Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages_final(&inode->i_data);
219
220                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221                 goto no_delete;
222         }
223
224         if (!is_bad_inode(inode))
225                 dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages_final(&inode->i_data);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232         if (is_bad_inode(inode))
233                 goto no_delete;
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359                         "with only %d reserved metadata blocks "
360                         "(releasing %d blocks with reserved %d data blocks)",
361                         inode->i_ino, ei->i_allocated_meta_blocks,
362                              ei->i_reserved_meta_blocks, used,
363                              ei->i_reserved_data_blocks);
364                 WARN_ON(1);
365                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366         }
367
368         /* Update per-inode reservations */
369         ei->i_reserved_data_blocks -= used;
370         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372                            used + ei->i_allocated_meta_blocks);
373         ei->i_allocated_meta_blocks = 0;
374
375         if (ei->i_reserved_data_blocks == 0) {
376                 /*
377                  * We can release all of the reserved metadata blocks
378                  * only when we have written all of the delayed
379                  * allocation blocks.
380                  */
381                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382                                    ei->i_reserved_meta_blocks);
383                 ei->i_reserved_meta_blocks = 0;
384                 ei->i_da_metadata_calc_len = 0;
385         }
386         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388         /* Update quota subsystem for data blocks */
389         if (quota_claim)
390                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391         else {
392                 /*
393                  * We did fallocate with an offset that is already delayed
394                  * allocated. So on delayed allocated writeback we should
395                  * not re-claim the quota for fallocated blocks.
396                  */
397                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398         }
399
400         /*
401          * If we have done all the pending block allocations and if
402          * there aren't any writers on the inode, we can discard the
403          * inode's preallocations.
404          */
405         if ((ei->i_reserved_data_blocks == 0) &&
406             (atomic_read(&inode->i_writecount) == 0))
407                 ext4_discard_preallocations(inode);
408 }
409
410 static int __check_block_validity(struct inode *inode, const char *func,
411                                 unsigned int line,
412                                 struct ext4_map_blocks *map)
413 {
414         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415                                    map->m_len)) {
416                 ext4_error_inode(inode, func, line, map->m_pblk,
417                                  "lblock %lu mapped to illegal pblock "
418                                  "(length %d)", (unsigned long) map->m_lblk,
419                                  map->m_len);
420                 return -EIO;
421         }
422         return 0;
423 }
424
425 #define check_block_validity(inode, map)        \
426         __check_block_validity((inode), __func__, __LINE__, (map))
427
428 #ifdef ES_AGGRESSIVE_TEST
429 static void ext4_map_blocks_es_recheck(handle_t *handle,
430                                        struct inode *inode,
431                                        struct ext4_map_blocks *es_map,
432                                        struct ext4_map_blocks *map,
433                                        int flags)
434 {
435         int retval;
436
437         map->m_flags = 0;
438         /*
439          * There is a race window that the result is not the same.
440          * e.g. xfstests #223 when dioread_nolock enables.  The reason
441          * is that we lookup a block mapping in extent status tree with
442          * out taking i_data_sem.  So at the time the unwritten extent
443          * could be converted.
444          */
445         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
446                 down_read((&EXT4_I(inode)->i_data_sem));
447         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
449                                              EXT4_GET_BLOCKS_KEEP_SIZE);
450         } else {
451                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
452                                              EXT4_GET_BLOCKS_KEEP_SIZE);
453         }
454         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455                 up_read((&EXT4_I(inode)->i_data_sem));
456         /*
457          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458          * because it shouldn't be marked in es_map->m_flags.
459          */
460         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocate.
493  * if create==0 and the blocks are pre-allocated and uninitialized block,
494  * the result buffer head is unmapped. If the create ==1, it will make sure
495  * the buffer head is mapped.
496  *
497  * It returns 0 if plain look up failed (blocks have not been allocated), in
498  * that case, buffer head is unmapped
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
517                   (unsigned long) map->m_lblk);
518
519         /*
520          * ext4_map_blocks returns an int, and m_len is an unsigned int
521          */
522         if (unlikely(map->m_len > INT_MAX))
523                 map->m_len = INT_MAX;
524
525         /* Lookup extent status tree firstly */
526         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527                 ext4_es_lru_add(inode);
528                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
529                         map->m_pblk = ext4_es_pblock(&es) +
530                                         map->m_lblk - es.es_lblk;
531                         map->m_flags |= ext4_es_is_written(&es) ?
532                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
533                         retval = es.es_len - (map->m_lblk - es.es_lblk);
534                         if (retval > map->m_len)
535                                 retval = map->m_len;
536                         map->m_len = retval;
537                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
538                         retval = 0;
539                 } else {
540                         BUG_ON(1);
541                 }
542 #ifdef ES_AGGRESSIVE_TEST
543                 ext4_map_blocks_es_recheck(handle, inode, map,
544                                            &orig_map, flags);
545 #endif
546                 goto found;
547         }
548
549         /*
550          * Try to see if we can get the block without requesting a new
551          * file system block.
552          */
553         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
554                 down_read((&EXT4_I(inode)->i_data_sem));
555         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
556                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
557                                              EXT4_GET_BLOCKS_KEEP_SIZE);
558         } else {
559                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
560                                              EXT4_GET_BLOCKS_KEEP_SIZE);
561         }
562         if (retval > 0) {
563                 unsigned int status;
564
565                 if (unlikely(retval != map->m_len)) {
566                         ext4_warning(inode->i_sb,
567                                      "ES len assertion failed for inode "
568                                      "%lu: retval %d != map->m_len %d",
569                                      inode->i_ino, retval, map->m_len);
570                         WARN_ON(1);
571                 }
572
573                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
574                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
575                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
576                     ext4_find_delalloc_range(inode, map->m_lblk,
577                                              map->m_lblk + map->m_len - 1))
578                         status |= EXTENT_STATUS_DELAYED;
579                 ret = ext4_es_insert_extent(inode, map->m_lblk,
580                                             map->m_len, map->m_pblk, status);
581                 if (ret < 0)
582                         retval = ret;
583         }
584         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
585                 up_read((&EXT4_I(inode)->i_data_sem));
586
587 found:
588         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
589                 ret = check_block_validity(inode, map);
590                 if (ret != 0)
591                         return ret;
592         }
593
594         /* If it is only a block(s) look up */
595         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
596                 return retval;
597
598         /*
599          * Returns if the blocks have already allocated
600          *
601          * Note that if blocks have been preallocated
602          * ext4_ext_get_block() returns the create = 0
603          * with buffer head unmapped.
604          */
605         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
606                 /*
607                  * If we need to convert extent to unwritten
608                  * we continue and do the actual work in
609                  * ext4_ext_map_blocks()
610                  */
611                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
612                         return retval;
613
614         /*
615          * Here we clear m_flags because after allocating an new extent,
616          * it will be set again.
617          */
618         map->m_flags &= ~EXT4_MAP_FLAGS;
619
620         /*
621          * New blocks allocate and/or writing to uninitialized extent
622          * will possibly result in updating i_data, so we take
623          * the write lock of i_data_sem, and call get_blocks()
624          * with create == 1 flag.
625          */
626         down_write((&EXT4_I(inode)->i_data_sem));
627
628         /*
629          * if the caller is from delayed allocation writeout path
630          * we have already reserved fs blocks for allocation
631          * let the underlying get_block() function know to
632          * avoid double accounting
633          */
634         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
635                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
636         /*
637          * We need to check for EXT4 here because migrate
638          * could have changed the inode type in between
639          */
640         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
641                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
642         } else {
643                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
644
645                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
646                         /*
647                          * We allocated new blocks which will result in
648                          * i_data's format changing.  Force the migrate
649                          * to fail by clearing migrate flags
650                          */
651                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
652                 }
653
654                 /*
655                  * Update reserved blocks/metadata blocks after successful
656                  * block allocation which had been deferred till now. We don't
657                  * support fallocate for non extent files. So we can update
658                  * reserve space here.
659                  */
660                 if ((retval > 0) &&
661                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
662                         ext4_da_update_reserve_space(inode, retval, 1);
663         }
664         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
665                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
666
667         if (retval > 0) {
668                 unsigned int status;
669
670                 if (unlikely(retval != map->m_len)) {
671                         ext4_warning(inode->i_sb,
672                                      "ES len assertion failed for inode "
673                                      "%lu: retval %d != map->m_len %d",
674                                      inode->i_ino, retval, map->m_len);
675                         WARN_ON(1);
676                 }
677
678                 /*
679                  * If the extent has been zeroed out, we don't need to update
680                  * extent status tree.
681                  */
682                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
683                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
684                         if (ext4_es_is_written(&es))
685                                 goto has_zeroout;
686                 }
687                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
688                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
689                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
690                     ext4_find_delalloc_range(inode, map->m_lblk,
691                                              map->m_lblk + map->m_len - 1))
692                         status |= EXTENT_STATUS_DELAYED;
693                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
694                                             map->m_pblk, status);
695                 if (ret < 0)
696                         retval = ret;
697         }
698
699 has_zeroout:
700         up_write((&EXT4_I(inode)->i_data_sem));
701         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
702                 ret = check_block_validity(inode, map);
703                 if (ret != 0)
704                         return ret;
705         }
706         return retval;
707 }
708
709 /* Maximum number of blocks we map for direct IO at once. */
710 #define DIO_MAX_BLOCKS 4096
711
712 static int _ext4_get_block(struct inode *inode, sector_t iblock,
713                            struct buffer_head *bh, int flags)
714 {
715         handle_t *handle = ext4_journal_current_handle();
716         struct ext4_map_blocks map;
717         int ret = 0, started = 0;
718         int dio_credits;
719
720         if (ext4_has_inline_data(inode))
721                 return -ERANGE;
722
723         map.m_lblk = iblock;
724         map.m_len = bh->b_size >> inode->i_blkbits;
725
726         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
727                 /* Direct IO write... */
728                 if (map.m_len > DIO_MAX_BLOCKS)
729                         map.m_len = DIO_MAX_BLOCKS;
730                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
731                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
732                                             dio_credits);
733                 if (IS_ERR(handle)) {
734                         ret = PTR_ERR(handle);
735                         return ret;
736                 }
737                 started = 1;
738         }
739
740         ret = ext4_map_blocks(handle, inode, &map, flags);
741         if (ret > 0) {
742                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
743
744                 map_bh(bh, inode->i_sb, map.m_pblk);
745                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
746                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
747                         set_buffer_defer_completion(bh);
748                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
749                 ret = 0;
750         }
751         if (started)
752                 ext4_journal_stop(handle);
753         return ret;
754 }
755
756 int ext4_get_block(struct inode *inode, sector_t iblock,
757                    struct buffer_head *bh, int create)
758 {
759         return _ext4_get_block(inode, iblock, bh,
760                                create ? EXT4_GET_BLOCKS_CREATE : 0);
761 }
762
763 /*
764  * `handle' can be NULL if create is zero
765  */
766 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
767                                 ext4_lblk_t block, int create, int *errp)
768 {
769         struct ext4_map_blocks map;
770         struct buffer_head *bh;
771         int fatal = 0, err;
772
773         J_ASSERT(handle != NULL || create == 0);
774
775         map.m_lblk = block;
776         map.m_len = 1;
777         err = ext4_map_blocks(handle, inode, &map,
778                               create ? EXT4_GET_BLOCKS_CREATE : 0);
779
780         /* ensure we send some value back into *errp */
781         *errp = 0;
782
783         if (create && err == 0)
784                 err = -ENOSPC;  /* should never happen */
785         if (err < 0)
786                 *errp = err;
787         if (err <= 0)
788                 return NULL;
789
790         bh = sb_getblk(inode->i_sb, map.m_pblk);
791         if (unlikely(!bh)) {
792                 *errp = -ENOMEM;
793                 return NULL;
794         }
795         if (map.m_flags & EXT4_MAP_NEW) {
796                 J_ASSERT(create != 0);
797                 J_ASSERT(handle != NULL);
798
799                 /*
800                  * Now that we do not always journal data, we should
801                  * keep in mind whether this should always journal the
802                  * new buffer as metadata.  For now, regular file
803                  * writes use ext4_get_block instead, so it's not a
804                  * problem.
805                  */
806                 lock_buffer(bh);
807                 BUFFER_TRACE(bh, "call get_create_access");
808                 fatal = ext4_journal_get_create_access(handle, bh);
809                 if (!fatal && !buffer_uptodate(bh)) {
810                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
811                         set_buffer_uptodate(bh);
812                 }
813                 unlock_buffer(bh);
814                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
815                 err = ext4_handle_dirty_metadata(handle, inode, bh);
816                 if (!fatal)
817                         fatal = err;
818         } else {
819                 BUFFER_TRACE(bh, "not a new buffer");
820         }
821         if (fatal) {
822                 *errp = fatal;
823                 brelse(bh);
824                 bh = NULL;
825         }
826         return bh;
827 }
828
829 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
830                                ext4_lblk_t block, int create, int *err)
831 {
832         struct buffer_head *bh;
833
834         bh = ext4_getblk(handle, inode, block, create, err);
835         if (!bh)
836                 return bh;
837         if (buffer_uptodate(bh))
838                 return bh;
839         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
840         wait_on_buffer(bh);
841         if (buffer_uptodate(bh))
842                 return bh;
843         put_bh(bh);
844         *err = -EIO;
845         return NULL;
846 }
847
848 int ext4_walk_page_buffers(handle_t *handle,
849                            struct buffer_head *head,
850                            unsigned from,
851                            unsigned to,
852                            int *partial,
853                            int (*fn)(handle_t *handle,
854                                      struct buffer_head *bh))
855 {
856         struct buffer_head *bh;
857         unsigned block_start, block_end;
858         unsigned blocksize = head->b_size;
859         int err, ret = 0;
860         struct buffer_head *next;
861
862         for (bh = head, block_start = 0;
863              ret == 0 && (bh != head || !block_start);
864              block_start = block_end, bh = next) {
865                 next = bh->b_this_page;
866                 block_end = block_start + blocksize;
867                 if (block_end <= from || block_start >= to) {
868                         if (partial && !buffer_uptodate(bh))
869                                 *partial = 1;
870                         continue;
871                 }
872                 err = (*fn)(handle, bh);
873                 if (!ret)
874                         ret = err;
875         }
876         return ret;
877 }
878
879 /*
880  * To preserve ordering, it is essential that the hole instantiation and
881  * the data write be encapsulated in a single transaction.  We cannot
882  * close off a transaction and start a new one between the ext4_get_block()
883  * and the commit_write().  So doing the jbd2_journal_start at the start of
884  * prepare_write() is the right place.
885  *
886  * Also, this function can nest inside ext4_writepage().  In that case, we
887  * *know* that ext4_writepage() has generated enough buffer credits to do the
888  * whole page.  So we won't block on the journal in that case, which is good,
889  * because the caller may be PF_MEMALLOC.
890  *
891  * By accident, ext4 can be reentered when a transaction is open via
892  * quota file writes.  If we were to commit the transaction while thus
893  * reentered, there can be a deadlock - we would be holding a quota
894  * lock, and the commit would never complete if another thread had a
895  * transaction open and was blocking on the quota lock - a ranking
896  * violation.
897  *
898  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
899  * will _not_ run commit under these circumstances because handle->h_ref
900  * is elevated.  We'll still have enough credits for the tiny quotafile
901  * write.
902  */
903 int do_journal_get_write_access(handle_t *handle,
904                                 struct buffer_head *bh)
905 {
906         int dirty = buffer_dirty(bh);
907         int ret;
908
909         if (!buffer_mapped(bh) || buffer_freed(bh))
910                 return 0;
911         /*
912          * __block_write_begin() could have dirtied some buffers. Clean
913          * the dirty bit as jbd2_journal_get_write_access() could complain
914          * otherwise about fs integrity issues. Setting of the dirty bit
915          * by __block_write_begin() isn't a real problem here as we clear
916          * the bit before releasing a page lock and thus writeback cannot
917          * ever write the buffer.
918          */
919         if (dirty)
920                 clear_buffer_dirty(bh);
921         ret = ext4_journal_get_write_access(handle, bh);
922         if (!ret && dirty)
923                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
924         return ret;
925 }
926
927 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
928                    struct buffer_head *bh_result, int create);
929 static int ext4_write_begin(struct file *file, struct address_space *mapping,
930                             loff_t pos, unsigned len, unsigned flags,
931                             struct page **pagep, void **fsdata)
932 {
933         struct inode *inode = mapping->host;
934         int ret, needed_blocks;
935         handle_t *handle;
936         int retries = 0;
937         struct page *page;
938         pgoff_t index;
939         unsigned from, to;
940
941         trace_ext4_write_begin(inode, pos, len, flags);
942         /*
943          * Reserve one block more for addition to orphan list in case
944          * we allocate blocks but write fails for some reason
945          */
946         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
947         index = pos >> PAGE_CACHE_SHIFT;
948         from = pos & (PAGE_CACHE_SIZE - 1);
949         to = from + len;
950
951         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
952                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
953                                                     flags, pagep);
954                 if (ret < 0)
955                         return ret;
956                 if (ret == 1)
957                         return 0;
958         }
959
960         /*
961          * grab_cache_page_write_begin() can take a long time if the
962          * system is thrashing due to memory pressure, or if the page
963          * is being written back.  So grab it first before we start
964          * the transaction handle.  This also allows us to allocate
965          * the page (if needed) without using GFP_NOFS.
966          */
967 retry_grab:
968         page = grab_cache_page_write_begin(mapping, index, flags);
969         if (!page)
970                 return -ENOMEM;
971         unlock_page(page);
972
973 retry_journal:
974         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
975         if (IS_ERR(handle)) {
976                 page_cache_release(page);
977                 return PTR_ERR(handle);
978         }
979
980         lock_page(page);
981         if (page->mapping != mapping) {
982                 /* The page got truncated from under us */
983                 unlock_page(page);
984                 page_cache_release(page);
985                 ext4_journal_stop(handle);
986                 goto retry_grab;
987         }
988         /* In case writeback began while the page was unlocked */
989         wait_for_stable_page(page);
990
991         if (ext4_should_dioread_nolock(inode))
992                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
993         else
994                 ret = __block_write_begin(page, pos, len, ext4_get_block);
995
996         if (!ret && ext4_should_journal_data(inode)) {
997                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
998                                              from, to, NULL,
999                                              do_journal_get_write_access);
1000         }
1001
1002         if (ret) {
1003                 unlock_page(page);
1004                 /*
1005                  * __block_write_begin may have instantiated a few blocks
1006                  * outside i_size.  Trim these off again. Don't need
1007                  * i_size_read because we hold i_mutex.
1008                  *
1009                  * Add inode to orphan list in case we crash before
1010                  * truncate finishes
1011                  */
1012                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1013                         ext4_orphan_add(handle, inode);
1014
1015                 ext4_journal_stop(handle);
1016                 if (pos + len > inode->i_size) {
1017                         ext4_truncate_failed_write(inode);
1018                         /*
1019                          * If truncate failed early the inode might
1020                          * still be on the orphan list; we need to
1021                          * make sure the inode is removed from the
1022                          * orphan list in that case.
