ext4: create function to read journal inode
[cascardo/linux.git] / fs / ext4 / super.c
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_extents.h"       /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61                              unsigned long journal_devnum);
62 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65                                         struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67                                    struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static int ext4_remount(struct super_block *sb, int *flags, char *data);
70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71 static int ext4_unfreeze(struct super_block *sb);
72 static int ext4_freeze(struct super_block *sb);
73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74                        const char *dev_name, void *data);
75 static inline int ext2_feature_set_ok(struct super_block *sb);
76 static inline int ext3_feature_set_ok(struct super_block *sb);
77 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80 static void ext4_clear_request_list(void);
81 static struct inode *ext4_get_journal_inode(struct super_block *sb,
82                                             unsigned int journal_inum);
83
84 /*
85  * Lock ordering
86  *
87  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
88  * i_mmap_rwsem (inode->i_mmap_rwsem)!
89  *
90  * page fault path:
91  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
92  *   page lock -> i_data_sem (rw)
93  *
94  * buffered write path:
95  * sb_start_write -> i_mutex -> mmap_sem
96  * sb_start_write -> i_mutex -> transaction start -> page lock ->
97  *   i_data_sem (rw)
98  *
99  * truncate:
100  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101  *   i_mmap_rwsem (w) -> page lock
102  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103  *   transaction start -> i_data_sem (rw)
104  *
105  * direct IO:
106  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
107  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
108  *   transaction start -> i_data_sem (rw)
109  *
110  * writepages:
111  * transaction start -> page lock(s) -> i_data_sem (rw)
112  */
113
114 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
115 static struct file_system_type ext2_fs_type = {
116         .owner          = THIS_MODULE,
117         .name           = "ext2",
118         .mount          = ext4_mount,
119         .kill_sb        = kill_block_super,
120         .fs_flags       = FS_REQUIRES_DEV,
121 };
122 MODULE_ALIAS_FS("ext2");
123 MODULE_ALIAS("ext2");
124 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
125 #else
126 #define IS_EXT2_SB(sb) (0)
127 #endif
128
129
130 static struct file_system_type ext3_fs_type = {
131         .owner          = THIS_MODULE,
132         .name           = "ext3",
133         .mount          = ext4_mount,
134         .kill_sb        = kill_block_super,
135         .fs_flags       = FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("ext3");
138 MODULE_ALIAS("ext3");
139 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
140
141 static int ext4_verify_csum_type(struct super_block *sb,
142                                  struct ext4_super_block *es)
143 {
144         if (!ext4_has_feature_metadata_csum(sb))
145                 return 1;
146
147         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
148 }
149
150 static __le32 ext4_superblock_csum(struct super_block *sb,
151                                    struct ext4_super_block *es)
152 {
153         struct ext4_sb_info *sbi = EXT4_SB(sb);
154         int offset = offsetof(struct ext4_super_block, s_checksum);
155         __u32 csum;
156
157         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
158
159         return cpu_to_le32(csum);
160 }
161
162 static int ext4_superblock_csum_verify(struct super_block *sb,
163                                        struct ext4_super_block *es)
164 {
165         if (!ext4_has_metadata_csum(sb))
166                 return 1;
167
168         return es->s_checksum == ext4_superblock_csum(sb, es);
169 }
170
171 void ext4_superblock_csum_set(struct super_block *sb)
172 {
173         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
174
175         if (!ext4_has_metadata_csum(sb))
176                 return;
177
178         es->s_checksum = ext4_superblock_csum(sb, es);
179 }
180
181 void *ext4_kvmalloc(size_t size, gfp_t flags)
182 {
183         void *ret;
184
185         ret = kmalloc(size, flags | __GFP_NOWARN);
186         if (!ret)
187                 ret = __vmalloc(size, flags, PAGE_KERNEL);
188         return ret;
189 }
190
191 void *ext4_kvzalloc(size_t size, gfp_t flags)
192 {
193         void *ret;
194
195         ret = kzalloc(size, flags | __GFP_NOWARN);
196         if (!ret)
197                 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
198         return ret;
199 }
200
201 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
202                                struct ext4_group_desc *bg)
203 {
204         return le32_to_cpu(bg->bg_block_bitmap_lo) |
205                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
206                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
207 }
208
209 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
210                                struct ext4_group_desc *bg)
211 {
212         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
213                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
214                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
215 }
216
217 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
218                               struct ext4_group_desc *bg)
219 {
220         return le32_to_cpu(bg->bg_inode_table_lo) |
221                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
222                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
223 }
224
225 __u32 ext4_free_group_clusters(struct super_block *sb,
226                                struct ext4_group_desc *bg)
227 {
228         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
229                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
230                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
231 }
232
233 __u32 ext4_free_inodes_count(struct super_block *sb,
234                               struct ext4_group_desc *bg)
235 {
236         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
237                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
238                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
239 }
240
241 __u32 ext4_used_dirs_count(struct super_block *sb,
242                               struct ext4_group_desc *bg)
243 {
244         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
245                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
246                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
247 }
248
249 __u32 ext4_itable_unused_count(struct super_block *sb,
250                               struct ext4_group_desc *bg)
251 {
252         return le16_to_cpu(bg->bg_itable_unused_lo) |
253                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
254                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
255 }
256
257 void ext4_block_bitmap_set(struct super_block *sb,
258                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
259 {
260         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
261         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
262                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
263 }
264
265 void ext4_inode_bitmap_set(struct super_block *sb,
266                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
267 {
268         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
269         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
270                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
271 }
272
273 void ext4_inode_table_set(struct super_block *sb,
274                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
275 {
276         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
277         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
278                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
279 }
280
281 void ext4_free_group_clusters_set(struct super_block *sb,
282                                   struct ext4_group_desc *bg, __u32 count)
283 {
284         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
285         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
286                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
287 }
288
289 void ext4_free_inodes_set(struct super_block *sb,
290                           struct ext4_group_desc *bg, __u32 count)
291 {
292         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
293         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
294                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
295 }
296
297 void ext4_used_dirs_set(struct super_block *sb,
298                           struct ext4_group_desc *bg, __u32 count)
299 {
300         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
301         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
302                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
303 }
304
305 void ext4_itable_unused_set(struct super_block *sb,
306                           struct ext4_group_desc *bg, __u32 count)
307 {
308         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
309         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
310                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
311 }
312
313
314 static void __save_error_info(struct super_block *sb, const char *func,
315                             unsigned int line)
316 {
317         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
318
319         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
320         if (bdev_read_only(sb->s_bdev))
321                 return;
322         es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
323         es->s_last_error_time = cpu_to_le32(get_seconds());
324         strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
325         es->s_last_error_line = cpu_to_le32(line);
326         if (!es->s_first_error_time) {
327                 es->s_first_error_time = es->s_last_error_time;
328                 strncpy(es->s_first_error_func, func,
329                         sizeof(es->s_first_error_func));
330                 es->s_first_error_line = cpu_to_le32(line);
331                 es->s_first_error_ino = es->s_last_error_ino;
332                 es->s_first_error_block = es->s_last_error_block;
333         }
334         /*
335          * Start the daily error reporting function if it hasn't been
336          * started already
337          */
338         if (!es->s_error_count)
339                 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
340         le32_add_cpu(&es->s_error_count, 1);
341 }
342
343 static void save_error_info(struct super_block *sb, const char *func,
344                             unsigned int line)
345 {
346         __save_error_info(sb, func, line);
347         ext4_commit_super(sb, 1);
348 }
349
350 /*
351  * The del_gendisk() function uninitializes the disk-specific data
352  * structures, including the bdi structure, without telling anyone
353  * else.  Once this happens, any attempt to call mark_buffer_dirty()
354  * (for example, by ext4_commit_super), will cause a kernel OOPS.
355  * This is a kludge to prevent these oops until we can put in a proper
356  * hook in del_gendisk() to inform the VFS and file system layers.
357  */
358 static int block_device_ejected(struct super_block *sb)
359 {
360         struct inode *bd_inode = sb->s_bdev->bd_inode;
361         struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
362
363         return bdi->dev == NULL;
364 }
365
366 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
367 {
368         struct super_block              *sb = journal->j_private;
369         struct ext4_sb_info             *sbi = EXT4_SB(sb);
370         int                             error = is_journal_aborted(journal);
371         struct ext4_journal_cb_entry    *jce;
372
373         BUG_ON(txn->t_state == T_FINISHED);
374         spin_lock(&sbi->s_md_lock);
375         while (!list_empty(&txn->t_private_list)) {
376                 jce = list_entry(txn->t_private_list.next,
377                                  struct ext4_journal_cb_entry, jce_list);
378                 list_del_init(&jce->jce_list);
379                 spin_unlock(&sbi->s_md_lock);
380                 jce->jce_func(sb, jce, error);
381                 spin_lock(&sbi->s_md_lock);
382         }
383         spin_unlock(&sbi->s_md_lock);
384 }
385
386 /* Deal with the reporting of failure conditions on a filesystem such as
387  * inconsistencies detected or read IO failures.
388  *
389  * On ext2, we can store the error state of the filesystem in the
390  * superblock.  That is not possible on ext4, because we may have other
391  * write ordering constraints on the superblock which prevent us from
392  * writing it out straight away; and given that the journal is about to
393  * be aborted, we can't rely on the current, or future, transactions to
394  * write out the superblock safely.
395  *
396  * We'll just use the jbd2_journal_abort() error code to record an error in
397  * the journal instead.  On recovery, the journal will complain about
398  * that error until we've noted it down and cleared it.
399  */
400
401 static void ext4_handle_error(struct super_block *sb)
402 {
403         if (sb->s_flags & MS_RDONLY)
404                 return;
405
406         if (!test_opt(sb, ERRORS_CONT)) {
407                 journal_t *journal = EXT4_SB(sb)->s_journal;
408
409                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
410                 if (journal)
411                         jbd2_journal_abort(journal, -EIO);
412         }
413         if (test_opt(sb, ERRORS_RO)) {
414                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
415                 /*
416                  * Make sure updated value of ->s_mount_flags will be visible
417                  * before ->s_flags update
418                  */
419                 smp_wmb();
420                 sb->s_flags |= MS_RDONLY;
421         }
422         if (test_opt(sb, ERRORS_PANIC)) {
423                 if (EXT4_SB(sb)->s_journal &&
424                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
425                         return;
426                 panic("EXT4-fs (device %s): panic forced after error\n",
427                         sb->s_id);
428         }
429 }
430
431 #define ext4_error_ratelimit(sb)                                        \
432                 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),     \
433                              "EXT4-fs error")
434
435 void __ext4_error(struct super_block *sb, const char *function,
436                   unsigned int line, const char *fmt, ...)
437 {
438         struct va_format vaf;
439         va_list args;
440
441         if (ext4_error_ratelimit(sb)) {
442                 va_start(args, fmt);
443                 vaf.fmt = fmt;
444                 vaf.va = &args;
445                 printk(KERN_CRIT
446                        "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
447                        sb->s_id, function, line, current->comm, &vaf);
448                 va_end(args);
449         }
450         save_error_info(sb, function, line);
451         ext4_handle_error(sb);
452 }
453
454 void __ext4_error_inode(struct inode *inode, const char *function,
455                         unsigned int line, ext4_fsblk_t block,
456                         const char *fmt, ...)
457 {
458         va_list args;
459         struct va_format vaf;
460         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
461
462         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
463         es->s_last_error_block = cpu_to_le64(block);
464         if (ext4_error_ratelimit(inode->i_sb)) {
465                 va_start(args, fmt);
466                 vaf.fmt = fmt;
467                 vaf.va = &args;
468                 if (block)
469                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
470                                "inode #%lu: block %llu: comm %s: %pV\n",
471                                inode->i_sb->s_id, function, line, inode->i_ino,
472                                block, current->comm, &vaf);
473                 else
474                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
475                                "inode #%lu: comm %s: %pV\n",
476                                inode->i_sb->s_id, function, line, inode->i_ino,
477                                current->comm, &vaf);
478                 va_end(args);
479         }
480         save_error_info(inode->i_sb, function, line);
481         ext4_handle_error(inode->i_sb);
482 }
483
484 void __ext4_error_file(struct file *file, const char *function,
485                        unsigned int line, ext4_fsblk_t block,
486                        const char *fmt, ...)
487 {
488         va_list args;
489         struct va_format vaf;
490         struct ext4_super_block *es;
491         struct inode *inode = file_inode(file);
492         char pathname[80], *path;
493
494         es = EXT4_SB(inode->i_sb)->s_es;
495         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
496         if (ext4_error_ratelimit(inode->i_sb)) {
497                 path = file_path(file, pathname, sizeof(pathname));
498                 if (IS_ERR(path))
499                         path = "(unknown)";
500                 va_start(args, fmt);
501                 vaf.fmt = fmt;
502                 vaf.va = &args;
503                 if (block)
504                         printk(KERN_CRIT
505                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
506                                "block %llu: comm %s: path %s: %pV\n",
507                                inode->i_sb->s_id, function, line, inode->i_ino,
508                                block, current->comm, path, &vaf);
509                 else
510                         printk(KERN_CRIT
511                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
512                                "comm %s: path %s: %pV\n",
513                                inode->i_sb->s_id, function, line, inode->i_ino,
514                                current->comm, path, &vaf);
515                 va_end(args);
516         }
517         save_error_info(inode->i_sb, function, line);
518         ext4_handle_error(inode->i_sb);
519 }
520
521 const char *ext4_decode_error(struct super_block *sb, int errno,
522                               char nbuf[16])
523 {
524         char *errstr = NULL;
525
526         switch (errno) {
527         case -EFSCORRUPTED:
528                 errstr = "Corrupt filesystem";
529                 break;
530         case -EFSBADCRC:
531                 errstr = "Filesystem failed CRC";
532                 break;
533         case -EIO:
534                 errstr = "IO failure";
535                 break;
536         case -ENOMEM:
537                 errstr = "Out of memory";
538                 break;
539         case -EROFS:
540                 if (!sb || (EXT4_SB(sb)->s_journal &&
541                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
542                         errstr = "Journal has aborted";
543                 else
544                         errstr = "Readonly filesystem";
545                 break;
546         default:
547                 /* If the caller passed in an extra buffer for unknown
548                  * errors, textualise them now.  Else we just return
549                  * NULL. */
550                 if (nbuf) {
551                         /* Check for truncated error codes... */
552                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
553                                 errstr = nbuf;
554                 }
555                 break;
556         }
557
558         return errstr;
559 }
560
561 /* __ext4_std_error decodes expected errors from journaling functions
562  * automatically and invokes the appropriate error response.  */
563
564 void __ext4_std_error(struct super_block *sb, const char *function,
565                       unsigned int line, int errno)
566 {
567         char nbuf[16];
568         const char *errstr;
569
570         /* Special case: if the error is EROFS, and we're not already
571          * inside a transaction, then there's really no point in logging
572          * an error. */
573         if (errno == -EROFS && journal_current_handle() == NULL &&
574             (sb->s_flags & MS_RDONLY))
575                 return;
576
577         if (ext4_error_ratelimit(sb)) {
578                 errstr = ext4_decode_error(sb, errno, nbuf);
579                 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
580                        sb->s_id, function, line, errstr);
581         }
582
583         save_error_info(sb, function, line);
584         ext4_handle_error(sb);
585 }
586
587 /*
588  * ext4_abort is a much stronger failure handler than ext4_error.  The
589  * abort function may be used to deal with unrecoverable failures such
590  * as journal IO errors or ENOMEM at a critical moment in log management.
591  *
592  * We unconditionally force the filesystem into an ABORT|READONLY state,
593  * unless the error response on the fs has been set to panic in which
594  * case we take the easy way out and panic immediately.
595  */
596
597 void __ext4_abort(struct super_block *sb, const char *function,
598                 unsigned int line, const char *fmt, ...)
599 {
600         va_list args;
601
602         save_error_info(sb, function, line);
603         va_start(args, fmt);
604         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
605                function, line);
606         vprintk(fmt, args);
607         printk("\n");
608         va_end(args);
609
610         if ((sb->s_flags & MS_RDONLY) == 0) {
611                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
612                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
613                 /*
614                  * Make sure updated value of ->s_mount_flags will be visible
615                  * before ->s_flags update
616                  */
617                 smp_wmb();
618                 sb->s_flags |= MS_RDONLY;
619                 if (EXT4_SB(sb)->s_journal)
620                         jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
621                 save_error_info(sb, function, line);
622         }
623         if (test_opt(sb, ERRORS_PANIC)) {
624                 if (EXT4_SB(sb)->s_journal &&
625                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
626                         return;
627                 panic("EXT4-fs panic from previous error\n");
628         }
629 }
630
631 void __ext4_msg(struct super_block *sb,
632                 const char *prefix, const char *fmt, ...)
633 {
634         struct va_format vaf;
635         va_list args;
636
637         if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
638                 return;
639
640         va_start(args, fmt);
641         vaf.fmt = fmt;
642         vaf.va = &args;
643         printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
644         va_end(args);
645 }
646
647 #define ext4_warning_ratelimit(sb)                                      \
648                 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
649                              "EXT4-fs warning")
650
651 void __ext4_warning(struct super_block *sb, const char *function,
652                     unsigned int line, const char *fmt, ...)
653 {
654         struct va_format vaf;
655         va_list args;
656
657         if (!ext4_warning_ratelimit(sb))
658                 return;
659
660         va_start(args, fmt);
661         vaf.fmt = fmt;
662         vaf.va = &args;
663         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
664                sb->s_id, function, line, &vaf);
665         va_end(args);
666 }
667
668 void __ext4_warning_inode(const struct inode *inode, const char *function,
669                           unsigned int line, const char *fmt, ...)
670 {
671         struct va_format vaf;
672         va_list args;
673
674         if (!ext4_warning_ratelimit(inode->i_sb))
675                 return;
676
677         va_start(args, fmt);
678         vaf.fmt = fmt;
679         vaf.va = &args;
680         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
681                "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
682                function, line, inode->i_ino, current->comm, &vaf);
683         va_end(args);
684 }
685
686 void __ext4_grp_locked_error(const char *function, unsigned int line,
687                              struct super_block *sb, ext4_group_t grp,
688                              unsigned long ino, ext4_fsblk_t block,
689                              const char *fmt, ...)
690 __releases(bitlock)
691 __acquires(bitlock)
692 {
693         struct va_format vaf;
694         va_list args;
695         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
696
697         es->s_last_error_ino = cpu_to_le32(ino);
698         es->s_last_error_block = cpu_to_le64(block);
699         __save_error_info(sb, function, line);
700
701         if (ext4_error_ratelimit(sb)) {
702                 va_start(args, fmt);
703                 vaf.fmt = fmt;
704                 vaf.va = &args;
705                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
706                        sb->s_id, function, line, grp);
707                 if (ino)
708                         printk(KERN_CONT "inode %lu: ", ino);
709                 if (block)
710                         printk(KERN_CONT "block %llu:",
711                                (unsigned long long) block);
712                 printk(KERN_CONT "%pV\n", &vaf);
713                 va_end(args);
714         }
715
716         if (test_opt(sb, ERRORS_CONT)) {
717                 ext4_commit_super(sb, 0);
718                 return;
719         }
720
721         ext4_unlock_group(sb, grp);
722         ext4_handle_error(sb);
723         /*
724          * We only get here in the ERRORS_RO case; relocking the group
725          * may be dangerous, but nothing bad will happen since the
726          * filesystem will have already been marked read/only and the
727          * journal has been aborted.  We return 1 as a hint to callers
728          * who might what to use the return value from
729          * ext4_grp_locked_error() to distinguish between the
730          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
731          * aggressively from the ext4 function in question, with a
732          * more appropriate error code.
733          */
734         ext4_lock_group(sb, grp);
735         return;
736 }
737
738 void ext4_update_dynamic_rev(struct super_block *sb)
739 {
740         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
741
742         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
743                 return;
744
745         ext4_warning(sb,
746                      "updating to rev %d because of new feature flag, "
747                      "running e2fsck is recommended",
748                      EXT4_DYNAMIC_REV);
749
750         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
751         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
752         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
753         /* leave es->s_feature_*compat flags alone */
754         /* es->s_uuid will be set by e2fsck if empty */
755
756         /*
757          * The rest of the superblock fields should be zero, and if not it
758          * means they are likely already in use, so leave them alone.  We
759          * can leave it up to e2fsck to clean up any inconsistencies there.
760          */
761 }
762
763 /*
764  * Open the external journal device
765  */
766 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
767 {
768         struct block_device *bdev;
769         char b[BDEVNAME_SIZE];
770
771         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
772         if (IS_ERR(bdev))
773                 goto fail;
774         return bdev;
775
776 fail:
777         ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
778                         __bdevname(dev, b), PTR_ERR(bdev));
779         return NULL;
780 }
781
782 /*
783  * Release the journal device
784  */
785 static void ext4_blkdev_put(struct block_device *bdev)
786 {
787         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
788 }
789
790 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
791 {
792         struct block_device *bdev;
793         bdev = sbi->journal_bdev;
794         if (bdev) {
795                 ext4_blkdev_put(bdev);
796                 sbi->journal_bdev = NULL;
797         }
798 }
799
800 static inline struct inode *orphan_list_entry(struct list_head *l)
801 {
802         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
803 }
804
805 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
806 {
807         struct list_head *l;
808
809         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
810                  le32_to_cpu(sbi->s_es->s_last_orphan));
811
812         printk(KERN_ERR "sb_info orphan list:\n");
813         list_for_each(l, &sbi->s_orphan) {
814                 struct inode *inode = orphan_list_entry(l);
815                 printk(KERN_ERR "  "
816                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
817                        inode->i_sb->s_id, inode->i_ino, inode,
818                        inode->i_mode, inode->i_nlink,
819                        NEXT_ORPHAN(inode));
820         }
821 }
822
823 static void ext4_put_super(struct super_block *sb)
824 {
825         struct ext4_sb_info *sbi = EXT4_SB(sb);
826         struct ext4_super_block *es = sbi->s_es;
827         int i, err;
828
829         ext4_unregister_li_request(sb);
830         dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
831
832         flush_workqueue(sbi->rsv_conversion_wq);
833         destroy_workqueue(sbi->rsv_conversion_wq);
834
835         if (sbi->s_journal) {
836                 err = jbd2_journal_destroy(sbi->s_journal);
837                 sbi->s_journal = NULL;
838                 if (err < 0)
839                         ext4_abort(sb, "Couldn't clean up the journal");
840         }
841
842         ext4_unregister_sysfs(sb);
843         ext4_es_unregister_shrinker(sbi);
844         del_timer_sync(&sbi->s_err_report);
845         ext4_release_system_zone(sb);
846         ext4_mb_release(sb);
847         ext4_ext_release(sb);
848
849         if (!(sb->s_flags & MS_RDONLY)) {
850                 ext4_clear_feature_journal_needs_recovery(sb);
851                 es->s_state = cpu_to_le16(sbi->s_mount_state);
852         }
853         if (!(sb->s_flags & MS_RDONLY))
854                 ext4_commit_super(sb, 1);
855
856         for (i = 0; i < sbi->s_gdb_count; i++)
857                 brelse(sbi->s_group_desc[i]);
858         kvfree(sbi->s_group_desc);
859         kvfree(sbi->s_flex_groups);
860         percpu_counter_destroy(&sbi->s_freeclusters_counter);
861         percpu_counter_destroy(&sbi->s_freeinodes_counter);
862         percpu_counter_destroy(&sbi->s_dirs_counter);
863         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
864         percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
865         brelse(sbi->s_sbh);
866 #ifdef CONFIG_QUOTA
867         for (i = 0; i < EXT4_MAXQUOTAS; i++)
868                 kfree(sbi->s_qf_names[i]);
869 #endif
870
871         /* Debugging code just in case the in-memory inode orphan list
872          * isn't empty.  The on-disk one can be non-empty if we've
873          * detected an error and taken the fs readonly, but the
874          * in-memory list had better be clean by this point. */
875         if (!list_empty(&sbi->s_orphan))
876                 dump_orphan_list(sb, sbi);
877         J_ASSERT(list_empty(&sbi->s_orphan));
878
879         sync_blockdev(sb->s_bdev);
880         invalidate_bdev(sb->s_bdev);
881         if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
882                 /*
883                  * Invalidate the journal device's buffers.  We don't want them
884                  * floating about in memory - the physical journal device may
885                  * hotswapped, and it breaks the `ro-after' testing code.
