 {
414         int retval;
415
416         map->m_flags = 0;
417         /*
418          * There is a race window that the result is not the same.
419          * e.g. xfstests #223 when dioread_nolock enables.  The reason
420          * is that we lookup a block mapping in extent status tree with
421          * out taking i_data_sem.  So at the time the unwritten extent
422          * could be converted.
423          */
424         down_read(&EXT4_I(inode)->i_data_sem);
425         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
426                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
427                                              EXT4_GET_BLOCKS_KEEP_SIZE);
428         } else {
429                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
430                                              EXT4_GET_BLOCKS_KEEP_SIZE);
431         }
432         up_read((&EXT4_I(inode)->i_data_sem));
433
434         /*
435          * We don't check m_len because extent will be collpased in status
436          * tree.  So the m_len might not equal.
437          */
438         if (es_map->m_lblk != map->m_lblk ||
439             es_map->m_flags != map->m_flags ||
440             es_map->m_pblk != map->m_pblk) {
441                 printk("ES cache assertion failed for inode: %lu "
442                        "es_cached ex [%d/%d/%llu/%x] != "
443                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
444                        inode->i_ino, es_map->m_lblk, es_map->m_len,
445                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
446                        map->m_len, map->m_pblk, map->m_flags,
447                        retval, flags);
448         }
449 }
450 #endif /* ES_AGGRESSIVE_TEST */
451
452 /*
453  * The ext4_map_blocks() function tries to look up the requested blocks,
454  * and returns if the blocks are already mapped.
455  *
456  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
457  * and store the allocated blocks in the result buffer head and mark it
458  * mapped.
459  *
460  * If file type is extents based, it will call ext4_ext_map_blocks(),
461  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
462  * based files
463  *
464  * On success, it returns the number of blocks being mapped or allocated.  if
465  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
466  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
467  *
468  * It returns 0 if plain look up failed (blocks have not been allocated), in
469  * that case, @map is returned as unmapped but we still do fill map->m_len to
470  * indicate the length of a hole starting at map->m_lblk.
471  *
472  * It returns the error in case of allocation failure.
473  */
474 int ext4_map_blocks(handle_t *handle, struct inode *inode,
475                     struct ext4_map_blocks *map, int flags)
476 {
477         struct extent_status es;
478         int retval;
479         int ret = 0;
480 #ifdef ES_AGGRESSIVE_TEST
481         struct ext4_map_blocks orig_map;
482
483         memcpy(&orig_map, map, sizeof(*map));
484 #endif
485
486         map->m_flags = 0;
487         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
488                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
489                   (unsigned long) map->m_lblk);
490
491         /*
492          * ext4_map_blocks returns an int, and m_len is an unsigned int
493          */
494         if (unlikely(map->m_len > INT_MAX))
495                 map->m_len = INT_MAX;
496
497         /* We can handle the block number less than EXT_MAX_BLOCKS */
498         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
499                 return -EFSCORRUPTED;
500
501         /* Lookup extent status tree firstly */
502         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
503                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
504                         map->m_pblk = ext4_es_pblock(&es) +
505                                         map->m_lblk - es.es_lblk;
506                         map->m_flags |= ext4_es_is_written(&es) ?
507                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
508                         retval = es.es_len - (map->m_lblk - es.es_lblk);
509                         if (retval > map->m_len)
510                                 retval = map->m_len;
511                         map->m_len = retval;
512                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
513                         map->m_pblk = 0;
514                         retval = es.es_len - (map->m_lblk - es.es_lblk);
515                         if (retval > map->m_len)
516                                 retval = map->m_len;
517                         map->m_len = retval;
518                         retval = 0;
519                 } else {
520                         BUG_ON(1);
521                 }
522 #ifdef ES_AGGRESSIVE_TEST
523                 ext4_map_blocks_es_recheck(handle, inode, map,
524                                            &orig_map, flags);
525 #endif
526                 goto found;
527         }
528
529         /*
530          * Try to see if we can get the block without requesting a new
531          * file system block.
532          */
533         down_read(&EXT4_I(inode)->i_data_sem);
534         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
535                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
536                                              EXT4_GET_BLOCKS_KEEP_SIZE);
537         } else {
538                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
539                                              EXT4_GET_BLOCKS_KEEP_SIZE);
540         }
541         if (retval > 0) {
542                 unsigned int status;
543
544                 if (unlikely(retval != map->m_len)) {
545                         ext4_warning(inode->i_sb,
546                                      "ES len assertion failed for inode "
547                                      "%lu: retval %d != map->m_len %d",
548                                      inode->i_ino, retval, map->m_len);
549                         WARN_ON(1);
550                 }
551
552                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
553                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
554                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
555                     !(status & EXTENT_STATUS_WRITTEN) &&
556                     ext4_find_delalloc_range(inode, map->m_lblk,
557                                              map->m_lblk + map->m_len - 1))
558                         status |= EXTENT_STATUS_DELAYED;
559                 ret = ext4_es_insert_extent(inode, map->m_lblk,
560                                             map->m_len, map->m_pblk, status);
561                 if (ret < 0)
562                         retval = ret;
563         }
564         up_read((&EXT4_I(inode)->i_data_sem));
565
566 found:
567         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
568                 ret = check_block_validity(inode, map);
569                 if (ret != 0)
570                         return ret;
571         }
572
573         /* If it is only a block(s) look up */
574         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
575                 return retval;
576
577         /*
578          * Returns if the blocks have already allocated
579          *
580          * Note that if blocks have been preallocated
581          * ext4_ext_get_block() returns the create = 0
582          * with buffer head unmapped.
583          */
584         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
585                 /*
586                  * If we need to convert extent to unwritten
587                  * we continue and do the actual work in
588                  * ext4_ext_map_blocks()
589                  */
590                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
591                         return retval;
592
593         /*
594          * Here we clear m_flags because after allocating an new extent,
595          * it will be set again.
596          */
597         map->m_flags &= ~EXT4_MAP_FLAGS;
598
599         /*
600          * New blocks allocate and/or writing to unwritten extent
601          * will possibly result in updating i_data, so we take
602          * the write lock of i_data_sem, and call get_block()
603          * with create == 1 flag.
604          */
605         down_write(&EXT4_I(inode)->i_data_sem);
606
607         /*
608          * We need to check for EXT4 here because migrate
609          * could have changed the inode type in between
610          */
611         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
613         } else {
614                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
615
616                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617                         /*
618                          * We allocated new blocks which will result in
619                          * i_data's format changing.  Force the migrate
620                          * to fail by clearing migrate flags
621                          */
622                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623                 }
624
625                 /*
626                  * Update reserved blocks/metadata blocks after successful
627                  * block allocation which had been deferred till now. We don't
628                  * support fallocate for non extent files. So we can update
629                  * reserve space here.
630                  */
631                 if ((retval > 0) &&
632                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633                         ext4_da_update_reserve_space(inode, retval, 1);
634         }
635
636         if (retval > 0) {
637                 unsigned int status;
638
639                 if (unlikely(retval != map->m_len)) {
640                         ext4_warning(inode->i_sb,
641                                      "ES len assertion failed for inode "
642                                      "%lu: retval %d != map->m_len %d",
643                                      inode->i_ino, retval, map->m_len);
644                         WARN_ON(1);
645                 }
646
647                 /*
648                  * We have to zeroout blocks before inserting them into extent
649                  * status tree. Otherwise someone could look them up there and
650                  * use them before they are really zeroed.
651                  */
652                 if (flags & EXT4_GET_BLOCKS_ZERO &&
653                     map->m_flags & EXT4_MAP_MAPPED &&
654                     map->m_flags & EXT4_MAP_NEW) {
655                         ret = ext4_issue_zeroout(inode, map->m_lblk,
656                                                  map->m_pblk, map->m_len);
657                         if (ret) {
658                                 retval = ret;
659                                 goto out_sem;
660                         }
661                 }
662
663                 /*
664                  * If the extent has been zeroed out, we don't need to update
665                  * extent status tree.
666                  */
667                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
668                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
669                         if (ext4_es_is_written(&es))
670                                 goto out_sem;
671                 }
672                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
673                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
674                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
675                     !(status & EXTENT_STATUS_WRITTEN) &&
676                     ext4_find_delalloc_range(inode, map->m_lblk,
677                                              map->m_lblk + map->m_len - 1))
678                         status |= EXTENT_STATUS_DELAYED;
679                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
680                                             map->m_pblk, status);
681                 if (ret < 0) {
682                         retval = ret;
683                         goto out_sem;
684                 }
685         }
686
687 out_sem:
688         up_write((&EXT4_I(inode)->i_data_sem));
689         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690                 ret = check_block_validity(inode, map);
691                 if (ret != 0)
692                         return ret;
693
694                 /*
695                  * Inodes with freshly allocated blocks where contents will be
696                  * visible after transaction commit must be on transaction's
697                  * ordered data list.
698                  */
699                 if (map->m_flags & EXT4_MAP_NEW &&
700                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
701                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
702                     !IS_NOQUOTA(inode) &&
703                     ext4_should_order_data(inode)) {
704                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
705                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
706                         else
707                                 ret = ext4_jbd2_inode_add_write(handle, inode);
708                         if (ret)
709                                 return ret;
710                 }
711         }
712         return retval;
713 }
714
715 /*
716  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
717  * we have to be careful as someone else may be manipulating b_state as well.
718  */
719 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
720 {
721         unsigned long old_state;
722         unsigned long new_state;
723
724         flags &= EXT4_MAP_FLAGS;
725
726         /* Dummy buffer_head? Set non-atomically. */
727         if (!bh->b_page) {
728                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
729                 return;
730         }
731         /*
732          * Someone else may be modifying b_state. Be careful! This is ugly but
733          * once we get rid of using bh as a container for mapping information
734          * to pass to / from get_block functions, this can go away.
735          */
736         do {
737                 old_state = READ_ONCE(bh->b_state);
738                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
739         } while (unlikely(
740                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
741 }
742
743 static int _ext4_get_block(struct inode *inode, sector_t iblock,
744                            struct buffer_head *bh, int flags)
745 {
746         struct ext4_map_blocks map;
747         int ret = 0;
748
749         if (ext4_has_inline_data(inode))
750                 return -ERANGE;
751
752         map.m_lblk = iblock;
753         map.m_len = bh->b_size >> inode->i_blkbits;
754
755         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
756                               flags);
757         if (ret > 0) {
758                 map_bh(bh, inode->i_sb, map.m_pblk);
759                 ext4_update_bh_state(bh, map.m_flags);
760                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
761                 ret = 0;
762         }
763         return ret;
764 }
765
766 int ext4_get_block(struct inode *inode, sector_t iblock,
767                    struct buffer_head *bh, int create)
768 {
769         return _ext4_get_block(inode, iblock, bh,
770                                create ? EXT4_GET_BLOCKS_CREATE : 0);
771 }
772
773 /*
774  * Get block function used when preparing for buffered write if we require
775  * creating an unwritten extent if blocks haven't been allocated.  The extent
776  * will be converted to written after the IO is complete.
777  */
778 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
779                              struct buffer_head *bh_result, int create)
780 {
781         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
782                    inode->i_ino, create);
783         return _ext4_get_block(inode, iblock, bh_result,
784                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
785 }
786
787 /* Maximum number of blocks we map for direct IO at once. */
788 #define DIO_MAX_BLOCKS 4096
789
790 /*
791  * Get blocks function for the cases that need to start a transaction -
792  * generally difference cases of direct IO and DAX IO. It also handles retries
793  * in case of ENOSPC.
794  */
795 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
796                                 struct buffer_head *bh_result, int flags)
797 {
798         int dio_credits;
799         handle_t *handle;
800         int retries = 0;
801         int ret;
802
803         /* Trim mapping request to maximum we can map at once for DIO */
804         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
805                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
806         dio_credits = ext4_chunk_trans_blocks(inode,
807                                       bh_result->b_size >> inode->i_blkbits);
808 retry:
809         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
810         if (IS_ERR(handle))
811                 return PTR_ERR(handle);
812
813         ret = _ext4_get_block(inode, iblock, bh_result, flags);
814         ext4_journal_stop(handle);
815
816         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
817                 goto retry;
818         return ret;
819 }
820
821 /* Get block function for DIO reads and writes to inodes without extents */
822 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
823                        struct buffer_head *bh, int create)
824 {
825         /* We don't expect handle for direct IO */
826         WARN_ON_ONCE(ext4_journal_current_handle());
827
828         if (!create)
829                 return _ext4_get_block(inode, iblock, bh, 0);
830         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
831 }
832
833 /*
834  * Get block function for AIO DIO writes when we create unwritten extent if
835  * blocks are not allocated yet. The extent will be converted to written
836  * after IO is complete.
837  */
838 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
839                 sector_t iblock, struct buffer_head *bh_result, int create)
840 {
841         int ret;
842
843         /* We don't expect handle for direct IO */
844         WARN_ON_ONCE(ext4_journal_current_handle());
845
846         ret = ext4_get_block_trans(inode, iblock, bh_result,
847                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
848
849         /*
850          * When doing DIO using unwritten extents, we need io_end to convert
851          * unwritten extents to written on IO completion. We allocate io_end
852          * once we spot unwritten extent and store it in b_private. Generic
853          * DIO code keeps b_private set and furthermore passes the value to
854          * our completion callback in 'private' argument.
855          */
856         if (!ret && buffer_unwritten(bh_result)) {
857                 if (!bh_result->b_private) {
858                         ext4_io_end_t *io_end;
859
860                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
861                         if (!io_end)
862                                 return -ENOMEM;
863                         bh_result->b_private = io_end;
864                         ext4_set_io_unwritten_flag(inode, io_end);
865                 }
866                 set_buffer_defer_completion(bh_result);
867         }
868
869         return ret;
870 }
871
872 /*
873  * Get block function for non-AIO DIO writes when we create unwritten extent if
874  * blocks are not allocated yet. The extent will be converted to written
875  * after IO is complete from ext4_ext_direct_IO() function.
876  */
877 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
878                 sector_t iblock, struct buffer_head *bh_result, int create)
879 {
880         int ret;
881
882         /* We don't expect handle for direct IO */
883         WARN_ON_ONCE(ext4_journal_current_handle());
884
885         ret = ext4_get_block_trans(inode, iblock, bh_result,
886                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
887
888         /*
889          * Mark inode as having pending DIO writes to unwritten extents.
890          * ext4_ext_direct_IO() checks this flag and converts extents to
891          * written.
892          */
893         if (!ret && buffer_unwritten(bh_result))
894                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
895
896         return ret;
897 }
898
899 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
900                    struct buffer_head *bh_result, int create)
901 {
902         int ret;
903
904         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
905                    inode->i_ino, create);
906         /* We don't expect handle for direct IO */
907         WARN_ON_ONCE(ext4_journal_current_handle());
908
909         ret = _ext4_get_block(inode, iblock, bh_result, 0);
910         /*
911          * Blocks should have been preallocated! ext4_file_write_iter() checks
912          * that.
913          */
914         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
915
916         return ret;
917 }
918
919
920 /*
921  * `handle' can be NULL if create is zero
922  */
923 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
924                                 ext4_lblk_t block, int map_flags)
925 {
926         struct ext4_map_blocks map;
927         struct buffer_head *bh;
928         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
929         int err;
930
931         J_ASSERT(handle != NULL || create == 0);
932
933         map.m_lblk = block;
934         map.m_len = 1;
935         err = ext4_map_blocks(handle, inode, &map, map_flags);
936
937         if (err == 0)
938                 return create ? ERR_PTR(-ENOSPC) : NULL;
939         if (err < 0)
940                 return ERR_PTR(err);
941
942         bh = sb_getblk(inode->i_sb, map.m_pblk);
943         if (unlikely(!bh))
944                 return ERR_PTR(-ENOMEM);
945         if (map.m_flags & EXT4_MAP_NEW) {
946                 J_ASSERT(create != 0);
947                 J_ASSERT(handle != NULL);
948
949                 /*
950                  * Now that we do not always journal data, we should
951                  * keep in mind whether this should always journal the
952                  * new buffer as metadata.  For now, regular file
953                  * writes use ext4_get_block instead, so it's not a
954                  * problem.
955                  */
956                 lock_buffer(bh);
957                 BUFFER_TRACE(bh, "call get_create_access");
958                 err = ext4_journal_get_create_access(handle, bh);
959                 if (unlikely(err)) {
960                         unlock_buffer(bh);
961                         goto errout;
962                 }
963                 if (!buffer_uptodate(bh)) {
964                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
965                         set_buffer_uptodate(bh);
966                 }
967                 unlock_buffer(bh);
968                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
969                 err = ext4_handle_dirty_metadata(handle, inode, bh);
970                 if (unlikely(err))
971                         goto errout;
972         } else
973                 BUFFER_TRACE(bh, "not a new buffer");
974         return bh;
975 errout:
976         brelse(bh);
977         return ERR_PTR(err);
978 }
979
980 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
981                                ext4_lblk_t block, int map_flags)
982 {
983         struct buffer_head *bh;
984
985         bh = ext4_getblk(handle, inode, block, map_flags);
986         if (IS_ERR(bh))
987                 return bh;
988         if (!bh || buffer_uptodate(bh))
989                 return bh;
990         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
991         wait_on_buffer(bh);
992         if (buffer_uptodate(bh))
993                 return bh;
994         put_bh(bh);
995         return ERR_PTR(-EIO);
996 }
997
998 int ext4_walk_page_buffers(handle_t *handle,
999                            struct buffer_head *head,
1000                            unsigned from,
1001                            unsigned to,
1002                            int *partial,
1003                            int (*fn)(handle_t *handle,
1004                                      struct buffer_head *bh))
1005 {
1006         struct buffer_head *bh;
1007         unsigned block_start, block_end;
1008         unsigned blocksize = head->b_size;
1009         int err, ret = 0;
1010         struct buffer_head *next;
1011
1012         for (bh = head, block_start = 0;
1013              ret == 0 && (bh != head || !block_start);
1014              block_start = block_end, bh = next) {
1015                 next = bh->b_this_page;
1016                 block_end = block_start + blocksize;
1017                 if (block_end <= from || block_start >= to) {
1018                         if (partial && !buffer_uptodate(bh))
1019                                 *partial = 1;
1020                         continue;
1021                 }
1022                 err = (*fn)(handle, bh);
1023                 if (!ret)
1024                         ret = err;
1025         }
1026         return ret;
1027 }
1028
1029 /*
1030  * To preserve ordering, it is essential that the hole instantiation and
1031  * the data write be encapsulated in a single transaction.  We cannot
1032  * close off a transaction and start a new one between the ext4_get_block()
1033  * and the commit_write().  So doing the jbd2_journal_start at the start of
1034  * prepare_write() is the right place.
1035  *
1036  * Also, this function can nest inside ext4_writepage().  In that case, we
1037  * *know* that ext4_writepage() has generated enough buffer credits to do the
1038  * whole page.  So we won't block on the journal in that case, which is good,
1039  * because the caller may be PF_MEMALLOC.
1040  *
1041  * By accident, ext4 can be reentered when a transaction is open via
1042  * quota file writes.  If we were to commit the transaction while thus
1043  * reentered, there can be a deadlock - we would be holding a quota
1044  * lock, and the commit would never complete if another thread had a
1045  * transaction open and was blocking on the quota lock - a ranking
1046  * violation.
1047  *
1048  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1049  * will _not_ run commit under these circumstances because handle->h_ref
1050  * is elevated.  We'll still have enough credits for the tiny quotafile
1051  * write.
1052  */
1053 int do_journal_get_write_access(handle_t *handle,
1054                                 struct buffer_head *bh)
1055 {
1056         int dirty = buffer_dirty(bh);
1057         int ret;
1058
1059         if (!buffer_mapped(bh) || buffer_freed(bh))
1060                 return 0;
1061         /*
1062          * __block_write_begin() could have dirtied some buffers. Clean
1063          * the dirty bit as jbd2_journal_get_write_access() could complain
1064          * otherwise about fs integrity issues. Setting of the dirty bit
1065          * by __block_write_begin() isn't a real problem here as we clear
1066          * the bit before releasing a page lock and thus writeback cannot
1067          * ever write the buffer.
1068          */
1069         if (dirty)
1070                 clear_buffer_dirty(bh);
1071         BUFFER_TRACE(bh, "get write access");
1072         ret = ext4_journal_get_write_access(handle, bh);
1073         if (!ret && dirty)
1074                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1075         return ret;
1076 }
1077
1078 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1079 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1080                                   get_block_t *get_block)
1081 {
1082         unsigned from = pos & (PAGE_SIZE - 1);
1083         unsigned to = from + len;
1084         struct inode *inode = page->mapping->host;
1085         unsigned block_start, block_end;
1086         sector_t block;
1087         int err = 0;
1088         unsigned blocksize = inode->i_sb->s_blocksize;
1089         unsigned bbits;
1090         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1091         bool decrypt = false;
1092
1093         BUG_ON(!PageLocked(page));
1094         BUG_ON(from > PAGE_SIZE);
1095         BUG_ON(to > PAGE_SIZE);
1096         BUG_ON(from > to);
1097
1098         if (!page_has_buffers(page))
1099                 create_empty_buffers(page, blocksize, 0);
1100         head = page_buffers(page);
1101         bbits = ilog2(blocksize);
1102         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1103
1104         for (bh = head, block_start = 0; bh != head || !block_start;
1105             block++, block_start = block_end, bh = bh->b_this_page) {
1106                 block_end = block_start + blocksize;
1107                 if (block_end <= from || block_start >= to) {
1108                         if (PageUptodate(page)) {
1109                                 if (!buffer_uptodate(bh))
1110                                         set_buffer_uptodate(bh);
1111                         }
1112                         continue;
1113                 }
1114                 if (buffer_new(bh))
1115                         clear_buffer_new(bh);
1116                 if (!buffer_mapped(bh)) {
1117                         WARN_ON(bh->b_size != blocksize);
1118                         err = get_block(inode, block, bh, 1);
1119                         if (err)
1120                                 break;
1121                         if (buffer_new(bh)) {
1122                                 unmap_underlying_metadata(bh->b_bdev,
1123                                                           bh->b_blocknr);
1124                                 if (PageUptodate(page)) {
1125                                         clear_buffer_new(bh);
1126                                         set_buffer_uptodate(bh);
1127                                         mark_buffer_dirty(bh);
1128                                         continue;
1129                                 }
1130                                 if (block_end > to || block_start < from)
1131                                         zero_user_segments(page, to, block_end,
1132                                                            block_start, from);
1133                                 continue;
1134                         }
1135                 }
1136                 if (PageUptodate(page)) {
1137                         if (!buffer_uptodate(bh))
1138                                 set_buffer_uptodate(bh);
1139                         continue;
1140                 }
1141                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1142                     !buffer_unwritten(bh) &&
1143                     (block_start < from || block_end > to)) {
1144                         ll_rw_block(READ, 1, &bh);
1145                         *wait_bh++ = bh;
1146                         decrypt = ext4_encrypted_inode(inode) &&
1147                                 S_ISREG(inode->i_mode);
1148                 }
1149         }
1150         /*
1151          * If we issued read requests, let them complete.
