arm64: dts: ls2080a: update the DTS for QSPI and DSPI support
[cascardo/linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34         unsigned long tmp = 0;
35         int shift = 24, idx = 0;
36
37 #if BITS_PER_LONG == 64
38         shift = 56;
39 #endif
40         while (shift >= 0) {
41                 tmp |= (unsigned long)str[idx++] << shift;
42                 shift -= BITS_PER_BYTE;
43         }
44         return tmp;
45 }
46
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53         int num = 0;
54
55 #if BITS_PER_LONG == 64
56         if ((word & 0xffffffff00000000UL) == 0)
57                 num += 32;
58         else
59                 word >>= 32;
60 #endif
61         if ((word & 0xffff0000) == 0)
62                 num += 16;
63         else
64                 word >>= 16;
65
66         if ((word & 0xff00) == 0)
67                 num += 8;
68         else
69                 word >>= 8;
70
71         if ((word & 0xf0) == 0)
72                 num += 4;
73         else
74                 word >>= 4;
75
76         if ((word & 0xc) == 0)
77                 num += 2;
78         else
79                 word >>= 2;
80
81         if ((word & 0x2) == 0)
82                 num += 1;
83         return num;
84 }
85
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * @size must be integral times of unsigned long.
90  * Example:
91  *                             MSB <--> LSB
92  *   f2fs_set_bit(0, bitmap) => 1000 0000
93  *   f2fs_set_bit(7, bitmap) => 0000 0001
94  */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96                         unsigned long size, unsigned long offset)
97 {
98         const unsigned long *p = addr + BIT_WORD(offset);
99         unsigned long result = size;
100         unsigned long tmp;
101
102         if (offset >= size)
103                 return size;
104
105         size -= (offset & ~(BITS_PER_LONG - 1));
106         offset %= BITS_PER_LONG;
107
108         while (1) {
109                 if (*p == 0)
110                         goto pass;
111
112                 tmp = __reverse_ulong((unsigned char *)p);
113
114                 tmp &= ~0UL >> offset;
115                 if (size < BITS_PER_LONG)
116                         tmp &= (~0UL << (BITS_PER_LONG - size));
117                 if (tmp)
118                         goto found;
119 pass:
120                 if (size <= BITS_PER_LONG)
121                         break;
122                 size -= BITS_PER_LONG;
123                 offset = 0;
124                 p++;
125         }
126         return result;
127 found:
128         return result - size + __reverse_ffs(tmp);
129 }
130
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132                         unsigned long size, unsigned long offset)
133 {
134         const unsigned long *p = addr + BIT_WORD(offset);
135         unsigned long result = size;
136         unsigned long tmp;
137
138         if (offset >= size)
139                 return size;
140
141         size -= (offset & ~(BITS_PER_LONG - 1));
142         offset %= BITS_PER_LONG;
143
144         while (1) {
145                 if (*p == ~0UL)
146                         goto pass;
147
148                 tmp = __reverse_ulong((unsigned char *)p);
149
150                 if (offset)
151                         tmp |= ~0UL << (BITS_PER_LONG - offset);
152                 if (size < BITS_PER_LONG)
153                         tmp |= ~0UL >> size;
154                 if (tmp != ~0UL)
155                         goto found;
156 pass:
157                 if (size <= BITS_PER_LONG)
158                         break;
159                 size -= BITS_PER_LONG;
160                 offset = 0;
161                 p++;
162         }
163         return result;
164 found:
165         return result - size + __reverse_ffz(tmp);
166 }
167
168 void register_inmem_page(struct inode *inode, struct page *page)
169 {
170         struct f2fs_inode_info *fi = F2FS_I(inode);
171         struct inmem_pages *new;
172
173         f2fs_trace_pid(page);
174
175         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
176         SetPagePrivate(page);
177
178         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
179
180         /* add atomic page indices to the list */
181         new->page = page;
182         INIT_LIST_HEAD(&new->list);
183
184         /* increase reference count with clean state */
185         mutex_lock(&fi->inmem_lock);
186         get_page(page);
187         list_add_tail(&new->list, &fi->inmem_pages);
188         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
189         mutex_unlock(&fi->inmem_lock);
190
191         trace_f2fs_register_inmem_page(page, INMEM);
192 }
193
194 static int __revoke_inmem_pages(struct inode *inode,
195                                 struct list_head *head, bool drop, bool recover)
196 {
197         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
198         struct inmem_pages *cur, *tmp;
199         int err = 0;
200
201         list_for_each_entry_safe(cur, tmp, head, list) {
202                 struct page *page = cur->page;
203
204                 if (drop)
205                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
206
207                 lock_page(page);
208
209                 if (recover) {
210                         struct dnode_of_data dn;
211                         struct node_info ni;
212
213                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
214
215                         set_new_dnode(&dn, inode, NULL, NULL, 0);
216                         if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
217                                 err = -EAGAIN;
218                                 goto next;
219                         }
220                         get_node_info(sbi, dn.nid, &ni);
221                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
222                                         cur->old_addr, ni.version, true, true);
223                         f2fs_put_dnode(&dn);
224                 }
225 next:
226                 ClearPageUptodate(page);
227                 set_page_private(page, 0);
228                 ClearPageUptodate(page);
229                 f2fs_put_page(page, 1);
230
231                 list_del(&cur->list);
232                 kmem_cache_free(inmem_entry_slab, cur);
233                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
234         }
235         return err;
236 }
237
238 void drop_inmem_pages(struct inode *inode)
239 {
240         struct f2fs_inode_info *fi = F2FS_I(inode);
241
242         mutex_lock(&fi->inmem_lock);
243         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
244         mutex_unlock(&fi->inmem_lock);
245 }
246
247 static int __commit_inmem_pages(struct inode *inode,
248                                         struct list_head *revoke_list)
249 {
250         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
251         struct f2fs_inode_info *fi = F2FS_I(inode);
252         struct inmem_pages *cur, *tmp;
253         struct f2fs_io_info fio = {
254                 .sbi = sbi,
255                 .type = DATA,
256                 .rw = WRITE_SYNC | REQ_PRIO,
257                 .encrypted_page = NULL,
258         };
259         bool submit_bio = false;
260         int err = 0;
261
262         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
263                 struct page *page = cur->page;
264
265                 lock_page(page);
266                 if (page->mapping == inode->i_mapping) {
267                         trace_f2fs_commit_inmem_page(page, INMEM);
268
269                         set_page_dirty(page);
270                         f2fs_wait_on_page_writeback(page, DATA, true);
271                         if (clear_page_dirty_for_io(page))
272                                 inode_dec_dirty_pages(inode);
273
274                         fio.page = page;
275                         err = do_write_data_page(&fio);
276                         if (err) {
277                                 unlock_page(page);
278                                 break;
279                         }
280
281                         /* record old blkaddr for revoking */
282                         cur->old_addr = fio.old_blkaddr;
283
284                         clear_cold_data(page);
285                         submit_bio = true;
286                 }
287                 unlock_page(page);
288                 list_move_tail(&cur->list, revoke_list);
289         }
290
291         if (submit_bio)
292                 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
293
294         if (!err)
295                 __revoke_inmem_pages(inode, revoke_list, false, false);
296
297         return err;
298 }
299
300 int commit_inmem_pages(struct inode *inode)
301 {
302         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
303         struct f2fs_inode_info *fi = F2FS_I(inode);
304         struct list_head revoke_list;
305         int err;
306
307         INIT_LIST_HEAD(&revoke_list);
308         f2fs_balance_fs(sbi, true);
309         f2fs_lock_op(sbi);
310
311         mutex_lock(&fi->inmem_lock);
312         err = __commit_inmem_pages(inode, &revoke_list);
313         if (err) {
314                 int ret;
315                 /*
316                  * try to revoke all committed pages, but still we could fail
317                  * due to no memory or other reason, if that happened, EAGAIN
318                  * will be returned, which means in such case, transaction is
319                  * already not integrity, caller should use journal to do the
320                  * recovery or rewrite & commit last transaction. For other
321                  * error number, revoking was done by filesystem itself.
322                  */
323                 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
324                 if (ret)
325                         err = ret;
326
327                 /* drop all uncommitted pages */
328                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
329         }
330         mutex_unlock(&fi->inmem_lock);
331
332         f2fs_unlock_op(sbi);
333         return err;
334 }
335
336 /*
337  * This function balances dirty node and dentry pages.
338  * In addition, it controls garbage collection.
339  */
340 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
341 {
342         if (!need)
343                 return;
344         /*
345          * We should do GC or end up with checkpoint, if there are so many dirty
346          * dir/node pages without enough free segments.