886                  */
887                 sync_blockdev(sbi->journal_bdev);
888                 invalidate_bdev(sbi->journal_bdev);
889                 ext4_blkdev_remove(sbi);
890         }
891         if (sbi->s_mb_cache) {
892                 ext4_xattr_destroy_cache(sbi->s_mb_cache);
893                 sbi->s_mb_cache = NULL;
894         }
895         if (sbi->s_mmp_tsk)
896                 kthread_stop(sbi->s_mmp_tsk);
897         sb->s_fs_info = NULL;
898         /*
899          * Now that we are completely done shutting down the
900          * superblock, we need to actually destroy the kobject.
901          */
902         kobject_put(&sbi->s_kobj);
903         wait_for_completion(&sbi->s_kobj_unregister);
904         if (sbi->s_chksum_driver)
905                 crypto_free_shash(sbi->s_chksum_driver);
906         kfree(sbi->s_blockgroup_lock);
907         kfree(sbi);
908 }
909
910 static struct kmem_cache *ext4_inode_cachep;
911
912 /*
913  * Called inside transaction, so use GFP_NOFS
914  */
915 static struct inode *ext4_alloc_inode(struct super_block *sb)
916 {
917         struct ext4_inode_info *ei;
918
919         ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
920         if (!ei)
921                 return NULL;
922
923         ei->vfs_inode.i_version = 1;
924         spin_lock_init(&ei->i_raw_lock);
925         INIT_LIST_HEAD(&ei->i_prealloc_list);
926         spin_lock_init(&ei->i_prealloc_lock);
927         ext4_es_init_tree(&ei->i_es_tree);
928         rwlock_init(&ei->i_es_lock);
929         INIT_LIST_HEAD(&ei->i_es_list);
930         ei->i_es_all_nr = 0;
931         ei->i_es_shk_nr = 0;
932         ei->i_es_shrink_lblk = 0;
933         ei->i_reserved_data_blocks = 0;
934         ei->i_reserved_meta_blocks = 0;
935         ei->i_allocated_meta_blocks = 0;
936         ei->i_da_metadata_calc_len = 0;
937         ei->i_da_metadata_calc_last_lblock = 0;
938         spin_lock_init(&(ei->i_block_reservation_lock));
939 #ifdef CONFIG_QUOTA
940         ei->i_reserved_quota = 0;
941         memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
942 #endif
943         ei->jinode = NULL;
944         INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
945         spin_lock_init(&ei->i_completed_io_lock);
946         ei->i_sync_tid = 0;
947         ei->i_datasync_tid = 0;
948         atomic_set(&ei->i_unwritten, 0);
949         INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
950         return &ei->vfs_inode;
951 }
952
953 static int ext4_drop_inode(struct inode *inode)
954 {
955         int drop = generic_drop_inode(inode);
956
957         trace_ext4_drop_inode(inode, drop);
958         return drop;
959 }
960
961 static void ext4_i_callback(struct rcu_head *head)
962 {
963         struct inode *inode = container_of(head, struct inode, i_rcu);
964         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
965 }
966
967 static void ext4_destroy_inode(struct inode *inode)
968 {
969         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
970                 ext4_msg(inode->i_sb, KERN_ERR,
971                          "Inode %lu (%p): orphan list check failed!",
972                          inode->i_ino, EXT4_I(inode));
973                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
974                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
975                                 true);
976                 dump_stack();
977         }
978         call_rcu(&inode->i_rcu, ext4_i_callback);
979 }
980
981 static void init_once(void *foo)
982 {
983         struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
984
985         INIT_LIST_HEAD(&ei->i_orphan);
986         init_rwsem(&ei->xattr_sem);
987         init_rwsem(&ei->i_data_sem);
988         init_rwsem(&ei->i_mmap_sem);
989         inode_init_once(&ei->vfs_inode);
990 }
991
992 static int __init init_inodecache(void)
993 {
994         ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
995                                              sizeof(struct ext4_inode_info),
996                                              0, (SLAB_RECLAIM_ACCOUNT|
997                                                 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
998                                              init_once);
999         if (ext4_inode_cachep == NULL)
1000                 return -ENOMEM;
1001         return 0;
1002 }
1003
1004 static void destroy_inodecache(void)
1005 {
1006         /*
1007          * Make sure all delayed rcu free inodes are flushed before we
1008          * destroy cache.
1009          */
1010         rcu_barrier();
1011         kmem_cache_destroy(ext4_inode_cachep);
1012 }
1013
1014 void ext4_clear_inode(struct inode *inode)
1015 {
1016         invalidate_inode_buffers(inode);
1017         clear_inode(inode);
1018         dquot_drop(inode);
1019         ext4_discard_preallocations(inode);
1020         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1021         if (EXT4_I(inode)->jinode) {
1022                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1023                                                EXT4_I(inode)->jinode);
1024                 jbd2_free_inode(EXT4_I(inode)->jinode);
1025                 EXT4_I(inode)->jinode = NULL;
1026         }
1027 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1028         fscrypt_put_encryption_info(inode, NULL);
1029 #endif
1030 }
1031
1032 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1033                                         u64 ino, u32 generation)
1034 {
1035         struct inode *inode;
1036
1037         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1038                 return ERR_PTR(-ESTALE);
1039         if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1040                 return ERR_PTR(-ESTALE);
1041
1042         /* iget isn't really right if the inode is currently unallocated!!
1043          *
1044          * ext4_read_inode will return a bad_inode if the inode had been
1045          * deleted, so we should be safe.
1046          *
1047          * Currently we don't know the generation for parent directory, so
1048          * a generation of 0 means "accept any"
1049          */
1050         inode = ext4_iget_normal(sb, ino);
1051         if (IS_ERR(inode))
1052                 return ERR_CAST(inode);
1053         if (generation && inode->i_generation != generation) {
1054                 iput(inode);
1055                 return ERR_PTR(-ESTALE);
1056         }
1057
1058         return inode;
1059 }
1060
1061 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1062                                         int fh_len, int fh_type)
1063 {
1064         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1065                                     ext4_nfs_get_inode);
1066 }
1067
1068 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1069                                         int fh_len, int fh_type)
1070 {
1071         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1072                                     ext4_nfs_get_inode);
1073 }
1074
1075 /*
1076  * Try to release metadata pages (indirect blocks, directories) which are
1077  * mapped via the block device.  Since these pages could have journal heads
1078  * which would prevent try_to_free_buffers() from freeing them, we must use
1079  * jbd2 layer's try_to_free_buffers() function to release them.
1080  */
1081 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1082                                  gfp_t wait)
1083 {
1084         journal_t *journal = EXT4_SB(sb)->s_journal;
1085
1086         WARN_ON(PageChecked(page));
1087         if (!page_has_buffers(page))
1088                 return 0;
1089         if (journal)
1090                 return jbd2_journal_try_to_free_buffers(journal, page,
1091                                                 wait & ~__GFP_DIRECT_RECLAIM);
1092         return try_to_free_buffers(page);
1093 }
1094
1095 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1096 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1097 {
1098         return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1099                                  EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1100 }
1101
1102 static int ext4_key_prefix(struct inode *inode, u8 **key)
1103 {
1104         *key = EXT4_SB(inode->i_sb)->key_prefix;
1105         return EXT4_SB(inode->i_sb)->key_prefix_size;
1106 }
1107
1108 static int ext4_prepare_context(struct inode *inode)
1109 {
1110         return ext4_convert_inline_data(inode);
1111 }
1112
1113 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1114                                                         void *fs_data)
1115 {
1116         handle_t *handle;
1117         int res, res2;
1118
1119         /* fs_data is null when internally used. */
1120         if (fs_data) {
1121                 res  = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1122                                 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx,
1123                                 len, 0);
1124                 if (!res) {
1125                         ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1126                         ext4_clear_inode_state(inode,
1127                                         EXT4_STATE_MAY_INLINE_DATA);
1128                 }
1129                 return res;
1130         }
1131
1132         handle = ext4_journal_start(inode, EXT4_HT_MISC,
1133                         ext4_jbd2_credits_xattr(inode));
1134         if (IS_ERR(handle))
1135                 return PTR_ERR(handle);
1136
1137         res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1138                         EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx,
1139                         len, 0);
1140         if (!res) {
1141                 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1142                 res = ext4_mark_inode_dirty(handle, inode);
1143                 if (res)
1144                         EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1145         }
1146         res2 = ext4_journal_stop(handle);
1147         if (!res)
1148                 res = res2;
1149         return res;
1150 }
1151
1152 static int ext4_dummy_context(struct inode *inode)
1153 {
1154         return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1155 }
1156
1157 static unsigned ext4_max_namelen(struct inode *inode)
1158 {
1159         return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1160                 EXT4_NAME_LEN;
1161 }
1162
1163 static struct fscrypt_operations ext4_cryptops = {
1164         .get_context            = ext4_get_context,
1165         .key_prefix             = ext4_key_prefix,
1166         .prepare_context        = ext4_prepare_context,
1167         .set_context            = ext4_set_context,
1168         .dummy_context          = ext4_dummy_context,
1169         .is_encrypted           = ext4_encrypted_inode,
1170         .empty_dir              = ext4_empty_dir,
1171         .max_namelen            = ext4_max_namelen,
1172 };
1173 #else
1174 static struct fscrypt_operations ext4_cryptops = {
1175         .is_encrypted           = ext4_encrypted_inode,
1176 };
1177 #endif
1178
1179 #ifdef CONFIG_QUOTA
1180 static char *quotatypes[] = INITQFNAMES;
1181 #define QTYPE2NAME(t) (quotatypes[t])
1182
1183 static int ext4_write_dquot(struct dquot *dquot);
1184 static int ext4_acquire_dquot(struct dquot *dquot);
1185 static int ext4_release_dquot(struct dquot *dquot);
1186 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1187 static int ext4_write_info(struct super_block *sb, int type);
1188 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1189                          struct path *path);
1190 static int ext4_quota_off(struct super_block *sb, int type);
1191 static int ext4_quota_on_mount(struct super_block *sb, int type);
1192 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1193                                size_t len, loff_t off);
1194 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1195                                 const char *data, size_t len, loff_t off);
1196 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1197                              unsigned int flags);
1198 static int ext4_enable_quotas(struct super_block *sb);
1199 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1200
1201 static struct dquot **ext4_get_dquots(struct inode *inode)
1202 {
1203         return EXT4_I(inode)->i_dquot;
1204 }
1205
1206 static const struct dquot_operations ext4_quota_operations = {
1207         .get_reserved_space = ext4_get_reserved_space,
1208         .write_dquot    = ext4_write_dquot,
1209         .acquire_dquot  = ext4_acquire_dquot,
1210         .release_dquot  = ext4_release_dquot,
1211         .mark_dirty     = ext4_mark_dquot_dirty,
1212         .write_info     = ext4_write_info,
1213         .alloc_dquot    = dquot_alloc,
1214         .destroy_dquot  = dquot_destroy,
1215         .get_projid     = ext4_get_projid,
1216         .get_next_id    = ext4_get_next_id,
1217 };
1218
1219 static const struct quotactl_ops ext4_qctl_operations = {
1220         .quota_on       = ext4_quota_on,
1221         .quota_off      = ext4_quota_off,
1222         .quota_sync     = dquot_quota_sync,
1223         .get_state      = dquot_get_state,
1224         .set_info       = dquot_set_dqinfo,
1225         .get_dqblk      = dquot_get_dqblk,
1226         .set_dqblk      = dquot_set_dqblk,
1227         .get_nextdqblk  = dquot_get_next_dqblk,
1228 };
1229 #endif
1230
1231 static const struct super_operations ext4_sops = {
1232         .alloc_inode    = ext4_alloc_inode,
1233         .destroy_inode  = ext4_destroy_inode,
1234         .write_inode    = ext4_write_inode,
1235         .dirty_inode    = ext4_dirty_inode,
1236         .drop_inode     = ext4_drop_inode,
1237         .evict_inode    = ext4_evict_inode,
1238         .put_super      = ext4_put_super,
1239         .sync_fs        = ext4_sync_fs,
1240         .freeze_fs      = ext4_freeze,
1241         .unfreeze_fs    = ext4_unfreeze,
1242         .statfs         = ext4_statfs,
1243         .remount_fs     = ext4_remount,
1244         .show_options   = ext4_show_options,
1245 #ifdef CONFIG_QUOTA
1246         .quota_read     = ext4_quota_read,
1247         .quota_write    = ext4_quota_write,
1248         .get_dquots     = ext4_get_dquots,
1249 #endif
1250         .bdev_try_to_free_page = bdev_try_to_free_page,
1251 };
1252
1253 static const struct export_operations ext4_export_ops = {
1254         .fh_to_dentry = ext4_fh_to_dentry,
1255         .fh_to_parent = ext4_fh_to_parent,
1256         .get_parent = ext4_get_parent,
1257 };
1258
1259 enum {
1260         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1261         Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1262         Opt_nouid32, Opt_debug, Opt_removed,
1263         Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1264         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1265         Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1266         Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1267         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1268         Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1269         Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1270         Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1271         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1272         Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1273         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1274         Opt_lazytime, Opt_nolazytime,
1275         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1276         Opt_inode_readahead_blks, Opt_journal_ioprio,
1277         Opt_dioread_nolock, Opt_dioread_lock,
1278         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1279         Opt_max_dir_size_kb, Opt_nojournal_checksum,
1280 };
1281
1282 static const match_table_t tokens = {
1283         {Opt_bsd_df, "bsddf"},
1284         {Opt_minix_df, "minixdf"},
1285         {Opt_grpid, "grpid"},
1286         {Opt_grpid, "bsdgroups"},
1287         {Opt_nogrpid, "nogrpid"},
1288         {Opt_nogrpid, "sysvgroups"},
1289         {Opt_resgid, "resgid=%u"},
1290         {Opt_resuid, "resuid=%u"},
1291         {Opt_sb, "sb=%u"},
1292         {Opt_err_cont, "errors=continue"},
1293         {Opt_err_panic, "errors=panic"},
1294         {Opt_err_ro, "errors=remount-ro"},
1295         {Opt_nouid32, "nouid32"},
1296         {Opt_debug, "debug"},
1297         {Opt_removed, "oldalloc"},
1298         {Opt_removed, "orlov"},
1299         {Opt_user_xattr, "user_xattr"},
1300         {Opt_nouser_xattr, "nouser_xattr"},
1301         {Opt_acl, "acl"},
1302         {Opt_noacl, "noacl"},
1303         {Opt_noload, "norecovery"},
1304         {Opt_noload, "noload"},
1305         {Opt_removed, "nobh"},
1306         {Opt_removed, "bh"},
1307         {Opt_commit, "commit=%u"},
1308         {Opt_min_batch_time, "min_batch_time=%u"},
1309         {Opt_max_batch_time, "max_batch_time=%u"},
1310         {Opt_journal_dev, "journal_dev=%u"},
1311         {Opt_journal_path, "journal_path=%s"},
1312         {Opt_journal_checksum, "journal_checksum"},
1313         {Opt_nojournal_checksum, "nojournal_checksum"},
1314         {Opt_journal_async_commit, "journal_async_commit"},
1315         {Opt_abort, "abort"},
1316         {Opt_data_journal, "data=journal"},
1317         {Opt_data_ordered, "data=ordered"},
1318         {Opt_data_writeback, "data=writeback"},
1319         {Opt_data_err_abort, "data_err=abort"},
1320         {Opt_data_err_ignore, "data_err=ignore"},
1321         {Opt_offusrjquota, "usrjquota="},
1322         {Opt_usrjquota, "usrjquota=%s"},
1323         {Opt_offgrpjquota, "grpjquota="},
1324         {Opt_grpjquota, "grpjquota=%s"},
1325         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1326         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1327         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1328         {Opt_grpquota, "grpquota"},
1329         {Opt_noquota, "noquota"},
1330         {Opt_quota, "quota"},
1331         {Opt_usrquota, "usrquota"},
1332         {Opt_prjquota, "prjquota"},
1333         {Opt_barrier, "barrier=%u"},
1334         {Opt_barrier, "barrier"},
1335         {Opt_nobarrier, "nobarrier"},
1336         {Opt_i_version, "i_version"},
1337         {Opt_dax, "dax"},
1338         {Opt_stripe, "stripe=%u"},
1339         {Opt_delalloc, "delalloc"},
1340         {Opt_lazytime, "lazytime"},
1341         {Opt_nolazytime, "nolazytime"},
1342         {Opt_nodelalloc, "nodelalloc"},
1343         {Opt_removed, "mblk_io_submit"},
1344         {Opt_removed, "nomblk_io_submit"},
1345         {Opt_block_validity, "block_validity"},
1346         {Opt_noblock_validity, "noblock_validity"},
1347         {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1348         {Opt_journal_ioprio, "journal_ioprio=%u"},
1349         {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1350         {Opt_auto_da_alloc, "auto_da_alloc"},
1351         {Opt_noauto_da_alloc, "noauto_da_alloc"},
1352         {Opt_dioread_nolock, "dioread_nolock"},
1353         {Opt_dioread_lock, "dioread_lock"},
1354         {Opt_discard, "discard"},
1355         {Opt_nodiscard, "nodiscard"},
1356         {Opt_init_itable, "init_itable=%u"},
1357         {Opt_init_itable, "init_itable"},
1358         {Opt_noinit_itable, "noinit_itable"},
1359         {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1360         {Opt_test_dummy_encryption, "test_dummy_encryption"},
1361         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1362         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1363         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1364         {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1365         {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1366         {Opt_err, NULL},
1367 };
1368
1369 static ext4_fsblk_t get_sb_block(void **data)
1370 {
1371         ext4_fsblk_t    sb_block;
1372         char            *options = (char *) *data;
1373
1374         if (!options || strncmp(options, "sb=", 3) != 0)
1375                 return 1;       /* Default location */
1376
1377         options += 3;
1378         /* TODO: use simple_strtoll with >32bit ext4 */
1379         sb_block = simple_strtoul(options, &options, 0);
1380         if (*options && *options != ',') {
1381                 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1382                        (char *) *data);
1383                 return 1;
1384         }
1385         if (*options == ',')
1386                 options++;
1387         *data = (void *) options;
1388
1389         return sb_block;
1390 }
1391
1392 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1393 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1394         "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1395
1396 #ifdef CONFIG_QUOTA
1397 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1398 {
1399         struct ext4_sb_info *sbi = EXT4_SB(sb);
1400         char *qname;
1401         int ret = -1;
1402
1403         if (sb_any_quota_loaded(sb) &&
1404                 !sbi->s_qf_names[qtype]) {
1405                 ext4_msg(sb, KERN_ERR,
1406                         "Cannot change journaled "
1407                         "quota options when quota turned on");
1408                 return -1;
1409         }
1410         if (ext4_has_feature_quota(sb)) {
1411                 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1412                          "ignored when QUOTA feature is enabled");
1413                 return 1;
1414         }
1415         qname = match_strdup(args);
1416         if (!qname) {
1417                 ext4_msg(sb, KERN_ERR,
1418                         "Not enough memory for storing quotafile name");
1419                 return -1;
1420         }
1421         if (sbi->s_qf_names[qtype]) {
1422                 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1423                         ret = 1;
1424                 else
1425                         ext4_msg(sb, KERN_ERR,
1426                                  "%s quota file already specified",
1427                                  QTYPE2NAME(qtype));
1428                 goto errout;
1429         }
1430         if (strchr(qname, '/')) {
1431                 ext4_msg(sb, KERN_ERR,
1432                         "quotafile must be on filesystem root");
1433                 goto errout;
1434         }
1435         sbi->s_qf_names[qtype] = qname;
1436         set_opt(sb, QUOTA);
1437         return 1;
1438 errout:
1439         kfree(qname);
1440         return ret;
1441 }
1442
1443 static int clear_qf_name(struct super_block *sb, int qtype)
1444 {
1445
1446         struct ext4_sb_info *sbi = EXT4_SB(sb);
1447
1448         if (sb_any_quota_loaded(sb) &&
1449                 sbi->s_qf_names[qtype]) {
1450                 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1451                         " when quota turned on");
1452                 return -1;
1453         }
1454         kfree(sbi->s_qf_names[qtype]);
1455         sbi->s_qf_names[qtype] = NULL;
1456         return 1;
1457 }
1458 #endif
1459
1460 #define MOPT_SET        0x0001
1461 #define MOPT_CLEAR      0x0002
1462 #define MOPT_NOSUPPORT  0x0004
1463 #define MOPT_EXPLICIT   0x0008
1464 #define MOPT_CLEAR_ERR  0x0010
1465 #define MOPT_GTE0       0x0020
1466 #ifdef CONFIG_QUOTA
1467 #define MOPT_Q          0
1468 #define MOPT_QFMT       0x0040
1469 #else
1470 #define MOPT_Q          MOPT_NOSUPPORT
1471 #define MOPT_QFMT       MOPT_NOSUPPORT
1472 #endif
1473 #define MOPT_DATAJ      0x0080
1474 #define MOPT_NO_EXT2    0x0100
1475 #define MOPT_NO_EXT3    0x0200
1476 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1477 #define MOPT_STRING     0x0400
1478
1479 static const struct mount_opts {
1480         int     token;
1481         int     mount_opt;
1482         int     flags;
1483 } ext4_mount_opts[] = {
1484         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1485         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1486         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1487         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1488         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1489         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1490         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1491          MOPT_EXT4_ONLY | MOPT_SET},
1492         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1493          MOPT_EXT4_ONLY | MOPT_CLEAR},
1494         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1495         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1496         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1497          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1498         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1499          MOPT_EXT4_ONLY | MOPT_CLEAR},
1500         {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1501          MOPT_EXT4_ONLY | MOPT_CLEAR},
1502         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1503          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1504         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1505                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1506          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1507         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1508         {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1509         {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1510         {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1511         {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1512          MOPT_NO_EXT2},
1513         {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1514          MOPT_NO_EXT2},
1515         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1516         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1517         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1518         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1519         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1520         {Opt_commit, 0, MOPT_GTE0},
1521         {Opt_max_batch_time, 0, MOPT_GTE0},
1522         {Opt_min_batch_time, 0, MOPT_GTE0},
1523         {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1524         {Opt_init_itable, 0, MOPT_GTE0},
1525         {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1526         {Opt_stripe, 0, MOPT_GTE0},
1527         {Opt_resuid, 0, MOPT_GTE0},
1528         {Opt_resgid, 0, MOPT_GTE0},
1529         {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1530         {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1531         {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1532         {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1533         {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1534         {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1535          MOPT_NO_EXT2 | MOPT_DATAJ},
1536         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1537         {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1538 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1539         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1540         {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1541 #else
1542         {Opt_acl, 0, MOPT_NOSUPPORT},
1543         {Opt_noacl, 0, MOPT_NOSUPPORT},
1544 #endif
1545         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1546         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1547         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1548         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1549                                                         MOPT_SET | MOPT_Q},
1550         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1551                                                         MOPT_SET | MOPT_Q},
1552         {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1553                                                         MOPT_SET | MOPT_Q},
1554         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1555                        EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1556                                                         MOPT_CLEAR | MOPT_Q},
1557         {Opt_usrjquota, 0, MOPT_Q},
1558         {Opt_grpjquota, 0, MOPT_Q},
1559         {Opt_offusrjquota, 0, MOPT_Q},
1560         {Opt_offgrpjquota, 0, MOPT_Q},
1561         {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1562         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1563         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1564         {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1565         {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1566         {Opt_err, 0, 0}
1567 };
1568
1569 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1570                             substring_t *args, unsigned long *journal_devnum,
1571                             unsigned int *journal_ioprio, int is_remount)
1572 {
1573         struct ext4_sb_info *sbi = EXT4_SB(sb);
1574         const struct mount_opts *m;
1575         kuid_t uid;
1576         kgid_t gid;
1577         int arg = 0;
1578
1579 #ifdef CONFIG_QUOTA
1580         if (token == Opt_usrjquota)
1581                 return set_qf_name(sb, USRQUOTA, &args[0]);
1582         else if (token == Opt_grpjquota)
1583                 return set_qf_name(sb, GRPQUOTA, &args[0]);
1584         else if (token == Opt_offusrjquota)
1585                 return clear_qf_name(sb, USRQUOTA);
1586         else if (token == Opt_offgrpjquota)
1587                 return clear_qf_name(sb, GRPQUOTA);
1588 #endif
1589         switch (token) {
1590         case Opt_noacl:
1591         case Opt_nouser_xattr:
1592                 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1593                 break;
1594         case Opt_sb:
1595                 return 1;       /* handled by get_sb_block() */
1596         case Opt_removed:
1597                 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1598                 return 1;
1599         case Opt_abort:
1600                 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1601                 return 1;
1602         case Opt_i_version:
1603                 sb->s_flags |= MS_I_VERSION;
1604                 return 1;
1605         case Opt_lazytime:
1606                 sb->s_flags |= MS_LAZYTIME;
1607                 return 1;
1608         case Opt_nolazytime:
1609                 sb->s_flags &= ~MS_LAZYTIME;
1610                 return 1;
1611         }
1612
1613         for (m = ext4_mount_opts; m->token != Opt_err; m++)
1614                 if (token == m->token)
1615                         break;
1616
1617         if (m->token == Opt_err) {
1618                 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1619                          "or missing value", opt);
1620                 return -1;
1621         }
1622
1623         if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1624                 ext4_msg(sb, KERN_ERR,
1625                          "Mount option \"%s\" incompatible with ext2", opt);
1626                 return -1;
