Merge tag 'for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
39
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
44
45 #include <trace/events/ext4.h>
46
47 #define MPAGE_DA_EXTENT_TAIL 0x01
48
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50                               struct ext4_inode_info *ei)
51 {
52         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53         __u16 csum_lo;
54         __u16 csum_hi = 0;
55         __u32 csum;
56
57         csum_lo = le16_to_cpu(raw->i_checksum_lo);
58         raw->i_checksum_lo = 0;
59         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
62                 raw->i_checksum_hi = 0;
63         }
64
65         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66                            EXT4_INODE_SIZE(inode->i_sb));
67
68         raw->i_checksum_lo = cpu_to_le16(csum_lo);
69         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
72
73         return csum;
74 }
75
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77                                   struct ext4_inode_info *ei)
78 {
79         __u32 provided, calculated;
80
81         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82             cpu_to_le32(EXT4_OS_LINUX) ||
83             !ext4_has_metadata_csum(inode->i_sb))
84                 return 1;
85
86         provided = le16_to_cpu(raw->i_checksum_lo);
87         calculated = ext4_inode_csum(inode, raw, ei);
88         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91         else
92                 calculated &= 0xFFFF;
93
94         return provided == calculated;
95 }
96
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98                                 struct ext4_inode_info *ei)
99 {
100         __u32 csum;
101
102         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103             cpu_to_le32(EXT4_OS_LINUX) ||
104             !ext4_has_metadata_csum(inode->i_sb))
105                 return;
106
107         csum = ext4_inode_csum(inode, raw, ei);
108         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112 }
113
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115                                               loff_t new_size)
116 {
117         trace_ext4_begin_ordered_truncate(inode, new_size);
118         /*
119          * If jinode is zero, then we never opened the file for
120          * writing, so there's no need to call
121          * jbd2_journal_begin_ordered_truncate() since there's no
122          * outstanding writes we need to flush.
123          */
124         if (!EXT4_I(inode)->jinode)
125                 return 0;
126         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127                                                    EXT4_I(inode)->jinode,
128                                                    new_size);
129 }
130
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132                                 unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136                                   int pextents);
137
138 /*
139  * Test whether an inode is a fast symlink.
140  */
141 int ext4_inode_is_fast_symlink(struct inode *inode)
142 {
143         int ea_blocks = EXT4_I(inode)->i_file_acl ?
144                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145
146         if (ext4_has_inline_data(inode))
147                 return 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_complete_transaction(journal, commit_tid);
214                         filemap_write_and_wait(&inode->i_data);
215                 }
216                 truncate_inode_pages_final(&inode->i_data);
217
218                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219                 goto no_delete;
220         }
221
222         if (is_bad_inode(inode))
223                 goto no_delete;
224         dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages_final(&inode->i_data);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Called with i_data_sem down, which is important since we can call
323  * ext4_discard_preallocations() from here.
324  */
325 void ext4_da_update_reserve_space(struct inode *inode,
326                                         int used, int quota_claim)
327 {
328         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329         struct ext4_inode_info *ei = EXT4_I(inode);
330
331         spin_lock(&ei->i_block_reservation_lock);
332         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333         if (unlikely(used > ei->i_reserved_data_blocks)) {
334                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335                          "with only %d reserved data blocks",
336                          __func__, inode->i_ino, used,
337                          ei->i_reserved_data_blocks);
338                 WARN_ON(1);
339                 used = ei->i_reserved_data_blocks;
340         }
341
342         /* Update per-inode reservations */
343         ei->i_reserved_data_blocks -= used;
344         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345
346         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347
348         /* Update quota subsystem for data blocks */
349         if (quota_claim)
350                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
351         else {
352                 /*
353                  * We did fallocate with an offset that is already delayed
354                  * allocated. So on delayed allocated writeback we should
355                  * not re-claim the quota for fallocated blocks.
356                  */
357                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358         }
359
360         /*
361          * If we have done all the pending block allocations and if
362          * there aren't any writers on the inode, we can discard the
363          * inode's preallocations.
364          */
365         if ((ei->i_reserved_data_blocks == 0) &&
366             (atomic_read(&inode->i_writecount) == 0))
367                 ext4_discard_preallocations(inode);
368 }
369
370 static int __check_block_validity(struct inode *inode, const char *func,
371                                 unsigned int line,
372                                 struct ext4_map_blocks *map)
373 {
374         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375                                    map->m_len)) {
376                 ext4_error_inode(inode, func, line, map->m_pblk,
377                                  "lblock %lu mapped to illegal pblock "
378                                  "(length %d)", (unsigned long) map->m_lblk,
379                                  map->m_len);
380                 return -EIO;
381         }
382         return 0;
383 }
384
385 #define check_block_validity(inode, map)        \
386         __check_block_validity((inode), __func__, __LINE__, (map))
387
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390                                        struct inode *inode,
391                                        struct ext4_map_blocks *es_map,
392                                        struct ext4_map_blocks *map,
393                                        int flags)
394 {
395         int retval;
396
397         map->m_flags = 0;
398         /*
399          * There is a race window that the result is not the same.
400          * e.g. xfstests #223 when dioread_nolock enables.  The reason
401          * is that we lookup a block mapping in extent status tree with
402          * out taking i_data_sem.  So at the time the unwritten extent
403          * could be converted.
404          */
405         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406                 down_read(&EXT4_I(inode)->i_data_sem);
407         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
409                                              EXT4_GET_BLOCKS_KEEP_SIZE);
410         } else {
411                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
412                                              EXT4_GET_BLOCKS_KEEP_SIZE);
413         }
414         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415                 up_read((&EXT4_I(inode)->i_data_sem));
416
417         /*
418          * We don't check m_len because extent will be collpased in status
419          * tree.  So the m_len might not equal.
420          */
421         if (es_map->m_lblk != map->m_lblk ||
422             es_map->m_flags != map->m_flags ||
423             es_map->m_pblk != map->m_pblk) {
424                 printk("ES cache assertion failed for inode: %lu "
425                        "es_cached ex [%d/%d/%llu/%x] != "
426                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427                        inode->i_ino, es_map->m_lblk, es_map->m_len,
428                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
429                        map->m_len, map->m_pblk, map->m_flags,
430                        retval, flags);
431         }
432 }
433 #endif /* ES_AGGRESSIVE_TEST */
434
435 /*
436  * The ext4_map_blocks() function tries to look up the requested blocks,
437  * and returns if the blocks are already mapped.
438  *
439  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440  * and store the allocated blocks in the result buffer head and mark it
441  * mapped.
442  *
443  * If file type is extents based, it will call ext4_ext_map_blocks(),
444  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445  * based files
446  *
447  * On success, it returns the number of blocks being mapped or allocated.
448  * if create==0 and the blocks are pre-allocated and unwritten block,
449  * the result buffer head is unmapped. If the create ==1, it will make sure
450  * the buffer head is mapped.
451  *
452  * It returns 0 if plain look up failed (blocks have not been allocated), in
453  * that case, buffer head is unmapped
454  *
455  * It returns the error in case of allocation failure.
456  */
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458                     struct ext4_map_blocks *map, int flags)
459 {
460         struct extent_status es;
461         int retval;
462         int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464         struct ext4_map_blocks orig_map;
465
466         memcpy(&orig_map, map, sizeof(*map));
467 #endif
468
469         map->m_flags = 0;
470         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
472                   (unsigned long) map->m_lblk);
473
474         /*
475          * ext4_map_blocks returns an int, and m_len is an unsigned int
476          */
477         if (unlikely(map->m_len > INT_MAX))
478                 map->m_len = INT_MAX;
479
480         /* We can handle the block number less than EXT_MAX_BLOCKS */
481         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482                 return -EIO;
483
484         /* Lookup extent status tree firstly */
485         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487                         map->m_pblk = ext4_es_pblock(&es) +
488                                         map->m_lblk - es.es_lblk;
489                         map->m_flags |= ext4_es_is_written(&es) ?
490                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491                         retval = es.es_len - (map->m_lblk - es.es_lblk);
492                         if (retval > map->m_len)
493                                 retval = map->m_len;
494                         map->m_len = retval;
495                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496                         retval = 0;
497                 } else {
498                         BUG_ON(1);
499                 }
500 #ifdef ES_AGGRESSIVE_TEST
501                 ext4_map_blocks_es_recheck(handle, inode, map,
502                                            &orig_map, flags);
503 #endif
504                 goto found;
505         }
506
507         /*
508          * Try to see if we can get the block without requesting a new
509          * file system block.
510          */
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 down_read(&EXT4_I(inode)->i_data_sem);
513         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
515                                              EXT4_GET_BLOCKS_KEEP_SIZE);
516         } else {
517                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
518                                              EXT4_GET_BLOCKS_KEEP_SIZE);
519         }
520         if (retval > 0) {
521                 unsigned int status;
522
523                 if (unlikely(retval != map->m_len)) {
524                         ext4_warning(inode->i_sb,
525                                      "ES len assertion failed for inode "
526                                      "%lu: retval %d != map->m_len %d",
527                                      inode->i_ino, retval, map->m_len);
528                         WARN_ON(1);
529                 }
530
531                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534                     !(status & EXTENT_STATUS_WRITTEN) &&
535                     ext4_find_delalloc_range(inode, map->m_lblk,
536                                              map->m_lblk + map->m_len - 1))
537                         status |= EXTENT_STATUS_DELAYED;
538                 ret = ext4_es_insert_extent(inode, map->m_lblk,
539                                             map->m_len, map->m_pblk, status);
540                 if (ret < 0)
541                         retval = ret;
542         }
543         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544                 up_read((&EXT4_I(inode)->i_data_sem));
545
546 found:
547         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548                 ret = check_block_validity(inode, map);
549                 if (ret != 0)
550                         return ret;
551         }
552
553         /* If it is only a block(s) look up */
554         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555                 return retval;
556
557         /*
558          * Returns if the blocks have already allocated
559          *
560          * Note that if blocks have been preallocated
561          * ext4_ext_get_block() returns the create = 0
562          * with buffer head unmapped.
563          */
564         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565                 /*
566                  * If we need to convert extent to unwritten
567                  * we continue and do the actual work in
568                  * ext4_ext_map_blocks()
569                  */
570                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571                         return retval;
572
573         /*
574          * Here we clear m_flags because after allocating an new extent,
575          * it will be set again.
576          */
577         map->m_flags &= ~EXT4_MAP_FLAGS;
578
579         /*
580          * New blocks allocate and/or writing to unwritten extent
581          * will possibly result in updating i_data, so we take
582          * the write lock of i_data_sem, and call get_block()
583          * with create == 1 flag.
584          */
585         down_write(&EXT4_I(inode)->i_data_sem);
586
587         /*
588          * We need to check for EXT4 here because migrate
589          * could have changed the inode type in between
590          */
591         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
593         } else {
594                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
595
596                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597                         /*
598                          * We allocated new blocks which will result in
599                          * i_data's format changing.  Force the migrate
600                          * to fail by clearing migrate flags
601                          */
602                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603                 }
604
605                 /*
606                  * Update reserved blocks/metadata blocks after successful
607                  * block allocation which had been deferred till now. We don't
608                  * support fallocate for non extent files. So we can update
609                  * reserve space here.
610                  */
611                 if ((retval > 0) &&
612                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613                         ext4_da_update_reserve_space(inode, retval, 1);
614         }
615
616         if (retval > 0) {
617                 unsigned int status;
618
619                 if (unlikely(retval != map->m_len)) {
620                         ext4_warning(inode->i_sb,
621                                      "ES len assertion failed for inode "
622                                      "%lu: retval %d != map->m_len %d",
623                                      inode->i_ino, retval, map->m_len);
624                         WARN_ON(1);
625                 }
626
627                 /*
628                  * If the extent has been zeroed out, we don't need to update
629                  * extent status tree.
630                  */
631                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633                         if (ext4_es_is_written(&es))
634                                 goto has_zeroout;
635                 }
636                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639                     !(status & EXTENT_STATUS_WRITTEN) &&
640                     ext4_find_delalloc_range(inode, map->m_lblk,
641                                              map->m_lblk + map->m_len - 1))
642                         status |= EXTENT_STATUS_DELAYED;
643                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644                                             map->m_pblk, status);
645                 if (ret < 0)
646                         retval = ret;
647         }
648
649 has_zeroout:
650         up_write((&EXT4_I(inode)->i_data_sem));
651         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652                 ret = check_block_validity(inode, map);
653                 if (ret != 0)
654                         return ret;
655         }
656         return retval;
657 }
658
659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
660 {
661         struct inode *inode = bh->b_assoc_map->host;
662         /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
663         loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
664         int err;
665         if (!uptodate)
666                 return;
667         WARN_ON(!buffer_unwritten(bh));
668         err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
669 }
670
671 /* Maximum number of blocks we map for direct IO at once. */
672 #define DIO_MAX_BLOCKS 4096
673
674 static int _ext4_get_block(struct inode *inode, sector_t iblock,
675                            struct buffer_head *bh, int flags)
676 {
677         handle_t *handle = ext4_journal_current_handle();
678         struct ext4_map_blocks map;
679         int ret = 0, started = 0;
680         int dio_credits;
681
682         if (ext4_has_inline_data(inode))
683                 return -ERANGE;
684
685         map.m_lblk = iblock;
686         map.m_len = bh->b_size >> inode->i_blkbits;
687
688         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
689                 /* Direct IO write... */
690                 if (map.m_len > DIO_MAX_BLOCKS)
691                         map.m_len = DIO_MAX_BLOCKS;
692                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
693                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
694                                             dio_credits);
695                 if (IS_ERR(handle)) {
696                         ret = PTR_ERR(handle);
697                         return ret;
698                 }
699                 started = 1;
700         }
701
702         ret = ext4_map_blocks(handle, inode, &map, flags);
703         if (ret > 0) {
704                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
705
706                 map_bh(bh, inode->i_sb, map.m_pblk);
707                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
708                 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
709                         bh->b_assoc_map = inode->i_mapping;
710                         bh->b_private = (void *)(unsigned long)iblock;
711                         bh->b_end_io = ext4_end_io_unwritten;
712                 }
713                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
714                         set_buffer_defer_completion(bh);
715                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
716                 ret = 0;
717         }
718         if (started)
719                 ext4_journal_stop(handle);
720         return ret;
721 }
722
723 int ext4_get_block(struct inode *inode, sector_t iblock,
724                    struct buffer_head *bh, int create)
725 {
726         return _ext4_get_block(inode, iblock, bh,
727                                create ? EXT4_GET_BLOCKS_CREATE : 0);
728 }
729
730 /*
731  * `handle' can be NULL if create is zero
732  */
733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
734                                 ext4_lblk_t block, int create)
735 {
736         struct ext4_map_blocks map;
737         struct buffer_head *bh;
738         int err;
739
740         J_ASSERT(handle != NULL || create == 0);
741
742         map.m_lblk = block;
743         map.m_len = 1;
744         err = ext4_map_blocks(handle, inode, &map,
745                               create ? EXT4_GET_BLOCKS_CREATE : 0);
746
747         if (err == 0)
748                 return create ? ERR_PTR(-ENOSPC) : NULL;
749         if (err < 0)
750                 return ERR_PTR(err);
751
752         bh = sb_getblk(inode->i_sb, map.m_pblk);
753         if (unlikely(!bh))
754                 return ERR_PTR(-ENOMEM);
755         if (map.m_flags & EXT4_MAP_NEW) {
756                 J_ASSERT(create != 0);
757                 J_ASSERT(handle != NULL);
758
759                 /*
760                  * Now that we do not always journal data, we should
761                  * keep in mind whether this should always journal the
762                  * new buffer as metadata.  For now, regular file
763                  * writes use ext4_get_block instead, so it's not a
764                  * problem.
765                  */
766                 lock_buffer(bh);
767                 BUFFER_TRACE(bh, "call get_create_access");
768                 err = ext4_journal_get_create_access(handle, bh);
769                 if (unlikely(err)) {
770                         unlock_buffer(bh);
771                         goto errout;
772                 }
773                 if (!buffer_uptodate(bh)) {
774                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
775                         set_buffer_uptodate(bh);
776                 }
777                 unlock_buffer(bh);
778                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
779                 err = ext4_handle_dirty_metadata(handle, inode, bh);
780                 if (unlikely(err))
781                         goto errout;
782         } else
783                 BUFFER_TRACE(bh, "not a new buffer");
784         return bh;
785 errout:
786         brelse(bh);
787         return ERR_PTR(err);
788 }
789
790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
791                                ext4_lblk_t block, int create)
792 {
793         struct buffer_head *bh;
794
795         bh = ext4_getblk(handle, inode, block, create);
796         if (IS_ERR(bh))
797                 return bh;
798         if (!bh || buffer_uptodate(bh))
799                 return bh;
800         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
801         wait_on_buffer(bh);
802         if (buffer_uptodate(bh))
803                 return bh;
804         put_bh(bh);
805         return ERR_PTR(-EIO);
806 }
807
808 int ext4_walk_page_buffers(handle_t *handle,
809                            struct buffer_head *head,
810                            unsigned from,
811                            unsigned to,
812                            int *partial,
813                            int (*fn)(handle_t *handle,
814                                      struct buffer_head *bh))
815 {
816         struct buffer_head *bh;
817         unsigned block_start, block_end;
818         unsigned blocksize = head->b_size;
819         int err, ret = 0;
820         struct buffer_head *next;
821
822         for (bh = head, block_start = 0;
823              ret == 0 && (bh != head || !block_start);
824              block_start = block_end, bh = next) {
825                 next = bh->b_this_page;
826                 block_end = block_start + blocksize;
827                 if (block_end <= from || block_start >= to) {
828                         if (partial && !buffer_uptodate(bh))
829                                 *partial = 1;
830                         continue;
831                 }
832                 err = (*fn)(handle, bh);
833                 if (!ret)
834                         ret = err;
835         }
836         return ret;
837 }
838
839 /*
840  * To preserve ordering, it is essential that the hole instantiation and
841  * the data write be encapsulated in a single transaction.  We cannot
842  * close off a transaction and start a new one between the ext4_get_block()
843  * and the commit_write().  So doing the jbd2_journal_start at the start of
844  * prepare_write() is the right place.
845  *
846  * Also, this function can nest inside ext4_writepage().  In that case, we
847  * *know* that ext4_writepage() has generated enough buffer credits to do the
848  * whole page.  So we won't block on the journal in that case, which is good,
849  * because the caller may be PF_MEMALLOC.
850  *
851  * By accident, ext4 can be reentered when a transaction is open via
852  * quota file writes.  If we were to commit the transaction while thus
853  * reentered, there can be a deadlock - we would be holding a quota
854  * lock, and the commit would never complete if another thread had a
855  * transaction open and was blocking on the quota lock - a ranking
856  * violation.
857  *
858  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
859  * will _not_ run commit under these circumstances because handle->h_ref
860  * is elevated.  We'll still have enough credits for the tiny quotafile
861  * write.
862  */
863 int do_journal_get_write_access(handle_t *handle,
864                                 struct buffer_head *bh)
865 {
866         int dirty = buffer_dirty(bh);
867         int ret;
868
869         if (!buffer_mapped(bh) || buffer_freed(bh))
870                 return 0;
871         /*
872          * __block_write_begin() could have dirtied some buffers. Clean
873          * the dirty bit as jbd2_journal_get_write_access() could complain
874          * otherwise about fs integrity issues. Setting of the dirty bit
875          * by __block_write_begin() isn't a real problem here as we clear
876          * the bit before releasing a page lock and thus writeback cannot
877          * ever write the buffer.
