79a93c6e632fe0edd24a3b046c8b27cdb01f5f57
[cascardo/linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33         struct f2fs_nm_info *nm_i = NM_I(sbi);
34         struct sysinfo val;
35         unsigned long avail_ram;
36         unsigned long mem_size = 0;
37         bool res = false;
38
39         si_meminfo(&val);
40
41         /* only uses low memory */
42         avail_ram = val.totalram - val.totalhigh;
43
44         /*
45          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46          */
47         if (type == FREE_NIDS) {
48                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49                                                         PAGE_SHIFT;
50                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51         } else if (type == NAT_ENTRIES) {
52                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53                                                         PAGE_SHIFT;
54                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55                 if (excess_cached_nats(sbi))
56                         res = false;
57                 if (nm_i->nat_cnt > DEF_NAT_CACHE_THRESHOLD)
58                         res = false;
59         } else if (type == DIRTY_DENTS) {
60                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
61                         return false;
62                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
63                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
64         } else if (type == INO_ENTRIES) {
65                 int i;
66
67                 for (i = 0; i <= UPDATE_INO; i++)
68                         mem_size += (sbi->im[i].ino_num *
69                                 sizeof(struct ino_entry)) >> PAGE_SHIFT;
70                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71         } else if (type == EXTENT_CACHE) {
72                 mem_size = (atomic_read(&sbi->total_ext_tree) *
73                                 sizeof(struct extent_tree) +
74                                 atomic_read(&sbi->total_ext_node) *
75                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
76                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
77         } else {
78                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
79                         return true;
80         }
81         return res;
82 }
83
84 static void clear_node_page_dirty(struct page *page)
85 {
86         struct address_space *mapping = page->mapping;
87         unsigned int long flags;
88
89         if (PageDirty(page)) {
90                 spin_lock_irqsave(&mapping->tree_lock, flags);
91                 radix_tree_tag_clear(&mapping->page_tree,
92                                 page_index(page),
93                                 PAGECACHE_TAG_DIRTY);
94                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
95
96                 clear_page_dirty_for_io(page);
97                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
98         }
99         ClearPageUptodate(page);
100 }
101
102 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
103 {
104         pgoff_t index = current_nat_addr(sbi, nid);
105         return get_meta_page(sbi, index);
106 }
107
108 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
109 {
110         struct page *src_page;
111         struct page *dst_page;
112         pgoff_t src_off;
113         pgoff_t dst_off;
114         void *src_addr;
115         void *dst_addr;
116         struct f2fs_nm_info *nm_i = NM_I(sbi);
117
118         src_off = current_nat_addr(sbi, nid);
119         dst_off = next_nat_addr(sbi, src_off);
120
121         /* get current nat block page with lock */
122         src_page = get_meta_page(sbi, src_off);
123         dst_page = grab_meta_page(sbi, dst_off);
124         f2fs_bug_on(sbi, PageDirty(src_page));
125
126         src_addr = page_address(src_page);
127         dst_addr = page_address(dst_page);
128         memcpy(dst_addr, src_addr, PAGE_SIZE);
129         set_page_dirty(dst_page);
130         f2fs_put_page(src_page, 1);
131
132         set_to_next_nat(nm_i, nid);
133
134         return dst_page;
135 }
136
137 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
138 {
139         return radix_tree_lookup(&nm_i->nat_root, n);
140 }
141
142 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
143                 nid_t start, unsigned int nr, struct nat_entry **ep)
144 {
145         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
146 }
147
148 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
149 {
150         list_del(&e->list);
151         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
152         nm_i->nat_cnt--;
153         kmem_cache_free(nat_entry_slab, e);
154 }
155
156 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
157                                                 struct nat_entry *ne)
158 {
159         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
160         struct nat_entry_set *head;
161
162         if (get_nat_flag(ne, IS_DIRTY))
163                 return;
164
165         head = radix_tree_lookup(&nm_i->nat_set_root, set);
166         if (!head) {
167                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
168
169                 INIT_LIST_HEAD(&head->entry_list);
170                 INIT_LIST_HEAD(&head->set_list);
171                 head->set = set;
172                 head->entry_cnt = 0;
173                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
174         }
175         list_move_tail(&ne->list, &head->entry_list);
176         nm_i->dirty_nat_cnt++;
177         head->entry_cnt++;
178         set_nat_flag(ne, IS_DIRTY, true);
179 }
180
181 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
182                                                 struct nat_entry *ne)
183 {
184         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
185         struct nat_entry_set *head;
186
187         head = radix_tree_lookup(&nm_i->nat_set_root, set);
188         if (head) {
189                 list_move_tail(&ne->list, &nm_i->nat_entries);
190                 set_nat_flag(ne, IS_DIRTY, false);
191                 head->entry_cnt--;
192                 nm_i->dirty_nat_cnt--;
193         }
194 }
195
196 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
197                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
198 {
199         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
200                                                         start, nr);
201 }
202
203 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
204 {
205         struct f2fs_nm_info *nm_i = NM_I(sbi);
206         struct nat_entry *e;
207         bool need = false;
208
209         percpu_down_read(&nm_i->nat_tree_lock);
210         e = __lookup_nat_cache(nm_i, nid);
211         if (e) {
212                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
213                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
214                         need = true;
215         }
216         percpu_up_read(&nm_i->nat_tree_lock);
217         return need;
218 }
219
220 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
221 {
222         struct f2fs_nm_info *nm_i = NM_I(sbi);
223         struct nat_entry *e;
224         bool is_cp = true;
225
226         percpu_down_read(&nm_i->nat_tree_lock);
227         e = __lookup_nat_cache(nm_i, nid);
228         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
229                 is_cp = false;
230         percpu_up_read(&nm_i->nat_tree_lock);
231         return is_cp;
232 }
233
234 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
235 {
236         struct f2fs_nm_info *nm_i = NM_I(sbi);
237         struct nat_entry *e;
238         bool need_update = true;
239
240         percpu_down_read(&nm_i->nat_tree_lock);
241         e = __lookup_nat_cache(nm_i, ino);
242         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
243                         (get_nat_flag(e, IS_CHECKPOINTED) ||
244                          get_nat_flag(e, HAS_FSYNCED_INODE)))
245                 need_update = false;
246         percpu_up_read(&nm_i->nat_tree_lock);
247         return need_update;
248 }
249
250 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
251 {
252         struct nat_entry *new;
253
254         new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
255         f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
256         memset(new, 0, sizeof(struct nat_entry));
257         nat_set_nid(new, nid);
258         nat_reset_flag(new);
259         list_add_tail(&new->list, &nm_i->nat_entries);
260         nm_i->nat_cnt++;
261         return new;
262 }
263
264 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
265                                                 struct f2fs_nat_entry *ne)
266 {
267         struct f2fs_nm_info *nm_i = NM_I(sbi);
268         struct nat_entry *e;
269
270         e = __lookup_nat_cache(nm_i, nid);
271         if (!e) {
272                 e = grab_nat_entry(nm_i, nid);
273                 node_info_from_raw_nat(&e->ni, ne);
274         } else {
275                 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
276                                 nat_get_blkaddr(e) != ne->block_addr ||
277                                 nat_get_version(e) != ne->version);
278         }
279 }
280
281 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
282                         block_t new_blkaddr, bool fsync_done)
283 {
284         struct f2fs_nm_info *nm_i = NM_I(sbi);
285         struct nat_entry *e;
286
287         percpu_down_write(&nm_i->nat_tree_lock);
288         e = __lookup_nat_cache(nm_i, ni->nid);
289         if (!e) {
290                 e = grab_nat_entry(nm_i, ni->nid);
291                 copy_node_info(&e->ni, ni);
292                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
293         } else if (new_blkaddr == NEW_ADDR) {
294                 /*
295                  * when nid is reallocated,
296                  * previous nat entry can be remained in nat cache.
297                  * So, reinitialize it with new information.
