Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[cascardo/linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         sbi->sb->s_flags |= MS_RDONLY;
33         if (!end_io)
34                 f2fs_flush_merged_bios(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page = NULL;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60                                                         bool is_meta)
61 {
62         struct address_space *mapping = META_MAPPING(sbi);
63         struct page *page;
64         struct f2fs_io_info fio = {
65                 .sbi = sbi,
66                 .type = META,
67                 .op = REQ_OP_READ,
68                 .op_flags = READ_SYNC | REQ_META | REQ_PRIO,
69                 .old_blkaddr = index,
70                 .new_blkaddr = index,
71                 .encrypted_page = NULL,
72         };
73
74         if (unlikely(!is_meta))
75                 fio.op_flags &= ~REQ_META;
76 repeat:
77         page = f2fs_grab_cache_page(mapping, index, false);
78         if (!page) {
79                 cond_resched();
80                 goto repeat;
81         }
82         if (PageUptodate(page))
83                 goto out;
84
85         fio.page = page;
86
87         if (f2fs_submit_page_bio(&fio)) {
88                 f2fs_put_page(page, 1);
89                 goto repeat;
90         }
91
92         lock_page(page);
93         if (unlikely(page->mapping != mapping)) {
94                 f2fs_put_page(page, 1);
95                 goto repeat;
96         }
97
98         /*
99          * if there is any IO error when accessing device, make our filesystem
100          * readonly and make sure do not write checkpoint with non-uptodate
101          * meta page.
102          */
103         if (unlikely(!PageUptodate(page)))
104                 f2fs_stop_checkpoint(sbi, false);
105 out:
106         return page;
107 }
108
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111         return __get_meta_page(sbi, index, true);
112 }
113
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         return __get_meta_page(sbi, index, false);
118 }
119
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122         switch (type) {
123         case META_NAT:
124                 break;
125         case META_SIT:
126                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127                         return false;
128                 break;
129         case META_SSA:
130                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131                         blkaddr < SM_I(sbi)->ssa_blkaddr))
132                         return false;
133                 break;
134         case META_CP:
135                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136                         blkaddr < __start_cp_addr(sbi)))
137                         return false;
138                 break;
139         case META_POR:
140                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141                         blkaddr < MAIN_BLKADDR(sbi)))
142                         return false;
143                 break;
144         default:
145                 BUG();
146         }
147
148         return true;
149 }
150
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155                                                         int type, bool sync)
156 {
157         struct page *page;
158         block_t blkno = start;
159         struct f2fs_io_info fio = {
160                 .sbi = sbi,
161                 .type = META,
162                 .op = REQ_OP_READ,
163                 .op_flags = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : REQ_RAHEAD,
164                 .encrypted_page = NULL,
165         };
166         struct blk_plug plug;
167
168         if (unlikely(type == META_POR))
169                 fio.op_flags &= ~REQ_META;
170
171         blk_start_plug(&plug);
172         for (; nrpages-- > 0; blkno++) {
173
174                 if (!is_valid_blkaddr(sbi, blkno, type))
175                         goto out;
176
177                 switch (type) {
178                 case META_NAT:
179                         if (unlikely(blkno >=
180                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181                                 blkno = 0;
182                         /* get nat block addr */
183                         fio.new_blkaddr = current_nat_addr(sbi,
184                                         blkno * NAT_ENTRY_PER_BLOCK);
185                         break;
186                 case META_SIT:
187                         /* get sit block addr */
188                         fio.new_blkaddr = current_sit_addr(sbi,
189                                         blkno * SIT_ENTRY_PER_BLOCK);
190                         break;
191                 case META_SSA:
192                 case META_CP:
193                 case META_POR:
194                         fio.new_blkaddr = blkno;
195                         break;
196                 default:
197                         BUG();
198                 }
199
200                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201                                                 fio.new_blkaddr, false);
202                 if (!page)
203                         continue;
204                 if (PageUptodate(page)) {
205                         f2fs_put_page(page, 1);
206                         continue;
207                 }
208
209                 fio.page = page;
210                 fio.old_blkaddr = fio.new_blkaddr;
211                 f2fs_submit_page_mbio(&fio);
212                 f2fs_put_page(page, 0);
213         }
214 out:
215         f2fs_submit_merged_bio(sbi, META, READ);
216         blk_finish_plug(&plug);
217         return blkno - start;