1627         }
1628         if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1629                 ext4_msg(sb, KERN_ERR,
1630                          "Mount option \"%s\" incompatible with ext3", opt);
1631                 return -1;
1632         }
1633
1634         if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1635                 return -1;
1636         if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1637                 return -1;
1638         if (m->flags & MOPT_EXPLICIT) {
1639                 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1640                         set_opt2(sb, EXPLICIT_DELALLOC);
1641                 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1642                         set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1643                 } else
1644                         return -1;
1645         }
1646         if (m->flags & MOPT_CLEAR_ERR)
1647                 clear_opt(sb, ERRORS_MASK);
1648         if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1649                 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1650                          "options when quota turned on");
1651                 return -1;
1652         }
1653
1654         if (m->flags & MOPT_NOSUPPORT) {
1655                 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1656         } else if (token == Opt_commit) {
1657                 if (arg == 0)
1658                         arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1659                 sbi->s_commit_interval = HZ * arg;
1660         } else if (token == Opt_max_batch_time) {
1661                 sbi->s_max_batch_time = arg;
1662         } else if (token == Opt_min_batch_time) {
1663                 sbi->s_min_batch_time = arg;
1664         } else if (token == Opt_inode_readahead_blks) {
1665                 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1666                         ext4_msg(sb, KERN_ERR,
1667                                  "EXT4-fs: inode_readahead_blks must be "
1668                                  "0 or a power of 2 smaller than 2^31");
1669                         return -1;
1670                 }
1671                 sbi->s_inode_readahead_blks = arg;
1672         } else if (token == Opt_init_itable) {
1673                 set_opt(sb, INIT_INODE_TABLE);
1674                 if (!args->from)
1675                         arg = EXT4_DEF_LI_WAIT_MULT;
1676                 sbi->s_li_wait_mult = arg;
1677         } else if (token == Opt_max_dir_size_kb) {
1678                 sbi->s_max_dir_size_kb = arg;
1679         } else if (token == Opt_stripe) {
1680                 sbi->s_stripe = arg;
1681         } else if (token == Opt_resuid) {
1682                 uid = make_kuid(current_user_ns(), arg);
1683                 if (!uid_valid(uid)) {
1684                         ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1685                         return -1;
1686                 }
1687                 sbi->s_resuid = uid;
1688         } else if (token == Opt_resgid) {
1689                 gid = make_kgid(current_user_ns(), arg);
1690                 if (!gid_valid(gid)) {
1691                         ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1692                         return -1;
1693                 }
1694                 sbi->s_resgid = gid;
1695         } else if (token == Opt_journal_dev) {
1696                 if (is_remount) {
1697                         ext4_msg(sb, KERN_ERR,
1698                                  "Cannot specify journal on remount");
1699                         return -1;
1700                 }
1701                 *journal_devnum = arg;
1702         } else if (token == Opt_journal_path) {
1703                 char *journal_path;
1704                 struct inode *journal_inode;
1705                 struct path path;
1706                 int error;
1707
1708                 if (is_remount) {
1709                         ext4_msg(sb, KERN_ERR,
1710                                  "Cannot specify journal on remount");
1711                         return -1;
1712                 }
1713                 journal_path = match_strdup(&args[0]);
1714                 if (!journal_path) {
1715                         ext4_msg(sb, KERN_ERR, "error: could not dup "
1716                                 "journal device string");
1717                         return -1;
1718                 }
1719
1720                 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1721                 if (error) {
1722                         ext4_msg(sb, KERN_ERR, "error: could not find "
1723                                 "journal device path: error %d", error);
1724                         kfree(journal_path);
1725                         return -1;
1726                 }
1727
1728                 journal_inode = d_inode(path.dentry);
1729                 if (!S_ISBLK(journal_inode->i_mode)) {
1730                         ext4_msg(sb, KERN_ERR, "error: journal path %s "
1731                                 "is not a block device", journal_path);
1732                         path_put(&path);
1733                         kfree(journal_path);
1734                         return -1;
1735                 }
1736
1737                 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1738                 path_put(&path);
1739                 kfree(journal_path);
1740         } else if (token == Opt_journal_ioprio) {
1741                 if (arg > 7) {
1742                         ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1743                                  " (must be 0-7)");
1744                         return -1;
1745                 }
1746                 *journal_ioprio =
1747                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1748         } else if (token == Opt_test_dummy_encryption) {
1749 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1750                 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1751                 ext4_msg(sb, KERN_WARNING,
1752                          "Test dummy encryption mode enabled");
1753 #else
1754                 ext4_msg(sb, KERN_WARNING,
1755                          "Test dummy encryption mount option ignored");
1756 #endif
1757         } else if (m->flags & MOPT_DATAJ) {
1758                 if (is_remount) {
1759                         if (!sbi->s_journal)
1760                                 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1761                         else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1762                                 ext4_msg(sb, KERN_ERR,
1763                                          "Cannot change data mode on remount");
1764                                 return -1;
1765                         }
1766                 } else {
1767                         clear_opt(sb, DATA_FLAGS);
1768                         sbi->s_mount_opt |= m->mount_opt;
1769                 }
1770 #ifdef CONFIG_QUOTA
1771         } else if (m->flags & MOPT_QFMT) {
1772                 if (sb_any_quota_loaded(sb) &&
1773                     sbi->s_jquota_fmt != m->mount_opt) {
1774                         ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1775                                  "quota options when quota turned on");
1776                         return -1;
1777                 }
1778                 if (ext4_has_feature_quota(sb)) {
1779                         ext4_msg(sb, KERN_INFO,
1780                                  "Quota format mount options ignored "
1781                                  "when QUOTA feature is enabled");
1782                         return 1;
1783                 }
1784                 sbi->s_jquota_fmt = m->mount_opt;
1785 #endif
1786         } else if (token == Opt_dax) {
1787 #ifdef CONFIG_FS_DAX
1788                 ext4_msg(sb, KERN_WARNING,
1789                 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1790                         sbi->s_mount_opt |= m->mount_opt;
1791 #else
1792                 ext4_msg(sb, KERN_INFO, "dax option not supported");
1793                 return -1;
1794 #endif
1795         } else if (token == Opt_data_err_abort) {
1796                 sbi->s_mount_opt |= m->mount_opt;
1797         } else if (token == Opt_data_err_ignore) {
1798                 sbi->s_mount_opt &= ~m->mount_opt;
1799         } else {
1800                 if (!args->from)
1801                         arg = 1;
1802                 if (m->flags & MOPT_CLEAR)
1803                         arg = !arg;
1804                 else if (unlikely(!(m->flags & MOPT_SET))) {
1805                         ext4_msg(sb, KERN_WARNING,
1806                                  "buggy handling of option %s", opt);
1807                         WARN_ON(1);
1808                         return -1;
1809                 }
1810                 if (arg != 0)
1811                         sbi->s_mount_opt |= m->mount_opt;
1812                 else
1813                         sbi->s_mount_opt &= ~m->mount_opt;
1814         }
1815         return 1;
1816 }
1817
1818 static int parse_options(char *options, struct super_block *sb,
1819                          unsigned long *journal_devnum,
1820                          unsigned int *journal_ioprio,
1821                          int is_remount)
1822 {
1823         struct ext4_sb_info *sbi = EXT4_SB(sb);
1824         char *p;
1825         substring_t args[MAX_OPT_ARGS];
1826         int token;
1827
1828         if (!options)
1829                 return 1;
1830
1831         while ((p = strsep(&options, ",")) != NULL) {
1832                 if (!*p)
1833                         continue;
1834                 /*
1835                  * Initialize args struct so we know whether arg was
1836                  * found; some options take optional arguments.
1837                  */
1838                 args[0].to = args[0].from = NULL;
1839                 token = match_token(p, tokens, args);
1840                 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1841                                      journal_ioprio, is_remount) < 0)
1842                         return 0;
1843         }
1844 #ifdef CONFIG_QUOTA
1845         /*
1846          * We do the test below only for project quotas. 'usrquota' and
1847          * 'grpquota' mount options are allowed even without quota feature
1848          * to support legacy quotas in quota files.
1849          */
1850         if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1851                 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1852                          "Cannot enable project quota enforcement.");
1853                 return 0;
1854         }
1855         if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1856                 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1857                         clear_opt(sb, USRQUOTA);
1858
1859                 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1860                         clear_opt(sb, GRPQUOTA);
1861
1862                 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1863                         ext4_msg(sb, KERN_ERR, "old and new quota "
1864                                         "format mixing");
1865                         return 0;
1866                 }
1867
1868                 if (!sbi->s_jquota_fmt) {
1869                         ext4_msg(sb, KERN_ERR, "journaled quota format "
1870                                         "not specified");
1871                         return 0;
1872                 }
1873         }
1874 #endif
1875         if (test_opt(sb, DIOREAD_NOLOCK)) {
1876                 int blocksize =
1877                         BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1878
1879                 if (blocksize < PAGE_SIZE) {
1880                         ext4_msg(sb, KERN_ERR, "can't mount with "
1881                                  "dioread_nolock if block size != PAGE_SIZE");
1882                         return 0;
1883                 }
1884         }
1885         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1886             test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1887                 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1888                          "in data=ordered mode");
1889                 return 0;
1890         }
1891         return 1;
1892 }
1893
1894 static inline void ext4_show_quota_options(struct seq_file *seq,
1895                                            struct super_block *sb)
1896 {
1897 #if defined(CONFIG_QUOTA)
1898         struct ext4_sb_info *sbi = EXT4_SB(sb);
1899
1900         if (sbi->s_jquota_fmt) {
1901                 char *fmtname = "";
1902
1903                 switch (sbi->s_jquota_fmt) {
1904                 case QFMT_VFS_OLD:
1905                         fmtname = "vfsold";
1906                         break;
1907                 case QFMT_VFS_V0:
1908                         fmtname = "vfsv0";
1909                         break;
1910                 case QFMT_VFS_V1:
1911                         fmtname = "vfsv1";
1912                         break;
1913                 }
1914                 seq_printf(seq, ",jqfmt=%s", fmtname);
1915         }
1916
1917         if (sbi->s_qf_names[USRQUOTA])
1918                 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1919
1920         if (sbi->s_qf_names[GRPQUOTA])
1921                 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1922 #endif
1923 }
1924
1925 static const char *token2str(int token)
1926 {
1927         const struct match_token *t;
1928
1929         for (t = tokens; t->token != Opt_err; t++)
1930                 if (t->token == token && !strchr(t->pattern, '='))
1931                         break;
1932         return t->pattern;
1933 }
1934
1935 /*
1936  * Show an option if
1937  *  - it's set to a non-default value OR
1938  *  - if the per-sb default is different from the global default
1939  */
1940 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1941                               int nodefs)
1942 {
1943         struct ext4_sb_info *sbi = EXT4_SB(sb);
1944         struct ext4_super_block *es = sbi->s_es;
1945         int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1946         const struct mount_opts *m;
1947         char sep = nodefs ? '\n' : ',';
1948
1949 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1950 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1951
1952         if (sbi->s_sb_block != 1)
1953                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1954
1955         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1956                 int want_set = m->flags & MOPT_SET;
1957                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1958                     (m->flags & MOPT_CLEAR_ERR))
1959                         continue;
1960                 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1961                         continue; /* skip if same as the default */
1962                 if ((want_set &&
1963                      (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1964                     (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1965                         continue; /* select Opt_noFoo vs Opt_Foo */
1966                 SEQ_OPTS_PRINT("%s", token2str(m->token));
1967         }
1968
1969         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1970             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1971                 SEQ_OPTS_PRINT("resuid=%u",
1972                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1973         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1974             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1975                 SEQ_OPTS_PRINT("resgid=%u",
1976                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1977         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1978         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1979                 SEQ_OPTS_PUTS("errors=remount-ro");
1980         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1981                 SEQ_OPTS_PUTS("errors=continue");
1982         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1983                 SEQ_OPTS_PUTS("errors=panic");
1984         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1985                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1986         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1987                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1988         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1989                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1990         if (sb->s_flags & MS_I_VERSION)
1991                 SEQ_OPTS_PUTS("i_version");
1992         if (nodefs || sbi->s_stripe)
1993                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1994         if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1995                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1996                         SEQ_OPTS_PUTS("data=journal");
1997                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1998                         SEQ_OPTS_PUTS("data=ordered");
1999                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2000                         SEQ_OPTS_PUTS("data=writeback");
2001         }
2002         if (nodefs ||
2003             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2004                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2005                                sbi->s_inode_readahead_blks);
2006
2007         if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2008                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2009                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2010         if (nodefs || sbi->s_max_dir_size_kb)
2011                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2012         if (test_opt(sb, DATA_ERR_ABORT))
2013                 SEQ_OPTS_PUTS("data_err=abort");
2014
2015         ext4_show_quota_options(seq, sb);
2016         return 0;
2017 }
2018
2019 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2020 {
2021         return _ext4_show_options(seq, root->d_sb, 0);
2022 }
2023
2024 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2025 {
2026         struct super_block *sb = seq->private;
2027         int rc;
2028
2029         seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2030         rc = _ext4_show_options(seq, sb, 1);
2031         seq_puts(seq, "\n");
2032         return rc;
2033 }
2034
2035 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2036                             int read_only)
2037 {
2038         struct ext4_sb_info *sbi = EXT4_SB(sb);
2039         int res = 0;
2040
2041         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2042                 ext4_msg(sb, KERN_ERR, "revision level too high, "
2043                          "forcing read-only mode");
2044                 res = MS_RDONLY;
2045         }
2046         if (read_only)
2047                 goto done;
2048         if (!(sbi->s_mount_state & EXT4_VALID_FS))
2049                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2050                          "running e2fsck is recommended");
2051         else if (sbi->s_mount_state & EXT4_ERROR_FS)
2052                 ext4_msg(sb, KERN_WARNING,
2053                          "warning: mounting fs with errors, "
2054                          "running e2fsck is recommended");
2055         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2056                  le16_to_cpu(es->s_mnt_count) >=
2057                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2058                 ext4_msg(sb, KERN_WARNING,
2059                          "warning: maximal mount count reached, "
2060                          "running e2fsck is recommended");
2061         else if (le32_to_cpu(es->s_checkinterval) &&
2062                 (le32_to_cpu(es->s_lastcheck) +
2063                         le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2064                 ext4_msg(sb, KERN_WARNING,
2065                          "warning: checktime reached, "
2066                          "running e2fsck is recommended");
2067         if (!sbi->s_journal)
2068                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2069         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2070                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2071         le16_add_cpu(&es->s_mnt_count, 1);
2072         es->s_mtime = cpu_to_le32(get_seconds());
2073         ext4_update_dynamic_rev(sb);
2074         if (sbi->s_journal)
2075                 ext4_set_feature_journal_needs_recovery(sb);
2076
2077         ext4_commit_super(sb, 1);
2078 done:
2079         if (test_opt(sb, DEBUG))
2080                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2081                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2082                         sb->s_blocksize,
2083                         sbi->s_groups_count,
2084                         EXT4_BLOCKS_PER_GROUP(sb),
2085                         EXT4_INODES_PER_GROUP(sb),
2086                         sbi->s_mount_opt, sbi->s_mount_opt2);
2087
2088         cleancache_init_fs(sb);
2089         return res;
2090 }
2091
2092 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2093 {
2094         struct ext4_sb_info *sbi = EXT4_SB(sb);
2095         struct flex_groups *new_groups;
2096         int size;
2097
2098         if (!sbi->s_log_groups_per_flex)
2099                 return 0;
2100
2101         size = ext4_flex_group(sbi, ngroup - 1) + 1;
2102         if (size <= sbi->s_flex_groups_allocated)
2103                 return 0;
2104
2105         size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2106         new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2107         if (!new_groups) {
2108                 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2109                          size / (int) sizeof(struct flex_groups));
2110                 return -ENOMEM;
2111         }
2112
2113         if (sbi->s_flex_groups) {
2114                 memcpy(new_groups, sbi->s_flex_groups,
2115                        (sbi->s_flex_groups_allocated *
2116                         sizeof(struct flex_groups)));
2117                 kvfree(sbi->s_flex_groups);
2118         }
2119         sbi->s_flex_groups = new_groups;
2120         sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2121         return 0;
2122 }
2123
2124 static int ext4_fill_flex_info(struct super_block *sb)
2125 {
2126         struct ext4_sb_info *sbi = EXT4_SB(sb);
2127         struct ext4_group_desc *gdp = NULL;
2128         ext4_group_t flex_group;
2129         int i, err;
2130
2131         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2132         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2133                 sbi->s_log_groups_per_flex = 0;
2134                 return 1;
2135         }
2136
2137         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2138         if (err)
2139                 goto failed;
2140
2141         for (i = 0; i < sbi->s_groups_count; i++) {
2142                 gdp = ext4_get_group_desc(sb, i, NULL);
2143
2144                 flex_group = ext4_flex_group(sbi, i);
2145                 atomic_add(ext4_free_inodes_count(sb, gdp),
2146                            &sbi->s_flex_groups[flex_group].free_inodes);
2147                 atomic64_add(ext4_free_group_clusters(sb, gdp),
2148                              &sbi->s_flex_groups[flex_group].free_clusters);
2149                 atomic_add(ext4_used_dirs_count(sb, gdp),
2150                            &sbi->s_flex_groups[flex_group].used_dirs);
2151         }
2152
2153         return 1;
2154 failed:
2155         return 0;
2156 }
2157
2158 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2159                                    struct ext4_group_desc *gdp)
2160 {
2161         int offset = offsetof(struct ext4_group_desc, bg_checksum);
2162         __u16 crc = 0;
2163         __le32 le_group = cpu_to_le32(block_group);
2164         struct ext4_sb_info *sbi = EXT4_SB(sb);
2165
2166         if (ext4_has_metadata_csum(sbi->s_sb)) {
2167                 /* Use new metadata_csum algorithm */
2168                 __u32 csum32;
2169                 __u16 dummy_csum = 0;
2170
2171                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2172                                      sizeof(le_group));
2173                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2174                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2175                                      sizeof(dummy_csum));
2176                 offset += sizeof(dummy_csum);
2177                 if (offset < sbi->s_desc_size)
2178                         csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2179                                              sbi->s_desc_size - offset);
2180
2181                 crc = csum32 & 0xFFFF;
2182                 goto out;
2183         }
2184
2185         /* old crc16 code */
2186         if (!ext4_has_feature_gdt_csum(sb))
2187                 return 0;
2188
2189         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2190         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2191         crc = crc16(crc, (__u8 *)gdp, offset);
2192         offset += sizeof(gdp->bg_checksum); /* skip checksum */
2193         /* for checksum of struct ext4_group_desc do the rest...*/
2194         if (ext4_has_feature_64bit(sb) &&
2195             offset < le16_to_cpu(sbi->s_es->s_desc_size))
2196                 crc = crc16(crc, (__u8 *)gdp + offset,
2197                             le16_to_cpu(sbi->s_es->s_desc_size) -
2198                                 offset);
2199
2200 out:
2201         return cpu_to_le16(crc);
2202 }
2203
2204 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2205                                 struct ext4_group_desc *gdp)
2206 {
2207         if (ext4_has_group_desc_csum(sb) &&
2208             (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2209                 return 0;
2210
2211         return 1;
2212 }
2213
2214 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2215                               struct ext4_group_desc *gdp)
2216 {
2217         if (!ext4_has_group_desc_csum(sb))
2218                 return;
2219         gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2220 }
2221
2222 /* Called at mount-time, super-block is locked */
2223 static int ext4_check_descriptors(struct super_block *sb,
2224                                   ext4_fsblk_t sb_block,
2225                                   ext4_group_t *first_not_zeroed)
2226 {
2227         struct ext4_sb_info *sbi = EXT4_SB(sb);
2228         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2229         ext4_fsblk_t last_block;
2230         ext4_fsblk_t block_bitmap;
2231         ext4_fsblk_t inode_bitmap;
2232         ext4_fsblk_t inode_table;
2233         int flexbg_flag = 0;
2234         ext4_group_t i, grp = sbi->s_groups_count;
2235
2236         if (ext4_has_feature_flex_bg(sb))
2237                 flexbg_flag = 1;
2238
2239         ext4_debug("Checking group descriptors");
2240
2241         for (i = 0; i < sbi->s_groups_count; i++) {
2242                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2243
2244                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2245                         last_block = ext4_blocks_count(sbi->s_es) - 1;
2246                 else
2247                         last_block = first_block +
2248                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2249
2250                 if ((grp == sbi->s_groups_count) &&
2251                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2252                         grp = i;
2253
2254                 block_bitmap = ext4_block_bitmap(sb, gdp);
2255                 if (block_bitmap == sb_block) {
2256                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2257                                  "Block bitmap for group %u overlaps "
2258                                  "superblock", i);
2259                 }
2260                 if (block_bitmap < first_block || block_bitmap > last_block) {
2261                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2262                                "Block bitmap for group %u not in group "
2263                                "(block %llu)!", i, block_bitmap);
2264                         return 0;
2265                 }
2266                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2267                 if (inode_bitmap == sb_block) {
2268                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2269                                  "Inode bitmap for group %u overlaps "
2270                                  "superblock", i);
2271                 }
2272                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2273                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2274                                "Inode bitmap for group %u not in group "
2275                                "(block %llu)!", i, inode_bitmap);
2276                         return 0;
2277                 }
2278                 inode_table = ext4_inode_table(sb, gdp);
2279                 if (inode_table == sb_block) {
2280                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2281                                  "Inode table for group %u overlaps "
2282                                  "superblock", i);
2283                 }
2284                 if (inode_table < first_block ||
2285                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
2286                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2287                                "Inode table for group %u not in group "
2288                                "(block %llu)!", i, inode_table);
2289                         return 0;
2290                 }
2291                 ext4_lock_group(sb, i);
2292                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2293                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2294                                  "Checksum for group %u failed (%u!=%u)",
2295                                  i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2296                                      gdp)), le16_to_cpu(gdp->bg_checksum));
2297                         if (!(sb->s_flags & MS_RDONLY)) {
2298                                 ext4_unlock_group(sb, i);
2299                                 return 0;
2300                         }
2301                 }
2302                 ext4_unlock_group(sb, i);
2303                 if (!flexbg_flag)
2304                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
2305         }
2306         if (NULL != first_not_zeroed)
2307                 *first_not_zeroed = grp;
2308         return 1;
2309 }
2310
2311 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2312  * the superblock) which were deleted from all directories, but held open by
2313  * a process at the time of a crash.  We walk the list and try to delete these
2314  * inodes at recovery time (only with a read-write filesystem).