1152          */
1153         while (wait_bh > wait) {
1154                 wait_on_buffer(*--wait_bh);
1155                 if (!buffer_uptodate(*wait_bh))
1156                         err = -EIO;
1157         }
1158         if (unlikely(err))
1159                 page_zero_new_buffers(page, from, to);
1160         else if (decrypt)
1161                 err = ext4_decrypt(page);
1162         return err;
1163 }
1164 #endif
1165
1166 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1167                             loff_t pos, unsigned len, unsigned flags,
1168                             struct page **pagep, void **fsdata)
1169 {
1170         struct inode *inode = mapping->host;
1171         int ret, needed_blocks;
1172         handle_t *handle;
1173         int retries = 0;
1174         struct page *page;
1175         pgoff_t index;
1176         unsigned from, to;
1177
1178         trace_ext4_write_begin(inode, pos, len, flags);
1179         /*
1180          * Reserve one block more for addition to orphan list in case
1181          * we allocate blocks but write fails for some reason
1182          */
1183         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1184         index = pos >> PAGE_SHIFT;
1185         from = pos & (PAGE_SIZE - 1);
1186         to = from + len;
1187
1188         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1189                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1190                                                     flags, pagep);
1191                 if (ret < 0)
1192                         return ret;
1193                 if (ret == 1)
1194                         return 0;
1195         }
1196
1197         /*
1198          * grab_cache_page_write_begin() can take a long time if the
1199          * system is thrashing due to memory pressure, or if the page
1200          * is being written back.  So grab it first before we start
1201          * the transaction handle.  This also allows us to allocate
1202          * the page (if needed) without using GFP_NOFS.
1203          */
1204 retry_grab:
1205         page = grab_cache_page_write_begin(mapping, index, flags);
1206         if (!page)
1207                 return -ENOMEM;
1208         unlock_page(page);
1209
1210 retry_journal:
1211         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1212         if (IS_ERR(handle)) {
1213                 put_page(page);
1214                 return PTR_ERR(handle);
1215         }
1216
1217         lock_page(page);
1218         if (page->mapping != mapping) {
1219                 /* The page got truncated from under us */
1220                 unlock_page(page);
1221                 put_page(page);
1222                 ext4_journal_stop(handle);
1223                 goto retry_grab;
1224         }
1225         /* In case writeback began while the page was unlocked */
1226         wait_for_stable_page(page);
1227
1228 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1229         if (ext4_should_dioread_nolock(inode))
1230                 ret = ext4_block_write_begin(page, pos, len,
1231                                              ext4_get_block_unwritten);
1232         else
1233                 ret = ext4_block_write_begin(page, pos, len,
1234                                              ext4_get_block);
1235 #else
1236         if (ext4_should_dioread_nolock(inode))
1237                 ret = __block_write_begin(page, pos, len,
1238                                           ext4_get_block_unwritten);
1239         else
1240                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1241 #endif
1242         if (!ret && ext4_should_journal_data(inode)) {
1243                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1244                                              from, to, NULL,
1245                                              do_journal_get_write_access);
1246         }
1247
1248         if (ret) {
1249                 unlock_page(page);
1250                 /*
1251                  * __block_write_begin may have instantiated a few blocks
1252                  * outside i_size.  Trim these off again. Don't need
1253                  * i_size_read because we hold i_mutex.
1254                  *
1255                  * Add inode to orphan list in case we crash before
1256                  * truncate finishes
1257                  */
1258                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1259                         ext4_orphan_add(handle, inode);
1260
1261                 ext4_journal_stop(handle);
1262                 if (pos + len > inode->i_size) {
1263                         ext4_truncate_failed_write(inode);
1264                         /*
1265                          * If truncate failed early the inode might
1266                          * still be on the orphan list; we need to
1267                          * make sure the inode is removed from the
1268                          * orphan list in that case.
1269                          */
1270                         if (inode->i_nlink)
1271                                 ext4_orphan_del(NULL, inode);
1272                 }
1273
1274                 if (ret == -ENOSPC &&
1275                     ext4_should_retry_alloc(inode->i_sb, &retries))
1276                         goto retry_journal;
1277                 put_page(page);
1278                 return ret;
1279         }
1280         *pagep = page;
1281         return ret;
1282 }
1283
1284 /* For write_end() in data=journal mode */
1285 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1286 {
1287         int ret;
1288         if (!buffer_mapped(bh) || buffer_freed(bh))
1289                 return 0;
1290         set_buffer_uptodate(bh);
1291         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292         clear_buffer_meta(bh);
1293         clear_buffer_prio(bh);
1294         return ret;
1295 }
1296
1297 /*
1298  * We need to pick up the new inode size which generic_commit_write gave us
1299  * `file' can be NULL - eg, when called from page_symlink().
1300  *
1301  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1302  * buffers are managed internally.
1303  */
1304 static int ext4_write_end(struct file *file,
1305                           struct address_space *mapping,
1306                           loff_t pos, unsigned len, unsigned copied,
1307                           struct page *page, void *fsdata)
1308 {
1309         handle_t *handle = ext4_journal_current_handle();
1310         struct inode *inode = mapping->host;
1311         loff_t old_size = inode->i_size;
1312         int ret = 0, ret2;
1313         int i_size_changed = 0;
1314
1315         trace_ext4_write_end(inode, pos, len, copied);
1316         if (ext4_has_inline_data(inode)) {
1317                 ret = ext4_write_inline_data_end(inode, pos, len,
1318                                                  copied, page);
1319                 if (ret < 0)
1320                         goto errout;
1321                 copied = ret;
1322         } else
1323                 copied = block_write_end(file, mapping, pos,
1324                                          len, copied, page, fsdata);
1325         /*
1326          * it's important to update i_size while still holding page lock:
1327          * page writeout could otherwise come in and zero beyond i_size.
1328          */
1329         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1330         unlock_page(page);
1331         put_page(page);
1332
1333         if (old_size < pos)
1334                 pagecache_isize_extended(inode, old_size, pos);
1335         /*
1336          * Don't mark the inode dirty under page lock. First, it unnecessarily
1337          * makes the holding time of page lock longer. Second, it forces lock
1338          * ordering of page lock and transaction start for journaling
1339          * filesystems.
1340          */
1341         if (i_size_changed)
1342                 ext4_mark_inode_dirty(handle, inode);
1343
1344         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1345                 /* if we have allocated more blocks and copied
1346                  * less. We will have blocks allocated outside
1347                  * inode->i_size. So truncate them
1348                  */
1349                 ext4_orphan_add(handle, inode);
1350 errout:
1351         ret2 = ext4_journal_stop(handle);
1352         if (!ret)
1353                 ret = ret2;
1354
1355         if (pos + len > inode->i_size) {
1356                 ext4_truncate_failed_write(inode);
1357                 /*
1358                  * If truncate failed early the inode might still be
1359                  * on the orphan list; we need to make sure the inode
1360                  * is removed from the orphan list in that case.
1361                  */
1362                 if (inode->i_nlink)
1363                         ext4_orphan_del(NULL, inode);
1364         }
1365
1366         return ret ? ret : copied;
1367 }
1368
1369 /*
1370  * This is a private version of page_zero_new_buffers() which doesn't
1371  * set the buffer to be dirty, since in data=journalled mode we need
1372  * to call ext4_handle_dirty_metadata() instead.
1373  */
1374 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1375 {
1376         unsigned int block_start = 0, block_end;
1377         struct buffer_head *head, *bh;
1378
1379         bh = head = page_buffers(page);
1380         do {
1381                 block_end = block_start + bh->b_size;
1382                 if (buffer_new(bh)) {
1383                         if (block_end > from && block_start < to) {
1384                                 if (!PageUptodate(page)) {
1385                                         unsigned start, size;
1386
1387                                         start = max(from, block_start);
1388                                         size = min(to, block_end) - start;
1389
1390                                         zero_user(page, start, size);
1391                                         set_buffer_uptodate(bh);
1392                                 }
1393                                 clear_buffer_new(bh);
1394                         }
1395                 }
1396                 block_start = block_end;
1397                 bh = bh->b_this_page;
1398         } while (bh != head);
1399 }
1400
1401 static int ext4_journalled_write_end(struct file *file,
1402                                      struct address_space *mapping,
1403                                      loff_t pos, unsigned len, unsigned copied,
1404                                      struct page *page, void *fsdata)
1405 {
1406         handle_t *handle = ext4_journal_current_handle();
1407         struct inode *inode = mapping->host;
1408         loff_t old_size = inode->i_size;
1409         int ret = 0, ret2;
1410         int partial = 0;
1411         unsigned from, to;
1412         int size_changed = 0;
1413
1414         trace_ext4_journalled_write_end(inode, pos, len, copied);
1415         from = pos & (PAGE_SIZE - 1);
1416         to = from + len;
1417
1418         BUG_ON(!ext4_handle_valid(handle));
1419
1420         if (ext4_has_inline_data(inode))
1421                 copied = ext4_write_inline_data_end(inode, pos, len,
1422                                                     copied, page);
1423         else {
1424                 if (copied < len) {
1425                         if (!PageUptodate(page))
1426                                 copied = 0;
1427                         zero_new_buffers(page, from+copied, to);
1428                 }
1429
1430                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1431                                              to, &partial, write_end_fn);
1432                 if (!partial)
1433                         SetPageUptodate(page);
1434         }
1435         size_changed = ext4_update_inode_size(inode, pos + copied);
1436         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1437         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1438         unlock_page(page);
1439         put_page(page);
1440
1441         if (old_size < pos)
1442                 pagecache_isize_extended(inode, old_size, pos);
1443
1444         if (size_changed) {
1445                 ret2 = ext4_mark_inode_dirty(handle, inode);
1446                 if (!ret)
1447                         ret = ret2;
1448         }
1449
1450         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1451                 /* if we have allocated more blocks and copied
1452                  * less. We will have blocks allocated outside
1453                  * inode->i_size. So truncate them
1454                  */
1455                 ext4_orphan_add(handle, inode);
1456
1457         ret2 = ext4_journal_stop(handle);
1458         if (!ret)
1459                 ret = ret2;
1460         if (pos + len > inode->i_size) {
1461                 ext4_truncate_failed_write(inode);
1462                 /*
1463                  * If truncate failed early the inode might still be
1464                  * on the orphan list; we need to make sure the inode
1465                  * is removed from the orphan list in that case.
1466                  */
1467                 if (inode->i_nlink)
1468                         ext4_orphan_del(NULL, inode);
1469         }
1470
1471         return ret ? ret : copied;
1472 }
1473
1474 /*
1475  * Reserve space for a single cluster
1476  */
1477 static int ext4_da_reserve_space(struct inode *inode)
1478 {
1479         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480         struct ext4_inode_info *ei = EXT4_I(inode);
1481         int ret;
1482
1483         /*
1484          * We will charge metadata quota at writeout time; this saves
1485          * us from metadata over-estimation, though we may go over by
1486          * a small amount in the end.  Here we just reserve for data.
1487          */
1488         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1489         if (ret)
1490                 return ret;
1491
1492         spin_lock(&ei->i_block_reservation_lock);
1493         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1494                 spin_unlock(&ei->i_block_reservation_lock);
1495                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1496                 return -ENOSPC;
1497         }
1498         ei->i_reserved_data_blocks++;
1499         trace_ext4_da_reserve_space(inode);
1500         spin_unlock(&ei->i_block_reservation_lock);
1501
1502         return 0;       /* success */
1503 }
1504
1505 static void ext4_da_release_space(struct inode *inode, int to_free)
1506 {
1507         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1508         struct ext4_inode_info *ei = EXT4_I(inode);
1509
1510         if (!to_free)
1511                 return;         /* Nothing to release, exit */
1512
1513         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515         trace_ext4_da_release_space(inode, to_free);
1516         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1517                 /*
1518                  * if there aren't enough reserved blocks, then the
1519                  * counter is messed up somewhere.  Since this
1520                  * function is called from invalidate page, it's
1521                  * harmless to return without any action.
1522                  */
1523                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1524                          "ino %lu, to_free %d with only %d reserved "
1525                          "data blocks", inode->i_ino, to_free,
1526                          ei->i_reserved_data_blocks);
1527                 WARN_ON(1);
1528                 to_free = ei->i_reserved_data_blocks;
1529         }
1530         ei->i_reserved_data_blocks -= to_free;
1531
1532         /* update fs dirty data blocks counter */
1533         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1534
1535         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536
1537         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1538 }
1539
1540 static void ext4_da_page_release_reservation(struct page *page,
1541                                              unsigned int offset,
1542                                              unsigned int length)
1543 {
1544         int to_release = 0, contiguous_blks = 0;
1545         struct buffer_head *head, *bh;
1546         unsigned int curr_off = 0;
1547         struct inode *inode = page->mapping->host;
1548         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1549         unsigned int stop = offset + length;
1550         int num_clusters;
1551         ext4_fsblk_t lblk;
1552
1553         BUG_ON(stop > PAGE_SIZE || stop < length);
1554
1555         head = page_buffers(page);
1556         bh = head;
1557         do {
1558                 unsigned int next_off = curr_off + bh->b_size;
1559
1560                 if (next_off > stop)
1561                         break;
1562
1563                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1564                         to_release++;
1565                         contiguous_blks++;
1566                         clear_buffer_delay(bh);
1567                 } else if (contiguous_blks) {
1568                         lblk = page->index <<
1569                                (PAGE_SHIFT - inode->i_blkbits);
1570                         lblk += (curr_off >> inode->i_blkbits) -
1571                                 contiguous_blks;
1572                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1573                         contiguous_blks = 0;
1574                 }
1575                 curr_off = next_off;
1576         } while ((bh = bh->b_this_page) != head);
1577
1578         if (contiguous_blks) {
1579                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1580                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1581                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1582         }
1583
1584         /* If we have released all the blocks belonging to a cluster, then we
1585          * need to release the reserved space for that cluster. */
1586         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1587         while (num_clusters > 0) {
1588                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1589                         ((num_clusters - 1) << sbi->s_cluster_bits);
1590                 if (sbi->s_cluster_ratio == 1 ||
1591                     !ext4_find_delalloc_cluster(inode, lblk))
1592                         ext4_da_release_space(inode, 1);
1593
1594                 num_clusters--;
1595         }
1596 }
1597
1598 /*
1599  * Delayed allocation stuff
1600  */
1601
1602 struct mpage_da_data {
1603         struct inode *inode;
1604         struct writeback_control *wbc;
1605
1606         pgoff_t first_page;     /* The first page to write */
1607         pgoff_t next_page;      /* Current page to examine */
1608         pgoff_t last_page;      /* Last page to examine */
1609         /*
1610          * Extent to map - this can be after first_page because that can be
1611          * fully mapped. We somewhat abuse m_flags to store whether the extent
1612          * is delalloc or unwritten.
1613          */
1614         struct ext4_map_blocks map;
1615         struct ext4_io_submit io_submit;        /* IO submission data */
1616 };
1617
1618 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1619                                        bool invalidate)
1620 {
1621         int nr_pages, i;
1622         pgoff_t index, end;
1623         struct pagevec pvec;
1624         struct inode *inode = mpd->inode;
1625         struct address_space *mapping = inode->i_mapping;
1626
1627         /* This is necessary when next_page == 0. */
1628         if (mpd->first_page >= mpd->next_page)
1629                 return;
1630
1631         index = mpd->first_page;
1632         end   = mpd->next_page - 1;
1633         if (invalidate) {
1634                 ext4_lblk_t start, last;
1635                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1636                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1637                 ext4_es_remove_extent(inode, start, last - start + 1);
1638         }
1639
1640         pagevec_init(&pvec, 0);
1641         while (index <= end) {
1642                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1643                 if (nr_pages == 0)
1644                         break;
1645                 for (i = 0; i < nr_pages; i++) {
1646                         struct page *page = pvec.pages[i];
1647                         if (page->index > end)
1648                                 break;
1649                         BUG_ON(!PageLocked(page));
1650                         BUG_ON(PageWriteback(page));
1651                         if (invalidate) {
1652                                 block_invalidatepage(page, 0, PAGE_SIZE);
1653                                 ClearPageUptodate(page);
1654                         }
1655                         unlock_page(page);
1656                 }
1657                 index = pvec.pages[nr_pages - 1]->index + 1;
1658                 pagevec_release(&pvec);
1659         }
1660 }
1661
1662 static void ext4_print_free_blocks(struct inode *inode)
1663 {
1664         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1665         struct super_block *sb = inode->i_sb;
1666         struct ext4_inode_info *ei = EXT4_I(inode);
1667
1668         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1669                EXT4_C2B(EXT4_SB(inode->i_sb),
1670                         ext4_count_free_clusters(sb)));
1671         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1672         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1673                (long long) EXT4_C2B(EXT4_SB(sb),
1674                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1675         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1676                (long long) EXT4_C2B(EXT4_SB(sb),
1677                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1678         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1679         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1680                  ei->i_reserved_data_blocks);
1681         return;
1682 }
1683
1684 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1685 {
1686         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1687 }
1688
1689 /*
1690  * This function is grabs code from the very beginning of
1691  * ext4_map_blocks, but assumes that the caller is from delayed write
1692  * time. This function looks up the requested blocks and sets the
1693  * buffer delay bit under the protection of i_data_sem.
1694  */
1695 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1696                               struct ext4_map_blocks *map,
1697                               struct buffer_head *bh)
1698 {
1699         struct extent_status es;
1700         int retval;
1701         sector_t invalid_block = ~((sector_t) 0xffff);
1702 #ifdef ES_AGGRESSIVE_TEST
1703         struct ext4_map_blocks orig_map;
1704
1705         memcpy(&orig_map, map, sizeof(*map));
1706 #endif
1707
1708         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1709                 invalid_block = ~0;
1710
1711         map->m_flags = 0;
1712         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1713                   "logical block %lu\n", inode->i_ino, map->m_len,
1714                   (unsigned long) map->m_lblk);
1715
1716         /* Lookup extent status tree firstly */
1717         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1718                 if (ext4_es_is_hole(&es)) {
1719                         retval = 0;
1720                         down_read(&EXT4_I(inode)->i_data_sem);
1721                         goto add_delayed;
1722                 }
1723
1724                 /*
1725                  * Delayed extent could be allocated by fallocate.
1726                  * So we need to check it.
1727                  */
1728                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1729                         map_bh(bh, inode->i_sb, invalid_block);
1730                         set_buffer_new(bh);
1731                         set_buffer_delay(bh);
1732                         return 0;
1733                 }
1734
1735                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1736                 retval = es.es_len - (iblock - es.es_lblk);
1737                 if (retval > map->m_len)
1738                         retval = map->m_len;
1739                 map->m_len = retval;
1740                 if (ext4_es_is_written(&es))
1741                         map->m_flags |= EXT4_MAP_MAPPED;
1742                 else if (ext4_es_is_unwritten(&es))
1743                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1744                 else
1745                         BUG_ON(1);
1746
1747 #ifdef ES_AGGRESSIVE_TEST
1748                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1749 #endif
1750                 return retval;
1751         }
1752
1753         /*
1754          * Try to see if we can get the block without requesting a new
1755          * file system block.
1756          */
1757         down_read(&EXT4_I(inode)->i_data_sem);
1758         if (ext4_has_inline_data(inode))
1759                 retval = 0;
1760         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1761                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1762         else
1763                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1764
1765 add_delayed:
1766         if (retval == 0) {
1767                 int ret;
1768                 /*
1769                  * XXX: __block_prepare_write() unmaps passed block,
1770                  * is it OK?
1771                  */
1772                 /*
1773                  * If the block was allocated from previously allocated cluster,
1774                  * then we don't need to reserve it again. However we still need
1775                  * to reserve metadata for every block we're going to write.
1776                  */
1777                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1778                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1779                         ret = ext4_da_reserve_space(inode);
1780                         if (ret) {
1781                                 /* not enough space to reserve */
1782                                 retval = ret;
1783                                 goto out_unlock;
1784                         }
1785                 }
1786
1787                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1788                                             ~0, EXTENT_STATUS_DELAYED);
1789                 if (ret) {
1790                         retval = ret;
1791                         goto out_unlock;
1792                 }
1793
1794                 map_bh(bh, inode->i_sb, invalid_block);
1795                 set_buffer_new(bh);
1796                 set_buffer_delay(bh);
1797         } else if (retval > 0) {
1798                 int ret;
1799                 unsigned int status;
1800
1801                 if (unlikely(retval != map->m_len)) {
1802                         ext4_warning(inode->i_sb,
1803                                      "ES len assertion failed for inode "
1804                                      "%lu: retval %d != map->m_len %d",
1805                                      inode->i_ino, retval, map->m_len);
1806                         WARN_ON(1);
1807                 }
1808
1809                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1810                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1811                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1812                                             map->m_pblk, status);
1813                 if (ret != 0)
1814                         retval = ret;
1815         }
1816
1817 out_unlock:
1818         up_read((&EXT4_I(inode)->i_data_sem));
1819
1820         return retval;
1821 }
1822
1823 /*
1824  * This is a special get_block_t callback which is used by
1825  * ext4_da_write_begin().  It will either return mapped block or
1826  * reserve space for a single block.