218 }
219
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222         struct page *page;
223         bool readahead = false;
224
225         page = find_get_page(META_MAPPING(sbi), index);
226         if (!page || !PageUptodate(page))
227                 readahead = true;
228         f2fs_put_page(page, 0);
229
230         if (readahead)
231                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
232 }
233
234 static int f2fs_write_meta_page(struct page *page,
235                                 struct writeback_control *wbc)
236 {
237         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238
239         trace_f2fs_writepage(page, META);
240
241         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242                 goto redirty_out;
243         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244                 goto redirty_out;
245         if (unlikely(f2fs_cp_error(sbi)))
246                 goto redirty_out;
247
248         write_meta_page(sbi, page);
249         dec_page_count(sbi, F2FS_DIRTY_META);
250
251         if (wbc->for_reclaim)
252                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
253
254         unlock_page(page);
255
256         if (unlikely(f2fs_cp_error(sbi)))
257                 f2fs_submit_merged_bio(sbi, META, WRITE);
258
259         return 0;
260
261 redirty_out:
262         redirty_page_for_writepage(wbc, page);
263         return AOP_WRITEPAGE_ACTIVATE;
264 }
265
266 static int f2fs_write_meta_pages(struct address_space *mapping,
267                                 struct writeback_control *wbc)
268 {
269         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
270         long diff, written;
271
272         /* collect a number of dirty meta pages and write together */
273         if (wbc->for_kupdate ||
274                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
275                 goto skip_write;
276
277         trace_f2fs_writepages(mapping->host, wbc, META);
278
279         /* if mounting is failed, skip writing node pages */
280         mutex_lock(&sbi->cp_mutex);
281         diff = nr_pages_to_write(sbi, META, wbc);
282         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
283         mutex_unlock(&sbi->cp_mutex);
284         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
285         return 0;
286
287 skip_write:
288         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
289         trace_f2fs_writepages(mapping->host, wbc, META);
290         return 0;
291 }
292
293 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
294                                                 long nr_to_write)
295 {
296         struct address_space *mapping = META_MAPPING(sbi);
297         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
298         struct pagevec pvec;
299         long nwritten = 0;
300         struct writeback_control wbc = {
301                 .for_reclaim = 0,
302         };
303         struct blk_plug plug;
304
305         pagevec_init(&pvec, 0);
306
307         blk_start_plug(&plug);
308
309         while (index <= end) {
310                 int i, nr_pages;
311                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
312                                 PAGECACHE_TAG_DIRTY,
313                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
314                 if (unlikely(nr_pages == 0))
315                         break;
316
317                 for (i = 0; i < nr_pages; i++) {
318                         struct page *page = pvec.pages[i];
319
320                         if (prev == ULONG_MAX)
321                                 prev = page->index - 1;
322                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
323                                 pagevec_release(&pvec);
324                                 goto stop;
325                         }
326
327                         lock_page(page);
328
329                         if (unlikely(page->mapping != mapping)) {
330 continue_unlock:
331                                 unlock_page(page);
332                                 continue;
333                         }
334                         if (!PageDirty(page)) {
335                                 /* someone wrote it for us */
336                                 goto continue_unlock;
337                         }
338
339                         f2fs_wait_on_page_writeback(page, META, true);
340
341                         BUG_ON(PageWriteback(page));
342                         if (!clear_page_dirty_for_io(page))
343                                 goto continue_unlock;
344
345                         if (mapping->a_ops->writepage(page, &wbc)) {
346                                 unlock_page(page);
347                                 break;
348                         }
349                         nwritten++;
350                         prev = page->index;
351                         if (unlikely(nwritten >= nr_to_write))
352                                 break;
353                 }
354                 pagevec_release(&pvec);
355                 cond_resched();
356         }
357 stop:
358         if (nwritten)
359                 f2fs_submit_merged_bio(sbi, type, WRITE);
360
361         blk_finish_plug(&plug);
362
363         return nwritten;
364 }
365
366 static int f2fs_set_meta_page_dirty(struct page *page)
367 {
368         trace_f2fs_set_page_dirty(page, META);
369
370         if (!PageUptodate(page))
371                 SetPageUptodate(page);
372         if (!PageDirty(page)) {
373                 f2fs_set_page_dirty_nobuffers(page);
374                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
375                 SetPagePrivate(page);
376                 f2fs_trace_pid(page);
