regulator: Add missing statics and inlines for stub functions
[cascardo/linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28
29 /*
30  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
31  * MSB and LSB are reversed in a byte by f2fs_set_bit.
32  */
33 static inline unsigned long __reverse_ffs(unsigned long word)
34 {
35         int num = 0;
36
37 #if BITS_PER_LONG == 64
38         if ((word & 0xffffffff) == 0) {
39                 num += 32;
40                 word >>= 32;
41         }
42 #endif
43         if ((word & 0xffff) == 0) {
44                 num += 16;
45                 word >>= 16;
46         }
47         if ((word & 0xff) == 0) {
48                 num += 8;
49                 word >>= 8;
50         }
51         if ((word & 0xf0) == 0)
52                 num += 4;
53         else
54                 word >>= 4;
55         if ((word & 0xc) == 0)
56                 num += 2;
57         else
58                 word >>= 2;
59         if ((word & 0x2) == 0)
60                 num += 1;
61         return num;
62 }
63
64 /*
65  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
66  * f2fs_set_bit makes MSB and LSB reversed in a byte.
67  * Example:
68  *                             LSB <--> MSB
69  *   f2fs_set_bit(0, bitmap) => 0000 0001
70  *   f2fs_set_bit(7, bitmap) => 1000 0000
71  */
72 static unsigned long __find_rev_next_bit(const unsigned long *addr,
73                         unsigned long size, unsigned long offset)
74 {
75         const unsigned long *p = addr + BIT_WORD(offset);
76         unsigned long result = offset & ~(BITS_PER_LONG - 1);
77         unsigned long tmp;
78         unsigned long mask, submask;
79         unsigned long quot, rest;
80
81         if (offset >= size)
82                 return size;
83
84         size -= result;
85         offset %= BITS_PER_LONG;
86         if (!offset)
87                 goto aligned;
88
89         tmp = *(p++);
90         quot = (offset >> 3) << 3;
91         rest = offset & 0x7;
92         mask = ~0UL << quot;
93         submask = (unsigned char)(0xff << rest) >> rest;
94         submask <<= quot;
95         mask &= submask;
96         tmp &= mask;
97         if (size < BITS_PER_LONG)
98                 goto found_first;
99         if (tmp)
100                 goto found_middle;
101
102         size -= BITS_PER_LONG;
103         result += BITS_PER_LONG;
104 aligned:
105         while (size & ~(BITS_PER_LONG-1)) {
106                 tmp = *(p++);
107                 if (tmp)
108                         goto found_middle;
109                 result += BITS_PER_LONG;
110                 size -= BITS_PER_LONG;
111         }
112         if (!size)
113                 return result;
114         tmp = *p;
115 found_first:
116         tmp &= (~0UL >> (BITS_PER_LONG - size));
117         if (tmp == 0UL)         /* Are any bits set? */
118                 return result + size;   /* Nope. */
119 found_middle:
120         return result + __reverse_ffs(tmp);
121 }
122
123 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
124                         unsigned long size, unsigned long offset)
125 {
126         const unsigned long *p = addr + BIT_WORD(offset);
127         unsigned long result = offset & ~(BITS_PER_LONG - 1);
128         unsigned long tmp;
129         unsigned long mask, submask;
130         unsigned long quot, rest;
131
132         if (offset >= size)
133                 return size;
134
135         size -= result;
136         offset %= BITS_PER_LONG;
137         if (!offset)
138                 goto aligned;
139
140         tmp = *(p++);
141         quot = (offset >> 3) << 3;
142         rest = offset & 0x7;
143         mask = ~(~0UL << quot);
144         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
145         submask <<= quot;
146         mask += submask;
147         tmp |= mask;
148         if (size < BITS_PER_LONG)
149                 goto found_first;
150         if (~tmp)
151                 goto found_middle;
152
153         size -= BITS_PER_LONG;
154         result += BITS_PER_LONG;
155 aligned:
156         while (size & ~(BITS_PER_LONG - 1)) {
157                 tmp = *(p++);
158                 if (~tmp)
159                         goto found_middle;
160                 result += BITS_PER_LONG;
161                 size -= BITS_PER_LONG;
162         }
163         if (!size)
164                 return result;
165         tmp = *p;
166
167 found_first:
168         tmp |= ~0UL << size;
169         if (tmp == ~0UL)        /* Are any bits zero? */
170                 return result + size;   /* Nope. */
171 found_middle:
172         return result + __reverse_ffz(tmp);
173 }
174
175 /*
176  * This function balances dirty node and dentry pages.
177  * In addition, it controls garbage collection.
178  */
179 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
180 {
181         /*
182          * We should do GC or end up with checkpoint, if there are so many dirty
183          * dir/node pages without enough free segments.