1827  *
1828  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1829  * We also have b_blocknr = -1 and b_bdev initialized properly
1830  *
1831  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1832  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1833  * initialized properly.
1834  */
1835 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1836                            struct buffer_head *bh, int create)
1837 {
1838         struct ext4_map_blocks map;
1839         int ret = 0;
1840
1841         BUG_ON(create == 0);
1842         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1843
1844         map.m_lblk = iblock;
1845         map.m_len = 1;
1846
1847         /*
1848          * first, we need to know whether the block is allocated already
1849          * preallocated blocks are unmapped but should treated
1850          * the same as allocated blocks.
1851          */
1852         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1853         if (ret <= 0)
1854                 return ret;
1855
1856         map_bh(bh, inode->i_sb, map.m_pblk);
1857         ext4_update_bh_state(bh, map.m_flags);
1858
1859         if (buffer_unwritten(bh)) {
1860                 /* A delayed write to unwritten bh should be marked
1861                  * new and mapped.  Mapped ensures that we don't do
1862                  * get_block multiple times when we write to the same
1863                  * offset and new ensures that we do proper zero out
1864                  * for partial write.
1865                  */
1866                 set_buffer_new(bh);
1867                 set_buffer_mapped(bh);
1868         }
1869         return 0;
1870 }
1871
1872 static int bget_one(handle_t *handle, struct buffer_head *bh)
1873 {
1874         get_bh(bh);
1875         return 0;
1876 }
1877
1878 static int bput_one(handle_t *handle, struct buffer_head *bh)
1879 {
1880         put_bh(bh);
1881         return 0;
1882 }
1883
1884 static int __ext4_journalled_writepage(struct page *page,
1885                                        unsigned int len)
1886 {
1887         struct address_space *mapping = page->mapping;
1888         struct inode *inode = mapping->host;
1889         struct buffer_head *page_bufs = NULL;
1890         handle_t *handle = NULL;
1891         int ret = 0, err = 0;
1892         int inline_data = ext4_has_inline_data(inode);
1893         struct buffer_head *inode_bh = NULL;
1894
1895         ClearPageChecked(page);
1896
1897         if (inline_data) {
1898                 BUG_ON(page->index != 0);
1899                 BUG_ON(len > ext4_get_max_inline_size(inode));
1900                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1901                 if (inode_bh == NULL)
1902                         goto out;
1903         } else {
1904                 page_bufs = page_buffers(page);
1905                 if (!page_bufs) {
1906                         BUG();
1907                         goto out;
1908                 }
1909                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1910                                        NULL, bget_one);
1911         }
1912         /*
1913          * We need to release the page lock before we start the
1914          * journal, so grab a reference so the page won't disappear
1915          * out from under us.
1916          */
1917         get_page(page);
1918         unlock_page(page);
1919
1920         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1921                                     ext4_writepage_trans_blocks(inode));
1922         if (IS_ERR(handle)) {
1923                 ret = PTR_ERR(handle);
1924                 put_page(page);
1925                 goto out_no_pagelock;
1926         }
1927         BUG_ON(!ext4_handle_valid(handle));
1928
1929         lock_page(page);
1930         put_page(page);
1931         if (page->mapping != mapping) {
1932                 /* The page got truncated from under us */
1933                 ext4_journal_stop(handle);
1934                 ret = 0;
1935                 goto out;
1936         }
1937
1938         if (inline_data) {
1939                 BUFFER_TRACE(inode_bh, "get write access");
1940                 ret = ext4_journal_get_write_access(handle, inode_bh);
1941
1942                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1943
1944         } else {
1945                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1946                                              do_journal_get_write_access);
1947
1948                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1949                                              write_end_fn);
1950         }
1951         if (ret == 0)
1952                 ret = err;
1953         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1954         err = ext4_journal_stop(handle);
1955         if (!ret)
1956                 ret = err;
1957
1958         if (!ext4_has_inline_data(inode))
1959                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1960                                        NULL, bput_one);
1961         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1962 out:
1963         unlock_page(page);
1964 out_no_pagelock:
1965         brelse(inode_bh);
1966         return ret;
1967 }
1968
1969 /*
1970  * Note that we don't need to start a transaction unless we're journaling data
1971  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1972  * need to file the inode to the transaction's list in ordered mode because if
1973  * we are writing back data added by write(), the inode is already there and if
1974  * we are writing back data modified via mmap(), no one guarantees in which
1975  * transaction the data will hit the disk. In case we are journaling data, we
1976  * cannot start transaction directly because transaction start ranks above page
1977  * lock so we have to do some magic.
1978  *
1979  * This function can get called via...
1980  *   - ext4_writepages after taking page lock (have journal handle)
1981  *   - journal_submit_inode_data_buffers (no journal handle)
1982  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1983  *   - grab_page_cache when doing write_begin (have journal handle)
1984  *
1985  * We don't do any block allocation in this function. If we have page with
1986  * multiple blocks we need to write those buffer_heads that are mapped. This
1987  * is important for mmaped based write. So if we do with blocksize 1K
1988  * truncate(f, 1024);
1989  * a = mmap(f, 0, 4096);
1990  * a[0] = 'a';
1991  * truncate(f, 4096);
1992  * we have in the page first buffer_head mapped via page_mkwrite call back
1993  * but other buffer_heads would be unmapped but dirty (dirty done via the
1994  * do_wp_page). So writepage should write the first block. If we modify
1995  * the mmap area beyond 1024 we will again get a page_fault and the
1996  * page_mkwrite callback will do the block allocation and mark the
1997  * buffer_heads mapped.
1998  *
1999  * We redirty the page if we have any buffer_heads that is either delay or
2000  * unwritten in the page.
2001  *
2002  * We can get recursively called as show below.
2003  *
2004  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2005  *              ext4_writepage()
2006  *
2007  * But since we don't do any block allocation we should not deadlock.
2008  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2009  */
2010 static int ext4_writepage(struct page *page,
2011                           struct writeback_control *wbc)
2012 {
2013         int ret = 0;
2014         loff_t size;
2015         unsigned int len;
2016         struct buffer_head *page_bufs = NULL;
2017         struct inode *inode = page->mapping->host;
2018         struct ext4_io_submit io_submit;
2019         bool keep_towrite = false;
2020
2021         trace_ext4_writepage(page);
2022         size = i_size_read(inode);
2023         if (page->index == size >> PAGE_SHIFT)
2024                 len = size & ~PAGE_MASK;
2025         else
2026                 len = PAGE_SIZE;
2027
2028         page_bufs = page_buffers(page);
2029         /*
2030          * We cannot do block allocation or other extent handling in this
2031          * function. If there are buffers needing that, we have to redirty
2032          * the page. But we may reach here when we do a journal commit via
2033          * journal_submit_inode_data_buffers() and in that case we must write
2034          * allocated buffers to achieve data=ordered mode guarantees.
2035          *
2036          * Also, if there is only one buffer per page (the fs block
2037          * size == the page size), if one buffer needs block
2038          * allocation or needs to modify the extent tree to clear the
2039          * unwritten flag, we know that the page can't be written at
2040          * all, so we might as well refuse the write immediately.
2041          * Unfortunately if the block size != page size, we can't as
2042          * easily detect this case using ext4_walk_page_buffers(), but
2043          * for the extremely common case, this is an optimization that
2044          * skips a useless round trip through ext4_bio_write_page().
2045          */
2046         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2047                                    ext4_bh_delay_or_unwritten)) {
2048                 redirty_page_for_writepage(wbc, page);
2049                 if ((current->flags & PF_MEMALLOC) ||
2050                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2051                         /*
2052                          * For memory cleaning there's no point in writing only
2053                          * some buffers. So just bail out. Warn if we came here
2054                          * from direct reclaim.
2055                          */
2056                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2057                                                         == PF_MEMALLOC);
2058                         unlock_page(page);
2059                         return 0;
2060                 }
2061                 keep_towrite = true;
2062         }
2063
2064         if (PageChecked(page) && ext4_should_journal_data(inode))
2065                 /*
2066                  * It's mmapped pagecache.  Add buffers and journal it.  There
2067                  * doesn't seem much point in redirtying the page here.
2068                  */
2069                 return __ext4_journalled_writepage(page, len);
2070
2071         ext4_io_submit_init(&io_submit, wbc);
2072         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2073         if (!io_submit.io_end) {
2074                 redirty_page_for_writepage(wbc, page);
2075                 unlock_page(page);
2076                 return -ENOMEM;
2077         }
2078         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2079         ext4_io_submit(&io_submit);
2080         /* Drop io_end reference we got from init */
2081         ext4_put_io_end_defer(io_submit.io_end);
2082         return ret;
2083 }
2084
2085 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2086 {
2087         int len;
2088         loff_t size = i_size_read(mpd->inode);
2089         int err;
2090
2091         BUG_ON(page->index != mpd->first_page);
2092         if (page->index == size >> PAGE_SHIFT)
2093                 len = size & ~PAGE_MASK;
2094         else
2095                 len = PAGE_SIZE;
2096         clear_page_dirty_for_io(page);
2097         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2098         if (!err)
2099                 mpd->wbc->nr_to_write--;
2100         mpd->first_page++;
2101
2102         return err;
2103 }
2104
2105 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2106
2107 /*
2108  * mballoc gives us at most this number of blocks...
2109  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2110  * The rest of mballoc seems to handle chunks up to full group size.
2111  */
2112 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2113
2114 /*
2115  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2116  *
2117  * @mpd - extent of blocks
2118  * @lblk - logical number of the block in the file
2119  * @bh - buffer head we want to add to the extent
2120  *
2121  * The function is used to collect contig. blocks in the same state. If the
2122  * buffer doesn't require mapping for writeback and we haven't started the
2123  * extent of buffers to map yet, the function returns 'true' immediately - the
2124  * caller can write the buffer right away. Otherwise the function returns true
2125  * if the block has been added to the extent, false if the block couldn't be
2126  * added.
2127  */
2128 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2129                                    struct buffer_head *bh)
2130 {
2131         struct ext4_map_blocks *map = &mpd->map;
2132
2133         /* Buffer that doesn't need mapping for writeback? */
2134         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2135             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2136                 /* So far no extent to map => we write the buffer right away */
2137                 if (map->m_len == 0)
2138                         return true;
2139                 return false;
2140         }
2141
2142         /* First block in the extent? */
2143         if (map->m_len == 0) {
2144                 map->m_lblk = lblk;
2145                 map->m_len = 1;
2146                 map->m_flags = bh->b_state & BH_FLAGS;
2147                 return true;
2148         }
2149
2150         /* Don't go larger than mballoc is willing to allocate */
2151         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2152                 return false;
2153
2154         /* Can we merge the block to our big extent? */
2155         if (lblk == map->m_lblk + map->m_len &&
2156             (bh->b_state & BH_FLAGS) == map->m_flags) {
2157                 map->m_len++;
2158                 return true;
2159         }
2160         return false;
2161 }
2162
2163 /*
2164  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2165  *
2166  * @mpd - extent of blocks for mapping
2167  * @head - the first buffer in the page
2168  * @bh - buffer we should start processing from
2169  * @lblk - logical number of the block in the file corresponding to @bh
2170  *
2171  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2172  * the page for IO if all buffers in this page were mapped and there's no
2173  * accumulated extent of buffers to map or add buffers in the page to the
2174  * extent of buffers to map. The function returns 1 if the caller can continue
2175  * by processing the next page, 0 if it should stop adding buffers to the
2176  * extent to map because we cannot extend it anymore. It can also return value
2177  * < 0 in case of error during IO submission.
2178  */
2179 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2180                                    struct buffer_head *head,
2181                                    struct buffer_head *bh,
2182                                    ext4_lblk_t lblk)
2183 {
2184         struct inode *inode = mpd->inode;
2185         int err;
2186         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2187                                                         >> inode->i_blkbits;
2188
2189         do {
2190                 BUG_ON(buffer_locked(bh));
2191
2192                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2193                         /* Found extent to map? */
2194                         if (mpd->map.m_len)
2195                                 return 0;
2196                         /* Everything mapped so far and we hit EOF */
2197                         break;
2198                 }
2199         } while (lblk++, (bh = bh->b_this_page) != head);
2200         /* So far everything mapped? Submit the page for IO. */
2201         if (mpd->map.m_len == 0) {
2202                 err = mpage_submit_page(mpd, head->b_page);
2203                 if (err < 0)
2204                         return err;
2205         }
2206         return lblk < blocks;
2207 }
2208
2209 /*
2210  * mpage_map_buffers - update buffers corresponding to changed extent and
2211  *                     submit fully mapped pages for IO
2212  *
2213  * @mpd - description of extent to map, on return next extent to map
2214  *
2215  * Scan buffers corresponding to changed extent (we expect corresponding pages
2216  * to be already locked) and update buffer state according to new extent state.
2217  * We map delalloc buffers to their physical location, clear unwritten bits,
2218  * and mark buffers as uninit when we perform writes to unwritten extents
2219  * and do extent conversion after IO is finished. If the last page is not fully
2220  * mapped, we update @map to the next extent in the last page that needs
2221  * mapping. Otherwise we submit the page for IO.
2222  */
2223 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2224 {
2225         struct pagevec pvec;
2226         int nr_pages, i;
2227         struct inode *inode = mpd->inode;
2228         struct buffer_head *head, *bh;
2229         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2230         pgoff_t start, end;
2231         ext4_lblk_t lblk;
2232         sector_t pblock;
2233         int err;
2234
2235         start = mpd->map.m_lblk >> bpp_bits;
2236         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2237         lblk = start << bpp_bits;
2238         pblock = mpd->map.m_pblk;
2239
2240         pagevec_init(&pvec, 0);
2241         while (start <= end) {
2242                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2243                                           PAGEVEC_SIZE);
2244                 if (nr_pages == 0)
2245                         break;
2246                 for (i = 0; i < nr_pages; i++) {
2247                         struct page *page = pvec.pages[i];
2248
2249                         if (page->index > end)
2250                                 break;
2251                         /* Up to 'end' pages must be contiguous */
2252                         BUG_ON(page->index != start);
2253                         bh = head = page_buffers(page);
2254                         do {
2255                                 if (lblk < mpd->map.m_lblk)
2256                                         continue;
2257                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2258                                         /*
2259                                          * Buffer after end of mapped extent.
2260                                          * Find next buffer in the page to map.
2261                                          */
2262                                         mpd->map.m_len = 0;
2263                                         mpd->map.m_flags = 0;
2264                                         /*
2265                                          * FIXME: If dioread_nolock supports
2266                                          * blocksize < pagesize, we need to make
2267                                          * sure we add size mapped so far to
2268                                          * io_end->size as the following call
2269                                          * can submit the page for IO.
2270                                          */
2271                                         err = mpage_process_page_bufs(mpd, head,
2272                                                                       bh, lblk);
2273                                         pagevec_release(&pvec);
2274                                         if (err > 0)
2275                                                 err = 0;
2276                                         return err;
2277                                 }
2278                                 if (buffer_delay(bh)) {
2279                                         clear_buffer_delay(bh);
2280                                         bh->b_blocknr = pblock++;
2281                                 }
2282                                 clear_buffer_unwritten(bh);
2283                         } while (lblk++, (bh = bh->b_this_page) != head);
2284
2285                         /*
2286                          * FIXME: This is going to break if dioread_nolock
2287                          * supports blocksize < pagesize as we will try to
2288                          * convert potentially unmapped parts of inode.
2289                          */
2290                         mpd->io_submit.io_end->size += PAGE_SIZE;
2291                         /* Page fully mapped - let IO run! */
2292                         err = mpage_submit_page(mpd, page);
2293                         if (err < 0) {
2294                                 pagevec_release(&pvec);
2295                                 return err;
2296                         }
2297                         start++;
2298                 }
2299                 pagevec_release(&pvec);
2300         }
2301         /* Extent fully mapped and matches with page boundary. We are done. */
2302         mpd->map.m_len = 0;
2303         mpd->map.m_flags = 0;
2304         return 0;
2305 }
2306
2307 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2308 {
2309         struct inode *inode = mpd->inode;
2310         struct ext4_map_blocks *map = &mpd->map;
2311         int get_blocks_flags;
2312         int err, dioread_nolock;
2313
2314         trace_ext4_da_write_pages_extent(inode, map);
2315         /*
2316          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2317          * to convert an unwritten extent to be initialized (in the case
2318          * where we have written into one or more preallocated blocks).  It is
2319          * possible that we're going to need more metadata blocks than
2320          * previously reserved. However we must not fail because we're in
2321          * writeback and there is nothing we can do about it so it might result
2322          * in data loss.  So use reserved blocks to allocate metadata if
2323          * possible.
2324          *
2325          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2326          * the blocks in question are delalloc blocks.  This indicates
2327          * that the blocks and quotas has already been checked when
2328          * the data was copied into the page cache.
2329          */
2330         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2331                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2332                            EXT4_GET_BLOCKS_IO_SUBMIT;
2333         dioread_nolock = ext4_should_dioread_nolock(inode);
2334         if (dioread_nolock)
2335                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2336         if (map->m_flags & (1 << BH_Delay))
2337                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2338
2339         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2340         if (err < 0)
2341                 return err;
2342         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2343                 if (!mpd->io_submit.io_end->handle &&
2344                     ext4_handle_valid(handle)) {
2345                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2346                         handle->h_rsv_handle = NULL;
2347                 }
2348                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2349         }
2350
2351         BUG_ON(map->m_len == 0);
2352         if (map->m_flags & EXT4_MAP_NEW) {
2353                 struct block_device *bdev = inode->i_sb->s_bdev;
2354                 int i;
2355
2356                 for (i = 0; i < map->m_len; i++)
2357                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2358         }
2359         return 0;
2360 }
2361
2362 /*
2363  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2364  *                               mpd->len and submit pages underlying it for IO
2365  *
2366  * @handle - handle for journal operations
2367  * @mpd - extent to map
2368  * @give_up_on_write - we set this to true iff there is a fatal error and there
2369  *                     is no hope of writing the data. The caller should discard
2370  *                     dirty pages to avoid infinite loops.
2371  *
2372  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2373  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2374  * them to initialized or split the described range from larger unwritten
2375  * extent. Note that we need not map all the described range since allocation
2376  * can return less blocks or the range is covered by more unwritten extents. We
2377  * cannot map more because we are limited by reserved transaction credits. On
2378  * the other hand we always make sure that the last touched page is fully
2379  * mapped so that it can be written out (and thus forward progress is
2380  * guaranteed). After mapping we submit all mapped pages for IO.
2381  */
2382 static int mpage_map_and_submit_extent(handle_t *handle,
2383                                        struct mpage_da_data *mpd,
2384                                        bool *give_up_on_write)
2385 {
2386         struct inode *inode = mpd->inode;
2387         struct ext4_map_blocks *map = &mpd->map;
2388         int err;
2389         loff_t disksize;
2390         int progress = 0;
2391
2392         mpd->io_submit.io_end->offset =
2393                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2394         do {
2395                 err = mpage_map_one_extent(handle, mpd);
2396                 if (err < 0) {
2397                         struct super_block *sb = inode->i_sb;
2398
2399                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2400                                 goto invalidate_dirty_pages;
2401                         /*
2402                          * Let the uper layers retry transient errors.
2403                          * In the case of ENOSPC, if ext4_count_free_blocks()
2404                          * is non-zero, a commit should free up blocks.
2405                          */
2406                         if ((err == -ENOMEM) ||
2407                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2408                                 if (progress)
2409                                         goto update_disksize;
2410                                 return err;
2411                         }
2412                         ext4_msg(sb, KERN_CRIT,
2413                                  "Delayed block allocation failed for "
2414                                  "inode %lu at logical offset %llu with"
2415                                  " max blocks %u with error %d",
2416                                  inode->i_ino,
2417                                  (unsigned long long)map->m_lblk,
2418                                  (unsigned)map->m_len, -err);
2419                         ext4_msg(sb, KERN_CRIT,
2420                                  "This should not happen!! Data will "
2421                                  "be lost\n");
2422                         if (err == -ENOSPC)
2423                                 ext4_print_free_blocks(inode);
2424                 invalidate_dirty_pages:
2425                         *give_up_on_write = true;
2426                         return err;
2427                 }
2428                 progress = 1;
2429                 /*
2430                  * Update buffer state, submit mapped pages, and get us new
2431                  * extent to map
2432                  */
2433                 err = mpage_map_and_submit_buffers(mpd);
2434                 if (err < 0)
2435                         goto update_disksize;
2436         } while (map->m_len);
2437
2438 update_disksize:
2439         /*
2440          * Update on-disk size after IO is submitted.  Races with
2441          * truncate are avoided by checking i_size under i_data_sem.
2442          */
2443         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2444         if (disksize > EXT4_I(inode)->i_disksize) {
2445                 int err2;
2446                 loff_t i_size;
2447
2448                 down_write(&EXT4_I(inode)->i_data_sem);
2449                 i_size = i_size_read(inode);
2450                 if (disksize > i_size)
2451                         disksize = i_size;
2452                 if (disksize > EXT4_I(inode)->i_disksize)
2453                         EXT4_I(inode)->i_disksize = disksize;
2454                 err2 = ext4_mark_inode_dirty(handle, inode);
2455                 up_write(&EXT4_I(inode)->i_data_sem);
2456                 if (err2)
2457                         ext4_error(inode->i_sb,
2458                                    "Failed to mark inode %lu dirty",
2459                                    inode->i_ino);
2460                 if (!err)
2461                         err = err2;
2462         }
2463         return err;
2464 }
2465
2466 /*
2467  * Calculate the total number of credits to reserve for one writepages
2468  * iteration. This is called from ext4_writepages(). We map an extent of
2469  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2470  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2471  * bpp - 1 blocks in bpp different extents.