298                  */
299                 copy_node_info(&e->ni, ni);
300                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
301         }
302
303         /* sanity check */
304         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
305         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
306                         new_blkaddr == NULL_ADDR);
307         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
308                         new_blkaddr == NEW_ADDR);
309         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
310                         nat_get_blkaddr(e) != NULL_ADDR &&
311                         new_blkaddr == NEW_ADDR);
312
313         /* increment version no as node is removed */
314         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
315                 unsigned char version = nat_get_version(e);
316                 nat_set_version(e, inc_node_version(version));
317
318                 /* in order to reuse the nid */
319                 if (nm_i->next_scan_nid > ni->nid)
320                         nm_i->next_scan_nid = ni->nid;
321         }
322
323         /* change address */
324         nat_set_blkaddr(e, new_blkaddr);
325         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
326                 set_nat_flag(e, IS_CHECKPOINTED, false);
327         __set_nat_cache_dirty(nm_i, e);
328
329         /* update fsync_mark if its inode nat entry is still alive */
330         if (ni->nid != ni->ino)
331                 e = __lookup_nat_cache(nm_i, ni->ino);
332         if (e) {
333                 if (fsync_done && ni->nid == ni->ino)
334                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
335                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
336         }
337         percpu_up_write(&nm_i->nat_tree_lock);
338 }
339
340 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
341 {
342         struct f2fs_nm_info *nm_i = NM_I(sbi);
343         int nr = nr_shrink;
344
345         percpu_down_write(&nm_i->nat_tree_lock);
346
347         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
348                 struct nat_entry *ne;
349                 ne = list_first_entry(&nm_i->nat_entries,
350                                         struct nat_entry, list);
351                 __del_from_nat_cache(nm_i, ne);
352                 nr_shrink--;
353         }
354         percpu_up_write(&nm_i->nat_tree_lock);
355         return nr - nr_shrink;
356 }
357
358 /*
359  * This function always returns success
360  */
361 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
362 {
363         struct f2fs_nm_info *nm_i = NM_I(sbi);
364         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
365         struct f2fs_journal *journal = curseg->journal;
366         nid_t start_nid = START_NID(nid);
367         struct f2fs_nat_block *nat_blk;
368         struct page *page = NULL;
369         struct f2fs_nat_entry ne;
370         struct nat_entry *e;
371         int i;
372
373         ni->nid = nid;
374
375         /* Check nat cache */
376         percpu_down_read(&nm_i->nat_tree_lock);
377         e = __lookup_nat_cache(nm_i, nid);
378         if (e) {
379                 ni->ino = nat_get_ino(e);
380                 ni->blk_addr = nat_get_blkaddr(e);
381                 ni->version = nat_get_version(e);
382                 percpu_up_read(&nm_i->nat_tree_lock);
383                 return;
384         }
385
386         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
387
388         /* Check current segment summary */
389         down_read(&curseg->journal_rwsem);
390         i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
391         if (i >= 0) {
392                 ne = nat_in_journal(journal, i);
393                 node_info_from_raw_nat(ni, &ne);
394         }
395         up_read(&curseg->journal_rwsem);
396         if (i >= 0)
397                 goto cache;
398
399         /* Fill node_info from nat page */
400         page = get_current_nat_page(sbi, start_nid);
401         nat_blk = (struct f2fs_nat_block *)page_address(page);
402         ne = nat_blk->entries[nid - start_nid];
403         node_info_from_raw_nat(ni, &ne);
404         f2fs_put_page(page, 1);
405 cache:
406         percpu_up_read(&nm_i->nat_tree_lock);
407         /* cache nat entry */
408         percpu_down_write(&nm_i->nat_tree_lock);
409         cache_nat_entry(sbi, nid, &ne);
410         percpu_up_write(&nm_i->nat_tree_lock);
411 }
412
413 /*
414  * readahead MAX_RA_NODE number of node pages.
415  */
416 static void ra_node_pages(struct page *parent, int start, int n)
417 {
418         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
419         struct blk_plug plug;
420         int i, end;
421         nid_t nid;
422
423         blk_start_plug(&plug);
424
425         /* Then, try readahead for siblings of the desired node */
426         end = start + n;
427         end = min(end, NIDS_PER_BLOCK);
428         for (i = start; i < end; i++) {
429                 nid = get_nid(parent, i, false);
430                 ra_node_page(sbi, nid);
431         }
432
433         blk_finish_plug(&plug);
434 }
435
436 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
437 {
438         const long direct_index = ADDRS_PER_INODE(dn->inode);
439         const long direct_blks = ADDRS_PER_BLOCK;
440         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
441         unsigned int skipped_unit = ADDRS_PER_BLOCK;
442         int cur_level = dn->cur_level;
443         int max_level = dn->max_level;
444         pgoff_t base = 0;
445
446         if (!dn->max_level)
447                 return pgofs + 1;
448
449         while (max_level-- > cur_level)
450                 skipped_unit *= NIDS_PER_BLOCK;
451
452         switch (dn->max_level) {
453         case 3:
454                 base += 2 * indirect_blks;
455         case 2:
456                 base += 2 * direct_blks;
457         case 1:
458                 base += direct_index;
459                 break;
460         default:
461                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
462         }
463
464         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
465 }
466
467 /*
468  * The maximum depth is four.
469  * Offset[0] will have raw inode offset.
470  */
471 static int get_node_path(struct inode *inode, long block,
472                                 int offset[4], unsigned int noffset[4])
473 {
474         const long direct_index = ADDRS_PER_INODE(inode);
475         const long direct_blks = ADDRS_PER_BLOCK;
476         const long dptrs_per_blk = NIDS_PER_BLOCK;
477         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
478         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
479         int n = 0;
480         int level = 0;
481
482         noffset[0] = 0;
483
484         if (block < direct_index) {
485                 offset[n] = block;
486                 goto got;
487         }
488         block -= direct_index;
489         if (block < direct_blks) {
490                 offset[n++] = NODE_DIR1_BLOCK;
491                 noffset[n] = 1;
492                 offset[n] = block;
493                 level = 1;
494                 goto got;
495         }
496         block -= direct_blks;
497         if (block < direct_blks) {
498                 offset[n++] = NODE_DIR2_BLOCK;
499                 noffset[n] = 2;
500                 offset[n] = block;
501                 level = 1;
502                 goto got;
503         }
504         block -= direct_blks;
505         if (block < indirect_blks) {
506                 offset[n++] = NODE_IND1_BLOCK;
507                 noffset[n] = 3;
508                 offset[n++] = block / direct_blks;
509                 noffset[n] = 4 + offset[n - 1];
510                 offset[n] = block % direct_blks;
511                 level = 2;
512                 goto got;
513         }
514         block -= indirect_blks;
515         if (block < indirect_blks) {
516                 offset[n++] = NODE_IND2_BLOCK;
517                 noffset[n] = 4 + dptrs_per_blk;
518                 offset[n++] = block / direct_blks;
519                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
520                 offset[n] = block % direct_blks;
521                 level = 2;
522                 goto got;
523         }
524         block -= indirect_blks;
525         if (block < dindirect_blks) {
526                 offset[n++] = NODE_DIND_BLOCK;
527                 noffset[n] = 5 + (dptrs_per_blk * 2);
528                 offset[n++] = block / indirect_blks;
529                 noffset[n] = 6 + (dptrs_per_blk * 2) +
530                               offset[n - 1] * (dptrs_per_blk + 1);
531                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
532                 noffset[n] = 7 + (dptrs_per_blk * 2) +
533                               offset[n - 2] * (dptrs_per_blk + 1) +
534                               offset[n - 1];
535                 offset[n] = block % direct_blks;
536                 level = 3;
537                 goto got;
538         } else {
539                 BUG();
540         }
541 got:
542         return level;
543 }
544
545 /*
546  * Caller should call f2fs_put_dnode(dn).
547  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
548  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
549  * In the case of RDONLY_NODE, we don't need to care about mutex.