184          */
185         if (has_not_enough_free_secs(sbi, 0)) {
186                 mutex_lock(&sbi->gc_mutex);
187                 f2fs_gc(sbi);
188         }
189 }
190
191 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
192 {
193         /* check the # of cached NAT entries and prefree segments */
194         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
195                                 excess_prefree_segs(sbi))
196                 f2fs_sync_fs(sbi->sb, true);
197 }
198
199 static int issue_flush_thread(void *data)
200 {
201         struct f2fs_sb_info *sbi = data;
202         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
203         wait_queue_head_t *q = &fcc->flush_wait_queue;
204 repeat:
205         if (kthread_should_stop())
206                 return 0;
207
208         spin_lock(&fcc->issue_lock);
209         if (fcc->issue_list) {
210                 fcc->dispatch_list = fcc->issue_list;
211                 fcc->issue_list = fcc->issue_tail = NULL;
212         }
213         spin_unlock(&fcc->issue_lock);
214
215         if (fcc->dispatch_list) {
216                 struct bio *bio = bio_alloc(GFP_NOIO, 0);
217                 struct flush_cmd *cmd, *next;
218                 int ret;
219
220                 bio->bi_bdev = sbi->sb->s_bdev;
221                 ret = submit_bio_wait(WRITE_FLUSH, bio);
222
223                 for (cmd = fcc->dispatch_list; cmd; cmd = next) {
224                         cmd->ret = ret;
225                         next = cmd->next;
226                         complete(&cmd->wait);
227                 }
228                 bio_put(bio);
229                 fcc->dispatch_list = NULL;
230         }
231
232         wait_event_interruptible(*q,
233                         kthread_should_stop() || fcc->issue_list);
234         goto repeat;
235 }
236
237 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
238 {
239         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
240         struct flush_cmd cmd;
241
242         if (!test_opt(sbi, FLUSH_MERGE))
243                 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
244
245         init_completion(&cmd.wait);
246         cmd.next = NULL;
247
248         spin_lock(&fcc->issue_lock);
249         if (fcc->issue_list)
250                 fcc->issue_tail->next = &cmd;
251         else
252                 fcc->issue_list = &cmd;
253         fcc->issue_tail = &cmd;
254         spin_unlock(&fcc->issue_lock);
255
256         if (!fcc->dispatch_list)
257                 wake_up(&fcc->flush_wait_queue);
258
259         wait_for_completion(&cmd.wait);
260
261         return cmd.ret;
262 }
263
264 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
265 {
266         dev_t dev = sbi->sb->s_bdev->bd_dev;
267         struct flush_cmd_control *fcc;
268         int err = 0;
269
270         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
271         if (!fcc)
272                 return -ENOMEM;
273         spin_lock_init(&fcc->issue_lock);
274         init_waitqueue_head(&fcc->flush_wait_queue);
275         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
276                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
277         if (IS_ERR(fcc->f2fs_issue_flush)) {
278                 err = PTR_ERR(fcc->f2fs_issue_flush);
279                 kfree(fcc);
280                 return err;
281         }
282         sbi->sm_info->cmd_control_info = fcc;
283
284         return err;
285 }
286
287 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
288 {
289         struct flush_cmd_control *fcc =
290                                 sbi->sm_info->cmd_control_info;
291
292         if (fcc && fcc->f2fs_issue_flush)
293                 kthread_stop(fcc->f2fs_issue_flush);
294         kfree(fcc);
295         sbi->sm_info->cmd_control_info = NULL;
296 }
297
298 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
299                 enum dirty_type dirty_type)
300 {
301         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
302
303         /* need not be added */
304         if (IS_CURSEG(sbi, segno))
305                 return;
306
307         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
308                 dirty_i->nr_dirty[dirty_type]++;
309
310         if (dirty_type == DIRTY) {
311                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
312                 enum dirty_type t = sentry->type;
313
314                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
315                         dirty_i->nr_dirty[t]++;
316         }
317 }
318
319 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
320                 enum dirty_type dirty_type)
321 {
322         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
323
324         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
325                 dirty_i->nr_dirty[dirty_type]--;
326
327         if (dirty_type == DIRTY) {
328                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
329                 enum dirty_type t = sentry->type;
330
331                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
332                         dirty_i->nr_dirty[t]--;
333
334                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
335                         clear_bit(GET_SECNO(sbi, segno),
336                                                 dirty_i->victim_secmap);
337         }
338 }
339
340 /*
341  * Should not occur error such as -ENOMEM.
342  * Adding dirty entry into seglist is not critical operation.
343  * If a given segment is one of current working segments, it won't be added.
344  */
345 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
346 {
347         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
348         unsigned short valid_blocks;
349
350         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
351                 return;
352
353         mutex_lock(&dirty_i->seglist_lock);
354
355         valid_blocks = get_valid_blocks(sbi, segno, 0);
356
357         if (valid_blocks == 0) {
358                 __locate_dirty_segment(sbi, segno, PRE);
359                 __remove_dirty_segment(sbi, segno, DIRTY);
360         } else if (valid_blocks < sbi->blocks_per_seg) {
361                 __locate_dirty_segment(sbi, segno, DIRTY);
362         } else {
363                 /* Recovery routine with SSR needs this */
364                 __remove_dirty_segment(sbi, segno, DIRTY);
365         }
366
367         mutex_unlock(&dirty_i->seglist_lock);
368 }
369
370 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
371                                 block_t blkstart, block_t blklen)
372 {
373         sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
374         sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
375         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
376         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
377 }
378
379 void discard_next_dnode(struct f2fs_sb_info *sbi)
380 {
381         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
382         block_t blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
383
384         if (f2fs_issue_discard(sbi, blkaddr, 1)) {
385                 struct page *page = grab_meta_page(sbi, blkaddr);
386                 /* zero-filled page */
387                 set_page_dirty(page);
388                 f2fs_put_page(page, 1);
389         }
390 }
391
392 static void add_discard_addrs(struct f2fs_sb_info *sbi,
393                         unsigned int segno, struct seg_entry *se)
394 {
395         struct list_head *head = &SM_I(sbi)->discard_list;
396         struct discard_entry *new;
397         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
398         int max_blocks = sbi->blocks_per_seg;
399         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
400         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
401         unsigned long dmap[entries];
402         unsigned int start = 0, end = -1;
403         int i;
404
405         if (!test_opt(sbi, DISCARD))
406                 return;
407
408         /* zero block will be discarded through the prefree list */
409         if (!se->valid_blocks || se->valid_blocks == max_blocks)
410                 return;
411
412         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
413         for (i = 0; i < entries; i++)
414                 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
415
416         while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
417                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
418                 if (start >= max_blocks)
419                         break;
420
421                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
422
423                 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
424                 INIT_LIST_HEAD(&new->list);
425                 new->blkaddr = START_BLOCK(sbi, segno) + start;
426                 new->len = end - start;
427
428                 list_add_tail(&new->list, head);
429                 SM_I(sbi)->nr_discards += end - start;
430         }
431 }
432
433 /*
434  * Should call clear_prefree_segments after checkpoint is done.