1023                          */
1024                         if (inode->i_nlink)
1025                                 ext4_orphan_del(NULL, inode);
1026                 }
1027
1028                 if (ret == -ENOSPC &&
1029                     ext4_should_retry_alloc(inode->i_sb, &retries))
1030                         goto retry_journal;
1031                 page_cache_release(page);
1032                 return ret;
1033         }
1034         *pagep = page;
1035         return ret;
1036 }
1037
1038 /* For write_end() in data=journal mode */
1039 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1040 {
1041         int ret;
1042         if (!buffer_mapped(bh) || buffer_freed(bh))
1043                 return 0;
1044         set_buffer_uptodate(bh);
1045         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1046         clear_buffer_meta(bh);
1047         clear_buffer_prio(bh);
1048         return ret;
1049 }
1050
1051 /*
1052  * We need to pick up the new inode size which generic_commit_write gave us
1053  * `file' can be NULL - eg, when called from page_symlink().
1054  *
1055  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1056  * buffers are managed internally.
1057  */
1058 static int ext4_write_end(struct file *file,
1059                           struct address_space *mapping,
1060                           loff_t pos, unsigned len, unsigned copied,
1061                           struct page *page, void *fsdata)
1062 {
1063         handle_t *handle = ext4_journal_current_handle();
1064         struct inode *inode = mapping->host;
1065         int ret = 0, ret2;
1066         int i_size_changed = 0;
1067
1068         trace_ext4_write_end(inode, pos, len, copied);
1069         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1070                 ret = ext4_jbd2_file_inode(handle, inode);
1071                 if (ret) {
1072                         unlock_page(page);
1073                         page_cache_release(page);
1074                         goto errout;
1075                 }
1076         }
1077
1078         if (ext4_has_inline_data(inode)) {
1079                 ret = ext4_write_inline_data_end(inode, pos, len,
1080                                                  copied, page);
1081                 if (ret < 0)
1082                         goto errout;
1083                 copied = ret;
1084         } else
1085                 copied = block_write_end(file, mapping, pos,
1086                                          len, copied, page, fsdata);
1087
1088         /*
1089          * No need to use i_size_read() here, the i_size
1090          * cannot change under us because we hole i_mutex.
1091          *
1092          * But it's important to update i_size while still holding page lock:
1093          * page writeout could otherwise come in and zero beyond i_size.
1094          */
1095         if (pos + copied > inode->i_size) {
1096                 i_size_write(inode, pos + copied);
1097                 i_size_changed = 1;
1098         }
1099
1100         if (pos + copied > EXT4_I(inode)->i_disksize) {
1101                 /* We need to mark inode dirty even if
1102                  * new_i_size is less that inode->i_size
1103                  * but greater than i_disksize. (hint delalloc)
1104                  */
1105                 ext4_update_i_disksize(inode, (pos + copied));
1106                 i_size_changed = 1;
1107         }
1108         unlock_page(page);
1109         page_cache_release(page);
1110
1111         /*
1112          * Don't mark the inode dirty under page lock. First, it unnecessarily
1113          * makes the holding time of page lock longer. Second, it forces lock
1114          * ordering of page lock and transaction start for journaling
1115          * filesystems.
1116          */
1117         if (i_size_changed)
1118                 ext4_mark_inode_dirty(handle, inode);
1119
1120         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1121                 /* if we have allocated more blocks and copied
1122                  * less. We will have blocks allocated outside
1123                  * inode->i_size. So truncate them
1124                  */
1125                 ext4_orphan_add(handle, inode);
1126 errout:
1127         ret2 = ext4_journal_stop(handle);
1128         if (!ret)
1129                 ret = ret2;
1130
1131         if (pos + len > inode->i_size) {
1132                 ext4_truncate_failed_write(inode);
1133                 /*
1134                  * If truncate failed early the inode might still be
1135                  * on the orphan list; we need to make sure the inode
1136                  * is removed from the orphan list in that case.
1137                  */
1138                 if (inode->i_nlink)
1139                         ext4_orphan_del(NULL, inode);
1140         }
1141
1142         return ret ? ret : copied;
1143 }
1144
1145 static int ext4_journalled_write_end(struct file *file,
1146                                      struct address_space *mapping,
1147                                      loff_t pos, unsigned len, unsigned copied,
1148                                      struct page *page, void *fsdata)
1149 {
1150         handle_t *handle = ext4_journal_current_handle();
1151         struct inode *inode = mapping->host;
1152         int ret = 0, ret2;
1153         int partial = 0;
1154         unsigned from, to;
1155         loff_t new_i_size;
1156
1157         trace_ext4_journalled_write_end(inode, pos, len, copied);
1158         from = pos & (PAGE_CACHE_SIZE - 1);
1159         to = from + len;
1160
1161         BUG_ON(!ext4_handle_valid(handle));
1162
1163         if (ext4_has_inline_data(inode))
1164                 copied = ext4_write_inline_data_end(inode, pos, len,
1165                                                     copied, page);
1166         else {
1167                 if (copied < len) {
1168                         if (!PageUptodate(page))
1169                                 copied = 0;
1170                         page_zero_new_buffers(page, from+copied, to);
1171                 }
1172
1173                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1174                                              to, &partial, write_end_fn);
1175                 if (!partial)
1176                         SetPageUptodate(page);
1177         }
1178         new_i_size = pos + copied;
1179         if (new_i_size > inode->i_size)
1180                 i_size_write(inode, pos+copied);
1181         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1182         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1183         if (new_i_size > EXT4_I(inode)->i_disksize) {
1184                 ext4_update_i_disksize(inode, new_i_size);
1185                 ret2 = ext4_mark_inode_dirty(handle, inode);
1186                 if (!ret)
1187                         ret = ret2;
1188         }
1189
1190         unlock_page(page);
1191         page_cache_release(page);
1192         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1193                 /* if we have allocated more blocks and copied
1194                  * less. We will have blocks allocated outside
1195                  * inode->i_size. So truncate them
1196                  */
1197                 ext4_orphan_add(handle, inode);
1198
1199         ret2 = ext4_journal_stop(handle);
1200         if (!ret)
1201                 ret = ret2;
1202         if (pos + len > inode->i_size) {
1203                 ext4_truncate_failed_write(inode);
1204                 /*
1205                  * If truncate failed early the inode might still be
1206                  * on the orphan list; we need to make sure the inode
1207                  * is removed from the orphan list in that case.
1208                  */
1209                 if (inode->i_nlink)
1210                         ext4_orphan_del(NULL, inode);
1211         }
1212
1213         return ret ? ret : copied;
1214 }
1215
1216 /*
1217  * Reserve a metadata for a single block located at lblock
1218  */
1219 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1220 {
1221         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1222         struct ext4_inode_info *ei = EXT4_I(inode);
1223         unsigned int md_needed;
1224         ext4_lblk_t save_last_lblock;
1225         int save_len;
1226
1227         /*
1228          * recalculate the amount of metadata blocks to reserve
1229          * in order to allocate nrblocks
1230          * worse case is one extent per block
1231          */
1232         spin_lock(&ei->i_block_reservation_lock);
1233         /*
1234          * ext4_calc_metadata_amount() has side effects, which we have
1235          * to be prepared undo if we fail to claim space.
1236          */
1237         save_len = ei->i_da_metadata_calc_len;
1238         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1239         md_needed = EXT4_NUM_B2C(sbi,
1240                                  ext4_calc_metadata_amount(inode, lblock));
1241         trace_ext4_da_reserve_space(inode, md_needed);
1242
1243         /*
1244          * We do still charge estimated metadata to the sb though;
1245          * we cannot afford to run out of free blocks.
1246          */
1247         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1248                 ei->i_da_metadata_calc_len = save_len;
1249                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1250                 spin_unlock(&ei->i_block_reservation_lock);
1251                 return -ENOSPC;
1252         }
1253         ei->i_reserved_meta_blocks += md_needed;
1254         spin_unlock(&ei->i_block_reservation_lock);
1255
1256         return 0;       /* success */
1257 }
1258
1259 /*
1260  * Reserve a single cluster located at lblock
1261  */
1262 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1263 {
1264         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1265         struct ext4_inode_info *ei = EXT4_I(inode);
1266         unsigned int md_needed;
1267         int ret;
1268         ext4_lblk_t save_last_lblock;
1269         int save_len;
1270
1271         /*
1272          * We will charge metadata quota at writeout time; this saves
1273          * us from metadata over-estimation, though we may go over by
1274          * a small amount in the end.  Here we just reserve for data.
1275          */
1276         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1277         if (ret)
1278                 return ret;
1279
1280         /*
1281          * recalculate the amount of metadata blocks to reserve
1282          * in order to allocate nrblocks
1283          * worse case is one extent per block
1284          */
1285         spin_lock(&ei->i_block_reservation_lock);
1286         /*
1287          * ext4_calc_metadata_amount() has side effects, which we have
1288          * to be prepared undo if we fail to claim space.
1289          */
1290         save_len = ei->i_da_metadata_calc_len;
1291         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1292         md_needed = EXT4_NUM_B2C(sbi,
1293                                  ext4_calc_metadata_amount(inode, lblock));
1294         trace_ext4_da_reserve_space(inode, md_needed);
1295
1296         /*
1297          * We do still charge estimated metadata to the sb though;
1298          * we cannot afford to run out of free blocks.
1299          */
1300         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1301                 ei->i_da_metadata_calc_len = save_len;
1302                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1303                 spin_unlock(&ei->i_block_reservation_lock);
1304                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1305                 return -ENOSPC;
1306         }
1307         ei->i_reserved_data_blocks++;
1308         ei->i_reserved_meta_blocks += md_needed;
1309         spin_unlock(&ei->i_block_reservation_lock);
1310
1311         return 0;       /* success */
1312 }
1313
1314 static void ext4_da_release_space(struct inode *inode, int to_free)
1315 {
1316         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1317         struct ext4_inode_info *ei = EXT4_I(inode);
1318
1319         if (!to_free)
1320                 return;         /* Nothing to release, exit */
1321
1322         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1323
1324         trace_ext4_da_release_space(inode, to_free);
1325         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1326                 /*
1327                  * if there aren't enough reserved blocks, then the
1328                  * counter is messed up somewhere.  Since this
1329                  * function is called from invalidate page, it's
1330                  * harmless to return without any action.
1331                  */
1332                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1333                          "ino %lu, to_free %d with only %d reserved "
1334                          "data blocks", inode->i_ino, to_free,
1335                          ei->i_reserved_data_blocks);
1336                 WARN_ON(1);
1337                 to_free = ei->i_reserved_data_blocks;
1338         }
1339         ei->i_reserved_data_blocks -= to_free;
1340
1341         if (ei->i_reserved_data_blocks == 0) {
1342                 /*
1343                  * We can release all of the reserved metadata blocks
1344                  * only when we have written all of the delayed
1345                  * allocation blocks.
1346                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1347                  * i_reserved_data_blocks, etc. refer to number of clusters.
1348                  */
1349                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1350                                    ei->i_reserved_meta_blocks);
1351                 ei->i_reserved_meta_blocks = 0;
1352                 ei->i_da_metadata_calc_len = 0;
1353         }
1354
1355         /* update fs dirty data blocks counter */
1356         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1357
1358         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1359
1360         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1361 }
1362
1363 static void ext4_da_page_release_reservation(struct page *page,
1364                                              unsigned int offset,
1365                                              unsigned int length)
1366 {
1367         int to_release = 0;
1368         struct buffer_head *head, *bh;
1369         unsigned int curr_off = 0;
1370         struct inode *inode = page->mapping->host;
1371         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1372         unsigned int stop = offset + length;
1373         int num_clusters;
1374         ext4_fsblk_t lblk;
1375
1376         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1377
1378         head = page_buffers(page);
1379         bh = head;
1380         do {
1381                 unsigned int next_off = curr_off + bh->b_size;
1382
1383                 if (next_off > stop)
1384                         break;
1385
1386                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1387                         to_release++;
1388                         clear_buffer_delay(bh);
1389                 }
1390                 curr_off = next_off;
1391         } while ((bh = bh->b_this_page) != head);
1392
1393         if (to_release) {
1394                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1395                 ext4_es_remove_extent(inode, lblk, to_release);
1396         }
1397
1398         /* If we have released all the blocks belonging to a cluster, then we
1399          * need to release the reserved space for that cluster. */
1400         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1401         while (num_clusters > 0) {
1402                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1403                         ((num_clusters - 1) << sbi->s_cluster_bits);
1404                 if (sbi->s_cluster_ratio == 1 ||
1405                     !ext4_find_delalloc_cluster(inode, lblk))
1406                         ext4_da_release_space(inode, 1);
1407
1408                 num_clusters--;
1409         }
1410 }
1411
1412 /*
1413  * Delayed allocation stuff
1414  */
1415
1416 struct mpage_da_data {
1417         struct inode *inode;
1418         struct writeback_control *wbc;
1419
1420         pgoff_t first_page;     /* The first page to write */
1421         pgoff_t next_page;      /* Current page to examine */
1422         pgoff_t last_page;      /* Last page to examine */
1423         /*
1424          * Extent to map - this can be after first_page because that can be
1425          * fully mapped. We somewhat abuse m_flags to store whether the extent
1426          * is delalloc or unwritten.
1427          */
1428         struct ext4_map_blocks map;
1429         struct ext4_io_submit io_submit;        /* IO submission data */
1430 };
1431
1432 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1433                                        bool invalidate)
1434 {
1435         int nr_pages, i;
1436         pgoff_t index, end;
1437         struct pagevec pvec;
1438         struct inode *inode = mpd->inode;
1439         struct address_space *mapping = inode->i_mapping;
1440
1441         /* This is necessary when next_page == 0. */
1442         if (mpd->first_page >= mpd->next_page)
1443                 return;
1444
1445         index = mpd->first_page;
1446         end   = mpd->next_page - 1;
1447         if (invalidate) {
1448                 ext4_lblk_t start, last;
1449                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1451                 ext4_es_remove_extent(inode, start, last - start + 1);
1452         }
1453
1454         pagevec_init(&pvec, 0);
1455         while (index <= end) {
1456                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1457                 if (nr_pages == 0)
1458                         break;
1459                 for (i = 0; i < nr_pages; i++) {
1460                         struct page *page = pvec.pages[i];
1461                         if (page->index > end)
1462                                 break;
1463                         BUG_ON(!PageLocked(page));
1464                         BUG_ON(PageWriteback(page));
1465                         if (invalidate) {
1466                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1467                                 ClearPageUptodate(page);
1468                         }
1469                         unlock_page(page);
1470                 }
1471                 index = pvec.pages[nr_pages - 1]->index + 1;
1472                 pagevec_release(&pvec);
1473         }
1474 }
1475
1476 static void ext4_print_free_blocks(struct inode *inode)
1477 {
1478         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1479         struct super_block *sb = inode->i_sb;
1480         struct ext4_inode_info *ei = EXT4_I(inode);
1481
1482         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1483                EXT4_C2B(EXT4_SB(inode->i_sb),
1484                         ext4_count_free_clusters(sb)));
1485         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1486         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1487                (long long) EXT4_C2B(EXT4_SB(sb),
1488                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1489         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1490                (long long) EXT4_C2B(EXT4_SB(sb),
1491                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1492         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1493         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1494                  ei->i_reserved_data_blocks);
1495         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1496                ei->i_reserved_meta_blocks);
1497         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1498                ei->i_allocated_meta_blocks);
1499         return;
1500 }
1501
1502 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1503 {
1504         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1505 }
1506
1507 /*
1508  * This function is grabs code from the very beginning of
1509  * ext4_map_blocks, but assumes that the caller is from delayed write
1510  * time. This function looks up the requested blocks and sets the
1511  * buffer delay bit under the protection of i_data_sem.
1512  */
1513 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1514                               struct ext4_map_blocks *map,
1515                               struct buffer_head *bh)
1516 {
1517         struct extent_status es;
1518         int retval;
1519         sector_t invalid_block = ~((sector_t) 0xffff);
1520 #ifdef ES_AGGRESSIVE_TEST
1521         struct ext4_map_blocks orig_map;
1522
1523         memcpy(&orig_map, map, sizeof(*map));
1524 #endif
1525
1526         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1527                 invalid_block = ~0;
1528
1529         map->m_flags = 0;
1530         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1531                   "logical block %lu\n", inode->i_ino, map->m_len,
1532                   (unsigned long) map->m_lblk);
1533
1534         /* Lookup extent status tree firstly */
1535         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1536                 ext4_es_lru_add(inode);
1537                 if (ext4_es_is_hole(&es)) {
1538                         retval = 0;
1539                         down_read((&EXT4_I(inode)->i_data_sem));
1540                         goto add_delayed;
1541                 }
1542
1543                 /*
1544                  * Delayed extent could be allocated by fallocate.
1545                  * So we need to check it.
1546                  */
1547                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1548                         map_bh(bh, inode->i_sb, invalid_block);
1549                         set_buffer_new(bh);
1550                         set_buffer_delay(bh);
1551                         return 0;
1552                 }
1553
1554                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1555                 retval = es.es_len - (iblock - es.es_lblk);
1556                 if (retval > map->m_len)
1557                         retval = map->m_len;
1558                 map->m_len = retval;
1559                 if (ext4_es_is_written(&es))
1560                         map->m_flags |= EXT4_MAP_MAPPED;
1561                 else if (ext4_es_is_unwritten(&es))
1562                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1563                 else
1564                         BUG_ON(1);
1565
1566 #ifdef ES_AGGRESSIVE_TEST
1567                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1568 #endif
1569                 return retval;
1570         }
1571
1572         /*
1573          * Try to see if we can get the block without requesting a new
1574          * file system block.
1575          */
1576         down_read((&EXT4_I(inode)->i_data_sem));
1577         if (ext4_has_inline_data(inode)) {
1578                 /*
1579                  * We will soon create blocks for this page, and let
1580                  * us pretend as if the blocks aren't allocated yet.
1581                  * In case of clusters, we have to handle the work
1582                  * of mapping from cluster so that the reserved space
1583                  * is calculated properly.
1584                  */
1585                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1586                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1587                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1588                 retval = 0;
1589         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1590                 retval = ext4_ext_map_blocks(NULL, inode, map,
1591                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1592         else
1593                 retval = ext4_ind_map_blocks(NULL, inode, map,
1594                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1595
1596 add_delayed:
1597         if (retval == 0) {
1598                 int ret;
1599                 /*
1600                  * XXX: __block_prepare_write() unmaps passed block,
1601                  * is it OK?
1602                  */
1603                 /*
1604                  * If the block was allocated from previously allocated cluster,
1605                  * then we don't need to reserve it again. However we still need
1606                  * to reserve metadata for every block we're going to write.
1607                  */
1608                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1609                         ret = ext4_da_reserve_space(inode, iblock);
1610                         if (ret) {
1611                                 /* not enough space to reserve */
1612                                 retval = ret;
1613                                 goto out_unlock;
1614                         }
1615                 } else {
1616                         ret = ext4_da_reserve_metadata(inode, iblock);
1617                         if (ret) {
1618                                 /* not enough space to reserve */
1619                                 retval = ret;
1620                                 goto out_unlock;
1621                         }
1622                 }
1623
1624                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1625                                             ~0, EXTENT_STATUS_DELAYED);
1626                 if (ret) {
1627                         retval = ret;
1628                         goto out_unlock;
1629                 }
1630
1631                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1632                  * and it should not appear on the bh->b_state.