377                 return 1;
378         }
379         return 0;
380 }
381
382 const struct address_space_operations f2fs_meta_aops = {
383         .writepage      = f2fs_write_meta_page,
384         .writepages     = f2fs_write_meta_pages,
385         .set_page_dirty = f2fs_set_meta_page_dirty,
386         .invalidatepage = f2fs_invalidate_page,
387         .releasepage    = f2fs_release_page,
388 #ifdef CONFIG_MIGRATION
389         .migratepage    = f2fs_migrate_page,
390 #endif
391 };
392
393 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
394 {
395         struct inode_management *im = &sbi->im[type];
396         struct ino_entry *e, *tmp;
397
398         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
399 retry:
400         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
401
402         spin_lock(&im->ino_lock);
403         e = radix_tree_lookup(&im->ino_root, ino);
404         if (!e) {
405                 e = tmp;
406                 if (radix_tree_insert(&im->ino_root, ino, e)) {
407                         spin_unlock(&im->ino_lock);
408                         radix_tree_preload_end();
409                         goto retry;
410                 }
411                 memset(e, 0, sizeof(struct ino_entry));
412                 e->ino = ino;
413
414                 list_add_tail(&e->list, &im->ino_list);
415                 if (type != ORPHAN_INO)
416                         im->ino_num++;
417         }
418         spin_unlock(&im->ino_lock);
419         radix_tree_preload_end();
420
421         if (e != tmp)
422                 kmem_cache_free(ino_entry_slab, tmp);
423 }
424
425 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
426 {
427         struct inode_management *im = &sbi->im[type];
428         struct ino_entry *e;
429
430         spin_lock(&im->ino_lock);
431         e = radix_tree_lookup(&im->ino_root, ino);
432         if (e) {
433                 list_del(&e->list);
434                 radix_tree_delete(&im->ino_root, ino);
435                 im->ino_num--;
436                 spin_unlock(&im->ino_lock);
437                 kmem_cache_free(ino_entry_slab, e);
438                 return;
439         }
440         spin_unlock(&im->ino_lock);
441 }
442
443 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
444 {
445         /* add new dirty ino entry into list */
446         __add_ino_entry(sbi, ino, type);
447 }
448
449 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
450 {
451         /* remove dirty ino entry from list */
452         __remove_ino_entry(sbi, ino, type);
453 }
454
455 /* mode should be APPEND_INO or UPDATE_INO */
456 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
457 {
458         struct inode_management *im = &sbi->im[mode];
459         struct ino_entry *e;
460
461         spin_lock(&im->ino_lock);
462         e = radix_tree_lookup(&im->ino_root, ino);
463         spin_unlock(&im->ino_lock);
464         return e ? true : false;
465 }
466
467 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
468 {
469         struct ino_entry *e, *tmp;
470         int i;
471
472         for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
473                 struct inode_management *im = &sbi->im[i];
474
475                 spin_lock(&im->ino_lock);
476                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
477                         list_del(&e->list);
478                         radix_tree_delete(&im->ino_root, e->ino);
479                         kmem_cache_free(ino_entry_slab, e);
480                         im->ino_num--;
481                 }
482                 spin_unlock(&im->ino_lock);
483         }
484 }
485
486 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
487 {
488         struct inode_management *im = &sbi->im[ORPHAN_INO];
489         int err = 0;
490
491         spin_lock(&im->ino_lock);
492
493 #ifdef CONFIG_F2FS_FAULT_INJECTION
494         if (time_to_inject(sbi, FAULT_ORPHAN)) {
495                 spin_unlock(&im->ino_lock);
496                 return -ENOSPC;
497         }
498 #endif
499         if (unlikely(im->ino_num >= sbi->max_orphans))
500                 err = -ENOSPC;
501         else
502                 im->ino_num++;
503         spin_unlock(&im->ino_lock);
504
505         return err;
506 }
507
508 void release_orphan_inode(struct f2fs_sb_info *sbi)
509 {
510         struct inode_management *im = &sbi->im[ORPHAN_INO];
511
512         spin_lock(&im->ino_lock);
513         f2fs_bug_on(sbi, im->ino_num == 0);
514         im->ino_num--;
515         spin_unlock(&im->ino_lock);
516 }
517
518 void add_orphan_inode(struct inode *inode)
519 {
520         /* add new orphan ino entry into list */
521         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
522         update_inode_page(inode);
523 }
524
525 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
526 {
527         /* remove orphan entry from orphan list */
528         __remove_ino_entry(sbi, ino, ORPHAN_INO);
529 }
530
531 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
532 {
533         struct inode *inode;
534         struct node_info ni;
535         int err = acquire_orphan_inode(sbi);
536
537         if (err) {
538                 set_sbi_flag(sbi, SBI_NEED_FSCK);
539                 f2fs_msg(sbi->sb, KERN_WARNING,
540                                 "%s: orphan failed (ino=%x), run fsck to fix.",
541                                 __func__, ino);
542                 return err;
543         }
544
545         __add_ino_entry(sbi, ino, ORPHAN_INO);
546
547         inode = f2fs_iget_retry(sbi->sb, ino);
548         if (IS_ERR(inode)) {
549                 /*
550                  * there should be a bug that we can't find the entry
551                  * to orphan inode.