435  */
436 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
437 {
438         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
439         unsigned int segno = -1;
440         unsigned int total_segs = TOTAL_SEGS(sbi);
441
442         mutex_lock(&dirty_i->seglist_lock);
443         while (1) {
444                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
445                                 segno + 1);
446                 if (segno >= total_segs)
447                         break;
448                 __set_test_and_free(sbi, segno);
449         }
450         mutex_unlock(&dirty_i->seglist_lock);
451 }
452
453 void clear_prefree_segments(struct f2fs_sb_info *sbi)
454 {
455         struct list_head *head = &(SM_I(sbi)->discard_list);
456         struct discard_entry *entry, *this;
457         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
458         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
459         unsigned int total_segs = TOTAL_SEGS(sbi);
460         unsigned int start = 0, end = -1;
461
462         mutex_lock(&dirty_i->seglist_lock);
463
464         while (1) {
465                 int i;
466                 start = find_next_bit(prefree_map, total_segs, end + 1);
467                 if (start >= total_segs)
468                         break;
469                 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
470
471                 for (i = start; i < end; i++)
472                         clear_bit(i, prefree_map);
473
474                 dirty_i->nr_dirty[PRE] -= end - start;
475
476                 if (!test_opt(sbi, DISCARD))
477                         continue;
478
479                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
480                                 (end - start) << sbi->log_blocks_per_seg);
481         }
482         mutex_unlock(&dirty_i->seglist_lock);
483
484         /* send small discards */
485         list_for_each_entry_safe(entry, this, head, list) {
486                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
487                 list_del(&entry->list);
488                 SM_I(sbi)->nr_discards -= entry->len;
489                 kmem_cache_free(discard_entry_slab, entry);
490         }
491 }
492
493 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
494 {
495         struct sit_info *sit_i = SIT_I(sbi);
496         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
497                 sit_i->dirty_sentries++;
498 }
499
500 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
501                                         unsigned int segno, int modified)
502 {
503         struct seg_entry *se = get_seg_entry(sbi, segno);
504         se->type = type;
505         if (modified)
506                 __mark_sit_entry_dirty(sbi, segno);
507 }
508
509 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
510 {
511         struct seg_entry *se;
512         unsigned int segno, offset;
513         long int new_vblocks;
514
515         segno = GET_SEGNO(sbi, blkaddr);
516
517         se = get_seg_entry(sbi, segno);
518         new_vblocks = se->valid_blocks + del;
519         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
520
521         f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
522                                 (new_vblocks > sbi->blocks_per_seg)));
523
524         se->valid_blocks = new_vblocks;
525         se->mtime = get_mtime(sbi);
526         SIT_I(sbi)->max_mtime = se->mtime;
527
528         /* Update valid block bitmap */
529         if (del > 0) {
530                 if (f2fs_set_bit(offset, se->cur_valid_map))
531                         BUG();
532         } else {
533                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
534                         BUG();
535         }
536         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
537                 se->ckpt_valid_blocks += del;
538
539         __mark_sit_entry_dirty(sbi, segno);
540
541         /* update total number of valid blocks to be written in ckpt area */
542         SIT_I(sbi)->written_valid_blocks += del;
543
544         if (sbi->segs_per_sec > 1)
545                 get_sec_entry(sbi, segno)->valid_blocks += del;
546 }
547
548 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
549 {
550         update_sit_entry(sbi, new, 1);
551         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
552                 update_sit_entry(sbi, old, -1);
553
554         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
555         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
556 }
557
558 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
559 {
560         unsigned int segno = GET_SEGNO(sbi, addr);
561         struct sit_info *sit_i = SIT_I(sbi);
562
563         f2fs_bug_on(addr == NULL_ADDR);
564         if (addr == NEW_ADDR)
565                 return;
566
567         /* add it into sit main buffer */
568         mutex_lock(&sit_i->sentry_lock);
569
570         update_sit_entry(sbi, addr, -1);
571
572         /* add it into dirty seglist */
573         locate_dirty_segment(sbi, segno);
574
575         mutex_unlock(&sit_i->sentry_lock);
576 }
577
578 /*
579  * This function should be resided under the curseg_mutex lock
580  */
581 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
582                                         struct f2fs_summary *sum)
583 {
584         struct curseg_info *curseg = CURSEG_I(sbi, type);
585         void *addr = curseg->sum_blk;
586         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
587         memcpy(addr, sum, sizeof(struct f2fs_summary));
588 }
589
590 /*
591  * Calculate the number of current summary pages for writing
592  */
593 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
594 {
595         int valid_sum_count = 0;
596         int i, sum_in_page;
597
598         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
599                 if (sbi->ckpt->alloc_type[i] == SSR)
600                         valid_sum_count += sbi->blocks_per_seg;
601                 else
602                         valid_sum_count += curseg_blkoff(sbi, i);
603         }
604
605         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
606                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
607         if (valid_sum_count <= sum_in_page)
608                 return 1;
609         else if ((valid_sum_count - sum_in_page) <=
610                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
611                 return 2;
612         return 3;
613 }
614
615 /*
616  * Caller should put this summary page
617  */
618 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
619 {
620         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
621 }
622
623 static void write_sum_page(struct f2fs_sb_info *sbi,
624                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
625 {
626         struct page *page = grab_meta_page(sbi, blk_addr);
627         void *kaddr = page_address(page);
628         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
629         set_page_dirty(page);
630         f2fs_put_page(page, 1);
631 }
632
633 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
634 {
635         struct curseg_info *curseg = CURSEG_I(sbi, type);
636         unsigned int segno = curseg->segno + 1;
637         struct free_segmap_info *free_i = FREE_I(sbi);
638
639         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
640                 return !test_bit(segno, free_i->free_segmap);
641         return 0;
642 }
643
644 /*
645  * Find a new segment from the free segments bitmap to right order
646  * This function should be returned with success, otherwise BUG
647  */
648 static void get_new_segment(struct f2fs_sb_info *sbi,
649                         unsigned int *newseg, bool new_sec, int dir)
650 {
651         struct free_segmap_info *free_i = FREE_I(sbi);
652         unsigned int segno, secno, zoneno;
653         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
654         unsigned int hint = *newseg / sbi->segs_per_sec;
655         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
656         unsigned int left_start = hint;
657         bool init = true;
658         int go_left = 0;
659         int i;
660
661         write_lock(&free_i->segmap_lock);
662