878          */
879         if (dirty)
880                 clear_buffer_dirty(bh);
881         BUFFER_TRACE(bh, "get write access");
882         ret = ext4_journal_get_write_access(handle, bh);
883         if (!ret && dirty)
884                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
885         return ret;
886 }
887
888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
889                    struct buffer_head *bh_result, int create);
890
891 #ifdef CONFIG_EXT4_FS_ENCRYPTION
892 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
893                                   get_block_t *get_block)
894 {
895         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
896         unsigned to = from + len;
897         struct inode *inode = page->mapping->host;
898         unsigned block_start, block_end;
899         sector_t block;
900         int err = 0;
901         unsigned blocksize = inode->i_sb->s_blocksize;
902         unsigned bbits;
903         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
904         bool decrypt = false;
905
906         BUG_ON(!PageLocked(page));
907         BUG_ON(from > PAGE_CACHE_SIZE);
908         BUG_ON(to > PAGE_CACHE_SIZE);
909         BUG_ON(from > to);
910
911         if (!page_has_buffers(page))
912                 create_empty_buffers(page, blocksize, 0);
913         head = page_buffers(page);
914         bbits = ilog2(blocksize);
915         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
916
917         for (bh = head, block_start = 0; bh != head || !block_start;
918             block++, block_start = block_end, bh = bh->b_this_page) {
919                 block_end = block_start + blocksize;
920                 if (block_end <= from || block_start >= to) {
921                         if (PageUptodate(page)) {
922                                 if (!buffer_uptodate(bh))
923                                         set_buffer_uptodate(bh);
924                         }
925                         continue;
926                 }
927                 if (buffer_new(bh))
928                         clear_buffer_new(bh);
929                 if (!buffer_mapped(bh)) {
930                         WARN_ON(bh->b_size != blocksize);
931                         err = get_block(inode, block, bh, 1);
932                         if (err)
933                                 break;
934                         if (buffer_new(bh)) {
935                                 unmap_underlying_metadata(bh->b_bdev,
936                                                           bh->b_blocknr);
937                                 if (PageUptodate(page)) {
938                                         clear_buffer_new(bh);
939                                         set_buffer_uptodate(bh);
940                                         mark_buffer_dirty(bh);
941                                         continue;
942                                 }
943                                 if (block_end > to || block_start < from)
944                                         zero_user_segments(page, to, block_end,
945                                                            block_start, from);
946                                 continue;
947                         }
948                 }
949                 if (PageUptodate(page)) {
950                         if (!buffer_uptodate(bh))
951                                 set_buffer_uptodate(bh);
952                         continue;
953                 }
954                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
955                     !buffer_unwritten(bh) &&
956                     (block_start < from || block_end > to)) {
957                         ll_rw_block(READ, 1, &bh);
958                         *wait_bh++ = bh;
959                         decrypt = ext4_encrypted_inode(inode) &&
960                                 S_ISREG(inode->i_mode);
961                 }
962         }
963         /*
964          * If we issued read requests, let them complete.
965          */
966         while (wait_bh > wait) {
967                 wait_on_buffer(*--wait_bh);
968                 if (!buffer_uptodate(*wait_bh))
969                         err = -EIO;
970         }
971         if (unlikely(err))
972                 page_zero_new_buffers(page, from, to);
973         else if (decrypt)
974                 err = ext4_decrypt_one(inode, page);
975         return err;
976 }
977 #endif
978
979 static int ext4_write_begin(struct file *file, struct address_space *mapping,
980                             loff_t pos, unsigned len, unsigned flags,
981                             struct page **pagep, void **fsdata)
982 {
983         struct inode *inode = mapping->host;
984         int ret, needed_blocks;
985         handle_t *handle;
986         int retries = 0;
987         struct page *page;
988         pgoff_t index;
989         unsigned from, to;
990
991         trace_ext4_write_begin(inode, pos, len, flags);
992         /*
993          * Reserve one block more for addition to orphan list in case
994          * we allocate blocks but write fails for some reason
995          */
996         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
997         index = pos >> PAGE_CACHE_SHIFT;
998         from = pos & (PAGE_CACHE_SIZE - 1);
999         to = from + len;
1000
1001         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1002                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1003                                                     flags, pagep);
1004                 if (ret < 0)
1005                         return ret;
1006                 if (ret == 1)
1007                         return 0;
1008         }
1009
1010         /*
1011          * grab_cache_page_write_begin() can take a long time if the
1012          * system is thrashing due to memory pressure, or if the page
1013          * is being written back.  So grab it first before we start
1014          * the transaction handle.  This also allows us to allocate
1015          * the page (if needed) without using GFP_NOFS.
1016          */
1017 retry_grab:
1018         page = grab_cache_page_write_begin(mapping, index, flags);
1019         if (!page)
1020                 return -ENOMEM;
1021         unlock_page(page);
1022
1023 retry_journal:
1024         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1025         if (IS_ERR(handle)) {
1026                 page_cache_release(page);
1027                 return PTR_ERR(handle);
1028         }
1029
1030         lock_page(page);
1031         if (page->mapping != mapping) {
1032                 /* The page got truncated from under us */
1033                 unlock_page(page);
1034                 page_cache_release(page);
1035                 ext4_journal_stop(handle);
1036                 goto retry_grab;
1037         }
1038         /* In case writeback began while the page was unlocked */
1039         wait_for_stable_page(page);
1040
1041 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1042         if (ext4_should_dioread_nolock(inode))
1043                 ret = ext4_block_write_begin(page, pos, len,
1044                                              ext4_get_block_write);
1045         else
1046                 ret = ext4_block_write_begin(page, pos, len,
1047                                              ext4_get_block);
1048 #else
1049         if (ext4_should_dioread_nolock(inode))
1050                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1051         else
1052                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1053 #endif
1054         if (!ret && ext4_should_journal_data(inode)) {
1055                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1056                                              from, to, NULL,
1057                                              do_journal_get_write_access);
1058         }
1059
1060         if (ret) {
1061                 unlock_page(page);
1062                 /*
1063                  * __block_write_begin may have instantiated a few blocks
1064                  * outside i_size.  Trim these off again. Don't need
1065                  * i_size_read because we hold i_mutex.
1066                  *
1067                  * Add inode to orphan list in case we crash before
1068                  * truncate finishes
1069                  */
1070                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1071                         ext4_orphan_add(handle, inode);
1072
1073                 ext4_journal_stop(handle);
1074                 if (pos + len > inode->i_size) {
1075                         ext4_truncate_failed_write(inode);
1076                         /*
1077                          * If truncate failed early the inode might
1078                          * still be on the orphan list; we need to
1079                          * make sure the inode is removed from the
1080                          * orphan list in that case.
1081                          */
1082                         if (inode->i_nlink)
1083                                 ext4_orphan_del(NULL, inode);
1084                 }
1085
1086                 if (ret == -ENOSPC &&
1087                     ext4_should_retry_alloc(inode->i_sb, &retries))
1088                         goto retry_journal;
1089                 page_cache_release(page);
1090                 return ret;
1091         }
1092         *pagep = page;
1093         return ret;
1094 }
1095
1096 /* For write_end() in data=journal mode */
1097 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1098 {
1099         int ret;
1100         if (!buffer_mapped(bh) || buffer_freed(bh))
1101                 return 0;
1102         set_buffer_uptodate(bh);
1103         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1104         clear_buffer_meta(bh);
1105         clear_buffer_prio(bh);
1106         return ret;
1107 }
1108
1109 /*
1110  * We need to pick up the new inode size which generic_commit_write gave us
1111  * `file' can be NULL - eg, when called from page_symlink().
1112  *
1113  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1114  * buffers are managed internally.
1115  */
1116 static int ext4_write_end(struct file *file,
1117                           struct address_space *mapping,
1118                           loff_t pos, unsigned len, unsigned copied,
1119                           struct page *page, void *fsdata)
1120 {
1121         handle_t *handle = ext4_journal_current_handle();
1122         struct inode *inode = mapping->host;
1123         loff_t old_size = inode->i_size;
1124         int ret = 0, ret2;
1125         int i_size_changed = 0;
1126
1127         trace_ext4_write_end(inode, pos, len, copied);
1128         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1129                 ret = ext4_jbd2_file_inode(handle, inode);
1130                 if (ret) {
1131                         unlock_page(page);
1132                         page_cache_release(page);
1133                         goto errout;
1134                 }
1135         }
1136
1137         if (ext4_has_inline_data(inode)) {
1138                 ret = ext4_write_inline_data_end(inode, pos, len,
1139                                                  copied, page);
1140                 if (ret < 0)
1141                         goto errout;
1142                 copied = ret;
1143         } else
1144                 copied = block_write_end(file, mapping, pos,
1145                                          len, copied, page, fsdata);
1146         /*
1147          * it's important to update i_size while still holding page lock:
1148          * page writeout could otherwise come in and zero beyond i_size.
1149          */
1150         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1151         unlock_page(page);
1152         page_cache_release(page);
1153
1154         if (old_size < pos)
1155                 pagecache_isize_extended(inode, old_size, pos);
1156         /*
1157          * Don't mark the inode dirty under page lock. First, it unnecessarily
1158          * makes the holding time of page lock longer. Second, it forces lock
1159          * ordering of page lock and transaction start for journaling
1160          * filesystems.
1161          */
1162         if (i_size_changed)
1163                 ext4_mark_inode_dirty(handle, inode);
1164
1165         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1166                 /* if we have allocated more blocks and copied
1167                  * less. We will have blocks allocated outside
1168                  * inode->i_size. So truncate them
1169                  */
1170                 ext4_orphan_add(handle, inode);
1171 errout:
1172         ret2 = ext4_journal_stop(handle);
1173         if (!ret)
1174                 ret = ret2;
1175
1176         if (pos + len > inode->i_size) {
1177                 ext4_truncate_failed_write(inode);
1178                 /*
1179                  * If truncate failed early the inode might still be
1180                  * on the orphan list; we need to make sure the inode
1181                  * is removed from the orphan list in that case.
1182                  */
1183                 if (inode->i_nlink)
1184                         ext4_orphan_del(NULL, inode);
1185         }
1186
1187         return ret ? ret : copied;
1188 }
1189
1190 static int ext4_journalled_write_end(struct file *file,
1191                                      struct address_space *mapping,
1192                                      loff_t pos, unsigned len, unsigned copied,
1193                                      struct page *page, void *fsdata)
1194 {
1195         handle_t *handle = ext4_journal_current_handle();
1196         struct inode *inode = mapping->host;
1197         loff_t old_size = inode->i_size;
1198         int ret = 0, ret2;
1199         int partial = 0;
1200         unsigned from, to;
1201         int size_changed = 0;
1202
1203         trace_ext4_journalled_write_end(inode, pos, len, copied);
1204         from = pos & (PAGE_CACHE_SIZE - 1);
1205         to = from + len;
1206
1207         BUG_ON(!ext4_handle_valid(handle));
1208
1209         if (ext4_has_inline_data(inode))
1210                 copied = ext4_write_inline_data_end(inode, pos, len,
1211                                                     copied, page);
1212         else {
1213                 if (copied < len) {
1214                         if (!PageUptodate(page))
1215                                 copied = 0;
1216                         page_zero_new_buffers(page, from+copied, to);
1217                 }
1218
1219                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1220                                              to, &partial, write_end_fn);
1221                 if (!partial)
1222                         SetPageUptodate(page);
1223         }
1224         size_changed = ext4_update_inode_size(inode, pos + copied);
1225         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1226         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1227         unlock_page(page);
1228         page_cache_release(page);
1229
1230         if (old_size < pos)
1231                 pagecache_isize_extended(inode, old_size, pos);
1232
1233         if (size_changed) {
1234                 ret2 = ext4_mark_inode_dirty(handle, inode);
1235                 if (!ret)
1236                         ret = ret2;
1237         }
1238
1239         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1240                 /* if we have allocated more blocks and copied
1241                  * less. We will have blocks allocated outside
1242                  * inode->i_size. So truncate them
1243                  */
1244                 ext4_orphan_add(handle, inode);
1245
1246         ret2 = ext4_journal_stop(handle);
1247         if (!ret)
1248                 ret = ret2;
1249         if (pos + len > inode->i_size) {
1250                 ext4_truncate_failed_write(inode);
1251                 /*
1252                  * If truncate failed early the inode might still be
1253                  * on the orphan list; we need to make sure the inode
1254                  * is removed from the orphan list in that case.
1255                  */
1256                 if (inode->i_nlink)
1257                         ext4_orphan_del(NULL, inode);
1258         }
1259
1260         return ret ? ret : copied;
1261 }
1262
1263 /*
1264  * Reserve a single cluster located at lblock
1265  */
1266 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267 {
1268         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269         struct ext4_inode_info *ei = EXT4_I(inode);
1270         unsigned int md_needed;
1271         int ret;
1272
1273         /*
1274          * We will charge metadata quota at writeout time; this saves
1275          * us from metadata over-estimation, though we may go over by
1276          * a small amount in the end.  Here we just reserve for data.
1277          */
1278         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1279         if (ret)
1280                 return ret;
1281
1282         /*
1283          * recalculate the amount of metadata blocks to reserve
1284          * in order to allocate nrblocks
1285          * worse case is one extent per block
1286          */
1287         spin_lock(&ei->i_block_reservation_lock);
1288         /*
1289          * ext4_calc_metadata_amount() has side effects, which we have
1290          * to be prepared undo if we fail to claim space.
1291          */
1292         md_needed = 0;
1293         trace_ext4_da_reserve_space(inode, 0);
1294
1295         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1296                 spin_unlock(&ei->i_block_reservation_lock);
1297                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1298                 return -ENOSPC;
1299         }
1300         ei->i_reserved_data_blocks++;
1301         spin_unlock(&ei->i_block_reservation_lock);
1302
1303         return 0;       /* success */
1304 }
1305
1306 static void ext4_da_release_space(struct inode *inode, int to_free)
1307 {
1308         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1309         struct ext4_inode_info *ei = EXT4_I(inode);
1310
1311         if (!to_free)
1312                 return;         /* Nothing to release, exit */
1313
1314         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1315
1316         trace_ext4_da_release_space(inode, to_free);
1317         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1318                 /*
1319                  * if there aren't enough reserved blocks, then the
1320                  * counter is messed up somewhere.  Since this
1321                  * function is called from invalidate page, it's
1322                  * harmless to return without any action.
1323                  */
1324                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1325                          "ino %lu, to_free %d with only %d reserved "
1326                          "data blocks", inode->i_ino, to_free,
1327                          ei->i_reserved_data_blocks);
1328                 WARN_ON(1);
1329                 to_free = ei->i_reserved_data_blocks;
1330         }
1331         ei->i_reserved_data_blocks -= to_free;
1332
1333         /* update fs dirty data blocks counter */
1334         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1335
1336         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1337
1338         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1339 }
1340
1341 static void ext4_da_page_release_reservation(struct page *page,
1342                                              unsigned int offset,
1343                                              unsigned int length)
1344 {
1345         int to_release = 0;
1346         struct buffer_head *head, *bh;
1347         unsigned int curr_off = 0;
1348         struct inode *inode = page->mapping->host;
1349         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1350         unsigned int stop = offset + length;
1351         int num_clusters;
1352         ext4_fsblk_t lblk;
1353
1354         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1355
1356         head = page_buffers(page);
1357         bh = head;
1358         do {
1359                 unsigned int next_off = curr_off + bh->b_size;
1360
1361                 if (next_off > stop)
1362                         break;
1363
1364                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1365                         to_release++;
1366                         clear_buffer_delay(bh);
1367                 }
1368                 curr_off = next_off;
1369         } while ((bh = bh->b_this_page) != head);
1370
1371         if (to_release) {
1372                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1373                 ext4_es_remove_extent(inode, lblk, to_release);
1374         }
1375
1376         /* If we have released all the blocks belonging to a cluster, then we
1377          * need to release the reserved space for that cluster. */
1378         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1379         while (num_clusters > 0) {
1380                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1381                         ((num_clusters - 1) << sbi->s_cluster_bits);
1382                 if (sbi->s_cluster_ratio == 1 ||
1383                     !ext4_find_delalloc_cluster(inode, lblk))
1384                         ext4_da_release_space(inode, 1);
1385
1386                 num_clusters--;
1387         }
1388 }
1389
1390 /*
1391  * Delayed allocation stuff
1392  */
1393
1394 struct mpage_da_data {
1395         struct inode *inode;
1396         struct writeback_control *wbc;
1397
1398         pgoff_t first_page;     /* The first page to write */
1399         pgoff_t next_page;      /* Current page to examine */
1400         pgoff_t last_page;      /* Last page to examine */
1401         /*
1402          * Extent to map - this can be after first_page because that can be
1403          * fully mapped. We somewhat abuse m_flags to store whether the extent
1404          * is delalloc or unwritten.
1405          */
1406         struct ext4_map_blocks map;
1407         struct ext4_io_submit io_submit;        /* IO submission data */
1408 };
1409
1410 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1411                                        bool invalidate)
1412 {
1413         int nr_pages, i;
1414         pgoff_t index, end;
1415         struct pagevec pvec;
1416         struct inode *inode = mpd->inode;
1417         struct address_space *mapping = inode->i_mapping;
1418
1419         /* This is necessary when next_page == 0. */
1420         if (mpd->first_page >= mpd->next_page)
1421                 return;
1422
1423         index = mpd->first_page;
1424         end   = mpd->next_page - 1;
1425         if (invalidate) {
1426                 ext4_lblk_t start, last;
1427                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1428                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1429                 ext4_es_remove_extent(inode, start, last - start + 1);
1430         }
1431
1432         pagevec_init(&pvec, 0);
1433         while (index <= end) {
1434                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1435                 if (nr_pages == 0)
1436                         break;
1437                 for (i = 0; i < nr_pages; i++) {
1438                         struct page *page = pvec.pages[i];
1439                         if (page->index > end)
1440                                 break;
1441                         BUG_ON(!PageLocked(page));
1442                         BUG_ON(PageWriteback(page));
1443                         if (invalidate) {
1444                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1445                                 ClearPageUptodate(page);
1446                         }
1447                         unlock_page(page);
1448                 }
1449                 index = pvec.pages[nr_pages - 1]->index + 1;
1450                 pagevec_release(&pvec);
1451         }
1452 }
1453
1454 static void ext4_print_free_blocks(struct inode *inode)
1455 {
1456         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1457         struct super_block *sb = inode->i_sb;
1458         struct ext4_inode_info *ei = EXT4_I(inode);
1459
1460         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1461                EXT4_C2B(EXT4_SB(inode->i_sb),
1462                         ext4_count_free_clusters(sb)));
1463         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1464         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1465                (long long) EXT4_C2B(EXT4_SB(sb),
1466                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1467         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1468                (long long) EXT4_C2B(EXT4_SB(sb),
1469                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1470         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1471         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1472                  ei->i_reserved_data_blocks);
1473         return;
1474 }
1475
1476 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1477 {
1478         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1479 }
1480
1481 /*
1482  * This function is grabs code from the very beginning of
1483  * ext4_map_blocks, but assumes that the caller is from delayed write
1484  * time. This function looks up the requested blocks and sets the
1485  * buffer delay bit under the protection of i_data_sem.
1486  */
1487 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1488                               struct ext4_map_blocks *map,
1489                               struct buffer_head *bh)
1490 {
1491         struct extent_status es;
1492         int retval;
1493         sector_t invalid_block = ~((sector_t) 0xffff);
1494 #ifdef ES_AGGRESSIVE_TEST
1495         struct ext4_map_blocks orig_map;
1496
1497         memcpy(&orig_map, map, sizeof(*map));
1498 #endif
1499
1500         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1501                 invalid_block = ~0;
1502
1503         map->m_flags = 0;
1504         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1505                   "logical block %lu\n", inode->i_ino, map->m_len,
1506                   (unsigned long) map->m_lblk);
1507
1508         /* Lookup extent status tree firstly */
1509         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1510                 if (ext4_es_is_hole(&es)) {
1511                         retval = 0;
1512                         down_read(&EXT4_I(inode)->i_data_sem);
1513                         goto add_delayed;
1514                 }
1515
1516                 /*
1517                  * Delayed extent could be allocated by fallocate.
1518                  * So we need to check it.
1519                  */
1520                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1521                         map_bh(bh, inode->i_sb, invalid_block);
1522                         set_buffer_new(bh);
1523                         set_buffer_delay(bh);
1524                         return 0;
1525                 }
1526
1527                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1528                 retval = es.es_len - (iblock - es.es_lblk);
1529                 if (retval > map->m_len)
1530                         retval = map->m_len;
1531                 map->m_len = retval;
1532                 if (ext4_es_is_written(&es))
1533                         map->m_flags |= EXT4_MAP_MAPPED;
1534                 else if (ext4_es_is_unwritten(&es))
1535                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1536                 else
1537                         BUG_ON(1);
1538
1539 #ifdef ES_AGGRESSIVE_TEST
1540                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1541 #endif
1542                 return retval;
1543         }
1544
1545         /*
1546          * Try to see if we can get the block without requesting a new
1547          * file system block.