1633                  */
1634                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1635
1636                 map_bh(bh, inode->i_sb, invalid_block);
1637                 set_buffer_new(bh);
1638                 set_buffer_delay(bh);
1639         } else if (retval > 0) {
1640                 int ret;
1641                 unsigned int status;
1642
1643                 if (unlikely(retval != map->m_len)) {
1644                         ext4_warning(inode->i_sb,
1645                                      "ES len assertion failed for inode "
1646                                      "%lu: retval %d != map->m_len %d",
1647                                      inode->i_ino, retval, map->m_len);
1648                         WARN_ON(1);
1649                 }
1650
1651                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1652                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1653                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1654                                             map->m_pblk, status);
1655                 if (ret != 0)
1656                         retval = ret;
1657         }
1658
1659 out_unlock:
1660         up_read((&EXT4_I(inode)->i_data_sem));
1661
1662         return retval;
1663 }
1664
1665 /*
1666  * This is a special get_blocks_t callback which is used by
1667  * ext4_da_write_begin().  It will either return mapped block or
1668  * reserve space for a single block.
1669  *
1670  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1671  * We also have b_blocknr = -1 and b_bdev initialized properly
1672  *
1673  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1674  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1675  * initialized properly.
1676  */
1677 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1678                            struct buffer_head *bh, int create)
1679 {
1680         struct ext4_map_blocks map;
1681         int ret = 0;
1682
1683         BUG_ON(create == 0);
1684         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1685
1686         map.m_lblk = iblock;
1687         map.m_len = 1;
1688
1689         /*
1690          * first, we need to know whether the block is allocated already
1691          * preallocated blocks are unmapped but should treated
1692          * the same as allocated blocks.
1693          */
1694         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1695         if (ret <= 0)
1696                 return ret;
1697
1698         map_bh(bh, inode->i_sb, map.m_pblk);
1699         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1700
1701         if (buffer_unwritten(bh)) {
1702                 /* A delayed write to unwritten bh should be marked
1703                  * new and mapped.  Mapped ensures that we don't do
1704                  * get_block multiple times when we write to the same
1705                  * offset and new ensures that we do proper zero out
1706                  * for partial write.
1707                  */
1708                 set_buffer_new(bh);
1709                 set_buffer_mapped(bh);
1710         }
1711         return 0;
1712 }
1713
1714 static int bget_one(handle_t *handle, struct buffer_head *bh)
1715 {
1716         get_bh(bh);
1717         return 0;
1718 }
1719
1720 static int bput_one(handle_t *handle, struct buffer_head *bh)
1721 {
1722         put_bh(bh);
1723         return 0;
1724 }
1725
1726 static int __ext4_journalled_writepage(struct page *page,
1727                                        unsigned int len)
1728 {
1729         struct address_space *mapping = page->mapping;
1730         struct inode *inode = mapping->host;
1731         struct buffer_head *page_bufs = NULL;
1732         handle_t *handle = NULL;
1733         int ret = 0, err = 0;
1734         int inline_data = ext4_has_inline_data(inode);
1735         struct buffer_head *inode_bh = NULL;
1736
1737         ClearPageChecked(page);
1738
1739         if (inline_data) {
1740                 BUG_ON(page->index != 0);
1741                 BUG_ON(len > ext4_get_max_inline_size(inode));
1742                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1743                 if (inode_bh == NULL)
1744                         goto out;
1745         } else {
1746                 page_bufs = page_buffers(page);
1747                 if (!page_bufs) {
1748                         BUG();
1749                         goto out;
1750                 }
1751                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1752                                        NULL, bget_one);
1753         }
1754         /* As soon as we unlock the page, it can go away, but we have
1755          * references to buffers so we are safe */
1756         unlock_page(page);
1757
1758         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1759                                     ext4_writepage_trans_blocks(inode));
1760         if (IS_ERR(handle)) {
1761                 ret = PTR_ERR(handle);
1762                 goto out;
1763         }
1764
1765         BUG_ON(!ext4_handle_valid(handle));
1766
1767         if (inline_data) {
1768                 ret = ext4_journal_get_write_access(handle, inode_bh);
1769
1770                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1771
1772         } else {
1773                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1774                                              do_journal_get_write_access);
1775
1776                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1777                                              write_end_fn);
1778         }
1779         if (ret == 0)
1780                 ret = err;
1781         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1782         err = ext4_journal_stop(handle);
1783         if (!ret)
1784                 ret = err;
1785
1786         if (!ext4_has_inline_data(inode))
1787                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1788                                        NULL, bput_one);
1789         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1790 out:
1791         brelse(inode_bh);
1792         return ret;
1793 }
1794
1795 /*
1796  * Note that we don't need to start a transaction unless we're journaling data
1797  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1798  * need to file the inode to the transaction's list in ordered mode because if
1799  * we are writing back data added by write(), the inode is already there and if
1800  * we are writing back data modified via mmap(), no one guarantees in which
1801  * transaction the data will hit the disk. In case we are journaling data, we
1802  * cannot start transaction directly because transaction start ranks above page
1803  * lock so we have to do some magic.
1804  *
1805  * This function can get called via...
1806  *   - ext4_writepages after taking page lock (have journal handle)
1807  *   - journal_submit_inode_data_buffers (no journal handle)
1808  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1809  *   - grab_page_cache when doing write_begin (have journal handle)
1810  *
1811  * We don't do any block allocation in this function. If we have page with
1812  * multiple blocks we need to write those buffer_heads that are mapped. This
1813  * is important for mmaped based write. So if we do with blocksize 1K
1814  * truncate(f, 1024);
1815  * a = mmap(f, 0, 4096);
1816  * a[0] = 'a';
1817  * truncate(f, 4096);
1818  * we have in the page first buffer_head mapped via page_mkwrite call back
1819  * but other buffer_heads would be unmapped but dirty (dirty done via the
1820  * do_wp_page). So writepage should write the first block. If we modify
1821  * the mmap area beyond 1024 we will again get a page_fault and the
1822  * page_mkwrite callback will do the block allocation and mark the
1823  * buffer_heads mapped.
1824  *
1825  * We redirty the page if we have any buffer_heads that is either delay or
1826  * unwritten in the page.
1827  *
1828  * We can get recursively called as show below.
1829  *
1830  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1831  *              ext4_writepage()
1832  *
1833  * But since we don't do any block allocation we should not deadlock.
1834  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1835  */
1836 static int ext4_writepage(struct page *page,
1837                           struct writeback_control *wbc)
1838 {
1839         int ret = 0;
1840         loff_t size;
1841         unsigned int len;
1842         struct buffer_head *page_bufs = NULL;
1843         struct inode *inode = page->mapping->host;
1844         struct ext4_io_submit io_submit;
1845
1846         trace_ext4_writepage(page);
1847         size = i_size_read(inode);
1848         if (page->index == size >> PAGE_CACHE_SHIFT)
1849                 len = size & ~PAGE_CACHE_MASK;
1850         else
1851                 len = PAGE_CACHE_SIZE;
1852
1853         page_bufs = page_buffers(page);
1854         /*
1855          * We cannot do block allocation or other extent handling in this
1856          * function. If there are buffers needing that, we have to redirty
1857          * the page. But we may reach here when we do a journal commit via
1858          * journal_submit_inode_data_buffers() and in that case we must write
1859          * allocated buffers to achieve data=ordered mode guarantees.
1860          */
1861         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1862                                    ext4_bh_delay_or_unwritten)) {
1863                 redirty_page_for_writepage(wbc, page);
1864                 if (current->flags & PF_MEMALLOC) {
1865                         /*
1866                          * For memory cleaning there's no point in writing only
1867                          * some buffers. So just bail out. Warn if we came here
1868                          * from direct reclaim.
1869                          */
1870                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1871                                                         == PF_MEMALLOC);
1872                         unlock_page(page);
1873                         return 0;
1874                 }
1875         }
1876
1877         if (PageChecked(page) && ext4_should_journal_data(inode))
1878                 /*
1879                  * It's mmapped pagecache.  Add buffers and journal it.  There
1880                  * doesn't seem much point in redirtying the page here.
1881                  */
1882                 return __ext4_journalled_writepage(page, len);
1883
1884         ext4_io_submit_init(&io_submit, wbc);
1885         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1886         if (!io_submit.io_end) {
1887                 redirty_page_for_writepage(wbc, page);
1888                 unlock_page(page);
1889                 return -ENOMEM;
1890         }
1891         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1892         ext4_io_submit(&io_submit);
1893         /* Drop io_end reference we got from init */
1894         ext4_put_io_end_defer(io_submit.io_end);
1895         return ret;
1896 }
1897
1898 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1899 {
1900         int len;
1901         loff_t size = i_size_read(mpd->inode);
1902         int err;
1903
1904         BUG_ON(page->index != mpd->first_page);
1905         if (page->index == size >> PAGE_CACHE_SHIFT)
1906                 len = size & ~PAGE_CACHE_MASK;
1907         else
1908                 len = PAGE_CACHE_SIZE;
1909         clear_page_dirty_for_io(page);
1910         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1911         if (!err)
1912                 mpd->wbc->nr_to_write--;
1913         mpd->first_page++;
1914
1915         return err;
1916 }
1917
1918 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1919
1920 /*
1921  * mballoc gives us at most this number of blocks...
1922  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1923  * The rest of mballoc seems to handle chunks up to full group size.
1924  */
1925 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1926
1927 /*
1928  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1929  *
1930  * @mpd - extent of blocks
1931  * @lblk - logical number of the block in the file
1932  * @bh - buffer head we want to add to the extent
1933  *
1934  * The function is used to collect contig. blocks in the same state. If the
1935  * buffer doesn't require mapping for writeback and we haven't started the
1936  * extent of buffers to map yet, the function returns 'true' immediately - the
1937  * caller can write the buffer right away. Otherwise the function returns true
1938  * if the block has been added to the extent, false if the block couldn't be
1939  * added.
1940  */
1941 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1942                                    struct buffer_head *bh)
1943 {
1944         struct ext4_map_blocks *map = &mpd->map;
1945
1946         /* Buffer that doesn't need mapping for writeback? */
1947         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1948             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1949                 /* So far no extent to map => we write the buffer right away */
1950                 if (map->m_len == 0)
1951                         return true;
1952                 return false;
1953         }
1954
1955         /* First block in the extent? */
1956         if (map->m_len == 0) {
1957                 map->m_lblk = lblk;
1958                 map->m_len = 1;
1959                 map->m_flags = bh->b_state & BH_FLAGS;
1960                 return true;
1961         }
1962
1963         /* Don't go larger than mballoc is willing to allocate */
1964         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1965                 return false;
1966
1967         /* Can we merge the block to our big extent? */
1968         if (lblk == map->m_lblk + map->m_len &&
1969             (bh->b_state & BH_FLAGS) == map->m_flags) {
1970                 map->m_len++;
1971                 return true;
1972         }
1973         return false;
1974 }
1975
1976 /*
1977  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1978  *
1979  * @mpd - extent of blocks for mapping
1980  * @head - the first buffer in the page
1981  * @bh - buffer we should start processing from
1982  * @lblk - logical number of the block in the file corresponding to @bh
1983  *
1984  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1985  * the page for IO if all buffers in this page were mapped and there's no
1986  * accumulated extent of buffers to map or add buffers in the page to the
1987  * extent of buffers to map. The function returns 1 if the caller can continue
1988  * by processing the next page, 0 if it should stop adding buffers to the
1989  * extent to map because we cannot extend it anymore. It can also return value
1990  * < 0 in case of error during IO submission.
1991  */
1992 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1993                                    struct buffer_head *head,
1994                                    struct buffer_head *bh,
1995                                    ext4_lblk_t lblk)
1996 {
1997         struct inode *inode = mpd->inode;
1998         int err;
1999         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2000                                                         >> inode->i_blkbits;
2001
2002         do {
2003                 BUG_ON(buffer_locked(bh));
2004
2005                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2006                         /* Found extent to map? */
2007                         if (mpd->map.m_len)
2008                                 return 0;
2009                         /* Everything mapped so far and we hit EOF */
2010                         break;
2011                 }
2012         } while (lblk++, (bh = bh->b_this_page) != head);
2013         /* So far everything mapped? Submit the page for IO. */
2014         if (mpd->map.m_len == 0) {
2015                 err = mpage_submit_page(mpd, head->b_page);
2016                 if (err < 0)
2017                         return err;
2018         }
2019         return lblk < blocks;
2020 }
2021
2022 /*
2023  * mpage_map_buffers - update buffers corresponding to changed extent and
2024  *                     submit fully mapped pages for IO
2025  *
2026  * @mpd - description of extent to map, on return next extent to map
2027  *
2028  * Scan buffers corresponding to changed extent (we expect corresponding pages
2029  * to be already locked) and update buffer state according to new extent state.
2030  * We map delalloc buffers to their physical location, clear unwritten bits,
2031  * and mark buffers as uninit when we perform writes to uninitialized extents
2032  * and do extent conversion after IO is finished. If the last page is not fully
2033  * mapped, we update @map to the next extent in the last page that needs
2034  * mapping. Otherwise we submit the page for IO.
2035  */
2036 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2037 {
2038         struct pagevec pvec;
2039         int nr_pages, i;
2040         struct inode *inode = mpd->inode;
2041         struct buffer_head *head, *bh;
2042         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2043         pgoff_t start, end;
2044         ext4_lblk_t lblk;
2045         sector_t pblock;
2046         int err;
2047
2048         start = mpd->map.m_lblk >> bpp_bits;
2049         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2050         lblk = start << bpp_bits;
2051         pblock = mpd->map.m_pblk;
2052
2053         pagevec_init(&pvec, 0);
2054         while (start <= end) {
2055                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2056                                           PAGEVEC_SIZE);
2057                 if (nr_pages == 0)
2058                         break;
2059                 for (i = 0; i < nr_pages; i++) {
2060                         struct page *page = pvec.pages[i];
2061
2062                         if (page->index > end)
2063                                 break;
2064                         /* Up to 'end' pages must be contiguous */
2065                         BUG_ON(page->index != start);
2066                         bh = head = page_buffers(page);
2067                         do {
2068                                 if (lblk < mpd->map.m_lblk)
2069                                         continue;
2070                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2071                                         /*
2072                                          * Buffer after end of mapped extent.
2073                                          * Find next buffer in the page to map.
2074                                          */
2075                                         mpd->map.m_len = 0;
2076                                         mpd->map.m_flags = 0;
2077                                         /*
2078                                          * FIXME: If dioread_nolock supports
2079                                          * blocksize < pagesize, we need to make
2080                                          * sure we add size mapped so far to
2081                                          * io_end->size as the following call
2082                                          * can submit the page for IO.
2083                                          */
2084                                         err = mpage_process_page_bufs(mpd, head,
2085                                                                       bh, lblk);
2086                                         pagevec_release(&pvec);
2087                                         if (err > 0)
2088                                                 err = 0;
2089                                         return err;
2090                                 }
2091                                 if (buffer_delay(bh)) {
2092                                         clear_buffer_delay(bh);
2093                                         bh->b_blocknr = pblock++;
2094                                 }
2095                                 clear_buffer_unwritten(bh);
2096                         } while (lblk++, (bh = bh->b_this_page) != head);
2097
2098                         /*
2099                          * FIXME: This is going to break if dioread_nolock
2100                          * supports blocksize < pagesize as we will try to
2101                          * convert potentially unmapped parts of inode.
2102                          */
2103                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2104                         /* Page fully mapped - let IO run! */
2105                         err = mpage_submit_page(mpd, page);
2106                         if (err < 0) {
2107                                 pagevec_release(&pvec);
2108                                 return err;
2109                         }
2110                         start++;
2111                 }
2112                 pagevec_release(&pvec);
2113         }
2114         /* Extent fully mapped and matches with page boundary. We are done. */
2115         mpd->map.m_len = 0;
2116         mpd->map.m_flags = 0;
2117         return 0;
2118 }
2119
2120 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2121 {
2122         struct inode *inode = mpd->inode;
2123         struct ext4_map_blocks *map = &mpd->map;
2124         int get_blocks_flags;
2125         int err;
2126
2127         trace_ext4_da_write_pages_extent(inode, map);
2128         /*
2129          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2130          * to convert an uninitialized extent to be initialized (in the case
2131          * where we have written into one or more preallocated blocks).  It is
2132          * possible that we're going to need more metadata blocks than
2133          * previously reserved. However we must not fail because we're in
2134          * writeback and there is nothing we can do about it so it might result
2135          * in data loss.  So use reserved blocks to allocate metadata if
2136          * possible.
2137          *
2138          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2139          * in question are delalloc blocks.  This affects functions in many
2140          * different parts of the allocation call path.  This flag exists
2141          * primarily because we don't want to change *many* call functions, so
2142          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2143          * once the inode's allocation semaphore is taken.
2144          */
2145         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2146                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2147         if (ext4_should_dioread_nolock(inode))
2148                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2149         if (map->m_flags & (1 << BH_Delay))
2150                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2151
2152         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2153         if (err < 0)
2154                 return err;
2155         if (map->m_flags & EXT4_MAP_UNINIT) {
2156                 if (!mpd->io_submit.io_end->handle &&
2157                     ext4_handle_valid(handle)) {
2158                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2159                         handle->h_rsv_handle = NULL;
2160                 }
2161                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2162         }
2163
2164         BUG_ON(map->m_len == 0);
2165         if (map->m_flags & EXT4_MAP_NEW) {
2166                 struct block_device *bdev = inode->i_sb->s_bdev;
2167                 int i;
2168
2169                 for (i = 0; i < map->m_len; i++)
2170                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2171         }
2172         return 0;
2173 }
2174
2175 /*
2176  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2177  *                               mpd->len and submit pages underlying it for IO
2178  *
2179  * @handle - handle for journal operations
2180  * @mpd - extent to map
2181  * @give_up_on_write - we set this to true iff there is a fatal error and there
2182  *                     is no hope of writing the data. The caller should discard
2183  *                     dirty pages to avoid infinite loops.
2184  *
2185  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2186  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2187  * them to initialized or split the described range from larger unwritten
2188  * extent. Note that we need not map all the described range since allocation
2189  * can return less blocks or the range is covered by more unwritten extents. We
2190  * cannot map more because we are limited by reserved transaction credits. On
2191  * the other hand we always make sure that the last touched page is fully
2192  * mapped so that it can be written out (and thus forward progress is
2193  * guaranteed). After mapping we submit all mapped pages for IO.
2194  */
2195 static int mpage_map_and_submit_extent(handle_t *handle,
2196                                        struct mpage_da_data *mpd,
2197                                        bool *give_up_on_write)
2198 {
2199         struct inode *inode = mpd->inode;
2200         struct ext4_map_blocks *map = &mpd->map;
2201         int err;
2202         loff_t disksize;
2203
2204         mpd->io_submit.io_end->offset =
2205                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2206         do {
2207                 err = mpage_map_one_extent(handle, mpd);
2208                 if (err < 0) {
2209                         struct super_block *sb = inode->i_sb;
2210
2211                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2212                                 goto invalidate_dirty_pages;
2213                         /*
2214                          * Let the uper layers retry transient errors.
2215                          * In the case of ENOSPC, if ext4_count_free_blocks()
2216                          * is non-zero, a commit should free up blocks.