552                  */
553                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
554                 return PTR_ERR(inode);
555         }
556
557         clear_nlink(inode);
558
559         /* truncate all the data during iput */
560         iput(inode);
561
562         get_node_info(sbi, ino, &ni);
563
564         /* ENOMEM was fully retried in f2fs_evict_inode. */
565         if (ni.blk_addr != NULL_ADDR) {
566                 set_sbi_flag(sbi, SBI_NEED_FSCK);
567                 f2fs_msg(sbi->sb, KERN_WARNING,
568                         "%s: orphan failed (ino=%x), run fsck to fix.",
569                                 __func__, ino);
570                 return -EIO;
571         }
572         __remove_ino_entry(sbi, ino, ORPHAN_INO);
573         return 0;
574 }
575
576 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
577 {
578         block_t start_blk, orphan_blocks, i, j;
579         int err;
580
581         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
582                 return 0;
583
584         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
585         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
586
587         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
588
589         for (i = 0; i < orphan_blocks; i++) {
590                 struct page *page = get_meta_page(sbi, start_blk + i);
591                 struct f2fs_orphan_block *orphan_blk;
592
593                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
594                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
595                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
596                         err = recover_orphan_inode(sbi, ino);
597                         if (err) {
598                                 f2fs_put_page(page, 1);
599                                 return err;
600                         }
601                 }
602                 f2fs_put_page(page, 1);
603         }
604         /* clear Orphan Flag */
605         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
606         return 0;
607 }
608
609 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
610 {
611         struct list_head *head;
612         struct f2fs_orphan_block *orphan_blk = NULL;
613         unsigned int nentries = 0;
614         unsigned short index = 1;
615         unsigned short orphan_blocks;
616         struct page *page = NULL;
617         struct ino_entry *orphan = NULL;
618         struct inode_management *im = &sbi->im[ORPHAN_INO];
619
620         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
621
622         /*
623          * we don't need to do spin_lock(&im->ino_lock) here, since all the
624          * orphan inode operations are covered under f2fs_lock_op().
625          * And, spin_lock should be avoided due to page operations below.
626          */
627         head = &im->ino_list;
628
629         /* loop for each orphan inode entry and write them in Jornal block */
630         list_for_each_entry(orphan, head, list) {
631                 if (!page) {
632                         page = grab_meta_page(sbi, start_blk++);
633                         orphan_blk =
634                                 (struct f2fs_orphan_block *)page_address(page);
635                         memset(orphan_blk, 0, sizeof(*orphan_blk));
636                 }
637
638                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
639
640                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
641                         /*
642                          * an orphan block is full of 1020 entries,
643                          * then we need to flush current orphan blocks
644                          * and bring another one in memory
645                          */
646                         orphan_blk->blk_addr = cpu_to_le16(index);
647                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
648                         orphan_blk->entry_count = cpu_to_le32(nentries);
649                         set_page_dirty(page);
650                         f2fs_put_page(page, 1);
651                         index++;
652                         nentries = 0;
653                         page = NULL;
654                 }
655         }
656
657         if (page) {
658                 orphan_blk->blk_addr = cpu_to_le16(index);
659                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
660                 orphan_blk->entry_count = cpu_to_le32(nentries);
661                 set_page_dirty(page);
662                 f2fs_put_page(page, 1);
663         }
664 }
665
666 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
667                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
668                 unsigned long long *version)
669 {
670         unsigned long blk_size = sbi->blocksize;
671         size_t crc_offset = 0;
672         __u32 crc = 0;
673
674         *cp_page = get_meta_page(sbi, cp_addr);
675         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
676
677         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
678         if (crc_offset >= blk_size) {
679                 f2fs_msg(sbi->sb, KERN_WARNING,
680                         "invalid crc_offset: %zu", crc_offset);
681                 return -EINVAL;
682         }
683
684         crc = le32_to_cpu(*((__le32 *)((unsigned char *)*cp_block
685                                                         + crc_offset)));
686         if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
687                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
688                 return -EINVAL;
689         }
690
691         *version = cur_cp_version(*cp_block);
692         return 0;
693 }
694
695 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
696                                 block_t cp_addr, unsigned long long *version)
697 {
698         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
699         struct f2fs_checkpoint *cp_block = NULL;
700         unsigned long long cur_version = 0, pre_version = 0;