1548          */
1549         down_read(&EXT4_I(inode)->i_data_sem);
1550         if (ext4_has_inline_data(inode))
1551                 retval = 0;
1552         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1553                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1554         else
1555                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1556
1557 add_delayed:
1558         if (retval == 0) {
1559                 int ret;
1560                 /*
1561                  * XXX: __block_prepare_write() unmaps passed block,
1562                  * is it OK?
1563                  */
1564                 /*
1565                  * If the block was allocated from previously allocated cluster,
1566                  * then we don't need to reserve it again. However we still need
1567                  * to reserve metadata for every block we're going to write.
1568                  */
1569                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1570                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1571                         ret = ext4_da_reserve_space(inode, iblock);
1572                         if (ret) {
1573                                 /* not enough space to reserve */
1574                                 retval = ret;
1575                                 goto out_unlock;
1576                         }
1577                 }
1578
1579                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1580                                             ~0, EXTENT_STATUS_DELAYED);
1581                 if (ret) {
1582                         retval = ret;
1583                         goto out_unlock;
1584                 }
1585
1586                 map_bh(bh, inode->i_sb, invalid_block);
1587                 set_buffer_new(bh);
1588                 set_buffer_delay(bh);
1589         } else if (retval > 0) {
1590                 int ret;
1591                 unsigned int status;
1592
1593                 if (unlikely(retval != map->m_len)) {
1594                         ext4_warning(inode->i_sb,
1595                                      "ES len assertion failed for inode "
1596                                      "%lu: retval %d != map->m_len %d",
1597                                      inode->i_ino, retval, map->m_len);
1598                         WARN_ON(1);
1599                 }
1600
1601                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1602                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1603                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1604                                             map->m_pblk, status);
1605                 if (ret != 0)
1606                         retval = ret;
1607         }
1608
1609 out_unlock:
1610         up_read((&EXT4_I(inode)->i_data_sem));
1611
1612         return retval;
1613 }
1614
1615 /*
1616  * This is a special get_block_t callback which is used by
1617  * ext4_da_write_begin().  It will either return mapped block or
1618  * reserve space for a single block.
1619  *
1620  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1621  * We also have b_blocknr = -1 and b_bdev initialized properly
1622  *
1623  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1624  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1625  * initialized properly.
1626  */
1627 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1628                            struct buffer_head *bh, int create)
1629 {
1630         struct ext4_map_blocks map;
1631         int ret = 0;
1632
1633         BUG_ON(create == 0);
1634         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1635
1636         map.m_lblk = iblock;
1637         map.m_len = 1;
1638
1639         /*
1640          * first, we need to know whether the block is allocated already
1641          * preallocated blocks are unmapped but should treated
1642          * the same as allocated blocks.
1643          */
1644         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1645         if (ret <= 0)
1646                 return ret;
1647
1648         map_bh(bh, inode->i_sb, map.m_pblk);
1649         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1650
1651         if (buffer_unwritten(bh)) {
1652                 /* A delayed write to unwritten bh should be marked
1653                  * new and mapped.  Mapped ensures that we don't do
1654                  * get_block multiple times when we write to the same
1655                  * offset and new ensures that we do proper zero out
1656                  * for partial write.
1657                  */
1658                 set_buffer_new(bh);
1659                 set_buffer_mapped(bh);
1660         }
1661         return 0;
1662 }
1663
1664 static int bget_one(handle_t *handle, struct buffer_head *bh)
1665 {
1666         get_bh(bh);
1667         return 0;
1668 }
1669
1670 static int bput_one(handle_t *handle, struct buffer_head *bh)
1671 {
1672         put_bh(bh);
1673         return 0;
1674 }
1675
1676 static int __ext4_journalled_writepage(struct page *page,
1677                                        unsigned int len)
1678 {
1679         struct address_space *mapping = page->mapping;
1680         struct inode *inode = mapping->host;
1681         struct buffer_head *page_bufs = NULL;
1682         handle_t *handle = NULL;
1683         int ret = 0, err = 0;
1684         int inline_data = ext4_has_inline_data(inode);
1685         struct buffer_head *inode_bh = NULL;
1686
1687         ClearPageChecked(page);
1688
1689         if (inline_data) {
1690                 BUG_ON(page->index != 0);
1691                 BUG_ON(len > ext4_get_max_inline_size(inode));
1692                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1693                 if (inode_bh == NULL)
1694                         goto out;
1695         } else {
1696                 page_bufs = page_buffers(page);
1697                 if (!page_bufs) {
1698                         BUG();
1699                         goto out;
1700                 }
1701                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1702                                        NULL, bget_one);
1703         }
1704         /* As soon as we unlock the page, it can go away, but we have
1705          * references to buffers so we are safe */
1706         unlock_page(page);
1707
1708         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1709                                     ext4_writepage_trans_blocks(inode));
1710         if (IS_ERR(handle)) {
1711                 ret = PTR_ERR(handle);
1712                 goto out;
1713         }
1714
1715         BUG_ON(!ext4_handle_valid(handle));
1716
1717         if (inline_data) {
1718                 BUFFER_TRACE(inode_bh, "get write access");
1719                 ret = ext4_journal_get_write_access(handle, inode_bh);
1720
1721                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1722
1723         } else {
1724                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1725                                              do_journal_get_write_access);
1726
1727                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1728                                              write_end_fn);
1729         }
1730         if (ret == 0)
1731                 ret = err;
1732         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1733         err = ext4_journal_stop(handle);
1734         if (!ret)
1735                 ret = err;
1736
1737         if (!ext4_has_inline_data(inode))
1738                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1739                                        NULL, bput_one);
1740         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1741 out:
1742         brelse(inode_bh);
1743         return ret;
1744 }
1745
1746 /*
1747  * Note that we don't need to start a transaction unless we're journaling data
1748  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1749  * need to file the inode to the transaction's list in ordered mode because if
1750  * we are writing back data added by write(), the inode is already there and if
1751  * we are writing back data modified via mmap(), no one guarantees in which
1752  * transaction the data will hit the disk. In case we are journaling data, we
1753  * cannot start transaction directly because transaction start ranks above page
1754  * lock so we have to do some magic.
1755  *
1756  * This function can get called via...
1757  *   - ext4_writepages after taking page lock (have journal handle)
1758  *   - journal_submit_inode_data_buffers (no journal handle)
1759  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1760  *   - grab_page_cache when doing write_begin (have journal handle)
1761  *
1762  * We don't do any block allocation in this function. If we have page with
1763  * multiple blocks we need to write those buffer_heads that are mapped. This
1764  * is important for mmaped based write. So if we do with blocksize 1K
1765  * truncate(f, 1024);
1766  * a = mmap(f, 0, 4096);
1767  * a[0] = 'a';
1768  * truncate(f, 4096);
1769  * we have in the page first buffer_head mapped via page_mkwrite call back
1770  * but other buffer_heads would be unmapped but dirty (dirty done via the
1771  * do_wp_page). So writepage should write the first block. If we modify
1772  * the mmap area beyond 1024 we will again get a page_fault and the
1773  * page_mkwrite callback will do the block allocation and mark the
1774  * buffer_heads mapped.
1775  *
1776  * We redirty the page if we have any buffer_heads that is either delay or
1777  * unwritten in the page.
1778  *
1779  * We can get recursively called as show below.
1780  *
1781  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1782  *              ext4_writepage()
1783  *
1784  * But since we don't do any block allocation we should not deadlock.
1785  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1786  */
1787 static int ext4_writepage(struct page *page,
1788                           struct writeback_control *wbc)
1789 {
1790         int ret = 0;
1791         loff_t size;
1792         unsigned int len;
1793         struct buffer_head *page_bufs = NULL;
1794         struct inode *inode = page->mapping->host;
1795         struct ext4_io_submit io_submit;
1796         bool keep_towrite = false;
1797
1798         trace_ext4_writepage(page);
1799         size = i_size_read(inode);
1800         if (page->index == size >> PAGE_CACHE_SHIFT)
1801                 len = size & ~PAGE_CACHE_MASK;
1802         else
1803                 len = PAGE_CACHE_SIZE;
1804
1805         page_bufs = page_buffers(page);
1806         /*
1807          * We cannot do block allocation or other extent handling in this
1808          * function. If there are buffers needing that, we have to redirty
1809          * the page. But we may reach here when we do a journal commit via
1810          * journal_submit_inode_data_buffers() and in that case we must write
1811          * allocated buffers to achieve data=ordered mode guarantees.
1812          */
1813         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1814                                    ext4_bh_delay_or_unwritten)) {
1815                 redirty_page_for_writepage(wbc, page);
1816                 if (current->flags & PF_MEMALLOC) {
1817                         /*
1818                          * For memory cleaning there's no point in writing only
1819                          * some buffers. So just bail out. Warn if we came here
1820                          * from direct reclaim.
1821                          */
1822                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1823                                                         == PF_MEMALLOC);
1824                         unlock_page(page);
1825                         return 0;
1826                 }
1827                 keep_towrite = true;
1828         }
1829
1830         if (PageChecked(page) && ext4_should_journal_data(inode))
1831                 /*
1832                  * It's mmapped pagecache.  Add buffers and journal it.  There
1833                  * doesn't seem much point in redirtying the page here.
1834                  */
1835                 return __ext4_journalled_writepage(page, len);
1836
1837         ext4_io_submit_init(&io_submit, wbc);
1838         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1839         if (!io_submit.io_end) {
1840                 redirty_page_for_writepage(wbc, page);
1841                 unlock_page(page);
1842                 return -ENOMEM;
1843         }
1844         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1845         ext4_io_submit(&io_submit);
1846         /* Drop io_end reference we got from init */
1847         ext4_put_io_end_defer(io_submit.io_end);
1848         return ret;
1849 }
1850
1851 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1852 {
1853         int len;
1854         loff_t size = i_size_read(mpd->inode);
1855         int err;
1856
1857         BUG_ON(page->index != mpd->first_page);
1858         if (page->index == size >> PAGE_CACHE_SHIFT)
1859                 len = size & ~PAGE_CACHE_MASK;
1860         else
1861                 len = PAGE_CACHE_SIZE;
1862         clear_page_dirty_for_io(page);
1863         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1864         if (!err)
1865                 mpd->wbc->nr_to_write--;
1866         mpd->first_page++;
1867
1868         return err;
1869 }
1870
1871 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1872
1873 /*
1874  * mballoc gives us at most this number of blocks...
1875  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1876  * The rest of mballoc seems to handle chunks up to full group size.
1877  */
1878 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1879
1880 /*
1881  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1882  *
1883  * @mpd - extent of blocks
1884  * @lblk - logical number of the block in the file
1885  * @bh - buffer head we want to add to the extent
1886  *
1887  * The function is used to collect contig. blocks in the same state. If the
1888  * buffer doesn't require mapping for writeback and we haven't started the
1889  * extent of buffers to map yet, the function returns 'true' immediately - the
1890  * caller can write the buffer right away. Otherwise the function returns true
1891  * if the block has been added to the extent, false if the block couldn't be
1892  * added.
1893  */
1894 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1895                                    struct buffer_head *bh)
1896 {
1897         struct ext4_map_blocks *map = &mpd->map;
1898
1899         /* Buffer that doesn't need mapping for writeback? */
1900         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1901             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1902                 /* So far no extent to map => we write the buffer right away */
1903                 if (map->m_len == 0)
1904                         return true;
1905                 return false;
1906         }
1907
1908         /* First block in the extent? */
1909         if (map->m_len == 0) {
1910                 map->m_lblk = lblk;
1911                 map->m_len = 1;
1912                 map->m_flags = bh->b_state & BH_FLAGS;
1913                 return true;
1914         }
1915
1916         /* Don't go larger than mballoc is willing to allocate */
1917         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1918                 return false;
1919
1920         /* Can we merge the block to our big extent? */
1921         if (lblk == map->m_lblk + map->m_len &&
1922             (bh->b_state & BH_FLAGS) == map->m_flags) {
1923                 map->m_len++;
1924                 return true;
1925         }
1926         return false;
1927 }
1928
1929 /*
1930  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1931  *
1932  * @mpd - extent of blocks for mapping
1933  * @head - the first buffer in the page
1934  * @bh - buffer we should start processing from
1935  * @lblk - logical number of the block in the file corresponding to @bh
1936  *
1937  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1938  * the page for IO if all buffers in this page were mapped and there's no
1939  * accumulated extent of buffers to map or add buffers in the page to the
1940  * extent of buffers to map. The function returns 1 if the caller can continue
1941  * by processing the next page, 0 if it should stop adding buffers to the
1942  * extent to map because we cannot extend it anymore. It can also return value
1943  * < 0 in case of error during IO submission.
1944  */
1945 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1946                                    struct buffer_head *head,
1947                                    struct buffer_head *bh,
1948                                    ext4_lblk_t lblk)
1949 {
1950         struct inode *inode = mpd->inode;
1951         int err;
1952         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1953                                                         >> inode->i_blkbits;
1954
1955         do {
1956                 BUG_ON(buffer_locked(bh));
1957
1958                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1959                         /* Found extent to map? */
1960                         if (mpd->map.m_len)
1961                                 return 0;
1962                         /* Everything mapped so far and we hit EOF */
1963                         break;
1964                 }
1965         } while (lblk++, (bh = bh->b_this_page) != head);
1966         /* So far everything mapped? Submit the page for IO. */
1967         if (mpd->map.m_len == 0) {
1968                 err = mpage_submit_page(mpd, head->b_page);
1969                 if (err < 0)
1970                         return err;
1971         }
1972         return lblk < blocks;
1973 }
1974
1975 /*
1976  * mpage_map_buffers - update buffers corresponding to changed extent and
1977  *                     submit fully mapped pages for IO
1978  *
1979  * @mpd - description of extent to map, on return next extent to map
1980  *
1981  * Scan buffers corresponding to changed extent (we expect corresponding pages
1982  * to be already locked) and update buffer state according to new extent state.
1983  * We map delalloc buffers to their physical location, clear unwritten bits,
1984  * and mark buffers as uninit when we perform writes to unwritten extents
1985  * and do extent conversion after IO is finished. If the last page is not fully
1986  * mapped, we update @map to the next extent in the last page that needs
1987  * mapping. Otherwise we submit the page for IO.
1988  */
1989 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1990 {
1991         struct pagevec pvec;
1992         int nr_pages, i;
1993         struct inode *inode = mpd->inode;
1994         struct buffer_head *head, *bh;
1995         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1996         pgoff_t start, end;
1997         ext4_lblk_t lblk;
1998         sector_t pblock;
1999         int err;
2000
2001         start = mpd->map.m_lblk >> bpp_bits;
2002         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2003         lblk = start << bpp_bits;
2004         pblock = mpd->map.m_pblk;
2005
2006         pagevec_init(&pvec, 0);
2007         while (start <= end) {
2008                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2009                                           PAGEVEC_SIZE);
2010                 if (nr_pages == 0)
2011                         break;
2012                 for (i = 0; i < nr_pages; i++) {
2013                         struct page *page = pvec.pages[i];
2014
2015                         if (page->index > end)
2016                                 break;
2017                         /* Up to 'end' pages must be contiguous */
2018                         BUG_ON(page->index != start);
2019                         bh = head = page_buffers(page);
2020                         do {
2021                                 if (lblk < mpd->map.m_lblk)
2022                                         continue;
2023                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2024                                         /*
2025                                          * Buffer after end of mapped extent.
2026                                          * Find next buffer in the page to map.
2027                                          */
2028                                         mpd->map.m_len = 0;
2029                                         mpd->map.m_flags = 0;
2030                                         /*
2031                                          * FIXME: If dioread_nolock supports
2032                                          * blocksize < pagesize, we need to make
2033                                          * sure we add size mapped so far to
2034                                          * io_end->size as the following call
2035                                          * can submit the page for IO.
2036                                          */
2037                                         err = mpage_process_page_bufs(mpd, head,
2038                                                                       bh, lblk);
2039                                         pagevec_release(&pvec);
2040                                         if (err > 0)
2041                                                 err = 0;
2042                                         return err;
2043                                 }
2044                                 if (buffer_delay(bh)) {
2045                                         clear_buffer_delay(bh);
2046                                         bh->b_blocknr = pblock++;
2047                                 }
2048                                 clear_buffer_unwritten(bh);
2049                         } while (lblk++, (bh = bh->b_this_page) != head);
2050
2051                         /*
2052                          * FIXME: This is going to break if dioread_nolock
2053                          * supports blocksize < pagesize as we will try to
2054                          * convert potentially unmapped parts of inode.
2055                          */
2056                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2057                         /* Page fully mapped - let IO run! */
2058                         err = mpage_submit_page(mpd, page);
2059                         if (err < 0) {
2060                                 pagevec_release(&pvec);
2061                                 return err;
2062                         }
2063                         start++;
2064                 }
2065                 pagevec_release(&pvec);
2066         }
2067         /* Extent fully mapped and matches with page boundary. We are done. */
2068         mpd->map.m_len = 0;
2069         mpd->map.m_flags = 0;
2070         return 0;
2071 }
2072
2073 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2074 {
2075         struct inode *inode = mpd->inode;
2076         struct ext4_map_blocks *map = &mpd->map;
2077         int get_blocks_flags;
2078         int err, dioread_nolock;
2079
2080         trace_ext4_da_write_pages_extent(inode, map);
2081         /*
2082          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2083          * to convert an unwritten extent to be initialized (in the case
2084          * where we have written into one or more preallocated blocks).  It is
2085          * possible that we're going to need more metadata blocks than
2086          * previously reserved. However we must not fail because we're in
2087          * writeback and there is nothing we can do about it so it might result
2088          * in data loss.  So use reserved blocks to allocate metadata if
2089          * possible.
2090          *
2091          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2092          * the blocks in question are delalloc blocks.  This indicates
2093          * that the blocks and quotas has already been checked when
2094          * the data was copied into the page cache.
2095          */
2096         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2097                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2098         dioread_nolock = ext4_should_dioread_nolock(inode);
2099         if (dioread_nolock)
2100                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2101         if (map->m_flags & (1 << BH_Delay))
2102                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2103
2104         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2105         if (err < 0)
2106                 return err;
2107         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2108                 if (!mpd->io_submit.io_end->handle &&
2109                     ext4_handle_valid(handle)) {
2110                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2111                         handle->h_rsv_handle = NULL;
2112                 }
2113                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2114         }
2115
2116         BUG_ON(map->m_len == 0);
2117         if (map->m_flags & EXT4_MAP_NEW) {
2118                 struct block_device *bdev = inode->i_sb->s_bdev;
2119                 int i;
2120
2121                 for (i = 0; i < map->m_len; i++)
2122                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2123         }
2124         return 0;
2125 }
2126
2127 /*
2128  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2129  *                               mpd->len and submit pages underlying it for IO
2130  *
2131  * @handle - handle for journal operations
2132  * @mpd - extent to map
2133  * @give_up_on_write - we set this to true iff there is a fatal error and there
2134  *                     is no hope of writing the data. The caller should discard
2135  *                     dirty pages to avoid infinite loops.
2136  *
2137  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2138  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2139  * them to initialized or split the described range from larger unwritten
2140  * extent. Note that we need not map all the described range since allocation
2141  * can return less blocks or the range is covered by more unwritten extents. We
2142  * cannot map more because we are limited by reserved transaction credits. On
2143  * the other hand we always make sure that the last touched page is fully
2144  * mapped so that it can be written out (and thus forward progress is
2145  * guaranteed). After mapping we submit all mapped pages for IO.
2146  */
2147 static int mpage_map_and_submit_extent(handle_t *handle,
2148                                        struct mpage_da_data *mpd,
2149                                        bool *give_up_on_write)
2150 {
2151         struct inode *inode = mpd->inode;
2152         struct ext4_map_blocks *map = &mpd->map;
2153         int err;
2154         loff_t disksize;
2155         int progress = 0;
2156
2157         mpd->io_submit.io_end->offset =
2158                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2159         do {
2160                 err = mpage_map_one_extent(handle, mpd);
2161                 if (err < 0) {
2162                         struct super_block *sb = inode->i_sb;
2163
2164                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2165                                 goto invalidate_dirty_pages;
2166                         /*
2167                          * Let the uper layers retry transient errors.