2315  *
2316  * In order to keep the orphan inode chain consistent during traversal (in
2317  * case of crash during recovery), we link each inode into the superblock
2318  * orphan list_head and handle it the same way as an inode deletion during
2319  * normal operation (which journals the operations for us).
2320  *
2321  * We only do an iget() and an iput() on each inode, which is very safe if we
2322  * accidentally point at an in-use or already deleted inode.  The worst that
2323  * can happen in this case is that we get a "bit already cleared" message from
2324  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2325  * e2fsck was run on this filesystem, and it must have already done the orphan
2326  * inode cleanup for us, so we can safely abort without any further action.
2327  */
2328 static void ext4_orphan_cleanup(struct super_block *sb,
2329                                 struct ext4_super_block *es)
2330 {
2331         unsigned int s_flags = sb->s_flags;
2332         int nr_orphans = 0, nr_truncates = 0;
2333 #ifdef CONFIG_QUOTA
2334         int i;
2335 #endif
2336         if (!es->s_last_orphan) {
2337                 jbd_debug(4, "no orphan inodes to clean up\n");
2338                 return;
2339         }
2340
2341         if (bdev_read_only(sb->s_bdev)) {
2342                 ext4_msg(sb, KERN_ERR, "write access "
2343                         "unavailable, skipping orphan cleanup");
2344                 return;
2345         }
2346
2347         /* Check if feature set would not allow a r/w mount */
2348         if (!ext4_feature_set_ok(sb, 0)) {
2349                 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2350                          "unknown ROCOMPAT features");
2351                 return;
2352         }
2353
2354         if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2355                 /* don't clear list on RO mount w/ errors */
2356                 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2357                         ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2358                                   "clearing orphan list.\n");
2359                         es->s_last_orphan = 0;
2360                 }
2361                 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2362                 return;
2363         }
2364
2365         if (s_flags & MS_RDONLY) {
2366                 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2367                 sb->s_flags &= ~MS_RDONLY;
2368         }
2369 #ifdef CONFIG_QUOTA
2370         /* Needed for iput() to work correctly and not trash data */
2371         sb->s_flags |= MS_ACTIVE;
2372         /* Turn on quotas so that they are updated correctly */
2373         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2374                 if (EXT4_SB(sb)->s_qf_names[i]) {
2375                         int ret = ext4_quota_on_mount(sb, i);
2376                         if (ret < 0)
2377                                 ext4_msg(sb, KERN_ERR,
2378                                         "Cannot turn on journaled "
2379                                         "quota: error %d", ret);
2380                 }
2381         }
2382 #endif
2383
2384         while (es->s_last_orphan) {
2385                 struct inode *inode;
2386
2387                 /*
2388                  * We may have encountered an error during cleanup; if
2389                  * so, skip the rest.
2390                  */
2391                 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2392                         jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2393                         es->s_last_orphan = 0;
2394                         break;
2395                 }
2396
2397                 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2398                 if (IS_ERR(inode)) {
2399                         es->s_last_orphan = 0;
2400                         break;
2401                 }
2402
2403                 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2404                 dquot_initialize(inode);
2405                 if (inode->i_nlink) {
2406                         if (test_opt(sb, DEBUG))
2407                                 ext4_msg(sb, KERN_DEBUG,
2408                                         "%s: truncating inode %lu to %lld bytes",
2409                                         __func__, inode->i_ino, inode->i_size);
2410                         jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2411                                   inode->i_ino, inode->i_size);
2412                         inode_lock(inode);
2413                         truncate_inode_pages(inode->i_mapping, inode->i_size);
2414                         ext4_truncate(inode);
2415                         inode_unlock(inode);
2416                         nr_truncates++;
2417                 } else {
2418                         if (test_opt(sb, DEBUG))
2419                                 ext4_msg(sb, KERN_DEBUG,
2420                                         "%s: deleting unreferenced inode %lu",
2421                                         __func__, inode->i_ino);
2422                         jbd_debug(2, "deleting unreferenced inode %lu\n",
2423                                   inode->i_ino);
2424                         nr_orphans++;
2425                 }
2426                 iput(inode);  /* The delete magic happens here! */
2427         }
2428
2429 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2430
2431         if (nr_orphans)
2432                 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2433                        PLURAL(nr_orphans));
2434         if (nr_truncates)
2435                 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2436                        PLURAL(nr_truncates));
2437 #ifdef CONFIG_QUOTA
2438         /* Turn quotas off */
2439         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2440                 if (sb_dqopt(sb)->files[i])
2441                         dquot_quota_off(sb, i);
2442         }
2443 #endif
2444         sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2445 }
2446
2447 /*
2448  * Maximal extent format file size.
2449  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2450  * extent format containers, within a sector_t, and within i_blocks
2451  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2452  * so that won't be a limiting factor.
2453  *
2454  * However there is other limiting factor. We do store extents in the form
2455  * of starting block and length, hence the resulting length of the extent
2456  * covering maximum file size must fit into on-disk format containers as
2457  * well. Given that length is always by 1 unit bigger than max unit (because
2458  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2459  *
2460  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2461  */
2462 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2463 {
2464         loff_t res;
2465         loff_t upper_limit = MAX_LFS_FILESIZE;
2466
2467         /* small i_blocks in vfs inode? */
2468         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2469                 /*
2470                  * CONFIG_LBDAF is not enabled implies the inode
2471                  * i_block represent total blocks in 512 bytes
2472                  * 32 == size of vfs inode i_blocks * 8
2473                  */
2474                 upper_limit = (1LL << 32) - 1;
2475
2476                 /* total blocks in file system block size */
2477                 upper_limit >>= (blkbits - 9);
2478                 upper_limit <<= blkbits;
2479         }
2480
2481         /*
2482          * 32-bit extent-start container, ee_block. We lower the maxbytes
2483          * by one fs block, so ee_len can cover the extent of maximum file
2484          * size
2485          */
2486         res = (1LL << 32) - 1;
2487         res <<= blkbits;
2488
2489         /* Sanity check against vm- & vfs- imposed limits */
2490         if (res > upper_limit)
2491                 res = upper_limit;
2492
2493         return res;
2494 }
2495
2496 /*
2497  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2498  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2499  * We need to be 1 filesystem block less than the 2^48 sector limit.
2500  */
2501 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2502 {
2503         loff_t res = EXT4_NDIR_BLOCKS;
2504         int meta_blocks;
2505         loff_t upper_limit;
2506         /* This is calculated to be the largest file size for a dense, block
2507          * mapped file such that the file's total number of 512-byte sectors,
2508          * including data and all indirect blocks, does not exceed (2^48 - 1).
2509          *
2510          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2511          * number of 512-byte sectors of the file.
2512          */
2513
2514         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2515                 /*
2516                  * !has_huge_files or CONFIG_LBDAF not enabled implies that
2517                  * the inode i_block field represents total file blocks in
2518                  * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2519                  */
2520                 upper_limit = (1LL << 32) - 1;
2521
2522                 /* total blocks in file system block size */
2523                 upper_limit >>= (bits - 9);
2524
2525         } else {
2526                 /*
2527                  * We use 48 bit ext4_inode i_blocks
2528                  * With EXT4_HUGE_FILE_FL set the i_blocks
2529                  * represent total number of blocks in
2530                  * file system block size
2531                  */
2532                 upper_limit = (1LL << 48) - 1;
2533
2534         }
2535
2536         /* indirect blocks */
2537         meta_blocks = 1;
2538         /* double indirect blocks */
2539         meta_blocks += 1 + (1LL << (bits-2));
2540         /* tripple indirect blocks */
2541         meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2542
2543         upper_limit -= meta_blocks;
2544         upper_limit <<= bits;
2545
2546         res += 1LL << (bits-2);
2547         res += 1LL << (2*(bits-2));
2548         res += 1LL << (3*(bits-2));
2549         res <<= bits;
2550         if (res > upper_limit)
2551                 res = upper_limit;
2552
2553         if (res > MAX_LFS_FILESIZE)
2554                 res = MAX_LFS_FILESIZE;
2555
2556         return res;
2557 }
2558
2559 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2560                                    ext4_fsblk_t logical_sb_block, int nr)
2561 {
2562         struct ext4_sb_info *sbi = EXT4_SB(sb);
2563         ext4_group_t bg, first_meta_bg;
2564         int has_super = 0;
2565
2566         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2567
2568         if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2569                 return logical_sb_block + nr + 1;
2570         bg = sbi->s_desc_per_block * nr;
2571         if (ext4_bg_has_super(sb, bg))
2572                 has_super = 1;
2573
2574         /*
2575          * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2576          * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2577          * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2578          * compensate.
2579          */
2580         if (sb->s_blocksize == 1024 && nr == 0 &&
2581             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2582                 has_super++;
2583
2584         return (has_super + ext4_group_first_block_no(sb, bg));
2585 }
2586
2587 /**
2588  * ext4_get_stripe_size: Get the stripe size.
2589  * @sbi: In memory super block info
2590  *
2591  * If we have specified it via mount option, then
2592  * use the mount option value. If the value specified at mount time is
2593  * greater than the blocks per group use the super block value.
2594  * If the super block value is greater than blocks per group return 0.
2595  * Allocator needs it be less than blocks per group.
2596  *
2597  */
2598 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2599 {
2600         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2601         unsigned long stripe_width =
2602                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2603         int ret;
2604
2605         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2606                 ret = sbi->s_stripe;
2607         else if (stripe_width <= sbi->s_blocks_per_group)
2608                 ret = stripe_width;
2609         else if (stride <= sbi->s_blocks_per_group)
2610                 ret = stride;
2611         else
2612                 ret = 0;
2613
2614         /*
2615          * If the stripe width is 1, this makes no sense and
2616          * we set it to 0 to turn off stripe handling code.
2617          */
2618         if (ret <= 1)
2619                 ret = 0;
2620
2621         return ret;
2622 }
2623
2624 /*
2625  * Check whether this filesystem can be mounted based on
2626  * the features present and the RDONLY/RDWR mount requested.
2627  * Returns 1 if this filesystem can be mounted as requested,
2628  * 0 if it cannot be.
2629  */
2630 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2631 {
2632         if (ext4_has_unknown_ext4_incompat_features(sb)) {
2633                 ext4_msg(sb, KERN_ERR,
2634                         "Couldn't mount because of "
2635                         "unsupported optional features (%x)",
2636                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2637                         ~EXT4_FEATURE_INCOMPAT_SUPP));
2638                 return 0;
2639         }
2640
2641         if (readonly)
2642                 return 1;
2643
2644         if (ext4_has_feature_readonly(sb)) {
2645                 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2646                 sb->s_flags |= MS_RDONLY;
2647                 return 1;
2648         }
2649
2650         /* Check that feature set is OK for a read-write mount */
2651         if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2652                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2653                          "unsupported optional features (%x)",
2654                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2655                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2656                 return 0;
2657         }
2658         /*
2659          * Large file size enabled file system can only be mounted
2660          * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2661          */
2662         if (ext4_has_feature_huge_file(sb)) {
2663                 if (sizeof(blkcnt_t) < sizeof(u64)) {
2664                         ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2665                                  "cannot be mounted RDWR without "
2666                                  "CONFIG_LBDAF");
2667                         return 0;
2668                 }
2669         }
2670         if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2671                 ext4_msg(sb, KERN_ERR,
2672                          "Can't support bigalloc feature without "
2673                          "extents feature\n");
2674                 return 0;
2675         }
2676
2677 #ifndef CONFIG_QUOTA
2678         if (ext4_has_feature_quota(sb) && !readonly) {
2679                 ext4_msg(sb, KERN_ERR,
2680                          "Filesystem with quota feature cannot be mounted RDWR "
2681                          "without CONFIG_QUOTA");
2682                 return 0;
2683         }
2684         if (ext4_has_feature_project(sb) && !readonly) {
2685                 ext4_msg(sb, KERN_ERR,
2686                          "Filesystem with project quota feature cannot be mounted RDWR "
2687                          "without CONFIG_QUOTA");
2688                 return 0;
2689         }
2690 #endif  /* CONFIG_QUOTA */
2691         return 1;
2692 }
2693
2694 /*
2695  * This function is called once a day if we have errors logged
2696  * on the file system
2697  */
2698 static void print_daily_error_info(unsigned long arg)
2699 {
2700         struct super_block *sb = (struct super_block *) arg;
2701         struct ext4_sb_info *sbi;
2702         struct ext4_super_block *es;
2703
2704         sbi = EXT4_SB(sb);
2705         es = sbi->s_es;
2706
2707         if (es->s_error_count)
2708                 /* fsck newer than v1.41.13 is needed to clean this condition. */
2709                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2710                          le32_to_cpu(es->s_error_count));
2711         if (es->s_first_error_time) {
2712                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2713                        sb->s_id, le32_to_cpu(es->s_first_error_time),
2714                        (int) sizeof(es->s_first_error_func),
2715                        es->s_first_error_func,
2716                        le32_to_cpu(es->s_first_error_line));
2717                 if (es->s_first_error_ino)
2718                         printk(": inode %u",
2719                                le32_to_cpu(es->s_first_error_ino));
2720                 if (es->s_first_error_block)
2721                         printk(": block %llu", (unsigned long long)
2722                                le64_to_cpu(es->s_first_error_block));
2723                 printk("\n");
2724         }
2725         if (es->s_last_error_time) {
2726                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2727                        sb->s_id, le32_to_cpu(es->s_last_error_time),
2728                        (int) sizeof(es->s_last_error_func),
2729                        es->s_last_error_func,
2730                        le32_to_cpu(es->s_last_error_line));
2731                 if (es->s_last_error_ino)
2732                         printk(": inode %u",
2733                                le32_to_cpu(es->s_last_error_ino));
2734                 if (es->s_last_error_block)
2735                         printk(": block %llu", (unsigned long long)
2736                                le64_to_cpu(es->s_last_error_block));
2737                 printk("\n");
2738         }
2739         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2740 }
2741
2742 /* Find next suitable group and run ext4_init_inode_table */
2743 static int ext4_run_li_request(struct ext4_li_request *elr)
2744 {
2745         struct ext4_group_desc *gdp = NULL;
2746         ext4_group_t group, ngroups;
2747         struct super_block *sb;
2748         unsigned long timeout = 0;
2749         int ret = 0;
2750
2751         sb = elr->lr_super;
2752         ngroups = EXT4_SB(sb)->s_groups_count;
2753
2754         for (group = elr->lr_next_group; group < ngroups; group++) {
2755                 gdp = ext4_get_group_desc(sb, group, NULL);
2756                 if (!gdp) {
2757                         ret = 1;
2758                         break;
2759                 }
2760
2761                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2762                         break;
2763         }
2764
2765         if (group >= ngroups)
2766                 ret = 1;
2767
2768         if (!ret) {
2769                 timeout = jiffies;
2770                 ret = ext4_init_inode_table(sb, group,
2771                                             elr->lr_timeout ? 0 : 1);
2772                 if (elr->lr_timeout == 0) {
2773                         timeout = (jiffies - timeout) *
2774                                   elr->lr_sbi->s_li_wait_mult;
2775                         elr->lr_timeout = timeout;
2776                 }
2777                 elr->lr_next_sched = jiffies + elr->lr_timeout;
2778                 elr->lr_next_group = group + 1;
2779         }
2780         return ret;
2781 }
2782
2783 /*
2784  * Remove lr_request from the list_request and free the
2785  * request structure. Should be called with li_list_mtx held
2786  */
2787 static void ext4_remove_li_request(struct ext4_li_request *elr)
2788 {
2789         struct ext4_sb_info *sbi;
2790
2791         if (!elr)
2792                 return;
2793
2794         sbi = elr->lr_sbi;
2795
2796         list_del(&elr->lr_request);
2797         sbi->s_li_request = NULL;
2798         kfree(elr);
2799 }
2800
2801 static void ext4_unregister_li_request(struct super_block *sb)
2802 {
2803         mutex_lock(&ext4_li_mtx);
2804         if (!ext4_li_info) {
2805                 mutex_unlock(&ext4_li_mtx);
2806                 return;
2807         }
2808
2809         mutex_lock(&ext4_li_info->li_list_mtx);
2810         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2811         mutex_unlock(&ext4_li_info->li_list_mtx);
2812         mutex_unlock(&ext4_li_mtx);
2813 }
2814
2815 static struct task_struct *ext4_lazyinit_task;
2816
2817 /*
2818  * This is the function where ext4lazyinit thread lives. It walks
2819  * through the request list searching for next scheduled filesystem.
2820  * When such a fs is found, run the lazy initialization request
2821  * (ext4_rn_li_request) and keep track of the time spend in this
2822  * function. Based on that time we compute next schedule time of
2823  * the request. When walking through the list is complete, compute
2824  * next waking time and put itself into sleep.
