Merge branch 'x86-mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41         f2fs_wait_on_page_writeback(page, META);
42         SetPageUptodate(page);
43         return page;
44 }
45
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51         struct address_space *mapping = META_MAPPING(sbi);
52         struct page *page;
53 repeat:
54         page = grab_cache_page(mapping, index);
55         if (!page) {
56                 cond_resched();
57                 goto repeat;
58         }
59         if (PageUptodate(page))
60                 goto out;
61
62         if (f2fs_submit_page_bio(sbi, page, index,
63                                 READ_SYNC | REQ_META | REQ_PRIO))
64                 goto repeat;
65
66         lock_page(page);
67         if (unlikely(page->mapping != mapping)) {
68                 f2fs_put_page(page, 1);
69                 goto repeat;
70         }
71 out:
72         return page;
73 }
74
75 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
76                                                 block_t blkaddr, int type)
77 {
78         switch (type) {
79         case META_NAT:
80                 break;
81         case META_SIT:
82                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
83                         return false;
84                 break;
85         case META_SSA:
86                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
87                         blkaddr < SM_I(sbi)->ssa_blkaddr))
88                         return false;
89                 break;
90         case META_CP:
91                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
92                         blkaddr < __start_cp_addr(sbi)))
93                         return false;
94                 break;
95         case META_POR:
96                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
97                         blkaddr < MAIN_BLKADDR(sbi)))
98                         return false;
99                 break;
100         default:
101                 BUG();
102         }
103
104         return true;
105 }
106
107 /*
108  * Readahead CP/NAT/SIT/SSA pages
109  */
110 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
111 {
112         block_t prev_blk_addr = 0;
113         struct page *page;
114         block_t blkno = start;
115
116         struct f2fs_io_info fio = {
117                 .type = META,
118                 .rw = READ_SYNC | REQ_META | REQ_PRIO
119         };
120
121         for (; nrpages-- > 0; blkno++) {
122                 block_t blk_addr;
123
124                 if (!is_valid_blkaddr(sbi, blkno, type))
125                         goto out;
126
127                 switch (type) {
128                 case META_NAT:
129                         if (unlikely(blkno >=
130                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
131                                 blkno = 0;
132                         /* get nat block addr */
133                         blk_addr = current_nat_addr(sbi,
134                                         blkno * NAT_ENTRY_PER_BLOCK);
135                         break;
136                 case META_SIT:
137                         /* get sit block addr */
138                         blk_addr = current_sit_addr(sbi,
139                                         blkno * SIT_ENTRY_PER_BLOCK);
140                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
141                                 goto out;
142                         prev_blk_addr = blk_addr;
143                         break;
144                 case META_SSA:
145                 case META_CP:
146                 case META_POR:
147                         blk_addr = blkno;
148                         break;
149                 default:
150                         BUG();
151                 }
152
153                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
154                 if (!page)
155                         continue;
156                 if (PageUptodate(page)) {
157                         f2fs_put_page(page, 1);
158                         continue;
159                 }
160
161                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
162                 f2fs_put_page(page, 0);
163         }
164 out:
165         f2fs_submit_merged_bio(sbi, META, READ);
166         return blkno - start;
167 }
168
169 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
170 {
171         struct page *page;
172         bool readahead = false;
173
174         page = find_get_page(META_MAPPING(sbi), index);
175         if (!page || (page && !PageUptodate(page)))
176                 readahead = true;
177         f2fs_put_page(page, 0);
178
179         if (readahead)
180                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
181 }
182
183 static int f2fs_write_meta_page(struct page *page,
184                                 struct writeback_control *wbc)
185 {
186         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
187
188         trace_f2fs_writepage(page, META);
189
190         if (unlikely(sbi->por_doing))
191                 goto redirty_out;
192         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
193                 goto redirty_out;
194         if (unlikely(f2fs_cp_error(sbi)))
195                 goto redirty_out;
196
197         f2fs_wait_on_page_writeback(page, META);
198         write_meta_page(sbi, page);
199         dec_page_count(sbi, F2FS_DIRTY_META);
200         unlock_page(page);
201
202         if (wbc->for_reclaim)