347          */
348         if (has_not_enough_free_secs(sbi, 0)) {
349                 mutex_lock(&sbi->gc_mutex);
350                 f2fs_gc(sbi, false);
351         }
352 }
353
354 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
355 {
356         /* try to shrink extent cache when there is no enough memory */
357         if (!available_free_memory(sbi, EXTENT_CACHE))
358                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
359
360         /* check the # of cached NAT entries */
361         if (!available_free_memory(sbi, NAT_ENTRIES))
362                 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
363
364         if (!available_free_memory(sbi, FREE_NIDS))
365                 try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
366
367         /* checkpoint is the only way to shrink partial cached entries */
368         if (!available_free_memory(sbi, NAT_ENTRIES) ||
369                         !available_free_memory(sbi, INO_ENTRIES) ||
370                         excess_prefree_segs(sbi) ||
371                         excess_dirty_nats(sbi) ||
372                         (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
373                 if (test_opt(sbi, DATA_FLUSH)) {
374                         struct blk_plug plug;
375
376                         blk_start_plug(&plug);
377                         sync_dirty_inodes(sbi, FILE_INODE);
378                         blk_finish_plug(&plug);
379                 }
380                 f2fs_sync_fs(sbi->sb, true);
381                 stat_inc_bg_cp_count(sbi->stat_info);
382         }
383 }
384
385 static int issue_flush_thread(void *data)
386 {
387         struct f2fs_sb_info *sbi = data;
388         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
389         wait_queue_head_t *q = &fcc->flush_wait_queue;
390 repeat:
391         if (kthread_should_stop())
392                 return 0;
393
394         if (!llist_empty(&fcc->issue_list)) {
395                 struct bio *bio;
396                 struct flush_cmd *cmd, *next;
397                 int ret;
398
399                 bio = f2fs_bio_alloc(0);
400
401                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
402                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
403
404                 bio->bi_bdev = sbi->sb->s_bdev;
405                 ret = submit_bio_wait(WRITE_FLUSH, bio);
406
407                 llist_for_each_entry_safe(cmd, next,
408                                           fcc->dispatch_list, llnode) {
409                         cmd->ret = ret;
410                         complete(&cmd->wait);
411                 }
412                 bio_put(bio);
413                 fcc->dispatch_list = NULL;
414         }
415
416         wait_event_interruptible(*q,
417                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
418         goto repeat;
419 }
420
421 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
422 {
423         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
424         struct flush_cmd cmd;
425
426         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
427                                         test_opt(sbi, FLUSH_MERGE));
428
429         if (test_opt(sbi, NOBARRIER))
430                 return 0;
431
432         if (!test_opt(sbi, FLUSH_MERGE)) {
433                 struct bio *bio = f2fs_bio_alloc(0);
434                 int ret;
435
436                 bio->bi_bdev = sbi->sb->s_bdev;
437                 ret = submit_bio_wait(WRITE_FLUSH, bio);
438                 bio_put(bio);
439                 return ret;
440         }
441
442         init_completion(&cmd.wait);
443
444         llist_add(&cmd.llnode, &fcc->issue_list);
445
446         if (!fcc->dispatch_list)
447                 wake_up(&fcc->flush_wait_queue);
448
449         wait_for_completion(&cmd.wait);
450
451         return cmd.ret;
452 }
453
454 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
455 {
456         dev_t dev = sbi->sb->s_bdev->bd_dev;
457         struct flush_cmd_control *fcc;
458         int err = 0;
459
460         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
461         if (!fcc)
462                 return -ENOMEM;
463         init_waitqueue_head(&fcc->flush_wait_queue);
464         init_llist_head(&fcc->issue_list);
465         SM_I(sbi)->cmd_control_info = fcc;
466         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
467                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
468         if (IS_ERR(fcc->f2fs_issue_flush)) {
469                 err = PTR_ERR(fcc->f2fs_issue_flush);
470                 kfree(fcc);
471                 SM_I(sbi)->cmd_control_info = NULL;
472                 return err;
473         }
474
475         return err;
476 }
477
478 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
479 {
480         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
481
482         if (fcc && fcc->f2fs_issue_flush)
483                 kthread_stop(fcc->f2fs_issue_flush);
484         kfree(fcc);
485         SM_I(sbi)->cmd_control_info = NULL;
486 }
487
488 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
489                 enum dirty_type dirty_type)
490 {
491         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
492
493         /* need not be added */
494         if (IS_CURSEG(sbi, segno))
495                 return;
496
497         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
498                 dirty_i->nr_dirty[dirty_type]++;
499
500         if (dirty_type == DIRTY) {
501                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
502                 enum dirty_type t = sentry->type;
503
504                 if (unlikely(t >= DIRTY)) {
505                         f2fs_bug_on(sbi, 1);
506                         return;
507                 }
508                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
509                         dirty_i->nr_dirty[t]++;
510         }
511 }
512
513 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
514                 enum dirty_type dirty_type)
515 {
516         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
517
518         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
519                 dirty_i->nr_dirty[dirty_type]--;
520
521         if (dirty_type == DIRTY) {
522                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
523                 enum dirty_type t = sentry->type;
524
525                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
526                         dirty_i->nr_dirty[t]--;
527
528                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
529                         clear_bit(GET_SECNO(sbi, segno),
530                                                 dirty_i->victim_secmap);
531         }
532 }
533
534 /*
535  * Should not occur error such as -ENOMEM.
536  * Adding dirty entry into seglist is not critical operation.
537  * If a given segment is one of current working segments, it won't be added.
538  */
539 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
540 {
541         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
542         unsigned short valid_blocks;
543
544         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
545                 return;
546
547         mutex_lock(&dirty_i->seglist_lock);
548
549         valid_blocks = get_valid_blocks(sbi, segno, 0);
550
551         if (valid_blocks == 0) {
552                 __locate_dirty_segment(sbi, segno, PRE);
553                 __remove_dirty_segment(sbi, segno, DIRTY);
554         } else if (valid_blocks < sbi->blocks_per_seg) {
555                 __locate_dirty_segment(sbi, segno, DIRTY);
556         } else {
557                 /* Recovery routine with SSR needs this */
558                 __remove_dirty_segment(sbi, segno, DIRTY);
559         }
560
561         mutex_unlock(&dirty_i->seglist_lock);
562 }
563
564 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
565                                 block_t blkstart, block_t blklen)
566 {
567         sector_t start = SECTOR_FROM_BLOCK(blkstart);
568         sector_t len = SECTOR_FROM_BLOCK(blklen);
569         struct seg_entry *se;
570         unsigned int offset;
571         block_t i;
572
573         for (i = blkstart; i < blkstart + blklen; i++) {
574                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
575                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
576
577                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
578                         sbi->discard_blks--;
579         }
580         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
581         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
582 }
583
584 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
585 {
586         int err = -EOPNOTSUPP;
587
588         if (test_opt(sbi, DISCARD)) {
589                 struct seg_entry *se = get_seg_entry(sbi,
590                                 GET_SEGNO(sbi, blkaddr));
591                 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
592
593                 if (f2fs_test_bit(offset, se->discard_map))
594                         return false;
595
596                 err = f2fs_issue_discard(sbi, blkaddr, 1);
597         }
598
599         if (err) {
600                 update_meta_page(sbi, NULL, blkaddr);
601                 return true;
602         }
603         return false;
604 }
605
606 static void __add_discard_entry(struct f2fs_sb_info *sbi,
607                 struct cp_control *cpc, struct seg_entry *se,
608                 unsigned int start, unsigned int end)
609 {
610         struct list_head *head = &SM_I(sbi)->discard_list;
611         struct discard_entry *new, *last;
612
613         if (!list_empty(head)) {
614                 last = list_last_entry(head, struct discard_entry, list);
615                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
616                                                 last->blkaddr + last->len) {
617                         last->len += end - start;
618                         goto done;
619                 }
620         }
621
622         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
623         INIT_LIST_HEAD(&new->list);
624         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
625         new->len = end - start;
626         list_add_tail(&new->list, head);
627 done:
628         SM_I(sbi)->nr_discards += end - start;
629 }
630
631 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
632 {
633         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
634         int max_blocks = sbi->blocks_per_seg;
635         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
636         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
637         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
638         unsigned long *discard_map = (unsigned long *)se->discard_map;
639         unsigned long *dmap = SIT_I(sbi)->tmp_map;
640         unsigned int start = 0, end = -1;
641         bool force = (cpc->reason == CP_DISCARD);
642         int i;
643
644         if (se->valid_blocks == max_blocks)
645                 return;
646
647         if (!force) {
648                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
649                     SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
650                         return;
651         }
652
653         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
654         for (i = 0; i < entries; i++)
655                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
656                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
657
658         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
659                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
660                 if (start >= max_blocks)
661                         break;
662
663                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
664                 __add_discard_entry(sbi, cpc, se, start, end);
665         }
666 }
667
668 void release_discard_addrs(struct f2fs_sb_info *sbi)
669 {
670         struct list_head *head = &(SM_I(sbi)->discard_list);
671         struct discard_entry *entry, *this;
672
673         /* drop caches */
674         list_for_each_entry_safe(entry, this, head, list) {
675                 list_del(&entry->list);
676                 kmem_cache_free(discard_entry_slab, entry);
677         }
678 }
679
680 /*
681  * Should call clear_prefree_segments after checkpoint is done.