663         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
664                 segno = find_next_zero_bit(free_i->free_segmap,
665                                         TOTAL_SEGS(sbi), *newseg + 1);
666                 if (segno - *newseg < sbi->segs_per_sec -
667                                         (*newseg % sbi->segs_per_sec))
668                         goto got_it;
669         }
670 find_other_zone:
671         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
672         if (secno >= TOTAL_SECS(sbi)) {
673                 if (dir == ALLOC_RIGHT) {
674                         secno = find_next_zero_bit(free_i->free_secmap,
675                                                         TOTAL_SECS(sbi), 0);
676                         f2fs_bug_on(secno >= TOTAL_SECS(sbi));
677                 } else {
678                         go_left = 1;
679                         left_start = hint - 1;
680                 }
681         }
682         if (go_left == 0)
683                 goto skip_left;
684
685         while (test_bit(left_start, free_i->free_secmap)) {
686                 if (left_start > 0) {
687                         left_start--;
688                         continue;
689                 }
690                 left_start = find_next_zero_bit(free_i->free_secmap,
691                                                         TOTAL_SECS(sbi), 0);
692                 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
693                 break;
694         }
695         secno = left_start;
696 skip_left:
697         hint = secno;
698         segno = secno * sbi->segs_per_sec;
699         zoneno = secno / sbi->secs_per_zone;
700
701         /* give up on finding another zone */
702         if (!init)
703                 goto got_it;
704         if (sbi->secs_per_zone == 1)
705                 goto got_it;
706         if (zoneno == old_zoneno)
707                 goto got_it;
708         if (dir == ALLOC_LEFT) {
709                 if (!go_left && zoneno + 1 >= total_zones)
710                         goto got_it;
711                 if (go_left && zoneno == 0)
712                         goto got_it;
713         }
714         for (i = 0; i < NR_CURSEG_TYPE; i++)
715                 if (CURSEG_I(sbi, i)->zone == zoneno)
716                         break;
717
718         if (i < NR_CURSEG_TYPE) {
719                 /* zone is in user, try another */
720                 if (go_left)
721                         hint = zoneno * sbi->secs_per_zone - 1;
722                 else if (zoneno + 1 >= total_zones)
723                         hint = 0;
724                 else
725                         hint = (zoneno + 1) * sbi->secs_per_zone;
726                 init = false;
727                 goto find_other_zone;
728         }
729 got_it:
730         /* set it as dirty segment in free segmap */
731         f2fs_bug_on(test_bit(segno, free_i->free_segmap));
732         __set_inuse(sbi, segno);
733         *newseg = segno;
734         write_unlock(&free_i->segmap_lock);
735 }
736
737 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
738 {
739         struct curseg_info *curseg = CURSEG_I(sbi, type);
740         struct summary_footer *sum_footer;
741
742         curseg->segno = curseg->next_segno;
743         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
744         curseg->next_blkoff = 0;
745         curseg->next_segno = NULL_SEGNO;
746
747         sum_footer = &(curseg->sum_blk->footer);
748         memset(sum_footer, 0, sizeof(struct summary_footer));
749         if (IS_DATASEG(type))
750                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
751         if (IS_NODESEG(type))
752                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
753         __set_sit_entry_type(sbi, type, curseg->segno, modified);
754 }
755
756 /*
757  * Allocate a current working segment.
758  * This function always allocates a free segment in LFS manner.
759  */
760 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
761 {
762         struct curseg_info *curseg = CURSEG_I(sbi, type);
763         unsigned int segno = curseg->segno;
764         int dir = ALLOC_LEFT;
765
766         write_sum_page(sbi, curseg->sum_blk,
767                                 GET_SUM_BLOCK(sbi, segno));
768         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
769                 dir = ALLOC_RIGHT;
770
771         if (test_opt(sbi, NOHEAP))
772                 dir = ALLOC_RIGHT;
773
774         get_new_segment(sbi, &segno, new_sec, dir);
775         curseg->next_segno = segno;
776         reset_curseg(sbi, type, 1);
777         curseg->alloc_type = LFS;
778 }
779
780 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
781                         struct curseg_info *seg, block_t start)
782 {
783         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
784         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
785         unsigned long target_map[entries];
786         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
787         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
788         int i, pos;
789
790         for (i = 0; i < entries; i++)
791                 target_map[i] = ckpt_map[i] | cur_map[i];
792
793         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
794
795         seg->next_blkoff = pos;
796 }
797
798 /*
799  * If a segment is written by LFS manner, next block offset is just obtained
800  * by increasing the current block offset. However, if a segment is written by
801  * SSR manner, next block offset obtained by calling __next_free_blkoff
802  */
803 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
804                                 struct curseg_info *seg)
805 {
806         if (seg->alloc_type == SSR)
807                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
808         else
809                 seg->next_blkoff++;
810 }
811
812 /*
813  * This function always allocates a used segment (from dirty seglist) by SSR
814  * manner, so it should recover the existing segment information of valid blocks
815  */
816 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
817 {
818         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
819         struct curseg_info *curseg = CURSEG_I(sbi, type);
820         unsigned int new_segno = curseg->next_segno;
821         struct f2fs_summary_block *sum_node;
822         struct page *sum_page;
823
824         write_sum_page(sbi, curseg->sum_blk,
825                                 GET_SUM_BLOCK(sbi, curseg->segno));
826         __set_test_and_inuse(sbi, new_segno);
827
828         mutex_lock(&dirty_i->seglist_lock);
829         __remove_dirty_segment(sbi, new_segno, PRE);
830         __remove_dirty_segment(sbi, new_segno, DIRTY);
831         mutex_unlock(&dirty_i->seglist_lock);
832
833         reset_curseg(sbi, type, 1);
834         curseg->alloc_type = SSR;
835         __next_free_blkoff(sbi, curseg, 0);
836
837         if (reuse) {
838                 sum_page = get_sum_page(sbi, new_segno);
839                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
840                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
841                 f2fs_put_page(sum_page, 1);
842         }
843 }
844
845 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
846 {
847         struct curseg_info *curseg = CURSEG_I(sbi, type);
848         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
849
850         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
851                 return v_ops->get_victim(sbi,
852                                 &(curseg)->next_segno, BG_GC, type, SSR);
853
854         /* For data segments, let's do SSR more intensively */
855         for (; type >= CURSEG_HOT_DATA; type--)
856                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
857                                                 BG_GC, type, SSR))
858                         return 1;
859         return 0;
860 }
861
862 /*
863  * flush out current segment and replace it with new segment
864  * This function should be returned with success, otherwise BUG
865  */
866 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
867                                                 int type, bool force)
868 {