550  */
551 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
552 {
553         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
554         struct page *npage[4];
555         struct page *parent = NULL;
556         int offset[4];
557         unsigned int noffset[4];
558         nid_t nids[4];
559         int level, i = 0;
560         int err = 0;
561
562         level = get_node_path(dn->inode, index, offset, noffset);
563
564         nids[0] = dn->inode->i_ino;
565         npage[0] = dn->inode_page;
566
567         if (!npage[0]) {
568                 npage[0] = get_node_page(sbi, nids[0]);
569                 if (IS_ERR(npage[0]))
570                         return PTR_ERR(npage[0]);
571         }
572
573         /* if inline_data is set, should not report any block indices */
574         if (f2fs_has_inline_data(dn->inode) && index) {
575                 err = -ENOENT;
576                 f2fs_put_page(npage[0], 1);
577                 goto release_out;
578         }
579
580         parent = npage[0];
581         if (level != 0)
582                 nids[1] = get_nid(parent, offset[0], true);
583         dn->inode_page = npage[0];
584         dn->inode_page_locked = true;
585
586         /* get indirect or direct nodes */
587         for (i = 1; i <= level; i++) {
588                 bool done = false;
589
590                 if (!nids[i] && mode == ALLOC_NODE) {
591                         /* alloc new node */
592                         if (!alloc_nid(sbi, &(nids[i]))) {
593                                 err = -ENOSPC;
594                                 goto release_pages;
595                         }
596
597                         dn->nid = nids[i];
598                         npage[i] = new_node_page(dn, noffset[i], NULL);
599                         if (IS_ERR(npage[i])) {
600                                 alloc_nid_failed(sbi, nids[i]);
601                                 err = PTR_ERR(npage[i]);
602                                 goto release_pages;
603                         }
604
605                         set_nid(parent, offset[i - 1], nids[i], i == 1);
606                         alloc_nid_done(sbi, nids[i]);
607                         done = true;
608                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
609                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
610                         if (IS_ERR(npage[i])) {
611                                 err = PTR_ERR(npage[i]);
612                                 goto release_pages;
613                         }
614                         done = true;
615                 }
616                 if (i == 1) {
617                         dn->inode_page_locked = false;
618                         unlock_page(parent);
619                 } else {
620                         f2fs_put_page(parent, 1);
621                 }
622
623                 if (!done) {
624                         npage[i] = get_node_page(sbi, nids[i]);
625                         if (IS_ERR(npage[i])) {
626                                 err = PTR_ERR(npage[i]);
627                                 f2fs_put_page(npage[0], 0);
628                                 goto release_out;
629                         }
630                 }
631                 if (i < level) {
632                         parent = npage[i];
633                         nids[i + 1] = get_nid(parent, offset[i], false);
634                 }
635         }
636         dn->nid = nids[level];
637         dn->ofs_in_node = offset[level];
638         dn->node_page = npage[level];
639         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
640         return 0;
641
642 release_pages:
643         f2fs_put_page(parent, 1);
644         if (i > 1)
645                 f2fs_put_page(npage[0], 0);
646 release_out:
647         dn->inode_page = NULL;
648         dn->node_page = NULL;
649         if (err == -ENOENT) {
650                 dn->cur_level = i;
651                 dn->max_level = level;
652                 dn->ofs_in_node = offset[level];
653         }
654         return err;
655 }
656
657 static void truncate_node(struct dnode_of_data *dn)
658 {
659         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
660         struct node_info ni;
661
662         get_node_info(sbi, dn->nid, &ni);
663         if (dn->inode->i_blocks == 0) {
664                 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
665                 goto invalidate;
666         }
667         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
668
669         /* Deallocate node address */
670         invalidate_blocks(sbi, ni.blk_addr);
671         dec_valid_node_count(sbi, dn->inode);
672         set_node_addr(sbi, &ni, NULL_ADDR, false);
673
674         if (dn->nid == dn->inode->i_ino) {
675                 remove_orphan_inode(sbi, dn->nid);
676                 dec_valid_inode_count(sbi);
677                 f2fs_inode_synced(dn->inode);
678         }
679 invalidate:
680         clear_node_page_dirty(dn->node_page);
681         set_sbi_flag(sbi, SBI_IS_DIRTY);
682
683         f2fs_put_page(dn->node_page, 1);
684
685         invalidate_mapping_pages(NODE_MAPPING(sbi),
686                         dn->node_page->index, dn->node_page->index);
687
688         dn->node_page = NULL;
689         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
690 }
691
692 static int truncate_dnode(struct dnode_of_data *dn)
693 {
694         struct page *page;
695
696         if (dn->nid == 0)
697                 return 1;
698
699         /* get direct node */
700         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
701         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
702                 return 1;
703         else if (IS_ERR(page))
704                 return PTR_ERR(page);
705
706         /* Make dnode_of_data for parameter */
707         dn->node_page = page;
708         dn->ofs_in_node = 0;
709         truncate_data_blocks(dn);
710         truncate_node(dn);
711         return 1;
712 }
713
714 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
715                                                 int ofs, int depth)
716 {
717         struct dnode_of_data rdn = *dn;
718         struct page *page;
719         struct f2fs_node *rn;
720         nid_t child_nid;
721         unsigned int child_nofs;
722         int freed = 0;
723         int i, ret;
724
725         if (dn->nid == 0)
726                 return NIDS_PER_BLOCK + 1;
727
728         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
729
730         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
731         if (IS_ERR(page)) {
732                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
733                 return PTR_ERR(page);
734         }
735
736         ra_node_pages(page, ofs, NIDS_PER_BLOCK);
737
738         rn = F2FS_NODE(page);
739         if (depth < 3) {
740                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
741                         child_nid = le32_to_cpu(rn->in.nid[i]);
742                         if (child_nid == 0)
743                                 continue;
744                         rdn.nid = child_nid;
745                         ret = truncate_dnode(&rdn);
746                         if (ret < 0)
747                                 goto out_err;
748                         if (set_nid(page, i, 0, false))
749                                 dn->node_changed = true;
750                 }
751         } else {
752                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
753                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
754                         child_nid = le32_to_cpu(rn->in.nid[i]);
755                         if (child_nid == 0) {
756                                 child_nofs += NIDS_PER_BLOCK + 1;
757                                 continue;
758                         }
759                         rdn.nid = child_nid;
760                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
761                         if (ret == (NIDS_PER_BLOCK + 1)) {
762                                 if (set_nid(page, i, 0, false))
763                                         dn->node_changed = true;
764                                 child_nofs += ret;
765                         } else if (ret < 0 && ret != -ENOENT) {
766                                 goto out_err;
767                         }
768                 }
769                 freed = child_nofs;
770         }
771
772         if (!ofs) {
773                 /* remove current indirect node */
774                 dn->node_page = page;
775                 truncate_node(dn);
776                 freed++;
777         } else {
778                 f2fs_put_page(page, 1);
779         }
780         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
781         return freed;
782
783 out_err:
784         f2fs_put_page(page, 1);
785         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
786         return ret;
787 }
788
789 static int truncate_partial_nodes(struct dnode_of_data *dn,
790                         struct f2fs_inode *ri, int *offset, int depth)
791 {
792         struct page *pages[2];
793         nid_t nid[3];
794         nid_t child_nid;
795         int err = 0;
796         int i;
797         int idx = depth - 2;
798
799         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
800         if (!nid[0])
801                 return 0;
802
803         /* get indirect nodes in the path */
804         for (i = 0; i < idx + 1; i++) {
805                 /* reference count'll be increased */
806                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
807                 if (IS_ERR(pages[i])) {
808                         err = PTR_ERR(pages[i]);
809                         idx = i - 1;
810                         goto fail;
811                 }
812                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
813         }
814
815         ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
816
817         /* free direct nodes linked to a partial indirect node */
818         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
819                 child_nid = get_nid(pages[idx], i, false);
820                 if (!child_nid)
821                         continue;
822                 dn->nid = child_nid;
823                 err = truncate_dnode(dn);
824                 if (err < 0)
825                         goto fail;
826                 if (set_nid(pages[idx], i, 0, false))
827                         dn->node_changed = true;
828         }
829
830         if (offset[idx + 1] == 0) {
831                 dn->node_page = pages[idx];
832                 dn->nid = nid[idx];
833                 truncate_node(dn);
834         } else {
835                 f2fs_put_page(pages[idx], 1);
836         }
837         offset[idx]++;
838         offset[idx + 1] = 0;
839         idx--;
840 fail:
841         for (i = idx; i >= 0; i--)
842                 f2fs_put_page(pages[i], 1);
843
844         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
845
846         return err;
847 }
848
849 /*
850  * All the block addresses of data and nodes should be nullified.
851  */
852 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
853 {
854         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
855         int err = 0, cont = 1;
856         int level, offset[4], noffset[4];
857         unsigned int nofs = 0;
858         struct f2fs_inode *ri;
859         struct dnode_of_data dn;
860         struct page *page;
861
862         trace_f2fs_truncate_inode_blocks_enter(inode, from);
863
864         level = get_node_path(inode, from, offset, noffset);
865
866         page = get_node_page(sbi, inode->i_ino);
867         if (IS_ERR(page)) {
868                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
869                 return PTR_ERR(page);
870         }
871
872         set_new_dnode(&dn, inode, page, NULL, 0);
873         unlock_page(page);
874
875         ri = F2FS_INODE(page);
876         switch (level) {
877         case 0:
878         case 1:
879                 nofs = noffset[1];
880                 break;
881         case 2:
882                 nofs = noffset[1];
883                 if (!offset[level - 1])
884                         goto skip_partial;
885                 err = truncate_partial_nodes(&dn, ri, offset, level);
886                 if (err < 0 && err != -ENOENT)
887                         goto fail;
888                 nofs += 1 + NIDS_PER_BLOCK;
889                 break;
890         case 3:
891                 nofs = 5 + 2 * NIDS_PER_BLOCK;
892                 if (!offset[level - 1])
893                         goto skip_partial;
894                 err = truncate_partial_nodes(&dn, ri, offset, level);
895                 if (err < 0 && err != -ENOENT)
896                         goto fail;
897                 break;
898         default:
899                 BUG();
900         }
901
902 skip_partial:
903         while (cont) {
904                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
905                 switch (offset[0]) {
906                 case NODE_DIR1_BLOCK:
907                 case NODE_DIR2_BLOCK:
908                         err = truncate_dnode(&dn);
909                         break;
910
911                 case NODE_IND1_BLOCK:
912                 case NODE_IND2_BLOCK:
913                         err = truncate_nodes(&dn, nofs, offset[1], 2);
914                         break;
915
916                 case NODE_DIND_BLOCK:
917                         err = truncate_nodes(&dn, nofs, offset[1], 3);
918                         cont = 0;
919                         break;
920
921                 default:
922                         BUG();
923                 }
924                 if (err < 0 && err != -ENOENT)
925                         goto fail;
926                 if (offset[1] == 0 &&
927                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
928                         lock_page(page);
929                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
930                         f2fs_wait_on_page_writeback(page, NODE, true);
931                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
932                         set_page_dirty(page);
933                         unlock_page(page);
934                 }
935                 offset[1] = 0;
936                 offset[0]++;
937                 nofs += err;
938         }
939 fail:
940         f2fs_put_page(page, 0);
941         trace_f2fs_truncate_inode_blocks_exit(inode, err);
942         return err > 0 ? 0 : err;
943 }
944
945 int truncate_xattr_node(struct inode *inode, struct page *page)
946 {
947         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
948         nid_t nid = F2FS_I(inode)->i_xattr_nid;
949         struct dnode_of_data dn;
950         struct page *npage;
951
952         if (!nid)
953                 return 0;
954
955         npage = get_node_page(sbi, nid);
956         if (IS_ERR(npage))
957                 return PTR_ERR(npage);
958
959         f2fs_i_xnid_write(inode, 0);
960
961         /* need to do checkpoint during fsync */
962         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
963
964         set_new_dnode(&dn, inode, page, npage, nid);
965
966         if (page)
967                 dn.inode_page_locked = true;
968         truncate_node(&dn);
969         return 0;
970 }
971
972 /*
973  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
974  * f2fs_unlock_op().