2472  */
2473 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2474 {
2475         int bpp = ext4_journal_blocks_per_page(inode);
2476
2477         return ext4_meta_trans_blocks(inode,
2478                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2479 }
2480
2481 /*
2482  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2483  *                               and underlying extent to map
2484  *
2485  * @mpd - where to look for pages
2486  *
2487  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2488  * IO immediately. When we find a page which isn't mapped we start accumulating
2489  * extent of buffers underlying these pages that needs mapping (formed by
2490  * either delayed or unwritten buffers). We also lock the pages containing
2491  * these buffers. The extent found is returned in @mpd structure (starting at
2492  * mpd->lblk with length mpd->len blocks).
2493  *
2494  * Note that this function can attach bios to one io_end structure which are
2495  * neither logically nor physically contiguous. Although it may seem as an
2496  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2497  * case as we need to track IO to all buffers underlying a page in one io_end.
2498  */
2499 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2500 {
2501         struct address_space *mapping = mpd->inode->i_mapping;
2502         struct pagevec pvec;
2503         unsigned int nr_pages;
2504         long left = mpd->wbc->nr_to_write;
2505         pgoff_t index = mpd->first_page;
2506         pgoff_t end = mpd->last_page;
2507         int tag;
2508         int i, err = 0;
2509         int blkbits = mpd->inode->i_blkbits;
2510         ext4_lblk_t lblk;
2511         struct buffer_head *head;
2512
2513         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2514                 tag = PAGECACHE_TAG_TOWRITE;
2515         else
2516                 tag = PAGECACHE_TAG_DIRTY;
2517
2518         pagevec_init(&pvec, 0);
2519         mpd->map.m_len = 0;
2520         mpd->next_page = index;
2521         while (index <= end) {
2522                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2523                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2524                 if (nr_pages == 0)
2525                         goto out;
2526
2527                 for (i = 0; i < nr_pages; i++) {
2528                         struct page *page = pvec.pages[i];
2529
2530                         /*
2531                          * At this point, the page may be truncated or
2532                          * invalidated (changing page->mapping to NULL), or
2533                          * even swizzled back from swapper_space to tmpfs file
2534                          * mapping. However, page->index will not change
2535                          * because we have a reference on the page.
2536                          */
2537                         if (page->index > end)
2538                                 goto out;
2539
2540                         /*
2541                          * Accumulated enough dirty pages? This doesn't apply
2542                          * to WB_SYNC_ALL mode. For integrity sync we have to
2543                          * keep going because someone may be concurrently
2544                          * dirtying pages, and we might have synced a lot of
2545                          * newly appeared dirty pages, but have not synced all
2546                          * of the old dirty pages.
2547                          */
2548                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2549                                 goto out;
2550
2551                         /* If we can't merge this page, we are done. */
2552                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2553                                 goto out;
2554
2555                         lock_page(page);
2556                         /*
2557                          * If the page is no longer dirty, or its mapping no
2558                          * longer corresponds to inode we are writing (which
2559                          * means it has been truncated or invalidated), or the
2560                          * page is already under writeback and we are not doing
2561                          * a data integrity writeback, skip the page
2562                          */
2563                         if (!PageDirty(page) ||
2564                             (PageWriteback(page) &&
2565                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2566                             unlikely(page->mapping != mapping)) {
2567                                 unlock_page(page);
2568                                 continue;
2569                         }
2570
2571                         wait_on_page_writeback(page);
2572                         BUG_ON(PageWriteback(page));
2573
2574                         if (mpd->map.m_len == 0)
2575                                 mpd->first_page = page->index;
2576                         mpd->next_page = page->index + 1;
2577                         /* Add all dirty buffers to mpd */
2578                         lblk = ((ext4_lblk_t)page->index) <<
2579                                 (PAGE_SHIFT - blkbits);
2580                         head = page_buffers(page);
2581                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2582                         if (err <= 0)
2583                                 goto out;
2584                         err = 0;
2585                         left--;
2586                 }
2587                 pagevec_release(&pvec);
2588                 cond_resched();
2589         }
2590         return 0;
2591 out:
2592         pagevec_release(&pvec);
2593         return err;
2594 }
2595
2596 static int __writepage(struct page *page, struct writeback_control *wbc,
2597                        void *data)
2598 {
2599         struct address_space *mapping = data;
2600         int ret = ext4_writepage(page, wbc);
2601         mapping_set_error(mapping, ret);
2602         return ret;
2603 }
2604
2605 static int ext4_writepages(struct address_space *mapping,
2606                            struct writeback_control *wbc)
2607 {
2608         pgoff_t writeback_index = 0;
2609         long nr_to_write = wbc->nr_to_write;
2610         int range_whole = 0;
2611         int cycled = 1;
2612         handle_t *handle = NULL;
2613         struct mpage_da_data mpd;
2614         struct inode *inode = mapping->host;
2615         int needed_blocks, rsv_blocks = 0, ret = 0;
2616         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2617         bool done;
2618         struct blk_plug plug;
2619         bool give_up_on_write = false;
2620
2621         percpu_down_read(&sbi->s_journal_flag_rwsem);
2622         trace_ext4_writepages(inode, wbc);
2623
2624         if (dax_mapping(mapping)) {
2625                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2626                                                   wbc);
2627                 goto out_writepages;
2628         }
2629
2630         /*
2631          * No pages to write? This is mainly a kludge to avoid starting
2632          * a transaction for special inodes like journal inode on last iput()
2633          * because that could violate lock ordering on umount
2634          */
2635         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2636                 goto out_writepages;
2637
2638         if (ext4_should_journal_data(inode)) {
2639                 struct blk_plug plug;
2640
2641                 blk_start_plug(&plug);
2642                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2643                 blk_finish_plug(&plug);
2644                 goto out_writepages;
2645         }
2646
2647         /*
2648          * If the filesystem has aborted, it is read-only, so return
2649          * right away instead of dumping stack traces later on that
2650          * will obscure the real source of the problem.  We test
2651          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2652          * the latter could be true if the filesystem is mounted
2653          * read-only, and in that case, ext4_writepages should
2654          * *never* be called, so if that ever happens, we would want
2655          * the stack trace.
2656          */
2657         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2658                 ret = -EROFS;
2659                 goto out_writepages;
2660         }
2661
2662         if (ext4_should_dioread_nolock(inode)) {
2663                 /*
2664                  * We may need to convert up to one extent per block in
2665                  * the page and we may dirty the inode.
2666                  */
2667                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2668         }
2669
2670         /*
2671          * If we have inline data and arrive here, it means that
2672          * we will soon create the block for the 1st page, so
2673          * we'd better clear the inline data here.
2674          */
2675         if (ext4_has_inline_data(inode)) {
2676                 /* Just inode will be modified... */
2677                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2678                 if (IS_ERR(handle)) {
2679                         ret = PTR_ERR(handle);
2680                         goto out_writepages;
2681                 }
2682                 BUG_ON(ext4_test_inode_state(inode,
2683                                 EXT4_STATE_MAY_INLINE_DATA));
2684                 ext4_destroy_inline_data(handle, inode);
2685                 ext4_journal_stop(handle);
2686         }
2687
2688         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2689                 range_whole = 1;
2690
2691         if (wbc->range_cyclic) {
2692                 writeback_index = mapping->writeback_index;
2693                 if (writeback_index)
2694                         cycled = 0;
2695                 mpd.first_page = writeback_index;
2696                 mpd.last_page = -1;
2697         } else {
2698                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2699                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2700         }
2701
2702         mpd.inode = inode;
2703         mpd.wbc = wbc;
2704         ext4_io_submit_init(&mpd.io_submit, wbc);
2705 retry:
2706         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2707                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2708         done = false;
2709         blk_start_plug(&plug);
2710         while (!done && mpd.first_page <= mpd.last_page) {
2711                 /* For each extent of pages we use new io_end */
2712                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2713                 if (!mpd.io_submit.io_end) {
2714                         ret = -ENOMEM;
2715                         break;
2716                 }
2717
2718                 /*
2719                  * We have two constraints: We find one extent to map and we
2720                  * must always write out whole page (makes a difference when
2721                  * blocksize < pagesize) so that we don't block on IO when we
2722                  * try to write out the rest of the page. Journalled mode is
2723                  * not supported by delalloc.
2724                  */
2725                 BUG_ON(ext4_should_journal_data(inode));
2726                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2727
2728                 /* start a new transaction */
2729                 handle = ext4_journal_start_with_reserve(inode,
2730                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2731                 if (IS_ERR(handle)) {
2732                         ret = PTR_ERR(handle);
2733                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2734                                "%ld pages, ino %lu; err %d", __func__,
2735                                 wbc->nr_to_write, inode->i_ino, ret);
2736                         /* Release allocated io_end */
2737                         ext4_put_io_end(mpd.io_submit.io_end);
2738                         break;
2739                 }
2740
2741                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2742                 ret = mpage_prepare_extent_to_map(&mpd);
2743                 if (!ret) {
2744                         if (mpd.map.m_len)
2745                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2746                                         &give_up_on_write);
2747                         else {
2748                                 /*
2749                                  * We scanned the whole range (or exhausted
2750                                  * nr_to_write), submitted what was mapped and
2751                                  * didn't find anything needing mapping. We are
2752                                  * done.
2753                                  */
2754                                 done = true;
2755                         }
2756                 }
2757                 ext4_journal_stop(handle);
2758                 /* Submit prepared bio */
2759                 ext4_io_submit(&mpd.io_submit);
2760                 /* Unlock pages we didn't use */
2761                 mpage_release_unused_pages(&mpd, give_up_on_write);
2762                 /* Drop our io_end reference we got from init */
2763                 ext4_put_io_end(mpd.io_submit.io_end);
2764
2765                 if (ret == -ENOSPC && sbi->s_journal) {
2766                         /*
2767                          * Commit the transaction which would
2768                          * free blocks released in the transaction
2769                          * and try again
2770                          */
2771                         jbd2_journal_force_commit_nested(sbi->s_journal);
2772                         ret = 0;
2773                         continue;
2774                 }
2775                 /* Fatal error - ENOMEM, EIO... */
2776                 if (ret)
2777                         break;
2778         }
2779         blk_finish_plug(&plug);
2780         if (!ret && !cycled && wbc->nr_to_write > 0) {
2781                 cycled = 1;
2782                 mpd.last_page = writeback_index - 1;
2783                 mpd.first_page = 0;
2784                 goto retry;
2785         }
2786
2787         /* Update index */
2788         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2789                 /*
2790                  * Set the writeback_index so that range_cyclic
2791                  * mode will write it back later
2792                  */
2793                 mapping->writeback_index = mpd.first_page;
2794
2795 out_writepages:
2796         trace_ext4_writepages_result(inode, wbc, ret,
2797                                      nr_to_write - wbc->nr_to_write);
2798         percpu_up_read(&sbi->s_journal_flag_rwsem);
2799         return ret;
2800 }
2801
2802 static int ext4_nonda_switch(struct super_block *sb)
2803 {
2804         s64 free_clusters, dirty_clusters;
2805         struct ext4_sb_info *sbi = EXT4_SB(sb);
2806
2807         /*
2808          * switch to non delalloc mode if we are running low
2809          * on free block. The free block accounting via percpu
2810          * counters can get slightly wrong with percpu_counter_batch getting
2811          * accumulated on each CPU without updating global counters
2812          * Delalloc need an accurate free block accounting. So switch
2813          * to non delalloc when we are near to error range.
2814          */
2815         free_clusters =
2816                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2817         dirty_clusters =
2818                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2819         /*
2820          * Start pushing delalloc when 1/2 of free blocks are dirty.
2821          */
2822         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2823                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2824
2825         if (2 * free_clusters < 3 * dirty_clusters ||
2826             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2827                 /*
2828                  * free block count is less than 150% of dirty blocks
2829                  * or free blocks is less than watermark
2830                  */
2831                 return 1;
2832         }
2833         return 0;
2834 }
2835
2836 /* We always reserve for an inode update; the superblock could be there too */
2837 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2838 {
2839         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2840                 return 1;
2841
2842         if (pos + len <= 0x7fffffffULL)
2843                 return 1;
2844
2845         /* We might need to update the superblock to set LARGE_FILE */
2846         return 2;
2847 }
2848
2849 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2850                                loff_t pos, unsigned len, unsigned flags,
2851                                struct page **pagep, void **fsdata)
2852 {
2853         int ret, retries = 0;
2854         struct page *page;
2855         pgoff_t index;
2856         struct inode *inode = mapping->host;
2857         handle_t *handle;
2858
2859         index = pos >> PAGE_SHIFT;
2860
2861         if (ext4_nonda_switch(inode->i_sb)) {
2862                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2863                 return ext4_write_begin(file, mapping, pos,
2864                                         len, flags, pagep, fsdata);
2865         }
2866         *fsdata = (void *)0;
2867         trace_ext4_da_write_begin(inode, pos, len, flags);
2868
2869         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2870                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2871                                                       pos, len, flags,
2872                                                       pagep, fsdata);
2873                 if (ret < 0)
2874                         return ret;
2875                 if (ret == 1)
2876                         return 0;
2877         }
2878
2879         /*
2880          * grab_cache_page_write_begin() can take a long time if the
2881          * system is thrashing due to memory pressure, or if the page
2882          * is being written back.  So grab it first before we start
2883          * the transaction handle.  This also allows us to allocate
2884          * the page (if needed) without using GFP_NOFS.
2885          */
2886 retry_grab:
2887         page = grab_cache_page_write_begin(mapping, index, flags);
2888         if (!page)
2889                 return -ENOMEM;
2890         unlock_page(page);
2891
2892         /*
2893          * With delayed allocation, we don't log the i_disksize update
2894          * if there is delayed block allocation. But we still need
2895          * to journalling the i_disksize update if writes to the end
2896          * of file which has an already mapped buffer.
2897          */
2898 retry_journal:
2899         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2900                                 ext4_da_write_credits(inode, pos, len));
2901         if (IS_ERR(handle)) {
2902                 put_page(page);
2903                 return PTR_ERR(handle);
2904         }
2905
2906         lock_page(page);
2907         if (page->mapping != mapping) {
2908                 /* The page got truncated from under us */
2909                 unlock_page(page);
2910                 put_page(page);
2911                 ext4_journal_stop(handle);
2912                 goto retry_grab;
2913         }
2914         /* In case writeback began while the page was unlocked */
2915         wait_for_stable_page(page);
2916
2917 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2918         ret = ext4_block_write_begin(page, pos, len,
2919                                      ext4_da_get_block_prep);
2920 #else
2921         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2922 #endif
2923         if (ret < 0) {
2924                 unlock_page(page);
2925                 ext4_journal_stop(handle);
2926                 /*
2927                  * block_write_begin may have instantiated a few blocks
2928                  * outside i_size.  Trim these off again. Don't need
2929                  * i_size_read because we hold i_mutex.
2930                  */
2931                 if (pos + len > inode->i_size)
2932                         ext4_truncate_failed_write(inode);
2933
2934                 if (ret == -ENOSPC &&
2935                     ext4_should_retry_alloc(inode->i_sb, &retries))
2936                         goto retry_journal;
2937
2938                 put_page(page);
2939                 return ret;
2940         }
2941
2942         *pagep = page;
2943         return ret;
2944 }
2945
2946 /*
2947  * Check if we should update i_disksize
2948  * when write to the end of file but not require block allocation
2949  */
2950 static int ext4_da_should_update_i_disksize(struct page *page,
2951                                             unsigned long offset)
2952 {
2953         struct buffer_head *bh;
2954         struct inode *inode = page->mapping->host;
2955         unsigned int idx;
2956         int i;
2957
2958         bh = page_buffers(page);
2959         idx = offset >> inode->i_blkbits;
2960
2961         for (i = 0; i < idx; i++)
2962                 bh = bh->b_this_page;
2963
2964         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2965                 return 0;
2966         return 1;
2967 }
2968
2969 static int ext4_da_write_end(struct file *file,
2970                              struct address_space *mapping,
2971                              loff_t pos, unsigned len, unsigned copied,
2972                              struct page *page, void *fsdata)
2973 {
2974         struct inode *inode = mapping->host;
2975         int ret = 0, ret2;
2976         handle_t *handle = ext4_journal_current_handle();
2977         loff_t new_i_size;
2978         unsigned long start, end;
2979         int write_mode = (int)(unsigned long)fsdata;
2980
2981         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2982                 return ext4_write_end(file, mapping, pos,
2983                                       len, copied, page, fsdata);
2984
2985         trace_ext4_da_write_end(inode, pos, len, copied);
2986         start = pos & (PAGE_SIZE - 1);
2987         end = start + copied - 1;
2988
2989         /*
2990          * generic_write_end() will run mark_inode_dirty() if i_size
2991          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2992          * into that.
2993          */
2994         new_i_size = pos + copied;
2995         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2996                 if (ext4_has_inline_data(inode) ||
2997                     ext4_da_should_update_i_disksize(page, end)) {
2998                         ext4_update_i_disksize(inode, new_i_size);
2999                         /* We need to mark inode dirty even if
3000                          * new_i_size is less that inode->i_size
3001                          * bu greater than i_disksize.(hint delalloc)
3002                          */
3003                         ext4_mark_inode_dirty(handle, inode);
3004                 }
3005         }
3006
3007         if (write_mode != CONVERT_INLINE_DATA &&
3008             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3009             ext4_has_inline_data(inode))
3010                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3011                                                      page);
3012         else
3013                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3014                                                         page, fsdata);
3015
3016         copied = ret2;
3017         if (ret2 < 0)
3018                 ret = ret2;
3019         ret2 = ext4_journal_stop(handle);
3020         if (!ret)
3021                 ret = ret2;
3022
3023         return ret ? ret : copied;
3024 }
3025
3026 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3027                                    unsigned int length)
3028 {
3029         /*
3030          * Drop reserved blocks
3031          */
3032         BUG_ON(!PageLocked(page));
3033         if (!page_has_buffers(page))
3034                 goto out;
3035
3036         ext4_da_page_release_reservation(page, offset, length);
3037
3038 out:
3039         ext4_invalidatepage(page, offset, length);
3040
3041         return;
3042 }
3043
3044 /*
3045  * Force all delayed allocation blocks to be allocated for a given inode.
3046  */
3047 int ext4_alloc_da_blocks(struct inode *inode)
3048 {
3049         trace_ext4_alloc_da_blocks(inode);
3050
3051         if (!EXT4_I(inode)->i_reserved_data_blocks)
3052                 return 0;
3053
3054         /*
3055          * We do something simple for now.  The filemap_flush() will
3056          * also start triggering a write of the data blocks, which is
3057          * not strictly speaking necessary (and for users of
3058          * laptop_mode, not even desirable).  However, to do otherwise
3059          * would require replicating code paths in:
3060          *
3061          * ext4_writepages() ->
3062          *    write_cache_pages() ---> (via passed in callback function)
3063          *        __mpage_da_writepage() -->
3064          *           mpage_add_bh_to_extent()
3065          *           mpage_da_map_blocks()
3066          *
3067          * The problem is that write_cache_pages(), located in
3068          * mm/page-writeback.c, marks pages clean in preparation for
3069          * doing I/O, which is not desirable if we're not planning on
3070          * doing I/O at all.
3071          *
3072          * We could call write_cache_pages(), and then redirty all of
3073          * the pages by calling redirty_page_for_writepage() but that
3074          * would be ugly in the extreme.  So instead we would need to
3075          * replicate parts of the code in the above functions,
3076          * simplifying them because we wouldn't actually intend to
3077          * write out the pages, but rather only collect contiguous
3078          * logical block extents, call the multi-block allocator, and
3079          * then update the buffer heads with the block allocations.
3080          *
3081          * For now, though, we'll cheat by calling filemap_flush(),
3082          * which will map the blocks, and start the I/O, but not
3083          * actually wait for the I/O to complete.
3084          */
3085         return filemap_flush(inode->i_mapping);
3086 }
3087
3088 /*
3089  * bmap() is special.  It gets used by applications such as lilo and by
3090  * the swapper to find the on-disk block of a specific piece of data.
3091  *
3092  * Naturally, this is dangerous if the block concerned is still in the
3093  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3094  * filesystem and enables swap, then they may get a nasty shock when the
3095  * data getting swapped to that swapfile suddenly gets overwritten by
3096  * the original zero's written out previously to the journal and
3097  * awaiting writeback in the kernel's buffer cache.
3098  *
3099  * So, if we see any bmap calls here on a modified, data-journaled file,
3100  * take extra steps to flush any blocks which might be in the cache.
3101  */
3102 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3103 {
3104         struct inode *inode = mapping->host;
3105         journal_t *journal;
3106         int err;
3107
3108         /*
3109          * We can get here for an inline file via the FIBMAP ioctl
3110          */
3111         if (ext4_has_inline_data(inode))
3112                 return 0;
3113
3114         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3115                         test_opt(inode->i_sb, DELALLOC)) {
3116                 /*
3117                  * With delalloc we want to sync the file
3118                  * so that we can make sure we allocate
3119                  * blocks for file
3120                  */
3121                 filemap_write_and_wait(mapping);
3122         }
3123
3124         if (EXT4_JOURNAL(inode) &&
3125             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3126                 /*
3127                  * This is a REALLY heavyweight approach, but the use of
3128                  * bmap on dirty files is expected to be extremely rare:
3129                  * only if we run lilo or swapon on a freshly made file
3130                  * do we expect this to happen.