869         struct curseg_info *curseg = CURSEG_I(sbi, type);
870
871         if (force)
872                 new_curseg(sbi, type, true);
873         else if (type == CURSEG_WARM_NODE)
874                 new_curseg(sbi, type, false);
875         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
876                 new_curseg(sbi, type, false);
877         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
878                 change_curseg(sbi, type, true);
879         else
880                 new_curseg(sbi, type, false);
881
882         stat_inc_seg_type(sbi, curseg);
883 }
884
885 void allocate_new_segments(struct f2fs_sb_info *sbi)
886 {
887         struct curseg_info *curseg;
888         unsigned int old_curseg;
889         int i;
890
891         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
892                 curseg = CURSEG_I(sbi, i);
893                 old_curseg = curseg->segno;
894                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
895                 locate_dirty_segment(sbi, old_curseg);
896         }
897 }
898
899 static const struct segment_allocation default_salloc_ops = {
900         .allocate_segment = allocate_segment_by_default,
901 };
902
903 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
904 {
905         struct curseg_info *curseg = CURSEG_I(sbi, type);
906         if (curseg->next_blkoff < sbi->blocks_per_seg)
907                 return true;
908         return false;
909 }
910
911 static int __get_segment_type_2(struct page *page, enum page_type p_type)
912 {
913         if (p_type == DATA)
914                 return CURSEG_HOT_DATA;
915         else
916                 return CURSEG_HOT_NODE;
917 }
918
919 static int __get_segment_type_4(struct page *page, enum page_type p_type)
920 {
921         if (p_type == DATA) {
922                 struct inode *inode = page->mapping->host;
923
924                 if (S_ISDIR(inode->i_mode))
925                         return CURSEG_HOT_DATA;
926                 else
927                         return CURSEG_COLD_DATA;
928         } else {
929                 if (IS_DNODE(page) && !is_cold_node(page))
930                         return CURSEG_HOT_NODE;
931                 else
932                         return CURSEG_COLD_NODE;
933         }
934 }
935
936 static int __get_segment_type_6(struct page *page, enum page_type p_type)
937 {
938         if (p_type == DATA) {
939                 struct inode *inode = page->mapping->host;
940
941                 if (S_ISDIR(inode->i_mode))
942                         return CURSEG_HOT_DATA;
943                 else if (is_cold_data(page) || file_is_cold(inode))
944                         return CURSEG_COLD_DATA;
945                 else
946                         return CURSEG_WARM_DATA;
947         } else {
948                 if (IS_DNODE(page))
949                         return is_cold_node(page) ? CURSEG_WARM_NODE :
950                                                 CURSEG_HOT_NODE;
951                 else
952                         return CURSEG_COLD_NODE;
953         }
954 }
955
956 static int __get_segment_type(struct page *page, enum page_type p_type)
957 {
958         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
959         switch (sbi->active_logs) {
960         case 2:
961                 return __get_segment_type_2(page, p_type);
962         case 4:
963                 return __get_segment_type_4(page, p_type);
964         }
965         /* NR_CURSEG_TYPE(6) logs by default */
966         f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
967         return __get_segment_type_6(page, p_type);
968 }
969
970 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
971                 block_t old_blkaddr, block_t *new_blkaddr,
972                 struct f2fs_summary *sum, int type)
973 {
974         struct sit_info *sit_i = SIT_I(sbi);
975         struct curseg_info *curseg;
976         unsigned int old_cursegno;
977
978         curseg = CURSEG_I(sbi, type);
979
980         mutex_lock(&curseg->curseg_mutex);
981
982         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
983         old_cursegno = curseg->segno;
984
985         /*
986          * __add_sum_entry should be resided under the curseg_mutex
987          * because, this function updates a summary entry in the
988          * current summary block.
989          */
990         __add_sum_entry(sbi, type, sum);
991
992         mutex_lock(&sit_i->sentry_lock);
993         __refresh_next_blkoff(sbi, curseg);
994
995         stat_inc_block_count(sbi, curseg);
996
997         if (!__has_curseg_space(sbi, type))
998                 sit_i->s_ops->allocate_segment(sbi, type, false);
999         /*
1000          * SIT information should be updated before segment allocation,
1001          * since SSR needs latest valid block information.
1002          */
1003         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1004         locate_dirty_segment(sbi, old_cursegno);
1005
1006         mutex_unlock(&sit_i->sentry_lock);
1007
1008         if (page && IS_NODESEG(type))
1009                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1010
1011         mutex_unlock(&curseg->curseg_mutex);
1012 }
1013
1014 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1015                         block_t old_blkaddr, block_t *new_blkaddr,
1016                         struct f2fs_summary *sum, struct f2fs_io_info *fio)
1017 {
1018         int type = __get_segment_type(page, fio->type);
1019
1020         allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1021
1022         /* writeout dirty page into bdev */
1023         f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1024 }
1025
1026 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1027 {
1028         struct f2fs_io_info fio = {
1029                 .type = META,
1030                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
1031         };
1032
1033         set_page_writeback(page);
1034         f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1035 }
1036
1037 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1038                 struct f2fs_io_info *fio,
1039                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1040 {
1041         struct f2fs_summary sum;
1042         set_summary(&sum, nid, 0, 0);
1043         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1044 }
1045
1046 void write_data_page(struct page *page, struct dnode_of_data *dn,
1047                 block_t *new_blkaddr, struct f2fs_io_info *fio)
1048 {
1049         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
1050         struct f2fs_summary sum;
1051         struct node_info ni;
1052
1053         f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
1054         get_node_info(sbi, dn->nid, &ni);
1055         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1056
1057         do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1058 }
1059
1060 void rewrite_data_page(struct page *page, block_t old_blkaddr,
1061                                         struct f2fs_io_info *fio)
1062 {
1063         struct inode *inode = page->mapping->host;
1064         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1065         f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
1066 }
1067
1068 void recover_data_page(struct f2fs_sb_info *sbi,
1069                         struct page *page, struct f2fs_summary *sum,
1070                         block_t old_blkaddr, block_t new_blkaddr)
1071 {
1072         struct sit_info *sit_i = SIT_I(sbi);
1073         struct curseg_info *curseg;
1074         unsigned int segno, old_cursegno;
1075         struct seg_entry *se;
1076         int type;
1077
1078         segno = GET_SEGNO(sbi, new_blkaddr);
1079         se = get_seg_entry(sbi, segno);
1080         type = se->type;
1081
1082         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1083                 if (old_blkaddr == NULL_ADDR)
1084                         type = CURSEG_COLD_DATA;
1085                 else
1086                         type = CURSEG_WARM_DATA;
1087         }
1088         curseg = CURSEG_I(sbi, type);
1089
1090         mutex_lock(&curseg->curseg_mutex);
1091         mutex_lock(&sit_i->sentry_lock);
1092
1093         old_cursegno = curseg->segno;
1094
