Merge branch 'fix/hda' into for-linus
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54                                               loff_t new_size)
55 {
56         trace_ext4_begin_ordered_truncate(inode, new_size);
57         return jbd2_journal_begin_ordered_truncate(
58                                         EXT4_SB(inode->i_sb)->s_journal,
59                                         &EXT4_I(inode)->jinode,
60                                         new_size);
61 }
62
63 static void ext4_invalidatepage(struct page *page, unsigned long offset);
64 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
65                                    struct buffer_head *bh_result, int create);
66 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
67 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
68 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
69 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
70
71 /*
72  * Test whether an inode is a fast symlink.
73  */
74 static int ext4_inode_is_fast_symlink(struct inode *inode)
75 {
76         int ea_blocks = EXT4_I(inode)->i_file_acl ?
77                 (inode->i_sb->s_blocksize >> 9) : 0;
78
79         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
80 }
81
82 /*
83  * Work out how many blocks we need to proceed with the next chunk of a
84  * truncate transaction.
85  */
86 static unsigned long blocks_for_truncate(struct inode *inode)
87 {
88         ext4_lblk_t needed;
89
90         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
91
92         /* Give ourselves just enough room to cope with inodes in which
93          * i_blocks is corrupt: we've seen disk corruptions in the past
94          * which resulted in random data in an inode which looked enough
95          * like a regular file for ext4 to try to delete it.  Things
96          * will go a bit crazy if that happens, but at least we should
97          * try not to panic the whole kernel. */
98         if (needed < 2)
99                 needed = 2;
100
101         /* But we need to bound the transaction so we don't overflow the
102          * journal. */
103         if (needed > EXT4_MAX_TRANS_DATA)
104                 needed = EXT4_MAX_TRANS_DATA;
105
106         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
107 }
108
109 /*
110  * Truncate transactions can be complex and absolutely huge.  So we need to
111  * be able to restart the transaction at a conventient checkpoint to make
112  * sure we don't overflow the journal.
113  *
114  * start_transaction gets us a new handle for a truncate transaction,
115  * and extend_transaction tries to extend the existing one a bit.  If
116  * extend fails, we need to propagate the failure up and restart the
117  * transaction in the top-level truncate loop. --sct
118  */
119 static handle_t *start_transaction(struct inode *inode)
120 {
121         handle_t *result;
122
123         result = ext4_journal_start(inode, blocks_for_truncate(inode));
124         if (!IS_ERR(result))
125                 return result;
126
127         ext4_std_error(inode->i_sb, PTR_ERR(result));
128         return result;
129 }
130
131 /*
132  * Try to extend this transaction for the purposes of truncation.
133  *
134  * Returns 0 if we managed to create more room.  If we can't create more
135  * room, and the transaction must be restarted we return 1.
136  */
137 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
138 {
139         if (!ext4_handle_valid(handle))
140                 return 0;
141         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
142                 return 0;
143         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
144                 return 0;
145         return 1;
146 }
147
148 /*
149  * Restart the transaction associated with *handle.  This does a commit,
150  * so before we call here everything must be consistently dirtied against
151  * this transaction.
152  */
153 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
154                                  int nblocks)
155 {
156         int ret;
157
158         /*
159          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
160          * moment, get_block can be called only for blocks inside i_size since
161          * page cache has been already dropped and writes are blocked by
162          * i_mutex. So we can safely drop the i_data_sem here.
163          */
164         BUG_ON(EXT4_JOURNAL(inode) == NULL);
165         jbd_debug(2, "restarting handle %p\n", handle);
166         up_write(&EXT4_I(inode)->i_data_sem);
167         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
168         down_write(&EXT4_I(inode)->i_data_sem);
169         ext4_discard_preallocations(inode);
170
171         return ret;
172 }
173
174 /*
175  * Called at the last iput() if i_nlink is zero.
176  */
177 void ext4_evict_inode(struct inode *inode)
178 {
179         handle_t *handle;
180         int err;
181
182         trace_ext4_evict_inode(inode);
183         if (inode->i_nlink) {
184                 truncate_inode_pages(&inode->i_data, 0);
185                 goto no_delete;
186         }
187
188         if (!is_bad_inode(inode))
189                 dquot_initialize(inode);
190
191         if (ext4_should_order_data(inode))
192                 ext4_begin_ordered_truncate(inode, 0);
193         truncate_inode_pages(&inode->i_data, 0);
194
195         if (is_bad_inode(inode))
196                 goto no_delete;
197
198         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
199         if (IS_ERR(handle)) {
200                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
201                 /*
202                  * If we're going to skip the normal cleanup, we still need to
203                  * make sure that the in-core orphan linked list is properly
204                  * cleaned up.
205                  */
206                 ext4_orphan_del(NULL, inode);
207                 goto no_delete;
208         }
209
210         if (IS_SYNC(inode))
211                 ext4_handle_sync(handle);
212         inode->i_size = 0;
213         err = ext4_mark_inode_dirty(handle, inode);
214         if (err) {
215                 ext4_warning(inode->i_sb,
216                              "couldn't mark inode dirty (err %d)", err);
217                 goto stop_handle;
218         }
219         if (inode->i_blocks)
220                 ext4_truncate(inode);
221
222         /*
223          * ext4_ext_truncate() doesn't reserve any slop when it
224          * restarts journal transactions; therefore there may not be
225          * enough credits left in the handle to remove the inode from
226          * the orphan list and set the dtime field.
227          */
228         if (!ext4_handle_has_enough_credits(handle, 3)) {
229                 err = ext4_journal_extend(handle, 3);
230                 if (err > 0)
231                         err = ext4_journal_restart(handle, 3);
232                 if (err != 0) {
233                         ext4_warning(inode->i_sb,
234                                      "couldn't extend journal (err %d)", err);
235                 stop_handle:
236                         ext4_journal_stop(handle);
237                         ext4_orphan_del(NULL, inode);
238                         goto no_delete;
239                 }
240         }
241
242         /*
243          * Kill off the orphan record which ext4_truncate created.
244          * AKPM: I think this can be inside the above `if'.
245          * Note that ext4_orphan_del() has to be able to cope with the
246          * deletion of a non-existent orphan - this is because we don't
247          * know if ext4_truncate() actually created an orphan record.
248          * (Well, we could do this if we need to, but heck - it works)
249          */
250         ext4_orphan_del(handle, inode);
251         EXT4_I(inode)->i_dtime  = get_seconds();
252
253         /*
254          * One subtle ordering requirement: if anything has gone wrong
255          * (transaction abort, IO errors, whatever), then we can still
256          * do these next steps (the fs will already have been marked as
257          * having errors), but we can't free the inode if the mark_dirty
258          * fails.
259          */
260         if (ext4_mark_inode_dirty(handle, inode))
261                 /* If that failed, just do the required in-core inode clear. */
262                 ext4_clear_inode(inode);
263         else
264                 ext4_free_inode(handle, inode);
265         ext4_journal_stop(handle);
266         return;
267 no_delete:
268         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
269 }
270
271 typedef struct {
272         __le32  *p;
273         __le32  key;
274         struct buffer_head *bh;
275 } Indirect;
276
277 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
278 {
279         p->key = *(p->p = v);
280         p->bh = bh;
281 }
282
283 /**
284  *      ext4_block_to_path - parse the block number into array of offsets
285  *      @inode: inode in question (we are only interested in its superblock)
286  *      @i_block: block number to be parsed
287  *      @offsets: array to store the offsets in
288  *      @boundary: set this non-zero if the referred-to block is likely to be
289  *             followed (on disk) by an indirect block.
290  *
291  *      To store the locations of file's data ext4 uses a data structure common
292  *      for UNIX filesystems - tree of pointers anchored in the inode, with
293  *      data blocks at leaves and indirect blocks in intermediate nodes.
294  *      This function translates the block number into path in that tree -
295  *      return value is the path length and @offsets[n] is the offset of
296  *      pointer to (n+1)th node in the nth one. If @block is out of range
297  *      (negative or too large) warning is printed and zero returned.
298  *
299  *      Note: function doesn't find node addresses, so no IO is needed. All
300  *      we need to know is the capacity of indirect blocks (taken from the
301  *      inode->i_sb).
302  */
303
304 /*
305  * Portability note: the last comparison (check that we fit into triple
306  * indirect block) is spelled differently, because otherwise on an
307  * architecture with 32-bit longs and 8Kb pages we might get into trouble
308  * if our filesystem had 8Kb blocks. We might use long long, but that would
309  * kill us on x86. Oh, well, at least the sign propagation does not matter -
310  * i_block would have to be negative in the very beginning, so we would not
311  * get there at all.
312  */
313
314 static int ext4_block_to_path(struct inode *inode,
315                               ext4_lblk_t i_block,
316                               ext4_lblk_t offsets[4], int *boundary)
317 {
318         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
319         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
320         const long direct_blocks = EXT4_NDIR_BLOCKS,
321                 indirect_blocks = ptrs,
322                 double_blocks = (1 << (ptrs_bits * 2));
323         int n = 0;
324         int final = 0;
325
326         if (i_block < direct_blocks) {
327                 offsets[n++] = i_block;
328                 final = direct_blocks;
329         } else if ((i_block -= direct_blocks) < indirect_blocks) {
330                 offsets[n++] = EXT4_IND_BLOCK;
331                 offsets[n++] = i_block;
332                 final = ptrs;
333         } else if ((i_block -= indirect_blocks) < double_blocks) {
334                 offsets[n++] = EXT4_DIND_BLOCK;
335                 offsets[n++] = i_block >> ptrs_bits;
336                 offsets[n++] = i_block & (ptrs - 1);
337                 final = ptrs;
338         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
339                 offsets[n++] = EXT4_TIND_BLOCK;
340                 offsets[n++] = i_block >> (ptrs_bits * 2);
341                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
342                 offsets[n++] = i_block & (ptrs - 1);
343                 final = ptrs;
344         } else {
345                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
346                              i_block + direct_blocks +
347                              indirect_blocks + double_blocks, inode->i_ino);
348         }
349         if (boundary)
350                 *boundary = final - 1 - (i_block & (ptrs - 1));
351         return n;
352 }
353
354 static int __ext4_check_blockref(const char *function, unsigned int line,
355                                  struct inode *inode,
356                                  __le32 *p, unsigned int max)
357 {
358         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
359         __le32 *bref = p;
360         unsigned int blk;
361
362         while (bref < p+max) {
363                 blk = le32_to_cpu(*bref++);
364                 if (blk &&
365                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
366                                                     blk, 1))) {
367                         es->s_last_error_block = cpu_to_le64(blk);
368                         ext4_error_inode(inode, function, line, blk,
369                                          "invalid block");
370                         return -EIO;
371                 }
372         }
373         return 0;
374 }
375
376
377 #define ext4_check_indirect_blockref(inode, bh)                         \
378         __ext4_check_blockref(__func__, __LINE__, inode,                \
379                               (__le32 *)(bh)->b_data,                   \
380                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
381
382 #define ext4_check_inode_blockref(inode)                                \
383         __ext4_check_blockref(__func__, __LINE__, inode,                \
384                               EXT4_I(inode)->i_data,                    \
385                               EXT4_NDIR_BLOCKS)
386
387 /**
388  *      ext4_get_branch - read the chain of indirect blocks leading to data
389  *      @inode: inode in question
390  *      @depth: depth of the chain (1 - direct pointer, etc.)
391  *      @offsets: offsets of pointers in inode/indirect blocks
392  *      @chain: place to store the result
393  *      @err: here we store the error value
394  *
395  *      Function fills the array of triples <key, p, bh> and returns %NULL
396  *      if everything went OK or the pointer to the last filled triple
397  *      (incomplete one) otherwise. Upon the return chain[i].key contains
398  *      the number of (i+1)-th block in the chain (as it is stored in memory,
399  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
400  *      number (it points into struct inode for i==0 and into the bh->b_data
401  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
402  *      block for i>0 and NULL for i==0. In other words, it holds the block
403  *      numbers of the chain, addresses they were taken from (and where we can
404  *      verify that chain did not change) and buffer_heads hosting these
405  *      numbers.
406  *
407  *      Function stops when it stumbles upon zero pointer (absent block)
408  *              (pointer to last triple returned, *@err == 0)
409  *      or when it gets an IO error reading an indirect block
410  *              (ditto, *@err == -EIO)
411  *      or when it reads all @depth-1 indirect blocks successfully and finds
412  *      the whole chain, all way to the data (returns %NULL, *err == 0).
413  *
414  *      Need to be called with
415  *      down_read(&EXT4_I(inode)->i_data_sem)
416  */
417 static Indirect *ext4_get_branch(struct inode *inode, int depth,
418                                  ext4_lblk_t  *offsets,
419                                  Indirect chain[4], int *err)
420 {
421         struct super_block *sb = inode->i_sb;
422         Indirect *p = chain;
423         struct buffer_head *bh;
424
425         *err = 0;
426         /* i_data is not going away, no lock needed */
427         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
428         if (!p->key)
429                 goto no_block;
430         while (--depth) {
431                 bh = sb_getblk(sb, le32_to_cpu(p->key));
432                 if (unlikely(!bh))
433                         goto failure;
434
435                 if (!bh_uptodate_or_lock(bh)) {
436                         if (bh_submit_read(bh) < 0) {
437                                 put_bh(bh);
438                                 goto failure;
439                         }
440                         /* validate block references */
441                         if (ext4_check_indirect_blockref(inode, bh)) {
442                                 put_bh(bh);
443                                 goto failure;
444                         }
445                 }
446
447                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
448                 /* Reader: end */
449                 if (!p->key)
450                         goto no_block;
451         }
452         return NULL;
453
454 failure:
455         *err = -EIO;
456 no_block:
457         return p;
458 }
459
460 /**
461  *      ext4_find_near - find a place for allocation with sufficient locality
462  *      @inode: owner
463  *      @ind: descriptor of indirect block.
464  *
465  *      This function returns the preferred place for block allocation.
466  *      It is used when heuristic for sequential allocation fails.
467  *      Rules are:
468  *        + if there is a block to the left of our position - allocate near it.
469  *        + if pointer will live in indirect block - allocate near that block.
470  *        + if pointer will live in inode - allocate in the same
471  *          cylinder group.
472  *
473  * In the latter case we colour the starting block by the callers PID to
474  * prevent it from clashing with concurrent allocations for a different inode
475  * in the same block group.   The PID is used here so that functionally related
476  * files will be close-by on-disk.
477  *
478  *      Caller must make sure that @ind is valid and will stay that way.
479  */
480 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
481 {
482         struct ext4_inode_info *ei = EXT4_I(inode);
483         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
484         __le32 *p;
485         ext4_fsblk_t bg_start;
486         ext4_fsblk_t last_block;
487         ext4_grpblk_t colour;
488         ext4_group_t block_group;
489         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
490
491         /* Try to find previous block */
492         for (p = ind->p - 1; p >= start; p--) {
493                 if (*p)
494                         return le32_to_cpu(*p);
495         }
496
497         /* No such thing, so let's try location of indirect block */
498         if (ind->bh)
499                 return ind->bh->b_blocknr;
500
501         /*
502          * It is going to be referred to from the inode itself? OK, just put it
503          * into the same cylinder group then.
504          */
505         block_group = ei->i_block_group;
506         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
507                 block_group &= ~(flex_size-1);
508                 if (S_ISREG(inode->i_mode))
509                         block_group++;
510         }
511         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
512         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
513
514         /*
515          * If we are doing delayed allocation, we don't need take
516          * colour into account.
517          */
518         if (test_opt(inode->i_sb, DELALLOC))
519                 return bg_start;
520
521         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
522                 colour = (current->pid % 16) *
523                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
524         else
525                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
526         return bg_start + colour;
527 }
528
529 /**
530  *      ext4_find_goal - find a preferred place for allocation.
531  *      @inode: owner
532  *      @block:  block we want
533  *      @partial: pointer to the last triple within a chain
534  *
535  *      Normally this function find the preferred place for block allocation,
536  *      returns it.
537  *      Because this is only used for non-extent files, we limit the block nr
538  *      to 32 bits.
539  */
540 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
541                                    Indirect *partial)
542 {
543         ext4_fsblk_t goal;
544
545         /*
546          * XXX need to get goal block from mballoc's data structures
547          */
548
549         goal = ext4_find_near(inode, partial);
550         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
551         return goal;
552 }
553
554 /**
555  *      ext4_blks_to_allocate: Look up the block map and count the number
556  *      of direct blocks need to be allocated for the given branch.
557  *
558  *      @branch: chain of indirect blocks
559  *      @k: number of blocks need for indirect blocks
560  *      @blks: number of data blocks to be mapped.
561  *      @blocks_to_boundary:  the offset in the indirect block
562  *
563  *      return the total number of blocks to be allocate, including the
564  *      direct and indirect blocks.
565  */
566 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
567                                  int blocks_to_boundary)
568 {
569         unsigned int count = 0;
570
571         /*
572          * Simple case, [t,d]Indirect block(s) has not allocated yet
573          * then it's clear blocks on that path have not allocated
574          */
575         if (k > 0) {
576                 /* right now we don't handle cross boundary allocation */
577                 if (blks < blocks_to_boundary + 1)
578                         count += blks;
579                 else
580                         count += blocks_to_boundary + 1;
581                 return count;
582         }
583
584         count++;
585         while (count < blks && count <= blocks_to_boundary &&
586                 le32_to_cpu(*(branch[0].p + count)) == 0) {
587                 count++;
588         }
589         return count;
590 }
591
592 /**
593  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
594  *      @indirect_blks: the number of blocks need to allocate for indirect
595  *                      blocks
596  *
597  *      @new_blocks: on return it will store the new block numbers for
598  *      the indirect blocks(if needed) and the first direct block,
599  *      @blks:  on return it will store the total number of allocated
600  *              direct blocks
601  */
602 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
603                              ext4_lblk_t iblock, ext4_fsblk_t goal,
604                              int indirect_blks, int blks,
605                              ext4_fsblk_t new_blocks[4], int *err)
606 {
607         struct ext4_allocation_request ar;
608         int target, i;
609         unsigned long count = 0, blk_allocated = 0;
610         int index = 0;
611         ext4_fsblk_t current_block = 0;
612         int ret = 0;
613
614         /*
615          * Here we try to allocate the requested multiple blocks at once,
616          * on a best-effort basis.
617          * To build a branch, we should allocate blocks for
618          * the indirect blocks(if not allocated yet), and at least
619          * the first direct block of this branch.  That's the
620          * minimum number of blocks need to allocate(required)
621          */
622         /* first we try to allocate the indirect blocks */
623         target = indirect_blks;
624         while (target > 0) {
625                 count = target;
626                 /* allocating blocks for indirect blocks and direct blocks */
627                 current_block = ext4_new_meta_blocks(handle, inode,
628                                                         goal, &count, err);
629                 if (*err)
630                         goto failed_out;
631
632                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
633                         EXT4_ERROR_INODE(inode,
634                                          "current_block %llu + count %lu > %d!",
635                                          current_block, count,
636                                          EXT4_MAX_BLOCK_FILE_PHYS);
637                         *err = -EIO;
638                         goto failed_out;
639                 }
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
676                 EXT4_ERROR_INODE(inode,
677                                  "current_block %llu + ar.len %d > %d!",
678                                  current_block, ar.len,
679                                  EXT4_MAX_BLOCK_FILE_PHYS);
680                 *err = -EIO;
681                 goto failed_out;
682         }
683
684         if (*err && (target == blks)) {
685                 /*
686                  * if the allocation failed and we didn't allocate
687                  * any blocks before
688                  */
689                 goto failed_out;
690         }
691         if (!*err) {
692                 if (target == blks) {
693                         /*
694                          * save the new block number
695                          * for the first direct block
696                          */
697                         new_blocks[index] = current_block;
698                 }
699                 blk_allocated += ar.len;
700         }
701 allocated:
702         /* total number of blocks allocated for direct blocks */
703         ret = blk_allocated;
704         *err = 0;
705         return ret;
706 failed_out:
707         for (i = 0; i < index; i++)
708                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
709         return ret;
710 }
711
712 /**
713  *      ext4_alloc_branch - allocate and set up a chain of blocks.
714  *      @inode: owner
715  *      @indirect_blks: number of allocated indirect blocks
716  *      @blks: number of allocated direct blocks
717  *      @offsets: offsets (in the blocks) to store the pointers to next.
718  *      @branch: place to store the chain in.
719  *
720  *      This function allocates blocks, zeroes out all but the last one,
721  *      links them into chain and (if we are synchronous) writes them to disk.
722  *      In other words, it prepares a branch that can be spliced onto the
723  *      inode. It stores the information about that chain in the branch[], in
724  *      the same format as ext4_get_branch() would do. We are calling it after
725  *      we had read the existing part of chain and partial points to the last
726  *      triple of that (one with zero ->key). Upon the exit we have the same
727  *      picture as after the successful ext4_get_block(), except that in one
728  *      place chain is disconnected - *branch->p is still zero (we did not
729  *      set the last link), but branch->key contains the number that should
730  *      be placed into *branch->p to fill that gap.
731  *
732  *      If allocation fails we free all blocks we've allocated (and forget
733  *      their buffer_heads) and return the error value the from failed
734  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
735  *      as described above and return 0.
736  */
737 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
738                              ext4_lblk_t iblock, int indirect_blks,
739                              int *blks, ext4_fsblk_t goal,
740                              ext4_lblk_t *offsets, Indirect *branch)
741 {
742         int blocksize = inode->i_sb->s_blocksize;
743         int i, n = 0;
744         int err = 0;
745         struct buffer_head *bh;
746         int num;
747         ext4_fsblk_t new_blocks[4];
748         ext4_fsblk_t current_block;
749
750         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
751                                 *blks, new_blocks, &err);
752         if (err)
753                 return err;
754
755         branch[0].key = cpu_to_le32(new_blocks[0]);
756         /*
757          * metadata blocks and data blocks are allocated.
758          */
759         for (n = 1; n <= indirect_blks;  n++) {
760                 /*
761                  * Get buffer_head for parent block, zero it out
762                  * and set the pointer to new one, then send
763                  * parent to disk.
764                  */
765                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
766                 if (unlikely(!bh)) {
767                         err = -EIO;
768                         goto failed;
769                 }
770
771                 branch[n].bh = bh;
772                 lock_buffer(bh);
773                 BUFFER_TRACE(bh, "call get_create_access");
774                 err = ext4_journal_get_create_access(handle, bh);
775                 if (err) {
776                         /* Don't brelse(bh) here; it's done in
777                          * ext4_journal_forget() below */
778                         unlock_buffer(bh);
779                         goto failed;
780                 }
781
782                 memset(bh->b_data, 0, blocksize);
783                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
784                 branch[n].key = cpu_to_le32(new_blocks[n]);
785                 *branch[n].p = branch[n].key;
786                 if (n == indirect_blks) {
787                         current_block = new_blocks[n];
788                         /*
789                          * End of chain, update the last new metablock of
790                          * the chain to point to the new allocated
791                          * data blocks numbers
792                          */
793                         for (i = 1; i < num; i++)
794                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
795                 }
796                 BUFFER_TRACE(bh, "marking uptodate");
797                 set_buffer_uptodate(bh);
798                 unlock_buffer(bh);
799
800                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
801                 err = ext4_handle_dirty_metadata(handle, inode, bh);
802                 if (err)
803                         goto failed;
804         }
805         *blks = num;
806         return err;
807 failed:
808         /* Allocation failed, free what we already allocated */
809         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
810         for (i = 1; i <= n ; i++) {
811                 /*
812                  * branch[i].bh is newly allocated, so there is no
813                  * need to revoke the block, which is why we don't
814                  * need to set EXT4_FREE_BLOCKS_METADATA.