3131                  *
3132                  * (bmap requires CAP_SYS_RAWIO so this does not
3133                  * represent an unprivileged user DOS attack --- we'd be
3134                  * in trouble if mortal users could trigger this path at
3135                  * will.)
3136                  *
3137                  * NB. EXT4_STATE_JDATA is not set on files other than
3138                  * regular files.  If somebody wants to bmap a directory
3139                  * or symlink and gets confused because the buffer
3140                  * hasn't yet been flushed to disk, they deserve
3141                  * everything they get.
3142                  */
3143
3144                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3145                 journal = EXT4_JOURNAL(inode);
3146                 jbd2_journal_lock_updates(journal);
3147                 err = jbd2_journal_flush(journal);
3148                 jbd2_journal_unlock_updates(journal);
3149
3150                 if (err)
3151                         return 0;
3152         }
3153
3154         return generic_block_bmap(mapping, block, ext4_get_block);
3155 }
3156
3157 static int ext4_readpage(struct file *file, struct page *page)
3158 {
3159         int ret = -EAGAIN;
3160         struct inode *inode = page->mapping->host;
3161
3162         trace_ext4_readpage(page);
3163
3164         if (ext4_has_inline_data(inode))
3165                 ret = ext4_readpage_inline(inode, page);
3166
3167         if (ret == -EAGAIN)
3168                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3169
3170         return ret;
3171 }
3172
3173 static int
3174 ext4_readpages(struct file *file, struct address_space *mapping,
3175                 struct list_head *pages, unsigned nr_pages)
3176 {
3177         struct inode *inode = mapping->host;
3178
3179         /* If the file has inline data, no need to do readpages. */
3180         if (ext4_has_inline_data(inode))
3181                 return 0;
3182
3183         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3184 }
3185
3186 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3187                                 unsigned int length)
3188 {
3189         trace_ext4_invalidatepage(page, offset, length);
3190
3191         /* No journalling happens on data buffers when this function is used */
3192         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3193
3194         block_invalidatepage(page, offset, length);
3195 }
3196
3197 static int __ext4_journalled_invalidatepage(struct page *page,
3198                                             unsigned int offset,
3199                                             unsigned int length)
3200 {
3201         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3202
3203         trace_ext4_journalled_invalidatepage(page, offset, length);
3204
3205         /*
3206          * If it's a full truncate we just forget about the pending dirtying
3207          */
3208         if (offset == 0 && length == PAGE_SIZE)
3209                 ClearPageChecked(page);
3210
3211         return jbd2_journal_invalidatepage(journal, page, offset, length);
3212 }
3213
3214 /* Wrapper for aops... */
3215 static void ext4_journalled_invalidatepage(struct page *page,
3216                                            unsigned int offset,
3217                                            unsigned int length)
3218 {
3219         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3220 }
3221
3222 static int ext4_releasepage(struct page *page, gfp_t wait)
3223 {
3224         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3225
3226         trace_ext4_releasepage(page);
3227
3228         /* Page has dirty journalled data -> cannot release */
3229         if (PageChecked(page))
3230                 return 0;
3231         if (journal)
3232                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3233         else
3234                 return try_to_free_buffers(page);
3235 }
3236
3237 #ifdef CONFIG_FS_DAX
3238 /*
3239  * Get block function for DAX IO and mmap faults. It takes care of converting
3240  * unwritten extents to written ones and initializes new / converted blocks
3241  * to zeros.
3242  */
3243 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3244                        struct buffer_head *bh_result, int create)
3245 {
3246         int ret;
3247
3248         ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3249         if (!create)
3250                 return _ext4_get_block(inode, iblock, bh_result, 0);
3251
3252         ret = ext4_get_block_trans(inode, iblock, bh_result,
3253                                    EXT4_GET_BLOCKS_PRE_IO |
3254                                    EXT4_GET_BLOCKS_CREATE_ZERO);
3255         if (ret < 0)
3256                 return ret;
3257
3258         if (buffer_unwritten(bh_result)) {
3259                 /*
3260                  * We are protected by i_mmap_sem or i_mutex so we know block
3261                  * cannot go away from under us even though we dropped
3262                  * i_data_sem. Convert extent to written and write zeros there.
3263                  */
3264                 ret = ext4_get_block_trans(inode, iblock, bh_result,
3265                                            EXT4_GET_BLOCKS_CONVERT |
3266                                            EXT4_GET_BLOCKS_CREATE_ZERO);
3267                 if (ret < 0)
3268                         return ret;
3269         }
3270         /*
3271          * At least for now we have to clear BH_New so that DAX code
3272          * doesn't attempt to zero blocks again in a racy way.
3273          */
3274         clear_buffer_new(bh_result);
3275         return 0;
3276 }
3277 #else
3278 /* Just define empty function, it will never get called. */
3279 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3280                        struct buffer_head *bh_result, int create)
3281 {
3282         BUG();
3283         return 0;
3284 }
3285 #endif
3286
3287 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3288                             ssize_t size, void *private)
3289 {
3290         ext4_io_end_t *io_end = private;
3291
3292         /* if not async direct IO just return */
3293         if (!io_end)
3294                 return 0;
3295
3296         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3297                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3298                   io_end, io_end->inode->i_ino, iocb, offset, size);
3299
3300         /*
3301          * Error during AIO DIO. We cannot convert unwritten extents as the
3302          * data was not written. Just clear the unwritten flag and drop io_end.
3303          */
3304         if (size <= 0) {
3305                 ext4_clear_io_unwritten_flag(io_end);
3306                 size = 0;
3307         }
3308         io_end->offset = offset;
3309         io_end->size = size;
3310         ext4_put_io_end(io_end);
3311
3312         return 0;
3313 }
3314
3315 /*
3316  * Handling of direct IO writes.
3317  *
3318  * For ext4 extent files, ext4 will do direct-io write even to holes,
3319  * preallocated extents, and those write extend the file, no need to
3320  * fall back to buffered IO.
3321  *
3322  * For holes, we fallocate those blocks, mark them as unwritten
3323  * If those blocks were preallocated, we mark sure they are split, but
3324  * still keep the range to write as unwritten.
3325  *
3326  * The unwritten extents will be converted to written when DIO is completed.
3327  * For async direct IO, since the IO may still pending when return, we
3328  * set up an end_io call back function, which will do the conversion
3329  * when async direct IO completed.
3330  *
3331  * If the O_DIRECT write will extend the file then add this inode to the
3332  * orphan list.  So recovery will truncate it back to the original size
3333  * if the machine crashes during the write.
3334  *
3335  */
3336 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3337 {
3338         struct file *file = iocb->ki_filp;
3339         struct inode *inode = file->f_mapping->host;
3340         struct ext4_inode_info *ei = EXT4_I(inode);
3341         ssize_t ret;
3342         loff_t offset = iocb->ki_pos;
3343         size_t count = iov_iter_count(iter);
3344         int overwrite = 0;
3345         get_block_t *get_block_func = NULL;
3346         int dio_flags = 0;
3347         loff_t final_size = offset + count;
3348         int orphan = 0;
3349         handle_t *handle;
3350
3351         if (final_size > inode->i_size) {
3352                 /* Credits for sb + inode write */
3353                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3354                 if (IS_ERR(handle)) {
3355                         ret = PTR_ERR(handle);
3356                         goto out;
3357                 }
3358                 ret = ext4_orphan_add(handle, inode);
3359                 if (ret) {
3360                         ext4_journal_stop(handle);
3361                         goto out;
3362                 }
3363                 orphan = 1;
3364                 ei->i_disksize = inode->i_size;
3365                 ext4_journal_stop(handle);
3366         }
3367
3368         BUG_ON(iocb->private == NULL);
3369
3370         /*
3371          * Make all waiters for direct IO properly wait also for extent
3372          * conversion. This also disallows race between truncate() and
3373          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3374          */
3375         inode_dio_begin(inode);
3376
3377         /* If we do a overwrite dio, i_mutex locking can be released */
3378         overwrite = *((int *)iocb->private);
3379
3380         if (overwrite)
3381                 inode_unlock(inode);
3382
3383         /*
3384          * For extent mapped files we could direct write to holes and fallocate.
3385          *
3386          * Allocated blocks to fill the hole are marked as unwritten to prevent
3387          * parallel buffered read to expose the stale data before DIO complete
3388          * the data IO.
3389          *
3390          * As to previously fallocated extents, ext4 get_block will just simply
3391          * mark the buffer mapped but still keep the extents unwritten.
3392          *
3393          * For non AIO case, we will convert those unwritten extents to written
3394          * after return back from blockdev_direct_IO. That way we save us from
3395          * allocating io_end structure and also the overhead of offloading
3396          * the extent convertion to a workqueue.
3397          *
3398          * For async DIO, the conversion needs to be deferred when the
3399          * IO is completed. The ext4 end_io callback function will be
3400          * called to take care of the conversion work.  Here for async
3401          * case, we allocate an io_end structure to hook to the iocb.
3402          */
3403         iocb->private = NULL;
3404         if (overwrite)
3405                 get_block_func = ext4_dio_get_block_overwrite;
3406         else if (IS_DAX(inode)) {
3407                 /*
3408                  * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3409                  * writes need zeroing either because they can race with page
3410                  * faults or because they use partial blocks.
3411                  */
3412                 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3413                     ext4_aligned_io(inode, offset, count))
3414                         get_block_func = ext4_dio_get_block;
3415                 else
3416                         get_block_func = ext4_dax_get_block;
3417                 dio_flags = DIO_LOCKING;
3418         } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3419                    round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3420                 get_block_func = ext4_dio_get_block;
3421                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3422         } else if (is_sync_kiocb(iocb)) {
3423                 get_block_func = ext4_dio_get_block_unwritten_sync;
3424                 dio_flags = DIO_LOCKING;
3425         } else {
3426                 get_block_func = ext4_dio_get_block_unwritten_async;
3427                 dio_flags = DIO_LOCKING;
3428         }
3429 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3430         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3431 #endif
3432         if (IS_DAX(inode)) {
3433                 ret = dax_do_io(iocb, inode, iter, get_block_func,
3434                                 ext4_end_io_dio, dio_flags);
3435         } else
3436                 ret = __blockdev_direct_IO(iocb, inode,
3437                                            inode->i_sb->s_bdev, iter,
3438                                            get_block_func,
3439                                            ext4_end_io_dio, NULL, dio_flags);
3440
3441         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3442                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3443                 int err;
3444                 /*
3445                  * for non AIO case, since the IO is already
3446                  * completed, we could do the conversion right here
3447                  */
3448                 err = ext4_convert_unwritten_extents(NULL, inode,
3449                                                      offset, ret);
3450                 if (err < 0)
3451                         ret = err;
3452                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3453         }
3454
3455         inode_dio_end(inode);
3456         /* take i_mutex locking again if we do a ovewrite dio */
3457         if (overwrite)
3458                 inode_lock(inode);
3459
3460         if (ret < 0 && final_size > inode->i_size)
3461                 ext4_truncate_failed_write(inode);
3462
3463         /* Handle extending of i_size after direct IO write */
3464         if (orphan) {
3465                 int err;
3466
3467                 /* Credits for sb + inode write */
3468                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3469                 if (IS_ERR(handle)) {
3470                         /* This is really bad luck. We've written the data
3471                          * but cannot extend i_size. Bail out and pretend
3472                          * the write failed... */
3473                         ret = PTR_ERR(handle);
3474                         if (inode->i_nlink)
3475                                 ext4_orphan_del(NULL, inode);
3476
3477                         goto out;
3478                 }
3479                 if (inode->i_nlink)
3480                         ext4_orphan_del(handle, inode);
3481                 if (ret > 0) {
3482                         loff_t end = offset + ret;
3483                         if (end > inode->i_size) {
3484                                 ei->i_disksize = end;
3485                                 i_size_write(inode, end);
3486                                 /*
3487                                  * We're going to return a positive `ret'
3488                                  * here due to non-zero-length I/O, so there's
3489                                  * no way of reporting error returns from
3490                                  * ext4_mark_inode_dirty() to userspace.  So
3491                                  * ignore it.
3492                                  */
3493                                 ext4_mark_inode_dirty(handle, inode);
3494                         }
3495                 }
3496                 err = ext4_journal_stop(handle);
3497                 if (ret == 0)
3498                         ret = err;
3499         }
3500 out:
3501         return ret;
3502 }
3503
3504 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3505 {
3506         int unlocked = 0;
3507         struct inode *inode = iocb->ki_filp->f_mapping->host;
3508         ssize_t ret;
3509
3510         if (ext4_should_dioread_nolock(inode)) {
3511                 /*
3512                  * Nolock dioread optimization may be dynamically disabled
3513                  * via ext4_inode_block_unlocked_dio(). Check inode's state
3514                  * while holding extra i_dio_count ref.
3515                  */
3516                 inode_dio_begin(inode);
3517                 smp_mb();
3518                 if (unlikely(ext4_test_inode_state(inode,
3519                                                     EXT4_STATE_DIOREAD_LOCK)))
3520                         inode_dio_end(inode);
3521                 else
3522                         unlocked = 1;
3523         }
3524         if (IS_DAX(inode)) {
3525                 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block,
3526                                 NULL, unlocked ? 0 : DIO_LOCKING);
3527         } else {
3528                 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3529                                            iter, ext4_dio_get_block,
3530                                            NULL, NULL,
3531                                            unlocked ? 0 : DIO_LOCKING);
3532         }
3533         if (unlocked)
3534                 inode_dio_end(inode);
3535         return ret;
3536 }
3537
3538 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3539 {
3540         struct file *file = iocb->ki_filp;
3541         struct inode *inode = file->f_mapping->host;
3542         size_t count = iov_iter_count(iter);
3543         loff_t offset = iocb->ki_pos;
3544         ssize_t ret;
3545
3546 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3547         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3548                 return 0;
3549 #endif
3550
3551         /*
3552          * If we are doing data journalling we don't support O_DIRECT
3553          */
3554         if (ext4_should_journal_data(inode))
3555                 return 0;
3556
3557         /* Let buffer I/O handle the inline data case. */
3558         if (ext4_has_inline_data(inode))
3559                 return 0;
3560
3561         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3562         if (iov_iter_rw(iter) == READ)
3563                 ret = ext4_direct_IO_read(iocb, iter);
3564         else
3565                 ret = ext4_direct_IO_write(iocb, iter);
3566         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3567         return ret;
3568 }
3569
3570 /*
3571  * Pages can be marked dirty completely asynchronously from ext4's journalling
3572  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3573  * much here because ->set_page_dirty is called under VFS locks.  The page is
3574  * not necessarily locked.
3575  *
3576  * We cannot just dirty the page and leave attached buffers clean, because the
3577  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3578  * or jbddirty because all the journalling code will explode.
3579  *
3580  * So what we do is to mark the page "pending dirty" and next time writepage
3581  * is called, propagate that into the buffers appropriately.
3582  */
3583 static int ext4_journalled_set_page_dirty(struct page *page)
3584 {
3585         SetPageChecked(page);
3586         return __set_page_dirty_nobuffers(page);
3587 }
3588
3589 static const struct address_space_operations ext4_aops = {
3590         .readpage               = ext4_readpage,
3591         .readpages              = ext4_readpages,
3592         .writepage              = ext4_writepage,
3593         .writepages             = ext4_writepages,
3594         .write_begin            = ext4_write_begin,
3595         .write_end              = ext4_write_end,
3596         .bmap                   = ext4_bmap,
3597         .invalidatepage         = ext4_invalidatepage,
3598         .releasepage            = ext4_releasepage,
3599         .direct_IO              = ext4_direct_IO,
3600         .migratepage            = buffer_migrate_page,
3601         .is_partially_uptodate  = block_is_partially_uptodate,
3602         .error_remove_page      = generic_error_remove_page,
3603 };
3604
3605 static const struct address_space_operations ext4_journalled_aops = {
3606         .readpage               = ext4_readpage,
3607         .readpages              = ext4_readpages,
3608         .writepage              = ext4_writepage,
3609         .writepages             = ext4_writepages,
3610         .write_begin            = ext4_write_begin,
3611         .write_end              = ext4_journalled_write_end,
3612         .set_page_dirty         = ext4_journalled_set_page_dirty,
3613         .bmap                   = ext4_bmap,
3614         .invalidatepage         = ext4_journalled_invalidatepage,
3615         .releasepage            = ext4_releasepage,
3616         .direct_IO              = ext4_direct_IO,
3617         .is_partially_uptodate  = block_is_partially_uptodate,
3618         .error_remove_page      = generic_error_remove_page,
3619 };
3620
3621 static const struct address_space_operations ext4_da_aops = {
3622         .readpage               = ext4_readpage,
3623         .readpages              = ext4_readpages,
3624         .writepage              = ext4_writepage,
3625         .writepages             = ext4_writepages,
3626         .write_begin            = ext4_da_write_begin,
3627         .write_end              = ext4_da_write_end,
3628         .bmap                   = ext4_bmap,
3629         .invalidatepage         = ext4_da_invalidatepage,
3630         .releasepage            = ext4_releasepage,
3631         .direct_IO              = ext4_direct_IO,
3632         .migratepage            = buffer_migrate_page,
3633         .is_partially_uptodate  = block_is_partially_uptodate,
3634         .error_remove_page      = generic_error_remove_page,
3635 };
3636
3637 void ext4_set_aops(struct inode *inode)
3638 {
3639         switch (ext4_inode_journal_mode(inode)) {
3640         case EXT4_INODE_ORDERED_DATA_MODE:
3641         case EXT4_INODE_WRITEBACK_DATA_MODE:
3642                 break;
3643         case EXT4_INODE_JOURNAL_DATA_MODE:
3644                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3645                 return;
3646         default:
3647                 BUG();
3648         }
3649         if (test_opt(inode->i_sb, DELALLOC))
3650                 inode->i_mapping->a_ops = &ext4_da_aops;
3651         else
3652                 inode->i_mapping->a_ops = &ext4_aops;
3653 }
3654
3655 static int __ext4_block_zero_page_range(handle_t *handle,
3656                 struct address_space *mapping, loff_t from, loff_t length)
3657 {
3658         ext4_fsblk_t index = from >> PAGE_SHIFT;
3659         unsigned offset = from & (PAGE_SIZE-1);
3660         unsigned blocksize, pos;
3661         ext4_lblk_t iblock;
3662         struct inode *inode = mapping->host;
3663         struct buffer_head *bh;
3664         struct page *page;
3665         int err = 0;
3666
3667         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3668                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3669         if (!page)
3670                 return -ENOMEM;
3671
3672         blocksize = inode->i_sb->s_blocksize;
3673
3674         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3675
3676         if (!page_has_buffers(page))
3677                 create_empty_buffers(page, blocksize, 0);
3678
3679         /* Find the buffer that contains "offset" */
3680         bh = page_buffers(page);
3681         pos = blocksize;
3682         while (offset >= pos) {
3683                 bh = bh->b_this_page;
3684                 iblock++;
3685                 pos += blocksize;
3686         }
3687         if (buffer_freed(bh)) {
3688                 BUFFER_TRACE(bh, "freed: skip");
3689                 goto unlock;
3690         }
3691         if (!buffer_mapped(bh)) {
3692                 BUFFER_TRACE(bh, "unmapped");
3693                 ext4_get_block(inode, iblock, bh, 0);
3694                 /* unmapped? It's a hole - nothing to do */
3695                 if (!buffer_mapped(bh)) {
3696                         BUFFER_TRACE(bh, "still unmapped");
3697                         goto unlock;
3698                 }
3699         }
3700
3701         /* Ok, it's mapped. Make sure it's up-to-date */
3702         if (PageUptodate(page))
3703                 set_buffer_uptodate(bh);
3704
3705         if (!buffer_uptodate(bh)) {
3706                 err = -EIO;
3707                 ll_rw_block(READ, 1, &bh);
3708                 wait_on_buffer(bh);
3709                 /* Uhhuh. Read error. Complain and punt. */
3710                 if (!buffer_uptodate(bh))
3711                         goto unlock;
3712                 if (S_ISREG(inode->i_mode) &&
3713                     ext4_encrypted_inode(inode)) {
3714                         /* We expect the key to be set. */
3715                         BUG_ON(!ext4_has_encryption_key(inode));
3716                         BUG_ON(blocksize != PAGE_SIZE);
3717                         WARN_ON_ONCE(ext4_decrypt(page));
3718                 }
3719         }
3720         if (ext4_should_journal_data(inode)) {
3721                 BUFFER_TRACE(bh, "get write access");
3722                 err = ext4_journal_get_write_access(handle, bh);
3723                 if (err)
3724                         goto unlock;
3725         }
3726         zero_user(page, offset, length);
3727         BUFFER_TRACE(bh, "zeroed end of block");
3728
3729         if (ext4_should_journal_data(inode)) {
3730                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3731         } else {
3732                 err = 0;
3733                 mark_buffer_dirty(bh);
3734                 if (ext4_should_order_data(inode))
3735                         err = ext4_jbd2_inode_add_write(handle, inode);
3736         }
3737
3738 unlock:
3739         unlock_page(page);
3740         put_page(page);
3741         return err;
3742 }
3743
3744 /*
3745  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3746  * starting from file offset 'from'.  The range to be zero'd must
3747  * be contained with in one block.  If the specified range exceeds
3748  * the end of the block it will be shortened to end of the block
3749  * that cooresponds to 'from'
3750  */
3751 static int ext4_block_zero_page_range(handle_t *handle,
3752                 struct address_space *mapping, loff_t from, loff_t length)
3753 {
3754         struct inode *inode = mapping->host;
3755         unsigned offset = from & (PAGE_SIZE-1);
3756         unsigned blocksize = inode->i_sb->s_blocksize;
3757         unsigned max = blocksize - (offset & (blocksize - 1));
3758
3759         /*
3760          * correct length if it does not fall between
3761          * 'from' and the end of the block
3762          */
3763         if (length > max || length < 0)
3764                 length = max;
3765
3766         if (IS_DAX(inode))
3767                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3768         return __ext4_block_zero_page_range(handle, mapping, from, length);
3769 }
3770
3771 /*
3772  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3773  * up to the end of the block which corresponds to `from'.