975  */
976 int remove_inode_page(struct inode *inode)
977 {
978         struct dnode_of_data dn;
979         int err;
980
981         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
982         err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
983         if (err)
984                 return err;
985
986         err = truncate_xattr_node(inode, dn.inode_page);
987         if (err) {
988                 f2fs_put_dnode(&dn);
989                 return err;
990         }
991
992         /* remove potential inline_data blocks */
993         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
994                                 S_ISLNK(inode->i_mode))
995                 truncate_data_blocks_range(&dn, 1);
996
997         /* 0 is possible, after f2fs_new_inode() has failed */
998         f2fs_bug_on(F2FS_I_SB(inode),
999                         inode->i_blocks != 0 && inode->i_blocks != 1);
1000
1001         /* will put inode & node pages */
1002         truncate_node(&dn);
1003         return 0;
1004 }
1005
1006 struct page *new_inode_page(struct inode *inode)
1007 {
1008         struct dnode_of_data dn;
1009
1010         /* allocate inode page for new inode */
1011         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1012
1013         /* caller should f2fs_put_page(page, 1); */
1014         return new_node_page(&dn, 0, NULL);
1015 }
1016
1017 struct page *new_node_page(struct dnode_of_data *dn,
1018                                 unsigned int ofs, struct page *ipage)
1019 {
1020         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1021         struct node_info old_ni, new_ni;
1022         struct page *page;
1023         int err;
1024
1025         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1026                 return ERR_PTR(-EPERM);
1027
1028         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1029         if (!page)
1030                 return ERR_PTR(-ENOMEM);
1031
1032         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1033                 err = -ENOSPC;
1034                 goto fail;
1035         }
1036
1037         get_node_info(sbi, dn->nid, &old_ni);
1038
1039         /* Reinitialize old_ni with new node page */
1040         f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1041         new_ni = old_ni;
1042         new_ni.ino = dn->inode->i_ino;
1043         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1044
1045         f2fs_wait_on_page_writeback(page, NODE, true);
1046         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1047         set_cold_node(dn->inode, page);
1048         if (!PageUptodate(page))
1049                 SetPageUptodate(page);
1050         if (set_page_dirty(page))
1051                 dn->node_changed = true;
1052
1053         if (f2fs_has_xattr_block(ofs))
1054                 f2fs_i_xnid_write(dn->inode, dn->nid);
1055
1056         if (ofs == 0)
1057                 inc_valid_inode_count(sbi);
1058         return page;
1059
1060 fail:
1061         clear_node_page_dirty(page);
1062         f2fs_put_page(page, 1);
1063         return ERR_PTR(err);
1064 }
1065
1066 /*
1067  * Caller should do after getting the following values.
1068  * 0: f2fs_put_page(page, 0)
1069  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1070  */
1071 static int read_node_page(struct page *page, int rw)
1072 {
1073         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1074         struct node_info ni;
1075         struct f2fs_io_info fio = {
1076                 .sbi = sbi,
1077                 .type = NODE,
1078                 .rw = rw,
1079                 .page = page,
1080                 .encrypted_page = NULL,
1081         };
1082
1083         if (PageUptodate(page))
1084                 return LOCKED_PAGE;
1085
1086         get_node_info(sbi, page->index, &ni);
1087
1088         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1089                 ClearPageUptodate(page);
1090                 return -ENOENT;
1091         }
1092
1093         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1094         return f2fs_submit_page_bio(&fio);
1095 }
1096
1097 /*
1098  * Readahead a node page
1099  */
1100 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1101 {
1102         struct page *apage;
1103         int err;
1104
1105         if (!nid)
1106                 return;
1107         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1108
1109         rcu_read_lock();
1110         apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1111         rcu_read_unlock();
1112         if (apage)
1113                 return;
1114
1115         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1116         if (!apage)
1117                 return;
1118
1119         err = read_node_page(apage, READA);
1120         f2fs_put_page(apage, err ? 1 : 0);
1121 }
1122
1123 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1124                                         struct page *parent, int start)
1125 {
1126         struct page *page;
1127         int err;
1128
1129         if (!nid)
1130                 return ERR_PTR(-ENOENT);
1131         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1132 repeat:
1133         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1134         if (!page)
1135                 return ERR_PTR(-ENOMEM);
1136
1137         err = read_node_page(page, READ_SYNC);
1138         if (err < 0) {
1139                 f2fs_put_page(page, 1);
1140                 return ERR_PTR(err);
1141         } else if (err == LOCKED_PAGE) {
1142                 goto page_hit;
1143         }
1144
1145         if (parent)
1146                 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1147
1148         lock_page(page);
1149
1150         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1151                 f2fs_put_page(page, 1);
1152                 goto repeat;
1153         }
1154
1155         if (unlikely(!PageUptodate(page)))
1156                 goto out_err;
1157 page_hit:
1158         if(unlikely(nid != nid_of_node(page))) {
1159                 f2fs_bug_on(sbi, 1);
1160                 ClearPageUptodate(page);
1161 out_err:
1162                 f2fs_put_page(page, 1);
1163                 return ERR_PTR(-EIO);
1164         }
1165         return page;
1166 }
1167
1168 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1169 {
1170         return __get_node_page(sbi, nid, NULL, 0);
1171 }
1172
1173 struct page *get_node_page_ra(struct page *parent, int start)
1174 {
1175         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1176         nid_t nid = get_nid(parent, start, false);
1177
1178         return __get_node_page(sbi, nid, parent, start);
1179 }
1180
1181 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1182 {
1183         struct inode *inode;
1184         struct page *page;
1185         int ret;
1186
1187         /* should flush inline_data before evict_inode */
1188         inode = ilookup(sbi->sb, ino);
1189         if (!inode)
1190                 return;
1191
1192         page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1193         if (!page)
1194                 goto iput_out;
1195
1196         if (!PageUptodate(page))
1197                 goto page_out;
1198
1199         if (!PageDirty(page))
1200                 goto page_out;
1201
1202         if (!clear_page_dirty_for_io(page))
1203                 goto page_out;
1204
1205         ret = f2fs_write_inline_data(inode, page);
1206         inode_dec_dirty_pages(inode);
1207         if (ret)
1208                 set_page_dirty(page);
1209 page_out:
1210         f2fs_put_page(page, 1);
1211 iput_out:
1212         iput(inode);
1213 }
1214
1215 void move_node_page(struct page *node_page, int gc_type)
1216 {
1217         if (gc_type == FG_GC) {
1218                 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1219                 struct writeback_control wbc = {
1220                         .sync_mode = WB_SYNC_ALL,
1221                         .nr_to_write = 1,
1222                         .for_reclaim = 0,
1223                 };
1224
1225                 set_page_dirty(node_page);
1226                 f2fs_wait_on_page_writeback(node_page, NODE, true);
1227
1228                 f2fs_bug_on(sbi, PageWriteback(node_page));
1229                 if (!clear_page_dirty_for_io(node_page))
1230                         goto out_page;
1231
1232                 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1233                         unlock_page(node_page);
1234                 goto release_page;
1235         } else {
1236                 /* set page dirty and write it */
1237                 if (!PageWriteback(node_page))
1238                         set_page_dirty(node_page);
1239         }
1240 out_page:
1241         unlock_page(node_page);
1242 release_page:
1243         f2fs_put_page(node_page, 0);
1244 }
1245
1246 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1247 {
1248         pgoff_t index, end;
1249         struct pagevec pvec;
1250         struct page *last_page = NULL;
1251
1252         pagevec_init(&pvec, 0);
1253         index = 0;
1254         end = ULONG_MAX;
1255
1256         while (index <= end) {
1257                 int i, nr_pages;
1258                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1259                                 PAGECACHE_TAG_DIRTY,
1260                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1261                 if (nr_pages == 0)
1262                         break;
1263
1264                 for (i = 0; i < nr_pages; i++) {
1265                         struct page *page = pvec.pages[i];
1266
1267                         if (unlikely(f2fs_cp_error(sbi))) {
1268                                 f2fs_put_page(last_page, 0);
1269                                 pagevec_release(&pvec);
1270                                 return ERR_PTR(-EIO);
1271                         }
1272
1273                         if (!IS_DNODE(page) || !is_cold_node(page))
1274                                 continue;
1275                         if (ino_of_node(page) != ino)
1276                                 continue;
1277
1278                         lock_page(page);
1279
1280                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1281 continue_unlock:
1282                                 unlock_page(page);
1283                                 continue;
1284                         }
1285                         if (ino_of_node(page) != ino)
1286                                 goto continue_unlock;
1287
1288                         if (!PageDirty(page)) {
1289                                 /* someone wrote it for us */
1290                                 goto continue_unlock;
1291                         }
1292
1293                         if (last_page)
1294                                 f2fs_put_page(last_page, 0);
1295
1296                         get_page(page);
1297                         last_page = page;