1095         /* change the current segment */
1096         if (segno != curseg->segno) {
1097                 curseg->next_segno = segno;
1098                 change_curseg(sbi, type, true);
1099         }
1100
1101         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1102         __add_sum_entry(sbi, type, sum);
1103
1104         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1105         locate_dirty_segment(sbi, old_cursegno);
1106
1107         mutex_unlock(&sit_i->sentry_lock);
1108         mutex_unlock(&curseg->curseg_mutex);
1109 }
1110
1111 void rewrite_node_page(struct f2fs_sb_info *sbi,
1112                         struct page *page, struct f2fs_summary *sum,
1113                         block_t old_blkaddr, block_t new_blkaddr)
1114 {
1115         struct sit_info *sit_i = SIT_I(sbi);
1116         int type = CURSEG_WARM_NODE;
1117         struct curseg_info *curseg;
1118         unsigned int segno, old_cursegno;
1119         block_t next_blkaddr = next_blkaddr_of_node(page);
1120         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1121         struct f2fs_io_info fio = {
1122                 .type = NODE,
1123                 .rw = WRITE_SYNC,
1124         };
1125
1126         curseg = CURSEG_I(sbi, type);
1127
1128         mutex_lock(&curseg->curseg_mutex);
1129         mutex_lock(&sit_i->sentry_lock);
1130
1131         segno = GET_SEGNO(sbi, new_blkaddr);
1132         old_cursegno = curseg->segno;
1133
1134         /* change the current segment */
1135         if (segno != curseg->segno) {
1136                 curseg->next_segno = segno;
1137                 change_curseg(sbi, type, true);
1138         }
1139         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1140         __add_sum_entry(sbi, type, sum);
1141
1142         /* change the current log to the next block addr in advance */
1143         if (next_segno != segno) {
1144                 curseg->next_segno = next_segno;
1145                 change_curseg(sbi, type, true);
1146         }
1147         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr);
1148
1149         /* rewrite node page */
1150         set_page_writeback(page);
1151         f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1152         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1153         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1154         locate_dirty_segment(sbi, old_cursegno);
1155
1156         mutex_unlock(&sit_i->sentry_lock);
1157         mutex_unlock(&curseg->curseg_mutex);
1158 }
1159
1160 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1161                                         struct page *page, enum page_type type)
1162 {
1163         enum page_type btype = PAGE_TYPE_OF_BIO(type);
1164         struct f2fs_bio_info *io = &sbi->write_io[btype];
1165         struct bio_vec *bvec;
1166         int i;
1167
1168         down_read(&io->io_rwsem);
1169         if (!io->bio)
1170                 goto out;
1171
1172         bio_for_each_segment_all(bvec, io->bio, i) {
1173                 if (page == bvec->bv_page) {
1174                         up_read(&io->io_rwsem);
1175                         return true;
1176                 }
1177         }
1178
1179 out:
1180         up_read(&io->io_rwsem);
1181         return false;
1182 }
1183
1184 void f2fs_wait_on_page_writeback(struct page *page,
1185                                 enum page_type type)
1186 {
1187         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1188         if (PageWriteback(page)) {
1189                 if (is_merged_page(sbi, page, type))
1190                         f2fs_submit_merged_bio(sbi, type, WRITE);
1191                 wait_on_page_writeback(page);
1192         }
1193 }
1194
1195 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1196 {
1197         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1198         struct curseg_info *seg_i;
1199         unsigned char *kaddr;
1200         struct page *page;
1201         block_t start;
1202         int i, j, offset;
1203
1204         start = start_sum_block(sbi);
1205
1206         page = get_meta_page(sbi, start++);
1207         kaddr = (unsigned char *)page_address(page);
1208
1209         /* Step 1: restore nat cache */
1210         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1211         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1212
1213         /* Step 2: restore sit cache */
1214         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1215         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1216                                                 SUM_JOURNAL_SIZE);
1217         offset = 2 * SUM_JOURNAL_SIZE;
1218
1219         /* Step 3: restore summary entries */
1220         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1221                 unsigned short blk_off;
1222                 unsigned int segno;
1223
1224                 seg_i = CURSEG_I(sbi, i);
1225                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1226                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1227                 seg_i->next_segno = segno;
1228                 reset_curseg(sbi, i, 0);
1229                 seg_i->alloc_type = ckpt->alloc_type[i];
1230                 seg_i->next_blkoff = blk_off;
1231
1232                 if (seg_i->alloc_type == SSR)
1233                         blk_off = sbi->blocks_per_seg;
1234
1235                 for (j = 0; j < blk_off; j++) {
1236                         struct f2fs_summary *s;
1237                         s = (struct f2fs_summary *)(kaddr + offset);
1238                         seg_i->sum_blk->entries[j] = *s;
1239                         offset += SUMMARY_SIZE;
1240                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1241                                                 SUM_FOOTER_SIZE)
1242                                 continue;
1243
1244                         f2fs_put_page(page, 1);
1245                         page = NULL;
1246
1247                         page = get_meta_page(sbi, start++);
1248                         kaddr = (unsigned char *)page_address(page);
1249                         offset = 0;
1250                 }
1251         }
1252         f2fs_put_page(page, 1);
1253         return 0;
1254 }
1255
1256 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1257 {
1258         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1259         struct f2fs_summary_block *sum;
1260         struct curseg_info *curseg;
1261         struct page *new;
1262         unsigned short blk_off;
1263         unsigned int segno = 0;
1264         block_t blk_addr = 0;
1265
1266         /* get segment number and block addr */
1267         if (IS_DATASEG(type)) {
1268                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1269                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1270                                                         CURSEG_HOT_DATA]);
1271                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1272                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1273                 else
1274                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1275         } else {
1276                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1277                                                         CURSEG_HOT_NODE]);
1278                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1279                                                         CURSEG_HOT_NODE]);
1280                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1281                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1282                                                         type - CURSEG_HOT_NODE);
1283                 else
1284                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1285         }
1286
1287         new = get_meta_page(sbi, blk_addr);
1288         sum = (struct f2fs_summary_block *)page_address(new);
1289
1290         if (IS_NODESEG(type)) {
1291                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1292                         struct f2fs_summary *ns = &sum->entries[0];
1293                         int i;
1294                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1295                                 ns->version = 0;