682  */
683 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
684 {
685         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
686         unsigned int segno;
687
688         mutex_lock(&dirty_i->seglist_lock);
689         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
690                 __set_test_and_free(sbi, segno);
691         mutex_unlock(&dirty_i->seglist_lock);
692 }
693
694 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
695 {
696         struct list_head *head = &(SM_I(sbi)->discard_list);
697         struct discard_entry *entry, *this;
698         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
699         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
700         unsigned int start = 0, end = -1;
701
702         mutex_lock(&dirty_i->seglist_lock);
703
704         while (1) {
705                 int i;
706                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
707                 if (start >= MAIN_SEGS(sbi))
708                         break;
709                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
710                                                                 start + 1);
711
712                 for (i = start; i < end; i++)
713                         clear_bit(i, prefree_map);
714
715                 dirty_i->nr_dirty[PRE] -= end - start;
716
717                 if (!test_opt(sbi, DISCARD))
718                         continue;
719
720                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
721                                 (end - start) << sbi->log_blocks_per_seg);
722         }
723         mutex_unlock(&dirty_i->seglist_lock);
724
725         /* send small discards */
726         list_for_each_entry_safe(entry, this, head, list) {
727                 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
728                         goto skip;
729                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
730                 cpc->trimmed += entry->len;
731 skip:
732                 list_del(&entry->list);
733                 SM_I(sbi)->nr_discards -= entry->len;
734                 kmem_cache_free(discard_entry_slab, entry);
735         }
736 }
737
738 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
739 {
740         struct sit_info *sit_i = SIT_I(sbi);
741
742         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
743                 sit_i->dirty_sentries++;
744                 return false;
745         }
746
747         return true;
748 }
749
750 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
751                                         unsigned int segno, int modified)
752 {
753         struct seg_entry *se = get_seg_entry(sbi, segno);
754         se->type = type;
755         if (modified)
756                 __mark_sit_entry_dirty(sbi, segno);
757 }
758
759 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
760 {
761         struct seg_entry *se;
762         unsigned int segno, offset;
763         long int new_vblocks;
764
765         segno = GET_SEGNO(sbi, blkaddr);
766
767         se = get_seg_entry(sbi, segno);
768         new_vblocks = se->valid_blocks + del;
769         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
770
771         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
772                                 (new_vblocks > sbi->blocks_per_seg)));
773
774         se->valid_blocks = new_vblocks;
775         se->mtime = get_mtime(sbi);
776         SIT_I(sbi)->max_mtime = se->mtime;
777
778         /* Update valid block bitmap */
779         if (del > 0) {
780                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
781                         f2fs_bug_on(sbi, 1);
782                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
783                         sbi->discard_blks--;
784         } else {
785                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
786                         f2fs_bug_on(sbi, 1);
787                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
788                         sbi->discard_blks++;
789         }
790         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
791                 se->ckpt_valid_blocks += del;
792
793         __mark_sit_entry_dirty(sbi, segno);
794
795         /* update total number of valid blocks to be written in ckpt area */
796         SIT_I(sbi)->written_valid_blocks += del;
797
798         if (sbi->segs_per_sec > 1)
799                 get_sec_entry(sbi, segno)->valid_blocks += del;
800 }
801
802 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
803 {
804         update_sit_entry(sbi, new, 1);
805         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
806                 update_sit_entry(sbi, old, -1);
807
808         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
809         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
810 }
811
812 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
813 {
814         unsigned int segno = GET_SEGNO(sbi, addr);
815         struct sit_info *sit_i = SIT_I(sbi);
816
817         f2fs_bug_on(sbi, addr == NULL_ADDR);
818         if (addr == NEW_ADDR)
819                 return;
820
821         /* add it into sit main buffer */
822         mutex_lock(&sit_i->sentry_lock);
823
824         update_sit_entry(sbi, addr, -1);
825
826         /* add it into dirty seglist */
827         locate_dirty_segment(sbi, segno);
828
829         mutex_unlock(&sit_i->sentry_lock);
830 }
831
832 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
833 {
834         struct sit_info *sit_i = SIT_I(sbi);
835         unsigned int segno, offset;
836         struct seg_entry *se;
837         bool is_cp = false;
838
839         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
840                 return true;
841
842         mutex_lock(&sit_i->sentry_lock);
843
844         segno = GET_SEGNO(sbi, blkaddr);
845         se = get_seg_entry(sbi, segno);
846         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
847
848         if (f2fs_test_bit(offset, se->ckpt_valid_map))
849                 is_cp = true;
850
851         mutex_unlock(&sit_i->sentry_lock);
852
853         return is_cp;
854 }
855
856 /*
857  * This function should be resided under the curseg_mutex lock
858  */
859 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
860                                         struct f2fs_summary *sum)
861 {
862         struct curseg_info *curseg = CURSEG_I(sbi, type);
863         void *addr = curseg->sum_blk;
864         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
865         memcpy(addr, sum, sizeof(struct f2fs_summary));
866 }
867
868 /*
869  * Calculate the number of current summary pages for writing
870  */
871 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
872 {
873         int valid_sum_count = 0;
874         int i, sum_in_page;
875
876         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
877                 if (sbi->ckpt->alloc_type[i] == SSR)
878                         valid_sum_count += sbi->blocks_per_seg;
879                 else {
880                         if (for_ra)
881                                 valid_sum_count += le16_to_cpu(
882                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
883                         else
884                                 valid_sum_count += curseg_blkoff(sbi, i);
885                 }
886         }
887
888         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
889                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
890         if (valid_sum_count <= sum_in_page)
891                 return 1;
892         else if ((valid_sum_count - sum_in_page) <=
893                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
894                 return 2;
895         return 3;
896 }
897
898 /*
899  * Caller should put this summary page
900  */
901 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
902 {
903         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
904 }
905
906 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
907 {
908         struct page *page = grab_meta_page(sbi, blk_addr);
909         void *dst = page_address(page);
910
911         if (src)
912                 memcpy(dst, src, PAGE_CACHE_SIZE);
913         else
914                 memset(dst, 0, PAGE_CACHE_SIZE);
915         set_page_dirty(page);
916         f2fs_put_page(page, 1);
917 }
918
919 static void write_sum_page(struct f2fs_sb_info *sbi,
920                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
921 {
922         update_meta_page(sbi, (void *)sum_blk, blk_addr);
923 }
924
925 static void write_current_sum_page(struct f2fs_sb_info *sbi,
926                                                 int type, block_t blk_addr)
927 {
928         struct curseg_info *curseg = CURSEG_I(sbi, type);
929         struct page *page = grab_meta_page(sbi, blk_addr);
930         struct f2fs_summary_block *src = curseg->sum_blk;
931         struct f2fs_summary_block *dst;
932
933         dst = (struct f2fs_summary_block *)page_address(page);
934
935         mutex_lock(&curseg->curseg_mutex);
936
937         down_read(&curseg->journal_rwsem);
938         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
939         up_read(&curseg->journal_rwsem);
940
941         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
942         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
943
944         mutex_unlock(&curseg->curseg_mutex);
945
946         set_page_dirty(page);
947         f2fs_put_page(page, 1);
948 }
949
950 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
951 {
952         struct curseg_info *curseg = CURSEG_I(sbi, type);
953         unsigned int segno = curseg->segno + 1;
954         struct free_segmap_info *free_i = FREE_I(sbi);
955
956         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
957                 return !test_bit(segno, free_i->free_segmap);
958         return 0;
959 }
960
961 /*
962  * Find a new segment from the free segments bitmap to right order
963  * This function should be returned with success, otherwise BUG
964  */
965 static void get_new_segment(struct f2fs_sb_info *sbi,
966                         unsigned int *newseg, bool new_sec, int dir)
967 {
968         struct free_segmap_info *free_i = FREE_I(sbi);
969         unsigned int segno, secno, zoneno;
970         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
971         unsigned int hint = *newseg / sbi->segs_per_sec;
972         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
973         unsigned int left_start = hint;
974         bool init = true;
975         int go_left = 0;
976         int i;
977
978         spin_lock(&free_i->segmap_lock);
979
980         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
981                 segno = find_next_zero_bit(free_i->free_segmap,
982                                 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
983                 if (segno < (hint + 1) * sbi->segs_per_sec)
984                         goto got_it;
985         }
986 find_other_zone:
987         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
988         if (secno >= MAIN_SECS(sbi)) {
989                 if (dir == ALLOC_RIGHT) {
990                         secno = find_next_zero_bit(free_i->free_secmap,
991                                                         MAIN_SECS(sbi), 0);
992                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
993                 } else {
994                         go_left = 1;
995                         left_start = hint - 1;
996                 }
997         }
998         if (go_left == 0)
999                 goto skip_left;
1000
1001         while (test_bit(left_start, free_i->free_secmap)) {
1002                 if (left_start > 0) {
1003                         left_start--;
1004                         continue;
1005                 }
1006                 left_start = find_next_zero_bit(free_i->free_secmap,
1007                                                         MAIN_SECS(sbi), 0);
1008                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1009                 break;
1010         }
1011         secno = left_start;
1012 skip_left:
1013         hint = secno;
1014         segno = secno * sbi->segs_per_sec;
1015         zoneno = secno / sbi->secs_per_zone;
1016
1017         /* give up on finding another zone */
1018         if (!init)
1019                 goto got_it;
1020         if (sbi->secs_per_zone == 1)
1021                 goto got_it;
1022         if (zoneno == old_zoneno)
1023                 goto got_it;
1024         if (dir == ALLOC_LEFT) {
1025                 if (!go_left && zoneno + 1 >= total_zones)
1026                         goto got_it;
1027                 if (go_left && zoneno == 0)
1028                         goto got_it;
1029         }
1030         for (i = 0; i < NR_CURSEG_TYPE; i++)
1031                 if (CURSEG_I(sbi, i)->zone == zoneno)
1032                         break;
1033
1034         if (i < NR_CURSEG_TYPE) {
1035                 /* zone is in user, try another */
1036                 if (go_left)
1037                         hint = zoneno * sbi->secs_per_zone - 1;
1038                 else if (zoneno + 1 >= total_zones)
1039                         hint = 0;
1040                 else
1041                         hint = (zoneno + 1) * sbi->secs_per_zone;
1042                 init = false;
1043                 goto find_other_zone;
1044         }
1045 got_it:
1046         /* set it as dirty segment in free segmap */
1047         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1048         __set_inuse(sbi, segno);
1049         *newseg = segno;
1050         spin_unlock(&free_i->segmap_lock);
1051 }
1052
1053 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1054 {
1055         struct curseg_info *curseg = CURSEG_I(sbi, type);
1056         struct summary_footer *sum_footer;
1057
1058         curseg->segno = curseg->next_segno;
1059         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1060         curseg->next_blkoff = 0;
1061         curseg->next_segno = NULL_SEGNO;
1062
1063         sum_footer = &(curseg->sum_blk->footer);
1064         memset(sum_footer, 0, sizeof(struct summary_footer));
1065         if (IS_DATASEG(type))
1066                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1067         if (IS_NODESEG(type))
1068                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1069         __set_sit_entry_type(sbi, type, curseg->segno, modified);
1070 }
1071
1072 /*
1073  * Allocate a current working segment.