1298                         unlock_page(page);
1299                 }
1300                 pagevec_release(&pvec);
1301                 cond_resched();
1302         }
1303         return last_page;
1304 }
1305
1306 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1307                         struct writeback_control *wbc, bool atomic)
1308 {
1309         pgoff_t index, end;
1310         struct pagevec pvec;
1311         int ret = 0;
1312         struct page *last_page = NULL;
1313         bool marked = false;
1314         nid_t ino = inode->i_ino;
1315
1316         if (atomic) {
1317                 last_page = last_fsync_dnode(sbi, ino);
1318                 if (IS_ERR_OR_NULL(last_page))
1319                         return PTR_ERR_OR_ZERO(last_page);
1320         }
1321 retry:
1322         pagevec_init(&pvec, 0);
1323         index = 0;
1324         end = ULONG_MAX;
1325
1326         while (index <= end) {
1327                 int i, nr_pages;
1328                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1329                                 PAGECACHE_TAG_DIRTY,
1330                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1331                 if (nr_pages == 0)
1332                         break;
1333
1334                 for (i = 0; i < nr_pages; i++) {
1335                         struct page *page = pvec.pages[i];
1336
1337                         if (unlikely(f2fs_cp_error(sbi))) {
1338                                 f2fs_put_page(last_page, 0);
1339                                 pagevec_release(&pvec);
1340                                 return -EIO;
1341                         }
1342
1343                         if (!IS_DNODE(page) || !is_cold_node(page))
1344                                 continue;
1345                         if (ino_of_node(page) != ino)
1346                                 continue;
1347
1348                         lock_page(page);
1349
1350                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1351 continue_unlock:
1352                                 unlock_page(page);
1353                                 continue;
1354                         }
1355                         if (ino_of_node(page) != ino)
1356                                 goto continue_unlock;
1357
1358                         if (!PageDirty(page) && page != last_page) {
1359                                 /* someone wrote it for us */
1360                                 goto continue_unlock;
1361                         }
1362
1363                         f2fs_wait_on_page_writeback(page, NODE, true);
1364                         BUG_ON(PageWriteback(page));
1365
1366                         if (!atomic || page == last_page) {
1367                                 set_fsync_mark(page, 1);
1368                                 if (IS_INODE(page)) {
1369                                         if (is_inode_flag_set(inode,
1370                                                                 FI_DIRTY_INODE))
1371                                                 update_inode(inode, page);
1372                                         set_dentry_mark(page,
1373                                                 need_dentry_mark(sbi, ino));
1374                                 }
1375                                 /*  may be written by other thread */
1376                                 if (!PageDirty(page))
1377                                         set_page_dirty(page);
1378                         }
1379
1380                         if (!clear_page_dirty_for_io(page))
1381                                 goto continue_unlock;
1382
1383                         ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1384                         if (ret) {
1385                                 unlock_page(page);
1386                                 f2fs_put_page(last_page, 0);
1387                                 break;
1388                         }
1389                         if (page == last_page) {
1390                                 f2fs_put_page(page, 0);
1391                                 marked = true;
1392                                 break;
1393                         }
1394                 }
1395                 pagevec_release(&pvec);
1396                 cond_resched();
1397
1398                 if (ret || marked)
1399                         break;
1400         }
1401         if (!ret && atomic && !marked) {
1402                 f2fs_msg(sbi->sb, KERN_DEBUG,
1403                         "Retry to write fsync mark: ino=%u, idx=%lx",
1404                                         ino, last_page->index);
1405                 lock_page(last_page);
1406                 set_page_dirty(last_page);
1407                 unlock_page(last_page);
1408                 goto retry;
1409         }
1410         return ret ? -EIO: 0;
1411 }
1412
1413 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1414 {
1415         pgoff_t index, end;
1416         struct pagevec pvec;
1417         int step = 0;
1418         int nwritten = 0;
1419
1420         pagevec_init(&pvec, 0);
1421
1422 next_step:
1423         index = 0;
1424         end = ULONG_MAX;
1425
1426         while (index <= end) {
1427                 int i, nr_pages;
1428                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1429                                 PAGECACHE_TAG_DIRTY,
1430                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1431                 if (nr_pages == 0)
1432                         break;
1433
1434                 for (i = 0; i < nr_pages; i++) {
1435                         struct page *page = pvec.pages[i];
1436
1437                         if (unlikely(f2fs_cp_error(sbi))) {
1438                                 pagevec_release(&pvec);
1439                                 return -EIO;
1440                         }
1441
1442                         /*
1443                          * flushing sequence with step:
1444                          * 0. indirect nodes
1445                          * 1. dentry dnodes
1446                          * 2. file dnodes
1447                          */
1448                         if (step == 0 && IS_DNODE(page))
1449                                 continue;
1450                         if (step == 1 && (!IS_DNODE(page) ||
1451                                                 is_cold_node(page)))
1452                                 continue;
1453                         if (step == 2 && (!IS_DNODE(page) ||
1454                                                 !is_cold_node(page)))
1455                                 continue;
1456 lock_node:
1457                         if (!trylock_page(page))
1458                                 continue;
1459
1460                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1461 continue_unlock:
1462                                 unlock_page(page);
1463                                 continue;
1464                         }
1465
1466                         if (!PageDirty(page)) {
1467                                 /* someone wrote it for us */
1468                                 goto continue_unlock;
1469                         }
1470
1471                         /* flush inline_data */
1472                         if (is_inline_node(page)) {
1473                                 clear_inline_node(page);
1474                                 unlock_page(page);
1475                                 flush_inline_data(sbi, ino_of_node(page));
1476                                 goto lock_node;
1477                         }
1478
1479                         f2fs_wait_on_page_writeback(page, NODE, true);
1480
1481                         BUG_ON(PageWriteback(page));
1482                         if (!clear_page_dirty_for_io(page))
1483                                 goto continue_unlock;
1484
1485                         set_fsync_mark(page, 0);
1486                         set_dentry_mark(page, 0);
1487
1488                         if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1489                                 unlock_page(page);
1490
1491                         if (--wbc->nr_to_write == 0)
1492                                 break;
1493                 }
1494                 pagevec_release(&pvec);
1495                 cond_resched();
1496
1497                 if (wbc->nr_to_write == 0) {
1498                         step = 2;
1499                         break;
1500                 }
1501         }
1502
1503         if (step < 2) {
1504                 step++;
1505                 goto next_step;
1506         }
1507         return nwritten;
1508 }
1509
1510 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1511 {
1512         pgoff_t index = 0, end = ULONG_MAX;
1513         struct pagevec pvec;
1514         int ret2 = 0, ret = 0;
1515
1516         pagevec_init(&pvec, 0);
1517
1518         while (index <= end) {
1519                 int i, nr_pages;
1520                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1521                                 PAGECACHE_TAG_WRITEBACK,
1522                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1523                 if (nr_pages == 0)
1524                         break;
1525
1526                 for (i = 0; i < nr_pages; i++) {
1527                         struct page *page = pvec.pages[i];
1528
1529                         /* until radix tree lookup accepts end_index */
1530                         if (unlikely(page->index > end))
1531                                 continue;
1532
1533                         if (ino && ino_of_node(page) == ino) {
1534                                 f2fs_wait_on_page_writeback(page, NODE, true);
1535                                 if (TestClearPageError(page))
1536                                         ret = -EIO;
1537                         }
1538                 }
1539                 pagevec_release(&pvec);
1540                 cond_resched();
1541         }
1542
1543         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1544                 ret2 = -ENOSPC;
1545         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1546                 ret2 = -EIO;
1547         if (!ret)
1548                 ret = ret2;
1549         return ret;
1550 }
1551
1552 static int f2fs_write_node_page(struct page *page,
1553                                 struct writeback_control *wbc)
1554 {
1555         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1556         nid_t nid;
1557         struct node_info ni;
1558         struct f2fs_io_info fio = {
1559                 .sbi = sbi,
1560                 .type = NODE,
1561                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1562                 .page = page,
1563                 .encrypted_page = NULL,
1564         };
1565
1566         trace_f2fs_writepage(page, NODE);
1567
1568         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1569                 goto redirty_out;