2168                          * In the case of ENOSPC, if ext4_count_free_blocks()
2169                          * is non-zero, a commit should free up blocks.
2170                          */
2171                         if ((err == -ENOMEM) ||
2172                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2173                                 if (progress)
2174                                         goto update_disksize;
2175                                 return err;
2176                         }
2177                         ext4_msg(sb, KERN_CRIT,
2178                                  "Delayed block allocation failed for "
2179                                  "inode %lu at logical offset %llu with"
2180                                  " max blocks %u with error %d",
2181                                  inode->i_ino,
2182                                  (unsigned long long)map->m_lblk,
2183                                  (unsigned)map->m_len, -err);
2184                         ext4_msg(sb, KERN_CRIT,
2185                                  "This should not happen!! Data will "
2186                                  "be lost\n");
2187                         if (err == -ENOSPC)
2188                                 ext4_print_free_blocks(inode);
2189                 invalidate_dirty_pages:
2190                         *give_up_on_write = true;
2191                         return err;
2192                 }
2193                 progress = 1;
2194                 /*
2195                  * Update buffer state, submit mapped pages, and get us new
2196                  * extent to map
2197                  */
2198                 err = mpage_map_and_submit_buffers(mpd);
2199                 if (err < 0)
2200                         goto update_disksize;
2201         } while (map->m_len);
2202
2203 update_disksize:
2204         /*
2205          * Update on-disk size after IO is submitted.  Races with
2206          * truncate are avoided by checking i_size under i_data_sem.
2207          */
2208         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2209         if (disksize > EXT4_I(inode)->i_disksize) {
2210                 int err2;
2211                 loff_t i_size;
2212
2213                 down_write(&EXT4_I(inode)->i_data_sem);
2214                 i_size = i_size_read(inode);
2215                 if (disksize > i_size)
2216                         disksize = i_size;
2217                 if (disksize > EXT4_I(inode)->i_disksize)
2218                         EXT4_I(inode)->i_disksize = disksize;
2219                 err2 = ext4_mark_inode_dirty(handle, inode);
2220                 up_write(&EXT4_I(inode)->i_data_sem);
2221                 if (err2)
2222                         ext4_error(inode->i_sb,
2223                                    "Failed to mark inode %lu dirty",
2224                                    inode->i_ino);
2225                 if (!err)
2226                         err = err2;
2227         }
2228         return err;
2229 }
2230
2231 /*
2232  * Calculate the total number of credits to reserve for one writepages
2233  * iteration. This is called from ext4_writepages(). We map an extent of
2234  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2235  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2236  * bpp - 1 blocks in bpp different extents.
2237  */
2238 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2239 {
2240         int bpp = ext4_journal_blocks_per_page(inode);
2241
2242         return ext4_meta_trans_blocks(inode,
2243                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2244 }
2245
2246 /*
2247  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2248  *                               and underlying extent to map
2249  *
2250  * @mpd - where to look for pages
2251  *
2252  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2253  * IO immediately. When we find a page which isn't mapped we start accumulating
2254  * extent of buffers underlying these pages that needs mapping (formed by
2255  * either delayed or unwritten buffers). We also lock the pages containing
2256  * these buffers. The extent found is returned in @mpd structure (starting at
2257  * mpd->lblk with length mpd->len blocks).
2258  *
2259  * Note that this function can attach bios to one io_end structure which are
2260  * neither logically nor physically contiguous. Although it may seem as an
2261  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2262  * case as we need to track IO to all buffers underlying a page in one io_end.
2263  */
2264 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2265 {
2266         struct address_space *mapping = mpd->inode->i_mapping;
2267         struct pagevec pvec;
2268         unsigned int nr_pages;
2269         long left = mpd->wbc->nr_to_write;
2270         pgoff_t index = mpd->first_page;
2271         pgoff_t end = mpd->last_page;
2272         int tag;
2273         int i, err = 0;
2274         int blkbits = mpd->inode->i_blkbits;
2275         ext4_lblk_t lblk;
2276         struct buffer_head *head;
2277
2278         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2279                 tag = PAGECACHE_TAG_TOWRITE;
2280         else
2281                 tag = PAGECACHE_TAG_DIRTY;
2282
2283         pagevec_init(&pvec, 0);
2284         mpd->map.m_len = 0;
2285         mpd->next_page = index;
2286         while (index <= end) {
2287                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2288                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2289                 if (nr_pages == 0)
2290                         goto out;
2291
2292                 for (i = 0; i < nr_pages; i++) {
2293                         struct page *page = pvec.pages[i];
2294
2295                         /*
2296                          * At this point, the page may be truncated or
2297                          * invalidated (changing page->mapping to NULL), or
2298                          * even swizzled back from swapper_space to tmpfs file
2299                          * mapping. However, page->index will not change
2300                          * because we have a reference on the page.
2301                          */
2302                         if (page->index > end)
2303                                 goto out;
2304
2305                         /*
2306                          * Accumulated enough dirty pages? This doesn't apply
2307                          * to WB_SYNC_ALL mode. For integrity sync we have to
2308                          * keep going because someone may be concurrently
2309                          * dirtying pages, and we might have synced a lot of
2310                          * newly appeared dirty pages, but have not synced all
2311                          * of the old dirty pages.
2312                          */
2313                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2314                                 goto out;
2315
2316                         /* If we can't merge this page, we are done. */
2317                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2318                                 goto out;
2319
2320                         lock_page(page);
2321                         /*
2322                          * If the page is no longer dirty, or its mapping no
2323                          * longer corresponds to inode we are writing (which
2324                          * means it has been truncated or invalidated), or the
2325                          * page is already under writeback and we are not doing
2326                          * a data integrity writeback, skip the page
2327                          */
2328                         if (!PageDirty(page) ||
2329                             (PageWriteback(page) &&
2330                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2331                             unlikely(page->mapping != mapping)) {
2332                                 unlock_page(page);
2333                                 continue;
2334                         }
2335
2336                         wait_on_page_writeback(page);
2337                         BUG_ON(PageWriteback(page));
2338
2339                         if (mpd->map.m_len == 0)
2340                                 mpd->first_page = page->index;
2341                         mpd->next_page = page->index + 1;
2342                         /* Add all dirty buffers to mpd */
2343                         lblk = ((ext4_lblk_t)page->index) <<
2344                                 (PAGE_CACHE_SHIFT - blkbits);
2345                         head = page_buffers(page);
2346                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2347                         if (err <= 0)
2348                                 goto out;
2349                         err = 0;
2350                         left--;
2351                 }
2352                 pagevec_release(&pvec);
2353                 cond_resched();
2354         }
2355         return 0;
2356 out:
2357         pagevec_release(&pvec);
2358         return err;
2359 }
2360
2361 static int __writepage(struct page *page, struct writeback_control *wbc,
2362                        void *data)
2363 {
2364         struct address_space *mapping = data;
2365         int ret = ext4_writepage(page, wbc);
2366         mapping_set_error(mapping, ret);
2367         return ret;
2368 }
2369
2370 static int ext4_writepages(struct address_space *mapping,
2371                            struct writeback_control *wbc)
2372 {
2373         pgoff_t writeback_index = 0;
2374         long nr_to_write = wbc->nr_to_write;
2375         int range_whole = 0;
2376         int cycled = 1;
2377         handle_t *handle = NULL;
2378         struct mpage_da_data mpd;
2379         struct inode *inode = mapping->host;
2380         int needed_blocks, rsv_blocks = 0, ret = 0;
2381         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2382         bool done;
2383         struct blk_plug plug;
2384         bool give_up_on_write = false;
2385
2386         trace_ext4_writepages(inode, wbc);
2387
2388         /*
2389          * No pages to write? This is mainly a kludge to avoid starting
2390          * a transaction for special inodes like journal inode on last iput()
2391          * because that could violate lock ordering on umount
2392          */
2393         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2394                 goto out_writepages;
2395
2396         if (ext4_should_journal_data(inode)) {
2397                 struct blk_plug plug;
2398
2399                 blk_start_plug(&plug);
2400                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2401                 blk_finish_plug(&plug);
2402                 goto out_writepages;
2403         }
2404
2405         /*
2406          * If the filesystem has aborted, it is read-only, so return
2407          * right away instead of dumping stack traces later on that
2408          * will obscure the real source of the problem.  We test
2409          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2410          * the latter could be true if the filesystem is mounted
2411          * read-only, and in that case, ext4_writepages should
2412          * *never* be called, so if that ever happens, we would want
2413          * the stack trace.
2414          */
2415         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2416                 ret = -EROFS;
2417                 goto out_writepages;
2418         }
2419
2420         if (ext4_should_dioread_nolock(inode)) {
2421                 /*
2422                  * We may need to convert up to one extent per block in
2423                  * the page and we may dirty the inode.
2424                  */
2425                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2426         }
2427
2428         /*
2429          * If we have inline data and arrive here, it means that
2430          * we will soon create the block for the 1st page, so
2431          * we'd better clear the inline data here.
2432          */
2433         if (ext4_has_inline_data(inode)) {
2434                 /* Just inode will be modified... */
2435                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2436                 if (IS_ERR(handle)) {
2437                         ret = PTR_ERR(handle);
2438                         goto out_writepages;
2439                 }
2440                 BUG_ON(ext4_test_inode_state(inode,
2441                                 EXT4_STATE_MAY_INLINE_DATA));
2442                 ext4_destroy_inline_data(handle, inode);
2443                 ext4_journal_stop(handle);
2444         }
2445
2446         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2447                 range_whole = 1;
2448
2449         if (wbc->range_cyclic) {
2450                 writeback_index = mapping->writeback_index;
2451                 if (writeback_index)
2452                         cycled = 0;
2453                 mpd.first_page = writeback_index;
2454                 mpd.last_page = -1;
2455         } else {
2456                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2457                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2458         }
2459
2460         mpd.inode = inode;
2461         mpd.wbc = wbc;
2462         ext4_io_submit_init(&mpd.io_submit, wbc);
2463 retry:
2464         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2465                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2466         done = false;
2467         blk_start_plug(&plug);
2468         while (!done && mpd.first_page <= mpd.last_page) {
2469                 /* For each extent of pages we use new io_end */
2470                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2471                 if (!mpd.io_submit.io_end) {
2472                         ret = -ENOMEM;
2473                         break;
2474                 }
2475
2476                 /*
2477                  * We have two constraints: We find one extent to map and we
2478                  * must always write out whole page (makes a difference when
2479                  * blocksize < pagesize) so that we don't block on IO when we
2480                  * try to write out the rest of the page. Journalled mode is
2481                  * not supported by delalloc.
2482                  */
2483                 BUG_ON(ext4_should_journal_data(inode));
2484                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2485
2486                 /* start a new transaction */
2487                 handle = ext4_journal_start_with_reserve(inode,
2488                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2489                 if (IS_ERR(handle)) {
2490                         ret = PTR_ERR(handle);
2491                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2492                                "%ld pages, ino %lu; err %d", __func__,
2493                                 wbc->nr_to_write, inode->i_ino, ret);
2494                         /* Release allocated io_end */
2495                         ext4_put_io_end(mpd.io_submit.io_end);
2496                         break;
2497                 }
2498
2499                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2500                 ret = mpage_prepare_extent_to_map(&mpd);
2501                 if (!ret) {
2502                         if (mpd.map.m_len)
2503                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2504                                         &give_up_on_write);
2505                         else {
2506                                 /*
2507                                  * We scanned the whole range (or exhausted
2508                                  * nr_to_write), submitted what was mapped and
2509                                  * didn't find anything needing mapping. We are
2510                                  * done.
2511                                  */
2512                                 done = true;
2513                         }
2514                 }
2515                 ext4_journal_stop(handle);
2516                 /* Submit prepared bio */
2517                 ext4_io_submit(&mpd.io_submit);
2518                 /* Unlock pages we didn't use */
2519                 mpage_release_unused_pages(&mpd, give_up_on_write);
2520                 /* Drop our io_end reference we got from init */
2521                 ext4_put_io_end(mpd.io_submit.io_end);
2522
2523                 if (ret == -ENOSPC && sbi->s_journal) {
2524                         /*
2525                          * Commit the transaction which would
2526                          * free blocks released in the transaction
2527                          * and try again
2528                          */
2529                         jbd2_journal_force_commit_nested(sbi->s_journal);
2530                         ret = 0;
2531                         continue;
2532                 }
2533                 /* Fatal error - ENOMEM, EIO... */
2534                 if (ret)
2535                         break;
2536         }
2537         blk_finish_plug(&plug);
2538         if (!ret && !cycled && wbc->nr_to_write > 0) {
2539                 cycled = 1;
2540                 mpd.last_page = writeback_index - 1;
2541                 mpd.first_page = 0;
2542                 goto retry;
2543         }
2544
2545         /* Update index */
2546         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2547                 /*
2548                  * Set the writeback_index so that range_cyclic
2549                  * mode will write it back later
2550                  */
2551                 mapping->writeback_index = mpd.first_page;
2552
2553 out_writepages:
2554         trace_ext4_writepages_result(inode, wbc, ret,
2555                                      nr_to_write - wbc->nr_to_write);
2556         return ret;
2557 }
2558
2559 static int ext4_nonda_switch(struct super_block *sb)
2560 {
2561         s64 free_clusters, dirty_clusters;
2562         struct ext4_sb_info *sbi = EXT4_SB(sb);
2563
2564         /*
2565          * switch to non delalloc mode if we are running low
2566          * on free block. The free block accounting via percpu
2567          * counters can get slightly wrong with percpu_counter_batch getting
2568          * accumulated on each CPU without updating global counters
2569          * Delalloc need an accurate free block accounting. So switch
2570          * to non delalloc when we are near to error range.
2571          */
2572         free_clusters =
2573                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2574         dirty_clusters =
2575                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2576         /*
2577          * Start pushing delalloc when 1/2 of free blocks are dirty.
2578          */
2579         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2580                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2581
2582         if (2 * free_clusters < 3 * dirty_clusters ||
2583             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2584                 /*
2585                  * free block count is less than 150% of dirty blocks
2586                  * or free blocks is less than watermark
2587                  */
2588                 return 1;
2589         }
2590         return 0;
2591 }
2592
2593 /* We always reserve for an inode update; the superblock could be there too */
2594 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2595 {
2596         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2597                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2598                 return 1;
2599
2600         if (pos + len <= 0x7fffffffULL)
2601                 return 1;
2602
2603         /* We might need to update the superblock to set LARGE_FILE */
2604         return 2;
2605 }
2606
2607 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2608                                loff_t pos, unsigned len, unsigned flags,
2609                                struct page **pagep, void **fsdata)
2610 {
2611         int ret, retries = 0;
2612         struct page *page;
2613         pgoff_t index;
2614         struct inode *inode = mapping->host;
2615         handle_t *handle;
2616
2617         index = pos >> PAGE_CACHE_SHIFT;
2618
2619         if (ext4_nonda_switch(inode->i_sb)) {
2620                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2621                 return ext4_write_begin(file, mapping, pos,
2622                                         len, flags, pagep, fsdata);
2623         }
2624         *fsdata = (void *)0;
2625         trace_ext4_da_write_begin(inode, pos, len, flags);
2626
2627         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2628                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2629                                                       pos, len, flags,
2630                                                       pagep, fsdata);
2631                 if (ret < 0)
2632                         return ret;
2633                 if (ret == 1)
2634                         return 0;
2635         }
2636
2637         /*
2638          * grab_cache_page_write_begin() can take a long time if the
2639          * system is thrashing due to memory pressure, or if the page
2640          * is being written back.  So grab it first before we start
2641          * the transaction handle.  This also allows us to allocate
2642          * the page (if needed) without using GFP_NOFS.
2643          */
2644 retry_grab:
2645         page = grab_cache_page_write_begin(mapping, index, flags);
2646         if (!page)
2647                 return -ENOMEM;
2648         unlock_page(page);
2649
2650         /*
2651          * With delayed allocation, we don't log the i_disksize update
2652          * if there is delayed block allocation. But we still need
2653          * to journalling the i_disksize update if writes to the end
2654          * of file which has an already mapped buffer.
2655          */
2656 retry_journal:
2657         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2658                                 ext4_da_write_credits(inode, pos, len));
2659         if (IS_ERR(handle)) {
2660                 page_cache_release(page);
2661                 return PTR_ERR(handle);
2662         }
2663
2664         lock_page(page);
2665         if (page->mapping != mapping) {
2666                 /* The page got truncated from under us */
2667                 unlock_page(page);
2668                 page_cache_release(page);
2669                 ext4_journal_stop(handle);
2670                 goto retry_grab;
2671         }
2672         /* In case writeback began while the page was unlocked */
2673         wait_for_stable_page(page);
2674
2675 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2676         ret = ext4_block_write_begin(page, pos, len,
2677                                      ext4_da_get_block_prep);
2678 #else
2679         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2680 #endif
2681         if (ret < 0) {
2682                 unlock_page(page);
2683                 ext4_journal_stop(handle);
2684                 /*
2685                  * block_write_begin may have instantiated a few blocks
2686                  * outside i_size.  Trim these off again. Don't need
2687                  * i_size_read because we hold i_mutex.
2688                  */
2689                 if (pos + len > inode->i_size)
2690                         ext4_truncate_failed_write(inode);
2691
2692                 if (ret == -ENOSPC &&
2693                     ext4_should_retry_alloc(inode->i_sb, &retries))
2694                         goto retry_journal;
2695
2696                 page_cache_release(page);
2697                 return ret;
2698         }
2699
2700         *pagep = page;
2701         return ret;
2702 }
2703
2704 /*
2705  * Check if we should update i_disksize
2706  * when write to the end of file but not require block allocation
2707  */
2708 static int ext4_da_should_update_i_disksize(struct page *page,
2709                                             unsigned long offset)
2710 {
2711         struct buffer_head *bh;
2712         struct inode *inode = page->mapping->host;
2713         unsigned int idx;
2714         int i;
2715
2716         bh = page_buffers(page);
2717         idx = offset >> inode->i_blkbits;
2718
2719         for (i = 0; i < idx; i++)
2720                 bh = bh->b_this_page;
2721
2722         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2723                 return 0;
2724         return 1;
2725 }
2726
2727 static int ext4_da_write_end(struct file *file,
2728                              struct address_space *mapping,
2729                              loff_t pos, unsigned len, unsigned copied,
2730                              struct page *page, void *fsdata)
2731 {
2732         struct inode *inode = mapping->host;
2733         int ret = 0, ret2;
2734         handle_t *handle = ext4_journal_current_handle();
2735         loff_t new_i_size;
2736         unsigned long start, end;
2737         int write_mode = (int)(unsigned long)fsdata;
2738
2739         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2740                 return ext4_write_end(file, mapping, pos,
2741                                       len, copied, page, fsdata);
2742
2743         trace_ext4_da_write_end(inode, pos, len, copied);
2744         start = pos & (PAGE_CACHE_SIZE - 1);
2745         end = start + copied - 1;
2746
2747         /*
2748          * generic_write_end() will run mark_inode_dirty() if i_size
2749          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2750          * into that.
2751          */
2752         new_i_size = pos + copied;
2753         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2754                 if (ext4_has_inline_data(inode) ||
2755                     ext4_da_should_update_i_disksize(page, end)) {
2756                         ext4_update_i_disksize(inode, new_i_size);
2757                         /* We need to mark inode dirty even if
2758                          * new_i_size is less that inode->i_size
2759                          * bu greater than i_disksize.(hint delalloc)
2760                          */
2761                         ext4_mark_inode_dirty(handle, inode);
2762                 }
2763         }
2764
2765         if (write_mode != CONVERT_INLINE_DATA &&
2766             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2767             ext4_has_inline_data(inode))
2768                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2769                                                      page);
2770         else
2771                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2772                                                         page, fsdata);
2773
2774         copied = ret2;
2775         if (ret2 < 0)
2776                 ret = ret2;
2777         ret2 = ext4_journal_stop(handle);
2778         if (!ret)
2779                 ret = ret2;
2780
2781         return ret ? ret : copied;
2782 }
2783
2784 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2785                                    unsigned int length)
2786 {
2787         /*
2788          * Drop reserved blocks
2789          */
2790         BUG_ON(!PageLocked(page));
2791         if (!page_has_buffers(page))
2792                 goto out;
2793
2794         ext4_da_page_release_reservation(page, offset, length);
2795
2796 out:
2797         ext4_invalidatepage(page, offset, length);
2798
2799         return;
2800 }
2801
2802 /*
2803  * Force all delayed allocation blocks to be allocated for a given inode.