1074  * This function always allocates a free segment in LFS manner.
1075  */
1076 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1077 {
1078         struct curseg_info *curseg = CURSEG_I(sbi, type);
1079         unsigned int segno = curseg->segno;
1080         int dir = ALLOC_LEFT;
1081
1082         write_sum_page(sbi, curseg->sum_blk,
1083                                 GET_SUM_BLOCK(sbi, segno));
1084         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1085                 dir = ALLOC_RIGHT;
1086
1087         if (test_opt(sbi, NOHEAP))
1088                 dir = ALLOC_RIGHT;
1089
1090         get_new_segment(sbi, &segno, new_sec, dir);
1091         curseg->next_segno = segno;
1092         reset_curseg(sbi, type, 1);
1093         curseg->alloc_type = LFS;
1094 }
1095
1096 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1097                         struct curseg_info *seg, block_t start)
1098 {
1099         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1100         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1101         unsigned long *target_map = SIT_I(sbi)->tmp_map;
1102         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1103         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1104         int i, pos;
1105
1106         for (i = 0; i < entries; i++)
1107                 target_map[i] = ckpt_map[i] | cur_map[i];
1108
1109         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1110
1111         seg->next_blkoff = pos;
1112 }
1113
1114 /*
1115  * If a segment is written by LFS manner, next block offset is just obtained
1116  * by increasing the current block offset. However, if a segment is written by
1117  * SSR manner, next block offset obtained by calling __next_free_blkoff
1118  */
1119 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1120                                 struct curseg_info *seg)
1121 {
1122         if (seg->alloc_type == SSR)
1123                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1124         else
1125                 seg->next_blkoff++;
1126 }
1127
1128 /*
1129  * This function always allocates a used segment(from dirty seglist) by SSR
1130  * manner, so it should recover the existing segment information of valid blocks
1131  */
1132 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1133 {
1134         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1135         struct curseg_info *curseg = CURSEG_I(sbi, type);
1136         unsigned int new_segno = curseg->next_segno;
1137         struct f2fs_summary_block *sum_node;
1138         struct page *sum_page;
1139
1140         write_sum_page(sbi, curseg->sum_blk,
1141                                 GET_SUM_BLOCK(sbi, curseg->segno));
1142         __set_test_and_inuse(sbi, new_segno);
1143
1144         mutex_lock(&dirty_i->seglist_lock);
1145         __remove_dirty_segment(sbi, new_segno, PRE);
1146         __remove_dirty_segment(sbi, new_segno, DIRTY);
1147         mutex_unlock(&dirty_i->seglist_lock);
1148
1149         reset_curseg(sbi, type, 1);
1150         curseg->alloc_type = SSR;
1151         __next_free_blkoff(sbi, curseg, 0);
1152
1153         if (reuse) {
1154                 sum_page = get_sum_page(sbi, new_segno);
1155                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1156                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1157                 f2fs_put_page(sum_page, 1);
1158         }
1159 }
1160
1161 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1162 {
1163         struct curseg_info *curseg = CURSEG_I(sbi, type);
1164         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1165
1166         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1167                 return v_ops->get_victim(sbi,
1168                                 &(curseg)->next_segno, BG_GC, type, SSR);
1169
1170         /* For data segments, let's do SSR more intensively */
1171         for (; type >= CURSEG_HOT_DATA; type--)
1172                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1173                                                 BG_GC, type, SSR))
1174                         return 1;
1175         return 0;
1176 }
1177
1178 /*
1179  * flush out current segment and replace it with new segment
1180  * This function should be returned with success, otherwise BUG
1181  */
1182 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1183                                                 int type, bool force)
1184 {
1185         struct curseg_info *curseg = CURSEG_I(sbi, type);
1186
1187         if (force)
1188                 new_curseg(sbi, type, true);
1189         else if (type == CURSEG_WARM_NODE)
1190                 new_curseg(sbi, type, false);
1191         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1192                 new_curseg(sbi, type, false);
1193         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1194                 change_curseg(sbi, type, true);
1195         else
1196                 new_curseg(sbi, type, false);
1197
1198         stat_inc_seg_type(sbi, curseg);
1199 }
1200
1201 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1202 {
1203         struct curseg_info *curseg = CURSEG_I(sbi, type);
1204         unsigned int old_segno;
1205
1206         old_segno = curseg->segno;
1207         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1208         locate_dirty_segment(sbi, old_segno);
1209 }
1210
1211 void allocate_new_segments(struct f2fs_sb_info *sbi)
1212 {
1213         int i;
1214
1215         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1216                 __allocate_new_segments(sbi, i);
1217 }
1218
1219 static const struct segment_allocation default_salloc_ops = {
1220         .allocate_segment = allocate_segment_by_default,
1221 };
1222
1223 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1224 {
1225         __u64 start = F2FS_BYTES_TO_BLK(range->start);
1226         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1227         unsigned int start_segno, end_segno;
1228         struct cp_control cpc;
1229         int err = 0;
1230
1231         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1232                 return -EINVAL;
1233
1234         cpc.trimmed = 0;
1235         if (end <= MAIN_BLKADDR(sbi))
1236                 goto out;
1237
1238         /* start/end segment number in main_area */
1239         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1240         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1241                                                 GET_SEGNO(sbi, end);
1242         cpc.reason = CP_DISCARD;
1243         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1244
1245         /* do checkpoint to issue discard commands safely */
1246         for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1247                 cpc.trim_start = start_segno;
1248
1249                 if (sbi->discard_blks == 0)
1250                         break;
1251                 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1252                         cpc.trim_end = end_segno;
1253                 else
1254                         cpc.trim_end = min_t(unsigned int,
1255                                 rounddown(start_segno +
1256                                 BATCHED_TRIM_SEGMENTS(sbi),
1257                                 sbi->segs_per_sec) - 1, end_segno);
1258
1259                 mutex_lock(&sbi->gc_mutex);
1260                 err = write_checkpoint(sbi, &cpc);
1261                 mutex_unlock(&sbi->gc_mutex);
1262         }
1263 out:
1264         range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1265         return err;
1266 }
1267
1268 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1269 {
1270         struct curseg_info *curseg = CURSEG_I(sbi, type);
1271         if (curseg->next_blkoff < sbi->blocks_per_seg)
1272                 return true;
1273         return false;
1274 }
1275
1276 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1277 {
1278         if (p_type == DATA)
1279                 return CURSEG_HOT_DATA;
1280         else
1281                 return CURSEG_HOT_NODE;
1282 }
1283
1284 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1285 {
1286         if (p_type == DATA) {
1287                 struct inode *inode = page->mapping->host;
1288
1289                 if (S_ISDIR(inode->i_mode))
1290                         return CURSEG_HOT_DATA;
1291                 else
1292                         return CURSEG_COLD_DATA;
1293         } else {
1294                 if (IS_DNODE(page) && is_cold_node(page))
1295                         return CURSEG_WARM_NODE;
1296                 else
1297                         return CURSEG_COLD_NODE;
1298         }
1299 }
1300
1301 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1302 {
1303         if (p_type == DATA) {
1304                 struct inode *inode = page->mapping->host;
1305
1306                 if (S_ISDIR(inode->i_mode))
1307                         return CURSEG_HOT_DATA;
1308                 else if (is_cold_data(page) || file_is_cold(inode))
1309                         return CURSEG_COLD_DATA;
1310                 else
1311                         return CURSEG_WARM_DATA;
1312         } else {
1313                 if (IS_DNODE(page))
1314                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1315                                                 CURSEG_HOT_NODE;
1316                 else
1317                         return CURSEG_COLD_NODE;
1318         }
1319 }
1320
1321 static int __get_segment_type(struct page *page, enum page_type p_type)
1322 {
1323         switch (F2FS_P_SB(page)->active_logs) {
1324         case 2:
1325                 return __get_segment_type_2(page, p_type);
1326         case 4:
1327                 return __get_segment_type_4(page, p_type);
1328         }
1329         /* NR_CURSEG_TYPE(6) logs by default */
1330         f2fs_bug_on(F2FS_P_SB(page),
1331                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1332         return __get_segment_type_6(page, p_type);
1333 }
1334
1335 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1336                 block_t old_blkaddr, block_t *new_blkaddr,
1337                 struct f2fs_summary *sum, int type)
1338 {
1339         struct sit_info *sit_i = SIT_I(sbi);
1340         struct curseg_info *curseg;
1341         bool direct_io = (type == CURSEG_DIRECT_IO);
1342
1343         type = direct_io ? CURSEG_WARM_DATA : type;
1344
1345         curseg = CURSEG_I(sbi, type);
1346
1347         mutex_lock(&curseg->curseg_mutex);
1348         mutex_lock(&sit_i->sentry_lock);
1349
1350         /* direct_io'ed data is aligned to the segment for better performance */
1351         if (direct_io && curseg->next_blkoff &&
1352                                 !has_not_enough_free_secs(sbi, 0))
1353                 __allocate_new_segments(sbi, type);
1354
1355         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1356
1357         /*
1358          * __add_sum_entry should be resided under the curseg_mutex
1359          * because, this function updates a summary entry in the
1360          * current summary block.