1570         if (unlikely(f2fs_cp_error(sbi)))
1571                 goto redirty_out;
1572
1573         /* get old block addr of this node page */
1574         nid = nid_of_node(page);
1575         f2fs_bug_on(sbi, page->index != nid);
1576
1577         if (wbc->for_reclaim) {
1578                 if (!down_read_trylock(&sbi->node_write))
1579                         goto redirty_out;
1580         } else {
1581                 down_read(&sbi->node_write);
1582         }
1583
1584         get_node_info(sbi, nid, &ni);
1585
1586         /* This page is already truncated */
1587         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1588                 ClearPageUptodate(page);
1589                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1590                 up_read(&sbi->node_write);
1591                 unlock_page(page);
1592                 return 0;
1593         }
1594
1595         set_page_writeback(page);
1596         fio.old_blkaddr = ni.blk_addr;
1597         write_node_page(nid, &fio);
1598         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1599         dec_page_count(sbi, F2FS_DIRTY_NODES);
1600         up_read(&sbi->node_write);
1601
1602         if (wbc->for_reclaim)
1603                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1604
1605         unlock_page(page);
1606
1607         if (unlikely(f2fs_cp_error(sbi)))
1608                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1609
1610         return 0;
1611
1612 redirty_out:
1613         redirty_page_for_writepage(wbc, page);
1614         return AOP_WRITEPAGE_ACTIVATE;
1615 }
1616
1617 static int f2fs_write_node_pages(struct address_space *mapping,
1618                             struct writeback_control *wbc)
1619 {
1620         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1621         struct blk_plug plug;
1622         long diff;
1623
1624         /* balancing f2fs's metadata in background */
1625         f2fs_balance_fs_bg(sbi);
1626
1627         /* collect a number of dirty node pages and write together */
1628         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1629                 goto skip_write;
1630
1631         trace_f2fs_writepages(mapping->host, wbc, NODE);
1632
1633         diff = nr_pages_to_write(sbi, NODE, wbc);
1634         wbc->sync_mode = WB_SYNC_NONE;
1635         blk_start_plug(&plug);
1636         sync_node_pages(sbi, wbc);
1637         blk_finish_plug(&plug);
1638         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1639         return 0;
1640
1641 skip_write:
1642         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1643         trace_f2fs_writepages(mapping->host, wbc, NODE);
1644         return 0;
1645 }
1646
1647 static int f2fs_set_node_page_dirty(struct page *page)
1648 {
1649         trace_f2fs_set_page_dirty(page, NODE);
1650
1651         if (!PageUptodate(page))
1652                 SetPageUptodate(page);
1653         if (!PageDirty(page)) {
1654                 f2fs_set_page_dirty_nobuffers(page);
1655                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1656                 SetPagePrivate(page);
1657                 f2fs_trace_pid(page);
1658                 return 1;
1659         }
1660         return 0;
1661 }
1662
1663 /*
1664  * Structure of the f2fs node operations
1665  */
1666 const struct address_space_operations f2fs_node_aops = {
1667         .writepage      = f2fs_write_node_page,
1668         .writepages     = f2fs_write_node_pages,
1669         .set_page_dirty = f2fs_set_node_page_dirty,
1670         .invalidatepage = f2fs_invalidate_page,
1671         .releasepage    = f2fs_release_page,
1672 };
1673
1674 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1675                                                 nid_t n)
1676 {
1677         return radix_tree_lookup(&nm_i->free_nid_root, n);
1678 }
1679
1680 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1681                                                 struct free_nid *i)
1682 {
1683         list_del(&i->list);
1684         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1685 }
1686
1687 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1688 {
1689         struct f2fs_nm_info *nm_i = NM_I(sbi);
1690         struct free_nid *i;
1691         struct nat_entry *ne;
1692
1693         if (!available_free_memory(sbi, FREE_NIDS))
1694                 return -1;
1695
1696         /* 0 nid should not be used */
1697         if (unlikely(nid == 0))
1698                 return 0;
1699
1700         if (build) {
1701                 /* do not add allocated nids */
1702                 ne = __lookup_nat_cache(nm_i, nid);
1703                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1704                                 nat_get_blkaddr(ne) != NULL_ADDR))
1705                         return 0;
1706         }
1707
1708         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1709         i->nid = nid;
1710         i->state = NID_NEW;
1711
1712         if (radix_tree_preload(GFP_NOFS)) {
1713                 kmem_cache_free(free_nid_slab, i);
1714                 return 0;
1715         }
1716
1717         spin_lock(&nm_i->free_nid_list_lock);
1718         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1719                 spin_unlock(&nm_i->free_nid_list_lock);
1720                 radix_tree_preload_end();
1721                 kmem_cache_free(free_nid_slab, i);
1722                 return 0;
1723         }
1724         list_add_tail(&i->list, &nm_i->free_nid_list);
1725         nm_i->fcnt++;
1726         spin_unlock(&nm_i->free_nid_list_lock);
1727         radix_tree_preload_end();
1728         return 1;
1729 }
1730
1731 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1732 {
1733         struct free_nid *i;
1734         bool need_free = false;
1735
1736         spin_lock(&nm_i->free_nid_list_lock);
1737         i = __lookup_free_nid_list(nm_i, nid);
1738         if (i && i->state == NID_NEW) {
1739                 __del_from_free_nid_list(nm_i, i);
1740                 nm_i->fcnt--;
1741                 need_free = true;
1742         }
1743         spin_unlock(&nm_i->free_nid_list_lock);
1744
1745         if (need_free)
1746                 kmem_cache_free(free_nid_slab, i);
1747 }
1748
1749 static void scan_nat_page(struct f2fs_sb_info *sbi,
1750                         struct page *nat_page, nid_t start_nid)
1751 {
1752         struct f2fs_nm_info *nm_i = NM_I(sbi);
1753         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1754         block_t blk_addr;
1755         int i;
1756
1757         i = start_nid % NAT_ENTRY_PER_BLOCK;
1758
1759         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1760
1761                 if (unlikely(start_nid >= nm_i->max_nid))
1762                         break;
1763
1764                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1765                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1766                 if (blk_addr == NULL_ADDR) {
1767                         if (add_free_nid(sbi, start_nid, true) < 0)
1768                                 break;
1769                 }
1770         }
1771 }
1772
1773 void build_free_nids(struct f2fs_sb_info *sbi)
1774 {
1775         struct f2fs_nm_info *nm_i = NM_I(sbi);
1776         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1777         struct f2fs_journal *journal = curseg->journal;
1778         int i = 0;
1779         nid_t nid = nm_i->next_scan_nid;
1780
1781         /* Enough entries */
1782         if (nm_i->fcnt >= NAT_ENTRY_PER_BLOCK)
1783                 return;
1784
1785         /* readahead nat pages to be scanned */
1786         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1787                                                         META_NAT, true);
1788
1789         percpu_down_read(&nm_i->nat_tree_lock);
1790
1791         while (1) {
1792                 struct page *page = get_current_nat_page(sbi, nid);
1793
1794                 scan_nat_page(sbi, page, nid);
1795                 f2fs_put_page(page, 1);
1796
1797                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1798                 if (unlikely(nid >= nm_i->max_nid))
1799                         nid = 0;
1800
1801                 if (++i >= FREE_NID_PAGES)
1802                         break;
1803         }
1804
1805         /* go to the next free nat pages to find free nids abundantly */
1806         nm_i->next_scan_nid = nid;
1807
1808         /* find free nids from current sum_pages */
1809         down_read(&curseg->journal_rwsem);
1810         for (i = 0; i < nats_in_cursum(journal); i++) {
1811                 block_t addr;
1812
1813                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1814                 nid = le32_to_cpu(nid_in_journal(journal, i));
1815                 if (addr == NULL_ADDR)
1816                         add_free_nid(sbi, nid, true);
1817                 else
1818                         remove_free_nid(nm_i, nid);
1819         }
1820         up_read(&curseg->journal_rwsem);
1821         percpu_up_read(&nm_i->nat_tree_lock);
1822
1823         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1824                                         nm_i->ra_nid_pages, META_NAT, false);
1825 }
1826
1827 /*
1828  * If this function returns success, caller can obtain a new nid
1829  * from second parameter of this function.
1830  * The returned nid could be used ino as well as nid when inode is created.
1831  */
1832 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1833 {
1834         struct f2fs_nm_info *nm_i = NM_I(sbi);
1835         struct free_nid *i = NULL;
1836 retry:
1837 #ifdef CONFIG_F2FS_FAULT_INJECTION
1838         if (time_to_inject(FAULT_ALLOC_NID))
1839                 return false;
1840 #endif
1841         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1842                 return false;
1843
1844         spin_lock(&nm_i->free_nid_list_lock);
1845
1846         /* We should not use stale free nids created by build_free_nids */
1847         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1848                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1849                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1850                         if (i->state == NID_NEW)
1851                                 break;
1852
1853                 f2fs_bug_on(sbi, i->state != NID_NEW);
1854                 *nid = i->nid;
1855                 i->state = NID_ALLOC;
1856                 nm_i->fcnt--;
1857                 spin_unlock(&nm_i->free_nid_list_lock);
1858                 return true;
1859         }
1860         spin_unlock(&nm_i->free_nid_list_lock);
1861
1862         /* Let's scan nat pages and its caches to get free nids */
1863         mutex_lock(&nm_i->build_lock);
1864         build_free_nids(sbi);
1865         mutex_unlock(&nm_i->build_lock);
1866         goto retry;
1867 }
1868
1869 /*
1870  * alloc_nid() should be called prior to this function.