2804  */
2805 int ext4_alloc_da_blocks(struct inode *inode)
2806 {
2807         trace_ext4_alloc_da_blocks(inode);
2808
2809         if (!EXT4_I(inode)->i_reserved_data_blocks)
2810                 return 0;
2811
2812         /*
2813          * We do something simple for now.  The filemap_flush() will
2814          * also start triggering a write of the data blocks, which is
2815          * not strictly speaking necessary (and for users of
2816          * laptop_mode, not even desirable).  However, to do otherwise
2817          * would require replicating code paths in:
2818          *
2819          * ext4_writepages() ->
2820          *    write_cache_pages() ---> (via passed in callback function)
2821          *        __mpage_da_writepage() -->
2822          *           mpage_add_bh_to_extent()
2823          *           mpage_da_map_blocks()
2824          *
2825          * The problem is that write_cache_pages(), located in
2826          * mm/page-writeback.c, marks pages clean in preparation for
2827          * doing I/O, which is not desirable if we're not planning on
2828          * doing I/O at all.
2829          *
2830          * We could call write_cache_pages(), and then redirty all of
2831          * the pages by calling redirty_page_for_writepage() but that
2832          * would be ugly in the extreme.  So instead we would need to
2833          * replicate parts of the code in the above functions,
2834          * simplifying them because we wouldn't actually intend to
2835          * write out the pages, but rather only collect contiguous
2836          * logical block extents, call the multi-block allocator, and
2837          * then update the buffer heads with the block allocations.
2838          *
2839          * For now, though, we'll cheat by calling filemap_flush(),
2840          * which will map the blocks, and start the I/O, but not
2841          * actually wait for the I/O to complete.
2842          */
2843         return filemap_flush(inode->i_mapping);
2844 }
2845
2846 /*
2847  * bmap() is special.  It gets used by applications such as lilo and by
2848  * the swapper to find the on-disk block of a specific piece of data.
2849  *
2850  * Naturally, this is dangerous if the block concerned is still in the
2851  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2852  * filesystem and enables swap, then they may get a nasty shock when the
2853  * data getting swapped to that swapfile suddenly gets overwritten by
2854  * the original zero's written out previously to the journal and
2855  * awaiting writeback in the kernel's buffer cache.
2856  *
2857  * So, if we see any bmap calls here on a modified, data-journaled file,
2858  * take extra steps to flush any blocks which might be in the cache.
2859  */
2860 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2861 {
2862         struct inode *inode = mapping->host;
2863         journal_t *journal;
2864         int err;
2865
2866         /*
2867          * We can get here for an inline file via the FIBMAP ioctl
2868          */
2869         if (ext4_has_inline_data(inode))
2870                 return 0;
2871
2872         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2873                         test_opt(inode->i_sb, DELALLOC)) {
2874                 /*
2875                  * With delalloc we want to sync the file
2876                  * so that we can make sure we allocate
2877                  * blocks for file
2878                  */
2879                 filemap_write_and_wait(mapping);
2880         }
2881
2882         if (EXT4_JOURNAL(inode) &&
2883             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2884                 /*
2885                  * This is a REALLY heavyweight approach, but the use of
2886                  * bmap on dirty files is expected to be extremely rare:
2887                  * only if we run lilo or swapon on a freshly made file
2888                  * do we expect this to happen.
2889                  *
2890                  * (bmap requires CAP_SYS_RAWIO so this does not
2891                  * represent an unprivileged user DOS attack --- we'd be
2892                  * in trouble if mortal users could trigger this path at
2893                  * will.)
2894                  *
2895                  * NB. EXT4_STATE_JDATA is not set on files other than
2896                  * regular files.  If somebody wants to bmap a directory
2897                  * or symlink and gets confused because the buffer
2898                  * hasn't yet been flushed to disk, they deserve
2899                  * everything they get.
2900                  */
2901
2902                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2903                 journal = EXT4_JOURNAL(inode);
2904                 jbd2_journal_lock_updates(journal);
2905                 err = jbd2_journal_flush(journal);
2906                 jbd2_journal_unlock_updates(journal);
2907
2908                 if (err)
2909                         return 0;
2910         }
2911
2912         return generic_block_bmap(mapping, block, ext4_get_block);
2913 }
2914
2915 static int ext4_readpage(struct file *file, struct page *page)
2916 {
2917         int ret = -EAGAIN;
2918         struct inode *inode = page->mapping->host;
2919
2920         trace_ext4_readpage(page);
2921
2922         if (ext4_has_inline_data(inode))
2923                 ret = ext4_readpage_inline(inode, page);
2924
2925         if (ret == -EAGAIN)
2926                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2927
2928         return ret;
2929 }
2930
2931 static int
2932 ext4_readpages(struct file *file, struct address_space *mapping,
2933                 struct list_head *pages, unsigned nr_pages)
2934 {
2935         struct inode *inode = mapping->host;
2936
2937         /* If the file has inline data, no need to do readpages. */
2938         if (ext4_has_inline_data(inode))
2939                 return 0;
2940
2941         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2942 }
2943
2944 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2945                                 unsigned int length)
2946 {
2947         trace_ext4_invalidatepage(page, offset, length);
2948
2949         /* No journalling happens on data buffers when this function is used */
2950         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2951
2952         block_invalidatepage(page, offset, length);
2953 }
2954
2955 static int __ext4_journalled_invalidatepage(struct page *page,
2956                                             unsigned int offset,
2957                                             unsigned int length)
2958 {
2959         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2960
2961         trace_ext4_journalled_invalidatepage(page, offset, length);
2962
2963         /*
2964          * If it's a full truncate we just forget about the pending dirtying
2965          */
2966         if (offset == 0 && length == PAGE_CACHE_SIZE)
2967                 ClearPageChecked(page);
2968
2969         return jbd2_journal_invalidatepage(journal, page, offset, length);
2970 }
2971
2972 /* Wrapper for aops... */
2973 static void ext4_journalled_invalidatepage(struct page *page,
2974                                            unsigned int offset,
2975                                            unsigned int length)
2976 {
2977         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2978 }
2979
2980 static int ext4_releasepage(struct page *page, gfp_t wait)
2981 {
2982         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2983
2984         trace_ext4_releasepage(page);
2985
2986         /* Page has dirty journalled data -> cannot release */
2987         if (PageChecked(page))
2988                 return 0;
2989         if (journal)
2990                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2991         else
2992                 return try_to_free_buffers(page);
2993 }
2994
2995 /*
2996  * ext4_get_block used when preparing for a DIO write or buffer write.
2997  * We allocate an uinitialized extent if blocks haven't been allocated.
2998  * The extent will be converted to initialized after the IO is complete.
2999  */
3000 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3001                    struct buffer_head *bh_result, int create)
3002 {
3003         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3004                    inode->i_ino, create);
3005         return _ext4_get_block(inode, iblock, bh_result,
3006                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3007 }
3008
3009 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3010                    struct buffer_head *bh_result, int create)
3011 {
3012         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3013                    inode->i_ino, create);
3014         return _ext4_get_block(inode, iblock, bh_result,
3015                                EXT4_GET_BLOCKS_NO_LOCK);
3016 }
3017
3018 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3019                             ssize_t size, void *private)
3020 {
3021         ext4_io_end_t *io_end = iocb->private;
3022
3023         /* if not async direct IO just return */
3024         if (!io_end)
3025                 return;
3026
3027         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3028                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3029                   iocb->private, io_end->inode->i_ino, iocb, offset,
3030                   size);
3031
3032         iocb->private = NULL;
3033         io_end->offset = offset;
3034         io_end->size = size;
3035         ext4_put_io_end(io_end);
3036 }
3037
3038 /*
3039  * For ext4 extent files, ext4 will do direct-io write to holes,
3040  * preallocated extents, and those write extend the file, no need to
3041  * fall back to buffered IO.
3042  *
3043  * For holes, we fallocate those blocks, mark them as unwritten
3044  * If those blocks were preallocated, we mark sure they are split, but
3045  * still keep the range to write as unwritten.
3046  *
3047  * The unwritten extents will be converted to written when DIO is completed.
3048  * For async direct IO, since the IO may still pending when return, we
3049  * set up an end_io call back function, which will do the conversion
3050  * when async direct IO completed.
3051  *
3052  * If the O_DIRECT write will extend the file then add this inode to the
3053  * orphan list.  So recovery will truncate it back to the original size
3054  * if the machine crashes during the write.
3055  *
3056  */
3057 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3058                                   loff_t offset)
3059 {
3060         struct file *file = iocb->ki_filp;
3061         struct inode *inode = file->f_mapping->host;
3062         ssize_t ret;
3063         size_t count = iov_iter_count(iter);
3064         int overwrite = 0;
3065         get_block_t *get_block_func = NULL;
3066         int dio_flags = 0;
3067         loff_t final_size = offset + count;
3068         ext4_io_end_t *io_end = NULL;
3069
3070         /* Use the old path for reads and writes beyond i_size. */
3071         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3072                 return ext4_ind_direct_IO(iocb, iter, offset);
3073
3074         BUG_ON(iocb->private == NULL);
3075
3076         /*
3077          * Make all waiters for direct IO properly wait also for extent
3078          * conversion. This also disallows race between truncate() and
3079          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3080          */
3081         if (iov_iter_rw(iter) == WRITE)
3082                 inode_dio_begin(inode);
3083
3084         /* If we do a overwrite dio, i_mutex locking can be released */
3085         overwrite = *((int *)iocb->private);
3086
3087         if (overwrite) {
3088                 down_read(&EXT4_I(inode)->i_data_sem);
3089                 mutex_unlock(&inode->i_mutex);
3090         }
3091
3092         /*
3093          * We could direct write to holes and fallocate.
3094          *
3095          * Allocated blocks to fill the hole are marked as
3096          * unwritten to prevent parallel buffered read to expose
3097          * the stale data before DIO complete the data IO.
3098          *
3099          * As to previously fallocated extents, ext4 get_block will
3100          * just simply mark the buffer mapped but still keep the
3101          * extents unwritten.
3102          *
3103          * For non AIO case, we will convert those unwritten extents
3104          * to written after return back from blockdev_direct_IO.
3105          *
3106          * For async DIO, the conversion needs to be deferred when the
3107          * IO is completed. The ext4 end_io callback function will be
3108          * called to take care of the conversion work.  Here for async
3109          * case, we allocate an io_end structure to hook to the iocb.
3110          */
3111         iocb->private = NULL;
3112         ext4_inode_aio_set(inode, NULL);
3113         if (!is_sync_kiocb(iocb)) {
3114                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3115                 if (!io_end) {
3116                         ret = -ENOMEM;
3117                         goto retake_lock;
3118                 }
3119                 /*
3120                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3121                  */
3122                 iocb->private = ext4_get_io_end(io_end);
3123                 /*
3124                  * we save the io structure for current async direct
3125                  * IO, so that later ext4_map_blocks() could flag the
3126                  * io structure whether there is a unwritten extents
3127                  * needs to be converted when IO is completed.
3128                  */
3129                 ext4_inode_aio_set(inode, io_end);
3130         }
3131
3132         if (overwrite) {
3133                 get_block_func = ext4_get_block_write_nolock;
3134         } else {
3135                 get_block_func = ext4_get_block_write;
3136                 dio_flags = DIO_LOCKING;
3137         }
3138 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3139         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3140 #endif
3141         if (IS_DAX(inode))
3142                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3143                                 ext4_end_io_dio, dio_flags);
3144         else
3145                 ret = __blockdev_direct_IO(iocb, inode,
3146                                            inode->i_sb->s_bdev, iter, offset,
3147                                            get_block_func,
3148                                            ext4_end_io_dio, NULL, dio_flags);
3149
3150         /*
3151          * Put our reference to io_end. This can free the io_end structure e.g.
3152          * in sync IO case or in case of error. It can even perform extent
3153          * conversion if all bios we submitted finished before we got here.
3154          * Note that in that case iocb->private can be already set to NULL
3155          * here.
3156          */
3157         if (io_end) {
3158                 ext4_inode_aio_set(inode, NULL);
3159                 ext4_put_io_end(io_end);
3160                 /*
3161                  * When no IO was submitted ext4_end_io_dio() was not
3162                  * called so we have to put iocb's reference.
3163                  */
3164                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3165                         WARN_ON(iocb->private != io_end);
3166                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3167                         ext4_put_io_end(io_end);
3168                         iocb->private = NULL;
3169                 }
3170         }
3171         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3172                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3173                 int err;
3174                 /*
3175                  * for non AIO case, since the IO is already
3176                  * completed, we could do the conversion right here
3177                  */
3178                 err = ext4_convert_unwritten_extents(NULL, inode,
3179                                                      offset, ret);
3180                 if (err < 0)
3181                         ret = err;
3182                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3183         }
3184
3185 retake_lock:
3186         if (iov_iter_rw(iter) == WRITE)
3187                 inode_dio_end(inode);
3188         /* take i_mutex locking again if we do a ovewrite dio */
3189         if (overwrite) {
3190                 up_read(&EXT4_I(inode)->i_data_sem);
3191                 mutex_lock(&inode->i_mutex);
3192         }
3193
3194         return ret;
3195 }
3196
3197 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3198                               loff_t offset)
3199 {
3200         struct file *file = iocb->ki_filp;
3201         struct inode *inode = file->f_mapping->host;
3202         size_t count = iov_iter_count(iter);
3203         ssize_t ret;
3204
3205 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3206         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3207                 return 0;
3208 #endif
3209
3210         /*
3211          * If we are doing data journalling we don't support O_DIRECT
3212          */
3213         if (ext4_should_journal_data(inode))
3214                 return 0;
3215
3216         /* Let buffer I/O handle the inline data case. */
3217         if (ext4_has_inline_data(inode))
3218                 return 0;
3219
3220         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3221         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3222                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3223         else
3224                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3225         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3226         return ret;
3227 }
3228
3229 /*
3230  * Pages can be marked dirty completely asynchronously from ext4's journalling
3231  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3232  * much here because ->set_page_dirty is called under VFS locks.  The page is
3233  * not necessarily locked.
3234  *
3235  * We cannot just dirty the page and leave attached buffers clean, because the
3236  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3237  * or jbddirty because all the journalling code will explode.
3238  *
3239  * So what we do is to mark the page "pending dirty" and next time writepage
3240  * is called, propagate that into the buffers appropriately.
3241  */
3242 static int ext4_journalled_set_page_dirty(struct page *page)
3243 {
3244         SetPageChecked(page);
3245         return __set_page_dirty_nobuffers(page);
3246 }
3247
3248 static const struct address_space_operations ext4_aops = {
3249         .readpage               = ext4_readpage,
3250         .readpages              = ext4_readpages,
3251         .writepage              = ext4_writepage,
3252         .writepages             = ext4_writepages,
3253         .write_begin            = ext4_write_begin,
3254         .write_end              = ext4_write_end,
3255         .bmap                   = ext4_bmap,
3256         .invalidatepage         = ext4_invalidatepage,
3257         .releasepage            = ext4_releasepage,
3258         .direct_IO              = ext4_direct_IO,
3259         .migratepage            = buffer_migrate_page,
3260         .is_partially_uptodate  = block_is_partially_uptodate,
3261         .error_remove_page      = generic_error_remove_page,
3262 };
3263
3264 static const struct address_space_operations ext4_journalled_aops = {
3265         .readpage               = ext4_readpage,
3266         .readpages              = ext4_readpages,
3267         .writepage              = ext4_writepage,
3268         .writepages             = ext4_writepages,
3269         .write_begin            = ext4_write_begin,
3270         .write_end              = ext4_journalled_write_end,
3271         .set_page_dirty         = ext4_journalled_set_page_dirty,
3272         .bmap                   = ext4_bmap,
3273         .invalidatepage         = ext4_journalled_invalidatepage,
3274         .releasepage            = ext4_releasepage,
3275         .direct_IO              = ext4_direct_IO,
3276         .is_partially_uptodate  = block_is_partially_uptodate,
3277         .error_remove_page      = generic_error_remove_page,
3278 };
3279
3280 static const struct address_space_operations ext4_da_aops = {
3281         .readpage               = ext4_readpage,
3282         .readpages              = ext4_readpages,
3283         .writepage              = ext4_writepage,
3284         .writepages             = ext4_writepages,
3285         .write_begin            = ext4_da_write_begin,
3286         .write_end              = ext4_da_write_end,
3287         .bmap                   = ext4_bmap,
3288         .invalidatepage         = ext4_da_invalidatepage,
3289         .releasepage            = ext4_releasepage,
3290         .direct_IO              = ext4_direct_IO,
3291         .migratepage            = buffer_migrate_page,
3292         .is_partially_uptodate  = block_is_partially_uptodate,
3293         .error_remove_page      = generic_error_remove_page,
3294 };
3295
3296 void ext4_set_aops(struct inode *inode)
3297 {
3298         switch (ext4_inode_journal_mode(inode)) {
3299         case EXT4_INODE_ORDERED_DATA_MODE:
3300                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3301                 break;
3302         case EXT4_INODE_WRITEBACK_DATA_MODE:
3303                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3304                 break;
3305         case EXT4_INODE_JOURNAL_DATA_MODE:
3306                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3307                 return;
3308         default:
3309                 BUG();
3310         }
3311         if (test_opt(inode->i_sb, DELALLOC))
3312                 inode->i_mapping->a_ops = &ext4_da_aops;
3313         else
3314                 inode->i_mapping->a_ops = &ext4_aops;
3315 }
3316
3317 static int __ext4_block_zero_page_range(handle_t *handle,
3318                 struct address_space *mapping, loff_t from, loff_t length)
3319 {
3320         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3321         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3322         unsigned blocksize, pos;
3323         ext4_lblk_t iblock;
3324         struct inode *inode = mapping->host;
3325         struct buffer_head *bh;
3326         struct page *page;
3327         int err = 0;
3328
3329         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3330                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3331         if (!page)
3332                 return -ENOMEM;
3333
3334         blocksize = inode->i_sb->s_blocksize;
3335
3336         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3337
3338         if (!page_has_buffers(page))
3339                 create_empty_buffers(page, blocksize, 0);
3340
3341         /* Find the buffer that contains "offset" */
3342         bh = page_buffers(page);
3343         pos = blocksize;
3344         while (offset >= pos) {
3345                 bh = bh->b_this_page;
3346                 iblock++;
3347                 pos += blocksize;
3348         }
3349         if (buffer_freed(bh)) {
3350                 BUFFER_TRACE(bh, "freed: skip");
3351                 goto unlock;
3352         }
3353         if (!buffer_mapped(bh)) {
3354                 BUFFER_TRACE(bh, "unmapped");
3355                 ext4_get_block(inode, iblock, bh, 0);
3356                 /* unmapped? It's a hole - nothing to do */
3357                 if (!buffer_mapped(bh)) {
3358                         BUFFER_TRACE(bh, "still unmapped");
3359                         goto unlock;
3360                 }
3361         }
3362
3363         /* Ok, it's mapped. Make sure it's up-to-date */
3364         if (PageUptodate(page))
3365                 set_buffer_uptodate(bh);
3366
3367         if (!buffer_uptodate(bh)) {
3368                 err = -EIO;
3369                 ll_rw_block(READ, 1, &bh);
3370                 wait_on_buffer(bh);
3371                 /* Uhhuh. Read error. Complain and punt. */
3372                 if (!buffer_uptodate(bh))
3373                         goto unlock;
3374                 if (S_ISREG(inode->i_mode) &&
3375                     ext4_encrypted_inode(inode)) {
3376                         /* We expect the key to be set. */
3377                         BUG_ON(!ext4_has_encryption_key(inode));
3378                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3379                         WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3380                 }
3381         }
3382         if (ext4_should_journal_data(inode)) {
3383                 BUFFER_TRACE(bh, "get write access");
3384                 err = ext4_journal_get_write_access(handle, bh);
3385                 if (err)
3386                         goto unlock;
3387         }
3388         zero_user(page, offset, length);
3389         BUFFER_TRACE(bh, "zeroed end of block");
3390
3391         if (ext4_should_journal_data(inode)) {
3392                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3393         } else {
3394                 err = 0;
3395                 mark_buffer_dirty(bh);
3396                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3397                         err = ext4_jbd2_file_inode(handle, inode);
3398         }
3399
3400 unlock:
3401         unlock_page(page);
3402         page_cache_release(page);
3403         return err;
3404 }
3405
3406 /*
3407  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3408  * starting from file offset 'from'.  The range to be zero'd must
3409  * be contained with in one block.  If the specified range exceeds
3410  * the end of the block it will be shortened to end of the block
3411  * that cooresponds to 'from'
3412  */
3413 static int ext4_block_zero_page_range(handle_t *handle,
3414                 struct address_space *mapping, loff_t from, loff_t length)
3415 {
3416         struct inode *inode = mapping->host;
3417         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3418         unsigned blocksize = inode->i_sb->s_blocksize;
3419         unsigned max = blocksize - (offset & (blocksize - 1));
3420
3421         /*
3422          * correct length if it does not fall between
3423          * 'from' and the end of the block
3424          */
3425         if (length > max || length < 0)
3426                 length = max;
3427
3428         if (IS_DAX(inode))
3429                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3430         return __ext4_block_zero_page_range(handle, mapping, from, length);
3431 }
3432
3433 /*
3434  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3435  * up to the end of the block which corresponds to `from'.