1296                                 ns->ofs_in_node = 0;
1297                         }
1298                 } else {
1299                         int err;
1300
1301                         err = restore_node_summary(sbi, segno, sum);
1302                         if (err) {
1303                                 f2fs_put_page(new, 1);
1304                                 return err;
1305                         }
1306                 }
1307         }
1308
1309         /* set uncompleted segment to curseg */
1310         curseg = CURSEG_I(sbi, type);
1311         mutex_lock(&curseg->curseg_mutex);
1312         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1313         curseg->next_segno = segno;
1314         reset_curseg(sbi, type, 0);
1315         curseg->alloc_type = ckpt->alloc_type[type];
1316         curseg->next_blkoff = blk_off;
1317         mutex_unlock(&curseg->curseg_mutex);
1318         f2fs_put_page(new, 1);
1319         return 0;
1320 }
1321
1322 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1323 {
1324         int type = CURSEG_HOT_DATA;
1325         int err;
1326
1327         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1328                 /* restore for compacted data summary */
1329                 if (read_compacted_summaries(sbi))
1330                         return -EINVAL;
1331                 type = CURSEG_HOT_NODE;
1332         }
1333
1334         for (; type <= CURSEG_COLD_NODE; type++) {
1335                 err = read_normal_summaries(sbi, type);
1336                 if (err)
1337                         return err;
1338         }
1339
1340         return 0;
1341 }
1342
1343 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1344 {
1345         struct page *page;
1346         unsigned char *kaddr;
1347         struct f2fs_summary *summary;
1348         struct curseg_info *seg_i;
1349         int written_size = 0;
1350         int i, j;
1351
1352         page = grab_meta_page(sbi, blkaddr++);
1353         kaddr = (unsigned char *)page_address(page);
1354
1355         /* Step 1: write nat cache */
1356         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1357         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1358         written_size += SUM_JOURNAL_SIZE;
1359
1360         /* Step 2: write sit cache */
1361         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1362         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1363                                                 SUM_JOURNAL_SIZE);
1364         written_size += SUM_JOURNAL_SIZE;
1365
1366         /* Step 3: write summary entries */
1367         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1368                 unsigned short blkoff;
1369                 seg_i = CURSEG_I(sbi, i);
1370                 if (sbi->ckpt->alloc_type[i] == SSR)
1371                         blkoff = sbi->blocks_per_seg;
1372                 else
1373                         blkoff = curseg_blkoff(sbi, i);
1374
1375                 for (j = 0; j < blkoff; j++) {
1376                         if (!page) {
1377                                 page = grab_meta_page(sbi, blkaddr++);
1378                                 kaddr = (unsigned char *)page_address(page);
1379                                 written_size = 0;
1380                         }
1381                         summary = (struct f2fs_summary *)(kaddr + written_size);
1382                         *summary = seg_i->sum_blk->entries[j];
1383                         written_size += SUMMARY_SIZE;
1384
1385                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1386                                                         SUM_FOOTER_SIZE)
1387                                 continue;
1388
1389                         set_page_dirty(page);
1390                         f2fs_put_page(page, 1);
1391                         page = NULL;
1392                 }
1393         }
1394         if (page) {
1395                 set_page_dirty(page);
1396                 f2fs_put_page(page, 1);
1397         }
1398 }
1399
1400 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1401                                         block_t blkaddr, int type)
1402 {
1403         int i, end;
1404         if (IS_DATASEG(type))
1405                 end = type + NR_CURSEG_DATA_TYPE;
1406         else
1407                 end = type + NR_CURSEG_NODE_TYPE;
1408
1409         for (i = type; i < end; i++) {
1410                 struct curseg_info *sum = CURSEG_I(sbi, i);
1411                 mutex_lock(&sum->curseg_mutex);
1412                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1413                 mutex_unlock(&sum->curseg_mutex);
1414         }
1415 }
1416
1417 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1418 {
1419         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1420                 write_compacted_summaries(sbi, start_blk);
1421         else
1422                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1423 }
1424
1425 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1426 {
1427         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1428                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1429 }
1430
1431 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1432                                         unsigned int val, int alloc)
1433 {
1434         int i;
1435
1436         if (type == NAT_JOURNAL) {
1437                 for (i = 0; i < nats_in_cursum(sum); i++) {
1438                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1439                                 return i;
1440                 }
1441                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1442                         return update_nats_in_cursum(sum, 1);
1443         } else if (type == SIT_JOURNAL) {
1444                 for (i = 0; i < sits_in_cursum(sum); i++)
1445                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1446                                 return i;
1447                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1448                         return update_sits_in_cursum(sum, 1);
1449         }
1450         return -1;
1451 }
1452
1453 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1454                                         unsigned int segno)
1455 {
1456         struct sit_info *sit_i = SIT_I(sbi);
1457         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1458         block_t blk_addr = sit_i->sit_base_addr + offset;
1459
1460         check_seg_range(sbi, segno);
1461
1462         /* calculate sit block address */
1463         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1464                 blk_addr += sit_i->sit_blocks;
1465
1466         return get_meta_page(sbi, blk_addr);
1467 }
1468
1469 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1470                                         unsigned int start)
1471 {
1472         struct sit_info *sit_i = SIT_I(sbi);
1473         struct page *src_page, *dst_page;
1474         pgoff_t src_off, dst_off;
1475         void *src_addr, *dst_addr;
1476
1477         src_off = current_sit_addr(sbi, start);
1478         dst_off = next_sit_addr(sbi, src_off);
1479
1480         /* get current sit block page without lock */
1481         src_page = get_meta_page(sbi, src_off);
1482         dst_page = grab_meta_page(sbi, dst_off);
1483         f2fs_bug_on(PageDirty(src_page));
1484
1485         src_addr = page_address(src_page);
1486         dst_addr = page_address(dst_page);
1487         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1488
1489         set_page_dirty(dst_page);
1490         f2fs_put_page(src_page, 1);
1491
1492         set_to_next_sit(sit_i, start);
1493
1494         return dst_page;
1495 }
1496
1497 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1498 {
1499         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1500         struct f2fs_summary_block *sum = curseg->sum_blk;
1501         int i;
1502
1503         /*
1504          * If the journal area in the current summary is full of sit entries,
1505          * all the sit entries will be flushed. Otherwise the sit entries
1506          * are not able to replace with newly hot sit entries.