1361          */
1362         __add_sum_entry(sbi, type, sum);
1363
1364         __refresh_next_blkoff(sbi, curseg);
1365
1366         stat_inc_block_count(sbi, curseg);
1367
1368         if (!__has_curseg_space(sbi, type))
1369                 sit_i->s_ops->allocate_segment(sbi, type, false);
1370         /*
1371          * SIT information should be updated before segment allocation,
1372          * since SSR needs latest valid block information.
1373          */
1374         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1375
1376         mutex_unlock(&sit_i->sentry_lock);
1377
1378         if (page && IS_NODESEG(type))
1379                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1380
1381         mutex_unlock(&curseg->curseg_mutex);
1382 }
1383
1384 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1385 {
1386         int type = __get_segment_type(fio->page, fio->type);
1387
1388         allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1389                                         &fio->new_blkaddr, sum, type);
1390
1391         /* writeout dirty page into bdev */
1392         f2fs_submit_page_mbio(fio);
1393 }
1394
1395 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1396 {
1397         struct f2fs_io_info fio = {
1398                 .sbi = sbi,
1399                 .type = META,
1400                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1401                 .old_blkaddr = page->index,
1402                 .new_blkaddr = page->index,
1403                 .page = page,
1404                 .encrypted_page = NULL,
1405         };
1406
1407         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1408                 fio.rw &= ~REQ_META;
1409
1410         set_page_writeback(page);
1411         f2fs_submit_page_mbio(&fio);
1412 }
1413
1414 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1415 {
1416         struct f2fs_summary sum;
1417
1418         set_summary(&sum, nid, 0, 0);
1419         do_write_page(&sum, fio);
1420 }
1421
1422 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1423 {
1424         struct f2fs_sb_info *sbi = fio->sbi;
1425         struct f2fs_summary sum;
1426         struct node_info ni;
1427
1428         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1429         get_node_info(sbi, dn->nid, &ni);
1430         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1431         do_write_page(&sum, fio);
1432         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1433 }
1434
1435 void rewrite_data_page(struct f2fs_io_info *fio)
1436 {
1437         fio->new_blkaddr = fio->old_blkaddr;
1438         stat_inc_inplace_blocks(fio->sbi);
1439         f2fs_submit_page_mbio(fio);
1440 }
1441
1442 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1443                                 block_t old_blkaddr, block_t new_blkaddr,
1444                                 bool recover_curseg, bool recover_newaddr)
1445 {
1446         struct sit_info *sit_i = SIT_I(sbi);
1447         struct curseg_info *curseg;
1448         unsigned int segno, old_cursegno;
1449         struct seg_entry *se;
1450         int type;
1451         unsigned short old_blkoff;
1452
1453         segno = GET_SEGNO(sbi, new_blkaddr);
1454         se = get_seg_entry(sbi, segno);
1455         type = se->type;
1456
1457         if (!recover_curseg) {
1458                 /* for recovery flow */
1459                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1460                         if (old_blkaddr == NULL_ADDR)
1461                                 type = CURSEG_COLD_DATA;
1462                         else
1463                                 type = CURSEG_WARM_DATA;
1464                 }
1465         } else {
1466                 if (!IS_CURSEG(sbi, segno))
1467                         type = CURSEG_WARM_DATA;
1468         }
1469
1470         curseg = CURSEG_I(sbi, type);
1471
1472         mutex_lock(&curseg->curseg_mutex);
1473         mutex_lock(&sit_i->sentry_lock);
1474
1475         old_cursegno = curseg->segno;
1476         old_blkoff = curseg->next_blkoff;
1477
1478         /* change the current segment */
1479         if (segno != curseg->segno) {
1480                 curseg->next_segno = segno;
1481                 change_curseg(sbi, type, true);
1482         }
1483
1484         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1485         __add_sum_entry(sbi, type, sum);
1486
1487         if (!recover_curseg || recover_newaddr)
1488                 update_sit_entry(sbi, new_blkaddr, 1);
1489         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1490                 update_sit_entry(sbi, old_blkaddr, -1);
1491
1492         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1493         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1494
1495         locate_dirty_segment(sbi, old_cursegno);
1496
1497         if (recover_curseg) {
1498                 if (old_cursegno != curseg->segno) {
1499                         curseg->next_segno = old_cursegno;
1500                         change_curseg(sbi, type, true);
1501                 }
1502                 curseg->next_blkoff = old_blkoff;
1503         }
1504
1505         mutex_unlock(&sit_i->sentry_lock);
1506         mutex_unlock(&curseg->curseg_mutex);
1507 }
1508
1509 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1510                                 block_t old_addr, block_t new_addr,
1511                                 unsigned char version, bool recover_curseg,
1512                                 bool recover_newaddr)
1513 {
1514         struct f2fs_summary sum;
1515
1516         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1517
1518         __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1519                                         recover_curseg, recover_newaddr);
1520
1521         f2fs_update_data_blkaddr(dn, new_addr);
1522 }
1523
1524 void f2fs_wait_on_page_writeback(struct page *page,
1525                                 enum page_type type, bool ordered)
1526 {
1527         if (PageWriteback(page)) {
1528                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1529
1530                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1531                 if (ordered)
1532                         wait_on_page_writeback(page);
1533                 else
1534                         wait_for_stable_page(page);
1535         }
1536 }
1537
1538 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1539                                                         block_t blkaddr)
1540 {
1541         struct page *cpage;
1542
1543         if (blkaddr == NEW_ADDR)
1544                 return;
1545
1546         f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1547
1548         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1549         if (cpage) {
1550                 f2fs_wait_on_page_writeback(cpage, DATA, true);
1551                 f2fs_put_page(cpage, 1);
1552         }
1553 }
1554
1555 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1556 {
1557         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1558         struct curseg_info *seg_i;
1559         unsigned char *kaddr;
1560         struct page *page;
1561         block_t start;
1562         int i, j, offset;
1563
1564         start = start_sum_block(sbi);
1565
1566         page = get_meta_page(sbi, start++);
1567         kaddr = (unsigned char *)page_address(page);
1568
1569         /* Step 1: restore nat cache */
1570         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1571         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1572
1573         /* Step 2: restore sit cache */
1574         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1575         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1576         offset = 2 * SUM_JOURNAL_SIZE;
1577
1578         /* Step 3: restore summary entries */
1579         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1580                 unsigned short blk_off;
1581                 unsigned int segno;
1582
1583                 seg_i = CURSEG_I(sbi, i);
1584                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1585                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1586                 seg_i->next_segno = segno;
1587                 reset_curseg(sbi, i, 0);
1588                 seg_i->alloc_type = ckpt->alloc_type[i];
1589                 seg_i->next_blkoff = blk_off;
1590
1591                 if (seg_i->alloc_type == SSR)
1592                         blk_off = sbi->blocks_per_seg;
1593
1594                 for (j = 0; j < blk_off; j++) {
1595                         struct f2fs_summary *s;
1596                         s = (struct f2fs_summary *)(kaddr + offset);
1597                         seg_i->sum_blk->entries[j] = *s;
1598                         offset += SUMMARY_SIZE;
1599                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1600                                                 SUM_FOOTER_SIZE)
1601                                 continue;
1602
1603                         f2fs_put_page(page, 1);
1604                         page = NULL;
1605
1606                         page = get_meta_page(sbi, start++);
1607                         kaddr = (unsigned char *)page_address(page);
1608                         offset = 0;
1609                 }
1610         }
1611         f2fs_put_page(page, 1);
1612         return 0;
1613 }
1614
1615 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1616 {
1617         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1618         struct f2fs_summary_block *sum;
1619         struct curseg_info *curseg;
1620         struct page *new;
1621         unsigned short blk_off;
1622         unsigned int segno = 0;
1623         block_t blk_addr = 0;
1624
1625         /* get segment number and block addr */
1626         if (IS_DATASEG(type)) {
1627                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1628                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1629                                                         CURSEG_HOT_DATA]);
1630                 if (__exist_node_summaries(sbi))
1631                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1632                 else
1633                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1634         } else {
1635                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1636                                                         CURSEG_HOT_NODE]);
1637                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1638                                                         CURSEG_HOT_NODE]);
1639                 if (__exist_node_summaries(sbi))
1640                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1641                                                         type - CURSEG_HOT_NODE);
1642                 else
1643                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1644         }
1645
1646         new = get_meta_page(sbi, blk_addr);
1647         sum = (struct f2fs_summary_block *)page_address(new);
1648