203                 f2fs_submit_merged_bio(sbi, META, WRITE);
204         return 0;
205
206 redirty_out:
207         redirty_page_for_writepage(wbc, page);
208         return AOP_WRITEPAGE_ACTIVATE;
209 }
210
211 static int f2fs_write_meta_pages(struct address_space *mapping,
212                                 struct writeback_control *wbc)
213 {
214         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
215         long diff, written;
216
217         trace_f2fs_writepages(mapping->host, wbc, META);
218
219         /* collect a number of dirty meta pages and write together */
220         if (wbc->for_kupdate ||
221                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
222                 goto skip_write;
223
224         /* if mounting is failed, skip writing node pages */
225         mutex_lock(&sbi->cp_mutex);
226         diff = nr_pages_to_write(sbi, META, wbc);
227         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
228         mutex_unlock(&sbi->cp_mutex);
229         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
230         return 0;
231
232 skip_write:
233         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
234         return 0;
235 }
236
237 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
238                                                 long nr_to_write)
239 {
240         struct address_space *mapping = META_MAPPING(sbi);
241         pgoff_t index = 0, end = LONG_MAX;
242         struct pagevec pvec;
243         long nwritten = 0;
244         struct writeback_control wbc = {
245                 .for_reclaim = 0,
246         };
247
248         pagevec_init(&pvec, 0);
249
250         while (index <= end) {
251                 int i, nr_pages;
252                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
253                                 PAGECACHE_TAG_DIRTY,
254                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
255                 if (unlikely(nr_pages == 0))
256                         break;
257
258                 for (i = 0; i < nr_pages; i++) {
259                         struct page *page = pvec.pages[i];
260
261                         lock_page(page);
262
263                         if (unlikely(page->mapping != mapping)) {
264 continue_unlock:
265                                 unlock_page(page);
266                                 continue;
267                         }
268                         if (!PageDirty(page)) {
269                                 /* someone wrote it for us */
270                                 goto continue_unlock;
271                         }
272
273                         if (!clear_page_dirty_for_io(page))
274                                 goto continue_unlock;
275
276                         if (f2fs_write_meta_page(page, &wbc)) {
277                                 unlock_page(page);
278                                 break;
279                         }
280                         nwritten++;
281                         if (unlikely(nwritten >= nr_to_write))
282                                 break;
283                 }
284                 pagevec_release(&pvec);
285                 cond_resched();
286         }
287
288         if (nwritten)
289                 f2fs_submit_merged_bio(sbi, type, WRITE);
290
291         return nwritten;
292 }
293
294 static int f2fs_set_meta_page_dirty(struct page *page)
295 {
296         trace_f2fs_set_page_dirty(page, META);
297
298         SetPageUptodate(page);
299         if (!PageDirty(page)) {
300                 __set_page_dirty_nobuffers(page);
301                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
302                 return 1;
303         }
304         return 0;
305 }
306
307 const struct address_space_operations f2fs_meta_aops = {
308         .writepage      = f2fs_write_meta_page,
309         .writepages     = f2fs_write_meta_pages,
310         .set_page_dirty = f2fs_set_meta_page_dirty,
311 };
312
313 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
314 {
315         struct inode_management *im = &sbi->im[type];
316         struct ino_entry *e;
317 retry:
318         if (radix_tree_preload(GFP_NOFS)) {
319                 cond_resched();
320                 goto retry;
321         }
322
323         spin_lock(&im->ino_lock);
324
325         e = radix_tree_lookup(&im->ino_root, ino);
326         if (!e) {
327                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
328                 if (!e) {
329                         spin_unlock(&im->ino_lock);
330                         radix_tree_preload_end();
331                         goto retry;
332                 }
333                 if (radix_tree_insert(&im->ino_root, ino, e)) {
334                         spin_unlock(&im->ino_lock);
335                         kmem_cache_free(ino_entry_slab, e);
336                         radix_tree_preload_end();
337                         goto retry;
338                 }
339                 memset(e, 0, sizeof(struct ino_entry));
340                 e->ino = ino;
341
342                 list_add_tail(&e->list, &im->ino_list);
343                 if (type != ORPHAN_INO)
344                         im->ino_num++;
345         }
346         spin_unlock(&im->ino_lock);
347         radix_tree_preload_end();
348 }
349
350 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
351 {
352         struct inode_management *im = &sbi->im[type];
353         struct ino_entry *e;
354
355         spin_lock(&im->ino_lock);
356         e = radix_tree_lookup(&im->ino_root, ino);