1871  */
1872 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1873 {
1874         struct f2fs_nm_info *nm_i = NM_I(sbi);
1875         struct free_nid *i;
1876
1877         spin_lock(&nm_i->free_nid_list_lock);
1878         i = __lookup_free_nid_list(nm_i, nid);
1879         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1880         __del_from_free_nid_list(nm_i, i);
1881         spin_unlock(&nm_i->free_nid_list_lock);
1882
1883         kmem_cache_free(free_nid_slab, i);
1884 }
1885
1886 /*
1887  * alloc_nid() should be called prior to this function.
1888  */
1889 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1890 {
1891         struct f2fs_nm_info *nm_i = NM_I(sbi);
1892         struct free_nid *i;
1893         bool need_free = false;
1894
1895         if (!nid)
1896                 return;
1897
1898         spin_lock(&nm_i->free_nid_list_lock);
1899         i = __lookup_free_nid_list(nm_i, nid);
1900         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1901         if (!available_free_memory(sbi, FREE_NIDS)) {
1902                 __del_from_free_nid_list(nm_i, i);
1903                 need_free = true;
1904         } else {
1905                 i->state = NID_NEW;
1906                 nm_i->fcnt++;
1907         }
1908         spin_unlock(&nm_i->free_nid_list_lock);
1909
1910         if (need_free)
1911                 kmem_cache_free(free_nid_slab, i);
1912 }
1913
1914 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1915 {
1916         struct f2fs_nm_info *nm_i = NM_I(sbi);
1917         struct free_nid *i, *next;
1918         int nr = nr_shrink;
1919
1920         if (nm_i->fcnt <= MAX_FREE_NIDS)
1921                 return 0;
1922
1923         if (!mutex_trylock(&nm_i->build_lock))
1924                 return 0;
1925
1926         spin_lock(&nm_i->free_nid_list_lock);
1927         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1928                 if (nr_shrink <= 0 || nm_i->fcnt <= MAX_FREE_NIDS)
1929                         break;
1930                 if (i->state == NID_ALLOC)
1931                         continue;
1932                 __del_from_free_nid_list(nm_i, i);
1933                 kmem_cache_free(free_nid_slab, i);
1934                 nm_i->fcnt--;
1935                 nr_shrink--;
1936         }
1937         spin_unlock(&nm_i->free_nid_list_lock);
1938         mutex_unlock(&nm_i->build_lock);
1939
1940         return nr - nr_shrink;
1941 }
1942
1943 void recover_inline_xattr(struct inode *inode, struct page *page)
1944 {
1945         void *src_addr, *dst_addr;
1946         size_t inline_size;
1947         struct page *ipage;
1948         struct f2fs_inode *ri;
1949
1950         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1951         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1952
1953         ri = F2FS_INODE(page);
1954         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1955                 clear_inode_flag(inode, FI_INLINE_XATTR);
1956                 goto update_inode;
1957         }
1958
1959         dst_addr = inline_xattr_addr(ipage);
1960         src_addr = inline_xattr_addr(page);
1961         inline_size = inline_xattr_size(inode);
1962
1963         f2fs_wait_on_page_writeback(ipage, NODE, true);
1964         memcpy(dst_addr, src_addr, inline_size);
1965 update_inode:
1966         update_inode(inode, ipage);
1967         f2fs_put_page(ipage, 1);
1968 }
1969
1970 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1971 {
1972         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1973         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1974         nid_t new_xnid = nid_of_node(page);
1975         struct node_info ni;
1976
1977         /* 1: invalidate the previous xattr nid */
1978         if (!prev_xnid)
1979                 goto recover_xnid;
1980
1981         /* Deallocate node address */
1982         get_node_info(sbi, prev_xnid, &ni);
1983         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1984         invalidate_blocks(sbi, ni.blk_addr);
1985         dec_valid_node_count(sbi, inode);
1986         set_node_addr(sbi, &ni, NULL_ADDR, false);
1987
1988 recover_xnid:
1989         /* 2: allocate new xattr nid */
1990         if (unlikely(!inc_valid_node_count(sbi, inode)))
1991                 f2fs_bug_on(sbi, 1);
1992
1993         remove_free_nid(NM_I(sbi), new_xnid);
1994         get_node_info(sbi, new_xnid, &ni);
1995         ni.ino = inode->i_ino;
1996         set_node_addr(sbi, &ni, NEW_ADDR, false);
1997         f2fs_i_xnid_write(inode, new_xnid);
1998
1999         /* 3: update xattr blkaddr */
2000         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2001         set_node_addr(sbi, &ni, blkaddr, false);
2002 }
2003
2004 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2005 {
2006         struct f2fs_inode *src, *dst;
2007         nid_t ino = ino_of_node(page);
2008         struct node_info old_ni, new_ni;
2009         struct page *ipage;
2010
2011         get_node_info(sbi, ino, &old_ni);
2012
2013         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2014                 return -EINVAL;
2015
2016         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2017         if (!ipage)
2018                 return -ENOMEM;
2019
2020         /* Should not use this inode from free nid list */
2021         remove_free_nid(NM_I(sbi), ino);
2022
2023         if (!PageUptodate(ipage))
2024                 SetPageUptodate(ipage);
2025         fill_node_footer(ipage, ino, ino, 0, true);
2026
2027         src = F2FS_INODE(page);
2028         dst = F2FS_INODE(ipage);
2029
2030         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2031         dst->i_size = 0;
2032         dst->i_blocks = cpu_to_le64(1);
2033         dst->i_links = cpu_to_le32(1);
2034         dst->i_xattr_nid = 0;
2035         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2036
2037         new_ni = old_ni;
2038         new_ni.ino = ino;
2039
2040         if (unlikely(!inc_valid_node_count(sbi, NULL)))
2041                 WARN_ON(1);
2042         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2043         inc_valid_inode_count(sbi);
2044         set_page_dirty(ipage);
2045         f2fs_put_page(ipage, 1);
2046         return 0;
2047 }
2048
2049 int restore_node_summary(struct f2fs_sb_info *sbi,
2050                         unsigned int segno, struct f2fs_summary_block *sum)
2051 {
2052         struct f2fs_node *rn;
2053         struct f2fs_summary *sum_entry;
2054         block_t addr;
2055         int bio_blocks = MAX_BIO_BLOCKS(sbi);
2056         int i, idx, last_offset, nrpages;
2057
2058         /* scan the node segment */
2059         last_offset = sbi->blocks_per_seg;
2060         addr = START_BLOCK(sbi, segno);
2061         sum_entry = &sum->entries[0];
2062
2063         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2064                 nrpages = min(last_offset - i, bio_blocks);
2065
2066                 /* readahead node pages */
2067                 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2068
2069                 for (idx = addr; idx < addr + nrpages; idx++) {
2070                         struct page *page = get_tmp_page(sbi, idx);
2071
2072                         rn = F2FS_NODE(page);
2073                         sum_entry->nid = rn->footer.nid;
2074                         sum_entry->version = 0;
2075                         sum_entry->ofs_in_node = 0;
2076                         sum_entry++;
2077                         f2fs_put_page(page, 1);
2078                 }
2079
2080                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2081                                                         addr + nrpages);
2082         }
2083         return 0;
2084 }
2085
2086 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2087 {
2088         struct f2fs_nm_info *nm_i = NM_I(sbi);
2089         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2090         struct f2fs_journal *journal = curseg->journal;
2091         int i;
2092
2093         down_write(&curseg->journal_rwsem);
2094         for (i = 0; i < nats_in_cursum(journal); i++) {
2095                 struct nat_entry *ne;
2096                 struct f2fs_nat_entry raw_ne;
2097                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2098
2099                 raw_ne = nat_in_journal(journal, i);
2100
2101                 ne = __lookup_nat_cache(nm_i, nid);
2102                 if (!ne) {
2103                         ne = grab_nat_entry(nm_i, nid);
2104                         node_info_from_raw_nat(&ne->ni, &raw_ne);
2105                 }
2106                 __set_nat_cache_dirty(nm_i, ne);
2107         }
2108         update_nats_in_cursum(journal, -i);
2109         up_write(&curseg->journal_rwsem);
2110 }
2111
2112 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2113                                                 struct list_head *head, int max)
2114 {
2115         struct nat_entry_set *cur;
2116
2117         if (nes->entry_cnt >= max)
2118                 goto add_out;
2119
2120         list_for_each_entry(cur, head, set_list) {
2121                 if (cur->entry_cnt >= nes->entry_cnt) {
2122                         list_add(&nes->set_list, cur->set_list.prev);
2123                         return;
2124                 }
2125         }
2126 add_out:
2127         list_add_tail(&nes->set_list, head);
2128 }
2129
2130 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2131                                         struct nat_entry_set *set)
2132 {
2133         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2134         struct f2fs_journal *journal = curseg->journal;
2135         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2136         bool to_journal = true;
2137         struct f2fs_nat_block *nat_blk;
2138         struct nat_entry *ne, *cur;
2139         struct page *page = NULL;
2140
2141         /*
2142          * there are two steps to flush nat entries:
2143          * #1, flush nat entries to journal in current hot data summary block.