815                  */
816                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
817                                  EXT4_FREE_BLOCKS_FORGET);
818         }
819         for (i = n+1; i < indirect_blks; i++)
820                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
821
822         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
823
824         return err;
825 }
826
827 /**
828  * ext4_splice_branch - splice the allocated branch onto inode.
829  * @inode: owner
830  * @block: (logical) number of block we are adding
831  * @chain: chain of indirect blocks (with a missing link - see
832  *      ext4_alloc_branch)
833  * @where: location of missing link
834  * @num:   number of indirect blocks we are adding
835  * @blks:  number of direct blocks we are adding
836  *
837  * This function fills the missing link and does all housekeeping needed in
838  * inode (->i_blocks, etc.). In case of success we end up with the full
839  * chain to new block and return 0.
840  */
841 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
842                               ext4_lblk_t block, Indirect *where, int num,
843                               int blks)
844 {
845         int i;
846         int err = 0;
847         ext4_fsblk_t current_block;
848
849         /*
850          * If we're splicing into a [td]indirect block (as opposed to the
851          * inode) then we need to get write access to the [td]indirect block
852          * before the splice.
853          */
854         if (where->bh) {
855                 BUFFER_TRACE(where->bh, "get_write_access");
856                 err = ext4_journal_get_write_access(handle, where->bh);
857                 if (err)
858                         goto err_out;
859         }
860         /* That's it */
861
862         *where->p = where->key;
863
864         /*
865          * Update the host buffer_head or inode to point to more just allocated
866          * direct blocks blocks
867          */
868         if (num == 0 && blks > 1) {
869                 current_block = le32_to_cpu(where->key) + 1;
870                 for (i = 1; i < blks; i++)
871                         *(where->p + i) = cpu_to_le32(current_block++);
872         }
873
874         /* We are done with atomic stuff, now do the rest of housekeeping */
875         /* had we spliced it onto indirect block? */
876         if (where->bh) {
877                 /*
878                  * If we spliced it onto an indirect block, we haven't
879                  * altered the inode.  Note however that if it is being spliced
880                  * onto an indirect block at the very end of the file (the
881                  * file is growing) then we *will* alter the inode to reflect
882                  * the new i_size.  But that is not done here - it is done in
883                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
884                  */
885                 jbd_debug(5, "splicing indirect only\n");
886                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
887                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
888                 if (err)
889                         goto err_out;
890         } else {
891                 /*
892                  * OK, we spliced it into the inode itself on a direct block.
893                  */
894                 ext4_mark_inode_dirty(handle, inode);
895                 jbd_debug(5, "splicing direct\n");
896         }
897         return err;
898
899 err_out:
900         for (i = 1; i <= num; i++) {
901                 /*
902                  * branch[i].bh is newly allocated, so there is no
903                  * need to revoke the block, which is why we don't
904                  * need to set EXT4_FREE_BLOCKS_METADATA.
905                  */
906                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
907                                  EXT4_FREE_BLOCKS_FORGET);
908         }
909         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
910                          blks, 0);
911
912         return err;
913 }
914
915 /*
916  * The ext4_ind_map_blocks() function handles non-extents inodes
917  * (i.e., using the traditional indirect/double-indirect i_blocks
918  * scheme) for ext4_map_blocks().
919  *
920  * Allocation strategy is simple: if we have to allocate something, we will
921  * have to go the whole way to leaf. So let's do it before attaching anything
922  * to tree, set linkage between the newborn blocks, write them if sync is
923  * required, recheck the path, free and repeat if check fails, otherwise
924  * set the last missing link (that will protect us from any truncate-generated
925  * removals - all blocks on the path are immune now) and possibly force the
926  * write on the parent block.
927  * That has a nice additional property: no special recovery from the failed
928  * allocations is needed - we simply release blocks and do not touch anything
929  * reachable from inode.
930  *
931  * `handle' can be NULL if create == 0.
932  *
933  * return > 0, # of blocks mapped or allocated.
934  * return = 0, if plain lookup failed.
935  * return < 0, error case.
936  *
937  * The ext4_ind_get_blocks() function should be called with
938  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
939  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
940  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
941  * blocks.
942  */
943 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
944                                struct ext4_map_blocks *map,
945                                int flags)
946 {
947         int err = -EIO;
948         ext4_lblk_t offsets[4];
949         Indirect chain[4];
950         Indirect *partial;
951         ext4_fsblk_t goal;
952         int indirect_blks;
953         int blocks_to_boundary = 0;
954         int depth;
955         int count = 0;
956         ext4_fsblk_t first_block = 0;
957
958         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
959         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
960         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
961                                    &blocks_to_boundary);
962
963         if (depth == 0)
964                 goto out;
965
966         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
967
968         /* Simplest case - block found, no allocation needed */
969         if (!partial) {
970                 first_block = le32_to_cpu(chain[depth - 1].key);
971                 count++;
972                 /*map more blocks*/
973                 while (count < map->m_len && count <= blocks_to_boundary) {
974                         ext4_fsblk_t blk;
975
976                         blk = le32_to_cpu(*(chain[depth-1].p + count));
977
978                         if (blk == first_block + count)
979                                 count++;
980                         else
981                                 break;
982                 }
983                 goto got_it;
984         }
985
986         /* Next simple case - plain lookup or failed read of indirect block */
987         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
988                 goto cleanup;
989
990         /*
991          * Okay, we need to do block allocation.
992         */
993         goal = ext4_find_goal(inode, map->m_lblk, partial);
994
995         /* the number of blocks need to allocate for [d,t]indirect blocks */
996         indirect_blks = (chain + depth) - partial - 1;
997
998         /*
999          * Next look up the indirect map to count the totoal number of
1000          * direct blocks to allocate for this branch.
1001          */
1002         count = ext4_blks_to_allocate(partial, indirect_blks,
1003                                       map->m_len, blocks_to_boundary);
1004         /*
1005          * Block out ext4_truncate while we alter the tree
1006          */
1007         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1008                                 &count, goal,
1009                                 offsets + (partial - chain), partial);
1010
1011         /*
1012          * The ext4_splice_branch call will free and forget any buffers
1013          * on the new chain if there is a failure, but that risks using
1014          * up transaction credits, especially for bitmaps where the
1015          * credits cannot be returned.  Can we handle this somehow?  We
1016          * may need to return -EAGAIN upwards in the worst case.  --sct
1017          */
1018         if (!err)
1019                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1020                                          partial, indirect_blks, count);
1021         if (err)
1022                 goto cleanup;
1023
1024         map->m_flags |= EXT4_MAP_NEW;
1025
1026         ext4_update_inode_fsync_trans(handle, inode, 1);
1027 got_it:
1028         map->m_flags |= EXT4_MAP_MAPPED;
1029         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1030         map->m_len = count;
1031         if (count > blocks_to_boundary)
1032                 map->m_flags |= EXT4_MAP_BOUNDARY;
1033         err = count;
1034         /* Clean up and exit */
1035         partial = chain + depth - 1;    /* the whole chain */
1036 cleanup:
1037         while (partial > chain) {
1038                 BUFFER_TRACE(partial->bh, "call brelse");
1039                 brelse(partial->bh);
1040                 partial--;
1041         }
1042 out:
1043         return err;
1044 }
1045
1046 #ifdef CONFIG_QUOTA
1047 qsize_t *ext4_get_reserved_space(struct inode *inode)
1048 {
1049         return &EXT4_I(inode)->i_reserved_quota;
1050 }
1051 #endif
1052
1053 /*
1054  * Calculate the number of metadata blocks need to reserve
1055  * to allocate a new block at @lblocks for non extent file based file
1056  */
1057 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1058                                               sector_t lblock)
1059 {
1060         struct ext4_inode_info *ei = EXT4_I(inode);
1061         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1062         int blk_bits;
1063
1064         if (lblock < EXT4_NDIR_BLOCKS)
1065                 return 0;
1066
1067         lblock -= EXT4_NDIR_BLOCKS;
1068
1069         if (ei->i_da_metadata_calc_len &&
1070             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1071                 ei->i_da_metadata_calc_len++;
1072                 return 0;
1073         }
1074         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1075         ei->i_da_metadata_calc_len = 1;
1076         blk_bits = order_base_2(lblock);
1077         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1078 }
1079
1080 /*
1081  * Calculate the number of metadata blocks need to reserve
1082  * to allocate a block located at @lblock
1083  */
1084 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1085 {
1086         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1087                 return ext4_ext_calc_metadata_amount(inode, lblock);
1088
1089         return ext4_indirect_calc_metadata_amount(inode, lblock);
1090 }
1091
1092 /*
1093  * Called with i_data_sem down, which is important since we can call
1094  * ext4_discard_preallocations() from here.
1095  */
1096 void ext4_da_update_reserve_space(struct inode *inode,
1097                                         int used, int quota_claim)
1098 {
1099         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1100         struct ext4_inode_info *ei = EXT4_I(inode);
1101
1102         spin_lock(&ei->i_block_reservation_lock);
1103         trace_ext4_da_update_reserve_space(inode, used);
1104         if (unlikely(used > ei->i_reserved_data_blocks)) {
1105                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1106                          "with only %d reserved data blocks\n",
1107                          __func__, inode->i_ino, used,
1108                          ei->i_reserved_data_blocks);
1109                 WARN_ON(1);
1110                 used = ei->i_reserved_data_blocks;
1111         }
1112
1113         /* Update per-inode reservations */
1114         ei->i_reserved_data_blocks -= used;
1115         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1116         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1117                            used + ei->i_allocated_meta_blocks);
1118         ei->i_allocated_meta_blocks = 0;
1119
1120         if (ei->i_reserved_data_blocks == 0) {
1121                 /*
1122                  * We can release all of the reserved metadata blocks
1123                  * only when we have written all of the delayed
1124                  * allocation blocks.
1125                  */
1126                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1127                                    ei->i_reserved_meta_blocks);
1128                 ei->i_reserved_meta_blocks = 0;
1129                 ei->i_da_metadata_calc_len = 0;
1130         }
1131         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132
1133         /* Update quota subsystem for data blocks */
1134         if (quota_claim)
1135                 dquot_claim_block(inode, used);
1136         else {
1137                 /*
1138                  * We did fallocate with an offset that is already delayed
1139                  * allocated. So on delayed allocated writeback we should
1140                  * not re-claim the quota for fallocated blocks.
1141                  */
1142                 dquot_release_reservation_block(inode, used);
1143         }
1144
1145         /*
1146          * If we have done all the pending block allocations and if
1147          * there aren't any writers on the inode, we can discard the
1148          * inode's preallocations.
1149          */
1150         if ((ei->i_reserved_data_blocks == 0) &&
1151             (atomic_read(&inode->i_writecount) == 0))
1152                 ext4_discard_preallocations(inode);
1153 }
1154
1155 static int __check_block_validity(struct inode *inode, const char *func,
1156                                 unsigned int line,
1157                                 struct ext4_map_blocks *map)
1158 {
1159         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1160                                    map->m_len)) {
1161                 ext4_error_inode(inode, func, line, map->m_pblk,
1162                                  "lblock %lu mapped to illegal pblock "
1163                                  "(length %d)", (unsigned long) map->m_lblk,
1164                                  map->m_len);
1165                 return -EIO;
1166         }
1167         return 0;
1168 }
1169
1170 #define check_block_validity(inode, map)        \
1171         __check_block_validity((inode), __func__, __LINE__, (map))
1172
1173 /*
1174  * Return the number of contiguous dirty pages in a given inode
1175  * starting at page frame idx.
1176  */
1177 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1178                                     unsigned int max_pages)
1179 {
1180         struct address_space *mapping = inode->i_mapping;
1181         pgoff_t index;
1182         struct pagevec pvec;
1183         pgoff_t num = 0;
1184         int i, nr_pages, done = 0;
1185
1186         if (max_pages == 0)
1187                 return 0;
1188         pagevec_init(&pvec, 0);
1189         while (!done) {
1190                 index = idx;
1191                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1192                                               PAGECACHE_TAG_DIRTY,
1193                                               (pgoff_t)PAGEVEC_SIZE);
1194                 if (nr_pages == 0)
1195                         break;
1196                 for (i = 0; i < nr_pages; i++) {
1197                         struct page *page = pvec.pages[i];
1198                         struct buffer_head *bh, *head;
1199
1200                         lock_page(page);
1201                         if (unlikely(page->mapping != mapping) ||
1202                             !PageDirty(page) ||
1203                             PageWriteback(page) ||
1204                             page->index != idx) {
1205                                 done = 1;
1206                                 unlock_page(page);
1207                                 break;
1208                         }
1209                         if (page_has_buffers(page)) {
1210                                 bh = head = page_buffers(page);
1211                                 do {
1212                                         if (!buffer_delay(bh) &&
1213                                             !buffer_unwritten(bh))
1214                                                 done = 1;
1215                                         bh = bh->b_this_page;
1216                                 } while (!done && (bh != head));
1217                         }
1218                         unlock_page(page);
1219                         if (done)
1220                                 break;
1221                         idx++;
1222                         num++;
1223                         if (num >= max_pages) {
1224                                 done = 1;
1225                                 break;
1226                         }
1227                 }
1228                 pagevec_release(&pvec);
1229         }
1230         return num;
1231 }
1232
1233 /*
1234  * The ext4_map_blocks() function tries to look up the requested blocks,
1235  * and returns if the blocks are already mapped.
1236  *
1237  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1238  * and store the allocated blocks in the result buffer head and mark it
1239  * mapped.
1240  *
1241  * If file type is extents based, it will call ext4_ext_map_blocks(),
1242  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1243  * based files
1244  *
1245  * On success, it returns the number of blocks being mapped or allocate.
1246  * if create==0 and the blocks are pre-allocated and uninitialized block,
1247  * the result buffer head is unmapped. If the create ==1, it will make sure
1248  * the buffer head is mapped.
1249  *
1250  * It returns 0 if plain look up failed (blocks have not been allocated), in
1251  * that casem, buffer head is unmapped
1252  *
1253  * It returns the error in case of allocation failure.
1254  */
1255 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1256                     struct ext4_map_blocks *map, int flags)
1257 {
1258         int retval;
1259
1260         map->m_flags = 0;
1261         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1262                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1263                   (unsigned long) map->m_lblk);
1264         /*
1265          * Try to see if we can get the block without requesting a new
1266          * file system block.
1267          */
1268         down_read((&EXT4_I(inode)->i_data_sem));
1269         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1270                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1271         } else {
1272                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1273         }
1274         up_read((&EXT4_I(inode)->i_data_sem));
1275
1276         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1277                 int ret = check_block_validity(inode, map);
1278                 if (ret != 0)
1279                         return ret;
1280         }
1281
1282         /* If it is only a block(s) look up */
1283         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1284                 return retval;
1285
1286         /*
1287          * Returns if the blocks have already allocated
1288          *
1289          * Note that if blocks have been preallocated
1290          * ext4_ext_get_block() returns th create = 0
1291          * with buffer head unmapped.
1292          */
1293         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1294                 return retval;
1295
1296         /*
1297          * When we call get_blocks without the create flag, the
1298          * BH_Unwritten flag could have gotten set if the blocks
1299          * requested were part of a uninitialized extent.  We need to
1300          * clear this flag now that we are committed to convert all or
1301          * part of the uninitialized extent to be an initialized
1302          * extent.  This is because we need to avoid the combination
1303          * of BH_Unwritten and BH_Mapped flags being simultaneously
1304          * set on the buffer_head.
1305          */
1306         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1307
1308         /*
1309          * New blocks allocate and/or writing to uninitialized extent
1310          * will possibly result in updating i_data, so we take
1311          * the write lock of i_data_sem, and call get_blocks()
1312          * with create == 1 flag.
1313          */
1314         down_write((&EXT4_I(inode)->i_data_sem));
1315
1316         /*
1317          * if the caller is from delayed allocation writeout path
1318          * we have already reserved fs blocks for allocation
1319          * let the underlying get_block() function know to
1320          * avoid double accounting
1321          */
1322         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1323                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1324         /*
1325          * We need to check for EXT4 here because migrate
1326          * could have changed the inode type in between
1327          */
1328         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1329                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1330         } else {
1331                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1332
1333                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1334                         /*
1335                          * We allocated new blocks which will result in
1336                          * i_data's format changing.  Force the migrate
1337                          * to fail by clearing migrate flags
1338                          */
1339                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1340                 }
1341
1342                 /*
1343                  * Update reserved blocks/metadata blocks after successful
1344                  * block allocation which had been deferred till now. We don't
1345                  * support fallocate for non extent files. So we can update
1346                  * reserve space here.
1347                  */
1348                 if ((retval > 0) &&
1349                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1350                         ext4_da_update_reserve_space(inode, retval, 1);
1351         }
1352         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1353                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1354
1355         up_write((&EXT4_I(inode)->i_data_sem));
1356         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1357                 int ret = check_block_validity(inode, map);
1358                 if (ret != 0)
1359                         return ret;
1360         }
1361         return retval;
1362 }
1363
1364 /* Maximum number of blocks we map for direct IO at once. */
1365 #define DIO_MAX_BLOCKS 4096
1366
1367 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1368                            struct buffer_head *bh, int flags)
1369 {
1370         handle_t *handle = ext4_journal_current_handle();
1371         struct ext4_map_blocks map;
1372         int ret = 0, started = 0;
1373         int dio_credits;
1374
1375         map.m_lblk = iblock;
1376         map.m_len = bh->b_size >> inode->i_blkbits;
1377
1378         if (flags && !handle) {
1379                 /* Direct IO write... */
1380                 if (map.m_len > DIO_MAX_BLOCKS)
1381                         map.m_len = DIO_MAX_BLOCKS;
1382                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1383                 handle = ext4_journal_start(inode, dio_credits);
1384                 if (IS_ERR(handle)) {
1385                         ret = PTR_ERR(handle);
1386                         return ret;
1387                 }
1388                 started = 1;
1389         }
1390
1391         ret = ext4_map_blocks(handle, inode, &map, flags);
1392         if (ret > 0) {
1393                 map_bh(bh, inode->i_sb, map.m_pblk);
1394                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1395                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1396                 ret = 0;
1397         }
1398         if (started)
1399                 ext4_journal_stop(handle);
1400         return ret;
1401 }
1402
1403 int ext4_get_block(struct inode *inode, sector_t iblock,
1404                    struct buffer_head *bh, int create)
1405 {
1406         return _ext4_get_block(inode, iblock, bh,
1407                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1408 }
1409
1410 /*
1411  * `handle' can be NULL if create is zero
1412  */
1413 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1414                                 ext4_lblk_t block, int create, int *errp)
1415 {
1416         struct ext4_map_blocks map;
1417         struct buffer_head *bh;
1418         int fatal = 0, err;
1419
1420         J_ASSERT(handle != NULL || create == 0);
1421
1422         map.m_lblk = block;
1423         map.m_len = 1;
1424         err = ext4_map_blocks(handle, inode, &map,
1425                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1426
1427         if (err < 0)
1428                 *errp = err;
1429         if (err <= 0)
1430                 return NULL;
1431         *errp = 0;
1432
1433         bh = sb_getblk(inode->i_sb, map.m_pblk);
1434         if (!bh) {
1435                 *errp = -EIO;
1436                 return NULL;
1437         }
1438         if (map.m_flags & EXT4_MAP_NEW) {
1439                 J_ASSERT(create != 0);
1440                 J_ASSERT(handle != NULL);
1441
1442                 /*
1443                  * Now that we do not always journal data, we should
1444                  * keep in mind whether this should always journal the
1445                  * new buffer as metadata.  For now, regular file
1446                  * writes use ext4_get_block instead, so it's not a
1447                  * problem.
1448                  */
1449                 lock_buffer(bh);
1450                 BUFFER_TRACE(bh, "call get_create_access");
1451                 fatal = ext4_journal_get_create_access(handle, bh);
1452                 if (!fatal && !buffer_uptodate(bh)) {
1453                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1454                         set_buffer_uptodate(bh);
1455                 }
1456                 unlock_buffer(bh);
1457                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1458                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1459                 if (!fatal)
1460                         fatal = err;
1461         } else {
1462                 BUFFER_TRACE(bh, "not a new buffer");
1463         }
1464         if (fatal) {
1465                 *errp = fatal;
1466                 brelse(bh);
1467                 bh = NULL;
1468         }
1469         return bh;
1470 }
1471
1472 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1473                                ext4_lblk_t block, int create, int *err)
1474 {
1475         struct buffer_head *bh;
1476
1477         bh = ext4_getblk(handle, inode, block, create, err);
1478         if (!bh)
1479                 return bh;
1480         if (buffer_uptodate(bh))
1481                 return bh;
1482         ll_rw_block(READ_META, 1, &bh);
1483         wait_on_buffer(bh);
1484         if (buffer_uptodate(bh))
1485                 return bh;
1486         put_bh(bh);
1487         *err = -EIO;
1488         return NULL;
1489 }
1490
1491 static int walk_page_buffers(handle_t *handle,
1492                              struct buffer_head *head,
1493                              unsigned from,
1494                              unsigned to,
1495                              int *partial,
1496                              int (*fn)(handle_t *handle,
1497                                        struct buffer_head *bh))
1498 {
1499         struct buffer_head *bh;
1500         unsigned block_start, block_end;
1501         unsigned blocksize = head->b_size;
1502         int err, ret = 0;
1503         struct buffer_head *next;
1504
1505         for (bh = head, block_start = 0;
1506              ret == 0 && (bh != head || !block_start);
1507              block_start = block_end, bh = next) {
1508                 next = bh->b_this_page;
1509                 block_end = block_start + blocksize;
1510                 if (block_end <= from || block_start >= to) {
1511                         if (partial && !buffer_uptodate(bh))
1512                                 *partial = 1;
1513                         continue;
1514                 }
1515                 err = (*fn)(handle, bh);
1516                 if (!ret)
1517                         ret = err;
1518         }
1519         return ret;
1520 }
1521
1522 /*
1523  * To preserve ordering, it is essential that the hole instantiation and
1524  * the data write be encapsulated in a single transaction.  We cannot
1525  * close off a transaction and start a new one between the ext4_get_block()
1526  * and the commit_write().  So doing the jbd2_journal_start at the start of
1527  * prepare_write() is the right place.
1528  *
1529  * Also, this function can nest inside ext4_writepage() ->
1530  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1531  * has generated enough buffer credits to do the whole page.  So we won't
1532  * block on the journal in that case, which is good, because the caller may
1533  * be PF_MEMALLOC.
1534  *
1535  * By accident, ext4 can be reentered when a transaction is open via
1536  * quota file writes.  If we were to commit the transaction while thus
1537  * reentered, there can be a deadlock - we would be holding a quota
1538  * lock, and the commit would never complete if another thread had a
1539  * transaction open and was blocking on the quota lock - a ranking
1540  * violation.
1541  *
1542  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1543  * will _not_ run commit under these circumstances because handle->h_ref
1544  * is elevated.  We'll still have enough credits for the tiny quotafile
1545  * write.
1546  */
1547 static int do_journal_get_write_access(handle_t *handle,
1548                                        struct buffer_head *bh)
1549 {
1550         int dirty = buffer_dirty(bh);
1551         int ret;
1552
1553         if (!buffer_mapped(bh) || buffer_freed(bh))
1554                 return 0;
1555         /*
1556          * __block_write_begin() could have dirtied some buffers. Clean
1557          * the dirty bit as jbd2_journal_get_write_access() could complain
1558          * otherwise about fs integrity issues. Setting of the dirty bit
1559          * by __block_write_begin() isn't a real problem here as we clear
1560          * the bit before releasing a page lock and thus writeback cannot
1561          * ever write the buffer.
1562          */
1563         if (dirty)
1564                 clear_buffer_dirty(bh);
1565         ret = ext4_journal_get_write_access(handle, bh);
1566         if (!ret && dirty)
1567                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1568         return ret;
1569 }
1570
1571 /*
1572  * Truncate blocks that were not used by write. We have to truncate the
1573  * pagecache as well so that corresponding buffers get properly unmapped.