701         int err;
702
703         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
704                                         &cp_page_1, version);
705         if (err)
706                 goto invalid_cp1;
707         pre_version = *version;
708
709         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
710         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
711                                         &cp_page_2, version);
712         if (err)
713                 goto invalid_cp2;
714         cur_version = *version;
715
716         if (cur_version == pre_version) {
717                 *version = cur_version;
718                 f2fs_put_page(cp_page_2, 1);
719                 return cp_page_1;
720         }
721 invalid_cp2:
722         f2fs_put_page(cp_page_2, 1);
723 invalid_cp1:
724         f2fs_put_page(cp_page_1, 1);
725         return NULL;
726 }
727
728 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
729 {
730         struct f2fs_checkpoint *cp_block;
731         struct f2fs_super_block *fsb = sbi->raw_super;
732         struct page *cp1, *cp2, *cur_page;
733         unsigned long blk_size = sbi->blocksize;
734         unsigned long long cp1_version = 0, cp2_version = 0;
735         unsigned long long cp_start_blk_no;
736         unsigned int cp_blks = 1 + __cp_payload(sbi);
737         block_t cp_blk_no;
738         int i;
739
740         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
741         if (!sbi->ckpt)
742                 return -ENOMEM;
743         /*
744          * Finding out valid cp block involves read both
745          * sets( cp pack1 and cp pack 2)
746          */
747         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
748         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
749
750         /* The second checkpoint pack should start at the next segment */
751         cp_start_blk_no += ((unsigned long long)1) <<
752                                 le32_to_cpu(fsb->log_blocks_per_seg);
753         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
754
755         if (cp1 && cp2) {
756                 if (ver_after(cp2_version, cp1_version))
757                         cur_page = cp2;
758                 else
759                         cur_page = cp1;
760         } else if (cp1) {
761                 cur_page = cp1;
762         } else if (cp2) {
763                 cur_page = cp2;
764         } else {
765                 goto fail_no_cp;
766         }
767
768         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
769         memcpy(sbi->ckpt, cp_block, blk_size);
770
771         /* Sanity checking of checkpoint */
772         if (sanity_check_ckpt(sbi))
773                 goto fail_no_cp;
774
775         if (cp_blks <= 1)
776                 goto done;
777
778         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
779         if (cur_page == cp2)
780                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
781
782         for (i = 1; i < cp_blks; i++) {
783                 void *sit_bitmap_ptr;
784                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
785
786                 cur_page = get_meta_page(sbi, cp_blk_no + i);
787                 sit_bitmap_ptr = page_address(cur_page);
788                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
789                 f2fs_put_page(cur_page, 1);
790         }
791 done:
792         f2fs_put_page(cp1, 1);
793         f2fs_put_page(cp2, 1);
794         return 0;
795
796 fail_no_cp:
797         kfree(sbi->ckpt);
798         return -EINVAL;
799 }
800
801 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
802 {
803         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
804         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
805
806         if (is_inode_flag_set(inode, flag))
807                 return;
808
809         set_inode_flag(inode, flag);
810         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
811         stat_inc_dirty_inode(sbi, type);
812 }
813
814 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
815 {
816         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
817
818         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
819                 return;
820
821         list_del_init(&F2FS_I(inode)->dirty_list);
822         clear_inode_flag(inode, flag);
823         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
824 }
825
826 void update_dirty_page(struct inode *inode, struct page *page)
827 {
828         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
829         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
830
831         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
832                         !S_ISLNK(inode->i_mode))
833                 return;
834
835         spin_lock(&sbi->inode_lock[type]);
836         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
837                 __add_dirty_inode(inode, type);
838         inode_inc_dirty_pages(inode);
839         spin_unlock(&sbi->inode_lock[type]);
840
841         SetPagePrivate(page);
842         f2fs_trace_pid(page);
843 }
844
845 void remove_dirty_inode(struct inode *inode)
846 {
847         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
848         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
849
850         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
851                         !S_ISLNK(inode->i_mode))
852                 return;
853
854         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
855                 return;
856
857         spin_lock(&sbi->inode_lock[type]);
858         __remove_dirty_inode(inode, type);
859         spin_unlock(&sbi->inode_lock[type]);
860 }
861
862 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
863 {
864         struct list_head *head;
865         struct inode *inode;
866         struct f2fs_inode_info *fi;
867         bool is_dir = (type == DIR_INODE);
868
869         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
870                                 get_pages(sbi, is_dir ?