3774  * This required during truncate. We need to physically zero the tail end
3775  * of that block so it doesn't yield old data if the file is later grown.
3776  */
3777 static int ext4_block_truncate_page(handle_t *handle,
3778                 struct address_space *mapping, loff_t from)
3779 {
3780         unsigned offset = from & (PAGE_SIZE-1);
3781         unsigned length;
3782         unsigned blocksize;
3783         struct inode *inode = mapping->host;
3784
3785         blocksize = inode->i_sb->s_blocksize;
3786         length = blocksize - (offset & (blocksize - 1));
3787
3788         return ext4_block_zero_page_range(handle, mapping, from, length);
3789 }
3790
3791 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3792                              loff_t lstart, loff_t length)
3793 {
3794         struct super_block *sb = inode->i_sb;
3795         struct address_space *mapping = inode->i_mapping;
3796         unsigned partial_start, partial_end;
3797         ext4_fsblk_t start, end;
3798         loff_t byte_end = (lstart + length - 1);
3799         int err = 0;
3800
3801         partial_start = lstart & (sb->s_blocksize - 1);
3802         partial_end = byte_end & (sb->s_blocksize - 1);
3803
3804         start = lstart >> sb->s_blocksize_bits;
3805         end = byte_end >> sb->s_blocksize_bits;
3806
3807         /* Handle partial zero within the single block */
3808         if (start == end &&
3809             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3810                 err = ext4_block_zero_page_range(handle, mapping,
3811                                                  lstart, length);
3812                 return err;
3813         }
3814         /* Handle partial zero out on the start of the range */
3815         if (partial_start) {
3816                 err = ext4_block_zero_page_range(handle, mapping,
3817                                                  lstart, sb->s_blocksize);
3818                 if (err)
3819                         return err;
3820         }
3821         /* Handle partial zero out on the end of the range */
3822         if (partial_end != sb->s_blocksize - 1)
3823                 err = ext4_block_zero_page_range(handle, mapping,
3824                                                  byte_end - partial_end,
3825                                                  partial_end + 1);
3826         return err;
3827 }
3828
3829 int ext4_can_truncate(struct inode *inode)
3830 {
3831         if (S_ISREG(inode->i_mode))
3832                 return 1;
3833         if (S_ISDIR(inode->i_mode))
3834                 return 1;
3835         if (S_ISLNK(inode->i_mode))
3836                 return !ext4_inode_is_fast_symlink(inode);
3837         return 0;
3838 }
3839
3840 /*
3841  * We have to make sure i_disksize gets properly updated before we truncate
3842  * page cache due to hole punching or zero range. Otherwise i_disksize update
3843  * can get lost as it may have been postponed to submission of writeback but
3844  * that will never happen after we truncate page cache.
3845  */
3846 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3847                                       loff_t len)
3848 {
3849         handle_t *handle;
3850         loff_t size = i_size_read(inode);
3851
3852         WARN_ON(!inode_is_locked(inode));
3853         if (offset > size || offset + len < size)
3854                 return 0;
3855
3856         if (EXT4_I(inode)->i_disksize >= size)
3857                 return 0;
3858
3859         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3860         if (IS_ERR(handle))
3861                 return PTR_ERR(handle);
3862         ext4_update_i_disksize(inode, size);
3863         ext4_mark_inode_dirty(handle, inode);
3864         ext4_journal_stop(handle);
3865
3866         return 0;
3867 }
3868
3869 /*
3870  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3871  * associated with the given offset and length
3872  *
3873  * @inode:  File inode
3874  * @offset: The offset where the hole will begin
3875  * @len:    The length of the hole
3876  *
3877  * Returns: 0 on success or negative on failure
3878  */
3879
3880 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3881 {
3882         struct super_block *sb = inode->i_sb;
3883         ext4_lblk_t first_block, stop_block;
3884         struct address_space *mapping = inode->i_mapping;
3885         loff_t first_block_offset, last_block_offset;
3886         handle_t *handle;
3887         unsigned int credits;
3888         int ret = 0;
3889
3890         if (!S_ISREG(inode->i_mode))
3891                 return -EOPNOTSUPP;
3892
3893         trace_ext4_punch_hole(inode, offset, length, 0);
3894
3895         /*
3896          * Write out all dirty pages to avoid race conditions
3897          * Then release them.
3898          */
3899         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3900                 ret = filemap_write_and_wait_range(mapping, offset,
3901                                                    offset + length - 1);
3902                 if (ret)
3903                         return ret;
3904         }
3905
3906         inode_lock(inode);
3907
3908         /* No need to punch hole beyond i_size */
3909         if (offset >= inode->i_size)
3910                 goto out_mutex;
3911
3912         /*
3913          * If the hole extends beyond i_size, set the hole
3914          * to end after the page that contains i_size
3915          */
3916         if (offset + length > inode->i_size) {
3917                 length = inode->i_size +
3918                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3919                    offset;
3920         }
3921
3922         if (offset & (sb->s_blocksize - 1) ||
3923             (offset + length) & (sb->s_blocksize - 1)) {
3924                 /*
3925                  * Attach jinode to inode for jbd2 if we do any zeroing of
3926                  * partial block
3927                  */
3928                 ret = ext4_inode_attach_jinode(inode);
3929                 if (ret < 0)
3930                         goto out_mutex;
3931
3932         }
3933
3934         /* Wait all existing dio workers, newcomers will block on i_mutex */
3935         ext4_inode_block_unlocked_dio(inode);
3936         inode_dio_wait(inode);
3937
3938         /*
3939          * Prevent page faults from reinstantiating pages we have released from
3940          * page cache.
3941          */
3942         down_write(&EXT4_I(inode)->i_mmap_sem);
3943         first_block_offset = round_up(offset, sb->s_blocksize);
3944         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3945
3946         /* Now release the pages and zero block aligned part of pages*/
3947         if (last_block_offset > first_block_offset) {
3948                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3949                 if (ret)
3950                         goto out_dio;
3951                 truncate_pagecache_range(inode, first_block_offset,
3952                                          last_block_offset);
3953         }
3954
3955         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3956                 credits = ext4_writepage_trans_blocks(inode);
3957         else
3958                 credits = ext4_blocks_for_truncate(inode);
3959         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3960         if (IS_ERR(handle)) {
3961                 ret = PTR_ERR(handle);
3962                 ext4_std_error(sb, ret);
3963                 goto out_dio;
3964         }
3965
3966         ret = ext4_zero_partial_blocks(handle, inode, offset,
3967                                        length);
3968         if (ret)
3969                 goto out_stop;
3970
3971         first_block = (offset + sb->s_blocksize - 1) >>
3972                 EXT4_BLOCK_SIZE_BITS(sb);
3973         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3974
3975         /* If there are no blocks to remove, return now */
3976         if (first_block >= stop_block)
3977                 goto out_stop;
3978
3979         down_write(&EXT4_I(inode)->i_data_sem);
3980         ext4_discard_preallocations(inode);
3981
3982         ret = ext4_es_remove_extent(inode, first_block,
3983                                     stop_block - first_block);
3984         if (ret) {
3985                 up_write(&EXT4_I(inode)->i_data_sem);
3986                 goto out_stop;
3987         }
3988
3989         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3990                 ret = ext4_ext_remove_space(inode, first_block,
3991                                             stop_block - 1);
3992         else
3993                 ret = ext4_ind_remove_space(handle, inode, first_block,
3994                                             stop_block);
3995
3996         up_write(&EXT4_I(inode)->i_data_sem);
3997         if (IS_SYNC(inode))
3998                 ext4_handle_sync(handle);
3999
4000         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4001         ext4_mark_inode_dirty(handle, inode);
4002 out_stop:
4003         ext4_journal_stop(handle);
4004 out_dio:
4005         up_write(&EXT4_I(inode)->i_mmap_sem);
4006         ext4_inode_resume_unlocked_dio(inode);
4007 out_mutex:
4008         inode_unlock(inode);
4009         return ret;
4010 }
4011
4012 int ext4_inode_attach_jinode(struct inode *inode)
4013 {
4014         struct ext4_inode_info *ei = EXT4_I(inode);
4015         struct jbd2_inode *jinode;
4016
4017         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4018                 return 0;
4019
4020         jinode = jbd2_alloc_inode(GFP_KERNEL);
4021         spin_lock(&inode->i_lock);
4022         if (!ei->jinode) {
4023                 if (!jinode) {
4024                         spin_unlock(&inode->i_lock);
4025                         return -ENOMEM;
4026                 }
4027                 ei->jinode = jinode;
4028                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4029                 jinode = NULL;
4030         }
4031         spin_unlock(&inode->i_lock);
4032         if (unlikely(jinode != NULL))
4033                 jbd2_free_inode(jinode);
4034         return 0;
4035 }
4036
4037 /*
4038  * ext4_truncate()
4039  *
4040  * We block out ext4_get_block() block instantiations across the entire
4041  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4042  * simultaneously on behalf of the same inode.
4043  *
4044  * As we work through the truncate and commit bits of it to the journal there
4045  * is one core, guiding principle: the file's tree must always be consistent on
4046  * disk.  We must be able to restart the truncate after a crash.
4047  *
4048  * The file's tree may be transiently inconsistent in memory (although it
4049  * probably isn't), but whenever we close off and commit a journal transaction,
4050  * the contents of (the filesystem + the journal) must be consistent and
4051  * restartable.  It's pretty simple, really: bottom up, right to left (although
4052  * left-to-right works OK too).
4053  *
4054  * Note that at recovery time, journal replay occurs *before* the restart of
4055  * truncate against the orphan inode list.
4056  *
4057  * The committed inode has the new, desired i_size (which is the same as
4058  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4059  * that this inode's truncate did not complete and it will again call
4060  * ext4_truncate() to have another go.  So there will be instantiated blocks
4061  * to the right of the truncation point in a crashed ext4 filesystem.  But
4062  * that's fine - as long as they are linked from the inode, the post-crash
4063  * ext4_truncate() run will find them and release them.
4064  */
4065 void ext4_truncate(struct inode *inode)
4066 {
4067         struct ext4_inode_info *ei = EXT4_I(inode);
4068         unsigned int credits;
4069         handle_t *handle;
4070         struct address_space *mapping = inode->i_mapping;
4071
4072         /*
4073          * There is a possibility that we're either freeing the inode
4074          * or it's a completely new inode. In those cases we might not
4075          * have i_mutex locked because it's not necessary.
4076          */
4077         if (!(inode->i_state & (I_NEW|I_FREEING)))
4078                 WARN_ON(!inode_is_locked(inode));
4079         trace_ext4_truncate_enter(inode);
4080
4081         if (!ext4_can_truncate(inode))
4082                 return;
4083
4084         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4085
4086         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4087                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4088
4089         if (ext4_has_inline_data(inode)) {
4090                 int has_inline = 1;
4091
4092                 ext4_inline_data_truncate(inode, &has_inline);
4093                 if (has_inline)
4094                         return;
4095         }
4096
4097         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4098         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4099                 if (ext4_inode_attach_jinode(inode) < 0)
4100                         return;
4101         }
4102
4103         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4104                 credits = ext4_writepage_trans_blocks(inode);
4105         else
4106                 credits = ext4_blocks_for_truncate(inode);
4107
4108         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4109         if (IS_ERR(handle)) {
4110                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4111                 return;
4112         }
4113
4114         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4115                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4116
4117         /*
4118          * We add the inode to the orphan list, so that if this
4119          * truncate spans multiple transactions, and we crash, we will
4120          * resume the truncate when the filesystem recovers.  It also
4121          * marks the inode dirty, to catch the new size.
4122          *
4123          * Implication: the file must always be in a sane, consistent
4124          * truncatable state while each transaction commits.
4125          */
4126         if (ext4_orphan_add(handle, inode))
4127                 goto out_stop;
4128
4129         down_write(&EXT4_I(inode)->i_data_sem);
4130
4131         ext4_discard_preallocations(inode);
4132
4133         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4134                 ext4_ext_truncate(handle, inode);
4135         else
4136                 ext4_ind_truncate(handle, inode);
4137
4138         up_write(&ei->i_data_sem);
4139
4140         if (IS_SYNC(inode))
4141                 ext4_handle_sync(handle);
4142
4143 out_stop:
4144         /*
4145          * If this was a simple ftruncate() and the file will remain alive,
4146          * then we need to clear up the orphan record which we created above.
4147          * However, if this was a real unlink then we were called by
4148          * ext4_evict_inode(), and we allow that function to clean up the
4149          * orphan info for us.
4150          */
4151         if (inode->i_nlink)
4152                 ext4_orphan_del(handle, inode);
4153
4154         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4155         ext4_mark_inode_dirty(handle, inode);
4156         ext4_journal_stop(handle);
4157
4158         trace_ext4_truncate_exit(inode);
4159 }
4160
4161 /*
4162  * ext4_get_inode_loc returns with an extra refcount against the inode's
4163  * underlying buffer_head on success. If 'in_mem' is true, we have all
4164  * data in memory that is needed to recreate the on-disk version of this
4165  * inode.
4166  */
4167 static int __ext4_get_inode_loc(struct inode *inode,
4168                                 struct ext4_iloc *iloc, int in_mem)
4169 {
4170         struct ext4_group_desc  *gdp;
4171         struct buffer_head      *bh;
4172         struct super_block      *sb = inode->i_sb;
4173         ext4_fsblk_t            block;
4174         int                     inodes_per_block, inode_offset;
4175
4176         iloc->bh = NULL;
4177         if (!ext4_valid_inum(sb, inode->i_ino))
4178                 return -EFSCORRUPTED;
4179
4180         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4181         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4182         if (!gdp)
4183                 return -EIO;
4184
4185         /*
4186          * Figure out the offset within the block group inode table
4187          */
4188         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4189         inode_offset = ((inode->i_ino - 1) %
4190                         EXT4_INODES_PER_GROUP(sb));
4191         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4192         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4193
4194         bh = sb_getblk(sb, block);
4195         if (unlikely(!bh))
4196                 return -ENOMEM;
4197         if (!buffer_uptodate(bh)) {
4198                 lock_buffer(bh);
4199
4200                 /*
4201                  * If the buffer has the write error flag, we have failed
4202                  * to write out another inode in the same block.  In this
4203                  * case, we don't have to read the block because we may
4204                  * read the old inode data successfully.
4205                  */
4206                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4207                         set_buffer_uptodate(bh);
4208
4209                 if (buffer_uptodate(bh)) {
4210                         /* someone brought it uptodate while we waited */
4211                         unlock_buffer(bh);
4212                         goto has_buffer;
4213                 }
4214
4215                 /*
4216                  * If we have all information of the inode in memory and this
4217                  * is the only valid inode in the block, we need not read the
4218                  * block.
4219                  */
4220                 if (in_mem) {
4221                         struct buffer_head *bitmap_bh;
4222                         int i, start;
4223
4224                         start = inode_offset & ~(inodes_per_block - 1);
4225
4226                         /* Is the inode bitmap in cache? */
4227                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4228                         if (unlikely(!bitmap_bh))
4229                                 goto make_io;
4230
4231                         /*
4232                          * If the inode bitmap isn't in cache then the
4233                          * optimisation may end up performing two reads instead
4234                          * of one, so skip it.
4235                          */
4236                         if (!buffer_uptodate(bitmap_bh)) {
4237                                 brelse(bitmap_bh);
4238                                 goto make_io;
4239                         }
4240                         for (i = start; i < start + inodes_per_block; i++) {
4241                                 if (i == inode_offset)
4242                                         continue;
4243                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4244                                         break;
4245                         }
4246                         brelse(bitmap_bh);
4247                         if (i == start + inodes_per_block) {
4248                                 /* all other inodes are free, so skip I/O */
4249                                 memset(bh->b_data, 0, bh->b_size);
4250                                 set_buffer_uptodate(bh);
4251                                 unlock_buffer(bh);
4252                                 goto has_buffer;
4253                         }
4254                 }
4255
4256 make_io:
4257                 /*
4258                  * If we need to do any I/O, try to pre-readahead extra
4259                  * blocks from the inode table.
4260                  */
4261                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4262                         ext4_fsblk_t b, end, table;
4263                         unsigned num;
4264                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4265
4266                         table = ext4_inode_table(sb, gdp);
4267                         /* s_inode_readahead_blks is always a power of 2 */
4268                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4269                         if (table > b)
4270                                 b = table;
4271                         end = b + ra_blks;
4272                         num = EXT4_INODES_PER_GROUP(sb);
4273                         if (ext4_has_group_desc_csum(sb))
4274                                 num -= ext4_itable_unused_count(sb, gdp);
4275                         table += num / inodes_per_block;
4276                         if (end > table)
4277                                 end = table;
4278                         while (b <= end)
4279                                 sb_breadahead(sb, b++);
4280                 }
4281
4282                 /*
4283                  * There are other valid inodes in the buffer, this inode
4284                  * has in-inode xattrs, or we don't have this inode in memory.
4285                  * Read the block from disk.
4286                  */
4287                 trace_ext4_load_inode(inode);
4288                 get_bh(bh);
4289                 bh->b_end_io = end_buffer_read_sync;
4290                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4291                 wait_on_buffer(bh);
4292                 if (!buffer_uptodate(bh)) {
4293                         EXT4_ERROR_INODE_BLOCK(inode, block,
4294                                                "unable to read itable block");
4295                         brelse(bh);
4296                         return -EIO;
4297                 }
4298         }
4299 has_buffer:
4300         iloc->bh = bh;
4301         return 0;
4302 }
4303
4304 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4305 {
4306         /* We have all inode data except xattrs in memory here. */
4307         return __ext4_get_inode_loc(inode, iloc,
4308                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4309 }
4310
4311 void ext4_set_inode_flags(struct inode *inode)
4312 {
4313         unsigned int flags = EXT4_I(inode)->i_flags;
4314         unsigned int new_fl = 0;
4315
4316         if (flags & EXT4_SYNC_FL)
4317                 new_fl |= S_SYNC;
4318         if (flags & EXT4_APPEND_FL)
4319                 new_fl |= S_APPEND;
4320         if (flags & EXT4_IMMUTABLE_FL)
4321                 new_fl |= S_IMMUTABLE;
4322         if (flags & EXT4_NOATIME_FL)
4323                 new_fl |= S_NOATIME;
4324         if (flags & EXT4_DIRSYNC_FL)
4325                 new_fl |= S_DIRSYNC;
4326         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4327                 new_fl |= S_DAX;
4328         inode_set_flags(inode, new_fl,
4329                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4330 }
4331
4332 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4333 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4334 {
4335         unsigned int vfs_fl;
4336         unsigned long old_fl, new_fl;
4337
4338         do {
4339                 vfs_fl = ei->vfs_inode.i_flags;
4340                 old_fl = ei->i_flags;
4341                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4342                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4343                                 EXT4_DIRSYNC_FL);
4344                 if (vfs_fl & S_SYNC)
4345                         new_fl |= EXT4_SYNC_FL;
4346                 if (vfs_fl & S_APPEND)
4347                         new_fl |= EXT4_APPEND_FL;
4348                 if (vfs_fl & S_IMMUTABLE)
4349                         new_fl |= EXT4_IMMUTABLE_FL;
4350                 if (vfs_fl & S_NOATIME)
4351                         new_fl |= EXT4_NOATIME_FL;
4352                 if (vfs_fl & S_DIRSYNC)
4353                         new_fl |= EXT4_DIRSYNC_FL;
4354         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4355 }
4356
4357 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4358                                   struct ext4_inode_info *ei)
4359 {
4360         blkcnt_t i_blocks ;
4361         struct inode *inode = &(ei->vfs_inode);
4362         struct super_block *sb = inode->i_sb;
4363
4364         if (ext4_has_feature_huge_file(sb)) {
4365                 /* we are using combined 48 bit field */
4366                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4367                                         le32_to_cpu(raw_inode->i_blocks_lo);
4368                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4369                         /* i_blocks represent file system block size */
4370                         return i_blocks  << (inode->i_blkbits - 9);
4371                 } else {
4372                         return i_blocks;
4373                 }
4374         } else {
4375                 return le32_to_cpu(raw_inode->i_blocks_lo);
4376         }
4377 }
4378
4379 static inline void ext4_iget_extra_inode(struct inode *inode,
4380                                          struct ext4_inode *raw_inode,
4381                                          struct ext4_inode_info *ei)
4382 {
4383         __le32 *magic = (void *)raw_inode +
4384                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4385         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4386                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4387                 ext4_find_inline_data_nolock(inode);
4388         } else
4389                 EXT4_I(inode)->i_inline_off = 0;
4390 }
4391
4392 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4393 {
4394         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4395                 return -EOPNOTSUPP;
4396         *projid = EXT4_I(inode)->i_projid;
4397         return 0;
4398 }
4399
4400 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4401 {
4402         struct ext4_iloc iloc;
4403         struct ext4_inode *raw_inode;
4404         struct ext4_inode_info *ei;
4405         struct inode *inode;
4406         journal_t *journal = EXT4_SB(sb)->s_journal;
4407         long ret;
4408         int block;
4409         uid_t i_uid;
4410         gid_t i_gid;
4411         projid_t i_projid;
4412
4413         inode = iget_locked(sb, ino);
4414         if (!inode)
4415                 return ERR_PTR(-ENOMEM);
4416         if (!(inode->i_state & I_NEW))
4417                 return inode;
4418
4419         ei = EXT4_I(inode);
4420         iloc.bh = NULL;
4421
4422         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4423         if (ret < 0)
4424                 goto bad_inode;
4425         raw_inode = ext4_raw_inode(&iloc);
4426
4427         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4428                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4429                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4430                     EXT4_INODE_SIZE(inode->i_sb)) {
4431                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4432                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4433                                 EXT4_INODE_SIZE(inode->i_sb));
4434                         ret = -EFSCORRUPTED;
4435                         goto bad_inode;
4436                 }
4437         } else
4438                 ei->i_extra_isize = 0;
4439
4440         /* Precompute checksum seed for inode metadata */
4441         if (ext4_has_metadata_csum(sb)) {
4442                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4443                 __u32 csum;
4444                 __le32 inum = cpu_to_le32(inode->i_ino);
4445                 __le32 gen = raw_inode->i_generation;
4446                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4447                                    sizeof(inum));
4448                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4449                                               sizeof(gen));
4450         }
4451
4452         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4453                 EXT4_ERROR_INODE(inode, "checksum invalid");
4454                 ret = -EFSBADCRC;
4455                 goto bad_inode;
4456         }
4457
4458         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4459         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4460         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4461         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4462             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4463             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4464                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4465         else
4466                 i_projid = EXT4_DEF_PROJID;
4467
4468         if (!(test_opt(inode->i_sb, NO_UID32))) {
4469                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4470                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4471         }
4472         i_uid_write(inode, i_uid);
4473         i_gid_write(inode, i_gid);
4474         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4475         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4476
4477         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4478         ei->i_inline_off = 0;
4479         ei->i_dir_start_lookup = 0;
4480         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4481         /* We now have enough fields to check if the inode was active or not.