1574  */
1575 static void ext4_truncate_failed_write(struct inode *inode)
1576 {
1577         truncate_inode_pages(inode->i_mapping, inode->i_size);
1578         ext4_truncate(inode);
1579 }
1580
1581 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1582                    struct buffer_head *bh_result, int create);
1583 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1584                             loff_t pos, unsigned len, unsigned flags,
1585                             struct page **pagep, void **fsdata)
1586 {
1587         struct inode *inode = mapping->host;
1588         int ret, needed_blocks;
1589         handle_t *handle;
1590         int retries = 0;
1591         struct page *page;
1592         pgoff_t index;
1593         unsigned from, to;
1594
1595         trace_ext4_write_begin(inode, pos, len, flags);
1596         /*
1597          * Reserve one block more for addition to orphan list in case
1598          * we allocate blocks but write fails for some reason
1599          */
1600         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1601         index = pos >> PAGE_CACHE_SHIFT;
1602         from = pos & (PAGE_CACHE_SIZE - 1);
1603         to = from + len;
1604
1605 retry:
1606         handle = ext4_journal_start(inode, needed_blocks);
1607         if (IS_ERR(handle)) {
1608                 ret = PTR_ERR(handle);
1609                 goto out;
1610         }
1611
1612         /* We cannot recurse into the filesystem as the transaction is already
1613          * started */
1614         flags |= AOP_FLAG_NOFS;
1615
1616         page = grab_cache_page_write_begin(mapping, index, flags);
1617         if (!page) {
1618                 ext4_journal_stop(handle);
1619                 ret = -ENOMEM;
1620                 goto out;
1621         }
1622         *pagep = page;
1623
1624         if (ext4_should_dioread_nolock(inode))
1625                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1626         else
1627                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1628
1629         if (!ret && ext4_should_journal_data(inode)) {
1630                 ret = walk_page_buffers(handle, page_buffers(page),
1631                                 from, to, NULL, do_journal_get_write_access);
1632         }
1633
1634         if (ret) {
1635                 unlock_page(page);
1636                 page_cache_release(page);
1637                 /*
1638                  * __block_write_begin may have instantiated a few blocks
1639                  * outside i_size.  Trim these off again. Don't need
1640                  * i_size_read because we hold i_mutex.
1641                  *
1642                  * Add inode to orphan list in case we crash before
1643                  * truncate finishes
1644                  */
1645                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1646                         ext4_orphan_add(handle, inode);
1647
1648                 ext4_journal_stop(handle);
1649                 if (pos + len > inode->i_size) {
1650                         ext4_truncate_failed_write(inode);
1651                         /*
1652                          * If truncate failed early the inode might
1653                          * still be on the orphan list; we need to
1654                          * make sure the inode is removed from the
1655                          * orphan list in that case.
1656                          */
1657                         if (inode->i_nlink)
1658                                 ext4_orphan_del(NULL, inode);
1659                 }
1660         }
1661
1662         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1663                 goto retry;
1664 out:
1665         return ret;
1666 }
1667
1668 /* For write_end() in data=journal mode */
1669 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1670 {
1671         if (!buffer_mapped(bh) || buffer_freed(bh))
1672                 return 0;
1673         set_buffer_uptodate(bh);
1674         return ext4_handle_dirty_metadata(handle, NULL, bh);
1675 }
1676
1677 static int ext4_generic_write_end(struct file *file,
1678                                   struct address_space *mapping,
1679                                   loff_t pos, unsigned len, unsigned copied,
1680                                   struct page *page, void *fsdata)
1681 {
1682         int i_size_changed = 0;
1683         struct inode *inode = mapping->host;
1684         handle_t *handle = ext4_journal_current_handle();
1685
1686         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1687
1688         /*
1689          * No need to use i_size_read() here, the i_size
1690          * cannot change under us because we hold i_mutex.
1691          *
1692          * But it's important to update i_size while still holding page lock:
1693          * page writeout could otherwise come in and zero beyond i_size.
1694          */
1695         if (pos + copied > inode->i_size) {
1696                 i_size_write(inode, pos + copied);
1697                 i_size_changed = 1;
1698         }
1699
1700         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1701                 /* We need to mark inode dirty even if
1702                  * new_i_size is less that inode->i_size
1703                  * bu greater than i_disksize.(hint delalloc)
1704                  */
1705                 ext4_update_i_disksize(inode, (pos + copied));
1706                 i_size_changed = 1;
1707         }
1708         unlock_page(page);
1709         page_cache_release(page);
1710
1711         /*
1712          * Don't mark the inode dirty under page lock. First, it unnecessarily
1713          * makes the holding time of page lock longer. Second, it forces lock
1714          * ordering of page lock and transaction start for journaling
1715          * filesystems.
1716          */
1717         if (i_size_changed)
1718                 ext4_mark_inode_dirty(handle, inode);
1719
1720         return copied;
1721 }
1722
1723 /*
1724  * We need to pick up the new inode size which generic_commit_write gave us
1725  * `file' can be NULL - eg, when called from page_symlink().
1726  *
1727  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1728  * buffers are managed internally.
1729  */
1730 static int ext4_ordered_write_end(struct file *file,
1731                                   struct address_space *mapping,
1732                                   loff_t pos, unsigned len, unsigned copied,
1733                                   struct page *page, void *fsdata)
1734 {
1735         handle_t *handle = ext4_journal_current_handle();
1736         struct inode *inode = mapping->host;
1737         int ret = 0, ret2;
1738
1739         trace_ext4_ordered_write_end(inode, pos, len, copied);
1740         ret = ext4_jbd2_file_inode(handle, inode);
1741
1742         if (ret == 0) {
1743                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1744                                                         page, fsdata);
1745                 copied = ret2;
1746                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1747                         /* if we have allocated more blocks and copied
1748                          * less. We will have blocks allocated outside
1749                          * inode->i_size. So truncate them
1750                          */
1751                         ext4_orphan_add(handle, inode);
1752                 if (ret2 < 0)
1753                         ret = ret2;
1754         }
1755         ret2 = ext4_journal_stop(handle);
1756         if (!ret)
1757                 ret = ret2;
1758
1759         if (pos + len > inode->i_size) {
1760                 ext4_truncate_failed_write(inode);
1761                 /*
1762                  * If truncate failed early the inode might still be
1763                  * on the orphan list; we need to make sure the inode
1764                  * is removed from the orphan list in that case.
1765                  */
1766                 if (inode->i_nlink)
1767                         ext4_orphan_del(NULL, inode);
1768         }
1769
1770
1771         return ret ? ret : copied;
1772 }
1773
1774 static int ext4_writeback_write_end(struct file *file,
1775                                     struct address_space *mapping,
1776                                     loff_t pos, unsigned len, unsigned copied,
1777                                     struct page *page, void *fsdata)
1778 {
1779         handle_t *handle = ext4_journal_current_handle();
1780         struct inode *inode = mapping->host;
1781         int ret = 0, ret2;
1782
1783         trace_ext4_writeback_write_end(inode, pos, len, copied);
1784         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1785                                                         page, fsdata);
1786         copied = ret2;
1787         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1788                 /* if we have allocated more blocks and copied
1789                  * less. We will have blocks allocated outside
1790                  * inode->i_size. So truncate them
1791                  */
1792                 ext4_orphan_add(handle, inode);
1793
1794         if (ret2 < 0)
1795                 ret = ret2;
1796
1797         ret2 = ext4_journal_stop(handle);
1798         if (!ret)
1799                 ret = ret2;
1800
1801         if (pos + len > inode->i_size) {
1802                 ext4_truncate_failed_write(inode);
1803                 /*
1804                  * If truncate failed early the inode might still be
1805                  * on the orphan list; we need to make sure the inode
1806                  * is removed from the orphan list in that case.
1807                  */
1808                 if (inode->i_nlink)
1809                         ext4_orphan_del(NULL, inode);
1810         }
1811
1812         return ret ? ret : copied;
1813 }
1814
1815 static int ext4_journalled_write_end(struct file *file,
1816                                      struct address_space *mapping,
1817                                      loff_t pos, unsigned len, unsigned copied,
1818                                      struct page *page, void *fsdata)
1819 {
1820         handle_t *handle = ext4_journal_current_handle();
1821         struct inode *inode = mapping->host;
1822         int ret = 0, ret2;
1823         int partial = 0;
1824         unsigned from, to;
1825         loff_t new_i_size;
1826
1827         trace_ext4_journalled_write_end(inode, pos, len, copied);
1828         from = pos & (PAGE_CACHE_SIZE - 1);
1829         to = from + len;
1830
1831         if (copied < len) {
1832                 if (!PageUptodate(page))
1833                         copied = 0;
1834                 page_zero_new_buffers(page, from+copied, to);
1835         }
1836
1837         ret = walk_page_buffers(handle, page_buffers(page), from,
1838                                 to, &partial, write_end_fn);
1839         if (!partial)
1840                 SetPageUptodate(page);
1841         new_i_size = pos + copied;
1842         if (new_i_size > inode->i_size)
1843                 i_size_write(inode, pos+copied);
1844         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1845         if (new_i_size > EXT4_I(inode)->i_disksize) {
1846                 ext4_update_i_disksize(inode, new_i_size);
1847                 ret2 = ext4_mark_inode_dirty(handle, inode);
1848                 if (!ret)
1849                         ret = ret2;
1850         }
1851
1852         unlock_page(page);
1853         page_cache_release(page);
1854         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1855                 /* if we have allocated more blocks and copied
1856                  * less. We will have blocks allocated outside
1857                  * inode->i_size. So truncate them
1858                  */
1859                 ext4_orphan_add(handle, inode);
1860
1861         ret2 = ext4_journal_stop(handle);
1862         if (!ret)
1863                 ret = ret2;
1864         if (pos + len > inode->i_size) {
1865                 ext4_truncate_failed_write(inode);
1866                 /*
1867                  * If truncate failed early the inode might still be
1868                  * on the orphan list; we need to make sure the inode
1869                  * is removed from the orphan list in that case.
1870                  */
1871                 if (inode->i_nlink)
1872                         ext4_orphan_del(NULL, inode);
1873         }
1874
1875         return ret ? ret : copied;
1876 }
1877
1878 /*
1879  * Reserve a single block located at lblock
1880  */
1881 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1882 {
1883         int retries = 0;
1884         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1885         struct ext4_inode_info *ei = EXT4_I(inode);
1886         unsigned long md_needed;
1887         int ret;
1888
1889         /*
1890          * recalculate the amount of metadata blocks to reserve
1891          * in order to allocate nrblocks
1892          * worse case is one extent per block
1893          */
1894 repeat:
1895         spin_lock(&ei->i_block_reservation_lock);
1896         md_needed = ext4_calc_metadata_amount(inode, lblock);
1897         trace_ext4_da_reserve_space(inode, md_needed);
1898         spin_unlock(&ei->i_block_reservation_lock);
1899
1900         /*
1901          * We will charge metadata quota at writeout time; this saves
1902          * us from metadata over-estimation, though we may go over by
1903          * a small amount in the end.  Here we just reserve for data.
1904          */
1905         ret = dquot_reserve_block(inode, 1);
1906         if (ret)
1907                 return ret;
1908         /*
1909          * We do still charge estimated metadata to the sb though;
1910          * we cannot afford to run out of free blocks.
1911          */
1912         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1913                 dquot_release_reservation_block(inode, 1);
1914                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1915                         yield();
1916                         goto repeat;
1917                 }
1918                 return -ENOSPC;
1919         }
1920         spin_lock(&ei->i_block_reservation_lock);
1921         ei->i_reserved_data_blocks++;
1922         ei->i_reserved_meta_blocks += md_needed;
1923         spin_unlock(&ei->i_block_reservation_lock);
1924
1925         return 0;       /* success */
1926 }
1927
1928 static void ext4_da_release_space(struct inode *inode, int to_free)
1929 {
1930         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1931         struct ext4_inode_info *ei = EXT4_I(inode);
1932
1933         if (!to_free)
1934                 return;         /* Nothing to release, exit */
1935
1936         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1937
1938         trace_ext4_da_release_space(inode, to_free);
1939         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1940                 /*
1941                  * if there aren't enough reserved blocks, then the
1942                  * counter is messed up somewhere.  Since this
1943                  * function is called from invalidate page, it's
1944                  * harmless to return without any action.
1945                  */
1946                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1947                          "ino %lu, to_free %d with only %d reserved "
1948                          "data blocks\n", inode->i_ino, to_free,
1949                          ei->i_reserved_data_blocks);
1950                 WARN_ON(1);
1951                 to_free = ei->i_reserved_data_blocks;
1952         }
1953         ei->i_reserved_data_blocks -= to_free;
1954
1955         if (ei->i_reserved_data_blocks == 0) {
1956                 /*
1957                  * We can release all of the reserved metadata blocks
1958                  * only when we have written all of the delayed
1959                  * allocation blocks.
1960                  */
1961                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1962                                    ei->i_reserved_meta_blocks);
1963                 ei->i_reserved_meta_blocks = 0;
1964                 ei->i_da_metadata_calc_len = 0;
1965         }
1966
1967         /* update fs dirty data blocks counter */
1968         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1969
1970         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1971
1972         dquot_release_reservation_block(inode, to_free);
1973 }
1974
1975 static void ext4_da_page_release_reservation(struct page *page,
1976                                              unsigned long offset)
1977 {
1978         int to_release = 0;
1979         struct buffer_head *head, *bh;
1980         unsigned int curr_off = 0;
1981
1982         head = page_buffers(page);
1983         bh = head;
1984         do {
1985                 unsigned int next_off = curr_off + bh->b_size;
1986
1987                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1988                         to_release++;
1989                         clear_buffer_delay(bh);
1990                 }
1991                 curr_off = next_off;
1992         } while ((bh = bh->b_this_page) != head);
1993         ext4_da_release_space(page->mapping->host, to_release);
1994 }
1995
1996 /*
1997  * Delayed allocation stuff
1998  */
1999
2000 /*
2001  * mpage_da_submit_io - walks through extent of pages and try to write
2002  * them with writepage() call back
2003  *
2004  * @mpd->inode: inode
2005  * @mpd->first_page: first page of the extent
2006  * @mpd->next_page: page after the last page of the extent
2007  *
2008  * By the time mpage_da_submit_io() is called we expect all blocks
2009  * to be allocated. this may be wrong if allocation failed.
2010  *
2011  * As pages are already locked by write_cache_pages(), we can't use it
2012  */
2013 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2014                               struct ext4_map_blocks *map)
2015 {
2016         struct pagevec pvec;
2017         unsigned long index, end;
2018         int ret = 0, err, nr_pages, i;
2019         struct inode *inode = mpd->inode;
2020         struct address_space *mapping = inode->i_mapping;
2021         loff_t size = i_size_read(inode);
2022         unsigned int len, block_start;
2023         struct buffer_head *bh, *page_bufs = NULL;
2024         int journal_data = ext4_should_journal_data(inode);
2025         sector_t pblock = 0, cur_logical = 0;
2026         struct ext4_io_submit io_submit;
2027
2028         BUG_ON(mpd->next_page <= mpd->first_page);
2029         memset(&io_submit, 0, sizeof(io_submit));
2030         /*
2031          * We need to start from the first_page to the next_page - 1
2032          * to make sure we also write the mapped dirty buffer_heads.
2033          * If we look at mpd->b_blocknr we would only be looking
2034          * at the currently mapped buffer_heads.
2035          */
2036         index = mpd->first_page;
2037         end = mpd->next_page - 1;
2038
2039         pagevec_init(&pvec, 0);
2040         while (index <= end) {
2041                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2042                 if (nr_pages == 0)
2043                         break;
2044                 for (i = 0; i < nr_pages; i++) {
2045                         int commit_write = 0, redirty_page = 0;
2046                         struct page *page = pvec.pages[i];
2047
2048                         index = page->index;
2049                         if (index > end)
2050                                 break;
2051
2052                         if (index == size >> PAGE_CACHE_SHIFT)
2053                                 len = size & ~PAGE_CACHE_MASK;
2054                         else
2055                                 len = PAGE_CACHE_SIZE;
2056                         if (map) {
2057                                 cur_logical = index << (PAGE_CACHE_SHIFT -
2058                                                         inode->i_blkbits);
2059                                 pblock = map->m_pblk + (cur_logical -
2060                                                         map->m_lblk);
2061                         }
2062                         index++;
2063
2064                         BUG_ON(!PageLocked(page));
2065                         BUG_ON(PageWriteback(page));
2066
2067                         /*
2068                          * If the page does not have buffers (for
2069                          * whatever reason), try to create them using
2070                          * __block_write_begin.  If this fails,
2071                          * redirty the page and move on.
2072                          */
2073                         if (!page_has_buffers(page)) {
2074                                 if (__block_write_begin(page, 0, len,
2075                                                 noalloc_get_block_write)) {
2076                                 redirty_page:
2077                                         redirty_page_for_writepage(mpd->wbc,
2078                                                                    page);
2079                                         unlock_page(page);
2080                                         continue;
2081                                 }
2082                                 commit_write = 1;
2083                         }
2084
2085                         bh = page_bufs = page_buffers(page);
2086                         block_start = 0;
2087                         do {
2088                                 if (!bh)
2089                                         goto redirty_page;
2090                                 if (map && (cur_logical >= map->m_lblk) &&
2091                                     (cur_logical <= (map->m_lblk +
2092                                                      (map->m_len - 1)))) {
2093                                         if (buffer_delay(bh)) {
2094                                                 clear_buffer_delay(bh);
2095                                                 bh->b_blocknr = pblock;
2096                                         }
2097                                         if (buffer_unwritten(bh) ||
2098                                             buffer_mapped(bh))
2099                                                 BUG_ON(bh->b_blocknr != pblock);
2100                                         if (map->m_flags & EXT4_MAP_UNINIT)
2101                                                 set_buffer_uninit(bh);
2102                                         clear_buffer_unwritten(bh);
2103                                 }
2104
2105                                 /* redirty page if block allocation undone */
2106                                 if (buffer_delay(bh) || buffer_unwritten(bh))
2107                                         redirty_page = 1;
2108                                 bh = bh->b_this_page;
2109                                 block_start += bh->b_size;
2110                                 cur_logical++;
2111                                 pblock++;
2112                         } while (bh != page_bufs);
2113
2114                         if (redirty_page)
2115                                 goto redirty_page;
2116
2117                         if (commit_write)
2118                                 /* mark the buffer_heads as dirty & uptodate */
2119                                 block_commit_write(page, 0, len);
2120
2121                         /*
2122                          * Delalloc doesn't support data journalling,
2123                          * but eventually maybe we'll lift this
2124                          * restriction.
2125                          */
2126                         if (unlikely(journal_data && PageChecked(page)))
2127                                 err = __ext4_journalled_writepage(page, len);
2128                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2129                                 err = ext4_bio_write_page(&io_submit, page,
2130                                                           len, mpd->wbc);
2131                         else
2132                                 err = block_write_full_page(page,
2133                                         noalloc_get_block_write, mpd->wbc);
2134
2135                         if (!err)
2136                                 mpd->pages_written++;
2137                         /*
2138                          * In error case, we have to continue because
2139                          * remaining pages are still locked
2140                          */
2141                         if (ret == 0)
2142                                 ret = err;
2143                 }
2144                 pagevec_release(&pvec);
2145         }
2146         ext4_io_submit(&io_submit);
2147         return ret;
2148 }
2149
2150 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2151                                         sector_t logical, long blk_cnt)
2152 {
2153         int nr_pages, i;
2154         pgoff_t index, end;
2155         struct pagevec pvec;
2156         struct inode *inode = mpd->inode;
2157         struct address_space *mapping = inode->i_mapping;
2158
2159         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2160         end   = (logical + blk_cnt - 1) >>
2161                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2162         while (index <= end) {
2163                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2164                 if (nr_pages == 0)
2165                         break;
2166                 for (i = 0; i < nr_pages; i++) {
2167                         struct page *page = pvec.pages[i];
2168                         if (page->index > end)
2169                                 break;
2170                         BUG_ON(!PageLocked(page));
2171                         BUG_ON(PageWriteback(page));
2172                         block_invalidatepage(page, 0);
2173                         ClearPageUptodate(page);
2174                         unlock_page(page);
2175                 }
2176                 index = pvec.pages[nr_pages - 1]->index + 1;
2177                 pagevec_release(&pvec);
2178         }
2179         return;
2180 }
2181
2182 static void ext4_print_free_blocks(struct inode *inode)
2183 {
2184         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2185         printk(KERN_CRIT "Total free blocks count %lld\n",
2186                ext4_count_free_blocks(inode->i_sb));
2187         printk(KERN_CRIT "Free/Dirty block details\n");
2188         printk(KERN_CRIT "free_blocks=%lld\n",
2189                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2190         printk(KERN_CRIT "dirty_blocks=%lld\n",
2191                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2192         printk(KERN_CRIT "Block reservation details\n");
2193         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2194                EXT4_I(inode)->i_reserved_data_blocks);
2195         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2196                EXT4_I(inode)->i_reserved_meta_blocks);
2197         return;
2198 }
2199
2200 /*
2201  * mpage_da_map_and_submit - go through given space, map them
2202  *       if necessary, and then submit them for I/O
2203  *
2204  * @mpd - bh describing space
2205  *
2206  * The function skips space we know is already mapped to disk blocks.
2207  *
2208  */
2209 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2210 {
2211         int err, blks, get_blocks_flags;
2212         struct ext4_map_blocks map, *mapp = NULL;
2213         sector_t next = mpd->b_blocknr;
2214         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2215         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2216         handle_t *handle = NULL;
2217
2218         /*
2219          * If the blocks are mapped already, or we couldn't accumulate
2220          * any blocks, then proceed immediately to the submission stage.
2221          */
2222         if ((mpd->b_size == 0) ||
2223             ((mpd->b_state  & (1 << BH_Mapped)) &&
2224              !(mpd->b_state & (1 << BH_Delay)) &&
2225              !(mpd->b_state & (1 << BH_Unwritten))))
2226                 goto submit_io;
2227
2228         handle = ext4_journal_current_handle();
2229         BUG_ON(!handle);
2230
2231         /*
2232          * Call ext4_map_blocks() to allocate any delayed allocation
2233          * blocks, or to convert an uninitialized extent to be
2234          * initialized (in the case where we have written into
2235          * one or more preallocated blocks).
2236          *
2237          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2238          * indicate that we are on the delayed allocation path.  This
2239          * affects functions in many different parts of the allocation
2240          * call path.  This flag exists primarily because we don't
2241          * want to change *many* call functions, so ext4_map_blocks()
2242          * will set the magic i_delalloc_reserved_flag once the
2243          * inode's allocation semaphore is taken.
2244          *
2245          * If the blocks in questions were delalloc blocks, set
2246          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2247          * variables are updated after the blocks have been allocated.
2248          */
2249         map.m_lblk = next;
2250         map.m_len = max_blocks;
2251         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2252         if (ext4_should_dioread_nolock(mpd->inode))
2253                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2254         if (mpd->b_state & (1 << BH_Delay))
2255                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2256
2257         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2258         if (blks < 0) {
2259                 struct super_block *sb = mpd->inode->i_sb;
2260
2261                 err = blks;
2262                 /*
2263                  * If get block returns EAGAIN or ENOSPC and there
2264                  * appears to be free blocks we will call
2265                  * ext4_writepage() for all of the pages which will
2266                  * just redirty the pages.