1649         if (IS_NODESEG(type)) {
1650                 if (__exist_node_summaries(sbi)) {
1651                         struct f2fs_summary *ns = &sum->entries[0];
1652                         int i;
1653                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1654                                 ns->version = 0;
1655                                 ns->ofs_in_node = 0;
1656                         }
1657                 } else {
1658                         int err;
1659
1660                         err = restore_node_summary(sbi, segno, sum);
1661                         if (err) {
1662                                 f2fs_put_page(new, 1);
1663                                 return err;
1664                         }
1665                 }
1666         }
1667
1668         /* set uncompleted segment to curseg */
1669         curseg = CURSEG_I(sbi, type);
1670         mutex_lock(&curseg->curseg_mutex);
1671
1672         /* update journal info */
1673         down_write(&curseg->journal_rwsem);
1674         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1675         up_write(&curseg->journal_rwsem);
1676
1677         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1678         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1679         curseg->next_segno = segno;
1680         reset_curseg(sbi, type, 0);
1681         curseg->alloc_type = ckpt->alloc_type[type];
1682         curseg->next_blkoff = blk_off;
1683         mutex_unlock(&curseg->curseg_mutex);
1684         f2fs_put_page(new, 1);
1685         return 0;
1686 }
1687
1688 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1689 {
1690         int type = CURSEG_HOT_DATA;
1691         int err;
1692
1693         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1694                 int npages = npages_for_summary_flush(sbi, true);
1695
1696                 if (npages >= 2)
1697                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
1698                                                         META_CP, true);
1699
1700                 /* restore for compacted data summary */
1701                 if (read_compacted_summaries(sbi))
1702                         return -EINVAL;
1703                 type = CURSEG_HOT_NODE;
1704         }
1705
1706         if (__exist_node_summaries(sbi))
1707                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1708                                         NR_CURSEG_TYPE - type, META_CP, true);
1709
1710         for (; type <= CURSEG_COLD_NODE; type++) {
1711                 err = read_normal_summaries(sbi, type);
1712                 if (err)
1713                         return err;
1714         }
1715
1716         return 0;
1717 }
1718
1719 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1720 {
1721         struct page *page;
1722         unsigned char *kaddr;
1723         struct f2fs_summary *summary;
1724         struct curseg_info *seg_i;
1725         int written_size = 0;
1726         int i, j;
1727
1728         page = grab_meta_page(sbi, blkaddr++);
1729         kaddr = (unsigned char *)page_address(page);
1730
1731         /* Step 1: write nat cache */
1732         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1733         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1734         written_size += SUM_JOURNAL_SIZE;
1735
1736         /* Step 2: write sit cache */
1737         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1738         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1739         written_size += SUM_JOURNAL_SIZE;
1740
1741         /* Step 3: write summary entries */
1742         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1743                 unsigned short blkoff;
1744                 seg_i = CURSEG_I(sbi, i);
1745                 if (sbi->ckpt->alloc_type[i] == SSR)
1746                         blkoff = sbi->blocks_per_seg;
1747                 else
1748                         blkoff = curseg_blkoff(sbi, i);
1749
1750                 for (j = 0; j < blkoff; j++) {
1751                         if (!page) {
1752                                 page = grab_meta_page(sbi, blkaddr++);
1753                                 kaddr = (unsigned char *)page_address(page);
1754                                 written_size = 0;
1755                         }
1756                         summary = (struct f2fs_summary *)(kaddr + written_size);
1757                         *summary = seg_i->sum_blk->entries[j];
1758                         written_size += SUMMARY_SIZE;
1759
1760                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1761                                                         SUM_FOOTER_SIZE)
1762                                 continue;
1763
1764                         set_page_dirty(page);
1765                         f2fs_put_page(page, 1);
1766                         page = NULL;
1767                 }
1768         }
1769         if (page) {
1770                 set_page_dirty(page);
1771                 f2fs_put_page(page, 1);
1772         }
1773 }
1774
1775 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1776                                         block_t blkaddr, int type)
1777 {
1778         int i, end;
1779         if (IS_DATASEG(type))
1780                 end = type + NR_CURSEG_DATA_TYPE;
1781         else
1782                 end = type + NR_CURSEG_NODE_TYPE;
1783
1784         for (i = type; i < end; i++)
1785                 write_current_sum_page(sbi, i, blkaddr + (i - type));
1786 }
1787
1788 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1789 {
1790         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1791                 write_compacted_summaries(sbi, start_blk);
1792         else
1793                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1794 }
1795
1796 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1797 {
1798         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1799 }
1800
1801 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1802                                         unsigned int val, int alloc)
1803 {
1804         int i;
1805
1806         if (type == NAT_JOURNAL) {
1807                 for (i = 0; i < nats_in_cursum(journal); i++) {
1808                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1809                                 return i;
1810                 }
1811                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1812                         return update_nats_in_cursum(journal, 1);
1813         } else if (type == SIT_JOURNAL) {
1814                 for (i = 0; i < sits_in_cursum(journal); i++)
1815                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1816                                 return i;
1817                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1818                         return update_sits_in_cursum(journal, 1);
1819         }
1820         return -1;
1821 }
1822
1823 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1824                                         unsigned int segno)
1825 {
1826         return get_meta_page(sbi, current_sit_addr(sbi, segno));
1827 }
1828
1829 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1830                                         unsigned int start)
1831 {
1832         struct sit_info *sit_i = SIT_I(sbi);
1833         struct page *src_page, *dst_page;
1834         pgoff_t src_off, dst_off;
1835         void *src_addr, *dst_addr;
1836
1837         src_off = current_sit_addr(sbi, start);
1838         dst_off = next_sit_addr(sbi, src_off);
1839
1840         /* get current sit block page without lock */
1841         src_page = get_meta_page(sbi, src_off);
1842         dst_page = grab_meta_page(sbi, dst_off);
1843         f2fs_bug_on(sbi, PageDirty(src_page));
1844
1845         src_addr = page_address(src_page);
1846         dst_addr = page_address(dst_page);
1847         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1848
1849         set_page_dirty(dst_page);
1850         f2fs_put_page(src_page, 1);
1851
1852         set_to_next_sit(sit_i, start);
1853
1854         return dst_page;
1855 }
1856
1857 static struct sit_entry_set *grab_sit_entry_set(void)
1858 {
1859         struct sit_entry_set *ses =
1860                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1861
1862         ses->entry_cnt = 0;
1863         INIT_LIST_HEAD(&ses->set_list);
1864         return ses;
1865 }
1866
1867 static void release_sit_entry_set(struct sit_entry_set *ses)
1868 {
1869         list_del(&ses->set_list);
1870         kmem_cache_free(sit_entry_set_slab, ses);
1871 }
1872
1873 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1874                                                 struct list_head *head)
1875 {
1876         struct sit_entry_set *next = ses;
1877
1878         if (list_is_last(&ses->set_list, head))
1879                 return;
1880
1881         list_for_each_entry_continue(next, head, set_list)
1882                 if (ses->entry_cnt <= next->entry_cnt)
1883                         break;
1884
1885         list_move_tail(&ses->set_list, &next->set_list);
1886 }
1887
1888 static void add_sit_entry(unsigned int segno, struct list_head *head)
1889 {
1890         struct sit_entry_set *ses;
1891         unsigned int start_segno = START_SEGNO(segno);
1892
1893         list_for_each_entry(ses, head, set_list) {
1894                 if (ses->start_segno == start_segno) {
1895                         ses->entry_cnt++;
1896                         adjust_sit_entry_set(ses, head);
1897                         return;
1898                 }
1899         }
1900
1901         ses = grab_sit_entry_set();
1902
1903         ses->start_segno = start_segno;
1904         ses->entry_cnt++;
1905         list_add(&ses->set_list, head);
1906 }
1907
1908 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1909 {
1910         struct f2fs_sm_info *sm_info = SM_I(sbi);
1911         struct list_head *set_list = &sm_info->sit_entry_set;
1912         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1913         unsigned int segno;
1914
1915         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1916                 add_sit_entry(segno, set_list);
1917 }
1918
1919 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1920 {
1921         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1922         struct f2fs_journal *journal = curseg->journal;
1923         int i;
1924
1925         down_write(&curseg->journal_rwsem);
1926         for (i = 0; i < sits_in_cursum(journal); i++) {
1927                 unsigned int segno;
1928                 bool dirtied;
1929
1930                 segno = le32_to_cpu(segno_in_journal(journal, i));
1931                 dirtied = __mark_sit_entry_dirty(sbi, segno);
1932
1933                 if (!dirtied)
1934                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1935         }
1936         update_sits_in_cursum(journal, -i);
1937         up_write(&curseg->journal_rwsem);
1938 }
1939
1940 /*
1941  * CP calls this function, which flushes SIT entries including sit_journal,
1942  * and moves prefree segs to free segs.