2217                          */
2218                         if ((err == -ENOMEM) ||
2219                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2220                                 return err;
2221                         ext4_msg(sb, KERN_CRIT,
2222                                  "Delayed block allocation failed for "
2223                                  "inode %lu at logical offset %llu with"
2224                                  " max blocks %u with error %d",
2225                                  inode->i_ino,
2226                                  (unsigned long long)map->m_lblk,
2227                                  (unsigned)map->m_len, -err);
2228                         ext4_msg(sb, KERN_CRIT,
2229                                  "This should not happen!! Data will "
2230                                  "be lost\n");
2231                         if (err == -ENOSPC)
2232                                 ext4_print_free_blocks(inode);
2233                 invalidate_dirty_pages:
2234                         *give_up_on_write = true;
2235                         return err;
2236                 }
2237                 /*
2238                  * Update buffer state, submit mapped pages, and get us new
2239                  * extent to map
2240                  */
2241                 err = mpage_map_and_submit_buffers(mpd);
2242                 if (err < 0)
2243                         return err;
2244         } while (map->m_len);
2245
2246         /* Update on-disk size after IO is submitted */
2247         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2248         if (disksize > EXT4_I(inode)->i_disksize) {
2249                 int err2;
2250
2251                 ext4_wb_update_i_disksize(inode, disksize);
2252                 err2 = ext4_mark_inode_dirty(handle, inode);
2253                 if (err2)
2254                         ext4_error(inode->i_sb,
2255                                    "Failed to mark inode %lu dirty",
2256                                    inode->i_ino);
2257                 if (!err)
2258                         err = err2;
2259         }
2260         return err;
2261 }
2262
2263 /*
2264  * Calculate the total number of credits to reserve for one writepages
2265  * iteration. This is called from ext4_writepages(). We map an extent of
2266  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2267  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2268  * bpp - 1 blocks in bpp different extents.
2269  */
2270 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2271 {
2272         int bpp = ext4_journal_blocks_per_page(inode);
2273
2274         return ext4_meta_trans_blocks(inode,
2275                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2276 }
2277
2278 /*
2279  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2280  *                               and underlying extent to map
2281  *
2282  * @mpd - where to look for pages
2283  *
2284  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2285  * IO immediately. When we find a page which isn't mapped we start accumulating
2286  * extent of buffers underlying these pages that needs mapping (formed by
2287  * either delayed or unwritten buffers). We also lock the pages containing
2288  * these buffers. The extent found is returned in @mpd structure (starting at
2289  * mpd->lblk with length mpd->len blocks).
2290  *
2291  * Note that this function can attach bios to one io_end structure which are
2292  * neither logically nor physically contiguous. Although it may seem as an
2293  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2294  * case as we need to track IO to all buffers underlying a page in one io_end.
2295  */
2296 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2297 {
2298         struct address_space *mapping = mpd->inode->i_mapping;
2299         struct pagevec pvec;
2300         unsigned int nr_pages;
2301         long left = mpd->wbc->nr_to_write;
2302         pgoff_t index = mpd->first_page;
2303         pgoff_t end = mpd->last_page;
2304         int tag;
2305         int i, err = 0;
2306         int blkbits = mpd->inode->i_blkbits;
2307         ext4_lblk_t lblk;
2308         struct buffer_head *head;
2309
2310         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2311                 tag = PAGECACHE_TAG_TOWRITE;
2312         else
2313                 tag = PAGECACHE_TAG_DIRTY;
2314
2315         pagevec_init(&pvec, 0);
2316         mpd->map.m_len = 0;
2317         mpd->next_page = index;
2318         while (index <= end) {
2319                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2320                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2321                 if (nr_pages == 0)
2322                         goto out;
2323
2324                 for (i = 0; i < nr_pages; i++) {
2325                         struct page *page = pvec.pages[i];
2326
2327                         /*
2328                          * At this point, the page may be truncated or
2329                          * invalidated (changing page->mapping to NULL), or
2330                          * even swizzled back from swapper_space to tmpfs file
2331                          * mapping. However, page->index will not change
2332                          * because we have a reference on the page.
2333                          */
2334                         if (page->index > end)
2335                                 goto out;
2336
2337                         /*
2338                          * Accumulated enough dirty pages? This doesn't apply
2339                          * to WB_SYNC_ALL mode. For integrity sync we have to
2340                          * keep going because someone may be concurrently
2341                          * dirtying pages, and we might have synced a lot of
2342                          * newly appeared dirty pages, but have not synced all
2343                          * of the old dirty pages.
2344                          */
2345                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2346                                 goto out;
2347
2348                         /* If we can't merge this page, we are done. */
2349                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2350                                 goto out;
2351
2352                         lock_page(page);
2353                         /*
2354                          * If the page is no longer dirty, or its mapping no
2355                          * longer corresponds to inode we are writing (which
2356                          * means it has been truncated or invalidated), or the
2357                          * page is already under writeback and we are not doing
2358                          * a data integrity writeback, skip the page
2359                          */
2360                         if (!PageDirty(page) ||
2361                             (PageWriteback(page) &&
2362                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2363                             unlikely(page->mapping != mapping)) {
2364                                 unlock_page(page);
2365                                 continue;
2366                         }
2367
2368                         wait_on_page_writeback(page);
2369                         BUG_ON(PageWriteback(page));
2370
2371                         if (mpd->map.m_len == 0)
2372                                 mpd->first_page = page->index;
2373                         mpd->next_page = page->index + 1;
2374                         /* Add all dirty buffers to mpd */
2375                         lblk = ((ext4_lblk_t)page->index) <<
2376                                 (PAGE_CACHE_SHIFT - blkbits);
2377                         head = page_buffers(page);
2378                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2379                         if (err <= 0)
2380                                 goto out;
2381                         err = 0;
2382                         left--;
2383                 }
2384                 pagevec_release(&pvec);
2385                 cond_resched();
2386         }
2387         return 0;
2388 out:
2389         pagevec_release(&pvec);
2390         return err;
2391 }
2392
2393 static int __writepage(struct page *page, struct writeback_control *wbc,
2394                        void *data)
2395 {
2396         struct address_space *mapping = data;
2397         int ret = ext4_writepage(page, wbc);
2398         mapping_set_error(mapping, ret);
2399         return ret;
2400 }
2401
2402 static int ext4_writepages(struct address_space *mapping,
2403                            struct writeback_control *wbc)
2404 {
2405         pgoff_t writeback_index = 0;
2406         long nr_to_write = wbc->nr_to_write;
2407         int range_whole = 0;
2408         int cycled = 1;
2409         handle_t *handle = NULL;
2410         struct mpage_da_data mpd;
2411         struct inode *inode = mapping->host;
2412         int needed_blocks, rsv_blocks = 0, ret = 0;
2413         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2414         bool done;
2415         struct blk_plug plug;
2416         bool give_up_on_write = false;
2417
2418         trace_ext4_writepages(inode, wbc);
2419
2420         /*
2421          * No pages to write? This is mainly a kludge to avoid starting
2422          * a transaction for special inodes like journal inode on last iput()
2423          * because that could violate lock ordering on umount
2424          */
2425         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2426                 goto out_writepages;
2427
2428         if (ext4_should_journal_data(inode)) {
2429                 struct blk_plug plug;
2430
2431                 blk_start_plug(&plug);
2432                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2433                 blk_finish_plug(&plug);
2434                 goto out_writepages;
2435         }
2436
2437         /*
2438          * If the filesystem has aborted, it is read-only, so return
2439          * right away instead of dumping stack traces later on that
2440          * will obscure the real source of the problem.  We test
2441          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2442          * the latter could be true if the filesystem is mounted
2443          * read-only, and in that case, ext4_writepages should
2444          * *never* be called, so if that ever happens, we would want
2445          * the stack trace.
2446          */
2447         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2448                 ret = -EROFS;
2449                 goto out_writepages;
2450         }
2451
2452         if (ext4_should_dioread_nolock(inode)) {
2453                 /*
2454                  * We may need to convert up to one extent per block in
2455                  * the page and we may dirty the inode.
2456                  */
2457                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2458         }
2459
2460         /*
2461          * If we have inline data and arrive here, it means that
2462          * we will soon create the block for the 1st page, so
2463          * we'd better clear the inline data here.
2464          */
2465         if (ext4_has_inline_data(inode)) {
2466                 /* Just inode will be modified... */
2467                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2468                 if (IS_ERR(handle)) {
2469                         ret = PTR_ERR(handle);
2470                         goto out_writepages;
2471                 }
2472                 BUG_ON(ext4_test_inode_state(inode,
2473                                 EXT4_STATE_MAY_INLINE_DATA));
2474                 ext4_destroy_inline_data(handle, inode);
2475                 ext4_journal_stop(handle);
2476         }
2477
2478         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2479                 range_whole = 1;
2480
2481         if (wbc->range_cyclic) {
2482                 writeback_index = mapping->writeback_index;
2483                 if (writeback_index)
2484                         cycled = 0;
2485                 mpd.first_page = writeback_index;
2486                 mpd.last_page = -1;
2487         } else {
2488                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2489                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2490         }
2491
2492         mpd.inode = inode;
2493         mpd.wbc = wbc;
2494         ext4_io_submit_init(&mpd.io_submit, wbc);
2495 retry:
2496         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2497                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2498         done = false;
2499         blk_start_plug(&plug);
2500         while (!done && mpd.first_page <= mpd.last_page) {
2501                 /* For each extent of pages we use new io_end */
2502                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2503                 if (!mpd.io_submit.io_end) {
2504                         ret = -ENOMEM;
2505                         break;
2506                 }
2507
2508                 /*
2509                  * We have two constraints: We find one extent to map and we
2510                  * must always write out whole page (makes a difference when
2511                  * blocksize < pagesize) so that we don't block on IO when we
2512                  * try to write out the rest of the page. Journalled mode is
2513                  * not supported by delalloc.
2514                  */
2515                 BUG_ON(ext4_should_journal_data(inode));
2516                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2517
2518                 /* start a new transaction */
2519                 handle = ext4_journal_start_with_reserve(inode,
2520                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2521                 if (IS_ERR(handle)) {
2522                         ret = PTR_ERR(handle);
2523                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2524                                "%ld pages, ino %lu; err %d", __func__,
2525                                 wbc->nr_to_write, inode->i_ino, ret);
2526                         /* Release allocated io_end */
2527                         ext4_put_io_end(mpd.io_submit.io_end);
2528                         break;
2529                 }
2530
2531                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2532                 ret = mpage_prepare_extent_to_map(&mpd);
2533                 if (!ret) {
2534                         if (mpd.map.m_len)
2535                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2536                                         &give_up_on_write);
2537                         else {
2538                                 /*
2539                                  * We scanned the whole range (or exhausted
2540                                  * nr_to_write), submitted what was mapped and
2541                                  * didn't find anything needing mapping. We are
2542                                  * done.
2543                                  */
2544                                 done = true;
2545                         }
2546                 }
2547                 ext4_journal_stop(handle);
2548                 /* Submit prepared bio */
2549                 ext4_io_submit(&mpd.io_submit);
2550                 /* Unlock pages we didn't use */
2551                 mpage_release_unused_pages(&mpd, give_up_on_write);
2552                 /* Drop our io_end reference we got from init */
2553                 ext4_put_io_end(mpd.io_submit.io_end);
2554
2555                 if (ret == -ENOSPC && sbi->s_journal) {
2556                         /*
2557                          * Commit the transaction which would
2558                          * free blocks released in the transaction
2559                          * and try again
2560                          */
2561                         jbd2_journal_force_commit_nested(sbi->s_journal);
2562                         ret = 0;
2563                         continue;
2564                 }
2565                 /* Fatal error - ENOMEM, EIO... */
2566                 if (ret)
2567                         break;
2568         }
2569         blk_finish_plug(&plug);
2570         if (!ret && !cycled && wbc->nr_to_write > 0) {
2571                 cycled = 1;
2572                 mpd.last_page = writeback_index - 1;
2573                 mpd.first_page = 0;
2574                 goto retry;
2575         }
2576
2577         /* Update index */
2578         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2579                 /*
2580                  * Set the writeback_index so that range_cyclic
2581                  * mode will write it back later
2582                  */
2583                 mapping->writeback_index = mpd.first_page;
2584
2585 out_writepages:
2586         trace_ext4_writepages_result(inode, wbc, ret,
2587                                      nr_to_write - wbc->nr_to_write);
2588         return ret;
2589 }
2590
2591 static int ext4_nonda_switch(struct super_block *sb)
2592 {
2593         s64 free_clusters, dirty_clusters;
2594         struct ext4_sb_info *sbi = EXT4_SB(sb);
2595
2596         /*
2597          * switch to non delalloc mode if we are running low
2598          * on free block. The free block accounting via percpu
2599          * counters can get slightly wrong with percpu_counter_batch getting
2600          * accumulated on each CPU without updating global counters
2601          * Delalloc need an accurate free block accounting. So switch
2602          * to non delalloc when we are near to error range.
2603          */
2604         free_clusters =
2605                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2606         dirty_clusters =
2607                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2608         /*
2609          * Start pushing delalloc when 1/2 of free blocks are dirty.
2610          */
2611         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2612                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2613
2614         if (2 * free_clusters < 3 * dirty_clusters ||
2615             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2616                 /*
2617                  * free block count is less than 150% of dirty blocks
2618                  * or free blocks is less than watermark
2619                  */
2620                 return 1;
2621         }
2622         return 0;
2623 }
2624
2625 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2626                                loff_t pos, unsigned len, unsigned flags,
2627                                struct page **pagep, void **fsdata)
2628 {
2629         int ret, retries = 0;
2630         struct page *page;
2631         pgoff_t index;
2632         struct inode *inode = mapping->host;
2633         handle_t *handle;
2634
2635         index = pos >> PAGE_CACHE_SHIFT;
2636
2637         if (ext4_nonda_switch(inode->i_sb)) {
2638                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2639                 return ext4_write_begin(file, mapping, pos,
2640                                         len, flags, pagep, fsdata);
2641         }
2642         *fsdata = (void *)0;
2643         trace_ext4_da_write_begin(inode, pos, len, flags);
2644
2645         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2646                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2647                                                       pos, len, flags,
2648                                                       pagep, fsdata);
2649                 if (ret < 0)
2650                         return ret;
2651                 if (ret == 1)
2652                         return 0;
2653         }
2654
2655         /*
2656          * grab_cache_page_write_begin() can take a long time if the
2657          * system is thrashing due to memory pressure, or if the page
2658          * is being written back.  So grab it first before we start
2659          * the transaction handle.  This also allows us to allocate
2660          * the page (if needed) without using GFP_NOFS.
2661          */
2662 retry_grab:
2663         page = grab_cache_page_write_begin(mapping, index, flags);
2664         if (!page)
2665                 return -ENOMEM;
2666         unlock_page(page);
2667
2668         /*
2669          * With delayed allocation, we don't log the i_disksize update
2670          * if there is delayed block allocation. But we still need
2671          * to journalling the i_disksize update if writes to the end
2672          * of file which has an already mapped buffer.
2673          */
2674 retry_journal:
2675         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2676         if (IS_ERR(handle)) {
2677                 page_cache_release(page);
2678                 return PTR_ERR(handle);
2679         }
2680
2681         lock_page(page);
2682         if (page->mapping != mapping) {
2683                 /* The page got truncated from under us */
2684                 unlock_page(page);
2685                 page_cache_release(page);
2686                 ext4_journal_stop(handle);
2687                 goto retry_grab;
2688         }
2689         /* In case writeback began while the page was unlocked */
2690         wait_for_stable_page(page);
2691
2692         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2693         if (ret < 0) {
2694                 unlock_page(page);
2695                 ext4_journal_stop(handle);
2696                 /*
2697                  * block_write_begin may have instantiated a few blocks
2698                  * outside i_size.  Trim these off again. Don't need
2699                  * i_size_read because we hold i_mutex.
2700                  */
2701                 if (pos + len > inode->i_size)
2702                         ext4_truncate_failed_write(inode);
2703
2704                 if (ret == -ENOSPC &&
2705                     ext4_should_retry_alloc(inode->i_sb, &retries))
2706                         goto retry_journal;
2707
2708                 page_cache_release(page);
2709                 return ret;
2710         }
2711
2712         *pagep = page;
2713         return ret;
2714 }
2715
2716 /*
2717  * Check if we should update i_disksize
2718  * when write to the end of file but not require block allocation
2719  */
2720 static int ext4_da_should_update_i_disksize(struct page *page,
2721                                             unsigned long offset)
2722 {
2723         struct buffer_head *bh;
2724         struct inode *inode = page->mapping->host;
2725         unsigned int idx;
2726         int i;
2727
2728         bh = page_buffers(page);
2729         idx = offset >> inode->i_blkbits;
2730
2731         for (i = 0; i < idx; i++)
2732                 bh = bh->b_this_page;
2733
2734         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2735                 return 0;
2736         return 1;
2737 }
2738
2739 static int ext4_da_write_end(struct file *file,
2740                              struct address_space *mapping,
2741                              loff_t pos, unsigned len, unsigned copied,
2742                              struct page *page, void *fsdata)
2743 {
2744         struct inode *inode = mapping->host;
2745         int ret = 0, ret2;
2746         handle_t *handle = ext4_journal_current_handle();
2747         loff_t new_i_size;
2748         unsigned long start, end;
2749         int write_mode = (int)(unsigned long)fsdata;
2750
2751         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2752                 return ext4_write_end(file, mapping, pos,
2753                                       len, copied, page, fsdata);
2754
2755         trace_ext4_da_write_end(inode, pos, len, copied);
2756         start = pos & (PAGE_CACHE_SIZE - 1);
2757         end = start + copied - 1;
2758
2759         /*
2760          * generic_write_end() will run mark_inode_dirty() if i_size
2761          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2762          * into that.
2763          */
2764         new_i_size = pos + copied;
2765         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2766                 if (ext4_has_inline_data(inode) ||
2767                     ext4_da_should_update_i_disksize(page, end)) {
2768                         down_write(&EXT4_I(inode)->i_data_sem);
2769                         if (new_i_size > EXT4_I(inode)->i_disksize)
2770                                 EXT4_I(inode)->i_disksize = new_i_size;
2771                         up_write(&EXT4_I(inode)->i_data_sem);
2772                         /* We need to mark inode dirty even if
2773                          * new_i_size is less that inode->i_size
2774                          * bu greater than i_disksize.(hint delalloc)
2775                          */
2776                         ext4_mark_inode_dirty(handle, inode);
2777                 }
2778         }
2779
2780         if (write_mode != CONVERT_INLINE_DATA &&
2781             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2782             ext4_has_inline_data(inode))
2783                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2784                                                      page);
2785         else
2786                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2787                                                         page, fsdata);
2788
2789         copied = ret2;
2790         if (ret2 < 0)
2791                 ret = ret2;
2792         ret2 = ext4_journal_stop(handle);
2793         if (!ret)
2794                 ret = ret2;
2795
2796         return ret ? ret : copied;
2797 }
2798
2799 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2800                                    unsigned int length)
2801 {
2802         /*
2803          * Drop reserved blocks
2804          */
2805         BUG_ON(!PageLocked(page));
2806         if (!page_has_buffers(page))
2807                 goto out;
2808
2809         ext4_da_page_release_reservation(page, offset, length);
2810
2811 out:
2812         ext4_invalidatepage(page, offset, length);
2813
2814         return;
2815 }
2816
2817 /*
2818  * Force all delayed allocation blocks to be allocated for a given inode.