2267                  */
2268                 if (err == -EAGAIN)
2269                         goto submit_io;
2270
2271                 if (err == -ENOSPC &&
2272                     ext4_count_free_blocks(sb)) {
2273                         mpd->retval = err;
2274                         goto submit_io;
2275                 }
2276
2277                 /*
2278                  * get block failure will cause us to loop in
2279                  * writepages, because a_ops->writepage won't be able
2280                  * to make progress. The page will be redirtied by
2281                  * writepage and writepages will again try to write
2282                  * the same.
2283                  */
2284                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2285                         ext4_msg(sb, KERN_CRIT,
2286                                  "delayed block allocation failed for inode %lu "
2287                                  "at logical offset %llu with max blocks %zd "
2288                                  "with error %d", mpd->inode->i_ino,
2289                                  (unsigned long long) next,
2290                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2291                         ext4_msg(sb, KERN_CRIT,
2292                                 "This should not happen!! Data will be lost\n");
2293                         if (err == -ENOSPC)
2294                                 ext4_print_free_blocks(mpd->inode);
2295                 }
2296                 /* invalidate all the pages */
2297                 ext4_da_block_invalidatepages(mpd, next,
2298                                 mpd->b_size >> mpd->inode->i_blkbits);
2299                 return;
2300         }
2301         BUG_ON(blks == 0);
2302
2303         mapp = &map;
2304         if (map.m_flags & EXT4_MAP_NEW) {
2305                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2306                 int i;
2307
2308                 for (i = 0; i < map.m_len; i++)
2309                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2310         }
2311
2312         if (ext4_should_order_data(mpd->inode)) {
2313                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2314                 if (err)
2315                         /* This only happens if the journal is aborted */
2316                         return;
2317         }
2318
2319         /*
2320          * Update on-disk size along with block allocation.
2321          */
2322         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2323         if (disksize > i_size_read(mpd->inode))
2324                 disksize = i_size_read(mpd->inode);
2325         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2326                 ext4_update_i_disksize(mpd->inode, disksize);
2327                 err = ext4_mark_inode_dirty(handle, mpd->inode);
2328                 if (err)
2329                         ext4_error(mpd->inode->i_sb,
2330                                    "Failed to mark inode %lu dirty",
2331                                    mpd->inode->i_ino);
2332         }
2333
2334 submit_io:
2335         mpage_da_submit_io(mpd, mapp);
2336         mpd->io_done = 1;
2337 }
2338
2339 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2340                 (1 << BH_Delay) | (1 << BH_Unwritten))
2341
2342 /*
2343  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2344  *
2345  * @mpd->lbh - extent of blocks
2346  * @logical - logical number of the block in the file
2347  * @bh - bh of the block (used to access block's state)
2348  *
2349  * the function is used to collect contig. blocks in same state
2350  */
2351 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2352                                    sector_t logical, size_t b_size,
2353                                    unsigned long b_state)
2354 {
2355         sector_t next;
2356         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2357
2358         /*
2359          * XXX Don't go larger than mballoc is willing to allocate
2360          * This is a stopgap solution.  We eventually need to fold
2361          * mpage_da_submit_io() into this function and then call
2362          * ext4_map_blocks() multiple times in a loop
2363          */
2364         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2365                 goto flush_it;
2366
2367         /* check if thereserved journal credits might overflow */
2368         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2369                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2370                         /*
2371                          * With non-extent format we are limited by the journal
2372                          * credit available.  Total credit needed to insert
2373                          * nrblocks contiguous blocks is dependent on the
2374                          * nrblocks.  So limit nrblocks.
2375                          */
2376                         goto flush_it;
2377                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2378                                 EXT4_MAX_TRANS_DATA) {
2379                         /*
2380                          * Adding the new buffer_head would make it cross the
2381                          * allowed limit for which we have journal credit
2382                          * reserved. So limit the new bh->b_size
2383                          */
2384                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2385                                                 mpd->inode->i_blkbits;
2386                         /* we will do mpage_da_submit_io in the next loop */
2387                 }
2388         }
2389         /*
2390          * First block in the extent
2391          */
2392         if (mpd->b_size == 0) {
2393                 mpd->b_blocknr = logical;
2394                 mpd->b_size = b_size;
2395                 mpd->b_state = b_state & BH_FLAGS;
2396                 return;
2397         }
2398
2399         next = mpd->b_blocknr + nrblocks;
2400         /*
2401          * Can we merge the block to our big extent?
2402          */
2403         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2404                 mpd->b_size += b_size;
2405                 return;
2406         }
2407
2408 flush_it:
2409         /*
2410          * We couldn't merge the block to our extent, so we
2411          * need to flush current  extent and start new one
2412          */
2413         mpage_da_map_and_submit(mpd);
2414         return;
2415 }
2416
2417 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2418 {
2419         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2420 }
2421
2422 /*
2423  * __mpage_da_writepage - finds extent of pages and blocks
2424  *
2425  * @page: page to consider
2426  * @wbc: not used, we just follow rules
2427  * @data: context
2428  *
2429  * The function finds extents of pages and scan them for all blocks.
2430  */
2431 static int __mpage_da_writepage(struct page *page,
2432                                 struct writeback_control *wbc,
2433                                 struct mpage_da_data *mpd)
2434 {
2435         struct inode *inode = mpd->inode;
2436         struct buffer_head *bh, *head;
2437         sector_t logical;
2438
2439         /*
2440          * Can we merge this page to current extent?
2441          */
2442         if (mpd->next_page != page->index) {
2443                 /*
2444                  * Nope, we can't. So, we map non-allocated blocks
2445                  * and start IO on them
2446                  */
2447                 if (mpd->next_page != mpd->first_page) {
2448                         mpage_da_map_and_submit(mpd);
2449                         /*
2450                          * skip rest of the page in the page_vec
2451                          */
2452                         redirty_page_for_writepage(wbc, page);
2453                         unlock_page(page);
2454                         return MPAGE_DA_EXTENT_TAIL;
2455                 }
2456
2457                 /*
2458                  * Start next extent of pages ...
2459                  */
2460                 mpd->first_page = page->index;
2461
2462                 /*
2463                  * ... and blocks
2464                  */
2465                 mpd->b_size = 0;
2466                 mpd->b_state = 0;
2467                 mpd->b_blocknr = 0;
2468         }
2469
2470         mpd->next_page = page->index + 1;
2471         logical = (sector_t) page->index <<
2472                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2473
2474         if (!page_has_buffers(page)) {
2475                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2476                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2477                 if (mpd->io_done)
2478                         return MPAGE_DA_EXTENT_TAIL;
2479         } else {
2480                 /*
2481                  * Page with regular buffer heads, just add all dirty ones
2482                  */
2483                 head = page_buffers(page);
2484                 bh = head;
2485                 do {
2486                         BUG_ON(buffer_locked(bh));
2487                         /*
2488                          * We need to try to allocate
2489                          * unmapped blocks in the same page.
2490                          * Otherwise we won't make progress
2491                          * with the page in ext4_writepage
2492                          */
2493                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2494                                 mpage_add_bh_to_extent(mpd, logical,
2495                                                        bh->b_size,
2496                                                        bh->b_state);
2497                                 if (mpd->io_done)
2498                                         return MPAGE_DA_EXTENT_TAIL;
2499                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2500                                 /*
2501                                  * mapped dirty buffer. We need to update
2502                                  * the b_state because we look at
2503                                  * b_state in mpage_da_map_blocks. We don't
2504                                  * update b_size because if we find an
2505                                  * unmapped buffer_head later we need to
2506                                  * use the b_state flag of that buffer_head.
2507                                  */
2508                                 if (mpd->b_size == 0)
2509                                         mpd->b_state = bh->b_state & BH_FLAGS;
2510                         }
2511                         logical++;
2512                 } while ((bh = bh->b_this_page) != head);
2513         }
2514
2515         return 0;
2516 }
2517
2518 /*
2519  * This is a special get_blocks_t callback which is used by
2520  * ext4_da_write_begin().  It will either return mapped block or
2521  * reserve space for a single block.
2522  *
2523  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2524  * We also have b_blocknr = -1 and b_bdev initialized properly
2525  *
2526  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2527  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2528  * initialized properly.
2529  */
2530 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2531                                   struct buffer_head *bh, int create)
2532 {
2533         struct ext4_map_blocks map;
2534         int ret = 0;
2535         sector_t invalid_block = ~((sector_t) 0xffff);
2536
2537         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2538                 invalid_block = ~0;
2539
2540         BUG_ON(create == 0);
2541         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2542
2543         map.m_lblk = iblock;
2544         map.m_len = 1;
2545
2546         /*
2547          * first, we need to know whether the block is allocated already
2548          * preallocated blocks are unmapped but should treated
2549          * the same as allocated blocks.
2550          */
2551         ret = ext4_map_blocks(NULL, inode, &map, 0);
2552         if (ret < 0)
2553                 return ret;
2554         if (ret == 0) {
2555                 if (buffer_delay(bh))
2556                         return 0; /* Not sure this could or should happen */
2557                 /*
2558                  * XXX: __block_write_begin() unmaps passed block, is it OK?
2559                  */
2560                 ret = ext4_da_reserve_space(inode, iblock);
2561                 if (ret)
2562                         /* not enough space to reserve */
2563                         return ret;
2564
2565                 map_bh(bh, inode->i_sb, invalid_block);
2566                 set_buffer_new(bh);
2567                 set_buffer_delay(bh);
2568                 return 0;
2569         }
2570
2571         map_bh(bh, inode->i_sb, map.m_pblk);
2572         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2573
2574         if (buffer_unwritten(bh)) {
2575                 /* A delayed write to unwritten bh should be marked
2576                  * new and mapped.  Mapped ensures that we don't do
2577                  * get_block multiple times when we write to the same
2578                  * offset and new ensures that we do proper zero out
2579                  * for partial write.
2580                  */
2581                 set_buffer_new(bh);
2582                 set_buffer_mapped(bh);
2583         }
2584         return 0;
2585 }
2586
2587 /*
2588  * This function is used as a standard get_block_t calback function
2589  * when there is no desire to allocate any blocks.  It is used as a
2590  * callback function for block_write_begin() and block_write_full_page().
2591  * These functions should only try to map a single block at a time.
2592  *
2593  * Since this function doesn't do block allocations even if the caller
2594  * requests it by passing in create=1, it is critically important that
2595  * any caller checks to make sure that any buffer heads are returned
2596  * by this function are either all already mapped or marked for
2597  * delayed allocation before calling  block_write_full_page().  Otherwise,
2598  * b_blocknr could be left unitialized, and the page write functions will
2599  * be taken by surprise.
2600  */
2601 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2602                                    struct buffer_head *bh_result, int create)
2603 {
2604         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2605         return _ext4_get_block(inode, iblock, bh_result, 0);
2606 }
2607
2608 static int bget_one(handle_t *handle, struct buffer_head *bh)
2609 {
2610         get_bh(bh);
2611         return 0;
2612 }
2613
2614 static int bput_one(handle_t *handle, struct buffer_head *bh)
2615 {
2616         put_bh(bh);
2617         return 0;
2618 }
2619
2620 static int __ext4_journalled_writepage(struct page *page,
2621                                        unsigned int len)
2622 {
2623         struct address_space *mapping = page->mapping;
2624         struct inode *inode = mapping->host;
2625         struct buffer_head *page_bufs;
2626         handle_t *handle = NULL;
2627         int ret = 0;
2628         int err;
2629
2630         ClearPageChecked(page);
2631         page_bufs = page_buffers(page);
2632         BUG_ON(!page_bufs);
2633         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2634         /* As soon as we unlock the page, it can go away, but we have
2635          * references to buffers so we are safe */
2636         unlock_page(page);
2637
2638         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2639         if (IS_ERR(handle)) {
2640                 ret = PTR_ERR(handle);
2641                 goto out;
2642         }
2643
2644         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2645                                 do_journal_get_write_access);
2646
2647         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2648                                 write_end_fn);
2649         if (ret == 0)
2650                 ret = err;
2651         err = ext4_journal_stop(handle);
2652         if (!ret)
2653                 ret = err;
2654
2655         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2656         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2657 out:
2658         return ret;
2659 }
2660
2661 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2662 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2663
2664 /*
2665  * Note that we don't need to start a transaction unless we're journaling data
2666  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2667  * need to file the inode to the transaction's list in ordered mode because if
2668  * we are writing back data added by write(), the inode is already there and if
2669  * we are writing back data modified via mmap(), noone guarantees in which
2670  * transaction the data will hit the disk. In case we are journaling data, we
2671  * cannot start transaction directly because transaction start ranks above page
2672  * lock so we have to do some magic.
2673  *
2674  * This function can get called via...
2675  *   - ext4_da_writepages after taking page lock (have journal handle)
2676  *   - journal_submit_inode_data_buffers (no journal handle)
2677  *   - shrink_page_list via pdflush (no journal handle)
2678  *   - grab_page_cache when doing write_begin (have journal handle)
2679  *
2680  * We don't do any block allocation in this function. If we have page with
2681  * multiple blocks we need to write those buffer_heads that are mapped. This
2682  * is important for mmaped based write. So if we do with blocksize 1K
2683  * truncate(f, 1024);
2684  * a = mmap(f, 0, 4096);
2685  * a[0] = 'a';
2686  * truncate(f, 4096);
2687  * we have in the page first buffer_head mapped via page_mkwrite call back
2688  * but other bufer_heads would be unmapped but dirty(dirty done via the
2689  * do_wp_page). So writepage should write the first block. If we modify
2690  * the mmap area beyond 1024 we will again get a page_fault and the
2691  * page_mkwrite callback will do the block allocation and mark the
2692  * buffer_heads mapped.
2693  *
2694  * We redirty the page if we have any buffer_heads that is either delay or
2695  * unwritten in the page.
2696  *
2697  * We can get recursively called as show below.
2698  *
2699  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2700  *              ext4_writepage()
2701  *
2702  * But since we don't do any block allocation we should not deadlock.
2703  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2704  */
2705 static int ext4_writepage(struct page *page,
2706                           struct writeback_control *wbc)
2707 {
2708         int ret = 0, commit_write = 0;
2709         loff_t size;
2710         unsigned int len;
2711         struct buffer_head *page_bufs = NULL;
2712         struct inode *inode = page->mapping->host;
2713
2714         trace_ext4_writepage(inode, page);
2715         size = i_size_read(inode);
2716         if (page->index == size >> PAGE_CACHE_SHIFT)
2717                 len = size & ~PAGE_CACHE_MASK;
2718         else
2719                 len = PAGE_CACHE_SIZE;
2720
2721         /*
2722          * If the page does not have buffers (for whatever reason),
2723          * try to create them using __block_write_begin.  If this
2724          * fails, redirty the page and move on.
2725          */
2726         if (!page_has_buffers(page)) {
2727                 if (__block_write_begin(page, 0, len,
2728                                         noalloc_get_block_write)) {
2729                 redirty_page:
2730                         redirty_page_for_writepage(wbc, page);
2731                         unlock_page(page);
2732                         return 0;
2733                 }
2734                 commit_write = 1;
2735         }
2736         page_bufs = page_buffers(page);
2737         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2738                               ext4_bh_delay_or_unwritten)) {
2739                 /*
2740                  * We don't want to do block allocation, so redirty
2741                  * the page and return.  We may reach here when we do
2742                  * a journal commit via journal_submit_inode_data_buffers.
2743                  * We can also reach here via shrink_page_list
2744                  */
2745                 goto redirty_page;
2746         }
2747         if (commit_write)
2748                 /* now mark the buffer_heads as dirty and uptodate */
2749                 block_commit_write(page, 0, len);
2750
2751         if (PageChecked(page) && ext4_should_journal_data(inode))
2752                 /*
2753                  * It's mmapped pagecache.  Add buffers and journal it.  There
2754                  * doesn't seem much point in redirtying the page here.
2755                  */
2756                 return __ext4_journalled_writepage(page, len);
2757
2758         if (buffer_uninit(page_bufs)) {
2759                 ext4_set_bh_endio(page_bufs, inode);
2760                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2761                                             wbc, ext4_end_io_buffer_write);
2762         } else
2763                 ret = block_write_full_page(page, noalloc_get_block_write,
2764                                             wbc);
2765
2766         return ret;
2767 }
2768
2769 /*
2770  * This is called via ext4_da_writepages() to
2771  * calulate the total number of credits to reserve to fit
2772  * a single extent allocation into a single transaction,
2773  * ext4_da_writpeages() will loop calling this before
2774  * the block allocation.
2775  */
2776
2777 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2778 {
2779         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2780
2781         /*
2782          * With non-extent format the journal credit needed to
2783          * insert nrblocks contiguous block is dependent on
2784          * number of contiguous block. So we will limit
2785          * number of contiguous block to a sane value
2786          */
2787         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2788             (max_blocks > EXT4_MAX_TRANS_DATA))
2789                 max_blocks = EXT4_MAX_TRANS_DATA;
2790
2791         return ext4_chunk_trans_blocks(inode, max_blocks);
2792 }
2793
2794 /*
2795  * write_cache_pages_da - walk the list of dirty pages of the given
2796  * address space and call the callback function (which usually writes
2797  * the pages).
2798  *
2799  * This is a forked version of write_cache_pages().  Differences:
2800  *      Range cyclic is ignored.
2801  *      no_nrwrite_index_update is always presumed true
2802  */
2803 static int write_cache_pages_da(struct address_space *mapping,
2804                                 struct writeback_control *wbc,
2805                                 struct mpage_da_data *mpd,
2806                                 pgoff_t *done_index)
2807 {
2808         int ret = 0;
2809         int done = 0;
2810         struct pagevec pvec;
2811         unsigned nr_pages;
2812         pgoff_t index;
2813         pgoff_t end;            /* Inclusive */
2814         long nr_to_write = wbc->nr_to_write;
2815         int tag;
2816
2817         pagevec_init(&pvec, 0);
2818         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2819         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2820
2821         if (wbc->sync_mode == WB_SYNC_ALL)
2822                 tag = PAGECACHE_TAG_TOWRITE;
2823         else
2824                 tag = PAGECACHE_TAG_DIRTY;
2825
2826         *done_index = index;
2827         while (!done && (index <= end)) {
2828                 int i;
2829
2830                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2831                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2832                 if (nr_pages == 0)
2833                         break;
2834
2835                 for (i = 0; i < nr_pages; i++) {
2836                         struct page *page = pvec.pages[i];
2837
2838                         /*
2839                          * At this point, the page may be truncated or
2840                          * invalidated (changing page->mapping to NULL), or
2841                          * even swizzled back from swapper_space to tmpfs file
2842                          * mapping. However, page->index will not change
2843                          * because we have a reference on the page.
2844                          */
2845                         if (page->index > end) {
2846                                 done = 1;
2847                                 break;
2848                         }
2849
2850                         *done_index = page->index + 1;
2851
2852                         lock_page(page);
2853
2854                         /*
2855                          * Page truncated or invalidated. We can freely skip it
2856                          * then, even for data integrity operations: the page
2857                          * has disappeared concurrently, so there could be no
2858                          * real expectation of this data interity operation
2859                          * even if there is now a new, dirty page at the same
2860                          * pagecache address.
2861                          */
2862                         if (unlikely(page->mapping != mapping)) {
2863 continue_unlock:
2864                                 unlock_page(page);
2865                                 continue;
2866                         }
2867
2868                         if (!PageDirty(page)) {
2869                                 /* someone wrote it for us */
2870                                 goto continue_unlock;
2871                         }
2872
2873                         if (PageWriteback(page)) {
2874                                 if (wbc->sync_mode != WB_SYNC_NONE)
2875                                         wait_on_page_writeback(page);
2876                                 else
2877                                         goto continue_unlock;
2878                         }
2879
2880                         BUG_ON(PageWriteback(page));
2881                         if (!clear_page_dirty_for_io(page))
2882                                 goto continue_unlock;
2883
2884                         ret = __mpage_da_writepage(page, wbc, mpd);
2885                         if (unlikely(ret)) {
2886                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2887                                         unlock_page(page);
2888                                         ret = 0;
2889                                 } else {
2890                                         done = 1;
2891                                         break;
2892                                 }
2893                         }
2894
2895                         if (nr_to_write > 0) {
2896                                 nr_to_write--;
2897                                 if (nr_to_write == 0 &&
2898                                     wbc->sync_mode == WB_SYNC_NONE) {
2899                                         /*
2900                                          * We stop writing back only if we are
2901                                          * not doing integrity sync. In case of
2902                                          * integrity sync we have to keep going
2903                                          * because someone may be concurrently
2904                                          * dirtying pages, and we might have
2905                                          * synced a lot of newly appeared dirty
2906                                          * pages, but have not synced all of the
2907                                          * old dirty pages.
2908                                          */
2909                                         done = 1;
2910                                         break;
2911                                 }
2912                         }
2913                 }
2914                 pagevec_release(&pvec);
2915                 cond_resched();
2916         }
2917         return ret;
2918 }
2919
2920
2921 static int ext4_da_writepages(struct address_space *mapping,
2922                               struct writeback_control *wbc)
2923 {
2924         pgoff_t index;
2925         int range_whole = 0;
2926         handle_t *handle = NULL;
2927         struct mpage_da_data mpd;
2928         struct inode *inode = mapping->host;
2929         int pages_written = 0;
2930         long pages_skipped;
2931         unsigned int max_pages;
2932         int range_cyclic, cycled = 1, io_done = 0;
2933         int needed_blocks, ret = 0;
2934         long desired_nr_to_write, nr_to_writebump = 0;
2935         loff_t range_start = wbc->range_start;
2936         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2937         pgoff_t done_index = 0;
2938         pgoff_t end;
2939
2940         trace_ext4_da_writepages(inode, wbc);
2941
2942         /*
2943          * No pages to write? This is mainly a kludge to avoid starting
2944          * a transaction for special inodes like journal inode on last iput()
2945          * because that could violate lock ordering on umount
2946          */
2947         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2948                 return 0;
2949
2950         /*
2951          * If the filesystem has aborted, it is read-only, so return
2952          * right away instead of dumping stack traces later on that
2953          * will obscure the real source of the problem.  We test
2954          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2955          * the latter could be true if the filesystem is mounted
2956          * read-only, and in that case, ext4_da_writepages should
2957          * *never* be called, so if that ever happens, we would want
2958          * the stack trace.
2959          */
2960         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2961                 return -EROFS;
2962
2963         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2964                 range_whole = 1;
2965
2966         range_cyclic = wbc->range_cyclic;
2967         if (wbc->range_cyclic) {
2968                 index = mapping->writeback_index;
2969                 if (index)
2970                         cycled = 0;
2971                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2972                 wbc->range_end  = LLONG_MAX;
2973                 wbc->range_cyclic = 0;
2974                 end = -1;
2975         } else {
2976                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2977                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2978         }
2979
2980         /*
2981          * This works around two forms of stupidity.  The first is in
2982          * the writeback code, which caps the maximum number of pages
2983          * written to be 1024 pages.  This is wrong on multiple
2984          * levels; different architectues have a different page size,
2985          * which changes the maximum amount of data which gets
2986          * written.  Secondly, 4 megabytes is way too small.  XFS
2987          * forces this value to be 16 megabytes by multiplying
2988          * nr_to_write parameter by four, and then relies on its
2989          * allocator to allocate larger extents to make them
2990          * contiguous.  Unfortunately this brings us to the second
2991          * stupidity, which is that ext4's mballoc code only allocates
2992          * at most 2048 blocks.  So we force contiguous writes up to
2993          * the number of dirty blocks in the inode, or
2994          * sbi->max_writeback_mb_bump whichever is smaller.