1943  */
1944 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1945 {
1946         struct sit_info *sit_i = SIT_I(sbi);
1947         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1948         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1949         struct f2fs_journal *journal = curseg->journal;
1950         struct sit_entry_set *ses, *tmp;
1951         struct list_head *head = &SM_I(sbi)->sit_entry_set;
1952         bool to_journal = true;
1953         struct seg_entry *se;
1954
1955         mutex_lock(&sit_i->sentry_lock);
1956
1957         if (!sit_i->dirty_sentries)
1958                 goto out;
1959
1960         /*
1961          * add and account sit entries of dirty bitmap in sit entry
1962          * set temporarily
1963          */
1964         add_sits_in_set(sbi);
1965
1966         /*
1967          * if there are no enough space in journal to store dirty sit
1968          * entries, remove all entries from journal and add and account
1969          * them in sit entry set.
1970          */
1971         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
1972                 remove_sits_in_journal(sbi);
1973
1974         /*
1975          * there are two steps to flush sit entries:
1976          * #1, flush sit entries to journal in current cold data summary block.
1977          * #2, flush sit entries to sit page.
1978          */
1979         list_for_each_entry_safe(ses, tmp, head, set_list) {
1980                 struct page *page = NULL;
1981                 struct f2fs_sit_block *raw_sit = NULL;
1982                 unsigned int start_segno = ses->start_segno;
1983                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1984                                                 (unsigned long)MAIN_SEGS(sbi));
1985                 unsigned int segno = start_segno;
1986
1987                 if (to_journal &&
1988                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
1989                         to_journal = false;
1990
1991                 if (to_journal) {
1992                         down_write(&curseg->journal_rwsem);
1993                 } else {
1994                         page = get_next_sit_page(sbi, start_segno);
1995                         raw_sit = page_address(page);
1996                 }
1997
1998                 /* flush dirty sit entries in region of current sit set */
1999                 for_each_set_bit_from(segno, bitmap, end) {
2000                         int offset, sit_offset;
2001
2002                         se = get_seg_entry(sbi, segno);
2003
2004                         /* add discard candidates */
2005                         if (cpc->reason != CP_DISCARD) {
2006                                 cpc->trim_start = segno;
2007                                 add_discard_addrs(sbi, cpc);
2008                         }
2009
2010                         if (to_journal) {
2011                                 offset = lookup_journal_in_cursum(journal,
2012                                                         SIT_JOURNAL, segno, 1);
2013                                 f2fs_bug_on(sbi, offset < 0);
2014                                 segno_in_journal(journal, offset) =
2015                                                         cpu_to_le32(segno);
2016                                 seg_info_to_raw_sit(se,
2017                                         &sit_in_journal(journal, offset));
2018                         } else {
2019                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2020                                 seg_info_to_raw_sit(se,
2021                                                 &raw_sit->entries[sit_offset]);
2022                         }
2023
2024                         __clear_bit(segno, bitmap);
2025                         sit_i->dirty_sentries--;
2026                         ses->entry_cnt--;
2027                 }
2028
2029                 if (to_journal)
2030                         up_write(&curseg->journal_rwsem);
2031                 else
2032                         f2fs_put_page(page, 1);
2033
2034                 f2fs_bug_on(sbi, ses->entry_cnt);
2035                 release_sit_entry_set(ses);
2036         }
2037
2038         f2fs_bug_on(sbi, !list_empty(head));
2039         f2fs_bug_on(sbi, sit_i->dirty_sentries);
2040 out:
2041         if (cpc->reason == CP_DISCARD) {
2042                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2043                         add_discard_addrs(sbi, cpc);
2044         }
2045         mutex_unlock(&sit_i->sentry_lock);
2046
2047         set_prefree_as_free_segments(sbi);
2048 }
2049
2050 static int build_sit_info(struct f2fs_sb_info *sbi)
2051 {
2052         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2053         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2054         struct sit_info *sit_i;
2055         unsigned int sit_segs, start;
2056         char *src_bitmap, *dst_bitmap;
2057         unsigned int bitmap_size;
2058
2059         /* allocate memory for SIT information */
2060         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2061         if (!sit_i)
2062                 return -ENOMEM;
2063
2064         SM_I(sbi)->sit_info = sit_i;
2065
2066         sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2067                                         sizeof(struct seg_entry), GFP_KERNEL);
2068         if (!sit_i->sentries)
2069                 return -ENOMEM;
2070
2071         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2072         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2073         if (!sit_i->dirty_sentries_bitmap)
2074                 return -ENOMEM;
2075
2076         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2077                 sit_i->sentries[start].cur_valid_map
2078                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2079                 sit_i->sentries[start].ckpt_valid_map
2080                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2081                 sit_i->sentries[start].discard_map
2082                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2083                 if (!sit_i->sentries[start].cur_valid_map ||
2084                                 !sit_i->sentries[start].ckpt_valid_map ||
2085                                 !sit_i->sentries[start].discard_map)
2086                         return -ENOMEM;
2087         }
2088
2089         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2090         if (!sit_i->tmp_map)
2091                 return -ENOMEM;
2092
2093         if (sbi->segs_per_sec > 1) {
2094                 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2095                                         sizeof(struct sec_entry), GFP_KERNEL);
2096                 if (!sit_i->sec_entries)
2097                         return -ENOMEM;
2098         }
2099
2100         /* get information related with SIT */
2101         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2102
2103         /* setup SIT bitmap from ckeckpoint pack */
2104         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2105         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2106
2107         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2108         if (!dst_bitmap)
2109                 return -ENOMEM;
2110
2111         /* init SIT information */
2112         sit_i->s_ops = &default_salloc_ops;
2113
2114         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2115         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2116         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2117         sit_i->sit_bitmap = dst_bitmap;
2118         sit_i->bitmap_size = bitmap_size;
2119         sit_i->dirty_sentries = 0;
2120         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2121         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2122         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2123         mutex_init(&sit_i->sentry_lock);
2124         return 0;
2125 }
2126
2127 static int build_free_segmap(struct f2fs_sb_info *sbi)
2128 {
2129         struct free_segmap_info *free_i;
2130         unsigned int bitmap_size, sec_bitmap_size;
2131
2132         /* allocate memory for free segmap information */
2133         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2134         if (!free_i)
2135                 return -ENOMEM;
2136
2137         SM_I(sbi)->free_info = free_i;
2138
2139         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2140         free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2141         if (!free_i->free_segmap)
2142                 return -ENOMEM;
2143
2144         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2145         free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2146         if (!free_i->free_secmap)
2147                 return -ENOMEM;
2148
2149         /* set all segments as dirty temporarily */
2150         memset(free_i->free_segmap, 0xff, bitmap_size);
2151         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2152
2153         /* init free segmap information */
2154         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2155         free_i->free_segments = 0;
2156         free_i->free_sections = 0;
2157         spin_lock_init(&free_i->segmap_lock);
2158         return 0;
2159 }
2160
2161 static int build_curseg(struct f2fs_sb_info *sbi)
2162 {
2163         struct curseg_info *array;
2164         int i;
2165
2166         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2167         if (!array)
2168                 return -ENOMEM;
2169
2170         SM_I(sbi)->curseg_array = array;
2171
2172         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2173                 mutex_init(&array[i].curseg_mutex);
2174                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
2175                 if (!array[i].sum_blk)
2176                         return -ENOMEM;
2177                 init_rwsem(&array[i].journal_rwsem);
2178                 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2179                                                         GFP_KERNEL);
2180                 if (!array[i].journal)
2181                         return -ENOMEM;
2182                 array[i].segno = NULL_SEGNO;
2183                 array[i].next_blkoff = 0;
2184         }
2185         return restore_curseg_summaries(sbi);
2186 }
2187
2188 static void build_sit_entries(struct f2fs_sb_info *sbi)
2189 {
2190         struct sit_info *sit_i = SIT_I(sbi);
2191         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2192         struct f2fs_journal *journal = curseg->journal;
2193         int sit_blk_cnt = SIT_BLK_CNT(sbi);
2194         unsigned int i, start, end;
2195         unsigned int readed, start_blk = 0;
2196         int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2197
2198         do {
2199                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2200
2201                 start = start_blk * sit_i->sents_per_block;
2202                 end = (start_blk + readed) * sit_i->sents_per_block;
2203
2204                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2205                         struct seg_entry *se = &sit_i->sentries[start];
2206                         struct f2fs_sit_block *sit_blk;
2207                         struct f2fs_sit_entry sit;
2208                         struct page *page;
2209
2210                         down_read(&curseg->journal_rwsem);
2211                         for (i = 0; i < sits_in_cursum(journal); i++) {
2212                                 if (le32_to_cpu(segno_in_journal(journal, i))
2213                                                                 == start) {
2214                                         sit = sit_in_journal(journal, i);
2215                                         up_read(&curseg->journal_rwsem);
2216                                         goto got_it;