871                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
872 retry:
873         if (unlikely(f2fs_cp_error(sbi)))
874                 return -EIO;
875
876         spin_lock(&sbi->inode_lock[type]);
877
878         head = &sbi->inode_list[type];
879         if (list_empty(head)) {
880                 spin_unlock(&sbi->inode_lock[type]);
881                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
882                                 get_pages(sbi, is_dir ?
883                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
884                 return 0;
885         }
886         fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
887         inode = igrab(&fi->vfs_inode);
888         spin_unlock(&sbi->inode_lock[type]);
889         if (inode) {
890                 filemap_fdatawrite(inode->i_mapping);
891                 iput(inode);
892         } else {
893                 /*
894                  * We should submit bio, since it exists several
895                  * wribacking dentry pages in the freeing inode.
896                  */
897                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
898                 cond_resched();
899         }
900         goto retry;
901 }
902
903 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
904 {
905         struct list_head *head = &sbi->inode_list[DIRTY_META];
906         struct inode *inode;
907         struct f2fs_inode_info *fi;
908         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
909
910         while (total--) {
911                 if (unlikely(f2fs_cp_error(sbi)))
912                         return -EIO;
913
914                 spin_lock(&sbi->inode_lock[DIRTY_META]);
915                 if (list_empty(head)) {
916                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
917                         return 0;
918                 }
919                 fi = list_entry(head->next, struct f2fs_inode_info,
920                                                         gdirty_list);
921                 inode = igrab(&fi->vfs_inode);
922                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
923                 if (inode) {
924                         update_inode_page(inode);
925                         iput(inode);
926                 }
927         };
928         return 0;
929 }
930
931 /*
932  * Freeze all the FS-operations for checkpoint.
933  */
934 static int block_operations(struct f2fs_sb_info *sbi)
935 {
936         struct writeback_control wbc = {
937                 .sync_mode = WB_SYNC_ALL,
938                 .nr_to_write = LONG_MAX,
939                 .for_reclaim = 0,
940         };
941         struct blk_plug plug;
942         int err = 0;
943
944         blk_start_plug(&plug);
945
946 retry_flush_dents:
947         f2fs_lock_all(sbi);
948         /* write all the dirty dentry pages */
949         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
950                 f2fs_unlock_all(sbi);
951                 err = sync_dirty_inodes(sbi, DIR_INODE);
952                 if (err)
953                         goto out;
954                 goto retry_flush_dents;
955         }
956
957         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
958                 f2fs_unlock_all(sbi);
959                 err = f2fs_sync_inode_meta(sbi);
960                 if (err)
961                         goto out;
962                 goto retry_flush_dents;
963         }
964
965         /*
966          * POR: we should ensure that there are no dirty node pages
967          * until finishing nat/sit flush.
968          */
969 retry_flush_nodes:
970         down_write(&sbi->node_write);
971
972         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
973                 up_write(&sbi->node_write);
974                 err = sync_node_pages(sbi, &wbc);
975                 if (err) {
976                         f2fs_unlock_all(sbi);
977                         goto out;
978                 }
979                 goto retry_flush_nodes;
980         }
981 out:
982         blk_finish_plug(&plug);
983         return err;
984 }
985
986 static void unblock_operations(struct f2fs_sb_info *sbi)
987 {
988         up_write(&sbi->node_write);
989
990         build_free_nids(sbi);
991         f2fs_unlock_all(sbi);
992 }
993
994 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
995 {
996         DEFINE_WAIT(wait);
997
998         for (;;) {
999                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1000
1001                 if (!atomic_read(&sbi->nr_wb_bios))
1002                         break;
1003
1004                 io_schedule_timeout(5*HZ);
1005         }
1006         finish_wait(&sbi->cp_wait, &wait);
1007 }
1008
1009 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1010 {
1011         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1012         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1013
1014         spin_lock(&sbi->cp_lock);
1015
1016         if (cpc->reason == CP_UMOUNT)
1017                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1018         else
1019                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1020
1021         if (cpc->reason == CP_FASTBOOT)
1022                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1023         else
1024                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1025
1026         if (orphan_num)
1027                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1028         else
1029                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1030
1031         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1032                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1033
1034         /* set this flag to activate crc|cp_ver for recovery */
1035         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1036
1037         spin_unlock(&sbi->cp_lock);
1038 }
1039
1040 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1041 {
1042         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1043         struct f2fs_nm_info *nm_i = NM_I(sbi);
1044         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1045         nid_t last_nid = nm_i->next_scan_nid;
1046         block_t start_blk;
1047         unsigned int data_sum_blocks, orphan_blocks;