2995          */
2996         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2997         if (!range_cyclic && range_whole) {
2998                 if (wbc->nr_to_write == LONG_MAX)
2999                         desired_nr_to_write = wbc->nr_to_write;
3000                 else
3001                         desired_nr_to_write = wbc->nr_to_write * 8;
3002         } else
3003                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3004                                                            max_pages);
3005         if (desired_nr_to_write > max_pages)
3006                 desired_nr_to_write = max_pages;
3007
3008         if (wbc->nr_to_write < desired_nr_to_write) {
3009                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3010                 wbc->nr_to_write = desired_nr_to_write;
3011         }
3012
3013         mpd.wbc = wbc;
3014         mpd.inode = mapping->host;
3015
3016         pages_skipped = wbc->pages_skipped;
3017
3018 retry:
3019         if (wbc->sync_mode == WB_SYNC_ALL)
3020                 tag_pages_for_writeback(mapping, index, end);
3021
3022         while (!ret && wbc->nr_to_write > 0) {
3023
3024                 /*
3025                  * we  insert one extent at a time. So we need
3026                  * credit needed for single extent allocation.
3027                  * journalled mode is currently not supported
3028                  * by delalloc
3029                  */
3030                 BUG_ON(ext4_should_journal_data(inode));
3031                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3032
3033                 /* start a new transaction*/
3034                 handle = ext4_journal_start(inode, needed_blocks);
3035                 if (IS_ERR(handle)) {
3036                         ret = PTR_ERR(handle);
3037                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3038                                "%ld pages, ino %lu; err %d", __func__,
3039                                 wbc->nr_to_write, inode->i_ino, ret);
3040                         goto out_writepages;
3041                 }
3042
3043                 /*
3044                  * Now call __mpage_da_writepage to find the next
3045                  * contiguous region of logical blocks that need
3046                  * blocks to be allocated by ext4.  We don't actually
3047                  * submit the blocks for I/O here, even though
3048                  * write_cache_pages thinks it will, and will set the
3049                  * pages as clean for write before calling
3050                  * __mpage_da_writepage().
3051                  */
3052                 mpd.b_size = 0;
3053                 mpd.b_state = 0;
3054                 mpd.b_blocknr = 0;
3055                 mpd.first_page = 0;
3056                 mpd.next_page = 0;
3057                 mpd.io_done = 0;
3058                 mpd.pages_written = 0;
3059                 mpd.retval = 0;
3060                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3061                 /*
3062                  * If we have a contiguous extent of pages and we
3063                  * haven't done the I/O yet, map the blocks and submit
3064                  * them for I/O.
3065                  */
3066                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3067                         mpage_da_map_and_submit(&mpd);
3068                         ret = MPAGE_DA_EXTENT_TAIL;
3069                 }
3070                 trace_ext4_da_write_pages(inode, &mpd);
3071                 wbc->nr_to_write -= mpd.pages_written;
3072
3073                 ext4_journal_stop(handle);
3074
3075                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3076                         /* commit the transaction which would
3077                          * free blocks released in the transaction
3078                          * and try again
3079                          */
3080                         jbd2_journal_force_commit_nested(sbi->s_journal);
3081                         wbc->pages_skipped = pages_skipped;
3082                         ret = 0;
3083                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3084                         /*
3085                          * got one extent now try with
3086                          * rest of the pages
3087                          */
3088                         pages_written += mpd.pages_written;
3089                         wbc->pages_skipped = pages_skipped;
3090                         ret = 0;
3091                         io_done = 1;
3092                 } else if (wbc->nr_to_write)
3093                         /*
3094                          * There is no more writeout needed
3095                          * or we requested for a noblocking writeout
3096                          * and we found the device congested
3097                          */
3098                         break;
3099         }
3100         if (!io_done && !cycled) {
3101                 cycled = 1;
3102                 index = 0;
3103                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3104                 wbc->range_end  = mapping->writeback_index - 1;
3105                 goto retry;
3106         }
3107         if (pages_skipped != wbc->pages_skipped)
3108                 ext4_msg(inode->i_sb, KERN_CRIT,
3109                          "This should not happen leaving %s "
3110                          "with nr_to_write = %ld ret = %d",
3111                          __func__, wbc->nr_to_write, ret);
3112
3113         /* Update index */
3114         wbc->range_cyclic = range_cyclic;
3115         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3116                 /*
3117                  * set the writeback_index so that range_cyclic
3118                  * mode will write it back later
3119                  */
3120                 mapping->writeback_index = done_index;
3121
3122 out_writepages:
3123         wbc->nr_to_write -= nr_to_writebump;
3124         wbc->range_start = range_start;
3125         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3126         return ret;
3127 }
3128
3129 #define FALL_BACK_TO_NONDELALLOC 1
3130 static int ext4_nonda_switch(struct super_block *sb)
3131 {
3132         s64 free_blocks, dirty_blocks;
3133         struct ext4_sb_info *sbi = EXT4_SB(sb);
3134
3135         /*
3136          * switch to non delalloc mode if we are running low
3137          * on free block. The free block accounting via percpu
3138          * counters can get slightly wrong with percpu_counter_batch getting
3139          * accumulated on each CPU without updating global counters
3140          * Delalloc need an accurate free block accounting. So switch
3141          * to non delalloc when we are near to error range.
3142          */
3143         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3144         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3145         if (2 * free_blocks < 3 * dirty_blocks ||
3146                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3147                 /*
3148                  * free block count is less than 150% of dirty blocks
3149                  * or free blocks is less than watermark
3150                  */
3151                 return 1;
3152         }
3153         /*
3154          * Even if we don't switch but are nearing capacity,
3155          * start pushing delalloc when 1/2 of free blocks are dirty.
3156          */
3157         if (free_blocks < 2 * dirty_blocks)
3158                 writeback_inodes_sb_if_idle(sb);
3159
3160         return 0;
3161 }
3162
3163 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3164                                loff_t pos, unsigned len, unsigned flags,
3165                                struct page **pagep, void **fsdata)
3166 {
3167         int ret, retries = 0;
3168         struct page *page;
3169         pgoff_t index;
3170         struct inode *inode = mapping->host;
3171         handle_t *handle;
3172
3173         index = pos >> PAGE_CACHE_SHIFT;
3174
3175         if (ext4_nonda_switch(inode->i_sb)) {
3176                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3177                 return ext4_write_begin(file, mapping, pos,
3178                                         len, flags, pagep, fsdata);
3179         }
3180         *fsdata = (void *)0;
3181         trace_ext4_da_write_begin(inode, pos, len, flags);
3182 retry:
3183         /*
3184          * With delayed allocation, we don't log the i_disksize update
3185          * if there is delayed block allocation. But we still need
3186          * to journalling the i_disksize update if writes to the end
3187          * of file which has an already mapped buffer.
3188          */
3189         handle = ext4_journal_start(inode, 1);
3190         if (IS_ERR(handle)) {
3191                 ret = PTR_ERR(handle);
3192                 goto out;
3193         }
3194         /* We cannot recurse into the filesystem as the transaction is already
3195          * started */
3196         flags |= AOP_FLAG_NOFS;
3197
3198         page = grab_cache_page_write_begin(mapping, index, flags);
3199         if (!page) {
3200                 ext4_journal_stop(handle);
3201                 ret = -ENOMEM;
3202                 goto out;
3203         }
3204         *pagep = page;
3205
3206         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3207         if (ret < 0) {
3208                 unlock_page(page);
3209                 ext4_journal_stop(handle);
3210                 page_cache_release(page);
3211                 /*
3212                  * block_write_begin may have instantiated a few blocks
3213                  * outside i_size.  Trim these off again. Don't need
3214                  * i_size_read because we hold i_mutex.
3215                  */
3216                 if (pos + len > inode->i_size)
3217                         ext4_truncate_failed_write(inode);
3218         }
3219
3220         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3221                 goto retry;
3222 out:
3223         return ret;
3224 }
3225
3226 /*
3227  * Check if we should update i_disksize
3228  * when write to the end of file but not require block allocation
3229  */
3230 static int ext4_da_should_update_i_disksize(struct page *page,
3231                                             unsigned long offset)
3232 {
3233         struct buffer_head *bh;
3234         struct inode *inode = page->mapping->host;
3235         unsigned int idx;
3236         int i;
3237
3238         bh = page_buffers(page);
3239         idx = offset >> inode->i_blkbits;
3240
3241         for (i = 0; i < idx; i++)
3242                 bh = bh->b_this_page;
3243
3244         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3245                 return 0;
3246         return 1;
3247 }
3248
3249 static int ext4_da_write_end(struct file *file,
3250                              struct address_space *mapping,
3251                              loff_t pos, unsigned len, unsigned copied,
3252                              struct page *page, void *fsdata)
3253 {
3254         struct inode *inode = mapping->host;
3255         int ret = 0, ret2;
3256         handle_t *handle = ext4_journal_current_handle();
3257         loff_t new_i_size;
3258         unsigned long start, end;
3259         int write_mode = (int)(unsigned long)fsdata;
3260
3261         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3262                 if (ext4_should_order_data(inode)) {
3263                         return ext4_ordered_write_end(file, mapping, pos,
3264                                         len, copied, page, fsdata);
3265                 } else if (ext4_should_writeback_data(inode)) {
3266                         return ext4_writeback_write_end(file, mapping, pos,
3267                                         len, copied, page, fsdata);
3268                 } else {
3269                         BUG();
3270                 }
3271         }
3272
3273         trace_ext4_da_write_end(inode, pos, len, copied);
3274         start = pos & (PAGE_CACHE_SIZE - 1);
3275         end = start + copied - 1;
3276
3277         /*
3278          * generic_write_end() will run mark_inode_dirty() if i_size
3279          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3280          * into that.
3281          */
3282
3283         new_i_size = pos + copied;
3284         if (new_i_size > EXT4_I(inode)->i_disksize) {
3285                 if (ext4_da_should_update_i_disksize(page, end)) {
3286                         down_write(&EXT4_I(inode)->i_data_sem);
3287                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3288                                 /*
3289                                  * Updating i_disksize when extending file
3290                                  * without needing block allocation
3291                                  */
3292                                 if (ext4_should_order_data(inode))
3293                                         ret = ext4_jbd2_file_inode(handle,
3294                                                                    inode);
3295
3296                                 EXT4_I(inode)->i_disksize = new_i_size;
3297                         }
3298                         up_write(&EXT4_I(inode)->i_data_sem);
3299                         /* We need to mark inode dirty even if
3300                          * new_i_size is less that inode->i_size
3301                          * bu greater than i_disksize.(hint delalloc)
3302                          */
3303                         ext4_mark_inode_dirty(handle, inode);
3304                 }
3305         }
3306         ret2 = generic_write_end(file, mapping, pos, len, copied,
3307                                                         page, fsdata);
3308         copied = ret2;
3309         if (ret2 < 0)
3310                 ret = ret2;
3311         ret2 = ext4_journal_stop(handle);
3312         if (!ret)
3313                 ret = ret2;
3314
3315         return ret ? ret : copied;
3316 }
3317
3318 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3319 {
3320         /*
3321          * Drop reserved blocks
3322          */
3323         BUG_ON(!PageLocked(page));
3324         if (!page_has_buffers(page))
3325                 goto out;
3326
3327         ext4_da_page_release_reservation(page, offset);
3328
3329 out:
3330         ext4_invalidatepage(page, offset);
3331
3332         return;
3333 }
3334
3335 /*
3336  * Force all delayed allocation blocks to be allocated for a given inode.
3337  */
3338 int ext4_alloc_da_blocks(struct inode *inode)
3339 {
3340         trace_ext4_alloc_da_blocks(inode);
3341
3342         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3343             !EXT4_I(inode)->i_reserved_meta_blocks)
3344                 return 0;
3345
3346         /*
3347          * We do something simple for now.  The filemap_flush() will
3348          * also start triggering a write of the data blocks, which is
3349          * not strictly speaking necessary (and for users of
3350          * laptop_mode, not even desirable).  However, to do otherwise
3351          * would require replicating code paths in:
3352          *
3353          * ext4_da_writepages() ->
3354          *    write_cache_pages() ---> (via passed in callback function)
3355          *        __mpage_da_writepage() -->
3356          *           mpage_add_bh_to_extent()
3357          *           mpage_da_map_blocks()
3358          *
3359          * The problem is that write_cache_pages(), located in
3360          * mm/page-writeback.c, marks pages clean in preparation for
3361          * doing I/O, which is not desirable if we're not planning on
3362          * doing I/O at all.
3363          *
3364          * We could call write_cache_pages(), and then redirty all of
3365          * the pages by calling redirty_page_for_writeback() but that
3366          * would be ugly in the extreme.  So instead we would need to
3367          * replicate parts of the code in the above functions,
3368          * simplifying them becuase we wouldn't actually intend to
3369          * write out the pages, but rather only collect contiguous
3370          * logical block extents, call the multi-block allocator, and
3371          * then update the buffer heads with the block allocations.
3372          *
3373          * For now, though, we'll cheat by calling filemap_flush(),
3374          * which will map the blocks, and start the I/O, but not
3375          * actually wait for the I/O to complete.
3376          */
3377         return filemap_flush(inode->i_mapping);
3378 }
3379
3380 /*
3381  * bmap() is special.  It gets used by applications such as lilo and by
3382  * the swapper to find the on-disk block of a specific piece of data.
3383  *
3384  * Naturally, this is dangerous if the block concerned is still in the
3385  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3386  * filesystem and enables swap, then they may get a nasty shock when the
3387  * data getting swapped to that swapfile suddenly gets overwritten by
3388  * the original zero's written out previously to the journal and
3389  * awaiting writeback in the kernel's buffer cache.
3390  *
3391  * So, if we see any bmap calls here on a modified, data-journaled file,
3392  * take extra steps to flush any blocks which might be in the cache.
3393  */
3394 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3395 {
3396         struct inode *inode = mapping->host;
3397         journal_t *journal;
3398         int err;
3399
3400         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3401                         test_opt(inode->i_sb, DELALLOC)) {
3402                 /*
3403                  * With delalloc we want to sync the file
3404                  * so that we can make sure we allocate
3405                  * blocks for file
3406                  */
3407                 filemap_write_and_wait(mapping);
3408         }
3409
3410         if (EXT4_JOURNAL(inode) &&
3411             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3412                 /*
3413                  * This is a REALLY heavyweight approach, but the use of
3414                  * bmap on dirty files is expected to be extremely rare:
3415                  * only if we run lilo or swapon on a freshly made file
3416                  * do we expect this to happen.
3417                  *
3418                  * (bmap requires CAP_SYS_RAWIO so this does not
3419                  * represent an unprivileged user DOS attack --- we'd be
3420                  * in trouble if mortal users could trigger this path at
3421                  * will.)
3422                  *
3423                  * NB. EXT4_STATE_JDATA is not set on files other than
3424                  * regular files.  If somebody wants to bmap a directory
3425                  * or symlink and gets confused because the buffer
3426                  * hasn't yet been flushed to disk, they deserve
3427                  * everything they get.
3428                  */
3429
3430                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3431                 journal = EXT4_JOURNAL(inode);
3432                 jbd2_journal_lock_updates(journal);
3433                 err = jbd2_journal_flush(journal);
3434                 jbd2_journal_unlock_updates(journal);
3435
3436                 if (err)
3437                         return 0;
3438         }
3439
3440         return generic_block_bmap(mapping, block, ext4_get_block);
3441 }
3442
3443 static int ext4_readpage(struct file *file, struct page *page)
3444 {
3445         return mpage_readpage(page, ext4_get_block);
3446 }
3447
3448 static int
3449 ext4_readpages(struct file *file, struct address_space *mapping,
3450                 struct list_head *pages, unsigned nr_pages)
3451 {
3452         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3453 }
3454
3455 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3456 {
3457         struct buffer_head *head, *bh;
3458         unsigned int curr_off = 0;
3459
3460         if (!page_has_buffers(page))
3461                 return;
3462         head = bh = page_buffers(page);
3463         do {
3464                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3465                                         && bh->b_private) {
3466                         ext4_free_io_end(bh->b_private);
3467                         bh->b_private = NULL;
3468                         bh->b_end_io = NULL;
3469                 }
3470                 curr_off = curr_off + bh->b_size;
3471                 bh = bh->b_this_page;
3472         } while (bh != head);
3473 }
3474
3475 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3476 {
3477         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3478
3479         /*
3480          * free any io_end structure allocated for buffers to be discarded
3481          */
3482         if (ext4_should_dioread_nolock(page->mapping->host))
3483                 ext4_invalidatepage_free_endio(page, offset);
3484         /*
3485          * If it's a full truncate we just forget about the pending dirtying
3486          */
3487         if (offset == 0)
3488                 ClearPageChecked(page);
3489
3490         if (journal)
3491                 jbd2_journal_invalidatepage(journal, page, offset);
3492         else
3493                 block_invalidatepage(page, offset);
3494 }
3495
3496 static int ext4_releasepage(struct page *page, gfp_t wait)
3497 {
3498         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3499
3500         WARN_ON(PageChecked(page));
3501         if (!page_has_buffers(page))
3502                 return 0;
3503         if (journal)
3504                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3505         else
3506                 return try_to_free_buffers(page);
3507 }
3508
3509 /*
3510  * O_DIRECT for ext3 (or indirect map) based files
3511  *
3512  * If the O_DIRECT write will extend the file then add this inode to the
3513  * orphan list.  So recovery will truncate it back to the original size
3514  * if the machine crashes during the write.
3515  *
3516  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3517  * crashes then stale disk data _may_ be exposed inside the file. But current
3518  * VFS code falls back into buffered path in that case so we are safe.
3519  */
3520 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3521                               const struct iovec *iov, loff_t offset,
3522                               unsigned long nr_segs)
3523 {
3524         struct file *file = iocb->ki_filp;
3525         struct inode *inode = file->f_mapping->host;
3526         struct ext4_inode_info *ei = EXT4_I(inode);
3527         handle_t *handle;
3528         ssize_t ret;
3529         int orphan = 0;
3530         size_t count = iov_length(iov, nr_segs);
3531         int retries = 0;
3532
3533         if (rw == WRITE) {
3534                 loff_t final_size = offset + count;
3535
3536                 if (final_size > inode->i_size) {
3537                         /* Credits for sb + inode write */
3538                         handle = ext4_journal_start(inode, 2);
3539                         if (IS_ERR(handle)) {
3540                                 ret = PTR_ERR(handle);
3541                                 goto out;
3542                         }
3543                         ret = ext4_orphan_add(handle, inode);
3544                         if (ret) {
3545                                 ext4_journal_stop(handle);
3546                                 goto out;
3547                         }
3548                         orphan = 1;
3549                         ei->i_disksize = inode->i_size;
3550                         ext4_journal_stop(handle);
3551                 }
3552         }
3553
3554 retry:
3555         if (rw == READ && ext4_should_dioread_nolock(inode))
3556                 ret = __blockdev_direct_IO(rw, iocb, inode,
3557                                  inode->i_sb->s_bdev, iov,
3558                                  offset, nr_segs,
3559                                  ext4_get_block, NULL, NULL, 0);
3560         else {
3561                 ret = blockdev_direct_IO(rw, iocb, inode,
3562                                  inode->i_sb->s_bdev, iov,
3563                                  offset, nr_segs,
3564                                  ext4_get_block, NULL);
3565
3566                 if (unlikely((rw & WRITE) && ret < 0)) {
3567                         loff_t isize = i_size_read(inode);
3568                         loff_t end = offset + iov_length(iov, nr_segs);
3569
3570                         if (end > isize)
3571                                 vmtruncate(inode, isize);
3572                 }
3573         }
3574         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3575                 goto retry;
3576
3577         if (orphan) {
3578                 int err;
3579
3580                 /* Credits for sb + inode write */
3581                 handle = ext4_journal_start(inode, 2);
3582                 if (IS_ERR(handle)) {
3583                         /* This is really bad luck. We've written the data
3584                          * but cannot extend i_size. Bail out and pretend
3585                          * the write failed... */
3586                         ret = PTR_ERR(handle);
3587                         if (inode->i_nlink)
3588                                 ext4_orphan_del(NULL, inode);
3589
3590                         goto out;
3591                 }
3592                 if (inode->i_nlink)
3593                         ext4_orphan_del(handle, inode);
3594                 if (ret > 0) {
3595                         loff_t end = offset + ret;
3596                         if (end > inode->i_size) {
3597                                 ei->i_disksize = end;
3598                                 i_size_write(inode, end);
3599                                 /*
3600                                  * We're going to return a positive `ret'
3601                                  * here due to non-zero-length I/O, so there's
3602                                  * no way of reporting error returns from
3603                                  * ext4_mark_inode_dirty() to userspace.  So
3604                                  * ignore it.
3605                                  */
3606                                 ext4_mark_inode_dirty(handle, inode);
3607                         }
3608                 }
3609                 err = ext4_journal_stop(handle);
3610                 if (ret == 0)
3611                         ret = err;
3612         }
3613 out:
3614         return ret;
3615 }
3616
3617 /*
3618  * ext4_get_block used when preparing for a DIO write or buffer write.
3619  * We allocate an uinitialized extent if blocks haven't been allocated.
3620  * The extent will be converted to initialized after the IO is complete.
3621  */
3622 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3623                    struct buffer_head *bh_result, int create)
3624 {
3625         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3626                    inode->i_ino, create);
3627         return _ext4_get_block(inode, iblock, bh_result,
3628                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3629 }
3630
3631 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3632                             ssize_t size, void *private, int ret,
3633                             bool is_async)
3634 {
3635         ext4_io_end_t *io_end = iocb->private;
3636         struct workqueue_struct *wq;
3637         unsigned long flags;
3638         struct ext4_inode_info *ei;
3639
3640         /* if not async direct IO or dio with 0 bytes write, just return */
3641         if (!io_end || !size)
3642                 goto out;
3643
3644         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3645                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3646                   iocb->private, io_end->inode->i_ino, iocb, offset,
3647                   size);
3648
3649         /* if not aio dio with unwritten extents, just free io and return */
3650         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3651                 ext4_free_io_end(io_end);
3652                 iocb->private = NULL;
3653 out:
3654                 if (is_async)
3655                         aio_complete(iocb, ret, 0);
3656                 return;
3657         }
3658
3659         io_end->offset = offset;
3660         io_end->size = size;
3661         if (is_async) {
3662                 io_end->iocb = iocb;
3663                 io_end->result = ret;
3664         }
3665         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3666
3667         /* Add the io_end to per-inode completed aio dio list*/
3668         ei = EXT4_I(io_end->inode);
3669         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3670         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3671         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3672
3673         /* queue the work to convert unwritten extents to written */
3674         queue_work(wq, &io_end->work);
3675         iocb->private = NULL;
3676 }
3677
3678 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3679 {
3680         ext4_io_end_t *io_end = bh->b_private;
3681         struct workqueue_struct *wq;
3682         struct inode *inode;
3683         unsigned long flags;
3684
3685         if (!test_clear_buffer_uninit(bh) || !io_end)
3686                 goto out;
3687
3688         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3689                 printk("sb umounted, discard end_io request for inode %lu\n",
3690                         io_end->inode->i_ino);
3691                 ext4_free_io_end(io_end);
3692                 goto out;
3693         }
3694
3695         io_end->flag = EXT4_IO_END_UNWRITTEN;
3696         inode = io_end->inode;
3697
3698         /* Add the io_end to per-inode completed io list*/
3699         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3700         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3701         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3702
3703         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3704         /* queue the work to convert unwritten extents to written */
3705         queue_work(wq, &io_end->work);
3706 out:
3707         bh->b_private = NULL;
3708         bh->b_end_io = NULL;
3709         clear_buffer_uninit(bh);
3710         end_buffer_async_write(bh, uptodate);
3711 }
3712
3713 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3714 {
3715         ext4_io_end_t *io_end;
3716         struct page *page = bh->b_page;
3717         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3718         size_t size = bh->b_size;
3719
3720 retry:
3721         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3722         if (!io_end) {
3723                 if (printk_ratelimit())
3724                         printk(KERN_WARNING "%s: allocation fail\n", __func__);
3725                 schedule();
3726                 goto retry;
3727         }
3728         io_end->offset = offset;
3729         io_end->size = size;
3730         /*
3731          * We need to hold a reference to the page to make sure it
3732          * doesn't get evicted before ext4_end_io_work() has a chance
3733          * to convert the extent from written to unwritten.