2819  */
2820 int ext4_alloc_da_blocks(struct inode *inode)
2821 {
2822         trace_ext4_alloc_da_blocks(inode);
2823
2824         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2825             !EXT4_I(inode)->i_reserved_meta_blocks)
2826                 return 0;
2827
2828         /*
2829          * We do something simple for now.  The filemap_flush() will
2830          * also start triggering a write of the data blocks, which is
2831          * not strictly speaking necessary (and for users of
2832          * laptop_mode, not even desirable).  However, to do otherwise
2833          * would require replicating code paths in:
2834          *
2835          * ext4_writepages() ->
2836          *    write_cache_pages() ---> (via passed in callback function)
2837          *        __mpage_da_writepage() -->
2838          *           mpage_add_bh_to_extent()
2839          *           mpage_da_map_blocks()
2840          *
2841          * The problem is that write_cache_pages(), located in
2842          * mm/page-writeback.c, marks pages clean in preparation for
2843          * doing I/O, which is not desirable if we're not planning on
2844          * doing I/O at all.
2845          *
2846          * We could call write_cache_pages(), and then redirty all of
2847          * the pages by calling redirty_page_for_writepage() but that
2848          * would be ugly in the extreme.  So instead we would need to
2849          * replicate parts of the code in the above functions,
2850          * simplifying them because we wouldn't actually intend to
2851          * write out the pages, but rather only collect contiguous
2852          * logical block extents, call the multi-block allocator, and
2853          * then update the buffer heads with the block allocations.
2854          *
2855          * For now, though, we'll cheat by calling filemap_flush(),
2856          * which will map the blocks, and start the I/O, but not
2857          * actually wait for the I/O to complete.
2858          */
2859         return filemap_flush(inode->i_mapping);
2860 }
2861
2862 /*
2863  * bmap() is special.  It gets used by applications such as lilo and by
2864  * the swapper to find the on-disk block of a specific piece of data.
2865  *
2866  * Naturally, this is dangerous if the block concerned is still in the
2867  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2868  * filesystem and enables swap, then they may get a nasty shock when the
2869  * data getting swapped to that swapfile suddenly gets overwritten by
2870  * the original zero's written out previously to the journal and
2871  * awaiting writeback in the kernel's buffer cache.
2872  *
2873  * So, if we see any bmap calls here on a modified, data-journaled file,
2874  * take extra steps to flush any blocks which might be in the cache.
2875  */
2876 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2877 {
2878         struct inode *inode = mapping->host;
2879         journal_t *journal;
2880         int err;
2881
2882         /*
2883          * We can get here for an inline file via the FIBMAP ioctl
2884          */
2885         if (ext4_has_inline_data(inode))
2886                 return 0;
2887
2888         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2889                         test_opt(inode->i_sb, DELALLOC)) {
2890                 /*
2891                  * With delalloc we want to sync the file
2892                  * so that we can make sure we allocate
2893                  * blocks for file
2894                  */
2895                 filemap_write_and_wait(mapping);
2896         }
2897
2898         if (EXT4_JOURNAL(inode) &&
2899             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2900                 /*
2901                  * This is a REALLY heavyweight approach, but the use of
2902                  * bmap on dirty files is expected to be extremely rare:
2903                  * only if we run lilo or swapon on a freshly made file
2904                  * do we expect this to happen.
2905                  *
2906                  * (bmap requires CAP_SYS_RAWIO so this does not
2907                  * represent an unprivileged user DOS attack --- we'd be
2908                  * in trouble if mortal users could trigger this path at
2909                  * will.)
2910                  *
2911                  * NB. EXT4_STATE_JDATA is not set on files other than
2912                  * regular files.  If somebody wants to bmap a directory
2913                  * or symlink and gets confused because the buffer
2914                  * hasn't yet been flushed to disk, they deserve
2915                  * everything they get.
2916                  */
2917
2918                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2919                 journal = EXT4_JOURNAL(inode);
2920                 jbd2_journal_lock_updates(journal);
2921                 err = jbd2_journal_flush(journal);
2922                 jbd2_journal_unlock_updates(journal);
2923
2924                 if (err)
2925                         return 0;
2926         }
2927
2928         return generic_block_bmap(mapping, block, ext4_get_block);
2929 }
2930
2931 static int ext4_readpage(struct file *file, struct page *page)
2932 {
2933         int ret = -EAGAIN;
2934         struct inode *inode = page->mapping->host;
2935
2936         trace_ext4_readpage(page);
2937
2938         if (ext4_has_inline_data(inode))
2939                 ret = ext4_readpage_inline(inode, page);
2940
2941         if (ret == -EAGAIN)
2942                 return mpage_readpage(page, ext4_get_block);
2943
2944         return ret;
2945 }
2946
2947 static int
2948 ext4_readpages(struct file *file, struct address_space *mapping,
2949                 struct list_head *pages, unsigned nr_pages)
2950 {
2951         struct inode *inode = mapping->host;
2952
2953         /* If the file has inline data, no need to do readpages. */
2954         if (ext4_has_inline_data(inode))
2955                 return 0;
2956
2957         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2958 }
2959
2960 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2961                                 unsigned int length)
2962 {
2963         trace_ext4_invalidatepage(page, offset, length);
2964
2965         /* No journalling happens on data buffers when this function is used */
2966         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2967
2968         block_invalidatepage(page, offset, length);
2969 }
2970
2971 static int __ext4_journalled_invalidatepage(struct page *page,
2972                                             unsigned int offset,
2973                                             unsigned int length)
2974 {
2975         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2976
2977         trace_ext4_journalled_invalidatepage(page, offset, length);
2978
2979         /*
2980          * If it's a full truncate we just forget about the pending dirtying
2981          */
2982         if (offset == 0 && length == PAGE_CACHE_SIZE)
2983                 ClearPageChecked(page);
2984
2985         return jbd2_journal_invalidatepage(journal, page, offset, length);
2986 }
2987
2988 /* Wrapper for aops... */
2989 static void ext4_journalled_invalidatepage(struct page *page,
2990                                            unsigned int offset,
2991                                            unsigned int length)
2992 {
2993         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2994 }
2995
2996 static int ext4_releasepage(struct page *page, gfp_t wait)
2997 {
2998         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2999
3000         trace_ext4_releasepage(page);
3001
3002         /* Page has dirty journalled data -> cannot release */
3003         if (PageChecked(page))
3004                 return 0;
3005         if (journal)
3006                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3007         else
3008                 return try_to_free_buffers(page);
3009 }
3010
3011 /*
3012  * ext4_get_block used when preparing for a DIO write or buffer write.
3013  * We allocate an uinitialized extent if blocks haven't been allocated.
3014  * The extent will be converted to initialized after the IO is complete.
3015  */
3016 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3017                    struct buffer_head *bh_result, int create)
3018 {
3019         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3020                    inode->i_ino, create);
3021         return _ext4_get_block(inode, iblock, bh_result,
3022                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3023 }
3024
3025 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3026                    struct buffer_head *bh_result, int create)
3027 {
3028         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3029                    inode->i_ino, create);
3030         return _ext4_get_block(inode, iblock, bh_result,
3031                                EXT4_GET_BLOCKS_NO_LOCK);
3032 }
3033
3034 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3035                             ssize_t size, void *private)
3036 {
3037         ext4_io_end_t *io_end = iocb->private;
3038
3039         /* if not async direct IO just return */
3040         if (!io_end)
3041                 return;
3042
3043         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3044                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3045                   iocb->private, io_end->inode->i_ino, iocb, offset,
3046                   size);
3047
3048         iocb->private = NULL;
3049         io_end->offset = offset;
3050         io_end->size = size;
3051         ext4_put_io_end(io_end);
3052 }
3053
3054 /*
3055  * For ext4 extent files, ext4 will do direct-io write to holes,
3056  * preallocated extents, and those write extend the file, no need to
3057  * fall back to buffered IO.
3058  *
3059  * For holes, we fallocate those blocks, mark them as uninitialized
3060  * If those blocks were preallocated, we mark sure they are split, but
3061  * still keep the range to write as uninitialized.
3062  *
3063  * The unwritten extents will be converted to written when DIO is completed.
3064  * For async direct IO, since the IO may still pending when return, we
3065  * set up an end_io call back function, which will do the conversion
3066  * when async direct IO completed.
3067  *
3068  * If the O_DIRECT write will extend the file then add this inode to the
3069  * orphan list.  So recovery will truncate it back to the original size
3070  * if the machine crashes during the write.
3071  *
3072  */
3073 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3074                               const struct iovec *iov, loff_t offset,
3075                               unsigned long nr_segs)
3076 {
3077         struct file *file = iocb->ki_filp;
3078         struct inode *inode = file->f_mapping->host;
3079         ssize_t ret;
3080         size_t count = iov_length(iov, nr_segs);
3081         int overwrite = 0;
3082         get_block_t *get_block_func = NULL;
3083         int dio_flags = 0;
3084         loff_t final_size = offset + count;
3085         ext4_io_end_t *io_end = NULL;
3086
3087         /* Use the old path for reads and writes beyond i_size. */
3088         if (rw != WRITE || final_size > inode->i_size)
3089                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3090
3091         BUG_ON(iocb->private == NULL);
3092
3093         /*
3094          * Make all waiters for direct IO properly wait also for extent
3095          * conversion. This also disallows race between truncate() and
3096          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3097          */
3098         if (rw == WRITE)
3099                 atomic_inc(&inode->i_dio_count);
3100
3101         /* If we do a overwrite dio, i_mutex locking can be released */
3102         overwrite = *((int *)iocb->private);
3103
3104         if (overwrite) {
3105                 down_read(&EXT4_I(inode)->i_data_sem);
3106                 mutex_unlock(&inode->i_mutex);
3107         }
3108
3109         /*
3110          * We could direct write to holes and fallocate.
3111          *
3112          * Allocated blocks to fill the hole are marked as
3113          * uninitialized to prevent parallel buffered read to expose
3114          * the stale data before DIO complete the data IO.
3115          *
3116          * As to previously fallocated extents, ext4 get_block will
3117          * just simply mark the buffer mapped but still keep the
3118          * extents uninitialized.
3119          *
3120          * For non AIO case, we will convert those unwritten extents
3121          * to written after return back from blockdev_direct_IO.
3122          *
3123          * For async DIO, the conversion needs to be deferred when the
3124          * IO is completed. The ext4 end_io callback function will be
3125          * called to take care of the conversion work.  Here for async
3126          * case, we allocate an io_end structure to hook to the iocb.
3127          */
3128         iocb->private = NULL;
3129         ext4_inode_aio_set(inode, NULL);
3130         if (!is_sync_kiocb(iocb)) {
3131                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3132                 if (!io_end) {
3133                         ret = -ENOMEM;
3134                         goto retake_lock;
3135                 }
3136                 /*
3137                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3138                  */
3139                 iocb->private = ext4_get_io_end(io_end);
3140                 /*
3141                  * we save the io structure for current async direct
3142                  * IO, so that later ext4_map_blocks() could flag the
3143                  * io structure whether there is a unwritten extents
3144                  * needs to be converted when IO is completed.
3145                  */
3146                 ext4_inode_aio_set(inode, io_end);
3147         }
3148
3149         if (overwrite) {
3150                 get_block_func = ext4_get_block_write_nolock;
3151         } else {
3152                 get_block_func = ext4_get_block_write;
3153                 dio_flags = DIO_LOCKING;
3154         }
3155         ret = __blockdev_direct_IO(rw, iocb, inode,
3156                                    inode->i_sb->s_bdev, iov,
3157                                    offset, nr_segs,
3158                                    get_block_func,
3159                                    ext4_end_io_dio,
3160                                    NULL,
3161                                    dio_flags);
3162
3163         /*
3164          * Put our reference to io_end. This can free the io_end structure e.g.
3165          * in sync IO case or in case of error. It can even perform extent
3166          * conversion if all bios we submitted finished before we got here.
3167          * Note that in that case iocb->private can be already set to NULL
3168          * here.
3169          */
3170         if (io_end) {
3171                 ext4_inode_aio_set(inode, NULL);
3172                 ext4_put_io_end(io_end);
3173                 /*
3174                  * When no IO was submitted ext4_end_io_dio() was not
3175                  * called so we have to put iocb's reference.
3176                  */
3177                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3178                         WARN_ON(iocb->private != io_end);
3179                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3180                         ext4_put_io_end(io_end);
3181                         iocb->private = NULL;
3182                 }
3183         }
3184         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3185                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3186                 int err;
3187                 /*
3188                  * for non AIO case, since the IO is already
3189                  * completed, we could do the conversion right here
3190                  */
3191                 err = ext4_convert_unwritten_extents(NULL, inode,
3192                                                      offset, ret);
3193                 if (err < 0)
3194                         ret = err;
3195                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3196         }
3197
3198 retake_lock:
3199         if (rw == WRITE)
3200                 inode_dio_done(inode);
3201         /* take i_mutex locking again if we do a ovewrite dio */
3202         if (overwrite) {
3203                 up_read(&EXT4_I(inode)->i_data_sem);
3204                 mutex_lock(&inode->i_mutex);
3205         }
3206
3207         return ret;
3208 }
3209
3210 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3211                               const struct iovec *iov, loff_t offset,
3212                               unsigned long nr_segs)
3213 {
3214         struct file *file = iocb->ki_filp;
3215         struct inode *inode = file->f_mapping->host;
3216         ssize_t ret;
3217
3218         /*
3219          * If we are doing data journalling we don't support O_DIRECT
3220          */
3221         if (ext4_should_journal_data(inode))
3222                 return 0;
3223
3224         /* Let buffer I/O handle the inline data case. */
3225         if (ext4_has_inline_data(inode))
3226                 return 0;
3227
3228         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3229         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3230                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3231         else
3232                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3233         trace_ext4_direct_IO_exit(inode, offset,
3234                                 iov_length(iov, nr_segs), rw, ret);
3235         return ret;
3236 }
3237
3238 /*
3239  * Pages can be marked dirty completely asynchronously from ext4's journalling
3240  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3241  * much here because ->set_page_dirty is called under VFS locks.  The page is
3242  * not necessarily locked.
3243  *
3244  * We cannot just dirty the page and leave attached buffers clean, because the
3245  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3246  * or jbddirty because all the journalling code will explode.
3247  *
3248  * So what we do is to mark the page "pending dirty" and next time writepage
3249  * is called, propagate that into the buffers appropriately.
3250  */
3251 static int ext4_journalled_set_page_dirty(struct page *page)
3252 {
3253         SetPageChecked(page);
3254         return __set_page_dirty_nobuffers(page);
3255 }
3256
3257 static const struct address_space_operations ext4_aops = {
3258         .readpage               = ext4_readpage,
3259         .readpages              = ext4_readpages,
3260         .writepage              = ext4_writepage,
3261         .writepages             = ext4_writepages,
3262         .write_begin            = ext4_write_begin,
3263         .write_end              = ext4_write_end,
3264         .bmap                   = ext4_bmap,
3265         .invalidatepage         = ext4_invalidatepage,
3266         .releasepage            = ext4_releasepage,
3267         .direct_IO              = ext4_direct_IO,
3268         .migratepage            = buffer_migrate_page,
3269         .is_partially_uptodate  = block_is_partially_uptodate,
3270         .error_remove_page      = generic_error_remove_page,
3271 };
3272
3273 static const struct address_space_operations ext4_journalled_aops = {
3274         .readpage               = ext4_readpage,
3275         .readpages              = ext4_readpages,
3276         .writepage              = ext4_writepage,
3277         .writepages             = ext4_writepages,
3278         .write_begin            = ext4_write_begin,
3279         .write_end              = ext4_journalled_write_end,
3280         .set_page_dirty         = ext4_journalled_set_page_dirty,
3281         .bmap                   = ext4_bmap,
3282         .invalidatepage         = ext4_journalled_invalidatepage,
3283         .releasepage            = ext4_releasepage,
3284         .direct_IO              = ext4_direct_IO,
3285         .is_partially_uptodate  = block_is_partially_uptodate,
3286         .error_remove_page      = generic_error_remove_page,
3287 };
3288
3289 static const struct address_space_operations ext4_da_aops = {
3290         .readpage               = ext4_readpage,
3291         .readpages              = ext4_readpages,
3292         .writepage              = ext4_writepage,
3293         .writepages             = ext4_writepages,
3294         .write_begin            = ext4_da_write_begin,
3295         .write_end              = ext4_da_write_end,
3296         .bmap                   = ext4_bmap,
3297         .invalidatepage         = ext4_da_invalidatepage,
3298         .releasepage            = ext4_releasepage,
3299         .direct_IO              = ext4_direct_IO,
3300         .migratepage            = buffer_migrate_page,
3301         .is_partially_uptodate  = block_is_partially_uptodate,
3302         .error_remove_page      = generic_error_remove_page,
3303 };
3304
3305 void ext4_set_aops(struct inode *inode)
3306 {
3307         switch (ext4_inode_journal_mode(inode)) {
3308         case EXT4_INODE_ORDERED_DATA_MODE:
3309                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3310                 break;
3311         case EXT4_INODE_WRITEBACK_DATA_MODE:
3312                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3313                 break;
3314         case EXT4_INODE_JOURNAL_DATA_MODE:
3315                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3316                 return;
3317         default:
3318                 BUG();
3319         }
3320         if (test_opt(inode->i_sb, DELALLOC))
3321                 inode->i_mapping->a_ops = &ext4_da_aops;
3322         else
3323                 inode->i_mapping->a_ops = &ext4_aops;
3324 }
3325
3326 /*
3327  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3328  * starting from file offset 'from'.  The range to be zero'd must
3329  * be contained with in one block.  If the specified range exceeds
3330  * the end of the block it will be shortened to end of the block
3331  * that cooresponds to 'from'
3332  */
3333 static int ext4_block_zero_page_range(handle_t *handle,
3334                 struct address_space *mapping, loff_t from, loff_t length)
3335 {
3336         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3337         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3338         unsigned blocksize, max, pos;
3339         ext4_lblk_t iblock;
3340         struct inode *inode = mapping->host;
3341         struct buffer_head *bh;
3342         struct page *page;
3343         int err = 0;
3344
3345         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3346                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3347         if (!page)
3348                 return -ENOMEM;
3349
3350         blocksize = inode->i_sb->s_blocksize;
3351         max = blocksize - (offset & (blocksize - 1));
3352
3353         /*
3354          * correct length if it does not fall between
3355          * 'from' and the end of the block
3356          */
3357         if (length > max || length < 0)
3358                 length = max;
3359
3360         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3361
3362         if (!page_has_buffers(page))
3363                 create_empty_buffers(page, blocksize, 0);
3364
3365         /* Find the buffer that contains "offset" */
3366         bh = page_buffers(page);
3367         pos = blocksize;
3368         while (offset >= pos) {
3369                 bh = bh->b_this_page;
3370                 iblock++;
3371                 pos += blocksize;
3372         }
3373         if (buffer_freed(bh)) {
3374                 BUFFER_TRACE(bh, "freed: skip");
3375                 goto unlock;
3376         }
3377         if (!buffer_mapped(bh)) {
3378                 BUFFER_TRACE(bh, "unmapped");
3379                 ext4_get_block(inode, iblock, bh, 0);
3380                 /* unmapped? It's a hole - nothing to do */
3381                 if (!buffer_mapped(bh)) {
3382                         BUFFER_TRACE(bh, "still unmapped");
3383                         goto unlock;
3384                 }
3385         }
3386
3387         /* Ok, it's mapped. Make sure it's up-to-date */
3388         if (PageUptodate(page))
3389                 set_buffer_uptodate(bh);
3390
3391         if (!buffer_uptodate(bh)) {
3392                 err = -EIO;
3393                 ll_rw_block(READ, 1, &bh);
3394                 wait_on_buffer(bh);
3395                 /* Uhhuh. Read error. Complain and punt. */
3396                 if (!buffer_uptodate(bh))
3397                         goto unlock;
3398         }
3399         if (ext4_should_journal_data(inode)) {
3400                 BUFFER_TRACE(bh, "get write access");
3401                 err = ext4_journal_get_write_access(handle, bh);
3402                 if (err)
3403                         goto unlock;
3404         }
3405         zero_user(page, offset, length);
3406         BUFFER_TRACE(bh, "zeroed end of block");
3407
3408         if (ext4_should_journal_data(inode)) {
3409                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3410         } else {
3411                 err = 0;
3412                 mark_buffer_dirty(bh);
3413                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3414                         err = ext4_jbd2_file_inode(handle, inode);
3415         }
3416
3417 unlock:
3418         unlock_page(page);
3419         page_cache_release(page);
3420         return err;
3421 }
3422
3423 /*
3424  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3425  * up to the end of the block which corresponds to `from'.