1048         __u32 crc32 = 0;
1049         int i;
1050         int cp_payload_blks = __cp_payload(sbi);
1051         struct super_block *sb = sbi->sb;
1052         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1053         u64 kbytes_written;
1054
1055         /* Flush all the NAT/SIT pages */
1056         while (get_pages(sbi, F2FS_DIRTY_META)) {
1057                 sync_meta_pages(sbi, META, LONG_MAX);
1058                 if (unlikely(f2fs_cp_error(sbi)))
1059                         return -EIO;
1060         }
1061
1062         next_free_nid(sbi, &last_nid);
1063
1064         /*
1065          * modify checkpoint
1066          * version number is already updated
1067          */
1068         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1069         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1070         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1071         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1072                 ckpt->cur_node_segno[i] =
1073                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1074                 ckpt->cur_node_blkoff[i] =
1075                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1076                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1077                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1078         }
1079         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1080                 ckpt->cur_data_segno[i] =
1081                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1082                 ckpt->cur_data_blkoff[i] =
1083                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1084                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1085                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1086         }
1087
1088         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1089         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1090         ckpt->next_free_nid = cpu_to_le32(last_nid);
1091
1092         /* 2 cp  + n data seg summary + orphan inode blocks */
1093         data_sum_blocks = npages_for_summary_flush(sbi, false);
1094         spin_lock(&sbi->cp_lock);
1095         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1096                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1097         else
1098                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1099         spin_unlock(&sbi->cp_lock);
1100
1101         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1102         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1103                         orphan_blocks);
1104
1105         if (__remain_node_summaries(cpc->reason))
1106                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1107                                 cp_payload_blks + data_sum_blocks +
1108                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1109         else
1110                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1111                                 cp_payload_blks + data_sum_blocks +
1112                                 orphan_blocks);
1113
1114         /* update ckpt flag for checkpoint */
1115         update_ckpt_flags(sbi, cpc);
1116
1117         /* update SIT/NAT bitmap */
1118         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1119         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1120
1121         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1122         *((__le32 *)((unsigned char *)ckpt +
1123                                 le32_to_cpu(ckpt->checksum_offset)))
1124                                 = cpu_to_le32(crc32);
1125
1126         start_blk = __start_cp_addr(sbi);
1127
1128         /* need to wait for end_io results */
1129         wait_on_all_pages_writeback(sbi);
1130         if (unlikely(f2fs_cp_error(sbi)))
1131                 return -EIO;
1132
1133         /* write out checkpoint buffer at block 0 */
1134         update_meta_page(sbi, ckpt, start_blk++);
1135
1136         for (i = 1; i < 1 + cp_payload_blks; i++)
1137                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1138                                                         start_blk++);
1139
1140         if (orphan_num) {
1141                 write_orphan_inodes(sbi, start_blk);
1142                 start_blk += orphan_blocks;
1143         }
1144
1145         write_data_summaries(sbi, start_blk);
1146         start_blk += data_sum_blocks;
1147
1148         /* Record write statistics in the hot node summary */
1149         kbytes_written = sbi->kbytes_written;
1150         if (sb->s_bdev->bd_part)
1151                 kbytes_written += BD_PART_WRITTEN(sbi);
1152
1153         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1154
1155         if (__remain_node_summaries(cpc->reason)) {
1156                 write_node_summaries(sbi, start_blk);
1157                 start_blk += NR_CURSEG_NODE_TYPE;
1158         }
1159
1160         /* writeout checkpoint block */
1161         update_meta_page(sbi, ckpt, start_blk);
1162
1163         /* wait for previous submitted node/meta pages writeback */
1164         wait_on_all_pages_writeback(sbi);
1165
1166         if (unlikely(f2fs_cp_error(sbi)))
1167                 return -EIO;
1168
1169         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1170         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1171
1172         /* update user_block_counts */
1173         sbi->last_valid_block_count = sbi->total_valid_block_count;
1174         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1175
1176         /* Here, we only have one bio having CP pack */
1177         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1178
1179         /* wait for previous submitted meta pages writeback */
1180         wait_on_all_pages_writeback(sbi);
1181
1182         release_ino_entry(sbi, false);
1183
1184         if (unlikely(f2fs_cp_error(sbi)))
1185                 return -EIO;
1186
1187         clear_prefree_segments(sbi, cpc);
1188         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1189         clear_sbi_flag(sbi, SBI_NEED_CP);
1190
1191         /*
1192          * redirty superblock if metadata like node page or inode cache is
1193          * updated during writing checkpoint.