3734          */
3735         io_end->page = page;
3736         get_page(io_end->page);
3737
3738         bh->b_private = io_end;
3739         bh->b_end_io = ext4_end_io_buffer_write;
3740         return 0;
3741 }
3742
3743 /*
3744  * For ext4 extent files, ext4 will do direct-io write to holes,
3745  * preallocated extents, and those write extend the file, no need to
3746  * fall back to buffered IO.
3747  *
3748  * For holes, we fallocate those blocks, mark them as unintialized
3749  * If those blocks were preallocated, we mark sure they are splited, but
3750  * still keep the range to write as unintialized.
3751  *
3752  * The unwrritten extents will be converted to written when DIO is completed.
3753  * For async direct IO, since the IO may still pending when return, we
3754  * set up an end_io call back function, which will do the convertion
3755  * when async direct IO completed.
3756  *
3757  * If the O_DIRECT write will extend the file then add this inode to the
3758  * orphan list.  So recovery will truncate it back to the original size
3759  * if the machine crashes during the write.
3760  *
3761  */
3762 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3763                               const struct iovec *iov, loff_t offset,
3764                               unsigned long nr_segs)
3765 {
3766         struct file *file = iocb->ki_filp;
3767         struct inode *inode = file->f_mapping->host;
3768         ssize_t ret;
3769         size_t count = iov_length(iov, nr_segs);
3770
3771         loff_t final_size = offset + count;
3772         if (rw == WRITE && final_size <= inode->i_size) {
3773                 /*
3774                  * We could direct write to holes and fallocate.
3775                  *
3776                  * Allocated blocks to fill the hole are marked as uninitialized
3777                  * to prevent paralel buffered read to expose the stale data
3778                  * before DIO complete the data IO.
3779                  *
3780                  * As to previously fallocated extents, ext4 get_block
3781                  * will just simply mark the buffer mapped but still
3782                  * keep the extents uninitialized.
3783                  *
3784                  * for non AIO case, we will convert those unwritten extents
3785                  * to written after return back from blockdev_direct_IO.
3786                  *
3787                  * for async DIO, the conversion needs to be defered when
3788                  * the IO is completed. The ext4 end_io callback function
3789                  * will be called to take care of the conversion work.
3790                  * Here for async case, we allocate an io_end structure to
3791                  * hook to the iocb.
3792                  */
3793                 iocb->private = NULL;
3794                 EXT4_I(inode)->cur_aio_dio = NULL;
3795                 if (!is_sync_kiocb(iocb)) {
3796                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3797                         if (!iocb->private)
3798                                 return -ENOMEM;
3799                         /*
3800                          * we save the io structure for current async
3801                          * direct IO, so that later ext4_map_blocks()
3802                          * could flag the io structure whether there
3803                          * is a unwritten extents needs to be converted
3804                          * when IO is completed.
3805                          */
3806                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3807                 }
3808
3809                 ret = blockdev_direct_IO(rw, iocb, inode,
3810                                          inode->i_sb->s_bdev, iov,
3811                                          offset, nr_segs,
3812                                          ext4_get_block_write,
3813                                          ext4_end_io_dio);
3814                 if (iocb->private)
3815                         EXT4_I(inode)->cur_aio_dio = NULL;
3816                 /*
3817                  * The io_end structure takes a reference to the inode,
3818                  * that structure needs to be destroyed and the
3819                  * reference to the inode need to be dropped, when IO is
3820                  * complete, even with 0 byte write, or failed.
3821                  *
3822                  * In the successful AIO DIO case, the io_end structure will be
3823                  * desctroyed and the reference to the inode will be dropped
3824                  * after the end_io call back function is called.
3825                  *
3826                  * In the case there is 0 byte write, or error case, since
3827                  * VFS direct IO won't invoke the end_io call back function,
3828                  * we need to free the end_io structure here.
3829                  */
3830                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3831                         ext4_free_io_end(iocb->private);
3832                         iocb->private = NULL;
3833                 } else if (ret > 0 && ext4_test_inode_state(inode,
3834                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3835                         int err;
3836                         /*
3837                          * for non AIO case, since the IO is already
3838                          * completed, we could do the convertion right here
3839                          */
3840                         err = ext4_convert_unwritten_extents(inode,
3841                                                              offset, ret);
3842                         if (err < 0)
3843                                 ret = err;
3844                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3845                 }
3846                 return ret;
3847         }
3848
3849         /* for write the the end of file case, we fall back to old way */
3850         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3851 }
3852
3853 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3854                               const struct iovec *iov, loff_t offset,
3855                               unsigned long nr_segs)
3856 {
3857         struct file *file = iocb->ki_filp;
3858         struct inode *inode = file->f_mapping->host;
3859
3860         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3861                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3862
3863         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3864 }
3865
3866 /*
3867  * Pages can be marked dirty completely asynchronously from ext4's journalling
3868  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3869  * much here because ->set_page_dirty is called under VFS locks.  The page is
3870  * not necessarily locked.
3871  *
3872  * We cannot just dirty the page and leave attached buffers clean, because the
3873  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3874  * or jbddirty because all the journalling code will explode.
3875  *
3876  * So what we do is to mark the page "pending dirty" and next time writepage
3877  * is called, propagate that into the buffers appropriately.
3878  */
3879 static int ext4_journalled_set_page_dirty(struct page *page)
3880 {
3881         SetPageChecked(page);
3882         return __set_page_dirty_nobuffers(page);
3883 }
3884
3885 static const struct address_space_operations ext4_ordered_aops = {
3886         .readpage               = ext4_readpage,
3887         .readpages              = ext4_readpages,
3888         .writepage              = ext4_writepage,
3889         .sync_page              = block_sync_page,
3890         .write_begin            = ext4_write_begin,
3891         .write_end              = ext4_ordered_write_end,
3892         .bmap                   = ext4_bmap,
3893         .invalidatepage         = ext4_invalidatepage,
3894         .releasepage            = ext4_releasepage,
3895         .direct_IO              = ext4_direct_IO,
3896         .migratepage            = buffer_migrate_page,
3897         .is_partially_uptodate  = block_is_partially_uptodate,
3898         .error_remove_page      = generic_error_remove_page,
3899 };
3900
3901 static const struct address_space_operations ext4_writeback_aops = {
3902         .readpage               = ext4_readpage,
3903         .readpages              = ext4_readpages,
3904         .writepage              = ext4_writepage,
3905         .sync_page              = block_sync_page,
3906         .write_begin            = ext4_write_begin,
3907         .write_end              = ext4_writeback_write_end,
3908         .bmap                   = ext4_bmap,
3909         .invalidatepage         = ext4_invalidatepage,
3910         .releasepage            = ext4_releasepage,
3911         .direct_IO              = ext4_direct_IO,
3912         .migratepage            = buffer_migrate_page,
3913         .is_partially_uptodate  = block_is_partially_uptodate,
3914         .error_remove_page      = generic_error_remove_page,
3915 };
3916
3917 static const struct address_space_operations ext4_journalled_aops = {
3918         .readpage               = ext4_readpage,
3919         .readpages              = ext4_readpages,
3920         .writepage              = ext4_writepage,
3921         .sync_page              = block_sync_page,
3922         .write_begin            = ext4_write_begin,
3923         .write_end              = ext4_journalled_write_end,
3924         .set_page_dirty         = ext4_journalled_set_page_dirty,
3925         .bmap                   = ext4_bmap,
3926         .invalidatepage         = ext4_invalidatepage,
3927         .releasepage            = ext4_releasepage,
3928         .is_partially_uptodate  = block_is_partially_uptodate,
3929         .error_remove_page      = generic_error_remove_page,
3930 };
3931
3932 static const struct address_space_operations ext4_da_aops = {
3933         .readpage               = ext4_readpage,
3934         .readpages              = ext4_readpages,
3935         .writepage              = ext4_writepage,
3936         .writepages             = ext4_da_writepages,
3937         .sync_page              = block_sync_page,
3938         .write_begin            = ext4_da_write_begin,
3939         .write_end              = ext4_da_write_end,
3940         .bmap                   = ext4_bmap,
3941         .invalidatepage         = ext4_da_invalidatepage,
3942         .releasepage            = ext4_releasepage,
3943         .direct_IO              = ext4_direct_IO,
3944         .migratepage            = buffer_migrate_page,
3945         .is_partially_uptodate  = block_is_partially_uptodate,
3946         .error_remove_page      = generic_error_remove_page,
3947 };
3948
3949 void ext4_set_aops(struct inode *inode)
3950 {
3951         if (ext4_should_order_data(inode) &&
3952                 test_opt(inode->i_sb, DELALLOC))
3953                 inode->i_mapping->a_ops = &ext4_da_aops;
3954         else if (ext4_should_order_data(inode))
3955                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3956         else if (ext4_should_writeback_data(inode) &&
3957                  test_opt(inode->i_sb, DELALLOC))
3958                 inode->i_mapping->a_ops = &ext4_da_aops;
3959         else if (ext4_should_writeback_data(inode))
3960                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3961         else
3962                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3963 }
3964
3965 /*
3966  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3967  * up to the end of the block which corresponds to `from'.
3968  * This required during truncate. We need to physically zero the tail end
3969  * of that block so it doesn't yield old data if the file is later grown.
3970  */
3971 int ext4_block_truncate_page(handle_t *handle,
3972                 struct address_space *mapping, loff_t from)
3973 {
3974         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3975         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3976         unsigned blocksize, length, pos;
3977         ext4_lblk_t iblock;
3978         struct inode *inode = mapping->host;
3979         struct buffer_head *bh;
3980         struct page *page;
3981         int err = 0;
3982
3983         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3984                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3985         if (!page)
3986                 return -EINVAL;
3987
3988         blocksize = inode->i_sb->s_blocksize;
3989         length = blocksize - (offset & (blocksize - 1));
3990         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3991
3992         if (!page_has_buffers(page))
3993                 create_empty_buffers(page, blocksize, 0);
3994
3995         /* Find the buffer that contains "offset" */
3996         bh = page_buffers(page);
3997         pos = blocksize;
3998         while (offset >= pos) {
3999                 bh = bh->b_this_page;
4000                 iblock++;
4001                 pos += blocksize;
4002         }
4003
4004         err = 0;
4005         if (buffer_freed(bh)) {
4006                 BUFFER_TRACE(bh, "freed: skip");
4007                 goto unlock;
4008         }
4009
4010         if (!buffer_mapped(bh)) {
4011                 BUFFER_TRACE(bh, "unmapped");
4012                 ext4_get_block(inode, iblock, bh, 0);
4013                 /* unmapped? It's a hole - nothing to do */
4014                 if (!buffer_mapped(bh)) {
4015                         BUFFER_TRACE(bh, "still unmapped");
4016                         goto unlock;
4017                 }
4018         }
4019
4020         /* Ok, it's mapped. Make sure it's up-to-date */
4021         if (PageUptodate(page))
4022                 set_buffer_uptodate(bh);
4023
4024         if (!buffer_uptodate(bh)) {
4025                 err = -EIO;
4026                 ll_rw_block(READ, 1, &bh);
4027                 wait_on_buffer(bh);
4028                 /* Uhhuh. Read error. Complain and punt. */
4029                 if (!buffer_uptodate(bh))
4030                         goto unlock;
4031         }
4032
4033         if (ext4_should_journal_data(inode)) {
4034                 BUFFER_TRACE(bh, "get write access");
4035                 err = ext4_journal_get_write_access(handle, bh);
4036                 if (err)
4037                         goto unlock;
4038         }
4039
4040         zero_user(page, offset, length);
4041
4042         BUFFER_TRACE(bh, "zeroed end of block");
4043
4044         err = 0;
4045         if (ext4_should_journal_data(inode)) {
4046                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4047         } else {
4048                 if (ext4_should_order_data(inode))
4049                         err = ext4_jbd2_file_inode(handle, inode);
4050                 mark_buffer_dirty(bh);
4051         }
4052
4053 unlock:
4054         unlock_page(page);
4055         page_cache_release(page);
4056         return err;
4057 }
4058
4059 /*
4060  * Probably it should be a library function... search for first non-zero word
4061  * or memcmp with zero_page, whatever is better for particular architecture.
4062  * Linus?
4063  */
4064 static inline int all_zeroes(__le32 *p, __le32 *q)
4065 {
4066         while (p < q)
4067                 if (*p++)
4068                         return 0;
4069         return 1;
4070 }
4071
4072 /**
4073  *      ext4_find_shared - find the indirect blocks for partial truncation.
4074  *      @inode:   inode in question
4075  *      @depth:   depth of the affected branch
4076  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4077  *      @chain:   place to store the pointers to partial indirect blocks
4078  *      @top:     place to the (detached) top of branch
4079  *
4080  *      This is a helper function used by ext4_truncate().
4081  *
4082  *      When we do truncate() we may have to clean the ends of several
4083  *      indirect blocks but leave the blocks themselves alive. Block is
4084  *      partially truncated if some data below the new i_size is refered
4085  *      from it (and it is on the path to the first completely truncated
4086  *      data block, indeed).  We have to free the top of that path along
4087  *      with everything to the right of the path. Since no allocation
4088  *      past the truncation point is possible until ext4_truncate()
4089  *      finishes, we may safely do the latter, but top of branch may
4090  *      require special attention - pageout below the truncation point
4091  *      might try to populate it.
4092  *
4093  *      We atomically detach the top of branch from the tree, store the
4094  *      block number of its root in *@top, pointers to buffer_heads of
4095  *      partially truncated blocks - in @chain[].bh and pointers to
4096  *      their last elements that should not be removed - in
4097  *      @chain[].p. Return value is the pointer to last filled element
4098  *      of @chain.
4099  *
4100  *      The work left to caller to do the actual freeing of subtrees:
4101  *              a) free the subtree starting from *@top
4102  *              b) free the subtrees whose roots are stored in
4103  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4104  *              c) free the subtrees growing from the inode past the @chain[0].
4105  *                      (no partially truncated stuff there).  */
4106
4107 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4108                                   ext4_lblk_t offsets[4], Indirect chain[4],
4109                                   __le32 *top)
4110 {
4111         Indirect *partial, *p;
4112         int k, err;
4113
4114         *top = 0;
4115         /* Make k index the deepest non-null offset + 1 */
4116         for (k = depth; k > 1 && !offsets[k-1]; k--)
4117                 ;
4118         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4119         /* Writer: pointers */
4120         if (!partial)
4121                 partial = chain + k-1;
4122         /*
4123          * If the branch acquired continuation since we've looked at it -
4124          * fine, it should all survive and (new) top doesn't belong to us.
4125          */
4126         if (!partial->key && *partial->p)
4127                 /* Writer: end */
4128                 goto no_top;
4129         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4130                 ;
4131         /*
4132          * OK, we've found the last block that must survive. The rest of our
4133          * branch should be detached before unlocking. However, if that rest
4134          * of branch is all ours and does not grow immediately from the inode
4135          * it's easier to cheat and just decrement partial->p.
4136          */
4137         if (p == chain + k - 1 && p > chain) {
4138                 p->p--;
4139         } else {
4140                 *top = *p->p;
4141                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4142 #if 0
4143                 *p->p = 0;
4144 #endif
4145         }
4146         /* Writer: end */
4147
4148         while (partial > p) {
4149                 brelse(partial->bh);
4150                 partial--;
4151         }
4152 no_top:
4153         return partial;
4154 }
4155
4156 /*
4157  * Zero a number of block pointers in either an inode or an indirect block.
4158  * If we restart the transaction we must again get write access to the
4159  * indirect block for further modification.
4160  *
4161  * We release `count' blocks on disk, but (last - first) may be greater
4162  * than `count' because there can be holes in there.
4163  */
4164 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4165                              struct buffer_head *bh,
4166                              ext4_fsblk_t block_to_free,
4167                              unsigned long count, __le32 *first,
4168                              __le32 *last)
4169 {
4170         __le32 *p;
4171         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4172
4173         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4174                 flags |= EXT4_FREE_BLOCKS_METADATA;
4175
4176         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4177                                    count)) {
4178                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4179                                  "blocks %llu len %lu",
4180                                  (unsigned long long) block_to_free, count);
4181                 return 1;
4182         }
4183
4184         if (try_to_extend_transaction(handle, inode)) {
4185                 if (bh) {
4186                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4187                         ext4_handle_dirty_metadata(handle, inode, bh);
4188                 }
4189                 ext4_mark_inode_dirty(handle, inode);
4190                 ext4_truncate_restart_trans(handle, inode,
4191                                             blocks_for_truncate(inode));
4192                 if (bh) {
4193                         BUFFER_TRACE(bh, "retaking write access");
4194                         ext4_journal_get_write_access(handle, bh);
4195                 }
4196         }
4197
4198         for (p = first; p < last; p++)
4199                 *p = 0;
4200
4201         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4202         return 0;
4203 }
4204
4205 /**
4206  * ext4_free_data - free a list of data blocks
4207  * @handle:     handle for this transaction
4208  * @inode:      inode we are dealing with
4209  * @this_bh:    indirect buffer_head which contains *@first and *@last
4210  * @first:      array of block numbers
4211  * @last:       points immediately past the end of array
4212  *
4213  * We are freeing all blocks refered from that array (numbers are stored as
4214  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4215  *
4216  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4217  * blocks are contiguous then releasing them at one time will only affect one
4218  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4219  * actually use a lot of journal space.
4220  *
4221  * @this_bh will be %NULL if @first and @last point into the inode's direct
4222  * block pointers.
4223  */
4224 static void ext4_free_data(handle_t *handle, struct inode *inode,
4225                            struct buffer_head *this_bh,
4226                            __le32 *first, __le32 *last)
4227 {
4228         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4229         unsigned long count = 0;            /* Number of blocks in the run */
4230         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4231                                                corresponding to
4232                                                block_to_free */
4233         ext4_fsblk_t nr;                    /* Current block # */
4234         __le32 *p;                          /* Pointer into inode/ind
4235                                                for current block */
4236         int err;
4237
4238         if (this_bh) {                          /* For indirect block */
4239                 BUFFER_TRACE(this_bh, "get_write_access");
4240                 err = ext4_journal_get_write_access(handle, this_bh);
4241                 /* Important: if we can't update the indirect pointers
4242                  * to the blocks, we can't free them. */
4243                 if (err)
4244                         return;
4245         }
4246
4247         for (p = first; p < last; p++) {
4248                 nr = le32_to_cpu(*p);
4249                 if (nr) {
4250                         /* accumulate blocks to free if they're contiguous */
4251                         if (count == 0) {
4252                                 block_to_free = nr;
4253                                 block_to_free_p = p;
4254                                 count = 1;
4255                         } else if (nr == block_to_free + count) {
4256                                 count++;
4257                         } else {
4258                                 if (ext4_clear_blocks(handle, inode, this_bh,
4259                                                       block_to_free, count,
4260                                                       block_to_free_p, p))
4261                                         break;
4262                                 block_to_free = nr;
4263                                 block_to_free_p = p;
4264                                 count = 1;
4265                         }
4266                 }
4267         }
4268
4269         if (count > 0)
4270                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4271                                   count, block_to_free_p, p);
4272
4273         if (this_bh) {
4274                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4275
4276                 /*
4277                  * The buffer head should have an attached journal head at this
4278                  * point. However, if the data is corrupted and an indirect
4279                  * block pointed to itself, it would have been detached when
4280                  * the block was cleared. Check for this instead of OOPSing.
4281                  */
4282                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4283                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4284                 else
4285                         EXT4_ERROR_INODE(inode,
4286                                          "circular indirect block detected at "
4287                                          "block %llu",
4288                                 (unsigned long long) this_bh->b_blocknr);
4289         }
4290 }
4291
4292 /**
4293  *      ext4_free_branches - free an array of branches
4294  *      @handle: JBD handle for this transaction
4295  *      @inode: inode we are dealing with
4296  *      @parent_bh: the buffer_head which contains *@first and *@last
4297  *      @first: array of block numbers
4298  *      @last:  pointer immediately past the end of array
4299  *      @depth: depth of the branches to free
4300  *
4301  *      We are freeing all blocks refered from these branches (numbers are
4302  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4303  *      appropriately.
4304  */
4305 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4306                                struct buffer_head *parent_bh,
4307                                __le32 *first, __le32 *last, int depth)
4308 {
4309         ext4_fsblk_t nr;
4310         __le32 *p;
4311
4312         if (ext4_handle_is_aborted(handle))
4313                 return;
4314
4315         if (depth--) {
4316                 struct buffer_head *bh;
4317                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4318                 p = last;
4319                 while (--p >= first) {
4320                         nr = le32_to_cpu(*p);
4321                         if (!nr)
4322                                 continue;               /* A hole */
4323
4324                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4325                                                    nr, 1)) {
4326                                 EXT4_ERROR_INODE(inode,
4327                                                  "invalid indirect mapped "
4328                                                  "block %lu (level %d)",
4329                                                  (unsigned long) nr, depth);
4330                                 break;
4331                         }
4332
4333                         /* Go read the buffer for the next level down */
4334                         bh = sb_bread(inode->i_sb, nr);
4335
4336                         /*
4337                          * A read failure? Report error and clear slot
4338                          * (should be rare).
4339                          */
4340                         if (!bh) {
4341                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4342                                                        "Read failure");
4343                                 continue;
4344                         }
4345
4346                         /* This zaps the entire block.  Bottom up. */
4347                         BUFFER_TRACE(bh, "free child branches");
4348                         ext4_free_branches(handle, inode, bh,
4349                                         (__le32 *) bh->b_data,
4350                                         (__le32 *) bh->b_data + addr_per_block,
4351                                         depth);
4352
4353                         /*
4354                          * Everything below this this pointer has been
4355                          * released.  Now let this top-of-subtree go.
4356                          *
4357                          * We want the freeing of this indirect block to be
4358                          * atomic in the journal with the updating of the
4359                          * bitmap block which owns it.  So make some room in
4360                          * the journal.
4361                          *
4362                          * We zero the parent pointer *after* freeing its
4363                          * pointee in the bitmaps, so if extend_transaction()
4364                          * for some reason fails to put the bitmap changes and
4365                          * the release into the same transaction, recovery
4366                          * will merely complain about releasing a free block,
4367                          * rather than leaking blocks.
4368                          */
4369                         if (ext4_handle_is_aborted(handle))
4370                                 return;
4371                         if (try_to_extend_transaction(handle, inode)) {
4372                                 ext4_mark_inode_dirty(handle, inode);
4373                                 ext4_truncate_restart_trans(handle, inode,
4374                                             blocks_for_truncate(inode));
4375                         }
4376
4377                         /*
4378                          * The forget flag here is critical because if
4379                          * we are journaling (and not doing data
4380                          * journaling), we have to make sure a revoke
4381                          * record is written to prevent the journal
4382                          * replay from overwriting the (former)
4383                          * indirect block if it gets reallocated as a
4384                          * data block.  This must happen in the same
4385                          * transaction where the data blocks are
4386                          * actually freed.