4482          * This is needed because nfsd might try to access dead inodes
4483          * the test is that same one that e2fsck uses
4484          * NeilBrown 1999oct15
4485          */
4486         if (inode->i_nlink == 0) {
4487                 if ((inode->i_mode == 0 ||
4488                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4489                     ino != EXT4_BOOT_LOADER_INO) {
4490                         /* this inode is deleted */
4491                         ret = -ESTALE;
4492                         goto bad_inode;
4493                 }
4494                 /* The only unlinked inodes we let through here have
4495                  * valid i_mode and are being read by the orphan
4496                  * recovery code: that's fine, we're about to complete
4497                  * the process of deleting those.
4498                  * OR it is the EXT4_BOOT_LOADER_INO which is
4499                  * not initialized on a new filesystem. */
4500         }
4501         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4502         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4503         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4504         if (ext4_has_feature_64bit(sb))
4505                 ei->i_file_acl |=
4506                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4507         inode->i_size = ext4_isize(raw_inode);
4508         ei->i_disksize = inode->i_size;
4509 #ifdef CONFIG_QUOTA
4510         ei->i_reserved_quota = 0;
4511 #endif
4512         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4513         ei->i_block_group = iloc.block_group;
4514         ei->i_last_alloc_group = ~0;
4515         /*
4516          * NOTE! The in-memory inode i_data array is in little-endian order
4517          * even on big-endian machines: we do NOT byteswap the block numbers!
4518          */
4519         for (block = 0; block < EXT4_N_BLOCKS; block++)
4520                 ei->i_data[block] = raw_inode->i_block[block];
4521         INIT_LIST_HEAD(&ei->i_orphan);
4522
4523         /*
4524          * Set transaction id's of transactions that have to be committed
4525          * to finish f[data]sync. We set them to currently running transaction
4526          * as we cannot be sure that the inode or some of its metadata isn't
4527          * part of the transaction - the inode could have been reclaimed and
4528          * now it is reread from disk.
4529          */
4530         if (journal) {
4531                 transaction_t *transaction;
4532                 tid_t tid;
4533
4534                 read_lock(&journal->j_state_lock);
4535                 if (journal->j_running_transaction)
4536                         transaction = journal->j_running_transaction;
4537                 else
4538                         transaction = journal->j_committing_transaction;
4539                 if (transaction)
4540                         tid = transaction->t_tid;
4541                 else
4542                         tid = journal->j_commit_sequence;
4543                 read_unlock(&journal->j_state_lock);
4544                 ei->i_sync_tid = tid;
4545                 ei->i_datasync_tid = tid;
4546         }
4547
4548         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4549                 if (ei->i_extra_isize == 0) {
4550                         /* The extra space is currently unused. Use it. */
4551                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4552                                             EXT4_GOOD_OLD_INODE_SIZE;
4553                 } else {
4554                         ext4_iget_extra_inode(inode, raw_inode, ei);
4555                 }
4556         }
4557
4558         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4559         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4560         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4561         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4562
4563         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4564                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4565                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4566                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4567                                 inode->i_version |=
4568                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4569                 }
4570         }
4571
4572         ret = 0;
4573         if (ei->i_file_acl &&
4574             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4575                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4576                                  ei->i_file_acl);
4577                 ret = -EFSCORRUPTED;
4578                 goto bad_inode;
4579         } else if (!ext4_has_inline_data(inode)) {
4580                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4581                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4582                             (S_ISLNK(inode->i_mode) &&
4583                              !ext4_inode_is_fast_symlink(inode))))
4584                                 /* Validate extent which is part of inode */
4585                                 ret = ext4_ext_check_inode(inode);
4586                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4587                            (S_ISLNK(inode->i_mode) &&
4588                             !ext4_inode_is_fast_symlink(inode))) {
4589                         /* Validate block references which are part of inode */
4590                         ret = ext4_ind_check_inode(inode);
4591                 }
4592         }
4593         if (ret)
4594                 goto bad_inode;
4595
4596         if (S_ISREG(inode->i_mode)) {
4597                 inode->i_op = &ext4_file_inode_operations;
4598                 inode->i_fop = &ext4_file_operations;
4599                 ext4_set_aops(inode);
4600         } else if (S_ISDIR(inode->i_mode)) {
4601                 inode->i_op = &ext4_dir_inode_operations;
4602                 inode->i_fop = &ext4_dir_operations;
4603         } else if (S_ISLNK(inode->i_mode)) {
4604                 if (ext4_encrypted_inode(inode)) {
4605                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4606                         ext4_set_aops(inode);
4607                 } else if (ext4_inode_is_fast_symlink(inode)) {
4608                         inode->i_link = (char *)ei->i_data;
4609                         inode->i_op = &ext4_fast_symlink_inode_operations;
4610                         nd_terminate_link(ei->i_data, inode->i_size,
4611                                 sizeof(ei->i_data) - 1);
4612                 } else {
4613                         inode->i_op = &ext4_symlink_inode_operations;
4614                         ext4_set_aops(inode);
4615                 }
4616                 inode_nohighmem(inode);
4617         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4618               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4619                 inode->i_op = &ext4_special_inode_operations;
4620                 if (raw_inode->i_block[0])
4621                         init_special_inode(inode, inode->i_mode,
4622                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4623                 else
4624                         init_special_inode(inode, inode->i_mode,
4625                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4626         } else if (ino == EXT4_BOOT_LOADER_INO) {
4627                 make_bad_inode(inode);
4628         } else {
4629                 ret = -EFSCORRUPTED;
4630                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4631                 goto bad_inode;
4632         }
4633         brelse(iloc.bh);
4634         ext4_set_inode_flags(inode);
4635         unlock_new_inode(inode);
4636         return inode;
4637
4638 bad_inode:
4639         brelse(iloc.bh);
4640         iget_failed(inode);
4641         return ERR_PTR(ret);
4642 }
4643
4644 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4645 {
4646         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4647                 return ERR_PTR(-EFSCORRUPTED);
4648         return ext4_iget(sb, ino);
4649 }
4650
4651 static int ext4_inode_blocks_set(handle_t *handle,
4652                                 struct ext4_inode *raw_inode,
4653                                 struct ext4_inode_info *ei)
4654 {
4655         struct inode *inode = &(ei->vfs_inode);
4656         u64 i_blocks = inode->i_blocks;
4657         struct super_block *sb = inode->i_sb;
4658
4659         if (i_blocks <= ~0U) {
4660                 /*
4661                  * i_blocks can be represented in a 32 bit variable
4662                  * as multiple of 512 bytes
4663                  */
4664                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4665                 raw_inode->i_blocks_high = 0;
4666                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4667                 return 0;
4668         }
4669         if (!ext4_has_feature_huge_file(sb))
4670                 return -EFBIG;
4671
4672         if (i_blocks <= 0xffffffffffffULL) {
4673                 /*
4674                  * i_blocks can be represented in a 48 bit variable
4675                  * as multiple of 512 bytes
4676                  */
4677                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4678                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4679                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4680         } else {
4681                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4682                 /* i_block is stored in file system block size */
4683                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4684                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4685                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4686         }
4687         return 0;
4688 }
4689
4690 struct other_inode {
4691         unsigned long           orig_ino;
4692         struct ext4_inode       *raw_inode;
4693 };
4694
4695 static int other_inode_match(struct inode * inode, unsigned long ino,
4696                              void *data)
4697 {
4698         struct other_inode *oi = (struct other_inode *) data;
4699
4700         if ((inode->i_ino != ino) ||
4701             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4702                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4703             ((inode->i_state & I_DIRTY_TIME) == 0))
4704                 return 0;
4705         spin_lock(&inode->i_lock);
4706         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4707                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4708             (inode->i_state & I_DIRTY_TIME)) {
4709                 struct ext4_inode_info  *ei = EXT4_I(inode);
4710
4711                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4712                 spin_unlock(&inode->i_lock);
4713
4714                 spin_lock(&ei->i_raw_lock);
4715                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4716                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4717                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4718                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4719                 spin_unlock(&ei->i_raw_lock);
4720                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4721                 return -1;
4722         }
4723         spin_unlock(&inode->i_lock);
4724         return -1;
4725 }
4726
4727 /*
4728  * Opportunistically update the other time fields for other inodes in
4729  * the same inode table block.
4730  */
4731 static void ext4_update_other_inodes_time(struct super_block *sb,
4732                                           unsigned long orig_ino, char *buf)
4733 {
4734         struct other_inode oi;
4735         unsigned long ino;
4736         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4737         int inode_size = EXT4_INODE_SIZE(sb);
4738
4739         oi.orig_ino = orig_ino;
4740         /*
4741          * Calculate the first inode in the inode table block.  Inode
4742          * numbers are one-based.  That is, the first inode in a block
4743          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4744          */
4745         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4746         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4747                 if (ino == orig_ino)
4748                         continue;
4749                 oi.raw_inode = (struct ext4_inode *) buf;
4750                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4751         }
4752 }
4753
4754 /*
4755  * Post the struct inode info into an on-disk inode location in the
4756  * buffer-cache.  This gobbles the caller's reference to the
4757  * buffer_head in the inode location struct.
4758  *
4759  * The caller must have write access to iloc->bh.
4760  */
4761 static int ext4_do_update_inode(handle_t *handle,
4762                                 struct inode *inode,
4763                                 struct ext4_iloc *iloc)
4764 {
4765         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4766         struct ext4_inode_info *ei = EXT4_I(inode);
4767         struct buffer_head *bh = iloc->bh;
4768         struct super_block *sb = inode->i_sb;
4769         int err = 0, rc, block;
4770         int need_datasync = 0, set_large_file = 0;
4771         uid_t i_uid;
4772         gid_t i_gid;
4773         projid_t i_projid;
4774
4775         spin_lock(&ei->i_raw_lock);
4776
4777         /* For fields not tracked in the in-memory inode,
4778          * initialise them to zero for new inodes. */
4779         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4780                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4781
4782         ext4_get_inode_flags(ei);
4783         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4784         i_uid = i_uid_read(inode);
4785         i_gid = i_gid_read(inode);
4786         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4787         if (!(test_opt(inode->i_sb, NO_UID32))) {
4788                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4789                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4790 /*
4791  * Fix up interoperability with old kernels. Otherwise, old inodes get
4792  * re-used with the upper 16 bits of the uid/gid intact
4793  */
4794                 if (!ei->i_dtime) {
4795                         raw_inode->i_uid_high =
4796                                 cpu_to_le16(high_16_bits(i_uid));
4797                         raw_inode->i_gid_high =
4798                                 cpu_to_le16(high_16_bits(i_gid));
4799                 } else {
4800                         raw_inode->i_uid_high = 0;
4801                         raw_inode->i_gid_high = 0;
4802                 }
4803         } else {
4804                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4805                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4806                 raw_inode->i_uid_high = 0;
4807                 raw_inode->i_gid_high = 0;
4808         }
4809         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4810
4811         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4812         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4813         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4814         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4815
4816         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4817         if (err) {
4818                 spin_unlock(&ei->i_raw_lock);
4819                 goto out_brelse;
4820         }
4821         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4822         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4823         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4824                 raw_inode->i_file_acl_high =
4825                         cpu_to_le16(ei->i_file_acl >> 32);
4826         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4827         if (ei->i_disksize != ext4_isize(raw_inode)) {
4828                 ext4_isize_set(raw_inode, ei->i_disksize);
4829                 need_datasync = 1;
4830         }
4831         if (ei->i_disksize > 0x7fffffffULL) {
4832                 if (!ext4_has_feature_large_file(sb) ||
4833                                 EXT4_SB(sb)->s_es->s_rev_level ==
4834                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4835                         set_large_file = 1;
4836         }
4837         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4838         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4839                 if (old_valid_dev(inode->i_rdev)) {
4840                         raw_inode->i_block[0] =
4841                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4842                         raw_inode->i_block[1] = 0;
4843                 } else {
4844                         raw_inode->i_block[0] = 0;
4845                         raw_inode->i_block[1] =
4846                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4847                         raw_inode->i_block[2] = 0;
4848                 }
4849         } else if (!ext4_has_inline_data(inode)) {
4850                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4851                         raw_inode->i_block[block] = ei->i_data[block];
4852         }
4853
4854         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4855                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4856                 if (ei->i_extra_isize) {
4857                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4858                                 raw_inode->i_version_hi =
4859                                         cpu_to_le32(inode->i_version >> 32);
4860                         raw_inode->i_extra_isize =
4861                                 cpu_to_le16(ei->i_extra_isize);
4862                 }
4863         }
4864
4865         BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4866                         EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4867                i_projid != EXT4_DEF_PROJID);
4868
4869         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4870             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4871                 raw_inode->i_projid = cpu_to_le32(i_projid);
4872
4873         ext4_inode_csum_set(inode, raw_inode, ei);
4874         spin_unlock(&ei->i_raw_lock);
4875         if (inode->i_sb->s_flags & MS_LAZYTIME)
4876                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4877                                               bh->b_data);
4878
4879         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4880         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4881         if (!err)
4882                 err = rc;
4883         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4884         if (set_large_file) {
4885                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4886                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4887                 if (err)
4888                         goto out_brelse;
4889                 ext4_update_dynamic_rev(sb);
4890                 ext4_set_feature_large_file(sb);
4891                 ext4_handle_sync(handle);
4892                 err = ext4_handle_dirty_super(handle, sb);
4893         }
4894         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4895 out_brelse:
4896         brelse(bh);
4897         ext4_std_error(inode->i_sb, err);
4898         return err;
4899 }
4900
4901 /*
4902  * ext4_write_inode()
4903  *
4904  * We are called from a few places:
4905  *
4906  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4907  *   Here, there will be no transaction running. We wait for any running
4908  *   transaction to commit.
4909  *
4910  * - Within flush work (sys_sync(), kupdate and such).
4911  *   We wait on commit, if told to.
4912  *
4913  * - Within iput_final() -> write_inode_now()
4914  *   We wait on commit, if told to.
4915  *
4916  * In all cases it is actually safe for us to return without doing anything,
4917  * because the inode has been copied into a raw inode buffer in
4918  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4919  * writeback.
4920  *
4921  * Note that we are absolutely dependent upon all inode dirtiers doing the
4922  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4923  * which we are interested.
4924  *
4925  * It would be a bug for them to not do this.  The code:
4926  *
4927  *      mark_inode_dirty(inode)
4928  *      stuff();
4929  *      inode->i_size = expr;
4930  *
4931  * is in error because write_inode() could occur while `stuff()' is running,
4932  * and the new i_size will be lost.  Plus the inode will no longer be on the
4933  * superblock's dirty inode list.
4934  */
4935 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4936 {
4937         int err;
4938
4939         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4940                 return 0;
4941
4942         if (EXT4_SB(inode->i_sb)->s_journal) {
4943                 if (ext4_journal_current_handle()) {
4944                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4945                         dump_stack();
4946                         return -EIO;
4947                 }
4948
4949                 /*
4950                  * No need to force transaction in WB_SYNC_NONE mode. Also
4951                  * ext4_sync_fs() will force the commit after everything is
4952                  * written.
4953                  */
4954                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4955                         return 0;
4956
4957                 err = ext4_force_commit(inode->i_sb);
4958         } else {
4959                 struct ext4_iloc iloc;
4960
4961                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4962                 if (err)
4963                         return err;
4964                 /*
4965                  * sync(2) will flush the whole buffer cache. No need to do
4966                  * it here separately for each inode.
4967                  */
4968                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4969                         sync_dirty_buffer(iloc.bh);
4970                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4971                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4972                                          "IO error syncing inode");
4973                         err = -EIO;
4974                 }
4975                 brelse(iloc.bh);
4976         }
4977         return err;
4978 }
4979
4980 /*
4981  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4982  * buffers that are attached to a page stradding i_size and are undergoing
4983  * commit. In that case we have to wait for commit to finish and try again.
4984  */
4985 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4986 {
4987         struct page *page;
4988         unsigned offset;
4989         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4990         tid_t commit_tid = 0;
4991         int ret;
4992
4993         offset = inode->i_size & (PAGE_SIZE - 1);
4994         /*
4995          * All buffers in the last page remain valid? Then there's nothing to
4996          * do. We do the check mainly to optimize the common PAGE_SIZE ==
4997          * blocksize case
4998          */
4999         if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5000                 return;
5001         while (1) {
5002                 page = find_lock_page(inode->i_mapping,
5003                                       inode->i_size >> PAGE_SHIFT);
5004                 if (!page)
5005                         return;
5006                 ret = __ext4_journalled_invalidatepage(page, offset,
5007                                                 PAGE_SIZE - offset);
5008                 unlock_page(page);
5009                 put_page(page);
5010                 if (ret != -EBUSY)
5011                         return;
5012                 commit_tid = 0;
5013                 read_lock(&journal->j_state_lock);
5014                 if (journal->j_committing_transaction)
5015                         commit_tid = journal->j_committing_transaction->t_tid;
5016                 read_unlock(&journal->j_state_lock);
5017                 if (commit_tid)
5018                         jbd2_log_wait_commit(journal, commit_tid);
5019         }
5020 }
5021
5022 /*
5023  * ext4_setattr()
5024  *
5025  * Called from notify_change.
5026  *
5027  * We want to trap VFS attempts to truncate the file as soon as
5028  * possible.  In particular, we want to make sure that when the VFS
5029  * shrinks i_size, we put the inode on the orphan list and modify
5030  * i_disksize immediately, so that during the subsequent flushing of
5031  * dirty pages and freeing of disk blocks, we can guarantee that any
5032  * commit will leave the blocks being flushed in an unused state on
5033  * disk.  (On recovery, the inode will get truncated and the blocks will
5034  * be freed, so we have a strong guarantee that no future commit will
5035  * leave these blocks visible to the user.)
5036  *
5037  * Another thing we have to assure is that if we are in ordered mode
5038  * and inode is still attached to the committing transaction, we must
5039  * we start writeout of all the dirty pages which are being truncated.
5040  * This way we are sure that all the data written in the previous
5041  * transaction are already on disk (truncate waits for pages under
5042  * writeback).
5043  *
5044  * Called with inode->i_mutex down.
5045  */
5046 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5047 {
5048         struct inode *inode = d_inode(dentry);
5049         int error, rc = 0;
5050         int orphan = 0;
5051         const unsigned int ia_valid = attr->ia_valid;
5052
5053         error = inode_change_ok(inode, attr);
5054         if (error)
5055                 return error;
5056
5057         if (is_quota_modification(inode, attr)) {
5058                 error = dquot_initialize(inode);
5059                 if (error)
5060                         return error;
5061         }
5062         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5063             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5064                 handle_t *handle;
5065
5066                 /* (user+group)*(old+new) structure, inode write (sb,
5067                  * inode block, ? - but truncate inode update has it) */
5068                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5069                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5070                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5071                 if (IS_ERR(handle)) {
5072                         error = PTR_ERR(handle);
5073                         goto err_out;
5074                 }
5075                 error = dquot_transfer(inode, attr);
5076                 if (error) {
5077                         ext4_journal_stop(handle);
5078                         return error;
5079                 }
5080                 /* Update corresponding info in inode so that everything is in
5081                  * one transaction */
5082                 if (attr->ia_valid & ATTR_UID)
5083                         inode->i_uid = attr->ia_uid;
5084                 if (attr->ia_valid & ATTR_GID)
5085                         inode->i_gid = attr->ia_gid;
5086                 error = ext4_mark_inode_dirty(handle, inode);
5087                 ext4_journal_stop(handle);
5088         }
5089
5090         if (attr->ia_valid & ATTR_SIZE) {
5091                 handle_t *handle;
5092                 loff_t oldsize = inode->i_size;
5093                 int shrink = (attr->ia_size <= inode->i_size);
5094
5095                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5096                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5097
5098                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5099                                 return -EFBIG;
5100                 }
5101                 if (!S_ISREG(inode->i_mode))
5102                         return -EINVAL;
5103
5104                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5105                         inode_inc_iversion(inode);
5106
5107                 if (ext4_should_order_data(inode) &&
5108                     (attr->ia_size < inode->i_size)) {
5109                         error = ext4_begin_ordered_truncate(inode,
5110                                                             attr->ia_size);
5111                         if (error)
5112                                 goto err_out;
5113                 }
5114                 if (attr->ia_size != inode->i_size) {
5115                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5116                         if (IS_ERR(handle)) {
5117                                 error = PTR_ERR(handle);
5118                                 goto err_out;
5119                         }
5120                         if (ext4_handle_valid(handle) && shrink) {
5121                                 error = ext4_orphan_add(handle, inode);
5122                                 orphan = 1;
5123                         }
5124                         /*
5125                          * Update c/mtime on truncate up, ext4_truncate() will
5126                          * update c/mtime in shrink case below
5127                          */
5128                         if (!shrink) {
5129                                 inode->i_mtime = ext4_current_time(inode);
5130                                 inode->i_ctime = inode->i_mtime;
5131                         }
5132                         down_write(&EXT4_I(inode)->i_data_sem);
5133                         EXT4_I(inode)->i_disksize = attr->ia_size;
5134                         rc = ext4_mark_inode_dirty(handle, inode);
5135                         if (!error)
5136                                 error = rc;
5137                         /*
5138                          * We have to update i_size under i_data_sem together
5139                          * with i_disksize to avoid races with writeback code
5140                          * running ext4_wb_update_i_disksize().