2825  */
2826 static int ext4_lazyinit_thread(void *arg)
2827 {
2828         struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2829         struct list_head *pos, *n;
2830         struct ext4_li_request *elr;
2831         unsigned long next_wakeup, cur;
2832
2833         BUG_ON(NULL == eli);
2834
2835 cont_thread:
2836         while (true) {
2837                 next_wakeup = MAX_JIFFY_OFFSET;
2838
2839                 mutex_lock(&eli->li_list_mtx);
2840                 if (list_empty(&eli->li_request_list)) {
2841                         mutex_unlock(&eli->li_list_mtx);
2842                         goto exit_thread;
2843                 }
2844                 list_for_each_safe(pos, n, &eli->li_request_list) {
2845                         int err = 0;
2846                         int progress = 0;
2847                         elr = list_entry(pos, struct ext4_li_request,
2848                                          lr_request);
2849
2850                         if (time_before(jiffies, elr->lr_next_sched)) {
2851                                 if (time_before(elr->lr_next_sched, next_wakeup))
2852                                         next_wakeup = elr->lr_next_sched;
2853                                 continue;
2854                         }
2855                         if (down_read_trylock(&elr->lr_super->s_umount)) {
2856                                 if (sb_start_write_trylock(elr->lr_super)) {
2857                                         progress = 1;
2858                                         /*
2859                                          * We hold sb->s_umount, sb can not
2860                                          * be removed from the list, it is
2861                                          * now safe to drop li_list_mtx
2862                                          */
2863                                         mutex_unlock(&eli->li_list_mtx);
2864                                         err = ext4_run_li_request(elr);
2865                                         sb_end_write(elr->lr_super);
2866                                         mutex_lock(&eli->li_list_mtx);
2867                                         n = pos->next;
2868                                 }
2869                                 up_read((&elr->lr_super->s_umount));
2870                         }
2871                         /* error, remove the lazy_init job */
2872                         if (err) {
2873                                 ext4_remove_li_request(elr);
2874                                 continue;
2875                         }
2876                         if (!progress) {
2877                                 elr->lr_next_sched = jiffies +
2878                                         (prandom_u32()
2879                                          % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2880                         }
2881                         if (time_before(elr->lr_next_sched, next_wakeup))
2882                                 next_wakeup = elr->lr_next_sched;
2883                 }
2884                 mutex_unlock(&eli->li_list_mtx);
2885
2886                 try_to_freeze();
2887
2888                 cur = jiffies;
2889                 if ((time_after_eq(cur, next_wakeup)) ||
2890                     (MAX_JIFFY_OFFSET == next_wakeup)) {
2891                         cond_resched();
2892                         continue;
2893                 }
2894
2895                 schedule_timeout_interruptible(next_wakeup - cur);
2896
2897                 if (kthread_should_stop()) {
2898                         ext4_clear_request_list();
2899                         goto exit_thread;
2900                 }
2901         }
2902
2903 exit_thread:
2904         /*
2905          * It looks like the request list is empty, but we need
2906          * to check it under the li_list_mtx lock, to prevent any
2907          * additions into it, and of course we should lock ext4_li_mtx
2908          * to atomically free the list and ext4_li_info, because at
2909          * this point another ext4 filesystem could be registering
2910          * new one.
2911          */
2912         mutex_lock(&ext4_li_mtx);
2913         mutex_lock(&eli->li_list_mtx);
2914         if (!list_empty(&eli->li_request_list)) {
2915                 mutex_unlock(&eli->li_list_mtx);
2916                 mutex_unlock(&ext4_li_mtx);
2917                 goto cont_thread;
2918         }
2919         mutex_unlock(&eli->li_list_mtx);
2920         kfree(ext4_li_info);
2921         ext4_li_info = NULL;
2922         mutex_unlock(&ext4_li_mtx);
2923
2924         return 0;
2925 }
2926
2927 static void ext4_clear_request_list(void)
2928 {
2929         struct list_head *pos, *n;
2930         struct ext4_li_request *elr;
2931
2932         mutex_lock(&ext4_li_info->li_list_mtx);
2933         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2934                 elr = list_entry(pos, struct ext4_li_request,
2935                                  lr_request);
2936                 ext4_remove_li_request(elr);
2937         }
2938         mutex_unlock(&ext4_li_info->li_list_mtx);
2939 }
2940
2941 static int ext4_run_lazyinit_thread(void)
2942 {
2943         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2944                                          ext4_li_info, "ext4lazyinit");
2945         if (IS_ERR(ext4_lazyinit_task)) {
2946                 int err = PTR_ERR(ext4_lazyinit_task);
2947                 ext4_clear_request_list();
2948                 kfree(ext4_li_info);
2949                 ext4_li_info = NULL;
2950                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2951                                  "initialization thread\n",
2952                                  err);
2953                 return err;
2954         }
2955         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2956         return 0;
2957 }
2958
2959 /*
2960  * Check whether it make sense to run itable init. thread or not.
2961  * If there is at least one uninitialized inode table, return
2962  * corresponding group number, else the loop goes through all
2963  * groups and return total number of groups.
2964  */
2965 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2966 {
2967         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2968         struct ext4_group_desc *gdp = NULL;
2969
2970         for (group = 0; group < ngroups; group++) {
2971                 gdp = ext4_get_group_desc(sb, group, NULL);
2972                 if (!gdp)
2973                         continue;
2974
2975                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2976                         break;
2977         }
2978
2979         return group;
2980 }
2981
2982 static int ext4_li_info_new(void)
2983 {
2984         struct ext4_lazy_init *eli = NULL;
2985
2986         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2987         if (!eli)
2988                 return -ENOMEM;
2989
2990         INIT_LIST_HEAD(&eli->li_request_list);
2991         mutex_init(&eli->li_list_mtx);
2992
2993         eli->li_state |= EXT4_LAZYINIT_QUIT;
2994
2995         ext4_li_info = eli;
2996
2997         return 0;
2998 }
2999
3000 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3001                                             ext4_group_t start)
3002 {
3003         struct ext4_sb_info *sbi = EXT4_SB(sb);
3004         struct ext4_li_request *elr;
3005
3006         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3007         if (!elr)
3008                 return NULL;
3009
3010         elr->lr_super = sb;
3011         elr->lr_sbi = sbi;
3012         elr->lr_next_group = start;
3013
3014         /*
3015          * Randomize first schedule time of the request to
3016          * spread the inode table initialization requests
3017          * better.
3018          */
3019         elr->lr_next_sched = jiffies + (prandom_u32() %
3020                                 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3021         return elr;
3022 }
3023
3024 int ext4_register_li_request(struct super_block *sb,
3025                              ext4_group_t first_not_zeroed)
3026 {
3027         struct ext4_sb_info *sbi = EXT4_SB(sb);
3028         struct ext4_li_request *elr = NULL;
3029         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3030         int ret = 0;
3031
3032         mutex_lock(&ext4_li_mtx);
3033         if (sbi->s_li_request != NULL) {
3034                 /*
3035                  * Reset timeout so it can be computed again, because
3036                  * s_li_wait_mult might have changed.
3037                  */
3038                 sbi->s_li_request->lr_timeout = 0;
3039                 goto out;
3040         }
3041
3042         if (first_not_zeroed == ngroups ||
3043             (sb->s_flags & MS_RDONLY) ||
3044             !test_opt(sb, INIT_INODE_TABLE))
3045                 goto out;
3046
3047         elr = ext4_li_request_new(sb, first_not_zeroed);
3048         if (!elr) {
3049                 ret = -ENOMEM;
3050                 goto out;
3051         }
3052
3053         if (NULL == ext4_li_info) {
3054                 ret = ext4_li_info_new();
3055                 if (ret)
3056                         goto out;
3057         }
3058
3059         mutex_lock(&ext4_li_info->li_list_mtx);
3060         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3061         mutex_unlock(&ext4_li_info->li_list_mtx);
3062
3063         sbi->s_li_request = elr;
3064         /*
3065          * set elr to NULL here since it has been inserted to
3066          * the request_list and the removal and free of it is
3067          * handled by ext4_clear_request_list from now on.
3068          */
3069         elr = NULL;
3070
3071         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3072                 ret = ext4_run_lazyinit_thread();
3073                 if (ret)
3074                         goto out;
3075         }
3076 out:
3077         mutex_unlock(&ext4_li_mtx);
3078         if (ret)
3079                 kfree(elr);
3080         return ret;
3081 }
3082
3083 /*
3084  * We do not need to lock anything since this is called on
3085  * module unload.
3086  */
3087 static void ext4_destroy_lazyinit_thread(void)
3088 {
3089         /*
3090          * If thread exited earlier
3091          * there's nothing to be done.
3092          */
3093         if (!ext4_li_info || !ext4_lazyinit_task)
3094                 return;
3095
3096         kthread_stop(ext4_lazyinit_task);
3097 }
3098
3099 static int set_journal_csum_feature_set(struct super_block *sb)
3100 {
3101         int ret = 1;
3102         int compat, incompat;
3103         struct ext4_sb_info *sbi = EXT4_SB(sb);
3104
3105         if (ext4_has_metadata_csum(sb)) {
3106                 /* journal checksum v3 */
3107                 compat = 0;
3108                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3109         } else {
3110                 /* journal checksum v1 */
3111                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3112                 incompat = 0;
3113         }
3114
3115         jbd2_journal_clear_features(sbi->s_journal,
3116                         JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3117                         JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3118                         JBD2_FEATURE_INCOMPAT_CSUM_V2);
3119         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3120                 ret = jbd2_journal_set_features(sbi->s_journal,
3121                                 compat, 0,
3122                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3123                                 incompat);
3124         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3125                 ret = jbd2_journal_set_features(sbi->s_journal,
3126                                 compat, 0,
3127                                 incompat);
3128                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3129                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3130         } else {
3131                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3132                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3133         }
3134
3135         return ret;
3136 }
3137
3138 /*
3139  * Note: calculating the overhead so we can be compatible with
3140  * historical BSD practice is quite difficult in the face of
3141  * clusters/bigalloc.  This is because multiple metadata blocks from
3142  * different block group can end up in the same allocation cluster.
3143  * Calculating the exact overhead in the face of clustered allocation
3144  * requires either O(all block bitmaps) in memory or O(number of block
3145  * groups**2) in time.  We will still calculate the superblock for
3146  * older file systems --- and if we come across with a bigalloc file
3147  * system with zero in s_overhead_clusters the estimate will be close to
3148  * correct especially for very large cluster sizes --- but for newer
3149  * file systems, it's better to calculate this figure once at mkfs
3150  * time, and store it in the superblock.  If the superblock value is
3151  * present (even for non-bigalloc file systems), we will use it.
3152  */
3153 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3154                           char *buf)
3155 {
3156         struct ext4_sb_info     *sbi = EXT4_SB(sb);
3157         struct ext4_group_desc  *gdp;
3158         ext4_fsblk_t            first_block, last_block, b;
3159         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
3160         int                     s, j, count = 0;
3161
3162         if (!ext4_has_feature_bigalloc(sb))
3163                 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3164                         sbi->s_itb_per_group + 2);
3165
3166         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3167                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3168         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3169         for (i = 0; i < ngroups; i++) {
3170                 gdp = ext4_get_group_desc(sb, i, NULL);
3171                 b = ext4_block_bitmap(sb, gdp);
3172                 if (b >= first_block && b <= last_block) {
3173                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3174                         count++;
3175                 }
3176                 b = ext4_inode_bitmap(sb, gdp);
3177                 if (b >= first_block && b <= last_block) {
3178                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3179                         count++;
3180                 }
3181                 b = ext4_inode_table(sb, gdp);
3182                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3183                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3184                                 int c = EXT4_B2C(sbi, b - first_block);
3185                                 ext4_set_bit(c, buf);
3186                                 count++;
3187                         }
3188                 if (i != grp)
3189                         continue;
3190                 s = 0;
3191                 if (ext4_bg_has_super(sb, grp)) {
3192                         ext4_set_bit(s++, buf);
3193                         count++;
3194                 }
3195                 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3196                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3197                         count++;
3198                 }
3199         }
3200         if (!count)
3201                 return 0;
3202         return EXT4_CLUSTERS_PER_GROUP(sb) -
3203                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3204 }
3205
3206 /*
3207  * Compute the overhead and stash it in sbi->s_overhead
3208  */
3209 int ext4_calculate_overhead(struct super_block *sb)
3210 {
3211         struct ext4_sb_info *sbi = EXT4_SB(sb);
3212         struct ext4_super_block *es = sbi->s_es;
3213         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3214         ext4_fsblk_t overhead = 0;
3215         char *buf = (char *) get_zeroed_page(GFP_NOFS);
3216
3217         if (!buf)
3218                 return -ENOMEM;
3219
3220         /*
3221          * Compute the overhead (FS structures).  This is constant
3222          * for a given filesystem unless the number of block groups
3223          * changes so we cache the previous value until it does.
3224          */
3225
3226         /*
3227          * All of the blocks before first_data_block are overhead
3228          */
3229         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3230
3231         /*
3232          * Add the overhead found in each block group
3233          */
3234         for (i = 0; i < ngroups; i++) {
3235                 int blks;
3236
3237                 blks = count_overhead(sb, i, buf);
3238                 overhead += blks;
3239                 if (blks)
3240                         memset(buf, 0, PAGE_SIZE);
3241                 cond_resched();
3242         }
3243         /* Add the internal journal blocks as well */
3244         if (sbi->s_journal && !sbi->journal_bdev)
3245                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3246
3247         sbi->s_overhead = overhead;
3248         smp_wmb();
3249         free_page((unsigned long) buf);
3250         return 0;
3251 }
3252
3253 static void ext4_set_resv_clusters(struct super_block *sb)
3254 {
3255         ext4_fsblk_t resv_clusters;
3256         struct ext4_sb_info *sbi = EXT4_SB(sb);
3257
3258         /*
3259          * There's no need to reserve anything when we aren't using extents.
3260          * The space estimates are exact, there are no unwritten extents,
3261          * hole punching doesn't need new metadata... This is needed especially
3262          * to keep ext2/3 backward compatibility.
3263          */
3264         if (!ext4_has_feature_extents(sb))
3265                 return;
3266         /*
3267          * By default we reserve 2% or 4096 clusters, whichever is smaller.
3268          * This should cover the situations where we can not afford to run
3269          * out of space like for example punch hole, or converting
3270          * unwritten extents in delalloc path. In most cases such
3271          * allocation would require 1, or 2 blocks, higher numbers are
3272          * very rare.
3273          */
3274         resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3275                          sbi->s_cluster_bits);
3276
3277         do_div(resv_clusters, 50);
3278         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3279
3280         atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3281 }
3282
3283 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3284 {
3285         char *orig_data = kstrdup(data, GFP_KERNEL);
3286         struct buffer_head *bh;
3287         struct ext4_super_block *es = NULL;
3288         struct ext4_sb_info *sbi;
3289         ext4_fsblk_t block;
3290         ext4_fsblk_t sb_block = get_sb_block(&data);
3291         ext4_fsblk_t logical_sb_block;
3292         unsigned long offset = 0;
3293         unsigned long journal_devnum = 0;
3294         unsigned long def_mount_opts;
3295         struct inode *root;
3296         const char *descr;
3297         int ret = -ENOMEM;
3298         int blocksize, clustersize;
3299         unsigned int db_count;
3300         unsigned int i;
3301         int needs_recovery, has_huge_files, has_bigalloc;
3302         __u64 blocks_count;
3303         int err = 0;
3304         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3305         ext4_group_t first_not_zeroed;
3306
3307         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3308         if (!sbi)
3309                 goto out_free_orig;
3310
3311         sbi->s_blockgroup_lock =
3312                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3313         if (!sbi->s_blockgroup_lock) {
3314                 kfree(sbi);
3315                 goto out_free_orig;
3316         }
3317         sb->s_fs_info = sbi;
3318         sbi->s_sb = sb;
3319         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3320         sbi->s_sb_block = sb_block;
3321         if (sb->s_bdev->bd_part)
3322                 sbi->s_sectors_written_start =
3323                         part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3324
3325         /* Cleanup superblock name */
3326         strreplace(sb->s_id, '/', '!');
3327
3328         /* -EINVAL is default */
3329         ret = -EINVAL;
3330         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3331         if (!blocksize) {
3332                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3333                 goto out_fail;
3334         }
3335
3336         /*
3337          * The ext4 superblock will not be buffer aligned for other than 1kB
3338          * block sizes.  We need to calculate the offset from buffer start.
3339          */
3340         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3341                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3342                 offset = do_div(logical_sb_block, blocksize);
3343         } else {
3344                 logical_sb_block = sb_block;
3345         }
3346
3347         if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3348                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3349                 goto out_fail;
3350         }
3351         /*
3352          * Note: s_es must be initialized as soon as possible because
3353          *       some ext4 macro-instructions depend on its value
3354          */
3355         es = (struct ext4_super_block *) (bh->b_data + offset);
3356         sbi->s_es = es;
3357         sb->s_magic = le16_to_cpu(es->s_magic);
3358         if (sb->s_magic != EXT4_SUPER_MAGIC)
3359                 goto cantfind_ext4;
3360         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3361
3362         /* Warn if metadata_csum and gdt_csum are both set. */
3363         if (ext4_has_feature_metadata_csum(sb) &&
3364             ext4_has_feature_gdt_csum(sb))
3365                 ext4_warning(sb, "metadata_csum and uninit_bg are "
3366                              "redundant flags; please run fsck.");
3367
3368         /* Check for a known checksum algorithm */
3369         if (!ext4_verify_csum_type(sb, es)) {
3370                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3371                          "unknown checksum algorithm.");
3372                 silent = 1;
3373                 goto cantfind_ext4;
3374         }
3375
3376         /* Load the checksum driver */
3377         if (ext4_has_feature_metadata_csum(sb)) {
3378                 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3379                 if (IS_ERR(sbi->s_chksum_driver)) {
3380                         ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3381                         ret = PTR_ERR(sbi->s_chksum_driver);
3382                         sbi->s_chksum_driver = NULL;
3383                         goto failed_mount;
3384                 }
3385         }
3386
3387         /* Check superblock checksum */
3388         if (!ext4_superblock_csum_verify(sb, es)) {
3389                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3390                          "invalid superblock checksum.  Run e2fsck?");
3391                 silent = 1;
3392                 ret = -EFSBADCRC;
3393                 goto cantfind_ext4;
3394         }
3395
3396         /* Precompute checksum seed for all metadata */
3397         if (ext4_has_feature_csum_seed(sb))
3398                 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3399         else if (ext4_has_metadata_csum(sb))
3400                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3401                                                sizeof(es->s_uuid));
3402
3403         /* Set defaults before we parse the mount options */
3404         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3405         set_opt(sb, INIT_INODE_TABLE);
3406         if (def_mount_opts & EXT4_DEFM_DEBUG)
3407                 set_opt(sb, DEBUG);
3408         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3409                 set_opt(sb, GRPID);
3410         if (def_mount_opts & EXT4_DEFM_UID16)
3411                 set_opt(sb, NO_UID32);
3412         /* xattr user namespace & acls are now defaulted on */
3413         set_opt(sb, XATTR_USER);
3414 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3415         set_opt(sb, POSIX_ACL);
3416 #endif
3417         /* don't forget to enable journal_csum when metadata_csum is enabled. */
3418         if (ext4_has_metadata_csum(sb))
3419                 set_opt(sb, JOURNAL_CHECKSUM);
3420
3421         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3422                 set_opt(sb, JOURNAL_DATA);
3423         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3424                 set_opt(sb, ORDERED_DATA);
3425         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3426                 set_opt(sb, WRITEBACK_DATA);
3427
3428         if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3429                 set_opt(sb, ERRORS_PANIC);
3430         else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3431                 set_opt(sb, ERRORS_CONT);
3432         else
3433                 set_opt(sb, ERRORS_RO);
3434         /* block_validity enabled by default; disable with noblock_validity */
3435         set_opt(sb, BLOCK_VALIDITY);
3436         if (def_mount_opts & EXT4_DEFM_DISCARD)
3437                 set_opt(sb, DISCARD);
3438
3439         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3440         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3441         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3442         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3443         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3444
3445         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3446                 set_opt(sb, BARRIER);
3447
3448         /*
3449          * enable delayed allocation by default
3450          * Use -o nodelalloc to turn it off
3451          */
3452         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3453             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3454                 set_opt(sb, DELALLOC);
3455
3456         /*
3457          * set default s_li_wait_mult for lazyinit, for the case there is
3458          * no mount option specified.
3459          */
3460         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3461
3462         if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3463                            &journal_devnum, &journal_ioprio, 0)) {
3464                 ext4_msg(sb, KERN_WARNING,
3465                          "failed to parse options in superblock: %s",
3466                          sbi->s_es->s_mount_opts);
3467         }
3468         sbi->s_def_mount_opt = sbi->s_mount_opt;
3469         if (!parse_options((char *) data, sb, &journal_devnum,
3470                            &journal_ioprio, 0))
3471                 goto failed_mount;
3472
3473         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3474                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3475                             "with data=journal disables delayed "
3476                             "allocation and O_DIRECT support!\n");
3477                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3478                         ext4_msg(sb, KERN_ERR, "can't mount with "
3479                                  "both data=journal and delalloc");
3480                         goto failed_mount;
3481                 }
3482                 if (test_opt(sb, DIOREAD_NOLOCK)) {
3483                         ext4_msg(sb, KERN_ERR, "can't mount with "
3484                                  "both data=journal and dioread_nolock");
3485                         goto failed_mount;
3486                 }
3487                 if (test_opt(sb, DAX)) {
3488                         ext4_msg(sb, KERN_ERR, "can't mount with "
3489                                  "both data=journal and dax");
3490                         goto failed_mount;
3491                 }
3492                 if (test_opt(sb, DELALLOC))
3493                         clear_opt(sb, DELALLOC);
3494         } else {
3495                 sb->s_iflags |= SB_I_CGROUPWB;
3496         }
3497
3498         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3499                 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3500
3501         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3502             (ext4_has_compat_features(sb) ||
3503              ext4_has_ro_compat_features(sb) ||
3504              ext4_has_incompat_features(sb)))
3505                 ext4_msg(sb, KERN_WARNING,
3506                        "feature flags set on rev 0 fs, "
3507                        "running e2fsck is recommended");
3508
3509         if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3510                 set_opt2(sb, HURD_COMPAT);
3511                 if (ext4_has_feature_64bit(sb)) {
3512                         ext4_msg(sb, KERN_ERR,
3513                                  "The Hurd can't support 64-bit file systems");
3514                         goto failed_mount;
3515                 }
3516         }
3517
3518         if (IS_EXT2_SB(sb)) {
3519                 if (ext2_feature_set_ok(sb))
3520                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3521                                  "using the ext4 subsystem");
3522                 else {
3523                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3524                                  "to feature incompatibilities");
3525                         goto failed_mount;
3526                 }
3527         }
3528
3529         if (IS_EXT3_SB(sb)) {
3530                 if (ext3_feature_set_ok(sb))
3531                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3532                                  "using the ext4 subsystem");
3533                 else {
3534                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3535                                  "to feature incompatibilities");
3536                         goto failed_mount;
3537                 }
3538         }
3539
3540         /*
3541          * Check feature flags regardless of the revision level, since we
3542          * previously didn't change the revision level when setting the flags,
3543          * so there is a chance incompat flags are set on a rev 0 filesystem.