4387                          */
4388                         ext4_free_blocks(handle, inode, 0, nr, 1,
4389                                          EXT4_FREE_BLOCKS_METADATA|
4390                                          EXT4_FREE_BLOCKS_FORGET);
4391
4392                         if (parent_bh) {
4393                                 /*
4394                                  * The block which we have just freed is
4395                                  * pointed to by an indirect block: journal it
4396                                  */
4397                                 BUFFER_TRACE(parent_bh, "get_write_access");
4398                                 if (!ext4_journal_get_write_access(handle,
4399                                                                    parent_bh)){
4400                                         *p = 0;
4401                                         BUFFER_TRACE(parent_bh,
4402                                         "call ext4_handle_dirty_metadata");
4403                                         ext4_handle_dirty_metadata(handle,
4404                                                                    inode,
4405                                                                    parent_bh);
4406                                 }
4407                         }
4408                 }
4409         } else {
4410                 /* We have reached the bottom of the tree. */
4411                 BUFFER_TRACE(parent_bh, "free data blocks");
4412                 ext4_free_data(handle, inode, parent_bh, first, last);
4413         }
4414 }
4415
4416 int ext4_can_truncate(struct inode *inode)
4417 {
4418         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4419                 return 0;
4420         if (S_ISREG(inode->i_mode))
4421                 return 1;
4422         if (S_ISDIR(inode->i_mode))
4423                 return 1;
4424         if (S_ISLNK(inode->i_mode))
4425                 return !ext4_inode_is_fast_symlink(inode);
4426         return 0;
4427 }
4428
4429 /*
4430  * ext4_truncate()
4431  *
4432  * We block out ext4_get_block() block instantiations across the entire
4433  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4434  * simultaneously on behalf of the same inode.
4435  *
4436  * As we work through the truncate and commmit bits of it to the journal there
4437  * is one core, guiding principle: the file's tree must always be consistent on
4438  * disk.  We must be able to restart the truncate after a crash.
4439  *
4440  * The file's tree may be transiently inconsistent in memory (although it
4441  * probably isn't), but whenever we close off and commit a journal transaction,
4442  * the contents of (the filesystem + the journal) must be consistent and
4443  * restartable.  It's pretty simple, really: bottom up, right to left (although
4444  * left-to-right works OK too).
4445  *
4446  * Note that at recovery time, journal replay occurs *before* the restart of
4447  * truncate against the orphan inode list.
4448  *
4449  * The committed inode has the new, desired i_size (which is the same as
4450  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4451  * that this inode's truncate did not complete and it will again call
4452  * ext4_truncate() to have another go.  So there will be instantiated blocks
4453  * to the right of the truncation point in a crashed ext4 filesystem.  But
4454  * that's fine - as long as they are linked from the inode, the post-crash
4455  * ext4_truncate() run will find them and release them.
4456  */
4457 void ext4_truncate(struct inode *inode)
4458 {
4459         handle_t *handle;
4460         struct ext4_inode_info *ei = EXT4_I(inode);
4461         __le32 *i_data = ei->i_data;
4462         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4463         struct address_space *mapping = inode->i_mapping;
4464         ext4_lblk_t offsets[4];
4465         Indirect chain[4];
4466         Indirect *partial;
4467         __le32 nr = 0;
4468         int n;
4469         ext4_lblk_t last_block;
4470         unsigned blocksize = inode->i_sb->s_blocksize;
4471
4472         if (!ext4_can_truncate(inode))
4473                 return;
4474
4475         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4476
4477         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4478                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4479
4480         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4481                 ext4_ext_truncate(inode);
4482                 return;
4483         }
4484
4485         handle = start_transaction(inode);
4486         if (IS_ERR(handle))
4487                 return;         /* AKPM: return what? */
4488
4489         last_block = (inode->i_size + blocksize-1)
4490                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4491
4492         if (inode->i_size & (blocksize - 1))
4493                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4494                         goto out_stop;
4495
4496         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4497         if (n == 0)
4498                 goto out_stop;  /* error */
4499
4500         /*
4501          * OK.  This truncate is going to happen.  We add the inode to the
4502          * orphan list, so that if this truncate spans multiple transactions,
4503          * and we crash, we will resume the truncate when the filesystem
4504          * recovers.  It also marks the inode dirty, to catch the new size.
4505          *
4506          * Implication: the file must always be in a sane, consistent
4507          * truncatable state while each transaction commits.
4508          */
4509         if (ext4_orphan_add(handle, inode))
4510                 goto out_stop;
4511
4512         /*
4513          * From here we block out all ext4_get_block() callers who want to
4514          * modify the block allocation tree.
4515          */
4516         down_write(&ei->i_data_sem);
4517
4518         ext4_discard_preallocations(inode);
4519
4520         /*
4521          * The orphan list entry will now protect us from any crash which
4522          * occurs before the truncate completes, so it is now safe to propagate
4523          * the new, shorter inode size (held for now in i_size) into the
4524          * on-disk inode. We do this via i_disksize, which is the value which
4525          * ext4 *really* writes onto the disk inode.
4526          */
4527         ei->i_disksize = inode->i_size;
4528
4529         if (n == 1) {           /* direct blocks */
4530                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4531                                i_data + EXT4_NDIR_BLOCKS);
4532                 goto do_indirects;
4533         }
4534
4535         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4536         /* Kill the top of shared branch (not detached) */
4537         if (nr) {
4538                 if (partial == chain) {
4539                         /* Shared branch grows from the inode */
4540                         ext4_free_branches(handle, inode, NULL,
4541                                            &nr, &nr+1, (chain+n-1) - partial);
4542                         *partial->p = 0;
4543                         /*
4544                          * We mark the inode dirty prior to restart,
4545                          * and prior to stop.  No need for it here.
4546                          */
4547                 } else {
4548                         /* Shared branch grows from an indirect block */
4549                         BUFFER_TRACE(partial->bh, "get_write_access");
4550                         ext4_free_branches(handle, inode, partial->bh,
4551                                         partial->p,
4552                                         partial->p+1, (chain+n-1) - partial);
4553                 }
4554         }
4555         /* Clear the ends of indirect blocks on the shared branch */
4556         while (partial > chain) {
4557                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4558                                    (__le32*)partial->bh->b_data+addr_per_block,
4559                                    (chain+n-1) - partial);
4560                 BUFFER_TRACE(partial->bh, "call brelse");
4561                 brelse(partial->bh);
4562                 partial--;
4563         }
4564 do_indirects:
4565         /* Kill the remaining (whole) subtrees */
4566         switch (offsets[0]) {
4567         default:
4568                 nr = i_data[EXT4_IND_BLOCK];
4569                 if (nr) {
4570                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4571                         i_data[EXT4_IND_BLOCK] = 0;
4572                 }
4573         case EXT4_IND_BLOCK:
4574                 nr = i_data[EXT4_DIND_BLOCK];
4575                 if (nr) {
4576                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4577                         i_data[EXT4_DIND_BLOCK] = 0;
4578                 }
4579         case EXT4_DIND_BLOCK:
4580                 nr = i_data[EXT4_TIND_BLOCK];
4581                 if (nr) {
4582                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4583                         i_data[EXT4_TIND_BLOCK] = 0;
4584                 }
4585         case EXT4_TIND_BLOCK:
4586                 ;
4587         }
4588
4589         up_write(&ei->i_data_sem);
4590         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4591         ext4_mark_inode_dirty(handle, inode);
4592
4593         /*
4594          * In a multi-transaction truncate, we only make the final transaction
4595          * synchronous
4596          */
4597         if (IS_SYNC(inode))
4598                 ext4_handle_sync(handle);
4599 out_stop:
4600         /*
4601          * If this was a simple ftruncate(), and the file will remain alive
4602          * then we need to clear up the orphan record which we created above.
4603          * However, if this was a real unlink then we were called by
4604          * ext4_delete_inode(), and we allow that function to clean up the
4605          * orphan info for us.
4606          */
4607         if (inode->i_nlink)
4608                 ext4_orphan_del(handle, inode);
4609
4610         ext4_journal_stop(handle);
4611 }
4612
4613 /*
4614  * ext4_get_inode_loc returns with an extra refcount against the inode's
4615  * underlying buffer_head on success. If 'in_mem' is true, we have all
4616  * data in memory that is needed to recreate the on-disk version of this
4617  * inode.
4618  */
4619 static int __ext4_get_inode_loc(struct inode *inode,
4620                                 struct ext4_iloc *iloc, int in_mem)
4621 {
4622         struct ext4_group_desc  *gdp;
4623         struct buffer_head      *bh;
4624         struct super_block      *sb = inode->i_sb;
4625         ext4_fsblk_t            block;
4626         int                     inodes_per_block, inode_offset;
4627
4628         iloc->bh = NULL;
4629         if (!ext4_valid_inum(sb, inode->i_ino))
4630                 return -EIO;
4631
4632         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4633         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4634         if (!gdp)
4635                 return -EIO;
4636
4637         /*
4638          * Figure out the offset within the block group inode table
4639          */
4640         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4641         inode_offset = ((inode->i_ino - 1) %
4642                         EXT4_INODES_PER_GROUP(sb));
4643         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4644         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4645
4646         bh = sb_getblk(sb, block);
4647         if (!bh) {
4648                 EXT4_ERROR_INODE_BLOCK(inode, block,
4649                                        "unable to read itable block");
4650                 return -EIO;
4651         }
4652         if (!buffer_uptodate(bh)) {
4653                 lock_buffer(bh);
4654
4655                 /*
4656                  * If the buffer has the write error flag, we have failed
4657                  * to write out another inode in the same block.  In this
4658                  * case, we don't have to read the block because we may
4659                  * read the old inode data successfully.
4660                  */
4661                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4662                         set_buffer_uptodate(bh);
4663
4664                 if (buffer_uptodate(bh)) {
4665                         /* someone brought it uptodate while we waited */
4666                         unlock_buffer(bh);
4667                         goto has_buffer;
4668                 }
4669
4670                 /*
4671                  * If we have all information of the inode in memory and this
4672                  * is the only valid inode in the block, we need not read the
4673                  * block.
4674                  */
4675                 if (in_mem) {
4676                         struct buffer_head *bitmap_bh;
4677                         int i, start;
4678
4679                         start = inode_offset & ~(inodes_per_block - 1);
4680
4681                         /* Is the inode bitmap in cache? */
4682                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4683                         if (!bitmap_bh)
4684                                 goto make_io;
4685
4686                         /*
4687                          * If the inode bitmap isn't in cache then the
4688                          * optimisation may end up performing two reads instead
4689                          * of one, so skip it.
4690                          */
4691                         if (!buffer_uptodate(bitmap_bh)) {
4692                                 brelse(bitmap_bh);
4693                                 goto make_io;
4694                         }
4695                         for (i = start; i < start + inodes_per_block; i++) {
4696                                 if (i == inode_offset)
4697                                         continue;
4698                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4699                                         break;
4700                         }
4701                         brelse(bitmap_bh);
4702                         if (i == start + inodes_per_block) {
4703                                 /* all other inodes are free, so skip I/O */
4704                                 memset(bh->b_data, 0, bh->b_size);
4705                                 set_buffer_uptodate(bh);
4706                                 unlock_buffer(bh);
4707                                 goto has_buffer;
4708                         }
4709                 }
4710
4711 make_io:
4712                 /*
4713                  * If we need to do any I/O, try to pre-readahead extra
4714                  * blocks from the inode table.
4715                  */
4716                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4717                         ext4_fsblk_t b, end, table;
4718                         unsigned num;
4719
4720                         table = ext4_inode_table(sb, gdp);
4721                         /* s_inode_readahead_blks is always a power of 2 */
4722                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4723                         if (table > b)
4724                                 b = table;
4725                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4726                         num = EXT4_INODES_PER_GROUP(sb);
4727                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4728                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4729                                 num -= ext4_itable_unused_count(sb, gdp);
4730                         table += num / inodes_per_block;
4731                         if (end > table)
4732                                 end = table;
4733                         while (b <= end)
4734                                 sb_breadahead(sb, b++);
4735                 }
4736
4737                 /*
4738                  * There are other valid inodes in the buffer, this inode
4739                  * has in-inode xattrs, or we don't have this inode in memory.
4740                  * Read the block from disk.
4741                  */
4742                 get_bh(bh);
4743                 bh->b_end_io = end_buffer_read_sync;
4744                 submit_bh(READ_META, bh);
4745                 wait_on_buffer(bh);
4746                 if (!buffer_uptodate(bh)) {
4747                         EXT4_ERROR_INODE_BLOCK(inode, block,
4748                                                "unable to read itable block");
4749                         brelse(bh);
4750                         return -EIO;
4751                 }
4752         }
4753 has_buffer:
4754         iloc->bh = bh;
4755         return 0;
4756 }
4757
4758 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4759 {
4760         /* We have all inode data except xattrs in memory here. */
4761         return __ext4_get_inode_loc(inode, iloc,
4762                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4763 }
4764
4765 void ext4_set_inode_flags(struct inode *inode)
4766 {
4767         unsigned int flags = EXT4_I(inode)->i_flags;
4768
4769         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4770         if (flags & EXT4_SYNC_FL)
4771                 inode->i_flags |= S_SYNC;
4772         if (flags & EXT4_APPEND_FL)
4773                 inode->i_flags |= S_APPEND;
4774         if (flags & EXT4_IMMUTABLE_FL)
4775                 inode->i_flags |= S_IMMUTABLE;
4776         if (flags & EXT4_NOATIME_FL)
4777                 inode->i_flags |= S_NOATIME;
4778         if (flags & EXT4_DIRSYNC_FL)
4779                 inode->i_flags |= S_DIRSYNC;
4780 }
4781
4782 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4783 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4784 {
4785         unsigned int vfs_fl;
4786         unsigned long old_fl, new_fl;
4787
4788         do {
4789                 vfs_fl = ei->vfs_inode.i_flags;
4790                 old_fl = ei->i_flags;
4791                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4792                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4793                                 EXT4_DIRSYNC_FL);
4794                 if (vfs_fl & S_SYNC)
4795                         new_fl |= EXT4_SYNC_FL;
4796                 if (vfs_fl & S_APPEND)
4797                         new_fl |= EXT4_APPEND_FL;
4798                 if (vfs_fl & S_IMMUTABLE)
4799                         new_fl |= EXT4_IMMUTABLE_FL;
4800                 if (vfs_fl & S_NOATIME)
4801                         new_fl |= EXT4_NOATIME_FL;
4802                 if (vfs_fl & S_DIRSYNC)
4803                         new_fl |= EXT4_DIRSYNC_FL;
4804         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4805 }
4806
4807 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4808                                   struct ext4_inode_info *ei)
4809 {
4810         blkcnt_t i_blocks ;
4811         struct inode *inode = &(ei->vfs_inode);
4812         struct super_block *sb = inode->i_sb;
4813
4814         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4815                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4816                 /* we are using combined 48 bit field */
4817                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4818                                         le32_to_cpu(raw_inode->i_blocks_lo);
4819                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4820                         /* i_blocks represent file system block size */
4821                         return i_blocks  << (inode->i_blkbits - 9);
4822                 } else {
4823                         return i_blocks;
4824                 }
4825         } else {
4826                 return le32_to_cpu(raw_inode->i_blocks_lo);
4827         }
4828 }
4829
4830 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4831 {
4832         struct ext4_iloc iloc;
4833         struct ext4_inode *raw_inode;
4834         struct ext4_inode_info *ei;
4835         struct inode *inode;
4836         journal_t *journal = EXT4_SB(sb)->s_journal;
4837         long ret;
4838         int block;
4839
4840         inode = iget_locked(sb, ino);
4841         if (!inode)
4842                 return ERR_PTR(-ENOMEM);
4843         if (!(inode->i_state & I_NEW))
4844                 return inode;
4845
4846         ei = EXT4_I(inode);
4847         iloc.bh = 0;
4848
4849         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4850         if (ret < 0)
4851                 goto bad_inode;
4852         raw_inode = ext4_raw_inode(&iloc);
4853         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4854         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4855         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4856         if (!(test_opt(inode->i_sb, NO_UID32))) {
4857                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4858                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4859         }
4860         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4861
4862         ei->i_state_flags = 0;
4863         ei->i_dir_start_lookup = 0;
4864         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4865         /* We now have enough fields to check if the inode was active or not.
4866          * This is needed because nfsd might try to access dead inodes
4867          * the test is that same one that e2fsck uses
4868          * NeilBrown 1999oct15
4869          */
4870         if (inode->i_nlink == 0) {
4871                 if (inode->i_mode == 0 ||
4872                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4873                         /* this inode is deleted */
4874                         ret = -ESTALE;
4875                         goto bad_inode;
4876                 }
4877                 /* The only unlinked inodes we let through here have
4878                  * valid i_mode and are being read by the orphan
4879                  * recovery code: that's fine, we're about to complete
4880                  * the process of deleting those. */
4881         }
4882         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4883         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4884         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4885         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4886                 ei->i_file_acl |=
4887                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4888         inode->i_size = ext4_isize(raw_inode);
4889         ei->i_disksize = inode->i_size;
4890 #ifdef CONFIG_QUOTA
4891         ei->i_reserved_quota = 0;
4892 #endif
4893         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4894         ei->i_block_group = iloc.block_group;
4895         ei->i_last_alloc_group = ~0;
4896         /*
4897          * NOTE! The in-memory inode i_data array is in little-endian order
4898          * even on big-endian machines: we do NOT byteswap the block numbers!
4899          */
4900         for (block = 0; block < EXT4_N_BLOCKS; block++)
4901                 ei->i_data[block] = raw_inode->i_block[block];
4902         INIT_LIST_HEAD(&ei->i_orphan);
4903
4904         /*
4905          * Set transaction id's of transactions that have to be committed
4906          * to finish f[data]sync. We set them to currently running transaction
4907          * as we cannot be sure that the inode or some of its metadata isn't
4908          * part of the transaction - the inode could have been reclaimed and
4909          * now it is reread from disk.
4910          */
4911         if (journal) {
4912                 transaction_t *transaction;
4913                 tid_t tid;
4914
4915                 read_lock(&journal->j_state_lock);
4916                 if (journal->j_running_transaction)
4917                         transaction = journal->j_running_transaction;
4918                 else
4919                         transaction = journal->j_committing_transaction;
4920                 if (transaction)
4921                         tid = transaction->t_tid;
4922                 else
4923                         tid = journal->j_commit_sequence;
4924                 read_unlock(&journal->j_state_lock);
4925                 ei->i_sync_tid = tid;
4926                 ei->i_datasync_tid = tid;
4927         }
4928
4929         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4930                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4931                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4932                     EXT4_INODE_SIZE(inode->i_sb)) {
4933                         ret = -EIO;
4934                         goto bad_inode;
4935                 }
4936                 if (ei->i_extra_isize == 0) {
4937                         /* The extra space is currently unused. Use it. */
4938                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4939                                             EXT4_GOOD_OLD_INODE_SIZE;
4940                 } else {
4941                         __le32 *magic = (void *)raw_inode +
4942                                         EXT4_GOOD_OLD_INODE_SIZE +
4943                                         ei->i_extra_isize;
4944                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4945                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4946                 }
4947         } else
4948                 ei->i_extra_isize = 0;
4949
4950         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4951         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4952         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4953         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4954
4955         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4956         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4957                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4958                         inode->i_version |=
4959                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4960         }
4961
4962         ret = 0;
4963         if (ei->i_file_acl &&
4964             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4965                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4966                                  ei->i_file_acl);
4967                 ret = -EIO;
4968                 goto bad_inode;
4969         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4970                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4971                     (S_ISLNK(inode->i_mode) &&
4972                      !ext4_inode_is_fast_symlink(inode)))
4973                         /* Validate extent which is part of inode */
4974                         ret = ext4_ext_check_inode(inode);
4975         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4976                    (S_ISLNK(inode->i_mode) &&
4977                     !ext4_inode_is_fast_symlink(inode))) {
4978                 /* Validate block references which are part of inode */
4979                 ret = ext4_check_inode_blockref(inode);
4980         }
4981         if (ret)
4982                 goto bad_inode;
4983
4984         if (S_ISREG(inode->i_mode)) {
4985                 inode->i_op = &ext4_file_inode_operations;
4986                 inode->i_fop = &ext4_file_operations;
4987                 ext4_set_aops(inode);
4988         } else if (S_ISDIR(inode->i_mode)) {
4989                 inode->i_op = &ext4_dir_inode_operations;
4990                 inode->i_fop = &ext4_dir_operations;
4991         } else if (S_ISLNK(inode->i_mode)) {
4992                 if (ext4_inode_is_fast_symlink(inode)) {
4993                         inode->i_op = &ext4_fast_symlink_inode_operations;
4994                         nd_terminate_link(ei->i_data, inode->i_size,
4995                                 sizeof(ei->i_data) - 1);
4996                 } else {
4997                         inode->i_op = &ext4_symlink_inode_operations;
4998                         ext4_set_aops(inode);
4999                 }
5000         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5001               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5002                 inode->i_op = &ext4_special_inode_operations;
5003                 if (raw_inode->i_block[0])
5004                         init_special_inode(inode, inode->i_mode,
5005                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5006                 else
5007                         init_special_inode(inode, inode->i_mode,
5008                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5009         } else {
5010                 ret = -EIO;
5011                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5012                 goto bad_inode;
5013         }
5014         brelse(iloc.bh);
5015         ext4_set_inode_flags(inode);
5016         unlock_new_inode(inode);
5017         return inode;
5018
5019 bad_inode:
5020         brelse(iloc.bh);
5021         iget_failed(inode);
5022         return ERR_PTR(ret);
5023 }
5024
5025 static int ext4_inode_blocks_set(handle_t *handle,
5026                                 struct ext4_inode *raw_inode,
5027                                 struct ext4_inode_info *ei)
5028 {
5029         struct inode *inode = &(ei->vfs_inode);
5030         u64 i_blocks = inode->i_blocks;
5031         struct super_block *sb = inode->i_sb;
5032
5033         if (i_blocks <= ~0U) {
5034                 /*
5035                  * i_blocks can be represnted in a 32 bit variable
5036                  * as multiple of 512 bytes
5037                  */
5038                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5039                 raw_inode->i_blocks_high = 0;
5040                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5041                 return 0;
5042         }
5043         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5044                 return -EFBIG;
5045
5046         if (i_blocks <= 0xffffffffffffULL) {
5047                 /*
5048                  * i_blocks can be represented in a 48 bit variable
5049                  * as multiple of 512 bytes
5050                  */
5051                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5052                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5053                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5054         } else {
5055                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5056                 /* i_block is stored in file system block size */
5057                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5058                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5059                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5060         }
5061         return 0;
5062 }
5063
5064 /*
5065  * Post the struct inode info into an on-disk inode location in the
5066  * buffer-cache.  This gobbles the caller's reference to the
5067  * buffer_head in the inode location struct.
5068  *
5069  * The caller must have write access to iloc->bh.
5070  */
5071 static int ext4_do_update_inode(handle_t *handle,
5072                                 struct inode *inode,
5073                                 struct ext4_iloc *iloc)
5074 {
5075         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5076         struct ext4_inode_info *ei = EXT4_I(inode);
5077         struct buffer_head *bh = iloc->bh;
5078         int err = 0, rc, block;
5079
5080         /* For fields not not tracking in the in-memory inode,
5081          * initialise them to zero for new inodes. */
5082         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5083                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5084
5085         ext4_get_inode_flags(ei);
5086         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5087         if (!(test_opt(inode->i_sb, NO_UID32))) {
5088                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5089                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5090 /*
5091  * Fix up interoperability with old kernels. Otherwise, old inodes get
5092  * re-used with the upper 16 bits of the uid/gid intact
5093  */
5094                 if (!ei->i_dtime) {
5095                         raw_inode->i_uid_high =
5096                                 cpu_to_le16(high_16_bits(inode->i_uid));
5097                         raw_inode->i_gid_high =
5098                                 cpu_to_le16(high_16_bits(inode->i_gid));
5099                 } else {
5100                         raw_inode->i_uid_high = 0;
5101                         raw_inode->i_gid_high = 0;
5102                 }
5103         } else {
5104                 raw_inode->i_uid_low =
5105                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5106                 raw_inode->i_gid_low =
5107                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5108                 raw_inode->i_uid_high = 0;
5109                 raw_inode->i_gid_high = 0;
5110         }
5111         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5112
5113         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5114         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5115         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5116         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5117
5118         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5119                 goto out_brelse;
5120         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5121         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5122         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5123             cpu_to_le32(EXT4_OS_HURD))
5124                 raw_inode->i_file_acl_high =
5125                         cpu_to_le16(ei->i_file_acl >> 32);
5126         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5127         ext4_isize_set(raw_inode, ei->i_disksize);
5128         if (ei->i_disksize > 0x7fffffffULL) {
5129                 struct super_block *sb = inode->i_sb;
5130                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5131                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5132                                 EXT4_SB(sb)->s_es->s_rev_level ==
5133                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5134                         /* If this is the first large file
5135                          * created, add a flag to the superblock.