3436  * This required during truncate. We need to physically zero the tail end
3437  * of that block so it doesn't yield old data if the file is later grown.
3438  */
3439 static int ext4_block_truncate_page(handle_t *handle,
3440                 struct address_space *mapping, loff_t from)
3441 {
3442         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3443         unsigned length;
3444         unsigned blocksize;
3445         struct inode *inode = mapping->host;
3446
3447         blocksize = inode->i_sb->s_blocksize;
3448         length = blocksize - (offset & (blocksize - 1));
3449
3450         return ext4_block_zero_page_range(handle, mapping, from, length);
3451 }
3452
3453 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3454                              loff_t lstart, loff_t length)
3455 {
3456         struct super_block *sb = inode->i_sb;
3457         struct address_space *mapping = inode->i_mapping;
3458         unsigned partial_start, partial_end;
3459         ext4_fsblk_t start, end;
3460         loff_t byte_end = (lstart + length - 1);
3461         int err = 0;
3462
3463         partial_start = lstart & (sb->s_blocksize - 1);
3464         partial_end = byte_end & (sb->s_blocksize - 1);
3465
3466         start = lstart >> sb->s_blocksize_bits;
3467         end = byte_end >> sb->s_blocksize_bits;
3468
3469         /* Handle partial zero within the single block */
3470         if (start == end &&
3471             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3472                 err = ext4_block_zero_page_range(handle, mapping,
3473                                                  lstart, length);
3474                 return err;
3475         }
3476         /* Handle partial zero out on the start of the range */
3477         if (partial_start) {
3478                 err = ext4_block_zero_page_range(handle, mapping,
3479                                                  lstart, sb->s_blocksize);
3480                 if (err)
3481                         return err;
3482         }
3483         /* Handle partial zero out on the end of the range */
3484         if (partial_end != sb->s_blocksize - 1)
3485                 err = ext4_block_zero_page_range(handle, mapping,
3486                                                  byte_end - partial_end,
3487                                                  partial_end + 1);
3488         return err;
3489 }
3490
3491 int ext4_can_truncate(struct inode *inode)
3492 {
3493         if (S_ISREG(inode->i_mode))
3494                 return 1;
3495         if (S_ISDIR(inode->i_mode))
3496                 return 1;
3497         if (S_ISLNK(inode->i_mode))
3498                 return !ext4_inode_is_fast_symlink(inode);
3499         return 0;
3500 }
3501
3502 /*
3503  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3504  * associated with the given offset and length
3505  *
3506  * @inode:  File inode
3507  * @offset: The offset where the hole will begin
3508  * @len:    The length of the hole
3509  *
3510  * Returns: 0 on success or negative on failure
3511  */
3512
3513 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3514 {
3515         struct super_block *sb = inode->i_sb;
3516         ext4_lblk_t first_block, stop_block;
3517         struct address_space *mapping = inode->i_mapping;
3518         loff_t first_block_offset, last_block_offset;
3519         handle_t *handle;
3520         unsigned int credits;
3521         int ret = 0;
3522
3523         if (!S_ISREG(inode->i_mode))
3524                 return -EOPNOTSUPP;
3525
3526         trace_ext4_punch_hole(inode, offset, length, 0);
3527
3528         /*
3529          * Write out all dirty pages to avoid race conditions
3530          * Then release them.
3531          */
3532         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3533                 ret = filemap_write_and_wait_range(mapping, offset,
3534                                                    offset + length - 1);
3535                 if (ret)
3536                         return ret;
3537         }
3538
3539         mutex_lock(&inode->i_mutex);
3540
3541         /* No need to punch hole beyond i_size */
3542         if (offset >= inode->i_size)
3543                 goto out_mutex;
3544
3545         /*
3546          * If the hole extends beyond i_size, set the hole
3547          * to end after the page that contains i_size
3548          */
3549         if (offset + length > inode->i_size) {
3550                 length = inode->i_size +
3551                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3552                    offset;
3553         }
3554
3555         if (offset & (sb->s_blocksize - 1) ||
3556             (offset + length) & (sb->s_blocksize - 1)) {
3557                 /*
3558                  * Attach jinode to inode for jbd2 if we do any zeroing of
3559                  * partial block
3560                  */
3561                 ret = ext4_inode_attach_jinode(inode);
3562                 if (ret < 0)
3563                         goto out_mutex;
3564
3565         }
3566
3567         first_block_offset = round_up(offset, sb->s_blocksize);
3568         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3569
3570         /* Now release the pages and zero block aligned part of pages*/
3571         if (last_block_offset > first_block_offset)
3572                 truncate_pagecache_range(inode, first_block_offset,
3573                                          last_block_offset);
3574
3575         /* Wait all existing dio workers, newcomers will block on i_mutex */
3576         ext4_inode_block_unlocked_dio(inode);
3577         inode_dio_wait(inode);
3578
3579         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3580                 credits = ext4_writepage_trans_blocks(inode);
3581         else
3582                 credits = ext4_blocks_for_truncate(inode);
3583         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3584         if (IS_ERR(handle)) {
3585                 ret = PTR_ERR(handle);
3586                 ext4_std_error(sb, ret);
3587                 goto out_dio;
3588         }
3589
3590         ret = ext4_zero_partial_blocks(handle, inode, offset,
3591                                        length);
3592         if (ret)
3593                 goto out_stop;
3594
3595         first_block = (offset + sb->s_blocksize - 1) >>
3596                 EXT4_BLOCK_SIZE_BITS(sb);
3597         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3598
3599         /* If there are no blocks to remove, return now */
3600         if (first_block >= stop_block)
3601                 goto out_stop;
3602
3603         down_write(&EXT4_I(inode)->i_data_sem);
3604         ext4_discard_preallocations(inode);
3605
3606         ret = ext4_es_remove_extent(inode, first_block,
3607                                     stop_block - first_block);
3608         if (ret) {
3609                 up_write(&EXT4_I(inode)->i_data_sem);
3610                 goto out_stop;
3611         }
3612
3613         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3614                 ret = ext4_ext_remove_space(inode, first_block,
3615                                             stop_block - 1);
3616         else
3617                 ret = ext4_ind_remove_space(handle, inode, first_block,
3618                                             stop_block);
3619
3620         up_write(&EXT4_I(inode)->i_data_sem);
3621         if (IS_SYNC(inode))
3622                 ext4_handle_sync(handle);
3623
3624         /* Now release the pages again to reduce race window */
3625         if (last_block_offset > first_block_offset)
3626                 truncate_pagecache_range(inode, first_block_offset,
3627                                          last_block_offset);
3628
3629         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3630         ext4_mark_inode_dirty(handle, inode);
3631 out_stop:
3632         ext4_journal_stop(handle);
3633 out_dio:
3634         ext4_inode_resume_unlocked_dio(inode);
3635 out_mutex:
3636         mutex_unlock(&inode->i_mutex);
3637         return ret;
3638 }
3639
3640 int ext4_inode_attach_jinode(struct inode *inode)
3641 {
3642         struct ext4_inode_info *ei = EXT4_I(inode);
3643         struct jbd2_inode *jinode;
3644
3645         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3646                 return 0;
3647
3648         jinode = jbd2_alloc_inode(GFP_KERNEL);
3649         spin_lock(&inode->i_lock);
3650         if (!ei->jinode) {
3651                 if (!jinode) {
3652                         spin_unlock(&inode->i_lock);
3653                         return -ENOMEM;
3654                 }
3655                 ei->jinode = jinode;
3656                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3657                 jinode = NULL;
3658         }
3659         spin_unlock(&inode->i_lock);
3660         if (unlikely(jinode != NULL))
3661                 jbd2_free_inode(jinode);
3662         return 0;
3663 }
3664
3665 /*
3666  * ext4_truncate()
3667  *
3668  * We block out ext4_get_block() block instantiations across the entire
3669  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3670  * simultaneously on behalf of the same inode.
3671  *
3672  * As we work through the truncate and commit bits of it to the journal there
3673  * is one core, guiding principle: the file's tree must always be consistent on
3674  * disk.  We must be able to restart the truncate after a crash.
3675  *
3676  * The file's tree may be transiently inconsistent in memory (although it
3677  * probably isn't), but whenever we close off and commit a journal transaction,
3678  * the contents of (the filesystem + the journal) must be consistent and
3679  * restartable.  It's pretty simple, really: bottom up, right to left (although
3680  * left-to-right works OK too).
3681  *
3682  * Note that at recovery time, journal replay occurs *before* the restart of
3683  * truncate against the orphan inode list.
3684  *
3685  * The committed inode has the new, desired i_size (which is the same as
3686  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3687  * that this inode's truncate did not complete and it will again call
3688  * ext4_truncate() to have another go.  So there will be instantiated blocks
3689  * to the right of the truncation point in a crashed ext4 filesystem.  But
3690  * that's fine - as long as they are linked from the inode, the post-crash
3691  * ext4_truncate() run will find them and release them.
3692  */
3693 void ext4_truncate(struct inode *inode)
3694 {
3695         struct ext4_inode_info *ei = EXT4_I(inode);
3696         unsigned int credits;
3697         handle_t *handle;
3698         struct address_space *mapping = inode->i_mapping;
3699
3700         /*
3701          * There is a possibility that we're either freeing the inode
3702          * or it's a completely new inode. In those cases we might not
3703          * have i_mutex locked because it's not necessary.
3704          */
3705         if (!(inode->i_state & (I_NEW|I_FREEING)))
3706                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3707         trace_ext4_truncate_enter(inode);
3708
3709         if (!ext4_can_truncate(inode))
3710                 return;
3711
3712         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3713
3714         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3715                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3716
3717         if (ext4_has_inline_data(inode)) {
3718                 int has_inline = 1;
3719
3720                 ext4_inline_data_truncate(inode, &has_inline);
3721                 if (has_inline)
3722                         return;
3723         }
3724
3725         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3726         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3727                 if (ext4_inode_attach_jinode(inode) < 0)
3728                         return;
3729         }
3730
3731         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3732                 credits = ext4_writepage_trans_blocks(inode);
3733         else
3734                 credits = ext4_blocks_for_truncate(inode);
3735
3736         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3737         if (IS_ERR(handle)) {
3738                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3739                 return;
3740         }
3741
3742         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3743                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3744
3745         /*
3746          * We add the inode to the orphan list, so that if this
3747          * truncate spans multiple transactions, and we crash, we will
3748          * resume the truncate when the filesystem recovers.  It also
3749          * marks the inode dirty, to catch the new size.
3750          *
3751          * Implication: the file must always be in a sane, consistent
3752          * truncatable state while each transaction commits.
3753          */
3754         if (ext4_orphan_add(handle, inode))
3755                 goto out_stop;
3756
3757         down_write(&EXT4_I(inode)->i_data_sem);
3758
3759         ext4_discard_preallocations(inode);
3760
3761         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3762                 ext4_ext_truncate(handle, inode);
3763         else
3764                 ext4_ind_truncate(handle, inode);
3765
3766         up_write(&ei->i_data_sem);
3767
3768         if (IS_SYNC(inode))
3769                 ext4_handle_sync(handle);
3770
3771 out_stop:
3772         /*
3773          * If this was a simple ftruncate() and the file will remain alive,
3774          * then we need to clear up the orphan record which we created above.
3775          * However, if this was a real unlink then we were called by
3776          * ext4_evict_inode(), and we allow that function to clean up the
3777          * orphan info for us.
3778          */
3779         if (inode->i_nlink)
3780                 ext4_orphan_del(handle, inode);
3781
3782         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3783         ext4_mark_inode_dirty(handle, inode);
3784         ext4_journal_stop(handle);
3785
3786         trace_ext4_truncate_exit(inode);
3787 }
3788
3789 /*
3790  * ext4_get_inode_loc returns with an extra refcount against the inode's
3791  * underlying buffer_head on success. If 'in_mem' is true, we have all
3792  * data in memory that is needed to recreate the on-disk version of this
3793  * inode.
3794  */
3795 static int __ext4_get_inode_loc(struct inode *inode,
3796                                 struct ext4_iloc *iloc, int in_mem)
3797 {
3798         struct ext4_group_desc  *gdp;
3799         struct buffer_head      *bh;
3800         struct super_block      *sb = inode->i_sb;
3801         ext4_fsblk_t            block;
3802         int                     inodes_per_block, inode_offset;
3803
3804         iloc->bh = NULL;
3805         if (!ext4_valid_inum(sb, inode->i_ino))
3806                 return -EIO;
3807
3808         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3809         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3810         if (!gdp)
3811                 return -EIO;
3812
3813         /*
3814          * Figure out the offset within the block group inode table
3815          */
3816         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3817         inode_offset = ((inode->i_ino - 1) %
3818                         EXT4_INODES_PER_GROUP(sb));
3819         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3820         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3821
3822         bh = sb_getblk(sb, block);
3823         if (unlikely(!bh))
3824                 return -ENOMEM;
3825         if (!buffer_uptodate(bh)) {
3826                 lock_buffer(bh);
3827
3828                 /*
3829                  * If the buffer has the write error flag, we have failed
3830                  * to write out another inode in the same block.  In this
3831                  * case, we don't have to read the block because we may
3832                  * read the old inode data successfully.
3833                  */
3834                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3835                         set_buffer_uptodate(bh);
3836
3837                 if (buffer_uptodate(bh)) {
3838                         /* someone brought it uptodate while we waited */
3839                         unlock_buffer(bh);
3840                         goto has_buffer;
3841                 }
3842
3843                 /*
3844                  * If we have all information of the inode in memory and this
3845                  * is the only valid inode in the block, we need not read the
3846                  * block.
3847                  */
3848                 if (in_mem) {
3849                         struct buffer_head *bitmap_bh;
3850                         int i, start;
3851
3852                         start = inode_offset & ~(inodes_per_block - 1);
3853
3854                         /* Is the inode bitmap in cache? */
3855                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3856                         if (unlikely(!bitmap_bh))
3857                                 goto make_io;
3858
3859                         /*
3860                          * If the inode bitmap isn't in cache then the
3861                          * optimisation may end up performing two reads instead
3862                          * of one, so skip it.
3863                          */
3864                         if (!buffer_uptodate(bitmap_bh)) {
3865                                 brelse(bitmap_bh);
3866                                 goto make_io;
3867                         }
3868                         for (i = start; i < start + inodes_per_block; i++) {
3869                                 if (i == inode_offset)
3870                                         continue;
3871                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3872                                         break;
3873                         }
3874                         brelse(bitmap_bh);
3875                         if (i == start + inodes_per_block) {
3876                                 /* all other inodes are free, so skip I/O */
3877                                 memset(bh->b_data, 0, bh->b_size);
3878                                 set_buffer_uptodate(bh);
3879                                 unlock_buffer(bh);
3880                                 goto has_buffer;
3881                         }
3882                 }
3883
3884 make_io:
3885                 /*
3886                  * If we need to do any I/O, try to pre-readahead extra
3887                  * blocks from the inode table.
3888                  */
3889                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3890                         ext4_fsblk_t b, end, table;
3891                         unsigned num;
3892                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3893
3894                         table = ext4_inode_table(sb, gdp);
3895                         /* s_inode_readahead_blks is always a power of 2 */
3896                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3897                         if (table > b)
3898                                 b = table;
3899                         end = b + ra_blks;
3900                         num = EXT4_INODES_PER_GROUP(sb);
3901                         if (ext4_has_group_desc_csum(sb))
3902                                 num -= ext4_itable_unused_count(sb, gdp);
3903                         table += num / inodes_per_block;
3904                         if (end > table)
3905                                 end = table;
3906                         while (b <= end)
3907                                 sb_breadahead(sb, b++);
3908                 }
3909
3910                 /*
3911                  * There are other valid inodes in the buffer, this inode
3912                  * has in-inode xattrs, or we don't have this inode in memory.
3913                  * Read the block from disk.
3914                  */
3915                 trace_ext4_load_inode(inode);
3916                 get_bh(bh);
3917                 bh->b_end_io = end_buffer_read_sync;
3918                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3919                 wait_on_buffer(bh);
3920                 if (!buffer_uptodate(bh)) {
3921                         EXT4_ERROR_INODE_BLOCK(inode, block,
3922                                                "unable to read itable block");
3923                         brelse(bh);
3924                         return -EIO;
3925                 }
3926         }
3927 has_buffer:
3928         iloc->bh = bh;
3929         return 0;
3930 }
3931
3932 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3933 {
3934         /* We have all inode data except xattrs in memory here. */
3935         return __ext4_get_inode_loc(inode, iloc,
3936                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3937 }
3938
3939 void ext4_set_inode_flags(struct inode *inode)
3940 {
3941         unsigned int flags = EXT4_I(inode)->i_flags;
3942         unsigned int new_fl = 0;
3943
3944         if (flags & EXT4_SYNC_FL)
3945                 new_fl |= S_SYNC;
3946         if (flags & EXT4_APPEND_FL)
3947                 new_fl |= S_APPEND;
3948         if (flags & EXT4_IMMUTABLE_FL)
3949                 new_fl |= S_IMMUTABLE;
3950         if (flags & EXT4_NOATIME_FL)
3951                 new_fl |= S_NOATIME;
3952         if (flags & EXT4_DIRSYNC_FL)
3953                 new_fl |= S_DIRSYNC;
3954         if (test_opt(inode->i_sb, DAX))
3955                 new_fl |= S_DAX;
3956         inode_set_flags(inode, new_fl,
3957                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3958 }
3959
3960 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3961 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3962 {
3963         unsigned int vfs_fl;
3964         unsigned long old_fl, new_fl;
3965
3966         do {
3967                 vfs_fl = ei->vfs_inode.i_flags;
3968                 old_fl = ei->i_flags;
3969                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3970                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3971                                 EXT4_DIRSYNC_FL);
3972                 if (vfs_fl & S_SYNC)
3973                         new_fl |= EXT4_SYNC_FL;
3974                 if (vfs_fl & S_APPEND)
3975                         new_fl |= EXT4_APPEND_FL;
3976                 if (vfs_fl & S_IMMUTABLE)
3977                         new_fl |= EXT4_IMMUTABLE_FL;
3978                 if (vfs_fl & S_NOATIME)
3979                         new_fl |= EXT4_NOATIME_FL;
3980                 if (vfs_fl & S_DIRSYNC)
3981                         new_fl |= EXT4_DIRSYNC_FL;
3982         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3983 }
3984
3985 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3986                                   struct ext4_inode_info *ei)
3987 {
3988         blkcnt_t i_blocks ;
3989         struct inode *inode = &(ei->vfs_inode);
3990         struct super_block *sb = inode->i_sb;
3991
3992         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3993                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3994                 /* we are using combined 48 bit field */
3995                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3996                                         le32_to_cpu(raw_inode->i_blocks_lo);
3997                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3998                         /* i_blocks represent file system block size */
3999                         return i_blocks  << (inode->i_blkbits - 9);
4000                 } else {
4001                         return i_blocks;
4002                 }
4003         } else {
4004                 return le32_to_cpu(raw_inode->i_blocks_lo);
4005         }
4006 }
4007
4008 static inline void ext4_iget_extra_inode(struct inode *inode,
4009                                          struct ext4_inode *raw_inode,
4010                                          struct ext4_inode_info *ei)
4011 {
4012         __le32 *magic = (void *)raw_inode +
4013                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4014         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4015                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4016                 ext4_find_inline_data_nolock(inode);
4017         } else
4018                 EXT4_I(inode)->i_inline_off = 0;
4019 }
4020
4021 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4022 {
4023         struct ext4_iloc iloc;
4024         struct ext4_inode *raw_inode;
4025         struct ext4_inode_info *ei;
4026         struct inode *inode;
4027         journal_t *journal = EXT4_SB(sb)->s_journal;
4028         long ret;
4029         int block;
4030         uid_t i_uid;
4031         gid_t i_gid;
4032
4033         inode = iget_locked(sb, ino);
4034         if (!inode)
4035                 return ERR_PTR(-ENOMEM);
4036         if (!(inode->i_state & I_NEW))
4037                 return inode;
4038
4039         ei = EXT4_I(inode);
4040         iloc.bh = NULL;
4041
4042         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4043         if (ret < 0)
4044                 goto bad_inode;
4045         raw_inode = ext4_raw_inode(&iloc);
4046
4047         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4048                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4049                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4050                     EXT4_INODE_SIZE(inode->i_sb)) {
4051                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4052                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4053                                 EXT4_INODE_SIZE(inode->i_sb));
4054                         ret = -EIO;
4055                         goto bad_inode;
4056                 }
4057         } else
4058                 ei->i_extra_isize = 0;
4059
4060         /* Precompute checksum seed for inode metadata */
4061         if (ext4_has_metadata_csum(sb)) {
4062                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4063                 __u32 csum;
4064                 __le32 inum = cpu_to_le32(inode->i_ino);
4065                 __le32 gen = raw_inode->i_generation;
4066                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4067                                    sizeof(inum));
4068                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4069                                               sizeof(gen));
4070         }
4071
4072         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4073                 EXT4_ERROR_INODE(inode, "checksum invalid");
4074                 ret = -EIO;
4075                 goto bad_inode;
4076         }
4077
4078         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4079         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4080         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4081         if (!(test_opt(inode->i_sb, NO_UID32))) {
4082                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4083                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4084         }
4085         i_uid_write(inode, i_uid);
4086         i_gid_write(inode, i_gid);
4087         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4088
4089         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4090         ei->i_inline_off = 0;
4091         ei->i_dir_start_lookup = 0;
4092         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4093         /* We now have enough fields to check if the inode was active or not.