3426  * This required during truncate. We need to physically zero the tail end
3427  * of that block so it doesn't yield old data if the file is later grown.
3428  */
3429 int ext4_block_truncate_page(handle_t *handle,
3430                 struct address_space *mapping, loff_t from)
3431 {
3432         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3433         unsigned length;
3434         unsigned blocksize;
3435         struct inode *inode = mapping->host;
3436
3437         blocksize = inode->i_sb->s_blocksize;
3438         length = blocksize - (offset & (blocksize - 1));
3439
3440         return ext4_block_zero_page_range(handle, mapping, from, length);
3441 }
3442
3443 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3444                              loff_t lstart, loff_t length)
3445 {
3446         struct super_block *sb = inode->i_sb;
3447         struct address_space *mapping = inode->i_mapping;
3448         unsigned partial_start, partial_end;
3449         ext4_fsblk_t start, end;
3450         loff_t byte_end = (lstart + length - 1);
3451         int err = 0;
3452
3453         partial_start = lstart & (sb->s_blocksize - 1);
3454         partial_end = byte_end & (sb->s_blocksize - 1);
3455
3456         start = lstart >> sb->s_blocksize_bits;
3457         end = byte_end >> sb->s_blocksize_bits;
3458
3459         /* Handle partial zero within the single block */
3460         if (start == end &&
3461             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3462                 err = ext4_block_zero_page_range(handle, mapping,
3463                                                  lstart, length);
3464                 return err;
3465         }
3466         /* Handle partial zero out on the start of the range */
3467         if (partial_start) {
3468                 err = ext4_block_zero_page_range(handle, mapping,
3469                                                  lstart, sb->s_blocksize);
3470                 if (err)
3471                         return err;
3472         }
3473         /* Handle partial zero out on the end of the range */
3474         if (partial_end != sb->s_blocksize - 1)
3475                 err = ext4_block_zero_page_range(handle, mapping,
3476                                                  byte_end - partial_end,
3477                                                  partial_end + 1);
3478         return err;
3479 }
3480
3481 int ext4_can_truncate(struct inode *inode)
3482 {
3483         if (S_ISREG(inode->i_mode))
3484                 return 1;
3485         if (S_ISDIR(inode->i_mode))
3486                 return 1;
3487         if (S_ISLNK(inode->i_mode))
3488                 return !ext4_inode_is_fast_symlink(inode);
3489         return 0;
3490 }
3491
3492 /*
3493  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3494  * associated with the given offset and length
3495  *
3496  * @inode:  File inode
3497  * @offset: The offset where the hole will begin
3498  * @len:    The length of the hole
3499  *
3500  * Returns: 0 on success or negative on failure
3501  */
3502
3503 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3504 {
3505         struct super_block *sb = inode->i_sb;
3506         ext4_lblk_t first_block, stop_block;
3507         struct address_space *mapping = inode->i_mapping;
3508         loff_t first_block_offset, last_block_offset;
3509         handle_t *handle;
3510         unsigned int credits;
3511         int ret = 0;
3512
3513         if (!S_ISREG(inode->i_mode))
3514                 return -EOPNOTSUPP;
3515
3516         trace_ext4_punch_hole(inode, offset, length, 0);
3517
3518         /*
3519          * Write out all dirty pages to avoid race conditions
3520          * Then release them.
3521          */
3522         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3523                 ret = filemap_write_and_wait_range(mapping, offset,
3524                                                    offset + length - 1);
3525                 if (ret)
3526                         return ret;
3527         }
3528
3529         mutex_lock(&inode->i_mutex);
3530         /* It's not possible punch hole on append only file */
3531         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3532                 ret = -EPERM;
3533                 goto out_mutex;
3534         }
3535         if (IS_SWAPFILE(inode)) {
3536                 ret = -ETXTBSY;
3537                 goto out_mutex;
3538         }
3539
3540         /* No need to punch hole beyond i_size */
3541         if (offset >= inode->i_size)
3542                 goto out_mutex;
3543
3544         /*
3545          * If the hole extends beyond i_size, set the hole
3546          * to end after the page that contains i_size
3547          */
3548         if (offset + length > inode->i_size) {
3549                 length = inode->i_size +
3550                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3551                    offset;
3552         }
3553
3554         if (offset & (sb->s_blocksize - 1) ||
3555             (offset + length) & (sb->s_blocksize - 1)) {
3556                 /*
3557                  * Attach jinode to inode for jbd2 if we do any zeroing of
3558                  * partial block
3559                  */
3560                 ret = ext4_inode_attach_jinode(inode);
3561                 if (ret < 0)
3562                         goto out_mutex;
3563
3564         }
3565
3566         first_block_offset = round_up(offset, sb->s_blocksize);
3567         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3568
3569         /* Now release the pages and zero block aligned part of pages*/
3570         if (last_block_offset > first_block_offset)
3571                 truncate_pagecache_range(inode, first_block_offset,
3572                                          last_block_offset);
3573
3574         /* Wait all existing dio workers, newcomers will block on i_mutex */
3575         ext4_inode_block_unlocked_dio(inode);
3576         inode_dio_wait(inode);
3577
3578         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3579                 credits = ext4_writepage_trans_blocks(inode);
3580         else
3581                 credits = ext4_blocks_for_truncate(inode);
3582         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3583         if (IS_ERR(handle)) {
3584                 ret = PTR_ERR(handle);
3585                 ext4_std_error(sb, ret);
3586                 goto out_dio;
3587         }
3588
3589         ret = ext4_zero_partial_blocks(handle, inode, offset,
3590                                        length);
3591         if (ret)
3592                 goto out_stop;
3593
3594         first_block = (offset + sb->s_blocksize - 1) >>
3595                 EXT4_BLOCK_SIZE_BITS(sb);
3596         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3597
3598         /* If there are no blocks to remove, return now */
3599         if (first_block >= stop_block)
3600                 goto out_stop;
3601
3602         down_write(&EXT4_I(inode)->i_data_sem);
3603         ext4_discard_preallocations(inode);
3604
3605         ret = ext4_es_remove_extent(inode, first_block,
3606                                     stop_block - first_block);
3607         if (ret) {
3608                 up_write(&EXT4_I(inode)->i_data_sem);
3609                 goto out_stop;
3610         }
3611
3612         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3613                 ret = ext4_ext_remove_space(inode, first_block,
3614                                             stop_block - 1);
3615         else
3616                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3617                                             stop_block);
3618
3619         ext4_discard_preallocations(inode);
3620         up_write(&EXT4_I(inode)->i_data_sem);
3621         if (IS_SYNC(inode))
3622                 ext4_handle_sync(handle);
3623
3624         /* Now release the pages again to reduce race window */
3625         if (last_block_offset > first_block_offset)
3626                 truncate_pagecache_range(inode, first_block_offset,
3627                                          last_block_offset);
3628
3629         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3630         ext4_mark_inode_dirty(handle, inode);
3631 out_stop:
3632         ext4_journal_stop(handle);
3633 out_dio:
3634         ext4_inode_resume_unlocked_dio(inode);
3635 out_mutex:
3636         mutex_unlock(&inode->i_mutex);
3637         return ret;
3638 }
3639
3640 int ext4_inode_attach_jinode(struct inode *inode)
3641 {
3642         struct ext4_inode_info *ei = EXT4_I(inode);
3643         struct jbd2_inode *jinode;
3644
3645         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3646                 return 0;
3647
3648         jinode = jbd2_alloc_inode(GFP_KERNEL);
3649         spin_lock(&inode->i_lock);
3650         if (!ei->jinode) {
3651                 if (!jinode) {
3652                         spin_unlock(&inode->i_lock);
3653                         return -ENOMEM;
3654                 }
3655                 ei->jinode = jinode;
3656                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3657                 jinode = NULL;
3658         }
3659         spin_unlock(&inode->i_lock);
3660         if (unlikely(jinode != NULL))
3661                 jbd2_free_inode(jinode);
3662         return 0;
3663 }
3664
3665 /*
3666  * ext4_truncate()
3667  *
3668  * We block out ext4_get_block() block instantiations across the entire
3669  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3670  * simultaneously on behalf of the same inode.
3671  *
3672  * As we work through the truncate and commit bits of it to the journal there
3673  * is one core, guiding principle: the file's tree must always be consistent on
3674  * disk.  We must be able to restart the truncate after a crash.
3675  *
3676  * The file's tree may be transiently inconsistent in memory (although it
3677  * probably isn't), but whenever we close off and commit a journal transaction,
3678  * the contents of (the filesystem + the journal) must be consistent and
3679  * restartable.  It's pretty simple, really: bottom up, right to left (although
3680  * left-to-right works OK too).
3681  *
3682  * Note that at recovery time, journal replay occurs *before* the restart of
3683  * truncate against the orphan inode list.
3684  *
3685  * The committed inode has the new, desired i_size (which is the same as
3686  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3687  * that this inode's truncate did not complete and it will again call
3688  * ext4_truncate() to have another go.  So there will be instantiated blocks
3689  * to the right of the truncation point in a crashed ext4 filesystem.  But
3690  * that's fine - as long as they are linked from the inode, the post-crash
3691  * ext4_truncate() run will find them and release them.
3692  */
3693 void ext4_truncate(struct inode *inode)
3694 {
3695         struct ext4_inode_info *ei = EXT4_I(inode);
3696         unsigned int credits;
3697         handle_t *handle;
3698         struct address_space *mapping = inode->i_mapping;
3699
3700         /*
3701          * There is a possibility that we're either freeing the inode
3702          * or it's a completely new inode. In those cases we might not
3703          * have i_mutex locked because it's not necessary.
3704          */
3705         if (!(inode->i_state & (I_NEW|I_FREEING)))
3706                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3707         trace_ext4_truncate_enter(inode);
3708
3709         if (!ext4_can_truncate(inode))
3710                 return;
3711
3712         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3713
3714         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3715                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3716
3717         if (ext4_has_inline_data(inode)) {
3718                 int has_inline = 1;
3719
3720                 ext4_inline_data_truncate(inode, &has_inline);
3721                 if (has_inline)
3722                         return;
3723         }
3724
3725         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3726         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3727                 if (ext4_inode_attach_jinode(inode) < 0)
3728                         return;
3729         }
3730
3731         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3732                 credits = ext4_writepage_trans_blocks(inode);
3733         else
3734                 credits = ext4_blocks_for_truncate(inode);
3735
3736         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3737         if (IS_ERR(handle)) {
3738                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3739                 return;
3740         }
3741
3742         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3743                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3744
3745         /*
3746          * We add the inode to the orphan list, so that if this
3747          * truncate spans multiple transactions, and we crash, we will
3748          * resume the truncate when the filesystem recovers.  It also
3749          * marks the inode dirty, to catch the new size.
3750          *
3751          * Implication: the file must always be in a sane, consistent
3752          * truncatable state while each transaction commits.
3753          */
3754         if (ext4_orphan_add(handle, inode))
3755                 goto out_stop;
3756
3757         down_write(&EXT4_I(inode)->i_data_sem);
3758
3759         ext4_discard_preallocations(inode);
3760
3761         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3762                 ext4_ext_truncate(handle, inode);
3763         else
3764                 ext4_ind_truncate(handle, inode);
3765
3766         up_write(&ei->i_data_sem);
3767
3768         if (IS_SYNC(inode))
3769                 ext4_handle_sync(handle);
3770
3771 out_stop:
3772         /*
3773          * If this was a simple ftruncate() and the file will remain alive,
3774          * then we need to clear up the orphan record which we created above.
3775          * However, if this was a real unlink then we were called by
3776          * ext4_delete_inode(), and we allow that function to clean up the
3777          * orphan info for us.
3778          */
3779         if (inode->i_nlink)
3780                 ext4_orphan_del(handle, inode);
3781
3782         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3783         ext4_mark_inode_dirty(handle, inode);
3784         ext4_journal_stop(handle);
3785
3786         trace_ext4_truncate_exit(inode);
3787 }
3788
3789 /*
3790  * ext4_get_inode_loc returns with an extra refcount against the inode's
3791  * underlying buffer_head on success. If 'in_mem' is true, we have all
3792  * data in memory that is needed to recreate the on-disk version of this
3793  * inode.
3794  */
3795 static int __ext4_get_inode_loc(struct inode *inode,
3796                                 struct ext4_iloc *iloc, int in_mem)
3797 {
3798         struct ext4_group_desc  *gdp;
3799         struct buffer_head      *bh;
3800         struct super_block      *sb = inode->i_sb;
3801         ext4_fsblk_t            block;
3802         int                     inodes_per_block, inode_offset;
3803
3804         iloc->bh = NULL;
3805         if (!ext4_valid_inum(sb, inode->i_ino))
3806                 return -EIO;
3807
3808         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3809         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3810         if (!gdp)
3811                 return -EIO;
3812
3813         /*
3814          * Figure out the offset within the block group inode table
3815          */
3816         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3817         inode_offset = ((inode->i_ino - 1) %
3818                         EXT4_INODES_PER_GROUP(sb));
3819         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3820         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3821
3822         bh = sb_getblk(sb, block);
3823         if (unlikely(!bh))
3824                 return -ENOMEM;
3825         if (!buffer_uptodate(bh)) {
3826                 lock_buffer(bh);
3827
3828                 /*
3829                  * If the buffer has the write error flag, we have failed
3830                  * to write out another inode in the same block.  In this
3831                  * case, we don't have to read the block because we may
3832                  * read the old inode data successfully.
3833                  */
3834                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3835                         set_buffer_uptodate(bh);
3836
3837                 if (buffer_uptodate(bh)) {
3838                         /* someone brought it uptodate while we waited */
3839                         unlock_buffer(bh);
3840                         goto has_buffer;
3841                 }
3842
3843                 /*
3844                  * If we have all information of the inode in memory and this
3845                  * is the only valid inode in the block, we need not read the
3846                  * block.
3847                  */
3848                 if (in_mem) {
3849                         struct buffer_head *bitmap_bh;
3850                         int i, start;
3851
3852                         start = inode_offset & ~(inodes_per_block - 1);
3853
3854                         /* Is the inode bitmap in cache? */
3855                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3856                         if (unlikely(!bitmap_bh))
3857                                 goto make_io;
3858
3859                         /*
3860                          * If the inode bitmap isn't in cache then the
3861                          * optimisation may end up performing two reads instead
3862                          * of one, so skip it.
3863                          */
3864                         if (!buffer_uptodate(bitmap_bh)) {
3865                                 brelse(bitmap_bh);
3866                                 goto make_io;
3867                         }
3868                         for (i = start; i < start + inodes_per_block; i++) {
3869                                 if (i == inode_offset)
3870                                         continue;
3871                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3872                                         break;
3873                         }
3874                         brelse(bitmap_bh);
3875                         if (i == start + inodes_per_block) {
3876                                 /* all other inodes are free, so skip I/O */
3877                                 memset(bh->b_data, 0, bh->b_size);
3878                                 set_buffer_uptodate(bh);
3879                                 unlock_buffer(bh);
3880                                 goto has_buffer;
3881                         }
3882                 }
3883
3884 make_io:
3885                 /*
3886                  * If we need to do any I/O, try to pre-readahead extra
3887                  * blocks from the inode table.
3888                  */
3889                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3890                         ext4_fsblk_t b, end, table;
3891                         unsigned num;
3892                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3893
3894                         table = ext4_inode_table(sb, gdp);
3895                         /* s_inode_readahead_blks is always a power of 2 */
3896                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3897                         if (table > b)
3898                                 b = table;
3899                         end = b + ra_blks;
3900                         num = EXT4_INODES_PER_GROUP(sb);
3901                         if (ext4_has_group_desc_csum(sb))
3902                                 num -= ext4_itable_unused_count(sb, gdp);
3903                         table += num / inodes_per_block;
3904                         if (end > table)
3905                                 end = table;
3906                         while (b <= end)
3907                                 sb_breadahead(sb, b++);
3908                 }
3909
3910                 /*
3911                  * There are other valid inodes in the buffer, this inode
3912                  * has in-inode xattrs, or we don't have this inode in memory.
3913                  * Read the block from disk.