357         if (e) {
358                 list_del(&e->list);
359                 radix_tree_delete(&im->ino_root, ino);
360                 im->ino_num--;
361                 spin_unlock(&im->ino_lock);
362                 kmem_cache_free(ino_entry_slab, e);
363                 return;
364         }
365         spin_unlock(&im->ino_lock);
366 }
367
368 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
369 {
370         /* add new dirty ino entry into list */
371         __add_ino_entry(sbi, ino, type);
372 }
373
374 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
375 {
376         /* remove dirty ino entry from list */
377         __remove_ino_entry(sbi, ino, type);
378 }
379
380 /* mode should be APPEND_INO or UPDATE_INO */
381 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
382 {
383         struct inode_management *im = &sbi->im[mode];
384         struct ino_entry *e;
385
386         spin_lock(&im->ino_lock);
387         e = radix_tree_lookup(&im->ino_root, ino);
388         spin_unlock(&im->ino_lock);
389         return e ? true : false;
390 }
391
392 void release_dirty_inode(struct f2fs_sb_info *sbi)
393 {
394         struct ino_entry *e, *tmp;
395         int i;
396
397         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
398                 struct inode_management *im = &sbi->im[i];
399
400                 spin_lock(&im->ino_lock);
401                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
402                         list_del(&e->list);
403                         radix_tree_delete(&im->ino_root, e->ino);
404                         kmem_cache_free(ino_entry_slab, e);
405                         im->ino_num--;
406                 }
407                 spin_unlock(&im->ino_lock);
408         }
409 }
410
411 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
412 {
413         struct inode_management *im = &sbi->im[ORPHAN_INO];
414         int err = 0;
415
416         spin_lock(&im->ino_lock);
417         if (unlikely(im->ino_num >= sbi->max_orphans))
418                 err = -ENOSPC;
419         else
420                 im->ino_num++;
421         spin_unlock(&im->ino_lock);
422
423         return err;
424 }
425
426 void release_orphan_inode(struct f2fs_sb_info *sbi)
427 {
428         struct inode_management *im = &sbi->im[ORPHAN_INO];
429
430         spin_lock(&im->ino_lock);
431         f2fs_bug_on(sbi, im->ino_num == 0);
432         im->ino_num--;
433         spin_unlock(&im->ino_lock);
434 }
435
436 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
437 {
438         /* add new orphan ino entry into list */
439         __add_ino_entry(sbi, ino, ORPHAN_INO);
440 }
441
442 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
443 {
444         /* remove orphan entry from orphan list */
445         __remove_ino_entry(sbi, ino, ORPHAN_INO);
446 }
447
448 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
449 {
450         struct inode *inode = f2fs_iget(sbi->sb, ino);
451         f2fs_bug_on(sbi, IS_ERR(inode));
452         clear_nlink(inode);
453
454         /* truncate all the data during iput */
455         iput(inode);
456 }
457
458 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
459 {
460         block_t start_blk, orphan_blkaddr, i, j;
461
462         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
463                 return;
464
465         sbi->por_doing = true;
466
467         start_blk = __start_cp_addr(sbi) + 1 +
468                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
469         orphan_blkaddr = __start_sum_addr(sbi) - 1;
470
471         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
472
473         for (i = 0; i < orphan_blkaddr; i++) {
474                 struct page *page = get_meta_page(sbi, start_blk + i);
475                 struct f2fs_orphan_block *orphan_blk;
476
477                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
478                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
479                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
480                         recover_orphan_inode(sbi, ino);
481                 }
482                 f2fs_put_page(page, 1);
483         }
484         /* clear Orphan Flag */
485         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
486         sbi->por_doing = false;
487         return;
488 }
489
490 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
491 {
492         struct list_head *head;
493         struct f2fs_orphan_block *orphan_blk = NULL;
494         unsigned int nentries = 0;
495         unsigned short index;
496         unsigned short orphan_blocks;
497         struct page *page = NULL;
498         struct ino_entry *orphan = NULL;
499         struct inode_management *im = &sbi->im[ORPHAN_INO];
500
501         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
502
503         for (index = 0; index < orphan_blocks; index++)
504                 grab_meta_page(sbi, start_blk + index);
505
506         index = 1;
507         spin_lock(&im->ino_lock);
508         head = &im->ino_list;
509
510         /* loop for each orphan inode entry and write them in Jornal block */
511         list_for_each_entry(orphan, head, list) {
512                 if (!page) {
513                         page = find_get_page(META_MAPPING(sbi), start_blk++);
514                         f2fs_bug_on(sbi, !page);
515                         orphan_blk =
516                                 (struct f2fs_orphan_block *)page_address(page);
517                         memset(orphan_blk, 0, sizeof(*orphan_blk));