4094          * This is needed because nfsd might try to access dead inodes
4095          * the test is that same one that e2fsck uses
4096          * NeilBrown 1999oct15
4097          */
4098         if (inode->i_nlink == 0) {
4099                 if ((inode->i_mode == 0 ||
4100                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4101                     ino != EXT4_BOOT_LOADER_INO) {
4102                         /* this inode is deleted */
4103                         ret = -ESTALE;
4104                         goto bad_inode;
4105                 }
4106                 /* The only unlinked inodes we let through here have
4107                  * valid i_mode and are being read by the orphan
4108                  * recovery code: that's fine, we're about to complete
4109                  * the process of deleting those.
4110                  * OR it is the EXT4_BOOT_LOADER_INO which is
4111                  * not initialized on a new filesystem. */
4112         }
4113         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4114         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4115         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4116         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4117                 ei->i_file_acl |=
4118                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4119         inode->i_size = ext4_isize(raw_inode);
4120         ei->i_disksize = inode->i_size;
4121 #ifdef CONFIG_QUOTA
4122         ei->i_reserved_quota = 0;
4123 #endif
4124         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4125         ei->i_block_group = iloc.block_group;
4126         ei->i_last_alloc_group = ~0;
4127         /*
4128          * NOTE! The in-memory inode i_data array is in little-endian order
4129          * even on big-endian machines: we do NOT byteswap the block numbers!
4130          */
4131         for (block = 0; block < EXT4_N_BLOCKS; block++)
4132                 ei->i_data[block] = raw_inode->i_block[block];
4133         INIT_LIST_HEAD(&ei->i_orphan);
4134
4135         /*
4136          * Set transaction id's of transactions that have to be committed
4137          * to finish f[data]sync. We set them to currently running transaction
4138          * as we cannot be sure that the inode or some of its metadata isn't
4139          * part of the transaction - the inode could have been reclaimed and
4140          * now it is reread from disk.
4141          */
4142         if (journal) {
4143                 transaction_t *transaction;
4144                 tid_t tid;
4145
4146                 read_lock(&journal->j_state_lock);
4147                 if (journal->j_running_transaction)
4148                         transaction = journal->j_running_transaction;
4149                 else
4150                         transaction = journal->j_committing_transaction;
4151                 if (transaction)
4152                         tid = transaction->t_tid;
4153                 else
4154                         tid = journal->j_commit_sequence;
4155                 read_unlock(&journal->j_state_lock);
4156                 ei->i_sync_tid = tid;
4157                 ei->i_datasync_tid = tid;
4158         }
4159
4160         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4161                 if (ei->i_extra_isize == 0) {
4162                         /* The extra space is currently unused. Use it. */
4163                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4164                                             EXT4_GOOD_OLD_INODE_SIZE;
4165                 } else {
4166                         ext4_iget_extra_inode(inode, raw_inode, ei);
4167                 }
4168         }
4169
4170         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4171         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4172         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4173         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4174
4175         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4176                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4177                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4178                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4179                                 inode->i_version |=
4180                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4181                 }
4182         }
4183
4184         ret = 0;
4185         if (ei->i_file_acl &&
4186             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4187                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4188                                  ei->i_file_acl);
4189                 ret = -EIO;
4190                 goto bad_inode;
4191         } else if (!ext4_has_inline_data(inode)) {
4192                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4193                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4194                             (S_ISLNK(inode->i_mode) &&
4195                              !ext4_inode_is_fast_symlink(inode))))
4196                                 /* Validate extent which is part of inode */
4197                                 ret = ext4_ext_check_inode(inode);
4198                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4199                            (S_ISLNK(inode->i_mode) &&
4200                             !ext4_inode_is_fast_symlink(inode))) {
4201                         /* Validate block references which are part of inode */
4202                         ret = ext4_ind_check_inode(inode);
4203                 }
4204         }
4205         if (ret)
4206                 goto bad_inode;
4207
4208         if (S_ISREG(inode->i_mode)) {
4209                 inode->i_op = &ext4_file_inode_operations;
4210                 inode->i_fop = &ext4_file_operations;
4211                 ext4_set_aops(inode);
4212         } else if (S_ISDIR(inode->i_mode)) {
4213                 inode->i_op = &ext4_dir_inode_operations;
4214                 inode->i_fop = &ext4_dir_operations;
4215         } else if (S_ISLNK(inode->i_mode)) {
4216                 if (ext4_inode_is_fast_symlink(inode) &&
4217                     !ext4_encrypted_inode(inode)) {
4218                         inode->i_op = &ext4_fast_symlink_inode_operations;
4219                         nd_terminate_link(ei->i_data, inode->i_size,
4220                                 sizeof(ei->i_data) - 1);
4221                 } else {
4222                         inode->i_op = &ext4_symlink_inode_operations;
4223                         ext4_set_aops(inode);
4224                 }
4225         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4226               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4227                 inode->i_op = &ext4_special_inode_operations;
4228                 if (raw_inode->i_block[0])
4229                         init_special_inode(inode, inode->i_mode,
4230                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4231                 else
4232                         init_special_inode(inode, inode->i_mode,
4233                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4234         } else if (ino == EXT4_BOOT_LOADER_INO) {
4235                 make_bad_inode(inode);
4236         } else {
4237                 ret = -EIO;
4238                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4239                 goto bad_inode;
4240         }
4241         brelse(iloc.bh);
4242         ext4_set_inode_flags(inode);
4243         unlock_new_inode(inode);
4244         return inode;
4245
4246 bad_inode:
4247         brelse(iloc.bh);
4248         iget_failed(inode);
4249         return ERR_PTR(ret);
4250 }
4251
4252 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4253 {
4254         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4255                 return ERR_PTR(-EIO);
4256         return ext4_iget(sb, ino);
4257 }
4258
4259 static int ext4_inode_blocks_set(handle_t *handle,
4260                                 struct ext4_inode *raw_inode,
4261                                 struct ext4_inode_info *ei)
4262 {
4263         struct inode *inode = &(ei->vfs_inode);
4264         u64 i_blocks = inode->i_blocks;
4265         struct super_block *sb = inode->i_sb;
4266
4267         if (i_blocks <= ~0U) {
4268                 /*
4269                  * i_blocks can be represented in a 32 bit variable
4270                  * as multiple of 512 bytes
4271                  */
4272                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4273                 raw_inode->i_blocks_high = 0;
4274                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4275                 return 0;
4276         }
4277         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4278                 return -EFBIG;
4279
4280         if (i_blocks <= 0xffffffffffffULL) {
4281                 /*
4282                  * i_blocks can be represented in a 48 bit variable
4283                  * as multiple of 512 bytes
4284                  */
4285                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4286                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4287                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4288         } else {
4289                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4290                 /* i_block is stored in file system block size */
4291                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4292                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4293                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4294         }
4295         return 0;
4296 }
4297
4298 struct other_inode {
4299         unsigned long           orig_ino;
4300         struct ext4_inode       *raw_inode;
4301 };
4302
4303 static int other_inode_match(struct inode * inode, unsigned long ino,
4304                              void *data)
4305 {
4306         struct other_inode *oi = (struct other_inode *) data;
4307
4308         if ((inode->i_ino != ino) ||
4309             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4310                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4311             ((inode->i_state & I_DIRTY_TIME) == 0))
4312                 return 0;
4313         spin_lock(&inode->i_lock);
4314         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4315                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4316             (inode->i_state & I_DIRTY_TIME)) {
4317                 struct ext4_inode_info  *ei = EXT4_I(inode);
4318
4319                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4320                 spin_unlock(&inode->i_lock);
4321
4322                 spin_lock(&ei->i_raw_lock);
4323                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4324                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4325                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4326                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4327                 spin_unlock(&ei->i_raw_lock);
4328                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4329                 return -1;
4330         }
4331         spin_unlock(&inode->i_lock);
4332         return -1;
4333 }
4334
4335 /*
4336  * Opportunistically update the other time fields for other inodes in
4337  * the same inode table block.
4338  */
4339 static void ext4_update_other_inodes_time(struct super_block *sb,
4340                                           unsigned long orig_ino, char *buf)
4341 {
4342         struct other_inode oi;
4343         unsigned long ino;
4344         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4345         int inode_size = EXT4_INODE_SIZE(sb);
4346
4347         oi.orig_ino = orig_ino;
4348         ino = orig_ino & ~(inodes_per_block - 1);
4349         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4350                 if (ino == orig_ino)
4351                         continue;
4352                 oi.raw_inode = (struct ext4_inode *) buf;
4353                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4354         }
4355 }
4356
4357 /*
4358  * Post the struct inode info into an on-disk inode location in the
4359  * buffer-cache.  This gobbles the caller's reference to the
4360  * buffer_head in the inode location struct.
4361  *
4362  * The caller must have write access to iloc->bh.
4363  */
4364 static int ext4_do_update_inode(handle_t *handle,
4365                                 struct inode *inode,
4366                                 struct ext4_iloc *iloc)
4367 {
4368         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4369         struct ext4_inode_info *ei = EXT4_I(inode);
4370         struct buffer_head *bh = iloc->bh;
4371         struct super_block *sb = inode->i_sb;
4372         int err = 0, rc, block;
4373         int need_datasync = 0, set_large_file = 0;
4374         uid_t i_uid;
4375         gid_t i_gid;
4376
4377         spin_lock(&ei->i_raw_lock);
4378
4379         /* For fields not tracked in the in-memory inode,
4380          * initialise them to zero for new inodes. */
4381         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4382                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4383
4384         ext4_get_inode_flags(ei);
4385         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4386         i_uid = i_uid_read(inode);
4387         i_gid = i_gid_read(inode);
4388         if (!(test_opt(inode->i_sb, NO_UID32))) {
4389                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4390                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4391 /*
4392  * Fix up interoperability with old kernels. Otherwise, old inodes get
4393  * re-used with the upper 16 bits of the uid/gid intact
4394  */
4395                 if (!ei->i_dtime) {
4396                         raw_inode->i_uid_high =
4397                                 cpu_to_le16(high_16_bits(i_uid));
4398                         raw_inode->i_gid_high =
4399                                 cpu_to_le16(high_16_bits(i_gid));
4400                 } else {
4401                         raw_inode->i_uid_high = 0;
4402                         raw_inode->i_gid_high = 0;
4403                 }
4404         } else {
4405                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4406                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4407                 raw_inode->i_uid_high = 0;
4408                 raw_inode->i_gid_high = 0;
4409         }
4410         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4411
4412         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4413         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4414         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4415         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4416
4417         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4418         if (err) {
4419                 spin_unlock(&ei->i_raw_lock);
4420                 goto out_brelse;
4421         }
4422         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4423         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4424         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4425                 raw_inode->i_file_acl_high =
4426                         cpu_to_le16(ei->i_file_acl >> 32);
4427         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4428         if (ei->i_disksize != ext4_isize(raw_inode)) {
4429                 ext4_isize_set(raw_inode, ei->i_disksize);
4430                 need_datasync = 1;
4431         }
4432         if (ei->i_disksize > 0x7fffffffULL) {
4433                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4434                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4435                                 EXT4_SB(sb)->s_es->s_rev_level ==
4436                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4437                         set_large_file = 1;
4438         }
4439         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4440         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4441                 if (old_valid_dev(inode->i_rdev)) {
4442                         raw_inode->i_block[0] =
4443                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4444                         raw_inode->i_block[1] = 0;
4445                 } else {
4446                         raw_inode->i_block[0] = 0;
4447                         raw_inode->i_block[1] =
4448                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4449                         raw_inode->i_block[2] = 0;
4450                 }
4451         } else if (!ext4_has_inline_data(inode)) {
4452                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4453                         raw_inode->i_block[block] = ei->i_data[block];
4454         }
4455
4456         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4457                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4458                 if (ei->i_extra_isize) {
4459                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4460                                 raw_inode->i_version_hi =
4461                                         cpu_to_le32(inode->i_version >> 32);
4462                         raw_inode->i_extra_isize =
4463                                 cpu_to_le16(ei->i_extra_isize);
4464                 }
4465         }
4466         ext4_inode_csum_set(inode, raw_inode, ei);
4467         spin_unlock(&ei->i_raw_lock);
4468         if (inode->i_sb->s_flags & MS_LAZYTIME)
4469                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4470                                               bh->b_data);
4471
4472         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4473         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4474         if (!err)
4475                 err = rc;
4476         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4477         if (set_large_file) {
4478                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4479                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4480                 if (err)
4481                         goto out_brelse;
4482                 ext4_update_dynamic_rev(sb);
4483                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4484                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4485                 ext4_handle_sync(handle);
4486                 err = ext4_handle_dirty_super(handle, sb);
4487         }
4488         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4489 out_brelse:
4490         brelse(bh);
4491         ext4_std_error(inode->i_sb, err);
4492         return err;
4493 }
4494
4495 /*
4496  * ext4_write_inode()
4497  *
4498  * We are called from a few places:
4499  *
4500  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4501  *   Here, there will be no transaction running. We wait for any running
4502  *   transaction to commit.
4503  *
4504  * - Within flush work (sys_sync(), kupdate and such).
4505  *   We wait on commit, if told to.
4506  *
4507  * - Within iput_final() -> write_inode_now()
4508  *   We wait on commit, if told to.
4509  *
4510  * In all cases it is actually safe for us to return without doing anything,
4511  * because the inode has been copied into a raw inode buffer in
4512  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4513  * writeback.
4514  *
4515  * Note that we are absolutely dependent upon all inode dirtiers doing the
4516  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4517  * which we are interested.
4518  *
4519  * It would be a bug for them to not do this.  The code:
4520  *
4521  *      mark_inode_dirty(inode)
4522  *      stuff();
4523  *      inode->i_size = expr;
4524  *
4525  * is in error because write_inode() could occur while `stuff()' is running,
4526  * and the new i_size will be lost.  Plus the inode will no longer be on the
4527  * superblock's dirty inode list.
4528  */
4529 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4530 {
4531         int err;
4532
4533         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4534                 return 0;
4535
4536         if (EXT4_SB(inode->i_sb)->s_journal) {
4537                 if (ext4_journal_current_handle()) {
4538                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4539                         dump_stack();
4540                         return -EIO;
4541                 }
4542
4543                 /*
4544                  * No need to force transaction in WB_SYNC_NONE mode. Also
4545                  * ext4_sync_fs() will force the commit after everything is
4546                  * written.
4547                  */
4548                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4549                         return 0;
4550
4551                 err = ext4_force_commit(inode->i_sb);
4552         } else {
4553                 struct ext4_iloc iloc;
4554
4555                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4556                 if (err)
4557                         return err;
4558                 /*
4559                  * sync(2) will flush the whole buffer cache. No need to do
4560                  * it here separately for each inode.
4561                  */
4562                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4563                         sync_dirty_buffer(iloc.bh);
4564                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4565                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4566                                          "IO error syncing inode");
4567                         err = -EIO;
4568                 }
4569                 brelse(iloc.bh);
4570         }
4571         return err;
4572 }
4573
4574 /*
4575  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4576  * buffers that are attached to a page stradding i_size and are undergoing
4577  * commit. In that case we have to wait for commit to finish and try again.
4578  */
4579 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4580 {
4581         struct page *page;
4582         unsigned offset;
4583         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4584         tid_t commit_tid = 0;
4585         int ret;
4586
4587         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4588         /*
4589          * All buffers in the last page remain valid? Then there's nothing to
4590          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4591          * blocksize case
4592          */
4593         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4594                 return;
4595         while (1) {
4596                 page = find_lock_page(inode->i_mapping,
4597                                       inode->i_size >> PAGE_CACHE_SHIFT);
4598                 if (!page)
4599                         return;
4600                 ret = __ext4_journalled_invalidatepage(page, offset,
4601                                                 PAGE_CACHE_SIZE - offset);
4602                 unlock_page(page);
4603                 page_cache_release(page);
4604                 if (ret != -EBUSY)
4605                         return;
4606                 commit_tid = 0;
4607                 read_lock(&journal->j_state_lock);
4608                 if (journal->j_committing_transaction)
4609                         commit_tid = journal->j_committing_transaction->t_tid;
4610                 read_unlock(&journal->j_state_lock);
4611                 if (commit_tid)
4612                         jbd2_log_wait_commit(journal, commit_tid);
4613         }
4614 }
4615
4616 /*
4617  * ext4_setattr()
4618  *
4619  * Called from notify_change.
4620  *
4621  * We want to trap VFS attempts to truncate the file as soon as
4622  * possible.  In particular, we want to make sure that when the VFS
4623  * shrinks i_size, we put the inode on the orphan list and modify
4624  * i_disksize immediately, so that during the subsequent flushing of
4625  * dirty pages and freeing of disk blocks, we can guarantee that any
4626  * commit will leave the blocks being flushed in an unused state on
4627  * disk.  (On recovery, the inode will get truncated and the blocks will
4628  * be freed, so we have a strong guarantee that no future commit will
4629  * leave these blocks visible to the user.)
4630  *
4631  * Another thing we have to assure is that if we are in ordered mode
4632  * and inode is still attached to the committing transaction, we must
4633  * we start writeout of all the dirty pages which are being truncated.
4634  * This way we are sure that all the data written in the previous
4635  * transaction are already on disk (truncate waits for pages under
4636  * writeback).
4637  *
4638  * Called with inode->i_mutex down.