2217                                 }
2218                         }
2219                         up_read(&curseg->journal_rwsem);
2220
2221                         page = get_current_sit_page(sbi, start);
2222                         sit_blk = (struct f2fs_sit_block *)page_address(page);
2223                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2224                         f2fs_put_page(page, 1);
2225 got_it:
2226                         check_block_count(sbi, start, &sit);
2227                         seg_info_from_raw_sit(se, &sit);
2228
2229                         /* build discard map only one time */
2230                         memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2231                         sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2232
2233                         if (sbi->segs_per_sec > 1) {
2234                                 struct sec_entry *e = get_sec_entry(sbi, start);
2235                                 e->valid_blocks += se->valid_blocks;
2236                         }
2237                 }
2238                 start_blk += readed;
2239         } while (start_blk < sit_blk_cnt);
2240 }
2241
2242 static void init_free_segmap(struct f2fs_sb_info *sbi)
2243 {
2244         unsigned int start;
2245         int type;
2246
2247         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2248                 struct seg_entry *sentry = get_seg_entry(sbi, start);
2249                 if (!sentry->valid_blocks)
2250                         __set_free(sbi, start);
2251         }
2252
2253         /* set use the current segments */
2254         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2255                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2256                 __set_test_and_inuse(sbi, curseg_t->segno);
2257         }
2258 }
2259
2260 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2261 {
2262         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2263         struct free_segmap_info *free_i = FREE_I(sbi);
2264         unsigned int segno = 0, offset = 0;
2265         unsigned short valid_blocks;
2266
2267         while (1) {
2268                 /* find dirty segment based on free segmap */
2269                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2270                 if (segno >= MAIN_SEGS(sbi))
2271                         break;
2272                 offset = segno + 1;
2273                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2274                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2275                         continue;
2276                 if (valid_blocks > sbi->blocks_per_seg) {
2277                         f2fs_bug_on(sbi, 1);
2278                         continue;
2279                 }
2280                 mutex_lock(&dirty_i->seglist_lock);
2281                 __locate_dirty_segment(sbi, segno, DIRTY);
2282                 mutex_unlock(&dirty_i->seglist_lock);
2283         }
2284 }
2285
2286 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2287 {
2288         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2289         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2290
2291         dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2292         if (!dirty_i->victim_secmap)
2293                 return -ENOMEM;
2294         return 0;
2295 }
2296
2297 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2298 {
2299         struct dirty_seglist_info *dirty_i;
2300         unsigned int bitmap_size, i;
2301
2302         /* allocate memory for dirty segments list information */
2303         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2304         if (!dirty_i)
2305                 return -ENOMEM;
2306
2307         SM_I(sbi)->dirty_info = dirty_i;
2308         mutex_init(&dirty_i->seglist_lock);
2309
2310         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2311
2312         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2313                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2314                 if (!dirty_i->dirty_segmap[i])
2315                         return -ENOMEM;
2316         }
2317
2318         init_dirty_segmap(sbi);
2319         return init_victim_secmap(sbi);
2320 }
2321
2322 /*
2323  * Update min, max modified time for cost-benefit GC algorithm
2324  */
2325 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2326 {
2327         struct sit_info *sit_i = SIT_I(sbi);
2328         unsigned int segno;
2329
2330         mutex_lock(&sit_i->sentry_lock);
2331
2332         sit_i->min_mtime = LLONG_MAX;
2333
2334         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2335                 unsigned int i;
2336                 unsigned long long mtime = 0;
2337
2338                 for (i = 0; i < sbi->segs_per_sec; i++)
2339                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2340
2341                 mtime = div_u64(mtime, sbi->segs_per_sec);
2342
2343                 if (sit_i->min_mtime > mtime)
2344                         sit_i->min_mtime = mtime;
2345         }
2346         sit_i->max_mtime = get_mtime(sbi);
2347         mutex_unlock(&sit_i->sentry_lock);
2348 }
2349
2350 int build_segment_manager(struct f2fs_sb_info *sbi)
2351 {
2352         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2353         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2354         struct f2fs_sm_info *sm_info;
2355         int err;
2356
2357         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2358         if (!sm_info)
2359                 return -ENOMEM;
2360
2361         /* init sm info */
2362         sbi->sm_info = sm_info;
2363         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2364         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2365         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2366         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2367         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2368         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2369         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2370         sm_info->rec_prefree_segments = sm_info->main_segments *
2371                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2372         sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2373         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2374         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2375
2376         INIT_LIST_HEAD(&sm_info->discard_list);
2377         sm_info->nr_discards = 0;
2378         sm_info->max_discards = 0;
2379
2380         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2381
2382         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2383
2384         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2385                 err = create_flush_cmd_control(sbi);
2386                 if (err)
2387                         return err;
2388         }
2389
2390         err = build_sit_info(sbi);
2391         if (err)
2392                 return err;
2393         err = build_free_segmap(sbi);
2394         if (err)
2395                 return err;
2396         err = build_curseg(sbi);
2397         if (err)
2398                 return err;
2399
2400         /* reinit free segmap based on SIT */
2401         build_sit_entries(sbi);
2402
2403         init_free_segmap(sbi);
2404         err = build_dirty_segmap(sbi);
2405         if (err)
2406                 return err;
2407
2408         init_min_max_mtime(sbi);
2409         return 0;
2410 }
2411
2412 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2413                 enum dirty_type dirty_type)
2414 {
2415         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2416
2417         mutex_lock(&dirty_i->seglist_lock);
2418         kvfree(dirty_i->dirty_segmap[dirty_type]);
2419         dirty_i->nr_dirty[dirty_type] = 0;
2420         mutex_unlock(&dirty_i->seglist_lock);
2421 }
2422
2423 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2424 {
2425         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2426         kvfree(dirty_i->victim_secmap);
2427 }
2428
2429 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2430 {
2431         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2432         int i;
2433
2434         if (!dirty_i)
2435                 return;
2436
2437         /* discard pre-free/dirty segments list */
2438         for (i = 0; i < NR_DIRTY_TYPE; i++)
2439                 discard_dirty_segmap(sbi, i);
2440
2441         destroy_victim_secmap(sbi);
2442         SM_I(sbi)->dirty_info = NULL;
2443         kfree(dirty_i);
2444 }
2445
2446 static void destroy_curseg(struct f2fs_sb_info *sbi)
2447 {
2448         struct curseg_info *array = SM_I(sbi)->curseg_array;
2449         int i;
2450
2451         if (!array)
2452                 return;
2453         SM_I(sbi)->curseg_array = NULL;
2454         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2455                 kfree(array[i].sum_blk);
2456                 kfree(array[i].journal);
2457         }
2458         kfree(array);
2459 }
2460
2461 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2462 {
2463         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2464         if (!free_i)
2465                 return;
2466         SM_I(sbi)->free_info = NULL;
2467         kvfree(free_i->free_segmap);
2468         kvfree(free_i->free_secmap);
2469         kfree(free_i);
2470 }
2471
2472 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2473 {
2474         struct sit_info *sit_i = SIT_I(sbi);
2475         unsigned int start;
2476
2477         if (!sit_i)
2478                 return;
2479
2480         if (sit_i->sentries) {
2481                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2482                         kfree(sit_i->sentries[start].cur_valid_map);
2483                         kfree(sit_i->sentries[start].ckpt_valid_map);
2484                         kfree(sit_i->sentries[start].discard_map);
2485                 }
2486         }
2487         kfree(sit_i->tmp_map);
2488
2489         kvfree(sit_i->sentries);
2490         kvfree(sit_i->sec_entries);
2491         kvfree(sit_i->dirty_sentries_bitmap);
2492
2493         SM_I(sbi)->sit_info = NULL;
2494         kfree(sit_i->sit_bitmap);
2495         kfree(sit_i);
2496 }
2497
2498 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2499 {
2500         struct f2fs_sm_info *sm_info = SM_I(sbi);
2501
2502         if (!sm_info)
2503                 return;
2504         destroy_flush_cmd_control(sbi);
2505         destroy_dirty_segmap(sbi);
2506         destroy_curseg(sbi);
2507         destroy_free_segmap(sbi);
2508         destroy_sit_info(sbi);
2509         sbi->sm_info = NULL;
2510         kfree(sm_info);
2511 }
2512
2513 int __init create_segment_manager_caches(void)
2514 {
2515         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2516                         sizeof(struct discard_entry));
2517         if (!discard_entry_slab)
2518                 goto fail;
2519
2520         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2521                         sizeof(struct sit_entry_set));
2522         if (!sit_entry_set_slab)
2523                 goto destory_discard_entry;
2524
2525         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2526                         sizeof(struct inmem_pages));
2527         if (!inmem_entry_slab)
2528                 goto destroy_sit_entry_set;
2529         return 0;
2530
2531 destroy_sit_entry_set:
2532         kmem_cache_destroy(sit_entry_set_slab);
2533 destory_discard_entry:
2534         kmem_cache_destroy(discard_entry_slab);
2535 fail:
2536         return -ENOMEM;
2537 }
2538
2539 void destroy_segment_manager_caches(void)
2540 {
2541         kmem_cache_destroy(sit_entry_set_slab);
2542         kmem_cache_destroy(discard_entry_slab);
2543         kmem_cache_destroy(inmem_entry_slab);
2544 }