518                         f2fs_put_page(page, 0);
519                 }
520
521                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
522
523                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
524                         /*
525                          * an orphan block is full of 1020 entries,
526                          * then we need to flush current orphan blocks
527                          * and bring another one in memory
528                          */
529                         orphan_blk->blk_addr = cpu_to_le16(index);
530                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
531                         orphan_blk->entry_count = cpu_to_le32(nentries);
532                         set_page_dirty(page);
533                         f2fs_put_page(page, 1);
534                         index++;
535                         nentries = 0;
536                         page = NULL;
537                 }
538         }
539
540         if (page) {
541                 orphan_blk->blk_addr = cpu_to_le16(index);
542                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
543                 orphan_blk->entry_count = cpu_to_le32(nentries);
544                 set_page_dirty(page);
545                 f2fs_put_page(page, 1);
546         }
547
548         spin_unlock(&im->ino_lock);
549 }
550
551 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
552                                 block_t cp_addr, unsigned long long *version)
553 {
554         struct page *cp_page_1, *cp_page_2 = NULL;
555         unsigned long blk_size = sbi->blocksize;
556         struct f2fs_checkpoint *cp_block;
557         unsigned long long cur_version = 0, pre_version = 0;
558         size_t crc_offset;
559         __u32 crc = 0;
560
561         /* Read the 1st cp block in this CP pack */
562         cp_page_1 = get_meta_page(sbi, cp_addr);
563
564         /* get the version number */
565         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
566         crc_offset = le32_to_cpu(cp_block->checksum_offset);
567         if (crc_offset >= blk_size)
568                 goto invalid_cp1;
569
570         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
571         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
572                 goto invalid_cp1;
573
574         pre_version = cur_cp_version(cp_block);
575
576         /* Read the 2nd cp block in this CP pack */
577         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
578         cp_page_2 = get_meta_page(sbi, cp_addr);
579
580         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
581         crc_offset = le32_to_cpu(cp_block->checksum_offset);
582         if (crc_offset >= blk_size)
583                 goto invalid_cp2;
584
585         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
586         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
587                 goto invalid_cp2;
588
589         cur_version = cur_cp_version(cp_block);
590
591         if (cur_version == pre_version) {
592                 *version = cur_version;
593                 f2fs_put_page(cp_page_2, 1);
594                 return cp_page_1;
595         }
596 invalid_cp2:
597         f2fs_put_page(cp_page_2, 1);
598 invalid_cp1:
599         f2fs_put_page(cp_page_1, 1);
600         return NULL;
601 }
602
603 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
604 {
605         struct f2fs_checkpoint *cp_block;
606         struct f2fs_super_block *fsb = sbi->raw_super;
607         struct page *cp1, *cp2, *cur_page;
608         unsigned long blk_size = sbi->blocksize;
609         unsigned long long cp1_version = 0, cp2_version = 0;
610         unsigned long long cp_start_blk_no;
611         unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
612         block_t cp_blk_no;
613         int i;
614
615         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
616         if (!sbi->ckpt)
617                 return -ENOMEM;
618         /*
619          * Finding out valid cp block involves read both
620          * sets( cp pack1 and cp pack 2)
621          */
622         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
623         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
624
625         /* The second checkpoint pack should start at the next segment */
626         cp_start_blk_no += ((unsigned long long)1) <<
627                                 le32_to_cpu(fsb->log_blocks_per_seg);
628         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
629
630         if (cp1 && cp2) {
631                 if (ver_after(cp2_version, cp1_version))
632                         cur_page = cp2;
633                 else
634                         cur_page = cp1;
635         } else if (cp1) {
636                 cur_page = cp1;
637         } else if (cp2) {
638                 cur_page = cp2;
639         } else {
640                 goto fail_no_cp;
641         }
642
643         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
644         memcpy(sbi->ckpt, cp_block, blk_size);
645
646         if (cp_blks <= 1)
647                 goto done;
648
649         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
650         if (cur_page == cp2)
651                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
652
653         for (i = 1; i < cp_blks; i++) {
654                 void *sit_bitmap_ptr;
655                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
656
657                 cur_page = get_meta_page(sbi, cp_blk_no + i);