5141                          */
5142                         if (!error)
5143                                 i_size_write(inode, attr->ia_size);
5144                         up_write(&EXT4_I(inode)->i_data_sem);
5145                         ext4_journal_stop(handle);
5146                         if (error) {
5147                                 if (orphan)
5148                                         ext4_orphan_del(NULL, inode);
5149                                 goto err_out;
5150                         }
5151                 }
5152                 if (!shrink)
5153                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5154
5155                 /*
5156                  * Blocks are going to be removed from the inode. Wait
5157                  * for dio in flight.  Temporarily disable
5158                  * dioread_nolock to prevent livelock.
5159                  */
5160                 if (orphan) {
5161                         if (!ext4_should_journal_data(inode)) {
5162                                 ext4_inode_block_unlocked_dio(inode);
5163                                 inode_dio_wait(inode);
5164                                 ext4_inode_resume_unlocked_dio(inode);
5165                         } else
5166                                 ext4_wait_for_tail_page_commit(inode);
5167                 }
5168                 down_write(&EXT4_I(inode)->i_mmap_sem);
5169                 /*
5170                  * Truncate pagecache after we've waited for commit
5171                  * in data=journal mode to make pages freeable.
5172                  */
5173                 truncate_pagecache(inode, inode->i_size);
5174                 if (shrink)
5175                         ext4_truncate(inode);
5176                 up_write(&EXT4_I(inode)->i_mmap_sem);
5177         }
5178
5179         if (!rc) {
5180                 setattr_copy(inode, attr);
5181                 mark_inode_dirty(inode);
5182         }
5183
5184         /*
5185          * If the call to ext4_truncate failed to get a transaction handle at
5186          * all, we need to clean up the in-core orphan list manually.
5187          */
5188         if (orphan && inode->i_nlink)
5189                 ext4_orphan_del(NULL, inode);
5190
5191         if (!rc && (ia_valid & ATTR_MODE))
5192                 rc = posix_acl_chmod(inode, inode->i_mode);
5193
5194 err_out:
5195         ext4_std_error(inode->i_sb, error);
5196         if (!error)
5197                 error = rc;
5198         return error;
5199 }
5200
5201 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5202                  struct kstat *stat)
5203 {
5204         struct inode *inode;
5205         unsigned long long delalloc_blocks;
5206
5207         inode = d_inode(dentry);
5208         generic_fillattr(inode, stat);
5209
5210         /*
5211          * If there is inline data in the inode, the inode will normally not
5212          * have data blocks allocated (it may have an external xattr block).
5213          * Report at least one sector for such files, so tools like tar, rsync,
5214          * others doen't incorrectly think the file is completely sparse.
5215          */
5216         if (unlikely(ext4_has_inline_data(inode)))
5217                 stat->blocks += (stat->size + 511) >> 9;
5218
5219         /*
5220          * We can't update i_blocks if the block allocation is delayed
5221          * otherwise in the case of system crash before the real block
5222          * allocation is done, we will have i_blocks inconsistent with
5223          * on-disk file blocks.
5224          * We always keep i_blocks updated together with real
5225          * allocation. But to not confuse with user, stat
5226          * will return the blocks that include the delayed allocation
5227          * blocks for this file.
5228          */
5229         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5230                                    EXT4_I(inode)->i_reserved_data_blocks);
5231         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5232         return 0;
5233 }
5234
5235 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5236                                    int pextents)
5237 {
5238         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5239                 return ext4_ind_trans_blocks(inode, lblocks);
5240         return ext4_ext_index_trans_blocks(inode, pextents);
5241 }
5242
5243 /*
5244  * Account for index blocks, block groups bitmaps and block group
5245  * descriptor blocks if modify datablocks and index blocks
5246  * worse case, the indexs blocks spread over different block groups
5247  *
5248  * If datablocks are discontiguous, they are possible to spread over
5249  * different block groups too. If they are contiguous, with flexbg,
5250  * they could still across block group boundary.
5251  *
5252  * Also account for superblock, inode, quota and xattr blocks
5253  */
5254 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5255                                   int pextents)
5256 {
5257         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5258         int gdpblocks;
5259         int idxblocks;
5260         int ret = 0;
5261
5262         /*
5263          * How many index blocks need to touch to map @lblocks logical blocks
5264          * to @pextents physical extents?
5265          */
5266         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5267
5268         ret = idxblocks;
5269
5270         /*
5271          * Now let's see how many group bitmaps and group descriptors need
5272          * to account
5273          */
5274         groups = idxblocks + pextents;
5275         gdpblocks = groups;
5276         if (groups > ngroups)
5277                 groups = ngroups;
5278         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5279                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5280
5281         /* bitmaps and block group descriptor blocks */
5282         ret += groups + gdpblocks;
5283
5284         /* Blocks for super block, inode, quota and xattr blocks */
5285         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5286
5287         return ret;
5288 }
5289
5290 /*
5291  * Calculate the total number of credits to reserve to fit
5292  * the modification of a single pages into a single transaction,
5293  * which may include multiple chunks of block allocations.
5294  *
5295  * This could be called via ext4_write_begin()
5296  *
5297  * We need to consider the worse case, when
5298  * one new block per extent.
5299  */
5300 int ext4_writepage_trans_blocks(struct inode *inode)
5301 {
5302         int bpp = ext4_journal_blocks_per_page(inode);
5303         int ret;
5304
5305         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5306
5307         /* Account for data blocks for journalled mode */
5308         if (ext4_should_journal_data(inode))
5309                 ret += bpp;
5310         return ret;
5311 }
5312
5313 /*
5314  * Calculate the journal credits for a chunk of data modification.
5315  *
5316  * This is called from DIO, fallocate or whoever calling
5317  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5318  *
5319  * journal buffers for data blocks are not included here, as DIO
5320  * and fallocate do no need to journal data buffers.
5321  */
5322 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5323 {
5324         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5325 }
5326
5327 /*
5328  * The caller must have previously called ext4_reserve_inode_write().
5329  * Give this, we know that the caller already has write access to iloc->bh.
5330  */
5331 int ext4_mark_iloc_dirty(handle_t *handle,
5332                          struct inode *inode, struct ext4_iloc *iloc)
5333 {
5334         int err = 0;
5335
5336         if (IS_I_VERSION(inode))
5337                 inode_inc_iversion(inode);
5338
5339         /* the do_update_inode consumes one bh->b_count */
5340         get_bh(iloc->bh);
5341
5342         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5343         err = ext4_do_update_inode(handle, inode, iloc);
5344         put_bh(iloc->bh);
5345         return err;
5346 }
5347
5348 /*
5349  * On success, We end up with an outstanding reference count against
5350  * iloc->bh.  This _must_ be cleaned up later.
5351  */
5352
5353 int
5354 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5355                          struct ext4_iloc *iloc)
5356 {
5357         int err;
5358
5359         err = ext4_get_inode_loc(inode, iloc);
5360         if (!err) {
5361                 BUFFER_TRACE(iloc->bh, "get_write_access");
5362                 err = ext4_journal_get_write_access(handle, iloc->bh);
5363                 if (err) {
5364                         brelse(iloc->bh);
5365                         iloc->bh = NULL;
5366                 }
5367         }
5368         ext4_std_error(inode->i_sb, err);
5369         return err;
5370 }
5371
5372 /*
5373  * Expand an inode by new_extra_isize bytes.
5374  * Returns 0 on success or negative error number on failure.
5375  */
5376 static int ext4_expand_extra_isize(struct inode *inode,
5377                                    unsigned int new_extra_isize,
5378                                    struct ext4_iloc iloc,
5379                                    handle_t *handle)
5380 {
5381         struct ext4_inode *raw_inode;
5382         struct ext4_xattr_ibody_header *header;
5383
5384         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5385                 return 0;
5386
5387         raw_inode = ext4_raw_inode(&iloc);
5388
5389         header = IHDR(inode, raw_inode);
5390
5391         /* No extended attributes present */
5392         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5393             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5394                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5395                         new_extra_isize);
5396                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5397                 return 0;
5398         }
5399
5400         /* try to expand with EAs present */
5401         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5402                                           raw_inode, handle);
5403 }
5404
5405 /*
5406  * What we do here is to mark the in-core inode as clean with respect to inode
5407  * dirtiness (it may still be data-dirty).
5408  * This means that the in-core inode may be reaped by prune_icache
5409  * without having to perform any I/O.  This is a very good thing,
5410  * because *any* task may call prune_icache - even ones which
5411  * have a transaction open against a different journal.
5412  *
5413  * Is this cheating?  Not really.  Sure, we haven't written the
5414  * inode out, but prune_icache isn't a user-visible syncing function.
5415  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5416  * we start and wait on commits.
5417  */
5418 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5419 {
5420         struct ext4_iloc iloc;
5421         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5422         static unsigned int mnt_count;
5423         int err, ret;
5424
5425         might_sleep();
5426         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5427         err = ext4_reserve_inode_write(handle, inode, &iloc);
5428         if (err)
5429                 return err;
5430         if (ext4_handle_valid(handle) &&
5431             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5432             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5433                 /*
5434                  * We need extra buffer credits since we may write into EA block
5435                  * with this same handle. If journal_extend fails, then it will
5436                  * only result in a minor loss of functionality for that inode.
5437                  * If this is felt to be critical, then e2fsck should be run to
5438                  * force a large enough s_min_extra_isize.
5439                  */
5440                 if ((jbd2_journal_extend(handle,
5441                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5442                         ret = ext4_expand_extra_isize(inode,
5443                                                       sbi->s_want_extra_isize,
5444                                                       iloc, handle);
5445                         if (ret) {
5446                                 ext4_set_inode_state(inode,
5447                                                      EXT4_STATE_NO_EXPAND);
5448                                 if (mnt_count !=
5449                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5450                                         ext4_warning(inode->i_sb,
5451                                         "Unable to expand inode %lu. Delete"
5452                                         " some EAs or run e2fsck.",
5453                                         inode->i_ino);
5454                                         mnt_count =
5455                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5456                                 }
5457                         }
5458                 }
5459         }
5460         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5461 }
5462
5463 /*
5464  * ext4_dirty_inode() is called from __mark_inode_dirty()
5465  *
5466  * We're really interested in the case where a file is being extended.
5467  * i_size has been changed by generic_commit_write() and we thus need
5468  * to include the updated inode in the current transaction.
5469  *
5470  * Also, dquot_alloc_block() will always dirty the inode when blocks
5471  * are allocated to the file.
5472  *
5473  * If the inode is marked synchronous, we don't honour that here - doing
5474  * so would cause a commit on atime updates, which we don't bother doing.
5475  * We handle synchronous inodes at the highest possible level.
5476  *
5477  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5478  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5479  * to copy into the on-disk inode structure are the timestamp files.
5480  */
5481 void ext4_dirty_inode(struct inode *inode, int flags)
5482 {
5483         handle_t *handle;
5484
5485         if (flags == I_DIRTY_TIME)
5486                 return;
5487         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5488         if (IS_ERR(handle))
5489                 goto out;
5490
5491         ext4_mark_inode_dirty(handle, inode);
5492
5493         ext4_journal_stop(handle);
5494 out:
5495         return;
5496 }
5497
5498 #if 0
5499 /*
5500  * Bind an inode's backing buffer_head into this transaction, to prevent
5501  * it from being flushed to disk early.  Unlike
5502  * ext4_reserve_inode_write, this leaves behind no bh reference and
5503  * returns no iloc structure, so the caller needs to repeat the iloc
5504  * lookup to mark the inode dirty later.
5505  */
5506 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5507 {
5508         struct ext4_iloc iloc;
5509
5510         int err = 0;
5511         if (handle) {
5512                 err = ext4_get_inode_loc(inode, &iloc);
5513                 if (!err) {
5514                         BUFFER_TRACE(iloc.bh, "get_write_access");
5515                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5516                         if (!err)
5517                                 err = ext4_handle_dirty_metadata(handle,
5518                                                                  NULL,
5519                                                                  iloc.bh);
5520                         brelse(iloc.bh);
5521                 }
5522         }
5523         ext4_std_error(inode->i_sb, err);
5524         return err;
5525 }
5526 #endif
5527
5528 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5529 {
5530         journal_t *journal;
5531         handle_t *handle;
5532         int err;
5533         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5534
5535         /*
5536          * We have to be very careful here: changing a data block's
5537          * journaling status dynamically is dangerous.  If we write a
5538          * data block to the journal, change the status and then delete
5539          * that block, we risk forgetting to revoke the old log record
5540          * from the journal and so a subsequent replay can corrupt data.
5541          * So, first we make sure that the journal is empty and that
5542          * nobody is changing anything.
5543          */
5544
5545         journal = EXT4_JOURNAL(inode);
5546         if (!journal)
5547                 return 0;
5548         if (is_journal_aborted(journal))
5549                 return -EROFS;
5550
5551         /* Wait for all existing dio workers */
5552         ext4_inode_block_unlocked_dio(inode);
5553         inode_dio_wait(inode);
5554
5555         /*
5556          * Before flushing the journal and switching inode's aops, we have
5557          * to flush all dirty data the inode has. There can be outstanding
5558          * delayed allocations, there can be unwritten extents created by
5559          * fallocate or buffered writes in dioread_nolock mode covered by
5560          * dirty data which can be converted only after flushing the dirty
5561          * data (and journalled aops don't know how to handle these cases).
5562          */
5563         if (val) {
5564                 down_write(&EXT4_I(inode)->i_mmap_sem);
5565                 err = filemap_write_and_wait(inode->i_mapping);
5566                 if (err < 0) {
5567                         up_write(&EXT4_I(inode)->i_mmap_sem);
5568                         ext4_inode_resume_unlocked_dio(inode);
5569                         return err;
5570                 }
5571         }
5572
5573         percpu_down_write(&sbi->s_journal_flag_rwsem);
5574         jbd2_journal_lock_updates(journal);
5575
5576         /*
5577          * OK, there are no updates running now, and all cached data is
5578          * synced to disk.  We are now in a completely consistent state
5579          * which doesn't have anything in the journal, and we know that
5580          * no filesystem updates are running, so it is safe to modify
5581          * the inode's in-core data-journaling state flag now.
5582          */
5583
5584         if (val)
5585                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5586         else {
5587                 err = jbd2_journal_flush(journal);
5588                 if (err < 0) {
5589                         jbd2_journal_unlock_updates(journal);
5590                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5591                         ext4_inode_resume_unlocked_dio(inode);
5592                         return err;
5593                 }
5594                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5595         }
5596         ext4_set_aops(inode);
5597
5598         jbd2_journal_unlock_updates(journal);
5599         percpu_up_write(&sbi->s_journal_flag_rwsem);
5600
5601         if (val)
5602                 up_write(&EXT4_I(inode)->i_mmap_sem);
5603         ext4_inode_resume_unlocked_dio(inode);
5604
5605         /* Finally we can mark the inode as dirty. */
5606
5607         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5608         if (IS_ERR(handle))
5609                 return PTR_ERR(handle);
5610
5611         err = ext4_mark_inode_dirty(handle, inode);
5612         ext4_handle_sync(handle);
5613         ext4_journal_stop(handle);
5614         ext4_std_error(inode->i_sb, err);
5615
5616         return err;
5617 }
5618
5619 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5620 {
5621         return !buffer_mapped(bh);
5622 }
5623
5624 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5625 {
5626         struct page *page = vmf->page;
5627         loff_t size;
5628         unsigned long len;
5629         int ret;
5630         struct file *file = vma->vm_file;
5631         struct inode *inode = file_inode(file);
5632         struct address_space *mapping = inode->i_mapping;
5633         handle_t *handle;
5634         get_block_t *get_block;
5635         int retries = 0;
5636
5637         sb_start_pagefault(inode->i_sb);
5638         file_update_time(vma->vm_file);
5639
5640         down_read(&EXT4_I(inode)->i_mmap_sem);
5641         /* Delalloc case is easy... */
5642         if (test_opt(inode->i_sb, DELALLOC) &&
5643             !ext4_should_journal_data(inode) &&
5644             !ext4_nonda_switch(inode->i_sb)) {
5645                 do {
5646                         ret = block_page_mkwrite(vma, vmf,
5647                                                    ext4_da_get_block_prep);
5648                 } while (ret == -ENOSPC &&
5649                        ext4_should_retry_alloc(inode->i_sb, &retries));
5650                 goto out_ret;
5651         }
5652
5653         lock_page(page);
5654         size = i_size_read(inode);
5655         /* Page got truncated from under us? */
5656         if (page->mapping != mapping || page_offset(page) > size) {
5657                 unlock_page(page);
5658                 ret = VM_FAULT_NOPAGE;
5659                 goto out;
5660         }
5661
5662         if (page->index == size >> PAGE_SHIFT)
5663                 len = size & ~PAGE_MASK;
5664         else
5665                 len = PAGE_SIZE;
5666         /*
5667          * Return if we have all the buffers mapped. This avoids the need to do
5668          * journal_start/journal_stop which can block and take a long time
5669          */
5670         if (page_has_buffers(page)) {
5671                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5672                                             0, len, NULL,
5673                                             ext4_bh_unmapped)) {
5674                         /* Wait so that we don't change page under IO */
5675                         wait_for_stable_page(page);
5676                         ret = VM_FAULT_LOCKED;
5677                         goto out;
5678                 }
5679         }
5680         unlock_page(page);
5681         /* OK, we need to fill the hole... */
5682         if (ext4_should_dioread_nolock(inode))
5683                 get_block = ext4_get_block_unwritten;
5684         else
5685                 get_block = ext4_get_block;
5686 retry_alloc:
5687         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5688                                     ext4_writepage_trans_blocks(inode));
5689         if (IS_ERR(handle)) {
5690                 ret = VM_FAULT_SIGBUS;
5691                 goto out;
5692         }
5693         ret = block_page_mkwrite(vma, vmf, get_block);
5694         if (!ret && ext4_should_journal_data(inode)) {
5695                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5696                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5697                         unlock_page(page);
5698                         ret = VM_FAULT_SIGBUS;
5699                         ext4_journal_stop(handle);
5700                         goto out;
5701                 }
5702                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5703         }
5704         ext4_journal_stop(handle);
5705         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5706                 goto retry_alloc;
5707 out_ret:
5708         ret = block_page_mkwrite_return(ret);
5709 out:
5710         up_read(&EXT4_I(inode)->i_mmap_sem);
5711         sb_end_pagefault(inode->i_sb);
5712         return ret;
5713 }
5714
5715 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5716 {
5717         struct inode *inode = file_inode(vma->vm_file);
5718         int err;
5719
5720         down_read(&EXT4_I(inode)->i_mmap_sem);
5721         err = filemap_fault(vma, vmf);
5722         up_read(&EXT4_I(inode)->i_mmap_sem);
5723
5724         return err;
5725 }
5726
5727 /*
5728  * Find the first extent at or after @lblk in an inode that is not a hole.
5729  * Search for @map_len blocks at most. The extent is returned in @result.
5730  *
5731  * The function returns 1 if we found an extent. The function returns 0 in
5732  * case there is no extent at or after @lblk and in that case also sets
5733  * @result->es_len to 0. In case of error, the error code is returned.
5734  */
5735 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5736                          unsigned int map_len, struct extent_status *result)
5737 {
5738         struct ext4_map_blocks map;
5739         struct extent_status es = {};
5740         int ret;
5741
5742         map.m_lblk = lblk;
5743         map.m_len = map_len;
5744
5745         /*
5746          * For non-extent based files this loop may iterate several times since
5747          * we do not determine full hole size.
5748          */
5749         while (map.m_len > 0) {
5750                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5751                 if (ret < 0)
5752                         return ret;
5753                 /* There's extent covering m_lblk? Just return it. */
5754                 if (ret > 0) {
5755                         int status;
5756
5757                         ext4_es_store_pblock(result, map.m_pblk);
5758                         result->es_lblk = map.m_lblk;
5759                         result->es_len = map.m_len;
5760                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5761                                 status = EXTENT_STATUS_UNWRITTEN;
5762                         else
5763                                 status = EXTENT_STATUS_WRITTEN;
5764                         ext4_es_store_status(result, status);
5765                         return 1;
5766                 }
5767                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5768                                                   map.m_lblk + map.m_len - 1,
5769                                                   &es);
5770                 /* Is delalloc data before next block in extent tree? */
5771                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5772                         ext4_lblk_t offset = 0;
5773
5774                         if (es.es_lblk < lblk)
5775                                 offset = lblk - es.es_lblk;
5776                         result->es_lblk = es.es_lblk + offset;
5777                         ext4_es_store_pblock(result,
5778                                              ext4_es_pblock(&es) + offset);
5779                         result->es_len = es.es_len - offset;
5780                         ext4_es_store_status(result, ext4_es_status(&es));
5781
5782                         return 1;
5783                 }
5784                 /* There's a hole at m_lblk, advance us after it */
5785                 map.m_lblk += map.m_len;
5786                 map_len -= map.m_len;
5787                 map.m_len = map_len;
5788                 cond_resched();
5789         }
5790         result->es_len = 0;
5791         return 0;
5792 }