1194          */
1195         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1196                         get_pages(sbi, F2FS_DIRTY_IMETA))
1197                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1198
1199         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1200
1201         return 0;
1202 }
1203
1204 /*
1205  * We guarantee that this checkpoint procedure will not fail.
1206  */
1207 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1208 {
1209         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1210         unsigned long long ckpt_ver;
1211         int err = 0;
1212
1213         mutex_lock(&sbi->cp_mutex);
1214
1215         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1216                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1217                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1218                 goto out;
1219         if (unlikely(f2fs_cp_error(sbi))) {
1220                 err = -EIO;
1221                 goto out;
1222         }
1223         if (f2fs_readonly(sbi->sb)) {
1224                 err = -EROFS;
1225                 goto out;
1226         }
1227
1228         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1229
1230         err = block_operations(sbi);
1231         if (err)
1232                 goto out;
1233
1234         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1235
1236         f2fs_flush_merged_bios(sbi);
1237
1238         /* this is the case of multiple fstrims without any changes */
1239         if (cpc->reason == CP_DISCARD && !is_sbi_flag_set(sbi, SBI_IS_DIRTY)) {
1240                 f2fs_bug_on(sbi, NM_I(sbi)->dirty_nat_cnt);
1241                 f2fs_bug_on(sbi, SIT_I(sbi)->dirty_sentries);
1242                 f2fs_bug_on(sbi, prefree_segments(sbi));
1243                 flush_sit_entries(sbi, cpc);
1244                 clear_prefree_segments(sbi, cpc);
1245                 f2fs_wait_all_discard_bio(sbi);
1246                 unblock_operations(sbi);
1247                 goto out;
1248         }
1249
1250         /*
1251          * update checkpoint pack index
1252          * Increase the version number so that
1253          * SIT entries and seg summaries are written at correct place
1254          */
1255         ckpt_ver = cur_cp_version(ckpt);
1256         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1257
1258         /* write cached NAT/SIT entries to NAT/SIT area */
1259         flush_nat_entries(sbi);
1260         flush_sit_entries(sbi, cpc);
1261
1262         /* unlock all the fs_lock[] in do_checkpoint() */
1263         err = do_checkpoint(sbi, cpc);
1264
1265         f2fs_wait_all_discard_bio(sbi);
1266
1267         unblock_operations(sbi);
1268         stat_inc_cp_count(sbi->stat_info);
1269
1270         if (cpc->reason == CP_RECOVERY)
1271                 f2fs_msg(sbi->sb, KERN_NOTICE,
1272                         "checkpoint: version = %llx", ckpt_ver);
1273
1274         /* do checkpoint periodically */
1275         f2fs_update_time(sbi, CP_TIME);
1276         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1277 out:
1278         mutex_unlock(&sbi->cp_mutex);
1279         return err;
1280 }
1281
1282 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1283 {
1284         int i;
1285
1286         for (i = 0; i < MAX_INO_ENTRY; i++) {
1287                 struct inode_management *im = &sbi->im[i];
1288
1289                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1290                 spin_lock_init(&im->ino_lock);
1291                 INIT_LIST_HEAD(&im->ino_list);
1292                 im->ino_num = 0;
1293         }
1294
1295         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1296                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1297                                 F2FS_ORPHANS_PER_BLOCK;
1298 }
1299
1300 int __init create_checkpoint_caches(void)
1301 {
1302         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1303                         sizeof(struct ino_entry));
1304         if (!ino_entry_slab)
1305                 return -ENOMEM;
1306         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1307                         sizeof(struct inode_entry));
1308         if (!inode_entry_slab) {
1309                 kmem_cache_destroy(ino_entry_slab);
1310                 return -ENOMEM;
1311         }
1312         return 0;
1313 }
1314
1315 void destroy_checkpoint_caches(void)
1316 {
1317         kmem_cache_destroy(ino_entry_slab);
1318         kmem_cache_destroy(inode_entry_slab);
1319 }