3914                  */
3915                 trace_ext4_load_inode(inode);
3916                 get_bh(bh);
3917                 bh->b_end_io = end_buffer_read_sync;
3918                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3919                 wait_on_buffer(bh);
3920                 if (!buffer_uptodate(bh)) {
3921                         EXT4_ERROR_INODE_BLOCK(inode, block,
3922                                                "unable to read itable block");
3923                         brelse(bh);
3924                         return -EIO;
3925                 }
3926         }
3927 has_buffer:
3928         iloc->bh = bh;
3929         return 0;
3930 }
3931
3932 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3933 {
3934         /* We have all inode data except xattrs in memory here. */
3935         return __ext4_get_inode_loc(inode, iloc,
3936                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3937 }
3938
3939 void ext4_set_inode_flags(struct inode *inode)
3940 {
3941         unsigned int flags = EXT4_I(inode)->i_flags;
3942         unsigned int new_fl = 0;
3943
3944         if (flags & EXT4_SYNC_FL)
3945                 new_fl |= S_SYNC;
3946         if (flags & EXT4_APPEND_FL)
3947                 new_fl |= S_APPEND;
3948         if (flags & EXT4_IMMUTABLE_FL)
3949                 new_fl |= S_IMMUTABLE;
3950         if (flags & EXT4_NOATIME_FL)
3951                 new_fl |= S_NOATIME;
3952         if (flags & EXT4_DIRSYNC_FL)
3953                 new_fl |= S_DIRSYNC;
3954         inode_set_flags(inode, new_fl,
3955                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3956 }
3957
3958 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3959 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3960 {
3961         unsigned int vfs_fl;
3962         unsigned long old_fl, new_fl;
3963
3964         do {
3965                 vfs_fl = ei->vfs_inode.i_flags;
3966                 old_fl = ei->i_flags;
3967                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3968                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3969                                 EXT4_DIRSYNC_FL);
3970                 if (vfs_fl & S_SYNC)
3971                         new_fl |= EXT4_SYNC_FL;
3972                 if (vfs_fl & S_APPEND)
3973                         new_fl |= EXT4_APPEND_FL;
3974                 if (vfs_fl & S_IMMUTABLE)
3975                         new_fl |= EXT4_IMMUTABLE_FL;
3976                 if (vfs_fl & S_NOATIME)
3977                         new_fl |= EXT4_NOATIME_FL;
3978                 if (vfs_fl & S_DIRSYNC)
3979                         new_fl |= EXT4_DIRSYNC_FL;
3980         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3981 }
3982
3983 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3984                                   struct ext4_inode_info *ei)
3985 {
3986         blkcnt_t i_blocks ;
3987         struct inode *inode = &(ei->vfs_inode);
3988         struct super_block *sb = inode->i_sb;
3989
3990         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3991                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3992                 /* we are using combined 48 bit field */
3993                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3994                                         le32_to_cpu(raw_inode->i_blocks_lo);
3995                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3996                         /* i_blocks represent file system block size */
3997                         return i_blocks  << (inode->i_blkbits - 9);
3998                 } else {
3999                         return i_blocks;
4000                 }
4001         } else {
4002                 return le32_to_cpu(raw_inode->i_blocks_lo);
4003         }
4004 }
4005
4006 static inline void ext4_iget_extra_inode(struct inode *inode,
4007                                          struct ext4_inode *raw_inode,
4008                                          struct ext4_inode_info *ei)
4009 {
4010         __le32 *magic = (void *)raw_inode +
4011                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4012         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4013                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4014                 ext4_find_inline_data_nolock(inode);
4015         } else
4016                 EXT4_I(inode)->i_inline_off = 0;
4017 }
4018
4019 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4020 {
4021         struct ext4_iloc iloc;
4022         struct ext4_inode *raw_inode;
4023         struct ext4_inode_info *ei;
4024         struct inode *inode;
4025         journal_t *journal = EXT4_SB(sb)->s_journal;
4026         long ret;
4027         int block;
4028         uid_t i_uid;
4029         gid_t i_gid;
4030
4031         inode = iget_locked(sb, ino);
4032         if (!inode)
4033                 return ERR_PTR(-ENOMEM);
4034         if (!(inode->i_state & I_NEW))
4035                 return inode;
4036
4037         ei = EXT4_I(inode);
4038         iloc.bh = NULL;
4039
4040         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4041         if (ret < 0)
4042                 goto bad_inode;
4043         raw_inode = ext4_raw_inode(&iloc);
4044
4045         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4046                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4047                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4048                     EXT4_INODE_SIZE(inode->i_sb)) {
4049                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4050                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4051                                 EXT4_INODE_SIZE(inode->i_sb));
4052                         ret = -EIO;
4053                         goto bad_inode;
4054                 }
4055         } else
4056                 ei->i_extra_isize = 0;
4057
4058         /* Precompute checksum seed for inode metadata */
4059         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4060                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4061                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4062                 __u32 csum;
4063                 __le32 inum = cpu_to_le32(inode->i_ino);
4064                 __le32 gen = raw_inode->i_generation;
4065                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4066                                    sizeof(inum));
4067                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4068                                               sizeof(gen));
4069         }
4070
4071         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4072                 EXT4_ERROR_INODE(inode, "checksum invalid");
4073                 ret = -EIO;
4074                 goto bad_inode;
4075         }
4076
4077         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4078         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4079         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4080         if (!(test_opt(inode->i_sb, NO_UID32))) {
4081                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4082                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4083         }
4084         i_uid_write(inode, i_uid);
4085         i_gid_write(inode, i_gid);
4086         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4087
4088         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4089         ei->i_inline_off = 0;
4090         ei->i_dir_start_lookup = 0;
4091         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4092         /* We now have enough fields to check if the inode was active or not.
4093          * This is needed because nfsd might try to access dead inodes
4094          * the test is that same one that e2fsck uses
4095          * NeilBrown 1999oct15
4096          */
4097         if (inode->i_nlink == 0) {
4098                 if ((inode->i_mode == 0 ||
4099                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4100                     ino != EXT4_BOOT_LOADER_INO) {
4101                         /* this inode is deleted */
4102                         ret = -ESTALE;
4103                         goto bad_inode;
4104                 }
4105                 /* The only unlinked inodes we let through here have
4106                  * valid i_mode and are being read by the orphan
4107                  * recovery code: that's fine, we're about to complete
4108                  * the process of deleting those.
4109                  * OR it is the EXT4_BOOT_LOADER_INO which is
4110                  * not initialized on a new filesystem. */
4111         }
4112         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4113         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4114         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4115         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4116                 ei->i_file_acl |=
4117                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4118         inode->i_size = ext4_isize(raw_inode);
4119         ei->i_disksize = inode->i_size;
4120 #ifdef CONFIG_QUOTA
4121         ei->i_reserved_quota = 0;
4122 #endif
4123         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4124         ei->i_block_group = iloc.block_group;
4125         ei->i_last_alloc_group = ~0;
4126         /*
4127          * NOTE! The in-memory inode i_data array is in little-endian order
4128          * even on big-endian machines: we do NOT byteswap the block numbers!
4129          */
4130         for (block = 0; block < EXT4_N_BLOCKS; block++)
4131                 ei->i_data[block] = raw_inode->i_block[block];
4132         INIT_LIST_HEAD(&ei->i_orphan);
4133
4134         /*
4135          * Set transaction id's of transactions that have to be committed
4136          * to finish f[data]sync. We set them to currently running transaction
4137          * as we cannot be sure that the inode or some of its metadata isn't
4138          * part of the transaction - the inode could have been reclaimed and
4139          * now it is reread from disk.
4140          */
4141         if (journal) {
4142                 transaction_t *transaction;
4143                 tid_t tid;
4144
4145                 read_lock(&journal->j_state_lock);
4146                 if (journal->j_running_transaction)
4147                         transaction = journal->j_running_transaction;
4148                 else
4149                         transaction = journal->j_committing_transaction;
4150                 if (transaction)
4151                         tid = transaction->t_tid;
4152                 else
4153                         tid = journal->j_commit_sequence;
4154                 read_unlock(&journal->j_state_lock);
4155                 ei->i_sync_tid = tid;
4156                 ei->i_datasync_tid = tid;
4157         }
4158
4159         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4160                 if (ei->i_extra_isize == 0) {
4161                         /* The extra space is currently unused. Use it. */
4162                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4163                                             EXT4_GOOD_OLD_INODE_SIZE;
4164                 } else {
4165                         ext4_iget_extra_inode(inode, raw_inode, ei);
4166                 }
4167         }
4168
4169         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4170         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4171         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4172         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4173
4174         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4175                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4176                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4177                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4178                                 inode->i_version |=
4179                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4180                 }
4181         }
4182
4183         ret = 0;
4184         if (ei->i_file_acl &&
4185             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4186                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4187                                  ei->i_file_acl);
4188                 ret = -EIO;
4189                 goto bad_inode;
4190         } else if (!ext4_has_inline_data(inode)) {
4191                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4192                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4193                             (S_ISLNK(inode->i_mode) &&
4194                              !ext4_inode_is_fast_symlink(inode))))
4195                                 /* Validate extent which is part of inode */
4196                                 ret = ext4_ext_check_inode(inode);
4197                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4198                            (S_ISLNK(inode->i_mode) &&
4199                             !ext4_inode_is_fast_symlink(inode))) {
4200                         /* Validate block references which are part of inode */
4201                         ret = ext4_ind_check_inode(inode);
4202                 }
4203         }
4204         if (ret)
4205                 goto bad_inode;
4206
4207         if (S_ISREG(inode->i_mode)) {
4208                 inode->i_op = &ext4_file_inode_operations;
4209                 inode->i_fop = &ext4_file_operations;
4210                 ext4_set_aops(inode);
4211         } else if (S_ISDIR(inode->i_mode)) {
4212                 inode->i_op = &ext4_dir_inode_operations;
4213                 inode->i_fop = &ext4_dir_operations;
4214         } else if (S_ISLNK(inode->i_mode)) {
4215                 if (ext4_inode_is_fast_symlink(inode)) {
4216                         inode->i_op = &ext4_fast_symlink_inode_operations;
4217                         nd_terminate_link(ei->i_data, inode->i_size,
4218                                 sizeof(ei->i_data) - 1);
4219                 } else {
4220                         inode->i_op = &ext4_symlink_inode_operations;
4221                         ext4_set_aops(inode);
4222                 }
4223         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4224               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4225                 inode->i_op = &ext4_special_inode_operations;
4226                 if (raw_inode->i_block[0])
4227                         init_special_inode(inode, inode->i_mode,
4228                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4229                 else
4230                         init_special_inode(inode, inode->i_mode,
4231                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4232         } else if (ino == EXT4_BOOT_LOADER_INO) {
4233                 make_bad_inode(inode);
4234         } else {
4235                 ret = -EIO;
4236                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4237                 goto bad_inode;
4238         }
4239         brelse(iloc.bh);
4240         ext4_set_inode_flags(inode);
4241         unlock_new_inode(inode);
4242         return inode;
4243
4244 bad_inode:
4245         brelse(iloc.bh);
4246         iget_failed(inode);
4247         return ERR_PTR(ret);
4248 }
4249
4250 static int ext4_inode_blocks_set(handle_t *handle,
4251                                 struct ext4_inode *raw_inode,
4252                                 struct ext4_inode_info *ei)
4253 {
4254         struct inode *inode = &(ei->vfs_inode);
4255         u64 i_blocks = inode->i_blocks;
4256         struct super_block *sb = inode->i_sb;
4257
4258         if (i_blocks <= ~0U) {
4259                 /*
4260                  * i_blocks can be represented in a 32 bit variable
4261                  * as multiple of 512 bytes
4262                  */
4263                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4264                 raw_inode->i_blocks_high = 0;
4265                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4266                 return 0;
4267         }
4268         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4269                 return -EFBIG;
4270
4271         if (i_blocks <= 0xffffffffffffULL) {
4272                 /*
4273                  * i_blocks can be represented in a 48 bit variable
4274                  * as multiple of 512 bytes
4275                  */
4276                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4277                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4278                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4279         } else {
4280                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4281                 /* i_block is stored in file system block size */
4282                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4283                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4284                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4285         }
4286         return 0;
4287 }
4288
4289 /*
4290  * Post the struct inode info into an on-disk inode location in the
4291  * buffer-cache.  This gobbles the caller's reference to the
4292  * buffer_head in the inode location struct.
4293  *
4294  * The caller must have write access to iloc->bh.
4295  */
4296 static int ext4_do_update_inode(handle_t *handle,
4297                                 struct inode *inode,
4298                                 struct ext4_iloc *iloc)
4299 {
4300         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4301         struct ext4_inode_info *ei = EXT4_I(inode);
4302         struct buffer_head *bh = iloc->bh;
4303         int err = 0, rc, block;
4304         int need_datasync = 0;
4305         uid_t i_uid;
4306         gid_t i_gid;
4307
4308         /* For fields not not tracking in the in-memory inode,
4309          * initialise them to zero for new inodes. */
4310         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4311                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4312
4313         ext4_get_inode_flags(ei);
4314         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4315         i_uid = i_uid_read(inode);
4316         i_gid = i_gid_read(inode);
4317         if (!(test_opt(inode->i_sb, NO_UID32))) {
4318                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4319                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4320 /*
4321  * Fix up interoperability with old kernels. Otherwise, old inodes get
4322  * re-used with the upper 16 bits of the uid/gid intact
4323  */
4324                 if (!ei->i_dtime) {
4325                         raw_inode->i_uid_high =
4326                                 cpu_to_le16(high_16_bits(i_uid));
4327                         raw_inode->i_gid_high =
4328                                 cpu_to_le16(high_16_bits(i_gid));
4329                 } else {
4330                         raw_inode->i_uid_high = 0;
4331                         raw_inode->i_gid_high = 0;
4332                 }
4333         } else {
4334                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4335                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4336                 raw_inode->i_uid_high = 0;
4337                 raw_inode->i_gid_high = 0;
4338         }
4339         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4340
4341         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4342         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4343         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4344         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4345
4346         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4347                 goto out_brelse;
4348         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4349         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4350         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4351                 raw_inode->i_file_acl_high =
4352                         cpu_to_le16(ei->i_file_acl >> 32);
4353         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4354         if (ei->i_disksize != ext4_isize(raw_inode)) {
4355                 ext4_isize_set(raw_inode, ei->i_disksize);
4356                 need_datasync = 1;
4357         }
4358         if (ei->i_disksize > 0x7fffffffULL) {
4359                 struct super_block *sb = inode->i_sb;
4360                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4361                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4362                                 EXT4_SB(sb)->s_es->s_rev_level ==
4363                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4364                         /* If this is the first large file
4365                          * created, add a flag to the superblock.
4366                          */
4367                         err = ext4_journal_get_write_access(handle,
4368                                         EXT4_SB(sb)->s_sbh);
4369                         if (err)
4370                                 goto out_brelse;
4371                         ext4_update_dynamic_rev(sb);
4372                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4373                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4374                         ext4_handle_sync(handle);
4375                         err = ext4_handle_dirty_super(handle, sb);
4376                 }
4377         }
4378         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4379         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4380                 if (old_valid_dev(inode->i_rdev)) {
4381                         raw_inode->i_block[0] =
4382                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4383                         raw_inode->i_block[1] = 0;
4384                 } else {
4385                         raw_inode->i_block[0] = 0;
4386                         raw_inode->i_block[1] =
4387                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4388                         raw_inode->i_block[2] = 0;
4389                 }
4390         } else if (!ext4_has_inline_data(inode)) {
4391                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4392                         raw_inode->i_block[block] = ei->i_data[block];
4393         }
4394
4395         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4396                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4397                 if (ei->i_extra_isize) {
4398                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4399                                 raw_inode->i_version_hi =
4400                                         cpu_to_le32(inode->i_version >> 32);
4401                         raw_inode->i_extra_isize =
4402                                 cpu_to_le16(ei->i_extra_isize);
4403                 }
4404         }
4405
4406         ext4_inode_csum_set(inode, raw_inode, ei);
4407
4408         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4409         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4410         if (!err)
4411                 err = rc;
4412         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4413
4414         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4415 out_brelse:
4416         brelse(bh);
4417         ext4_std_error(inode->i_sb, err);
4418         return err;
4419 }
4420
4421 /*
4422  * ext4_write_inode()
4423  *
4424  * We are called from a few places:
4425  *
4426  * - Within generic_file_write() for O_SYNC files.
4427  *   Here, there will be no transaction running. We wait for any running
4428  *   transaction to commit.
4429  *
4430  * - Within sys_sync(), kupdate and such.
4431  *   We wait on commit, if tol to.
4432  *
4433  * - Within prune_icache() (PF_MEMALLOC == true)
4434  *   Here we simply return.  We can't afford to block kswapd on the
4435  *   journal commit.
4436  *
4437  * In all cases it is actually safe for us to return without doing anything,
4438  * because the inode has been copied into a raw inode buffer in
4439  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4440  * knfsd.
4441  *
4442  * Note that we are absolutely dependent upon all inode dirtiers doing the
4443  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4444  * which we are interested.
4445  *
4446  * It would be a bug for them to not do this.  The code:
4447  *
4448  *      mark_inode_dirty(inode)
4449  *      stuff();
4450  *      inode->i_size = expr;
4451  *
4452  * is in error because a kswapd-driven write_inode() could occur while
4453  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4454  * will no longer be on the superblock's dirty inode list.
4455  */
4456 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4457 {
4458         int err;
4459
4460         if (current->flags & PF_MEMALLOC)
4461                 return 0;
4462
4463         if (EXT4_SB(inode->i_sb)->s_journal) {
4464                 if (ext4_journal_current_handle()) {
4465                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4466                         dump_stack();
4467                         return -EIO;
4468                 }
4469
4470                 /*
4471                  * No need to force transaction in WB_SYNC_NONE mode. Also
4472                  * ext4_sync_fs() will force the commit after everything is
4473                  * written.
4474                  */
4475                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4476                         return 0;
4477
4478                 err = ext4_force_commit(inode->i_sb);
4479         } else {
4480                 struct ext4_iloc iloc;
4481
4482                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4483                 if (err)
4484                         return err;
4485                 /*
4486                  * sync(2) will flush the whole buffer cache. No need to do
4487                  * it here separately for each inode.
4488                  */
4489                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4490                         sync_dirty_buffer(iloc.bh);
4491                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4492                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4493                                          "IO error syncing inode");
4494                         err = -EIO;
4495                 }
4496                 brelse(iloc.bh);
4497         }
4498         return err;
4499 }
4500
4501 /*
4502  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4503  * buffers that are attached to a page stradding i_size and are undergoing
4504  * commit. In that case we have to wait for commit to finish and try again.
4505  */
4506 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4507 {
4508         struct page *page;
4509         unsigned offset;
4510         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4511         tid_t commit_tid = 0;
4512         int ret;
4513
4514         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4515         /*
4516          * All buffers in the last page remain valid? Then there's nothing to
4517          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4518          * blocksize case
4519          */
4520         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4521                 return;
4522         while (1) {
4523                 page = find_lock_page(inode->i_mapping,
4524                                       inode->i_size >> PAGE_CACHE_SHIFT);
4525                 if (!page)
4526                         return;
4527                 ret = __ext4_journalled_invalidatepage(page, offset,
4528                                                 PAGE_CACHE_SIZE - offset);
4529                 unlock_page(page);
4530                 page_cache_release(page);
4531                 if (ret != -EBUSY)
4532                         return;
4533                 commit_tid = 0;
4534                 read_lock(&journal->j_state_lock);
4535                 if (journal->j_committing_transaction)
4536                         commit_tid = journal->j_committing_transaction->t_tid;
4537                 read_unlock(&journal->j_state_lock);
4538                 if (commit_tid)
4539                         jbd2_log_wait_commit(journal, commit_tid);
4540         }
4541 }
4542
4543 /*
4544  * ext4_setattr()
4545  *
4546  * Called from notify_change.
4547  *
4548  * We want to trap VFS attempts to truncate the file as soon as
4549  * possible.  In particular, we want to make sure that when the VFS
4550  * shrinks i_size, we put the inode on the orphan list and modify
4551  * i_disksize immediately, so that during the subsequent flushing of
4552  * dirty pages and freeing of disk blocks, we can guarantee that any
4553  * commit will leave the blocks being flushed in an unused state on
4554  * disk.  (On recovery, the inode will get truncated and the blocks will
4555  * be freed, so we have a strong guarantee that no future commit will
4556  * leave these blocks visible to the user.)
4557  *
4558  * Another thing we have to assure is that if we are in ordered mode
4559  * and inode is still attached to the committing transaction, we must
4560  * we start writeout of all the dirty pages which are being truncated.
4561  * This way we are sure that all the data written in the previous
4562  * transaction are already on disk (truncate waits for pages under
4563  * writeback).
4564  *
4565  * Called with inode->i_mutex down.