3544          */
3545         if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3546                 goto failed_mount;
3547
3548         blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3549         if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3550             blocksize > EXT4_MAX_BLOCK_SIZE) {
3551                 ext4_msg(sb, KERN_ERR,
3552                        "Unsupported filesystem blocksize %d", blocksize);
3553                 goto failed_mount;
3554         }
3555
3556         if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3557                 ext4_msg(sb, KERN_ERR,
3558                          "Number of reserved GDT blocks insanely large: %d",
3559                          le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3560                 goto failed_mount;
3561         }
3562
3563         if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3564                 err = bdev_dax_supported(sb, blocksize);
3565                 if (err)
3566                         goto failed_mount;
3567         }
3568
3569         if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3570                 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3571                          es->s_encryption_level);
3572                 goto failed_mount;
3573         }
3574
3575         if (sb->s_blocksize != blocksize) {
3576                 /* Validate the filesystem blocksize */
3577                 if (!sb_set_blocksize(sb, blocksize)) {
3578                         ext4_msg(sb, KERN_ERR, "bad block size %d",
3579                                         blocksize);
3580                         goto failed_mount;
3581                 }
3582
3583                 brelse(bh);
3584                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3585                 offset = do_div(logical_sb_block, blocksize);
3586                 bh = sb_bread_unmovable(sb, logical_sb_block);
3587                 if (!bh) {
3588                         ext4_msg(sb, KERN_ERR,
3589                                "Can't read superblock on 2nd try");
3590                         goto failed_mount;
3591                 }
3592                 es = (struct ext4_super_block *)(bh->b_data + offset);
3593                 sbi->s_es = es;
3594                 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3595                         ext4_msg(sb, KERN_ERR,
3596                                "Magic mismatch, very weird!");
3597                         goto failed_mount;
3598                 }
3599         }
3600
3601         has_huge_files = ext4_has_feature_huge_file(sb);
3602         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3603                                                       has_huge_files);
3604         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3605
3606         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3607                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3608                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3609         } else {
3610                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3611                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3612                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3613                     (!is_power_of_2(sbi->s_inode_size)) ||
3614                     (sbi->s_inode_size > blocksize)) {
3615                         ext4_msg(sb, KERN_ERR,
3616                                "unsupported inode size: %d",
3617                                sbi->s_inode_size);
3618                         goto failed_mount;
3619                 }
3620                 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3621                         sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3622         }
3623
3624         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3625         if (ext4_has_feature_64bit(sb)) {
3626                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3627                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3628                     !is_power_of_2(sbi->s_desc_size)) {
3629                         ext4_msg(sb, KERN_ERR,
3630                                "unsupported descriptor size %lu",
3631                                sbi->s_desc_size);
3632                         goto failed_mount;
3633                 }
3634         } else
3635                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3636
3637         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3638         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3639         if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3640                 goto cantfind_ext4;
3641
3642         sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3643         if (sbi->s_inodes_per_block == 0)
3644                 goto cantfind_ext4;
3645         sbi->s_itb_per_group = sbi->s_inodes_per_group /
3646                                         sbi->s_inodes_per_block;
3647         sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3648         sbi->s_sbh = bh;
3649         sbi->s_mount_state = le16_to_cpu(es->s_state);
3650         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3651         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3652
3653         for (i = 0; i < 4; i++)
3654                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3655         sbi->s_def_hash_version = es->s_def_hash_version;
3656         if (ext4_has_feature_dir_index(sb)) {
3657                 i = le32_to_cpu(es->s_flags);
3658                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3659                         sbi->s_hash_unsigned = 3;
3660                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3661 #ifdef __CHAR_UNSIGNED__
3662                         if (!(sb->s_flags & MS_RDONLY))
3663                                 es->s_flags |=
3664                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3665                         sbi->s_hash_unsigned = 3;
3666 #else
3667                         if (!(sb->s_flags & MS_RDONLY))
3668                                 es->s_flags |=
3669                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3670 #endif
3671                 }
3672         }
3673
3674         /* Handle clustersize */
3675         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3676         has_bigalloc = ext4_has_feature_bigalloc(sb);
3677         if (has_bigalloc) {
3678                 if (clustersize < blocksize) {
3679                         ext4_msg(sb, KERN_ERR,
3680                                  "cluster size (%d) smaller than "
3681                                  "block size (%d)", clustersize, blocksize);
3682                         goto failed_mount;
3683                 }
3684                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3685                         le32_to_cpu(es->s_log_block_size);
3686                 sbi->s_clusters_per_group =
3687                         le32_to_cpu(es->s_clusters_per_group);
3688                 if (sbi->s_clusters_per_group > blocksize * 8) {
3689                         ext4_msg(sb, KERN_ERR,
3690                                  "#clusters per group too big: %lu",
3691                                  sbi->s_clusters_per_group);
3692                         goto failed_mount;
3693                 }
3694                 if (sbi->s_blocks_per_group !=
3695                     (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3696                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3697                                  "clusters per group (%lu) inconsistent",
3698                                  sbi->s_blocks_per_group,
3699                                  sbi->s_clusters_per_group);
3700                         goto failed_mount;
3701                 }
3702         } else {
3703                 if (clustersize != blocksize) {
3704                         ext4_warning(sb, "fragment/cluster size (%d) != "
3705                                      "block size (%d)", clustersize,
3706                                      blocksize);
3707                         clustersize = blocksize;
3708                 }
3709                 if (sbi->s_blocks_per_group > blocksize * 8) {
3710                         ext4_msg(sb, KERN_ERR,
3711                                  "#blocks per group too big: %lu",
3712                                  sbi->s_blocks_per_group);
3713                         goto failed_mount;
3714                 }
3715                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3716                 sbi->s_cluster_bits = 0;
3717         }
3718         sbi->s_cluster_ratio = clustersize / blocksize;
3719
3720         if (sbi->s_inodes_per_group > blocksize * 8) {
3721                 ext4_msg(sb, KERN_ERR,
3722                        "#inodes per group too big: %lu",
3723                        sbi->s_inodes_per_group);
3724                 goto failed_mount;
3725         }
3726
3727         /* Do we have standard group size of clustersize * 8 blocks ? */
3728         if (sbi->s_blocks_per_group == clustersize << 3)
3729                 set_opt2(sb, STD_GROUP_SIZE);
3730
3731         /*
3732          * Test whether we have more sectors than will fit in sector_t,
3733          * and whether the max offset is addressable by the page cache.
3734          */
3735         err = generic_check_addressable(sb->s_blocksize_bits,
3736                                         ext4_blocks_count(es));
3737         if (err) {
3738                 ext4_msg(sb, KERN_ERR, "filesystem"
3739                          " too large to mount safely on this system");
3740                 if (sizeof(sector_t) < 8)
3741                         ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3742                 goto failed_mount;
3743         }
3744
3745         if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3746                 goto cantfind_ext4;
3747
3748         /* check blocks count against device size */
3749         blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3750         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3751                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3752                        "exceeds size of device (%llu blocks)",
3753                        ext4_blocks_count(es), blocks_count);
3754                 goto failed_mount;
3755         }
3756
3757         /*
3758          * It makes no sense for the first data block to be beyond the end
3759          * of the filesystem.
3760          */
3761         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3762                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3763                          "block %u is beyond end of filesystem (%llu)",
3764                          le32_to_cpu(es->s_first_data_block),
3765                          ext4_blocks_count(es));
3766                 goto failed_mount;
3767         }
3768         blocks_count = (ext4_blocks_count(es) -
3769                         le32_to_cpu(es->s_first_data_block) +
3770                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
3771         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3772         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3773                 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3774                        "(block count %llu, first data block %u, "
3775                        "blocks per group %lu)", sbi->s_groups_count,
3776                        ext4_blocks_count(es),
3777                        le32_to_cpu(es->s_first_data_block),
3778                        EXT4_BLOCKS_PER_GROUP(sb));
3779                 goto failed_mount;
3780         }
3781         sbi->s_groups_count = blocks_count;
3782         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3783                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3784         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3785                    EXT4_DESC_PER_BLOCK(sb);
3786         sbi->s_group_desc = ext4_kvmalloc(db_count *
3787                                           sizeof(struct buffer_head *),
3788                                           GFP_KERNEL);
3789         if (sbi->s_group_desc == NULL) {
3790                 ext4_msg(sb, KERN_ERR, "not enough memory");
3791                 ret = -ENOMEM;
3792                 goto failed_mount;
3793         }
3794
3795         bgl_lock_init(sbi->s_blockgroup_lock);
3796
3797         for (i = 0; i < db_count; i++) {
3798                 block = descriptor_loc(sb, logical_sb_block, i);
3799                 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3800                 if (!sbi->s_group_desc[i]) {
3801                         ext4_msg(sb, KERN_ERR,
3802                                "can't read group descriptor %d", i);
3803                         db_count = i;
3804                         goto failed_mount2;
3805                 }
3806         }
3807         if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3808                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3809                 ret = -EFSCORRUPTED;
3810                 goto failed_mount2;
3811         }
3812
3813         sbi->s_gdb_count = db_count;
3814         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3815         spin_lock_init(&sbi->s_next_gen_lock);
3816
3817         setup_timer(&sbi->s_err_report, print_daily_error_info,
3818                 (unsigned long) sb);
3819
3820         /* Register extent status tree shrinker */
3821         if (ext4_es_register_shrinker(sbi))
3822                 goto failed_mount3;
3823
3824         sbi->s_stripe = ext4_get_stripe_size(sbi);
3825         sbi->s_extent_max_zeroout_kb = 32;
3826
3827         /*
3828          * set up enough so that it can read an inode
3829          */
3830         sb->s_op = &ext4_sops;
3831         sb->s_export_op = &ext4_export_ops;
3832         sb->s_xattr = ext4_xattr_handlers;
3833         sb->s_cop = &ext4_cryptops;
3834 #ifdef CONFIG_QUOTA
3835         sb->dq_op = &ext4_quota_operations;
3836         if (ext4_has_feature_quota(sb))
3837                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3838         else
3839                 sb->s_qcop = &ext4_qctl_operations;
3840         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3841 #endif
3842         memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3843
3844         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3845         mutex_init(&sbi->s_orphan_lock);
3846
3847         sb->s_root = NULL;
3848
3849         needs_recovery = (es->s_last_orphan != 0 ||
3850                           ext4_has_feature_journal_needs_recovery(sb));
3851
3852         if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3853                 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3854                         goto failed_mount3a;
3855
3856         /*
3857          * The first inode we look at is the journal inode.  Don't try
3858          * root first: it may be modified in the journal!
3859          */
3860         if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3861                 if (ext4_load_journal(sb, es, journal_devnum))
3862                         goto failed_mount3a;
3863         } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3864                    ext4_has_feature_journal_needs_recovery(sb)) {
3865                 ext4_msg(sb, KERN_ERR, "required journal recovery "
3866                        "suppressed and not mounted read-only");
3867                 goto failed_mount_wq;
3868         } else {
3869                 /* Nojournal mode, all journal mount options are illegal */
3870                 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3871                         ext4_msg(sb, KERN_ERR, "can't mount with "
3872                                  "journal_checksum, fs mounted w/o journal");
3873                         goto failed_mount_wq;
3874                 }
3875                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3876                         ext4_msg(sb, KERN_ERR, "can't mount with "
3877                                  "journal_async_commit, fs mounted w/o journal");
3878                         goto failed_mount_wq;
3879                 }
3880                 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3881                         ext4_msg(sb, KERN_ERR, "can't mount with "
3882                                  "commit=%lu, fs mounted w/o journal",
3883                                  sbi->s_commit_interval / HZ);
3884                         goto failed_mount_wq;
3885                 }
3886                 if (EXT4_MOUNT_DATA_FLAGS &
3887                     (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3888                         ext4_msg(sb, KERN_ERR, "can't mount with "
3889                                  "data=, fs mounted w/o journal");
3890                         goto failed_mount_wq;
3891                 }
3892                 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3893                 clear_opt(sb, JOURNAL_CHECKSUM);
3894                 clear_opt(sb, DATA_FLAGS);
3895                 sbi->s_journal = NULL;
3896                 needs_recovery = 0;
3897                 goto no_journal;
3898         }
3899
3900         if (ext4_has_feature_64bit(sb) &&
3901             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3902                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
3903                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3904                 goto failed_mount_wq;
3905         }
3906
3907         if (!set_journal_csum_feature_set(sb)) {
3908                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3909                          "feature set");
3910                 goto failed_mount_wq;
3911         }
3912
3913         /* We have now updated the journal if required, so we can
3914          * validate the data journaling mode. */
3915         switch (test_opt(sb, DATA_FLAGS)) {
3916         case 0:
3917                 /* No mode set, assume a default based on the journal
3918                  * capabilities: ORDERED_DATA if the journal can
3919                  * cope, else JOURNAL_DATA
3920                  */
3921                 if (jbd2_journal_check_available_features
3922                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3923                         set_opt(sb, ORDERED_DATA);
3924                 else
3925                         set_opt(sb, JOURNAL_DATA);
3926                 break;
3927
3928         case EXT4_MOUNT_ORDERED_DATA:
3929         case EXT4_MOUNT_WRITEBACK_DATA:
3930                 if (!jbd2_journal_check_available_features
3931                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3932                         ext4_msg(sb, KERN_ERR, "Journal does not support "
3933                                "requested data journaling mode");
3934                         goto failed_mount_wq;
3935                 }
3936         default:
3937                 break;
3938         }
3939         set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3940
3941         sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3942
3943 no_journal:
3944         sbi->s_mb_cache = ext4_xattr_create_cache();
3945         if (!sbi->s_mb_cache) {
3946                 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3947                 goto failed_mount_wq;
3948         }
3949
3950         if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3951             (blocksize != PAGE_SIZE)) {
3952                 ext4_msg(sb, KERN_ERR,
3953                          "Unsupported blocksize for fs encryption");
3954                 goto failed_mount_wq;
3955         }
3956
3957         if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3958             !ext4_has_feature_encrypt(sb)) {
3959                 ext4_set_feature_encrypt(sb);
3960                 ext4_commit_super(sb, 1);
3961         }
3962
3963         /*
3964          * Get the # of file system overhead blocks from the
3965          * superblock if present.
3966          */
3967         if (es->s_overhead_clusters)
3968                 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3969         else {
3970                 err = ext4_calculate_overhead(sb);
3971                 if (err)
3972                         goto failed_mount_wq;
3973         }
3974
3975         /*
3976          * The maximum number of concurrent works can be high and
3977          * concurrency isn't really necessary.  Limit it to 1.
3978          */
3979         EXT4_SB(sb)->rsv_conversion_wq =
3980                 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3981         if (!EXT4_SB(sb)->rsv_conversion_wq) {
3982                 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3983                 ret = -ENOMEM;
3984                 goto failed_mount4;
3985         }
3986
3987         /*
3988          * The jbd2_journal_load will have done any necessary log recovery,
3989          * so we can safely mount the rest of the filesystem now.
3990          */
3991
3992         root = ext4_iget(sb, EXT4_ROOT_INO);
3993         if (IS_ERR(root)) {
3994                 ext4_msg(sb, KERN_ERR, "get root inode failed");
3995                 ret = PTR_ERR(root);
3996                 root = NULL;
3997                 goto failed_mount4;
3998         }
3999         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4000                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4001                 iput(root);
4002                 goto failed_mount4;
4003         }
4004         sb->s_root = d_make_root(root);
4005         if (!sb->s_root) {
4006                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4007                 ret = -ENOMEM;
4008                 goto failed_mount4;
4009         }
4010
4011         if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4012                 sb->s_flags |= MS_RDONLY;
4013
4014         /* determine the minimum size of new large inodes, if present */
4015         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4016                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4017                                                      EXT4_GOOD_OLD_INODE_SIZE;
4018                 if (ext4_has_feature_extra_isize(sb)) {
4019                         if (sbi->s_want_extra_isize <
4020                             le16_to_cpu(es->s_want_extra_isize))
4021                                 sbi->s_want_extra_isize =
4022                                         le16_to_cpu(es->s_want_extra_isize);
4023                         if (sbi->s_want_extra_isize <
4024                             le16_to_cpu(es->s_min_extra_isize))
4025                                 sbi->s_want_extra_isize =
4026                                         le16_to_cpu(es->s_min_extra_isize);
4027                 }
4028         }
4029         /* Check if enough inode space is available */
4030         if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4031                                                         sbi->s_inode_size) {
4032                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4033                                                        EXT4_GOOD_OLD_INODE_SIZE;
4034                 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4035                          "available");
4036         }
4037
4038         ext4_set_resv_clusters(sb);
4039
4040         err = ext4_setup_system_zone(sb);
4041         if (err) {
4042                 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4043                          "zone (%d)", err);
4044                 goto failed_mount4a;
4045         }
4046
4047         ext4_ext_init(sb);
4048         err = ext4_mb_init(sb);
4049         if (err) {
4050                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4051                          err);
4052                 goto failed_mount5;
4053         }
4054
4055         block = ext4_count_free_clusters(sb);
4056         ext4_free_blocks_count_set(sbi->s_es, 
4057                                    EXT4_C2B(sbi, block));
4058         err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4059                                   GFP_KERNEL);
4060         if (!err) {
4061                 unsigned long freei = ext4_count_free_inodes(sb);
4062                 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4063                 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4064                                           GFP_KERNEL);
4065         }
4066         if (!err)
4067                 err = percpu_counter_init(&sbi->s_dirs_counter,
4068                                           ext4_count_dirs(sb), GFP_KERNEL);
4069         if (!err)
4070                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4071                                           GFP_KERNEL);
4072         if (!err)
4073                 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4074
4075         if (err) {
4076                 ext4_msg(sb, KERN_ERR, "insufficient memory");
4077                 goto failed_mount6;
4078         }
4079
4080         if (ext4_has_feature_flex_bg(sb))
4081                 if (!ext4_fill_flex_info(sb)) {
4082                         ext4_msg(sb, KERN_ERR,
4083                                "unable to initialize "
4084                                "flex_bg meta info!");
4085                         goto failed_mount6;
4086                 }
4087
4088         err = ext4_register_li_request(sb, first_not_zeroed);
4089         if (err)
4090                 goto failed_mount6;
4091
4092         err = ext4_register_sysfs(sb);
4093         if (err)
4094                 goto failed_mount7;
4095
4096 #ifdef CONFIG_QUOTA
4097         /* Enable quota usage during mount. */
4098         if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4099                 err = ext4_enable_quotas(sb);
4100                 if (err)
4101                         goto failed_mount8;
4102         }
4103 #endif  /* CONFIG_QUOTA */
4104
4105         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4106         ext4_orphan_cleanup(sb, es);
4107         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4108         if (needs_recovery) {
4109                 ext4_msg(sb, KERN_INFO, "recovery complete");
4110                 ext4_mark_recovery_complete(sb, es);
4111         }
4112         if (EXT4_SB(sb)->s_journal) {
4113                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4114                         descr = " journalled data mode";
4115                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4116                         descr = " ordered data mode";
4117                 else
4118                         descr = " writeback data mode";
4119         } else
4120                 descr = "out journal";
4121
4122         if (test_opt(sb, DISCARD)) {
4123                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4124                 if (!blk_queue_discard(q))
4125                         ext4_msg(sb, KERN_WARNING,
4126                                  "mounting with \"discard\" option, but "
4127                                  "the device does not support discard");
4128         }
4129
4130         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4131                 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4132                          "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4133                          *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4134
4135         if (es->s_error_count)
4136                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4137
4138         /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4139         ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4140         ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4141         ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4142
4143         kfree(orig_data);
4144 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4145         memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX,
4146                                 EXT4_KEY_DESC_PREFIX_SIZE);
4147         sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE;
4148 #endif
4149         return 0;
4150
4151 cantfind_ext4:
4152         if (!silent)
4153                 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4154         goto failed_mount;
4155
4156 #ifdef CONFIG_QUOTA
4157 failed_mount8:
4158         ext4_unregister_sysfs(sb);
4159 #endif
4160 failed_mount7:
4161         ext4_unregister_li_request(sb);
4162 failed_mount6:
4163         ext4_mb_release(sb);
4164         if (sbi->s_flex_groups)
4165                 kvfree(sbi->s_flex_groups);
4166         percpu_counter_destroy(&sbi->s_freeclusters_counter);
4167         percpu_counter_destroy(&sbi->s_freeinodes_counter);
4168         percpu_counter_destroy(&sbi->s_dirs_counter);
4169         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4170 failed_mount5:
4171         ext4_ext_release(sb);
4172         ext4_release_system_zone(sb);
4173 failed_mount4a:
4174         dput(sb->s_root);
4175         sb->s_root = NULL;
4176 failed_mount4:
4177         ext4_msg(sb, KERN_ERR, "mount failed");
4178         if (EXT4_SB(sb)->rsv_conversion_wq)
4179                 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4180 failed_mount_wq:
4181         if (sbi->s_mb_cache) {
4182                 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4183                 sbi->s_mb_cache = NULL;
4184         }
4185         if (sbi->s_journal) {
4186                 jbd2_journal_destroy(sbi->s_journal);
4187                 sbi->s_journal = NULL;
4188         }
4189 failed_mount3a:
4190         ext4_es_unregister_shrinker(sbi);
4191 failed_mount3:
4192         del_timer_sync(&sbi->s_err_report);
4193         if (sbi->s_mmp_tsk)
4194                 kthread_stop(sbi->s_mmp_tsk);
4195 failed_mount2:
4196         for (i = 0; i < db_count; i++)
4197                 brelse(sbi->s_group_desc[i]);
4198         kvfree(sbi->s_group_desc);
4199 failed_mount:
4200         if (sbi->s_chksum_driver)
4201                 crypto_free_shash(sbi->s_chksum_driver);
4202 #ifdef CONFIG_QUOTA
4203         for (i = 0; i < EXT4_MAXQUOTAS; i++)
4204                 kfree(sbi->s_qf_names[i]);
4205 #endif
4206         ext4_blkdev_remove(sbi);
4207         brelse(bh);
4208 out_fail:
4209         sb->s_fs_info = NULL;
4210         kfree(sbi->s_blockgroup_lock);
4211         kfree(sbi);
4212 out_free_orig:
4213         kfree(orig_data);
4214         return err ? err : ret;
4215 }
4216
4217 /*
4218  * Setup any per-fs journal parameters now.  We'll do this both on
4219  * initial mount, once the journal has been initialised but before we've
4220  * done any recovery; and again on any subsequent remount.