658                 sit_bitmap_ptr = page_address(cur_page);
659                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
660                 f2fs_put_page(cur_page, 1);
661         }
662 done:
663         f2fs_put_page(cp1, 1);
664         f2fs_put_page(cp2, 1);
665         return 0;
666
667 fail_no_cp:
668         kfree(sbi->ckpt);
669         return -EINVAL;
670 }
671
672 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
673 {
674         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
675
676         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
677                 return -EEXIST;
678
679         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
680         F2FS_I(inode)->dirty_dir = new;
681         list_add_tail(&new->list, &sbi->dir_inode_list);
682         stat_inc_dirty_dir(sbi);
683         return 0;
684 }
685
686 void update_dirty_page(struct inode *inode, struct page *page)
687 {
688         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
689         struct dir_inode_entry *new;
690         int ret = 0;
691
692         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
693                 return;
694
695         if (!S_ISDIR(inode->i_mode)) {
696                 inode_inc_dirty_pages(inode);
697                 goto out;
698         }
699
700         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
701         new->inode = inode;
702         INIT_LIST_HEAD(&new->list);
703
704         spin_lock(&sbi->dir_inode_lock);
705         ret = __add_dirty_inode(inode, new);
706         inode_inc_dirty_pages(inode);
707         spin_unlock(&sbi->dir_inode_lock);
708
709         if (ret)
710                 kmem_cache_free(inode_entry_slab, new);
711 out:
712         SetPagePrivate(page);
713 }
714
715 void add_dirty_dir_inode(struct inode *inode)
716 {
717         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
718         struct dir_inode_entry *new =
719                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
720         int ret = 0;
721
722         new->inode = inode;
723         INIT_LIST_HEAD(&new->list);
724
725         spin_lock(&sbi->dir_inode_lock);
726         ret = __add_dirty_inode(inode, new);
727         spin_unlock(&sbi->dir_inode_lock);
728
729         if (ret)
730                 kmem_cache_free(inode_entry_slab, new);
731 }
732
733 void remove_dirty_dir_inode(struct inode *inode)
734 {
735         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
736         struct dir_inode_entry *entry;
737
738         if (!S_ISDIR(inode->i_mode))
739                 return;
740
741         spin_lock(&sbi->dir_inode_lock);
742         if (get_dirty_pages(inode) ||
743                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
744                 spin_unlock(&sbi->dir_inode_lock);
745                 return;
746         }
747
748         entry = F2FS_I(inode)->dirty_dir;
749         list_del(&entry->list);
750         F2FS_I(inode)->dirty_dir = NULL;
751         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
752         stat_dec_dirty_dir(sbi);
753         spin_unlock(&sbi->dir_inode_lock);
754         kmem_cache_free(inode_entry_slab, entry);
755
756         /* Only from the recovery routine */
757         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
758                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
759                 iput(inode);
760         }
761 }
762
763 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
764 {
765         struct list_head *head;
766         struct dir_inode_entry *entry;
767         struct inode *inode;
768 retry:
769         if (unlikely(f2fs_cp_error(sbi)))
770                 return;
771
772         spin_lock(&sbi->dir_inode_lock);
773
774         head = &sbi->dir_inode_list;
775         if (list_empty(head)) {
776                 spin_unlock(&sbi->dir_inode_lock);
777                 return;
778         }
779         entry = list_entry(head->next, struct dir_inode_entry, list);
780         inode = igrab(entry->inode);
781         spin_unlock(&sbi->dir_inode_lock);
782         if (inode) {
783                 filemap_fdatawrite(inode->i_mapping);
784                 iput(inode);
785         } else {
786                 /*
787                  * We should submit bio, since it exists several
788                  * wribacking dentry pages in the freeing inode.
789                  */
790                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
791         }
792         goto retry;
793 }
794
795 /*
796  * Freeze all the FS-operations for checkpoint.
797  */
798 static int block_operations(struct f2fs_sb_info *sbi)
799 {
800         struct writeback_control wbc = {
801                 .sync_mode = WB_SYNC_ALL,
802                 .nr_to_write = LONG_MAX,
803                 .for_reclaim = 0,
804         };
805         struct blk_plug plug;
806         int err = 0;
807
808         blk_start_plug(&plug);
809
810 retry_flush_dents:
811         f2fs_lock_all(sbi);
812         /* write all the dirty dentry pages */
813         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
814                 f2fs_unlock_all(sbi);
815                 sync_dirty_dir_inodes(sbi);
816                 if (unlikely(f2fs_cp_error(sbi))) {
817                         err = -EIO;
818                         goto out;
819                 }
820                 goto retry_flush_dents;
821         }
822
823         /*
824          * POR: we should ensure that there are no dirty node pages
825          * until finishing nat/sit flush.