4566  */
4567 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4568 {
4569         struct inode *inode = dentry->d_inode;
4570         int error, rc = 0;
4571         int orphan = 0;
4572         const unsigned int ia_valid = attr->ia_valid;
4573
4574         error = inode_change_ok(inode, attr);
4575         if (error)
4576                 return error;
4577
4578         if (is_quota_modification(inode, attr))
4579                 dquot_initialize(inode);
4580         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4581             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4582                 handle_t *handle;
4583
4584                 /* (user+group)*(old+new) structure, inode write (sb,
4585                  * inode block, ? - but truncate inode update has it) */
4586                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4587                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4588                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4589                 if (IS_ERR(handle)) {
4590                         error = PTR_ERR(handle);
4591                         goto err_out;
4592                 }
4593                 error = dquot_transfer(inode, attr);
4594                 if (error) {
4595                         ext4_journal_stop(handle);
4596                         return error;
4597                 }
4598                 /* Update corresponding info in inode so that everything is in
4599                  * one transaction */
4600                 if (attr->ia_valid & ATTR_UID)
4601                         inode->i_uid = attr->ia_uid;
4602                 if (attr->ia_valid & ATTR_GID)
4603                         inode->i_gid = attr->ia_gid;
4604                 error = ext4_mark_inode_dirty(handle, inode);
4605                 ext4_journal_stop(handle);
4606         }
4607
4608         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4609                 handle_t *handle;
4610
4611                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4612                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4613
4614                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4615                                 return -EFBIG;
4616                 }
4617
4618                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4619                         inode_inc_iversion(inode);
4620
4621                 if (S_ISREG(inode->i_mode) &&
4622                     (attr->ia_size < inode->i_size)) {
4623                         if (ext4_should_order_data(inode)) {
4624                                 error = ext4_begin_ordered_truncate(inode,
4625                                                             attr->ia_size);
4626                                 if (error)
4627                                         goto err_out;
4628                         }
4629                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4630                         if (IS_ERR(handle)) {
4631                                 error = PTR_ERR(handle);
4632                                 goto err_out;
4633                         }
4634                         if (ext4_handle_valid(handle)) {
4635                                 error = ext4_orphan_add(handle, inode);
4636                                 orphan = 1;
4637                         }
4638                         down_write(&EXT4_I(inode)->i_data_sem);
4639                         EXT4_I(inode)->i_disksize = attr->ia_size;
4640                         rc = ext4_mark_inode_dirty(handle, inode);
4641                         if (!error)
4642                                 error = rc;
4643                         /*
4644                          * We have to update i_size under i_data_sem together
4645                          * with i_disksize to avoid races with writeback code
4646                          * running ext4_wb_update_i_disksize().
4647                          */
4648                         if (!error)
4649                                 i_size_write(inode, attr->ia_size);
4650                         up_write(&EXT4_I(inode)->i_data_sem);
4651                         ext4_journal_stop(handle);
4652                         if (error) {
4653                                 ext4_orphan_del(NULL, inode);
4654                                 goto err_out;
4655                         }
4656                 } else
4657                         i_size_write(inode, attr->ia_size);
4658
4659                 /*
4660                  * Blocks are going to be removed from the inode. Wait
4661                  * for dio in flight.  Temporarily disable
4662                  * dioread_nolock to prevent livelock.
4663                  */
4664                 if (orphan) {
4665                         if (!ext4_should_journal_data(inode)) {
4666                                 ext4_inode_block_unlocked_dio(inode);
4667                                 inode_dio_wait(inode);
4668                                 ext4_inode_resume_unlocked_dio(inode);
4669                         } else
4670                                 ext4_wait_for_tail_page_commit(inode);
4671                 }
4672                 /*
4673                  * Truncate pagecache after we've waited for commit
4674                  * in data=journal mode to make pages freeable.
4675                  */
4676                         truncate_pagecache(inode, inode->i_size);
4677         }
4678         /*
4679          * We want to call ext4_truncate() even if attr->ia_size ==
4680          * inode->i_size for cases like truncation of fallocated space
4681          */
4682         if (attr->ia_valid & ATTR_SIZE)
4683                 ext4_truncate(inode);
4684
4685         if (!rc) {
4686                 setattr_copy(inode, attr);
4687                 mark_inode_dirty(inode);
4688         }
4689
4690         /*
4691          * If the call to ext4_truncate failed to get a transaction handle at
4692          * all, we need to clean up the in-core orphan list manually.
4693          */
4694         if (orphan && inode->i_nlink)
4695                 ext4_orphan_del(NULL, inode);
4696
4697         if (!rc && (ia_valid & ATTR_MODE))
4698                 rc = posix_acl_chmod(inode, inode->i_mode);
4699
4700 err_out:
4701         ext4_std_error(inode->i_sb, error);
4702         if (!error)
4703                 error = rc;
4704         return error;
4705 }
4706
4707 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4708                  struct kstat *stat)
4709 {
4710         struct inode *inode;
4711         unsigned long long delalloc_blocks;
4712
4713         inode = dentry->d_inode;
4714         generic_fillattr(inode, stat);
4715
4716         /*
4717          * If there is inline data in the inode, the inode will normally not
4718          * have data blocks allocated (it may have an external xattr block).
4719          * Report at least one sector for such files, so tools like tar, rsync,
4720          * others doen't incorrectly think the file is completely sparse.
4721          */
4722         if (unlikely(ext4_has_inline_data(inode)))
4723                 stat->blocks += (stat->size + 511) >> 9;
4724
4725         /*
4726          * We can't update i_blocks if the block allocation is delayed
4727          * otherwise in the case of system crash before the real block
4728          * allocation is done, we will have i_blocks inconsistent with
4729          * on-disk file blocks.
4730          * We always keep i_blocks updated together with real
4731          * allocation. But to not confuse with user, stat
4732          * will return the blocks that include the delayed allocation
4733          * blocks for this file.
4734          */
4735         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4736                                    EXT4_I(inode)->i_reserved_data_blocks);
4737         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4738         return 0;
4739 }
4740
4741 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4742                                    int pextents)
4743 {
4744         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4745                 return ext4_ind_trans_blocks(inode, lblocks);
4746         return ext4_ext_index_trans_blocks(inode, pextents);
4747 }
4748
4749 /*
4750  * Account for index blocks, block groups bitmaps and block group
4751  * descriptor blocks if modify datablocks and index blocks
4752  * worse case, the indexs blocks spread over different block groups
4753  *
4754  * If datablocks are discontiguous, they are possible to spread over
4755  * different block groups too. If they are contiguous, with flexbg,
4756  * they could still across block group boundary.
4757  *
4758  * Also account for superblock, inode, quota and xattr blocks
4759  */
4760 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4761                                   int pextents)
4762 {
4763         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4764         int gdpblocks;
4765         int idxblocks;
4766         int ret = 0;
4767
4768         /*
4769          * How many index blocks need to touch to map @lblocks logical blocks
4770          * to @pextents physical extents?
4771          */
4772         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4773
4774         ret = idxblocks;
4775
4776         /*
4777          * Now let's see how many group bitmaps and group descriptors need
4778          * to account
4779          */
4780         groups = idxblocks + pextents;
4781         gdpblocks = groups;
4782         if (groups > ngroups)
4783                 groups = ngroups;
4784         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4785                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4786
4787         /* bitmaps and block group descriptor blocks */
4788         ret += groups + gdpblocks;
4789
4790         /* Blocks for super block, inode, quota and xattr blocks */
4791         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4792
4793         return ret;
4794 }
4795
4796 /*
4797  * Calculate the total number of credits to reserve to fit
4798  * the modification of a single pages into a single transaction,
4799  * which may include multiple chunks of block allocations.
4800  *
4801  * This could be called via ext4_write_begin()
4802  *
4803  * We need to consider the worse case, when
4804  * one new block per extent.
4805  */
4806 int ext4_writepage_trans_blocks(struct inode *inode)
4807 {
4808         int bpp = ext4_journal_blocks_per_page(inode);
4809         int ret;
4810
4811         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4812
4813         /* Account for data blocks for journalled mode */
4814         if (ext4_should_journal_data(inode))
4815                 ret += bpp;
4816         return ret;
4817 }
4818
4819 /*
4820  * Calculate the journal credits for a chunk of data modification.
4821  *
4822  * This is called from DIO, fallocate or whoever calling
4823  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4824  *
4825  * journal buffers for data blocks are not included here, as DIO
4826  * and fallocate do no need to journal data buffers.
4827  */
4828 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4829 {
4830         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4831 }
4832
4833 /*
4834  * The caller must have previously called ext4_reserve_inode_write().
4835  * Give this, we know that the caller already has write access to iloc->bh.
4836  */
4837 int ext4_mark_iloc_dirty(handle_t *handle,
4838                          struct inode *inode, struct ext4_iloc *iloc)
4839 {
4840         int err = 0;
4841
4842         if (IS_I_VERSION(inode))
4843                 inode_inc_iversion(inode);
4844
4845         /* the do_update_inode consumes one bh->b_count */
4846         get_bh(iloc->bh);
4847
4848         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4849         err = ext4_do_update_inode(handle, inode, iloc);
4850         put_bh(iloc->bh);
4851         return err;
4852 }
4853
4854 /*
4855  * On success, We end up with an outstanding reference count against
4856  * iloc->bh.  This _must_ be cleaned up later.
4857  */
4858
4859 int
4860 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4861                          struct ext4_iloc *iloc)
4862 {
4863         int err;
4864
4865         err = ext4_get_inode_loc(inode, iloc);
4866         if (!err) {
4867                 BUFFER_TRACE(iloc->bh, "get_write_access");
4868                 err = ext4_journal_get_write_access(handle, iloc->bh);
4869                 if (err) {
4870                         brelse(iloc->bh);
4871                         iloc->bh = NULL;
4872                 }
4873         }
4874         ext4_std_error(inode->i_sb, err);
4875         return err;
4876 }
4877
4878 /*
4879  * Expand an inode by new_extra_isize bytes.
4880  * Returns 0 on success or negative error number on failure.
4881  */
4882 static int ext4_expand_extra_isize(struct inode *inode,
4883                                    unsigned int new_extra_isize,
4884                                    struct ext4_iloc iloc,
4885                                    handle_t *handle)
4886 {
4887         struct ext4_inode *raw_inode;
4888         struct ext4_xattr_ibody_header *header;
4889
4890         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4891                 return 0;
4892
4893         raw_inode = ext4_raw_inode(&iloc);
4894
4895         header = IHDR(inode, raw_inode);
4896
4897         /* No extended attributes present */
4898         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4899             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4900                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4901                         new_extra_isize);
4902                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4903                 return 0;
4904         }
4905
4906         /* try to expand with EAs present */
4907         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4908                                           raw_inode, handle);
4909 }
4910
4911 /*
4912  * What we do here is to mark the in-core inode as clean with respect to inode
4913  * dirtiness (it may still be data-dirty).
4914  * This means that the in-core inode may be reaped by prune_icache
4915  * without having to perform any I/O.  This is a very good thing,
4916  * because *any* task may call prune_icache - even ones which
4917  * have a transaction open against a different journal.
4918  *
4919  * Is this cheating?  Not really.  Sure, we haven't written the
4920  * inode out, but prune_icache isn't a user-visible syncing function.
4921  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4922  * we start and wait on commits.
4923  */
4924 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4925 {
4926         struct ext4_iloc iloc;
4927         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4928         static unsigned int mnt_count;
4929         int err, ret;
4930
4931         might_sleep();
4932         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4933         err = ext4_reserve_inode_write(handle, inode, &iloc);
4934         if (ext4_handle_valid(handle) &&
4935             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4936             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4937                 /*
4938                  * We need extra buffer credits since we may write into EA block
4939                  * with this same handle. If journal_extend fails, then it will
4940                  * only result in a minor loss of functionality for that inode.
4941                  * If this is felt to be critical, then e2fsck should be run to
4942                  * force a large enough s_min_extra_isize.
4943                  */
4944                 if ((jbd2_journal_extend(handle,
4945                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4946                         ret = ext4_expand_extra_isize(inode,
4947                                                       sbi->s_want_extra_isize,
4948                                                       iloc, handle);
4949                         if (ret) {
4950                                 ext4_set_inode_state(inode,
4951                                                      EXT4_STATE_NO_EXPAND);
4952                                 if (mnt_count !=
4953                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4954                                         ext4_warning(inode->i_sb,
4955                                         "Unable to expand inode %lu. Delete"
4956                                         " some EAs or run e2fsck.",
4957                                         inode->i_ino);
4958                                         mnt_count =
4959                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4960                                 }
4961                         }
4962                 }
4963         }
4964         if (!err)
4965                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4966         return err;
4967 }
4968
4969 /*
4970  * ext4_dirty_inode() is called from __mark_inode_dirty()
4971  *
4972  * We're really interested in the case where a file is being extended.
4973  * i_size has been changed by generic_commit_write() and we thus need
4974  * to include the updated inode in the current transaction.
4975  *
4976  * Also, dquot_alloc_block() will always dirty the inode when blocks
4977  * are allocated to the file.
4978  *
4979  * If the inode is marked synchronous, we don't honour that here - doing
4980  * so would cause a commit on atime updates, which we don't bother doing.
4981  * We handle synchronous inodes at the highest possible level.
4982  */
4983 void ext4_dirty_inode(struct inode *inode, int flags)
4984 {
4985         handle_t *handle;
4986
4987         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4988         if (IS_ERR(handle))
4989                 goto out;
4990
4991         ext4_mark_inode_dirty(handle, inode);
4992
4993         ext4_journal_stop(handle);
4994 out:
4995         return;
4996 }
4997
4998 #if 0
4999 /*
5000  * Bind an inode's backing buffer_head into this transaction, to prevent
5001  * it from being flushed to disk early.  Unlike
5002  * ext4_reserve_inode_write, this leaves behind no bh reference and
5003  * returns no iloc structure, so the caller needs to repeat the iloc
5004  * lookup to mark the inode dirty later.
5005  */
5006 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5007 {
5008         struct ext4_iloc iloc;
5009
5010         int err = 0;
5011         if (handle) {
5012                 err = ext4_get_inode_loc(inode, &iloc);
5013                 if (!err) {
5014                         BUFFER_TRACE(iloc.bh, "get_write_access");
5015                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5016                         if (!err)
5017                                 err = ext4_handle_dirty_metadata(handle,
5018                                                                  NULL,
5019                                                                  iloc.bh);
5020                         brelse(iloc.bh);
5021                 }
5022         }
5023         ext4_std_error(inode->i_sb, err);
5024         return err;
5025 }
5026 #endif
5027
5028 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5029 {
5030         journal_t *journal;
5031         handle_t *handle;
5032         int err;
5033
5034         /*
5035          * We have to be very careful here: changing a data block's
5036          * journaling status dynamically is dangerous.  If we write a
5037          * data block to the journal, change the status and then delete
5038          * that block, we risk forgetting to revoke the old log record
5039          * from the journal and so a subsequent replay can corrupt data.
5040          * So, first we make sure that the journal is empty and that
5041          * nobody is changing anything.
5042          */
5043
5044         journal = EXT4_JOURNAL(inode);
5045         if (!journal)
5046                 return 0;
5047         if (is_journal_aborted(journal))
5048                 return -EROFS;
5049         /* We have to allocate physical blocks for delalloc blocks
5050          * before flushing journal. otherwise delalloc blocks can not
5051          * be allocated any more. even more truncate on delalloc blocks
5052          * could trigger BUG by flushing delalloc blocks in journal.
5053          * There is no delalloc block in non-journal data mode.
5054          */
5055         if (val && test_opt(inode->i_sb, DELALLOC)) {
5056                 err = ext4_alloc_da_blocks(inode);
5057                 if (err < 0)
5058                         return err;
5059         }
5060
5061         /* Wait for all existing dio workers */
5062         ext4_inode_block_unlocked_dio(inode);
5063         inode_dio_wait(inode);
5064
5065         jbd2_journal_lock_updates(journal);
5066
5067         /*
5068          * OK, there are no updates running now, and all cached data is
5069          * synced to disk.  We are now in a completely consistent state
5070          * which doesn't have anything in the journal, and we know that
5071          * no filesystem updates are running, so it is safe to modify
5072          * the inode's in-core data-journaling state flag now.
5073          */
5074
5075         if (val)
5076                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5077         else {
5078                 jbd2_journal_flush(journal);
5079                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5080         }
5081         ext4_set_aops(inode);
5082
5083         jbd2_journal_unlock_updates(journal);
5084         ext4_inode_resume_unlocked_dio(inode);
5085
5086         /* Finally we can mark the inode as dirty. */
5087
5088         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5089         if (IS_ERR(handle))
5090                 return PTR_ERR(handle);
5091
5092         err = ext4_mark_inode_dirty(handle, inode);
5093         ext4_handle_sync(handle);
5094         ext4_journal_stop(handle);
5095         ext4_std_error(inode->i_sb, err);
5096
5097         return err;
5098 }
5099
5100 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5101 {
5102         return !buffer_mapped(bh);
5103 }
5104
5105 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5106 {
5107         struct page *page = vmf->page;
5108         loff_t size;
5109         unsigned long len;
5110         int ret;
5111         struct file *file = vma->vm_file;
5112         struct inode *inode = file_inode(file);
5113         struct address_space *mapping = inode->i_mapping;
5114         handle_t *handle;
5115         get_block_t *get_block;
5116         int retries = 0;
5117
5118         sb_start_pagefault(inode->i_sb);
5119         file_update_time(vma->vm_file);
5120         /* Delalloc case is easy... */
5121         if (test_opt(inode->i_sb, DELALLOC) &&
5122             !ext4_should_journal_data(inode) &&
5123             !ext4_nonda_switch(inode->i_sb)) {
5124                 do {
5125                         ret = __block_page_mkwrite(vma, vmf,
5126                                                    ext4_da_get_block_prep);
5127                 } while (ret == -ENOSPC &&
5128                        ext4_should_retry_alloc(inode->i_sb, &retries));
5129                 goto out_ret;
5130         }
5131
5132         lock_page(page);
5133         size = i_size_read(inode);
5134         /* Page got truncated from under us? */
5135         if (page->mapping != mapping || page_offset(page) > size) {
5136                 unlock_page(page);
5137                 ret = VM_FAULT_NOPAGE;
5138                 goto out;
5139         }
5140
5141         if (page->index == size >> PAGE_CACHE_SHIFT)
5142                 len = size & ~PAGE_CACHE_MASK;
5143         else
5144                 len = PAGE_CACHE_SIZE;
5145         /*
5146          * Return if we have all the buffers mapped. This avoids the need to do
5147          * journal_start/journal_stop which can block and take a long time
5148          */
5149         if (page_has_buffers(page)) {
5150                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5151                                             0, len, NULL,
5152                                             ext4_bh_unmapped)) {
5153                         /* Wait so that we don't change page under IO */
5154                         wait_for_stable_page(page);
5155                         ret = VM_FAULT_LOCKED;
5156                         goto out;
5157                 }
5158         }
5159         unlock_page(page);
5160         /* OK, we need to fill the hole... */
5161         if (ext4_should_dioread_nolock(inode))
5162                 get_block = ext4_get_block_write;
5163         else
5164                 get_block = ext4_get_block;
5165 retry_alloc:
5166         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5167                                     ext4_writepage_trans_blocks(inode));
5168         if (IS_ERR(handle)) {
5169                 ret = VM_FAULT_SIGBUS;
5170                 goto out;
5171         }
5172         ret = __block_page_mkwrite(vma, vmf, get_block);
5173         if (!ret && ext4_should_journal_data(inode)) {
5174                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5175                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5176                         unlock_page(page);
5177                         ret = VM_FAULT_SIGBUS;
5178                         ext4_journal_stop(handle);
5179                         goto out;
5180                 }
5181                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5182         }
5183         ext4_journal_stop(handle);
5184         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5185                 goto retry_alloc;
5186 out_ret:
5187         ret = block_page_mkwrite_return(ret);
5188 out:
5189         sb_end_pagefault(inode->i_sb);
5190         return ret;
5191 }