4221  */
4222 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4223 {
4224         struct ext4_sb_info *sbi = EXT4_SB(sb);
4225
4226         journal->j_commit_interval = sbi->s_commit_interval;
4227         journal->j_min_batch_time = sbi->s_min_batch_time;
4228         journal->j_max_batch_time = sbi->s_max_batch_time;
4229
4230         write_lock(&journal->j_state_lock);
4231         if (test_opt(sb, BARRIER))
4232                 journal->j_flags |= JBD2_BARRIER;
4233         else
4234                 journal->j_flags &= ~JBD2_BARRIER;
4235         if (test_opt(sb, DATA_ERR_ABORT))
4236                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4237         else
4238                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4239         write_unlock(&journal->j_state_lock);
4240 }
4241
4242 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4243                                              unsigned int journal_inum)
4244 {
4245         struct inode *journal_inode;
4246
4247         /*
4248          * Test for the existence of a valid inode on disk.  Bad things
4249          * happen if we iget() an unused inode, as the subsequent iput()
4250          * will try to delete it.
4251          */
4252         journal_inode = ext4_iget(sb, journal_inum);
4253         if (IS_ERR(journal_inode)) {
4254                 ext4_msg(sb, KERN_ERR, "no journal found");
4255                 return NULL;
4256         }
4257         if (!journal_inode->i_nlink) {
4258                 make_bad_inode(journal_inode);
4259                 iput(journal_inode);
4260                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4261                 return NULL;
4262         }
4263
4264         jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4265                   journal_inode, journal_inode->i_size);
4266         if (!S_ISREG(journal_inode->i_mode)) {
4267                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4268                 iput(journal_inode);
4269                 return NULL;
4270         }
4271         return journal_inode;
4272 }
4273
4274 static journal_t *ext4_get_journal(struct super_block *sb,
4275                                    unsigned int journal_inum)
4276 {
4277         struct inode *journal_inode;
4278         journal_t *journal;
4279
4280         BUG_ON(!ext4_has_feature_journal(sb));
4281
4282         journal_inode = ext4_get_journal_inode(sb, journal_inum);
4283         if (!journal_inode)
4284                 return NULL;
4285
4286         journal = jbd2_journal_init_inode(journal_inode);
4287         if (!journal) {
4288                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4289                 iput(journal_inode);
4290                 return NULL;
4291         }
4292         journal->j_private = sb;
4293         ext4_init_journal_params(sb, journal);
4294         return journal;
4295 }
4296
4297 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4298                                        dev_t j_dev)
4299 {
4300         struct buffer_head *bh;
4301         journal_t *journal;
4302         ext4_fsblk_t start;
4303         ext4_fsblk_t len;
4304         int hblock, blocksize;
4305         ext4_fsblk_t sb_block;
4306         unsigned long offset;
4307         struct ext4_super_block *es;
4308         struct block_device *bdev;
4309
4310         BUG_ON(!ext4_has_feature_journal(sb));
4311
4312         bdev = ext4_blkdev_get(j_dev, sb);
4313         if (bdev == NULL)
4314                 return NULL;
4315
4316         blocksize = sb->s_blocksize;
4317         hblock = bdev_logical_block_size(bdev);
4318         if (blocksize < hblock) {
4319                 ext4_msg(sb, KERN_ERR,
4320                         "blocksize too small for journal device");
4321                 goto out_bdev;
4322         }
4323
4324         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4325         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4326         set_blocksize(bdev, blocksize);
4327         if (!(bh = __bread(bdev, sb_block, blocksize))) {
4328                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4329                        "external journal");
4330                 goto out_bdev;
4331         }
4332
4333         es = (struct ext4_super_block *) (bh->b_data + offset);
4334         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4335             !(le32_to_cpu(es->s_feature_incompat) &
4336               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4337                 ext4_msg(sb, KERN_ERR, "external journal has "
4338                                         "bad superblock");
4339                 brelse(bh);
4340                 goto out_bdev;
4341         }
4342
4343         if ((le32_to_cpu(es->s_feature_ro_compat) &
4344              EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4345             es->s_checksum != ext4_superblock_csum(sb, es)) {
4346                 ext4_msg(sb, KERN_ERR, "external journal has "
4347                                        "corrupt superblock");
4348                 brelse(bh);
4349                 goto out_bdev;
4350         }
4351
4352         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4353                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4354                 brelse(bh);
4355                 goto out_bdev;
4356         }
4357
4358         len = ext4_blocks_count(es);
4359         start = sb_block + 1;
4360         brelse(bh);     /* we're done with the superblock */
4361
4362         journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4363                                         start, len, blocksize);
4364         if (!journal) {
4365                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4366                 goto out_bdev;
4367         }
4368         journal->j_private = sb;
4369         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4370         wait_on_buffer(journal->j_sb_buffer);
4371         if (!buffer_uptodate(journal->j_sb_buffer)) {
4372                 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4373                 goto out_journal;
4374         }
4375         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4376                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4377                                         "user (unsupported) - %d",
4378                         be32_to_cpu(journal->j_superblock->s_nr_users));
4379                 goto out_journal;
4380         }
4381         EXT4_SB(sb)->journal_bdev = bdev;
4382         ext4_init_journal_params(sb, journal);
4383         return journal;
4384
4385 out_journal:
4386         jbd2_journal_destroy(journal);
4387 out_bdev:
4388         ext4_blkdev_put(bdev);
4389         return NULL;
4390 }
4391
4392 static int ext4_load_journal(struct super_block *sb,
4393                              struct ext4_super_block *es,
4394                              unsigned long journal_devnum)
4395 {
4396         journal_t *journal;
4397         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4398         dev_t journal_dev;
4399         int err = 0;
4400         int really_read_only;
4401
4402         BUG_ON(!ext4_has_feature_journal(sb));
4403
4404         if (journal_devnum &&
4405             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4406                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4407                         "numbers have changed");
4408                 journal_dev = new_decode_dev(journal_devnum);
4409         } else
4410                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4411
4412         really_read_only = bdev_read_only(sb->s_bdev);
4413
4414         /*
4415          * Are we loading a blank journal or performing recovery after a
4416          * crash?  For recovery, we need to check in advance whether we
4417          * can get read-write access to the device.
4418          */
4419         if (ext4_has_feature_journal_needs_recovery(sb)) {
4420                 if (sb->s_flags & MS_RDONLY) {
4421                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
4422                                         "required on readonly filesystem");
4423                         if (really_read_only) {
4424                                 ext4_msg(sb, KERN_ERR, "write access "
4425                                         "unavailable, cannot proceed");
4426                                 return -EROFS;
4427                         }
4428                         ext4_msg(sb, KERN_INFO, "write access will "
4429                                "be enabled during recovery");
4430                 }
4431         }
4432
4433         if (journal_inum && journal_dev) {
4434                 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4435                        "and inode journals!");
4436                 return -EINVAL;
4437         }
4438
4439         if (journal_inum) {
4440                 if (!(journal = ext4_get_journal(sb, journal_inum)))
4441                         return -EINVAL;
4442         } else {
4443                 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4444                         return -EINVAL;
4445         }
4446
4447         if (!(journal->j_flags & JBD2_BARRIER))
4448                 ext4_msg(sb, KERN_INFO, "barriers disabled");
4449
4450         if (!ext4_has_feature_journal_needs_recovery(sb))
4451                 err = jbd2_journal_wipe(journal, !really_read_only);
4452         if (!err) {
4453                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4454                 if (save)
4455                         memcpy(save, ((char *) es) +
4456                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4457                 err = jbd2_journal_load(journal);
4458                 if (save)
4459                         memcpy(((char *) es) + EXT4_S_ERR_START,
4460                                save, EXT4_S_ERR_LEN);
4461                 kfree(save);
4462         }
4463
4464         if (err) {
4465                 ext4_msg(sb, KERN_ERR, "error loading journal");
4466                 jbd2_journal_destroy(journal);
4467                 return err;
4468         }
4469
4470         EXT4_SB(sb)->s_journal = journal;
4471         ext4_clear_journal_err(sb, es);
4472
4473         if (!really_read_only && journal_devnum &&
4474             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4475                 es->s_journal_dev = cpu_to_le32(journal_devnum);
4476
4477                 /* Make sure we flush the recovery flag to disk. */
4478                 ext4_commit_super(sb, 1);
4479         }
4480
4481         return 0;
4482 }
4483
4484 static int ext4_commit_super(struct super_block *sb, int sync)
4485 {
4486         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4487         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4488         int error = 0;
4489
4490         if (!sbh || block_device_ejected(sb))
4491                 return error;
4492         /*
4493          * If the file system is mounted read-only, don't update the
4494          * superblock write time.  This avoids updating the superblock
4495          * write time when we are mounting the root file system
4496          * read/only but we need to replay the journal; at that point,
4497          * for people who are east of GMT and who make their clock
4498          * tick in localtime for Windows bug-for-bug compatibility,
4499          * the clock is set in the future, and this will cause e2fsck
4500          * to complain and force a full file system check.
4501          */
4502         if (!(sb->s_flags & MS_RDONLY))
4503                 es->s_wtime = cpu_to_le32(get_seconds());
4504         if (sb->s_bdev->bd_part)
4505                 es->s_kbytes_written =
4506                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4507                             ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4508                               EXT4_SB(sb)->s_sectors_written_start) >> 1));
4509         else
4510                 es->s_kbytes_written =
4511                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4512         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4513                 ext4_free_blocks_count_set(es,
4514                         EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4515                                 &EXT4_SB(sb)->s_freeclusters_counter)));
4516         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4517                 es->s_free_inodes_count =
4518                         cpu_to_le32(percpu_counter_sum_positive(
4519                                 &EXT4_SB(sb)->s_freeinodes_counter));
4520         BUFFER_TRACE(sbh, "marking dirty");
4521         ext4_superblock_csum_set(sb);
4522         lock_buffer(sbh);
4523         if (buffer_write_io_error(sbh)) {
4524                 /*
4525                  * Oh, dear.  A previous attempt to write the
4526                  * superblock failed.  This could happen because the
4527                  * USB device was yanked out.  Or it could happen to
4528                  * be a transient write error and maybe the block will
4529                  * be remapped.  Nothing we can do but to retry the
4530                  * write and hope for the best.
4531                  */
4532                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4533                        "superblock detected");
4534                 clear_buffer_write_io_error(sbh);
4535                 set_buffer_uptodate(sbh);
4536         }
4537         mark_buffer_dirty(sbh);
4538         unlock_buffer(sbh);
4539         if (sync) {
4540                 error = __sync_dirty_buffer(sbh,
4541                         test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4542                 if (error)
4543                         return error;
4544
4545                 error = buffer_write_io_error(sbh);
4546                 if (error) {
4547                         ext4_msg(sb, KERN_ERR, "I/O error while writing "
4548                                "superblock");
4549                         clear_buffer_write_io_error(sbh);
4550                         set_buffer_uptodate(sbh);
4551                 }
4552         }
4553         return error;
4554 }
4555
4556 /*
4557  * Have we just finished recovery?  If so, and if we are mounting (or
4558  * remounting) the filesystem readonly, then we will end up with a
4559  * consistent fs on disk.  Record that fact.
4560  */
4561 static void ext4_mark_recovery_complete(struct super_block *sb,
4562                                         struct ext4_super_block *es)
4563 {
4564         journal_t *journal = EXT4_SB(sb)->s_journal;
4565
4566         if (!ext4_has_feature_journal(sb)) {
4567                 BUG_ON(journal != NULL);
4568                 return;
4569         }
4570         jbd2_journal_lock_updates(journal);
4571         if (jbd2_journal_flush(journal) < 0)
4572                 goto out;
4573
4574         if (ext4_has_feature_journal_needs_recovery(sb) &&
4575             sb->s_flags & MS_RDONLY) {
4576                 ext4_clear_feature_journal_needs_recovery(sb);
4577                 ext4_commit_super(sb, 1);
4578         }
4579
4580 out:
4581         jbd2_journal_unlock_updates(journal);
4582 }
4583
4584 /*
4585  * If we are mounting (or read-write remounting) a filesystem whose journal
4586  * has recorded an error from a previous lifetime, move that error to the
4587  * main filesystem now.
4588  */
4589 static void ext4_clear_journal_err(struct super_block *sb,
4590                                    struct ext4_super_block *es)
4591 {
4592         journal_t *journal;
4593         int j_errno;
4594         const char *errstr;
4595
4596         BUG_ON(!ext4_has_feature_journal(sb));
4597
4598         journal = EXT4_SB(sb)->s_journal;
4599
4600         /*
4601          * Now check for any error status which may have been recorded in the
4602          * journal by a prior ext4_error() or ext4_abort()
4603          */
4604
4605         j_errno = jbd2_journal_errno(journal);
4606         if (j_errno) {
4607                 char nbuf[16];
4608
4609                 errstr = ext4_decode_error(sb, j_errno, nbuf);
4610                 ext4_warning(sb, "Filesystem error recorded "
4611                              "from previous mount: %s", errstr);
4612                 ext4_warning(sb, "Marking fs in need of filesystem check.");
4613
4614                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4615                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4616                 ext4_commit_super(sb, 1);
4617
4618                 jbd2_journal_clear_err(journal);
4619                 jbd2_journal_update_sb_errno(journal);
4620         }
4621 }
4622
4623 /*
4624  * Force the running and committing transactions to commit,
4625  * and wait on the commit.
4626  */
4627 int ext4_force_commit(struct super_block *sb)
4628 {
4629         journal_t *journal;
4630
4631         if (sb->s_flags & MS_RDONLY)
4632                 return 0;
4633
4634         journal = EXT4_SB(sb)->s_journal;
4635         return ext4_journal_force_commit(journal);
4636 }
4637
4638 static int ext4_sync_fs(struct super_block *sb, int wait)
4639 {
4640         int ret = 0;
4641         tid_t target;
4642         bool needs_barrier = false;
4643         struct ext4_sb_info *sbi = EXT4_SB(sb);
4644
4645         trace_ext4_sync_fs(sb, wait);
4646         flush_workqueue(sbi->rsv_conversion_wq);
4647         /*
4648          * Writeback quota in non-journalled quota case - journalled quota has
4649          * no dirty dquots
4650          */
4651         dquot_writeback_dquots(sb, -1);
4652         /*
4653          * Data writeback is possible w/o journal transaction, so barrier must
4654          * being sent at the end of the function. But we can skip it if
4655          * transaction_commit will do it for us.
4656          */
4657         if (sbi->s_journal) {
4658                 target = jbd2_get_latest_transaction(sbi->s_journal);
4659                 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4660                     !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4661                         needs_barrier = true;
4662
4663                 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4664                         if (wait)
4665                                 ret = jbd2_log_wait_commit(sbi->s_journal,
4666                                                            target);
4667                 }
4668         } else if (wait && test_opt(sb, BARRIER))
4669                 needs_barrier = true;
4670         if (needs_barrier) {
4671                 int err;
4672                 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4673                 if (!ret)
4674                         ret = err;
4675         }
4676
4677         return ret;
4678 }
4679
4680 /*
4681  * LVM calls this function before a (read-only) snapshot is created.  This
4682  * gives us a chance to flush the journal completely and mark the fs clean.
4683  *
4684  * Note that only this function cannot bring a filesystem to be in a clean
4685  * state independently. It relies on upper layer to stop all data & metadata
4686  * modifications.
4687  */
4688 static int ext4_freeze(struct super_block *sb)
4689 {
4690         int error = 0;
4691         journal_t *journal;
4692
4693         if (sb->s_flags & MS_RDONLY)
4694                 return 0;
4695
4696         journal = EXT4_SB(sb)->s_journal;
4697
4698         if (journal) {
4699                 /* Now we set up the journal barrier. */
4700                 jbd2_journal_lock_updates(journal);
4701
4702                 /*
4703                  * Don't clear the needs_recovery flag if we failed to
4704                  * flush the journal.
4705                  */
4706                 error = jbd2_journal_flush(journal);
4707                 if (error < 0)
4708                         goto out;
4709
4710                 /* Journal blocked and flushed, clear needs_recovery flag. */
4711                 ext4_clear_feature_journal_needs_recovery(sb);
4712         }
4713
4714         error = ext4_commit_super(sb, 1);
4715 out:
4716         if (journal)
4717                 /* we rely on upper layer to stop further updates */
4718                 jbd2_journal_unlock_updates(journal);
4719         return error;
4720 }
4721
4722 /*
4723  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4724  * flag here, even though the filesystem is not technically dirty yet.
4725  */
4726 static int ext4_unfreeze(struct super_block *sb)
4727 {
4728         if (sb->s_flags & MS_RDONLY)
4729                 return 0;
4730
4731         if (EXT4_SB(sb)->s_journal) {
4732                 /* Reset the needs_recovery flag before the fs is unlocked. */
4733                 ext4_set_feature_journal_needs_recovery(sb);
4734         }
4735
4736         ext4_commit_super(sb, 1);
4737         return 0;
4738 }
4739
4740 /*
4741  * Structure to save mount options for ext4_remount's benefit
4742  */
4743 struct ext4_mount_options {
4744         unsigned long s_mount_opt;
4745         unsigned long s_mount_opt2;
4746         kuid_t s_resuid;
4747         kgid_t s_resgid;
4748         unsigned long s_commit_interval;
4749         u32 s_min_batch_time, s_max_batch_time;
4750 #ifdef CONFIG_QUOTA
4751         int s_jquota_fmt;
4752         char *s_qf_names[EXT4_MAXQUOTAS];
4753 #endif
4754 };
4755
4756 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4757 {
4758         struct ext4_super_block *es;
4759         struct ext4_sb_info *sbi = EXT4_SB(sb);
4760         unsigned long old_sb_flags;
4761         struct ext4_mount_options old_opts;
4762         int enable_quota = 0;
4763         ext4_group_t g;
4764         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4765         int err = 0;
4766 #ifdef CONFIG_QUOTA
4767         int i, j;
4768 #endif
4769         char *orig_data = kstrdup(data, GFP_KERNEL);
4770
4771         /* Store the original options */
4772         old_sb_flags = sb->s_flags;
4773         old_opts.s_mount_opt = sbi->s_mount_opt;
4774         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4775         old_opts.s_resuid = sbi->s_resuid;
4776         old_opts.s_resgid = sbi->s_resgid;
4777         old_opts.s_commit_interval = sbi->s_commit_interval;
4778         old_opts.s_min_batch_time = sbi->s_min_batch_time;
4779         old_opts.s_max_batch_time = sbi->s_max_batch_time;
4780 #ifdef CONFIG_QUOTA
4781         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4782         for (i = 0; i < EXT4_MAXQUOTAS; i++)
4783                 if (sbi->s_qf_names[i]) {
4784                         old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4785                                                          GFP_KERNEL);
4786                         if (!old_opts.s_qf_names[i]) {
4787                                 for (j = 0; j < i; j++)
4788                                         kfree(old_opts.s_qf_names[j]);
4789                                 kfree(orig_data);
4790                                 return -ENOMEM;
4791                         }
4792                 } else
4793                         old_opts.s_qf_names[i] = NULL;
4794 #endif
4795         if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4796                 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4797
4798         if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4799                 err = -EINVAL;
4800                 goto restore_opts;
4801         }
4802
4803         if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4804             test_opt(sb, JOURNAL_CHECKSUM)) {
4805                 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4806                          "during remount not supported; ignoring");
4807                 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4808         }
4809
4810         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4811                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4812                         ext4_msg(sb, KERN_ERR, "can't mount with "
4813                                  "both data=journal and delalloc");
4814                         err = -EINVAL;
4815                         goto restore_opts;
4816                 }
4817                 if (test_opt(sb, DIOREAD_NOLOCK)) {
4818                         ext4_msg(sb, KERN_ERR, "can't mount with "
4819                                  "both data=journal and dioread_nolock");
4820                         err = -EINVAL;
4821                         goto restore_opts;
4822                 }
4823                 if (test_opt(sb, DAX)) {
4824                         ext4_msg(sb, KERN_ERR, "can't mount with "
4825                                  "both data=journal and dax");
4826                         err = -EINVAL;
4827                         goto restore_opts;
4828                 }
4829         }
4830
4831         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4832                 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4833                         "dax flag with busy inodes while remounting");
4834                 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4835         }
4836
4837         if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4838                 ext4_abort(sb, "Abort forced by user");
4839
4840         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4841                 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4842
4843         es = sbi->s_es;
4844
4845         if (sbi->s_journal) {
4846                 ext4_init_journal_params(sb, sbi->s_journal);
4847                 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4848         }
4849
4850         if (*flags & MS_LAZYTIME)
4851                 sb->s_flags |= MS_LAZYTIME;
4852
4853         if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4854                 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4855                         err = -EROFS;
4856                         goto restore_opts;
4857                 }
4858
4859                 if (*flags & MS_RDONLY) {
4860                         err = sync_filesystem(sb);
4861                         if (err < 0)
4862                                 goto restore_opts;
4863                         err = dquot_suspend(sb, -1);
4864                         if (err < 0)
4865                                 goto restore_opts;
4866
4867                         /*
4868                          * First of all, the unconditional stuff we have to do
4869                          * to disable replay of the journal when we next remount
4870                          */
4871                         sb->s_flags |= MS_RDONLY;
4872
4873                         /*
4874                          * OK, test if we are remounting a valid rw partition
4875                          * readonly, and if so set the rdonly flag and then
4876                          * mark the partition as valid again.
4877                          */
4878                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4879                             (sbi->s_mount_state & EXT4_VALID_FS))
4880                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
4881
4882                         if (sbi->s_journal)
4883                                 ext4_mark_recovery_complete(sb, es);
4884                 } else {
4885                         /* Make sure we can mount this feature set readwrite */
4886                         if (ext4_has_feature_readonly(sb) ||
4887                             !ext4_feature_set_ok(sb, 0)) {
4888                                 err = -EROFS;
4889                                 goto restore_opts;
4890                         }
4891                         /*
4892                          * Make sure the group descriptor checksums
4893                          * are sane.  If they aren't, refuse to remount r/w.