2144          * #2, flush nat entries to nat page.
2145          */
2146         if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2147                 to_journal = false;
2148
2149         if (to_journal) {
2150                 down_write(&curseg->journal_rwsem);
2151         } else {
2152                 page = get_next_nat_page(sbi, start_nid);
2153                 nat_blk = page_address(page);
2154                 f2fs_bug_on(sbi, !nat_blk);
2155         }
2156
2157         /* flush dirty nats in nat entry set */
2158         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2159                 struct f2fs_nat_entry *raw_ne;
2160                 nid_t nid = nat_get_nid(ne);
2161                 int offset;
2162
2163                 if (nat_get_blkaddr(ne) == NEW_ADDR)
2164                         continue;
2165
2166                 if (to_journal) {
2167                         offset = lookup_journal_in_cursum(journal,
2168                                                         NAT_JOURNAL, nid, 1);
2169                         f2fs_bug_on(sbi, offset < 0);
2170                         raw_ne = &nat_in_journal(journal, offset);
2171                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2172                 } else {
2173                         raw_ne = &nat_blk->entries[nid - start_nid];
2174                 }
2175                 raw_nat_from_node_info(raw_ne, &ne->ni);
2176                 nat_reset_flag(ne);
2177                 __clear_nat_cache_dirty(NM_I(sbi), ne);
2178                 if (nat_get_blkaddr(ne) == NULL_ADDR)
2179                         add_free_nid(sbi, nid, false);
2180         }
2181
2182         if (to_journal)
2183                 up_write(&curseg->journal_rwsem);
2184         else
2185                 f2fs_put_page(page, 1);
2186
2187         f2fs_bug_on(sbi, set->entry_cnt);
2188
2189         radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2190         kmem_cache_free(nat_entry_set_slab, set);
2191 }
2192
2193 /*
2194  * This function is called during the checkpointing process.
2195  */
2196 void flush_nat_entries(struct f2fs_sb_info *sbi)
2197 {
2198         struct f2fs_nm_info *nm_i = NM_I(sbi);
2199         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2200         struct f2fs_journal *journal = curseg->journal;
2201         struct nat_entry_set *setvec[SETVEC_SIZE];
2202         struct nat_entry_set *set, *tmp;
2203         unsigned int found;
2204         nid_t set_idx = 0;
2205         LIST_HEAD(sets);
2206
2207         if (!nm_i->dirty_nat_cnt)
2208                 return;
2209
2210         percpu_down_write(&nm_i->nat_tree_lock);
2211
2212         /*
2213          * if there are no enough space in journal to store dirty nat
2214          * entries, remove all entries from journal and merge them
2215          * into nat entry set.
2216          */
2217         if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2218                 remove_nats_in_journal(sbi);
2219
2220         while ((found = __gang_lookup_nat_set(nm_i,
2221                                         set_idx, SETVEC_SIZE, setvec))) {
2222                 unsigned idx;
2223                 set_idx = setvec[found - 1]->set + 1;
2224                 for (idx = 0; idx < found; idx++)
2225                         __adjust_nat_entry_set(setvec[idx], &sets,
2226                                                 MAX_NAT_JENTRIES(journal));
2227         }
2228
2229         /* flush dirty nats in nat entry set */
2230         list_for_each_entry_safe(set, tmp, &sets, set_list)
2231                 __flush_nat_entry_set(sbi, set);
2232
2233         percpu_up_write(&nm_i->nat_tree_lock);
2234
2235         f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2236 }
2237
2238 static int init_node_manager(struct f2fs_sb_info *sbi)
2239 {
2240         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2241         struct f2fs_nm_info *nm_i = NM_I(sbi);
2242         unsigned char *version_bitmap;
2243         unsigned int nat_segs, nat_blocks;
2244
2245         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2246
2247         /* segment_count_nat includes pair segment so divide to 2. */
2248         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2249         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2250
2251         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2252
2253         /* not used nids: 0, node, meta, (and root counted as valid node) */
2254         nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2255         nm_i->fcnt = 0;
2256         nm_i->nat_cnt = 0;
2257         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2258         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2259         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2260
2261         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2262         INIT_LIST_HEAD(&nm_i->free_nid_list);
2263         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2264         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2265         INIT_LIST_HEAD(&nm_i->nat_entries);
2266
2267         mutex_init(&nm_i->build_lock);
2268         spin_lock_init(&nm_i->free_nid_list_lock);
2269         if (percpu_init_rwsem(&nm_i->nat_tree_lock))
2270                 return -ENOMEM;
2271
2272         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2273         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2274         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2275         if (!version_bitmap)
2276                 return -EFAULT;
2277
2278         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2279                                         GFP_KERNEL);
2280         if (!nm_i->nat_bitmap)
2281                 return -ENOMEM;
2282         return 0;
2283 }
2284
2285 int build_node_manager(struct f2fs_sb_info *sbi)
2286 {
2287         int err;
2288
2289         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2290         if (!sbi->nm_info)
2291                 return -ENOMEM;
2292
2293         err = init_node_manager(sbi);
2294         if (err)
2295                 return err;
2296
2297         build_free_nids(sbi);
2298         return 0;
2299 }
2300
2301 void destroy_node_manager(struct f2fs_sb_info *sbi)
2302 {
2303         struct f2fs_nm_info *nm_i = NM_I(sbi);
2304         struct free_nid *i, *next_i;
2305         struct nat_entry *natvec[NATVEC_SIZE];
2306         struct nat_entry_set *setvec[SETVEC_SIZE];
2307         nid_t nid = 0;
2308         unsigned int found;
2309
2310         if (!nm_i)
2311                 return;
2312
2313         /* destroy free nid list */
2314         spin_lock(&nm_i->free_nid_list_lock);
2315         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2316                 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2317                 __del_from_free_nid_list(nm_i, i);
2318                 nm_i->fcnt--;
2319                 spin_unlock(&nm_i->free_nid_list_lock);
2320                 kmem_cache_free(free_nid_slab, i);
2321                 spin_lock(&nm_i->free_nid_list_lock);
2322         }
2323         f2fs_bug_on(sbi, nm_i->fcnt);
2324         spin_unlock(&nm_i->free_nid_list_lock);
2325
2326         /* destroy nat cache */
2327         percpu_down_write(&nm_i->nat_tree_lock);
2328         while ((found = __gang_lookup_nat_cache(nm_i,
2329                                         nid, NATVEC_SIZE, natvec))) {
2330                 unsigned idx;
2331
2332                 nid = nat_get_nid(natvec[found - 1]) + 1;
2333                 for (idx = 0; idx < found; idx++)
2334                         __del_from_nat_cache(nm_i, natvec[idx]);
2335         }
2336         f2fs_bug_on(sbi, nm_i->nat_cnt);
2337
2338         /* destroy nat set cache */
2339         nid = 0;
2340         while ((found = __gang_lookup_nat_set(nm_i,
2341                                         nid, SETVEC_SIZE, setvec))) {
2342                 unsigned idx;
2343
2344                 nid = setvec[found - 1]->set + 1;
2345                 for (idx = 0; idx < found; idx++) {
2346                         /* entry_cnt is not zero, when cp_error was occurred */
2347                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2348                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2349                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2350                 }
2351         }
2352         percpu_up_write(&nm_i->nat_tree_lock);
2353
2354         percpu_free_rwsem(&nm_i->nat_tree_lock);
2355         kfree(nm_i->nat_bitmap);
2356         sbi->nm_info = NULL;
2357         kfree(nm_i);
2358 }
2359
2360 int __init create_node_manager_caches(void)
2361 {
2362         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2363                         sizeof(struct nat_entry));
2364         if (!nat_entry_slab)
2365                 goto fail;
2366
2367         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2368                         sizeof(struct free_nid));
2369         if (!free_nid_slab)
2370                 goto destroy_nat_entry;
2371
2372         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2373                         sizeof(struct nat_entry_set));
2374         if (!nat_entry_set_slab)
2375                 goto destroy_free_nid;
2376         return 0;
2377
2378 destroy_free_nid:
2379         kmem_cache_destroy(free_nid_slab);
2380 destroy_nat_entry:
2381         kmem_cache_destroy(nat_entry_slab);
2382 fail:
2383         return -ENOMEM;
2384 }
2385
2386 void destroy_node_manager_caches(void)
2387 {
2388         kmem_cache_destroy(nat_entry_set_slab);
2389         kmem_cache_destroy(free_nid_slab);
2390         kmem_cache_destroy(nat_entry_slab);
2391 }