4639  */
4640 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4641 {
4642         struct inode *inode = d_inode(dentry);
4643         int error, rc = 0;
4644         int orphan = 0;
4645         const unsigned int ia_valid = attr->ia_valid;
4646
4647         error = inode_change_ok(inode, attr);
4648         if (error)
4649                 return error;
4650
4651         if (is_quota_modification(inode, attr))
4652                 dquot_initialize(inode);
4653         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4654             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4655                 handle_t *handle;
4656
4657                 /* (user+group)*(old+new) structure, inode write (sb,
4658                  * inode block, ? - but truncate inode update has it) */
4659                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4660                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4661                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4662                 if (IS_ERR(handle)) {
4663                         error = PTR_ERR(handle);
4664                         goto err_out;
4665                 }
4666                 error = dquot_transfer(inode, attr);
4667                 if (error) {
4668                         ext4_journal_stop(handle);
4669                         return error;
4670                 }
4671                 /* Update corresponding info in inode so that everything is in
4672                  * one transaction */
4673                 if (attr->ia_valid & ATTR_UID)
4674                         inode->i_uid = attr->ia_uid;
4675                 if (attr->ia_valid & ATTR_GID)
4676                         inode->i_gid = attr->ia_gid;
4677                 error = ext4_mark_inode_dirty(handle, inode);
4678                 ext4_journal_stop(handle);
4679         }
4680
4681         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4682                 handle_t *handle;
4683
4684                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4685                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4686
4687                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4688                                 return -EFBIG;
4689                 }
4690
4691                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4692                         inode_inc_iversion(inode);
4693
4694                 if (S_ISREG(inode->i_mode) &&
4695                     (attr->ia_size < inode->i_size)) {
4696                         if (ext4_should_order_data(inode)) {
4697                                 error = ext4_begin_ordered_truncate(inode,
4698                                                             attr->ia_size);
4699                                 if (error)
4700                                         goto err_out;
4701                         }
4702                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4703                         if (IS_ERR(handle)) {
4704                                 error = PTR_ERR(handle);
4705                                 goto err_out;
4706                         }
4707                         if (ext4_handle_valid(handle)) {
4708                                 error = ext4_orphan_add(handle, inode);
4709                                 orphan = 1;
4710                         }
4711                         down_write(&EXT4_I(inode)->i_data_sem);
4712                         EXT4_I(inode)->i_disksize = attr->ia_size;
4713                         rc = ext4_mark_inode_dirty(handle, inode);
4714                         if (!error)
4715                                 error = rc;
4716                         /*
4717                          * We have to update i_size under i_data_sem together
4718                          * with i_disksize to avoid races with writeback code
4719                          * running ext4_wb_update_i_disksize().
4720                          */
4721                         if (!error)
4722                                 i_size_write(inode, attr->ia_size);
4723                         up_write(&EXT4_I(inode)->i_data_sem);
4724                         ext4_journal_stop(handle);
4725                         if (error) {
4726                                 ext4_orphan_del(NULL, inode);
4727                                 goto err_out;
4728                         }
4729                 } else {
4730                         loff_t oldsize = inode->i_size;
4731
4732                         i_size_write(inode, attr->ia_size);
4733                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4734                 }
4735
4736                 /*
4737                  * Blocks are going to be removed from the inode. Wait
4738                  * for dio in flight.  Temporarily disable
4739                  * dioread_nolock to prevent livelock.
4740                  */
4741                 if (orphan) {
4742                         if (!ext4_should_journal_data(inode)) {
4743                                 ext4_inode_block_unlocked_dio(inode);
4744                                 inode_dio_wait(inode);
4745                                 ext4_inode_resume_unlocked_dio(inode);
4746                         } else
4747                                 ext4_wait_for_tail_page_commit(inode);
4748                 }
4749                 /*
4750                  * Truncate pagecache after we've waited for commit
4751                  * in data=journal mode to make pages freeable.
4752                  */
4753                 truncate_pagecache(inode, inode->i_size);
4754         }
4755         /*
4756          * We want to call ext4_truncate() even if attr->ia_size ==
4757          * inode->i_size for cases like truncation of fallocated space
4758          */
4759         if (attr->ia_valid & ATTR_SIZE)
4760                 ext4_truncate(inode);
4761
4762         if (!rc) {
4763                 setattr_copy(inode, attr);
4764                 mark_inode_dirty(inode);
4765         }
4766
4767         /*
4768          * If the call to ext4_truncate failed to get a transaction handle at
4769          * all, we need to clean up the in-core orphan list manually.
4770          */
4771         if (orphan && inode->i_nlink)
4772                 ext4_orphan_del(NULL, inode);
4773
4774         if (!rc && (ia_valid & ATTR_MODE))
4775                 rc = posix_acl_chmod(inode, inode->i_mode);
4776
4777 err_out:
4778         ext4_std_error(inode->i_sb, error);
4779         if (!error)
4780                 error = rc;
4781         return error;
4782 }
4783
4784 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4785                  struct kstat *stat)
4786 {
4787         struct inode *inode;
4788         unsigned long long delalloc_blocks;
4789
4790         inode = d_inode(dentry);
4791         generic_fillattr(inode, stat);
4792
4793         /*
4794          * If there is inline data in the inode, the inode will normally not
4795          * have data blocks allocated (it may have an external xattr block).
4796          * Report at least one sector for such files, so tools like tar, rsync,
4797          * others doen't incorrectly think the file is completely sparse.
4798          */
4799         if (unlikely(ext4_has_inline_data(inode)))
4800                 stat->blocks += (stat->size + 511) >> 9;
4801
4802         /*
4803          * We can't update i_blocks if the block allocation is delayed
4804          * otherwise in the case of system crash before the real block
4805          * allocation is done, we will have i_blocks inconsistent with
4806          * on-disk file blocks.
4807          * We always keep i_blocks updated together with real
4808          * allocation. But to not confuse with user, stat
4809          * will return the blocks that include the delayed allocation
4810          * blocks for this file.
4811          */
4812         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4813                                    EXT4_I(inode)->i_reserved_data_blocks);
4814         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4815         return 0;
4816 }
4817
4818 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4819                                    int pextents)
4820 {
4821         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4822                 return ext4_ind_trans_blocks(inode, lblocks);
4823         return ext4_ext_index_trans_blocks(inode, pextents);
4824 }
4825
4826 /*
4827  * Account for index blocks, block groups bitmaps and block group
4828  * descriptor blocks if modify datablocks and index blocks
4829  * worse case, the indexs blocks spread over different block groups
4830  *
4831  * If datablocks are discontiguous, they are possible to spread over
4832  * different block groups too. If they are contiguous, with flexbg,
4833  * they could still across block group boundary.
4834  *
4835  * Also account for superblock, inode, quota and xattr blocks
4836  */
4837 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4838                                   int pextents)
4839 {
4840         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4841         int gdpblocks;
4842         int idxblocks;
4843         int ret = 0;
4844
4845         /*
4846          * How many index blocks need to touch to map @lblocks logical blocks
4847          * to @pextents physical extents?
4848          */
4849         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4850
4851         ret = idxblocks;
4852
4853         /*
4854          * Now let's see how many group bitmaps and group descriptors need
4855          * to account
4856          */
4857         groups = idxblocks + pextents;
4858         gdpblocks = groups;
4859         if (groups > ngroups)
4860                 groups = ngroups;
4861         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4862                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4863
4864         /* bitmaps and block group descriptor blocks */
4865         ret += groups + gdpblocks;
4866
4867         /* Blocks for super block, inode, quota and xattr blocks */
4868         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4869
4870         return ret;
4871 }
4872
4873 /*
4874  * Calculate the total number of credits to reserve to fit
4875  * the modification of a single pages into a single transaction,
4876  * which may include multiple chunks of block allocations.
4877  *
4878  * This could be called via ext4_write_begin()
4879  *
4880  * We need to consider the worse case, when
4881  * one new block per extent.
4882  */
4883 int ext4_writepage_trans_blocks(struct inode *inode)
4884 {
4885         int bpp = ext4_journal_blocks_per_page(inode);
4886         int ret;
4887
4888         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4889
4890         /* Account for data blocks for journalled mode */
4891         if (ext4_should_journal_data(inode))
4892                 ret += bpp;
4893         return ret;
4894 }
4895
4896 /*
4897  * Calculate the journal credits for a chunk of data modification.
4898  *
4899  * This is called from DIO, fallocate or whoever calling
4900  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4901  *
4902  * journal buffers for data blocks are not included here, as DIO
4903  * and fallocate do no need to journal data buffers.
4904  */
4905 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4906 {
4907         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4908 }
4909
4910 /*
4911  * The caller must have previously called ext4_reserve_inode_write().
4912  * Give this, we know that the caller already has write access to iloc->bh.
4913  */
4914 int ext4_mark_iloc_dirty(handle_t *handle,
4915                          struct inode *inode, struct ext4_iloc *iloc)
4916 {
4917         int err = 0;
4918
4919         if (IS_I_VERSION(inode))
4920                 inode_inc_iversion(inode);
4921
4922         /* the do_update_inode consumes one bh->b_count */
4923         get_bh(iloc->bh);
4924
4925         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4926         err = ext4_do_update_inode(handle, inode, iloc);
4927         put_bh(iloc->bh);
4928         return err;
4929 }
4930
4931 /*
4932  * On success, We end up with an outstanding reference count against
4933  * iloc->bh.  This _must_ be cleaned up later.
4934  */
4935
4936 int
4937 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4938                          struct ext4_iloc *iloc)
4939 {
4940         int err;
4941
4942         err = ext4_get_inode_loc(inode, iloc);
4943         if (!err) {
4944                 BUFFER_TRACE(iloc->bh, "get_write_access");
4945                 err = ext4_journal_get_write_access(handle, iloc->bh);
4946                 if (err) {
4947                         brelse(iloc->bh);
4948                         iloc->bh = NULL;
4949                 }
4950         }
4951         ext4_std_error(inode->i_sb, err);
4952         return err;
4953 }
4954
4955 /*
4956  * Expand an inode by new_extra_isize bytes.
4957  * Returns 0 on success or negative error number on failure.
4958  */
4959 static int ext4_expand_extra_isize(struct inode *inode,
4960                                    unsigned int new_extra_isize,
4961                                    struct ext4_iloc iloc,
4962                                    handle_t *handle)
4963 {
4964         struct ext4_inode *raw_inode;
4965         struct ext4_xattr_ibody_header *header;
4966
4967         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4968                 return 0;
4969
4970         raw_inode = ext4_raw_inode(&iloc);
4971
4972         header = IHDR(inode, raw_inode);
4973
4974         /* No extended attributes present */
4975         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4976             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4977                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4978                         new_extra_isize);
4979                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4980                 return 0;
4981         }
4982
4983         /* try to expand with EAs present */
4984         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4985                                           raw_inode, handle);
4986 }
4987
4988 /*
4989  * What we do here is to mark the in-core inode as clean with respect to inode
4990  * dirtiness (it may still be data-dirty).
4991  * This means that the in-core inode may be reaped by prune_icache
4992  * without having to perform any I/O.  This is a very good thing,
4993  * because *any* task may call prune_icache - even ones which
4994  * have a transaction open against a different journal.
4995  *
4996  * Is this cheating?  Not really.  Sure, we haven't written the
4997  * inode out, but prune_icache isn't a user-visible syncing function.
4998  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4999  * we start and wait on commits.
5000  */
5001 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5002 {
5003         struct ext4_iloc iloc;
5004         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5005         static unsigned int mnt_count;
5006         int err, ret;
5007
5008         might_sleep();
5009         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5010         err = ext4_reserve_inode_write(handle, inode, &iloc);
5011         if (ext4_handle_valid(handle) &&
5012             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5013             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5014                 /*
5015                  * We need extra buffer credits since we may write into EA block
5016                  * with this same handle. If journal_extend fails, then it will
5017                  * only result in a minor loss of functionality for that inode.
5018                  * If this is felt to be critical, then e2fsck should be run to
5019                  * force a large enough s_min_extra_isize.
5020                  */
5021                 if ((jbd2_journal_extend(handle,
5022                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5023                         ret = ext4_expand_extra_isize(inode,
5024                                                       sbi->s_want_extra_isize,
5025                                                       iloc, handle);
5026                         if (ret) {
5027                                 ext4_set_inode_state(inode,
5028                                                      EXT4_STATE_NO_EXPAND);
5029                                 if (mnt_count !=
5030                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5031                                         ext4_warning(inode->i_sb,
5032                                         "Unable to expand inode %lu. Delete"
5033                                         " some EAs or run e2fsck.",
5034                                         inode->i_ino);
5035                                         mnt_count =
5036                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5037                                 }
5038                         }
5039                 }
5040         }
5041         if (!err)
5042                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5043         return err;
5044 }
5045
5046 /*
5047  * ext4_dirty_inode() is called from __mark_inode_dirty()
5048  *
5049  * We're really interested in the case where a file is being extended.
5050  * i_size has been changed by generic_commit_write() and we thus need
5051  * to include the updated inode in the current transaction.
5052  *
5053  * Also, dquot_alloc_block() will always dirty the inode when blocks
5054  * are allocated to the file.
5055  *
5056  * If the inode is marked synchronous, we don't honour that here - doing
5057  * so would cause a commit on atime updates, which we don't bother doing.
5058  * We handle synchronous inodes at the highest possible level.
5059  *
5060  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5061  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5062  * to copy into the on-disk inode structure are the timestamp files.
5063  */
5064 void ext4_dirty_inode(struct inode *inode, int flags)
5065 {
5066         handle_t *handle;
5067
5068         if (flags == I_DIRTY_TIME)
5069                 return;
5070         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5071         if (IS_ERR(handle))
5072                 goto out;
5073
5074         ext4_mark_inode_dirty(handle, inode);
5075
5076         ext4_journal_stop(handle);
5077 out:
5078         return;
5079 }
5080
5081 #if 0
5082 /*
5083  * Bind an inode's backing buffer_head into this transaction, to prevent
5084  * it from being flushed to disk early.  Unlike
5085  * ext4_reserve_inode_write, this leaves behind no bh reference and
5086  * returns no iloc structure, so the caller needs to repeat the iloc
5087  * lookup to mark the inode dirty later.
5088  */
5089 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5090 {
5091         struct ext4_iloc iloc;
5092
5093         int err = 0;
5094         if (handle) {
5095                 err = ext4_get_inode_loc(inode, &iloc);
5096                 if (!err) {
5097                         BUFFER_TRACE(iloc.bh, "get_write_access");
5098                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5099                         if (!err)
5100                                 err = ext4_handle_dirty_metadata(handle,
5101                                                                  NULL,
5102                                                                  iloc.bh);
5103                         brelse(iloc.bh);
5104                 }
5105         }
5106         ext4_std_error(inode->i_sb, err);
5107         return err;
5108 }
5109 #endif
5110
5111 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5112 {
5113         journal_t *journal;
5114         handle_t *handle;
5115         int err;
5116
5117         /*
5118          * We have to be very careful here: changing a data block's
5119          * journaling status dynamically is dangerous.  If we write a
5120          * data block to the journal, change the status and then delete
5121          * that block, we risk forgetting to revoke the old log record
5122          * from the journal and so a subsequent replay can corrupt data.
5123          * So, first we make sure that the journal is empty and that
5124          * nobody is changing anything.
5125          */
5126
5127         journal = EXT4_JOURNAL(inode);
5128         if (!journal)
5129                 return 0;
5130         if (is_journal_aborted(journal))
5131                 return -EROFS;
5132         /* We have to allocate physical blocks for delalloc blocks
5133          * before flushing journal. otherwise delalloc blocks can not
5134          * be allocated any more. even more truncate on delalloc blocks
5135          * could trigger BUG by flushing delalloc blocks in journal.
5136          * There is no delalloc block in non-journal data mode.
5137          */
5138         if (val && test_opt(inode->i_sb, DELALLOC)) {
5139                 err = ext4_alloc_da_blocks(inode);
5140                 if (err < 0)
5141                         return err;
5142         }
5143
5144         /* Wait for all existing dio workers */
5145         ext4_inode_block_unlocked_dio(inode);
5146         inode_dio_wait(inode);
5147
5148         jbd2_journal_lock_updates(journal);
5149
5150         /*
5151          * OK, there are no updates running now, and all cached data is
5152          * synced to disk.  We are now in a completely consistent state
5153          * which doesn't have anything in the journal, and we know that
5154          * no filesystem updates are running, so it is safe to modify
5155          * the inode's in-core data-journaling state flag now.
5156          */
5157
5158         if (val)
5159                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5160         else {
5161                 err = jbd2_journal_flush(journal);
5162                 if (err < 0) {
5163                         jbd2_journal_unlock_updates(journal);
5164                         ext4_inode_resume_unlocked_dio(inode);
5165                         return err;
5166                 }
5167                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5168         }
5169         ext4_set_aops(inode);
5170
5171         jbd2_journal_unlock_updates(journal);
5172         ext4_inode_resume_unlocked_dio(inode);
5173
5174         /* Finally we can mark the inode as dirty. */
5175
5176         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5177         if (IS_ERR(handle))
5178                 return PTR_ERR(handle);
5179
5180         err = ext4_mark_inode_dirty(handle, inode);
5181         ext4_handle_sync(handle);
5182         ext4_journal_stop(handle);
5183         ext4_std_error(inode->i_sb, err);
5184
5185         return err;
5186 }
5187
5188 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5189 {
5190         return !buffer_mapped(bh);
5191 }
5192
5193 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5194 {
5195         struct page *page = vmf->page;
5196         loff_t size;
5197         unsigned long len;
5198         int ret;
5199         struct file *file = vma->vm_file;
5200         struct inode *inode = file_inode(file);
5201         struct address_space *mapping = inode->i_mapping;
5202         handle_t *handle;
5203         get_block_t *get_block;
5204         int retries = 0;
5205
5206         sb_start_pagefault(inode->i_sb);
5207         file_update_time(vma->vm_file);
5208         /* Delalloc case is easy... */
5209         if (test_opt(inode->i_sb, DELALLOC) &&
5210             !ext4_should_journal_data(inode) &&
5211             !ext4_nonda_switch(inode->i_sb)) {
5212                 do {
5213                         ret = __block_page_mkwrite(vma, vmf,
5214                                                    ext4_da_get_block_prep);
5215                 } while (ret == -ENOSPC &&
5216                        ext4_should_retry_alloc(inode->i_sb, &retries));
5217                 goto out_ret;
5218         }
5219
5220         lock_page(page);
5221         size = i_size_read(inode);
5222         /* Page got truncated from under us? */
5223         if (page->mapping != mapping || page_offset(page) > size) {
5224                 unlock_page(page);
5225                 ret = VM_FAULT_NOPAGE;
5226                 goto out;
5227         }
5228
5229         if (page->index == size >> PAGE_CACHE_SHIFT)
5230                 len = size & ~PAGE_CACHE_MASK;
5231         else
5232                 len = PAGE_CACHE_SIZE;
5233         /*
5234          * Return if we have all the buffers mapped. This avoids the need to do
5235          * journal_start/journal_stop which can block and take a long time
5236          */
5237         if (page_has_buffers(page)) {
5238                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5239                                             0, len, NULL,
5240                                             ext4_bh_unmapped)) {
5241                         /* Wait so that we don't change page under IO */
5242                         wait_for_stable_page(page);
5243                         ret = VM_FAULT_LOCKED;
5244                         goto out;
5245                 }
5246         }
5247         unlock_page(page);
5248         /* OK, we need to fill the hole... */
5249         if (ext4_should_dioread_nolock(inode))
5250                 get_block = ext4_get_block_write;
5251         else
5252                 get_block = ext4_get_block;
5253 retry_alloc:
5254         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5255                                     ext4_writepage_trans_blocks(inode));
5256         if (IS_ERR(handle)) {
5257                 ret = VM_FAULT_SIGBUS;
5258                 goto out;
5259         }
5260         ret = __block_page_mkwrite(vma, vmf, get_block);
5261         if (!ret && ext4_should_journal_data(inode)) {
5262                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5263                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5264                         unlock_page(page);
5265                         ret = VM_FAULT_SIGBUS;
5266                         ext4_journal_stop(handle);
5267                         goto out;
5268                 }
5269                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5270         }
5271         ext4_journal_stop(handle);
5272         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5273                 goto retry_alloc;
5274 out_ret:
5275         ret = block_page_mkwrite_return(ret);
5276 out:
5277         sb_end_pagefault(inode->i_sb);
5278         return ret;
5279 }