826          */
827 retry_flush_nodes:
828         down_write(&sbi->node_write);
829
830         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
831                 up_write(&sbi->node_write);
832                 sync_node_pages(sbi, 0, &wbc);
833                 if (unlikely(f2fs_cp_error(sbi))) {
834                         f2fs_unlock_all(sbi);
835                         err = -EIO;
836                         goto out;
837                 }
838                 goto retry_flush_nodes;
839         }
840 out:
841         blk_finish_plug(&plug);
842         return err;
843 }
844
845 static void unblock_operations(struct f2fs_sb_info *sbi)
846 {
847         up_write(&sbi->node_write);
848         f2fs_unlock_all(sbi);
849 }
850
851 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
852 {
853         DEFINE_WAIT(wait);
854
855         for (;;) {
856                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
857
858                 if (!get_pages(sbi, F2FS_WRITEBACK))
859                         break;
860
861                 io_schedule();
862         }
863         finish_wait(&sbi->cp_wait, &wait);
864 }
865
866 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
867 {
868         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
869         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
870         struct f2fs_nm_info *nm_i = NM_I(sbi);
871         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
872         nid_t last_nid = nm_i->next_scan_nid;
873         block_t start_blk;
874         struct page *cp_page;
875         unsigned int data_sum_blocks, orphan_blocks;
876         __u32 crc32 = 0;
877         void *kaddr;
878         int i;
879         int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
880
881         /*
882          * This avoids to conduct wrong roll-forward operations and uses
883          * metapages, so should be called prior to sync_meta_pages below.
884          */
885         discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
886
887         /* Flush all the NAT/SIT pages */
888         while (get_pages(sbi, F2FS_DIRTY_META)) {
889                 sync_meta_pages(sbi, META, LONG_MAX);
890                 if (unlikely(f2fs_cp_error(sbi)))
891                         return;
892         }
893
894         next_free_nid(sbi, &last_nid);
895
896         /*
897          * modify checkpoint
898          * version number is already updated
899          */
900         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
901         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
902         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
903         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
904                 ckpt->cur_node_segno[i] =
905                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
906                 ckpt->cur_node_blkoff[i] =
907                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
908                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
909                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
910         }
911         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
912                 ckpt->cur_data_segno[i] =
913                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
914                 ckpt->cur_data_blkoff[i] =
915                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
916                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
917                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
918         }
919
920         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
921         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
922         ckpt->next_free_nid = cpu_to_le32(last_nid);
923
924         /* 2 cp  + n data seg summary + orphan inode blocks */
925         data_sum_blocks = npages_for_summary_flush(sbi);
926         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
927                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
928         else
929                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
930
931         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
932         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
933                         orphan_blocks);
934
935         if (cpc->reason == CP_UMOUNT) {
936                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
937                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
938                                 cp_payload_blks + data_sum_blocks +
939                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
940         } else {
941                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
942                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
943                                 cp_payload_blks + data_sum_blocks +
944                                 orphan_blocks);
945         }
946
947         if (orphan_num)
948                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
949         else
950                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
951
952         if (sbi->need_fsck)
953                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
954
955         /* update SIT/NAT bitmap */
956         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
957         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
958
959         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
960         *((__le32 *)((unsigned char *)ckpt +
961                                 le32_to_cpu(ckpt->checksum_offset)))
962                                 = cpu_to_le32(crc32);
963
964         start_blk = __start_cp_addr(sbi);