4894                          */
4895                         for (g = 0; g < sbi->s_groups_count; g++) {
4896                                 struct ext4_group_desc *gdp =
4897                                         ext4_get_group_desc(sb, g, NULL);
4898
4899                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4900                                         ext4_msg(sb, KERN_ERR,
4901                "ext4_remount: Checksum for group %u failed (%u!=%u)",
4902                 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4903                                                le16_to_cpu(gdp->bg_checksum));
4904                                         err = -EFSBADCRC;
4905                                         goto restore_opts;
4906                                 }
4907                         }
4908
4909                         /*
4910                          * If we have an unprocessed orphan list hanging
4911                          * around from a previously readonly bdev mount,
4912                          * require a full umount/remount for now.
4913                          */
4914                         if (es->s_last_orphan) {
4915                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
4916                                        "remount RDWR because of unprocessed "
4917                                        "orphan inode list.  Please "
4918                                        "umount/remount instead");
4919                                 err = -EINVAL;
4920                                 goto restore_opts;
4921                         }
4922
4923                         /*
4924                          * Mounting a RDONLY partition read-write, so reread
4925                          * and store the current valid flag.  (It may have
4926                          * been changed by e2fsck since we originally mounted
4927                          * the partition.)
4928                          */
4929                         if (sbi->s_journal)
4930                                 ext4_clear_journal_err(sb, es);
4931                         sbi->s_mount_state = le16_to_cpu(es->s_state);
4932                         if (!ext4_setup_super(sb, es, 0))
4933                                 sb->s_flags &= ~MS_RDONLY;
4934                         if (ext4_has_feature_mmp(sb))
4935                                 if (ext4_multi_mount_protect(sb,
4936                                                 le64_to_cpu(es->s_mmp_block))) {
4937                                         err = -EROFS;
4938                                         goto restore_opts;
4939                                 }
4940                         enable_quota = 1;
4941                 }
4942         }
4943
4944         /*
4945          * Reinitialize lazy itable initialization thread based on
4946          * current settings
4947          */
4948         if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4949                 ext4_unregister_li_request(sb);
4950         else {
4951                 ext4_group_t first_not_zeroed;
4952                 first_not_zeroed = ext4_has_uninit_itable(sb);
4953                 ext4_register_li_request(sb, first_not_zeroed);
4954         }
4955
4956         ext4_setup_system_zone(sb);
4957         if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4958                 ext4_commit_super(sb, 1);
4959
4960 #ifdef CONFIG_QUOTA
4961         /* Release old quota file names */
4962         for (i = 0; i < EXT4_MAXQUOTAS; i++)
4963                 kfree(old_opts.s_qf_names[i]);
4964         if (enable_quota) {
4965                 if (sb_any_quota_suspended(sb))
4966                         dquot_resume(sb, -1);
4967                 else if (ext4_has_feature_quota(sb)) {
4968                         err = ext4_enable_quotas(sb);
4969                         if (err)
4970                                 goto restore_opts;
4971                 }
4972         }
4973 #endif
4974
4975         *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4976         ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4977         kfree(orig_data);
4978         return 0;
4979
4980 restore_opts:
4981         sb->s_flags = old_sb_flags;
4982         sbi->s_mount_opt = old_opts.s_mount_opt;
4983         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4984         sbi->s_resuid = old_opts.s_resuid;
4985         sbi->s_resgid = old_opts.s_resgid;
4986         sbi->s_commit_interval = old_opts.s_commit_interval;
4987         sbi->s_min_batch_time = old_opts.s_min_batch_time;
4988         sbi->s_max_batch_time = old_opts.s_max_batch_time;
4989 #ifdef CONFIG_QUOTA
4990         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4991         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4992                 kfree(sbi->s_qf_names[i]);
4993                 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4994         }
4995 #endif
4996         kfree(orig_data);
4997         return err;
4998 }
4999
5000 #ifdef CONFIG_QUOTA
5001 static int ext4_statfs_project(struct super_block *sb,
5002                                kprojid_t projid, struct kstatfs *buf)
5003 {
5004         struct kqid qid;
5005         struct dquot *dquot;
5006         u64 limit;
5007         u64 curblock;
5008
5009         qid = make_kqid_projid(projid);
5010         dquot = dqget(sb, qid);
5011         if (IS_ERR(dquot))
5012                 return PTR_ERR(dquot);
5013         spin_lock(&dq_data_lock);
5014
5015         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5016                  dquot->dq_dqb.dqb_bsoftlimit :
5017                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5018         if (limit && buf->f_blocks > limit) {
5019                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5020                 buf->f_blocks = limit;
5021                 buf->f_bfree = buf->f_bavail =
5022                         (buf->f_blocks > curblock) ?
5023                          (buf->f_blocks - curblock) : 0;
5024         }
5025
5026         limit = dquot->dq_dqb.dqb_isoftlimit ?
5027                 dquot->dq_dqb.dqb_isoftlimit :
5028                 dquot->dq_dqb.dqb_ihardlimit;
5029         if (limit && buf->f_files > limit) {
5030                 buf->f_files = limit;
5031                 buf->f_ffree =
5032                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5033                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5034         }
5035
5036         spin_unlock(&dq_data_lock);
5037         dqput(dquot);
5038         return 0;
5039 }
5040 #endif
5041
5042 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5043 {
5044         struct super_block *sb = dentry->d_sb;
5045         struct ext4_sb_info *sbi = EXT4_SB(sb);
5046         struct ext4_super_block *es = sbi->s_es;
5047         ext4_fsblk_t overhead = 0, resv_blocks;
5048         u64 fsid;
5049         s64 bfree;
5050         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5051
5052         if (!test_opt(sb, MINIX_DF))
5053                 overhead = sbi->s_overhead;
5054
5055         buf->f_type = EXT4_SUPER_MAGIC;
5056         buf->f_bsize = sb->s_blocksize;
5057         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5058         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5059                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5060         /* prevent underflow in case that few free space is available */
5061         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5062         buf->f_bavail = buf->f_bfree -
5063                         (ext4_r_blocks_count(es) + resv_blocks);
5064         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5065                 buf->f_bavail = 0;
5066         buf->f_files = le32_to_cpu(es->s_inodes_count);
5067         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5068         buf->f_namelen = EXT4_NAME_LEN;
5069         fsid = le64_to_cpup((void *)es->s_uuid) ^
5070                le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5071         buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5072         buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5073
5074 #ifdef CONFIG_QUOTA
5075         if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5076             sb_has_quota_limits_enabled(sb, PRJQUOTA))
5077                 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5078 #endif
5079         return 0;
5080 }
5081
5082 /* Helper function for writing quotas on sync - we need to start transaction
5083  * before quota file is locked for write. Otherwise the are possible deadlocks:
5084  * Process 1                         Process 2
5085  * ext4_create()                     quota_sync()
5086  *   jbd2_journal_start()                  write_dquot()
5087  *   dquot_initialize()                         down(dqio_mutex)
5088  *     down(dqio_mutex)                    jbd2_journal_start()
5089  *
5090  */
5091
5092 #ifdef CONFIG_QUOTA
5093
5094 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5095 {
5096         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5097 }
5098
5099 static int ext4_write_dquot(struct dquot *dquot)
5100 {
5101         int ret, err;
5102         handle_t *handle;
5103         struct inode *inode;
5104
5105         inode = dquot_to_inode(dquot);
5106         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5107                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5108         if (IS_ERR(handle))
5109                 return PTR_ERR(handle);
5110         ret = dquot_commit(dquot);
5111         err = ext4_journal_stop(handle);
5112         if (!ret)
5113                 ret = err;
5114         return ret;
5115 }
5116
5117 static int ext4_acquire_dquot(struct dquot *dquot)
5118 {
5119         int ret, err;
5120         handle_t *handle;
5121
5122         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5123                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5124         if (IS_ERR(handle))
5125                 return PTR_ERR(handle);
5126         ret = dquot_acquire(dquot);
5127         err = ext4_journal_stop(handle);
5128         if (!ret)
5129                 ret = err;
5130         return ret;
5131 }
5132
5133 static int ext4_release_dquot(struct dquot *dquot)
5134 {
5135         int ret, err;
5136         handle_t *handle;
5137
5138         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5139                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5140         if (IS_ERR(handle)) {
5141                 /* Release dquot anyway to avoid endless cycle in dqput() */
5142                 dquot_release(dquot);
5143                 return PTR_ERR(handle);
5144         }
5145         ret = dquot_release(dquot);
5146         err = ext4_journal_stop(handle);
5147         if (!ret)
5148                 ret = err;
5149         return ret;
5150 }
5151
5152 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5153 {
5154         struct super_block *sb = dquot->dq_sb;
5155         struct ext4_sb_info *sbi = EXT4_SB(sb);
5156
5157         /* Are we journaling quotas? */
5158         if (ext4_has_feature_quota(sb) ||
5159             sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5160                 dquot_mark_dquot_dirty(dquot);
5161                 return ext4_write_dquot(dquot);
5162         } else {
5163                 return dquot_mark_dquot_dirty(dquot);
5164         }
5165 }
5166
5167 static int ext4_write_info(struct super_block *sb, int type)
5168 {
5169         int ret, err;
5170         handle_t *handle;
5171
5172         /* Data block + inode block */
5173         handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5174         if (IS_ERR(handle))
5175                 return PTR_ERR(handle);
5176         ret = dquot_commit_info(sb, type);
5177         err = ext4_journal_stop(handle);
5178         if (!ret)
5179                 ret = err;
5180         return ret;
5181 }
5182
5183 /*
5184  * Turn on quotas during mount time - we need to find
5185  * the quota file and such...
5186  */
5187 static int ext4_quota_on_mount(struct super_block *sb, int type)
5188 {
5189         return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5190                                         EXT4_SB(sb)->s_jquota_fmt, type);
5191 }
5192
5193 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5194 {
5195         struct ext4_inode_info *ei = EXT4_I(inode);
5196
5197         /* The first argument of lockdep_set_subclass has to be
5198          * *exactly* the same as the argument to init_rwsem() --- in
5199          * this case, in init_once() --- or lockdep gets unhappy
5200          * because the name of the lock is set using the
5201          * stringification of the argument to init_rwsem().
5202          */
5203         (void) ei;      /* shut up clang warning if !CONFIG_LOCKDEP */
5204         lockdep_set_subclass(&ei->i_data_sem, subclass);
5205 }
5206
5207 /*
5208  * Standard function to be called on quota_on
5209  */
5210 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5211                          struct path *path)
5212 {
5213         int err;
5214
5215         if (!test_opt(sb, QUOTA))
5216                 return -EINVAL;
5217
5218         /* Quotafile not on the same filesystem? */
5219         if (path->dentry->d_sb != sb)
5220                 return -EXDEV;
5221         /* Journaling quota? */
5222         if (EXT4_SB(sb)->s_qf_names[type]) {
5223                 /* Quotafile not in fs root? */
5224                 if (path->dentry->d_parent != sb->s_root)
5225                         ext4_msg(sb, KERN_WARNING,
5226                                 "Quota file not on filesystem root. "
5227                                 "Journaled quota will not work");
5228         }
5229
5230         /*
5231          * When we journal data on quota file, we have to flush journal to see
5232          * all updates to the file when we bypass pagecache...
5233          */
5234         if (EXT4_SB(sb)->s_journal &&
5235             ext4_should_journal_data(d_inode(path->dentry))) {
5236                 /*
5237                  * We don't need to lock updates but journal_flush() could
5238                  * otherwise be livelocked...
5239                  */
5240                 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5241                 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5242                 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5243                 if (err)
5244                         return err;
5245         }
5246         lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5247         err = dquot_quota_on(sb, type, format_id, path);
5248         if (err)
5249                 lockdep_set_quota_inode(path->dentry->d_inode,
5250                                              I_DATA_SEM_NORMAL);
5251         return err;
5252 }
5253
5254 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5255                              unsigned int flags)
5256 {
5257         int err;
5258         struct inode *qf_inode;
5259         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5260                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5261                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5262                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5263         };
5264
5265         BUG_ON(!ext4_has_feature_quota(sb));
5266
5267         if (!qf_inums[type])
5268                 return -EPERM;
5269
5270         qf_inode = ext4_iget(sb, qf_inums[type]);
5271         if (IS_ERR(qf_inode)) {
5272                 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5273                 return PTR_ERR(qf_inode);
5274         }
5275
5276         /* Don't account quota for quota files to avoid recursion */
5277         qf_inode->i_flags |= S_NOQUOTA;
5278         lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5279         err = dquot_enable(qf_inode, type, format_id, flags);
5280         iput(qf_inode);
5281         if (err)
5282                 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5283
5284         return err;
5285 }
5286
5287 /* Enable usage tracking for all quota types. */
5288 static int ext4_enable_quotas(struct super_block *sb)
5289 {
5290         int type, err = 0;
5291         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5292                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5293                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5294                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5295         };
5296         bool quota_mopt[EXT4_MAXQUOTAS] = {
5297                 test_opt(sb, USRQUOTA),
5298                 test_opt(sb, GRPQUOTA),
5299                 test_opt(sb, PRJQUOTA),
5300         };
5301
5302         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5303         for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5304                 if (qf_inums[type]) {
5305                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5306                                 DQUOT_USAGE_ENABLED |
5307                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5308                         if (err) {
5309                                 ext4_warning(sb,
5310                                         "Failed to enable quota tracking "
5311                                         "(type=%d, err=%d). Please run "
5312                                         "e2fsck to fix.", type, err);
5313                                 return err;
5314                         }
5315                 }
5316         }
5317         return 0;
5318 }
5319
5320 static int ext4_quota_off(struct super_block *sb, int type)
5321 {
5322         struct inode *inode = sb_dqopt(sb)->files[type];
5323         handle_t *handle;
5324
5325         /* Force all delayed allocation blocks to be allocated.
5326          * Caller already holds s_umount sem */
5327         if (test_opt(sb, DELALLOC))
5328                 sync_filesystem(sb);
5329
5330         if (!inode)
5331                 goto out;
5332
5333         /* Update modification times of quota files when userspace can
5334          * start looking at them */
5335         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5336         if (IS_ERR(handle))
5337                 goto out;
5338         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5339         ext4_mark_inode_dirty(handle, inode);
5340         ext4_journal_stop(handle);
5341
5342 out:
5343         return dquot_quota_off(sb, type);
5344 }
5345
5346 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5347  * acquiring the locks... As quota files are never truncated and quota code
5348  * itself serializes the operations (and no one else should touch the files)
5349  * we don't have to be afraid of races */
5350 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5351                                size_t len, loff_t off)
5352 {
5353         struct inode *inode = sb_dqopt(sb)->files[type];
5354         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5355         int offset = off & (sb->s_blocksize - 1);
5356         int tocopy;
5357         size_t toread;
5358         struct buffer_head *bh;
5359         loff_t i_size = i_size_read(inode);
5360
5361         if (off > i_size)
5362                 return 0;
5363         if (off+len > i_size)
5364                 len = i_size-off;
5365         toread = len;
5366         while (toread > 0) {
5367                 tocopy = sb->s_blocksize - offset < toread ?
5368                                 sb->s_blocksize - offset : toread;
5369                 bh = ext4_bread(NULL, inode, blk, 0);
5370                 if (IS_ERR(bh))
5371                         return PTR_ERR(bh);
5372                 if (!bh)        /* A hole? */
5373                         memset(data, 0, tocopy);
5374                 else
5375                         memcpy(data, bh->b_data+offset, tocopy);
5376                 brelse(bh);
5377                 offset = 0;
5378                 toread -= tocopy;
5379                 data += tocopy;
5380                 blk++;
5381         }
5382         return len;
5383 }
5384
5385 /* Write to quotafile (we know the transaction is already started and has
5386  * enough credits) */
5387 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5388                                 const char *data, size_t len, loff_t off)
5389 {
5390         struct inode *inode = sb_dqopt(sb)->files[type];
5391         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5392         int err, offset = off & (sb->s_blocksize - 1);
5393         int retries = 0;
5394         struct buffer_head *bh;
5395         handle_t *handle = journal_current_handle();
5396
5397         if (EXT4_SB(sb)->s_journal && !handle) {
5398                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5399                         " cancelled because transaction is not started",
5400                         (unsigned long long)off, (unsigned long long)len);
5401                 return -EIO;
5402         }
5403         /*
5404          * Since we account only one data block in transaction credits,
5405          * then it is impossible to cross a block boundary.
5406          */
5407         if (sb->s_blocksize - offset < len) {
5408                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5409                         " cancelled because not block aligned",
5410                         (unsigned long long)off, (unsigned long long)len);
5411                 return -EIO;
5412         }
5413
5414         do {
5415                 bh = ext4_bread(handle, inode, blk,
5416                                 EXT4_GET_BLOCKS_CREATE |
5417                                 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5418         } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5419                  ext4_should_retry_alloc(inode->i_sb, &retries));
5420         if (IS_ERR(bh))
5421                 return PTR_ERR(bh);
5422         if (!bh)
5423                 goto out;
5424         BUFFER_TRACE(bh, "get write access");
5425         err = ext4_journal_get_write_access(handle, bh);
5426         if (err) {
5427                 brelse(bh);
5428                 return err;
5429         }
5430         lock_buffer(bh);
5431         memcpy(bh->b_data+offset, data, len);
5432         flush_dcache_page(bh->b_page);
5433         unlock_buffer(bh);
5434         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5435         brelse(bh);
5436 out:
5437         if (inode->i_size < off + len) {
5438                 i_size_write(inode, off + len);
5439                 EXT4_I(inode)->i_disksize = inode->i_size;
5440                 ext4_mark_inode_dirty(handle, inode);
5441         }
5442         return len;
5443 }
5444
5445 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5446 {
5447         const struct quota_format_ops   *ops;
5448
5449         if (!sb_has_quota_loaded(sb, qid->type))
5450                 return -ESRCH;
5451         ops = sb_dqopt(sb)->ops[qid->type];
5452         if (!ops || !ops->get_next_id)
5453                 return -ENOSYS;
5454         return dquot_get_next_id(sb, qid);
5455 }
5456 #endif
5457
5458 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5459                        const char *dev_name, void *data)
5460 {
5461         return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5462 }
5463
5464 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5465 static inline void register_as_ext2(void)
5466 {
5467         int err = register_filesystem(&ext2_fs_type);
5468         if (err)
5469                 printk(KERN_WARNING
5470                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5471 }
5472
5473 static inline void unregister_as_ext2(void)
5474 {
5475         unregister_filesystem(&ext2_fs_type);
5476 }
5477
5478 static inline int ext2_feature_set_ok(struct super_block *sb)
5479 {
5480         if (ext4_has_unknown_ext2_incompat_features(sb))
5481                 return 0;
5482         if (sb->s_flags & MS_RDONLY)
5483                 return 1;
5484         if (ext4_has_unknown_ext2_ro_compat_features(sb))
5485                 return 0;
5486         return 1;
5487 }
5488 #else
5489 static inline void register_as_ext2(void) { }
5490 static inline void unregister_as_ext2(void) { }
5491 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5492 #endif
5493
5494 static inline void register_as_ext3(void)
5495 {
5496         int err = register_filesystem(&ext3_fs_type);
5497         if (err)
5498                 printk(KERN_WARNING
5499                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5500 }
5501
5502 static inline void unregister_as_ext3(void)
5503 {
5504         unregister_filesystem(&ext3_fs_type);
5505 }
5506
5507 static inline int ext3_feature_set_ok(struct super_block *sb)
5508 {
5509         if (ext4_has_unknown_ext3_incompat_features(sb))
5510                 return 0;
5511         if (!ext4_has_feature_journal(sb))
5512                 return 0;
5513         if (sb->s_flags & MS_RDONLY)
5514                 return 1;
5515         if (ext4_has_unknown_ext3_ro_compat_features(sb))
5516                 return 0;
5517         return 1;
5518 }
5519
5520 static struct file_system_type ext4_fs_type = {
5521         .owner          = THIS_MODULE,
5522         .name           = "ext4",
5523         .mount          = ext4_mount,
5524         .kill_sb        = kill_block_super,
5525         .fs_flags       = FS_REQUIRES_DEV,
5526 };
5527 MODULE_ALIAS_FS("ext4");
5528
5529 /* Shared across all ext4 file systems */
5530 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5531
5532 static int __init ext4_init_fs(void)
5533 {
5534         int i, err;
5535
5536         ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5537         ext4_li_info = NULL;
5538         mutex_init(&ext4_li_mtx);
5539
5540         /* Build-time check for flags consistency */
5541         ext4_check_flag_values();
5542
5543         for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5544                 init_waitqueue_head(&ext4__ioend_wq[i]);
5545
5546         err = ext4_init_es();
5547         if (err)
5548                 return err;
5549
5550         err = ext4_init_pageio();
5551         if (err)
5552                 goto out5;
5553
5554         err = ext4_init_system_zone();
5555         if (err)
5556                 goto out4;
5557
5558         err = ext4_init_sysfs();
5559         if (err)
5560                 goto out3;
5561
5562         err = ext4_init_mballoc();
5563         if (err)
5564                 goto out2;
5565         err = init_inodecache();
5566         if (err)
5567                 goto out1;
5568         register_as_ext3();
5569         register_as_ext2();
5570         err = register_filesystem(&ext4_fs_type);
5571         if (err)
5572                 goto out;
5573
5574         return 0;
5575 out:
5576         unregister_as_ext2();
5577         unregister_as_ext3();
5578         destroy_inodecache();
5579 out1:
5580         ext4_exit_mballoc();
5581 out2:
5582         ext4_exit_sysfs();
5583 out3:
5584         ext4_exit_system_zone();
5585 out4:
5586         ext4_exit_pageio();
5587 out5:
5588         ext4_exit_es();
5589
5590         return err;
5591 }
5592
5593 static void __exit ext4_exit_fs(void)
5594 {
5595         ext4_destroy_lazyinit_thread();
5596         unregister_as_ext2();
5597         unregister_as_ext3();
5598         unregister_filesystem(&ext4_fs_type);
5599         destroy_inodecache();
5600         ext4_exit_mballoc();
5601         ext4_exit_sysfs();
5602         ext4_exit_system_zone();
5603         ext4_exit_pageio();
5604         ext4_exit_es();
5605 }
5606
5607 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5608 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5609 MODULE_LICENSE("GPL");
5610 module_init(ext4_init_fs)
5611 module_exit(ext4_exit_fs)