5136                          */
5137                         err = ext4_journal_get_write_access(handle,
5138                                         EXT4_SB(sb)->s_sbh);
5139                         if (err)
5140                                 goto out_brelse;
5141                         ext4_update_dynamic_rev(sb);
5142                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5143                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5144                         sb->s_dirt = 1;
5145                         ext4_handle_sync(handle);
5146                         err = ext4_handle_dirty_metadata(handle, NULL,
5147                                         EXT4_SB(sb)->s_sbh);
5148                 }
5149         }
5150         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5151         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5152                 if (old_valid_dev(inode->i_rdev)) {
5153                         raw_inode->i_block[0] =
5154                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5155                         raw_inode->i_block[1] = 0;
5156                 } else {
5157                         raw_inode->i_block[0] = 0;
5158                         raw_inode->i_block[1] =
5159                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5160                         raw_inode->i_block[2] = 0;
5161                 }
5162         } else
5163                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5164                         raw_inode->i_block[block] = ei->i_data[block];
5165
5166         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5167         if (ei->i_extra_isize) {
5168                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5169                         raw_inode->i_version_hi =
5170                         cpu_to_le32(inode->i_version >> 32);
5171                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5172         }
5173
5174         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5175         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5176         if (!err)
5177                 err = rc;
5178         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5179
5180         ext4_update_inode_fsync_trans(handle, inode, 0);
5181 out_brelse:
5182         brelse(bh);
5183         ext4_std_error(inode->i_sb, err);
5184         return err;
5185 }
5186
5187 /*
5188  * ext4_write_inode()
5189  *
5190  * We are called from a few places:
5191  *
5192  * - Within generic_file_write() for O_SYNC files.
5193  *   Here, there will be no transaction running. We wait for any running
5194  *   trasnaction to commit.
5195  *
5196  * - Within sys_sync(), kupdate and such.
5197  *   We wait on commit, if tol to.
5198  *
5199  * - Within prune_icache() (PF_MEMALLOC == true)
5200  *   Here we simply return.  We can't afford to block kswapd on the
5201  *   journal commit.
5202  *
5203  * In all cases it is actually safe for us to return without doing anything,
5204  * because the inode has been copied into a raw inode buffer in
5205  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5206  * knfsd.
5207  *
5208  * Note that we are absolutely dependent upon all inode dirtiers doing the
5209  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5210  * which we are interested.
5211  *
5212  * It would be a bug for them to not do this.  The code:
5213  *
5214  *      mark_inode_dirty(inode)
5215  *      stuff();
5216  *      inode->i_size = expr;
5217  *
5218  * is in error because a kswapd-driven write_inode() could occur while
5219  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5220  * will no longer be on the superblock's dirty inode list.
5221  */
5222 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5223 {
5224         int err;
5225
5226         if (current->flags & PF_MEMALLOC)
5227                 return 0;
5228
5229         if (EXT4_SB(inode->i_sb)->s_journal) {
5230                 if (ext4_journal_current_handle()) {
5231                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5232                         dump_stack();
5233                         return -EIO;
5234                 }
5235
5236                 if (wbc->sync_mode != WB_SYNC_ALL)
5237                         return 0;
5238
5239                 err = ext4_force_commit(inode->i_sb);
5240         } else {
5241                 struct ext4_iloc iloc;
5242
5243                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5244                 if (err)
5245                         return err;
5246                 if (wbc->sync_mode == WB_SYNC_ALL)
5247                         sync_dirty_buffer(iloc.bh);
5248                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5249                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5250                                          "IO error syncing inode");
5251                         err = -EIO;
5252                 }
5253                 brelse(iloc.bh);
5254         }
5255         return err;
5256 }
5257
5258 /*
5259  * ext4_setattr()
5260  *
5261  * Called from notify_change.
5262  *
5263  * We want to trap VFS attempts to truncate the file as soon as
5264  * possible.  In particular, we want to make sure that when the VFS
5265  * shrinks i_size, we put the inode on the orphan list and modify
5266  * i_disksize immediately, so that during the subsequent flushing of
5267  * dirty pages and freeing of disk blocks, we can guarantee that any
5268  * commit will leave the blocks being flushed in an unused state on
5269  * disk.  (On recovery, the inode will get truncated and the blocks will
5270  * be freed, so we have a strong guarantee that no future commit will
5271  * leave these blocks visible to the user.)
5272  *
5273  * Another thing we have to assure is that if we are in ordered mode
5274  * and inode is still attached to the committing transaction, we must
5275  * we start writeout of all the dirty pages which are being truncated.
5276  * This way we are sure that all the data written in the previous
5277  * transaction are already on disk (truncate waits for pages under
5278  * writeback).
5279  *
5280  * Called with inode->i_mutex down.
5281  */
5282 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5283 {
5284         struct inode *inode = dentry->d_inode;
5285         int error, rc = 0;
5286         int orphan = 0;
5287         const unsigned int ia_valid = attr->ia_valid;
5288
5289         error = inode_change_ok(inode, attr);
5290         if (error)
5291                 return error;
5292
5293         if (is_quota_modification(inode, attr))
5294                 dquot_initialize(inode);
5295         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5296                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5297                 handle_t *handle;
5298
5299                 /* (user+group)*(old+new) structure, inode write (sb,
5300                  * inode block, ? - but truncate inode update has it) */
5301                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5302                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5303                 if (IS_ERR(handle)) {
5304                         error = PTR_ERR(handle);
5305                         goto err_out;
5306                 }
5307                 error = dquot_transfer(inode, attr);
5308                 if (error) {
5309                         ext4_journal_stop(handle);
5310                         return error;
5311                 }
5312                 /* Update corresponding info in inode so that everything is in
5313                  * one transaction */
5314                 if (attr->ia_valid & ATTR_UID)
5315                         inode->i_uid = attr->ia_uid;
5316                 if (attr->ia_valid & ATTR_GID)
5317                         inode->i_gid = attr->ia_gid;
5318                 error = ext4_mark_inode_dirty(handle, inode);
5319                 ext4_journal_stop(handle);
5320         }
5321
5322         if (attr->ia_valid & ATTR_SIZE) {
5323                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5324                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5325
5326                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5327                                 return -EFBIG;
5328                 }
5329         }
5330
5331         if (S_ISREG(inode->i_mode) &&
5332             attr->ia_valid & ATTR_SIZE &&
5333             (attr->ia_size < inode->i_size ||
5334              (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5335                 handle_t *handle;
5336
5337                 handle = ext4_journal_start(inode, 3);
5338                 if (IS_ERR(handle)) {
5339                         error = PTR_ERR(handle);
5340                         goto err_out;
5341                 }
5342                 if (ext4_handle_valid(handle)) {
5343                         error = ext4_orphan_add(handle, inode);
5344                         orphan = 1;
5345                 }
5346                 EXT4_I(inode)->i_disksize = attr->ia_size;
5347                 rc = ext4_mark_inode_dirty(handle, inode);
5348                 if (!error)
5349                         error = rc;
5350                 ext4_journal_stop(handle);
5351
5352                 if (ext4_should_order_data(inode)) {
5353                         error = ext4_begin_ordered_truncate(inode,
5354                                                             attr->ia_size);
5355                         if (error) {
5356                                 /* Do as much error cleanup as possible */
5357                                 handle = ext4_journal_start(inode, 3);
5358                                 if (IS_ERR(handle)) {
5359                                         ext4_orphan_del(NULL, inode);
5360                                         goto err_out;
5361                                 }
5362                                 ext4_orphan_del(handle, inode);
5363                                 orphan = 0;
5364                                 ext4_journal_stop(handle);
5365                                 goto err_out;
5366                         }
5367                 }
5368                 /* ext4_truncate will clear the flag */
5369                 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5370                         ext4_truncate(inode);
5371         }
5372
5373         if ((attr->ia_valid & ATTR_SIZE) &&
5374             attr->ia_size != i_size_read(inode))
5375                 rc = vmtruncate(inode, attr->ia_size);
5376
5377         if (!rc) {
5378                 setattr_copy(inode, attr);
5379                 mark_inode_dirty(inode);
5380         }
5381
5382         /*
5383          * If the call to ext4_truncate failed to get a transaction handle at
5384          * all, we need to clean up the in-core orphan list manually.
5385          */
5386         if (orphan && inode->i_nlink)
5387                 ext4_orphan_del(NULL, inode);
5388
5389         if (!rc && (ia_valid & ATTR_MODE))
5390                 rc = ext4_acl_chmod(inode);
5391
5392 err_out:
5393         ext4_std_error(inode->i_sb, error);
5394         if (!error)
5395                 error = rc;
5396         return error;
5397 }
5398
5399 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5400                  struct kstat *stat)
5401 {
5402         struct inode *inode;
5403         unsigned long delalloc_blocks;
5404
5405         inode = dentry->d_inode;
5406         generic_fillattr(inode, stat);
5407
5408         /*
5409          * We can't update i_blocks if the block allocation is delayed
5410          * otherwise in the case of system crash before the real block
5411          * allocation is done, we will have i_blocks inconsistent with
5412          * on-disk file blocks.
5413          * We always keep i_blocks updated together with real
5414          * allocation. But to not confuse with user, stat
5415          * will return the blocks that include the delayed allocation
5416          * blocks for this file.
5417          */
5418         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5419
5420         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5421         return 0;
5422 }
5423
5424 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5425                                       int chunk)
5426 {
5427         int indirects;
5428
5429         /* if nrblocks are contiguous */
5430         if (chunk) {
5431                 /*
5432                  * With N contiguous data blocks, it need at most
5433                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5434                  * 2 dindirect blocks
5435                  * 1 tindirect block
5436                  */
5437                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5438                 return indirects + 3;
5439         }
5440         /*
5441          * if nrblocks are not contiguous, worse case, each block touch
5442          * a indirect block, and each indirect block touch a double indirect
5443          * block, plus a triple indirect block
5444          */
5445         indirects = nrblocks * 2 + 1;
5446         return indirects;
5447 }
5448
5449 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5450 {
5451         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5452                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5453         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5454 }
5455
5456 /*
5457  * Account for index blocks, block groups bitmaps and block group
5458  * descriptor blocks if modify datablocks and index blocks
5459  * worse case, the indexs blocks spread over different block groups
5460  *
5461  * If datablocks are discontiguous, they are possible to spread over
5462  * different block groups too. If they are contiuguous, with flexbg,
5463  * they could still across block group boundary.
5464  *
5465  * Also account for superblock, inode, quota and xattr blocks
5466  */
5467 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5468 {
5469         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5470         int gdpblocks;
5471         int idxblocks;
5472         int ret = 0;
5473
5474         /*
5475          * How many index blocks need to touch to modify nrblocks?
5476          * The "Chunk" flag indicating whether the nrblocks is
5477          * physically contiguous on disk
5478          *
5479          * For Direct IO and fallocate, they calls get_block to allocate
5480          * one single extent at a time, so they could set the "Chunk" flag
5481          */
5482         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5483
5484         ret = idxblocks;
5485
5486         /*
5487          * Now let's see how many group bitmaps and group descriptors need
5488          * to account
5489          */
5490         groups = idxblocks;
5491         if (chunk)
5492                 groups += 1;
5493         else
5494                 groups += nrblocks;
5495
5496         gdpblocks = groups;
5497         if (groups > ngroups)
5498                 groups = ngroups;
5499         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5500                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5501
5502         /* bitmaps and block group descriptor blocks */
5503         ret += groups + gdpblocks;
5504
5505         /* Blocks for super block, inode, quota and xattr blocks */
5506         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5507
5508         return ret;
5509 }
5510
5511 /*
5512  * Calulate the total number of credits to reserve to fit
5513  * the modification of a single pages into a single transaction,
5514  * which may include multiple chunks of block allocations.
5515  *
5516  * This could be called via ext4_write_begin()
5517  *
5518  * We need to consider the worse case, when
5519  * one new block per extent.
5520  */
5521 int ext4_writepage_trans_blocks(struct inode *inode)
5522 {
5523         int bpp = ext4_journal_blocks_per_page(inode);
5524         int ret;
5525
5526         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5527
5528         /* Account for data blocks for journalled mode */
5529         if (ext4_should_journal_data(inode))
5530                 ret += bpp;
5531         return ret;
5532 }
5533
5534 /*
5535  * Calculate the journal credits for a chunk of data modification.
5536  *
5537  * This is called from DIO, fallocate or whoever calling
5538  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5539  *
5540  * journal buffers for data blocks are not included here, as DIO
5541  * and fallocate do no need to journal data buffers.
5542  */
5543 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5544 {
5545         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5546 }
5547
5548 /*
5549  * The caller must have previously called ext4_reserve_inode_write().
5550  * Give this, we know that the caller already has write access to iloc->bh.
5551  */
5552 int ext4_mark_iloc_dirty(handle_t *handle,
5553                          struct inode *inode, struct ext4_iloc *iloc)
5554 {
5555         int err = 0;
5556
5557         if (test_opt(inode->i_sb, I_VERSION))
5558                 inode_inc_iversion(inode);
5559
5560         /* the do_update_inode consumes one bh->b_count */
5561         get_bh(iloc->bh);
5562
5563         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5564         err = ext4_do_update_inode(handle, inode, iloc);
5565         put_bh(iloc->bh);
5566         return err;
5567 }
5568
5569 /*
5570  * On success, We end up with an outstanding reference count against
5571  * iloc->bh.  This _must_ be cleaned up later.
5572  */
5573
5574 int
5575 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5576                          struct ext4_iloc *iloc)
5577 {
5578         int err;
5579
5580         err = ext4_get_inode_loc(inode, iloc);
5581         if (!err) {
5582                 BUFFER_TRACE(iloc->bh, "get_write_access");
5583                 err = ext4_journal_get_write_access(handle, iloc->bh);
5584                 if (err) {
5585                         brelse(iloc->bh);
5586                         iloc->bh = NULL;
5587                 }
5588         }
5589         ext4_std_error(inode->i_sb, err);
5590         return err;
5591 }
5592
5593 /*
5594  * Expand an inode by new_extra_isize bytes.
5595  * Returns 0 on success or negative error number on failure.
5596  */
5597 static int ext4_expand_extra_isize(struct inode *inode,
5598                                    unsigned int new_extra_isize,
5599                                    struct ext4_iloc iloc,
5600                                    handle_t *handle)
5601 {
5602         struct ext4_inode *raw_inode;
5603         struct ext4_xattr_ibody_header *header;
5604
5605         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5606                 return 0;
5607
5608         raw_inode = ext4_raw_inode(&iloc);
5609
5610         header = IHDR(inode, raw_inode);
5611
5612         /* No extended attributes present */
5613         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5614             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5615                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5616                         new_extra_isize);
5617                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5618                 return 0;
5619         }
5620
5621         /* try to expand with EAs present */
5622         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5623                                           raw_inode, handle);
5624 }
5625
5626 /*
5627  * What we do here is to mark the in-core inode as clean with respect to inode
5628  * dirtiness (it may still be data-dirty).
5629  * This means that the in-core inode may be reaped by prune_icache
5630  * without having to perform any I/O.  This is a very good thing,
5631  * because *any* task may call prune_icache - even ones which
5632  * have a transaction open against a different journal.
5633  *
5634  * Is this cheating?  Not really.  Sure, we haven't written the
5635  * inode out, but prune_icache isn't a user-visible syncing function.
5636  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5637  * we start and wait on commits.
5638  *
5639  * Is this efficient/effective?  Well, we're being nice to the system
5640  * by cleaning up our inodes proactively so they can be reaped
5641  * without I/O.  But we are potentially leaving up to five seconds'
5642  * worth of inodes floating about which prune_icache wants us to
5643  * write out.  One way to fix that would be to get prune_icache()
5644  * to do a write_super() to free up some memory.  It has the desired
5645  * effect.
5646  */
5647 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5648 {
5649         struct ext4_iloc iloc;
5650         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5651         static unsigned int mnt_count;
5652         int err, ret;
5653
5654         might_sleep();
5655         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5656         err = ext4_reserve_inode_write(handle, inode, &iloc);
5657         if (ext4_handle_valid(handle) &&
5658             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5659             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5660                 /*
5661                  * We need extra buffer credits since we may write into EA block
5662                  * with this same handle. If journal_extend fails, then it will
5663                  * only result in a minor loss of functionality for that inode.
5664                  * If this is felt to be critical, then e2fsck should be run to
5665                  * force a large enough s_min_extra_isize.
5666                  */
5667                 if ((jbd2_journal_extend(handle,
5668                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5669                         ret = ext4_expand_extra_isize(inode,
5670                                                       sbi->s_want_extra_isize,
5671                                                       iloc, handle);
5672                         if (ret) {
5673                                 ext4_set_inode_state(inode,
5674                                                      EXT4_STATE_NO_EXPAND);
5675                                 if (mnt_count !=
5676                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5677                                         ext4_warning(inode->i_sb,
5678                                         "Unable to expand inode %lu. Delete"
5679                                         " some EAs or run e2fsck.",
5680                                         inode->i_ino);
5681                                         mnt_count =
5682                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5683                                 }
5684                         }
5685                 }
5686         }
5687         if (!err)
5688                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5689         return err;
5690 }
5691
5692 /*
5693  * ext4_dirty_inode() is called from __mark_inode_dirty()
5694  *
5695  * We're really interested in the case where a file is being extended.
5696  * i_size has been changed by generic_commit_write() and we thus need
5697  * to include the updated inode in the current transaction.
5698  *
5699  * Also, dquot_alloc_block() will always dirty the inode when blocks
5700  * are allocated to the file.
5701  *
5702  * If the inode is marked synchronous, we don't honour that here - doing
5703  * so would cause a commit on atime updates, which we don't bother doing.
5704  * We handle synchronous inodes at the highest possible level.
5705  */
5706 void ext4_dirty_inode(struct inode *inode)
5707 {
5708         handle_t *handle;
5709
5710         handle = ext4_journal_start(inode, 2);
5711         if (IS_ERR(handle))
5712                 goto out;
5713
5714         ext4_mark_inode_dirty(handle, inode);
5715
5716         ext4_journal_stop(handle);
5717 out:
5718         return;
5719 }
5720
5721 #if 0
5722 /*
5723  * Bind an inode's backing buffer_head into this transaction, to prevent
5724  * it from being flushed to disk early.  Unlike
5725  * ext4_reserve_inode_write, this leaves behind no bh reference and
5726  * returns no iloc structure, so the caller needs to repeat the iloc
5727  * lookup to mark the inode dirty later.
5728  */
5729 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5730 {
5731         struct ext4_iloc iloc;
5732
5733         int err = 0;
5734         if (handle) {
5735                 err = ext4_get_inode_loc(inode, &iloc);
5736                 if (!err) {
5737                         BUFFER_TRACE(iloc.bh, "get_write_access");
5738                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5739                         if (!err)
5740                                 err = ext4_handle_dirty_metadata(handle,
5741                                                                  NULL,
5742                                                                  iloc.bh);
5743                         brelse(iloc.bh);
5744                 }
5745         }
5746         ext4_std_error(inode->i_sb, err);
5747         return err;
5748 }
5749 #endif
5750
5751 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5752 {
5753         journal_t *journal;
5754         handle_t *handle;
5755         int err;
5756
5757         /*
5758          * We have to be very careful here: changing a data block's
5759          * journaling status dynamically is dangerous.  If we write a
5760          * data block to the journal, change the status and then delete
5761          * that block, we risk forgetting to revoke the old log record
5762          * from the journal and so a subsequent replay can corrupt data.
5763          * So, first we make sure that the journal is empty and that
5764          * nobody is changing anything.
5765          */
5766
5767         journal = EXT4_JOURNAL(inode);
5768         if (!journal)
5769                 return 0;
5770         if (is_journal_aborted(journal))
5771                 return -EROFS;
5772
5773         jbd2_journal_lock_updates(journal);
5774         jbd2_journal_flush(journal);
5775
5776         /*
5777          * OK, there are no updates running now, and all cached data is
5778          * synced to disk.  We are now in a completely consistent state
5779          * which doesn't have anything in the journal, and we know that
5780          * no filesystem updates are running, so it is safe to modify
5781          * the inode's in-core data-journaling state flag now.
5782          */
5783
5784         if (val)
5785                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5786         else
5787                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5788         ext4_set_aops(inode);
5789
5790         jbd2_journal_unlock_updates(journal);
5791
5792         /* Finally we can mark the inode as dirty. */
5793
5794         handle = ext4_journal_start(inode, 1);
5795         if (IS_ERR(handle))
5796                 return PTR_ERR(handle);
5797
5798         err = ext4_mark_inode_dirty(handle, inode);
5799         ext4_handle_sync(handle);
5800         ext4_journal_stop(handle);
5801         ext4_std_error(inode->i_sb, err);
5802
5803         return err;
5804 }
5805
5806 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5807 {
5808         return !buffer_mapped(bh);
5809 }
5810
5811 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5812 {
5813         struct page *page = vmf->page;
5814         loff_t size;
5815         unsigned long len;
5816         int ret = -EINVAL;
5817         void *fsdata;
5818         struct file *file = vma->vm_file;
5819         struct inode *inode = file->f_path.dentry->d_inode;
5820         struct address_space *mapping = inode->i_mapping;
5821
5822         /*
5823          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5824          * get i_mutex because we are already holding mmap_sem.
5825          */
5826         down_read(&inode->i_alloc_sem);
5827         size = i_size_read(inode);
5828         if (page->mapping != mapping || size <= page_offset(page)
5829             || !PageUptodate(page)) {
5830                 /* page got truncated from under us? */
5831                 goto out_unlock;
5832         }
5833         ret = 0;
5834         if (PageMappedToDisk(page))
5835                 goto out_unlock;
5836
5837         if (page->index == size >> PAGE_CACHE_SHIFT)
5838                 len = size & ~PAGE_CACHE_MASK;
5839         else
5840                 len = PAGE_CACHE_SIZE;
5841
5842         lock_page(page);
5843         /*
5844          * return if we have all the buffers mapped. This avoid
5845          * the need to call write_begin/write_end which does a
5846          * journal_start/journal_stop which can block and take
5847          * long time
5848          */
5849         if (page_has_buffers(page)) {
5850                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5851                                         ext4_bh_unmapped)) {
5852                         unlock_page(page);
5853                         goto out_unlock;
5854                 }
5855         }
5856         unlock_page(page);
5857         /*
5858          * OK, we need to fill the hole... Do write_begin write_end
5859          * to do block allocation/reservation.We are not holding
5860          * inode.i__mutex here. That allow * parallel write_begin,
5861          * write_end call. lock_page prevent this from happening
5862          * on the same page though
5863          */
5864         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5865                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5866         if (ret < 0)
5867                 goto out_unlock;
5868         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5869                         len, len, page, fsdata);
5870         if (ret < 0)
5871                 goto out_unlock;
5872         ret = 0;
5873 out_unlock:
5874         if (ret)
5875                 ret = VM_FAULT_SIGBUS;
5876         up_read(&inode->i_alloc_sem);
5877         return ret;
5878 }