965
966         /* write out checkpoint buffer at block 0 */
967         cp_page = grab_meta_page(sbi, start_blk++);
968         kaddr = page_address(cp_page);
969         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
970         set_page_dirty(cp_page);
971         f2fs_put_page(cp_page, 1);
972
973         for (i = 1; i < 1 + cp_payload_blks; i++) {
974                 cp_page = grab_meta_page(sbi, start_blk++);
975                 kaddr = page_address(cp_page);
976                 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
977                                 (1 << sbi->log_blocksize));
978                 set_page_dirty(cp_page);
979                 f2fs_put_page(cp_page, 1);
980         }
981
982         if (orphan_num) {
983                 write_orphan_inodes(sbi, start_blk);
984                 start_blk += orphan_blocks;
985         }
986
987         write_data_summaries(sbi, start_blk);
988         start_blk += data_sum_blocks;
989         if (cpc->reason == CP_UMOUNT) {
990                 write_node_summaries(sbi, start_blk);
991                 start_blk += NR_CURSEG_NODE_TYPE;
992         }
993
994         /* writeout checkpoint block */
995         cp_page = grab_meta_page(sbi, start_blk);
996         kaddr = page_address(cp_page);
997         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
998         set_page_dirty(cp_page);
999         f2fs_put_page(cp_page, 1);
1000
1001         /* wait for previous submitted node/meta pages writeback */
1002         wait_on_all_pages_writeback(sbi);
1003
1004         if (unlikely(f2fs_cp_error(sbi)))
1005                 return;
1006
1007         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1008         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1009
1010         /* update user_block_counts */
1011         sbi->last_valid_block_count = sbi->total_valid_block_count;
1012         sbi->alloc_valid_block_count = 0;
1013
1014         /* Here, we only have one bio having CP pack */
1015         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1016
1017         /* wait for previous submitted meta pages writeback */
1018         wait_on_all_pages_writeback(sbi);
1019
1020         release_dirty_inode(sbi);
1021
1022         if (unlikely(f2fs_cp_error(sbi)))
1023                 return;
1024
1025         clear_prefree_segments(sbi);
1026         F2FS_RESET_SB_DIRT(sbi);
1027 }
1028
1029 /*
1030  * We guarantee that this checkpoint procedure will not fail.
1031  */
1032 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1033 {
1034         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1035         unsigned long long ckpt_ver;
1036
1037         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1038
1039         mutex_lock(&sbi->cp_mutex);
1040
1041         if (!sbi->s_dirty && cpc->reason != CP_DISCARD)
1042                 goto out;
1043         if (unlikely(f2fs_cp_error(sbi)))
1044                 goto out;
1045         if (block_operations(sbi))
1046                 goto out;
1047
1048         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1049
1050         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1051         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1052         f2fs_submit_merged_bio(sbi, META, WRITE);
1053
1054         /*
1055          * update checkpoint pack index
1056          * Increase the version number so that
1057          * SIT entries and seg summaries are written at correct place
1058          */
1059         ckpt_ver = cur_cp_version(ckpt);
1060         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1061
1062         /* write cached NAT/SIT entries to NAT/SIT area */
1063         flush_nat_entries(sbi);
1064         flush_sit_entries(sbi, cpc);
1065
1066         /* unlock all the fs_lock[] in do_checkpoint() */
1067         do_checkpoint(sbi, cpc);
1068
1069         unblock_operations(sbi);
1070         stat_inc_cp_count(sbi->stat_info);
1071 out:
1072         mutex_unlock(&sbi->cp_mutex);
1073         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1074 }
1075
1076 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1077 {
1078         int i;
1079
1080         for (i = 0; i < MAX_INO_ENTRY; i++) {
1081                 struct inode_management *im = &sbi->im[i];
1082
1083                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1084                 spin_lock_init(&im->ino_lock);
1085                 INIT_LIST_HEAD(&im->ino_list);
1086                 im->ino_num = 0;
1087         }
1088
1089         /*
1090          * considering 512 blocks in a segment 8 blocks are needed for cp
1091          * and log segment summaries. Remaining blocks are used to keep
1092          * orphan entries with the limitation one reserved segment
1093          * for cp pack we can have max 1020*504 orphan entries
1094          */
1095         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1096                         NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1097 }
1098
1099 int __init create_checkpoint_caches(void)
1100 {
1101         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1102                         sizeof(struct ino_entry));
1103         if (!ino_entry_slab)
1104                 return -ENOMEM;
1105         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1106                         sizeof(struct dir_inode_entry));
1107         if (!inode_entry_slab) {
1108                 kmem_cache_destroy(ino_entry_slab);
1109                 return -ENOMEM;
1110         }
1111         return 0;
1112 }
1113
1114 void destroy_checkpoint_caches(void)
1115 {
1116         kmem_cache_destroy(ino_entry_slab);
1117         kmem_cache_destroy(inode_entry_slab);
1118 }