1507          */
1508         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1509                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1510                         unsigned int segno;
1511                         segno = le32_to_cpu(segno_in_journal(sum, i));
1512                         __mark_sit_entry_dirty(sbi, segno);
1513                 }
1514                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1515                 return true;
1516         }
1517         return false;
1518 }
1519
1520 /*
1521  * CP calls this function, which flushes SIT entries including sit_journal,
1522  * and moves prefree segs to free segs.
1523  */
1524 void flush_sit_entries(struct f2fs_sb_info *sbi)
1525 {
1526         struct sit_info *sit_i = SIT_I(sbi);
1527         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1528         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1529         struct f2fs_summary_block *sum = curseg->sum_blk;
1530         unsigned long nsegs = TOTAL_SEGS(sbi);
1531         struct page *page = NULL;
1532         struct f2fs_sit_block *raw_sit = NULL;
1533         unsigned int start = 0, end = 0;
1534         unsigned int segno = -1;
1535         bool flushed;
1536
1537         mutex_lock(&curseg->curseg_mutex);
1538         mutex_lock(&sit_i->sentry_lock);
1539
1540         /*
1541          * "flushed" indicates whether sit entries in journal are flushed
1542          * to the SIT area or not.
1543          */
1544         flushed = flush_sits_in_journal(sbi);
1545
1546         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1547                 struct seg_entry *se = get_seg_entry(sbi, segno);
1548                 int sit_offset, offset;
1549
1550                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1551
1552                 /* add discard candidates */
1553                 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1554                         add_discard_addrs(sbi, segno, se);
1555
1556                 if (flushed)
1557                         goto to_sit_page;
1558
1559                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1560                 if (offset >= 0) {
1561                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1562                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1563                         goto flush_done;
1564                 }
1565 to_sit_page:
1566                 if (!page || (start > segno) || (segno > end)) {
1567                         if (page) {
1568                                 f2fs_put_page(page, 1);
1569                                 page = NULL;
1570                         }
1571
1572                         start = START_SEGNO(sit_i, segno);
1573                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1574
1575                         /* read sit block that will be updated */
1576                         page = get_next_sit_page(sbi, start);
1577                         raw_sit = page_address(page);
1578                 }
1579
1580                 /* udpate entry in SIT block */
1581                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1582 flush_done:
1583                 __clear_bit(segno, bitmap);
1584                 sit_i->dirty_sentries--;
1585         }
1586         mutex_unlock(&sit_i->sentry_lock);
1587         mutex_unlock(&curseg->curseg_mutex);
1588
1589         /* writeout last modified SIT block */
1590         f2fs_put_page(page, 1);
1591
1592         set_prefree_as_free_segments(sbi);
1593 }
1594
1595 static int build_sit_info(struct f2fs_sb_info *sbi)
1596 {
1597         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1598         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1599         struct sit_info *sit_i;
1600         unsigned int sit_segs, start;
1601         char *src_bitmap, *dst_bitmap;
1602         unsigned int bitmap_size;
1603
1604         /* allocate memory for SIT information */
1605         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1606         if (!sit_i)
1607                 return -ENOMEM;
1608
1609         SM_I(sbi)->sit_info = sit_i;
1610
1611         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1612         if (!sit_i->sentries)
1613                 return -ENOMEM;
1614
1615         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1616         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1617         if (!sit_i->dirty_sentries_bitmap)
1618                 return -ENOMEM;
1619
1620         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1621                 sit_i->sentries[start].cur_valid_map
1622                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1623                 sit_i->sentries[start].ckpt_valid_map
1624                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1625                 if (!sit_i->sentries[start].cur_valid_map
1626                                 || !sit_i->sentries[start].ckpt_valid_map)
1627                         return -ENOMEM;
1628         }
1629
1630         if (sbi->segs_per_sec > 1) {
1631                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1632                                         sizeof(struct sec_entry));
1633                 if (!sit_i->sec_entries)
1634                         return -ENOMEM;
1635         }
1636
1637         /* get information related with SIT */
1638         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1639
1640         /* setup SIT bitmap from ckeckpoint pack */
1641         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1642         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1643
1644         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1645         if (!dst_bitmap)
1646                 return -ENOMEM;
1647
1648         /* init SIT information */
1649         sit_i->s_ops = &default_salloc_ops;
1650
1651         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1652         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1653         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1654         sit_i->sit_bitmap = dst_bitmap;
1655         sit_i->bitmap_size = bitmap_size;
1656         sit_i->dirty_sentries = 0;
1657         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1658         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1659         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1660         mutex_init(&sit_i->sentry_lock);
1661         return 0;
1662 }
1663
1664 static int build_free_segmap(struct f2fs_sb_info *sbi)
1665 {
1666         struct f2fs_sm_info *sm_info = SM_I(sbi);
1667         struct free_segmap_info *free_i;
1668         unsigned int bitmap_size, sec_bitmap_size;
1669
1670         /* allocate memory for free segmap information */
1671         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1672         if (!free_i)
1673                 return -ENOMEM;
1674
1675         SM_I(sbi)->free_info = free_i;
1676
1677         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1678         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1679         if (!free_i->free_segmap)
1680                 return -ENOMEM;
1681
1682         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1683         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1684         if (!free_i->free_secmap)
1685                 return -ENOMEM;
1686
1687         /* set all segments as dirty temporarily */
1688         memset(free_i->free_segmap, 0xff, bitmap_size);
1689         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1690
1691         /* init free segmap information */
1692         free_i->start_segno =
1693                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1694         free_i->free_segments = 0;
1695         free_i->free_sections = 0;
1696         rwlock_init(&free_i->segmap_lock);
1697         return 0;
1698 }
1699
1700 static int build_curseg(struct f2fs_sb_info *sbi)
1701 {
1702         struct curseg_info *array;
1703         int i;
1704
1705         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1706         if (!array)
1707                 return -ENOMEM;
1708
1709         SM_I(sbi)->curseg_array = array;
1710
1711         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1712                 mutex_init(&array[i].curseg_mutex);
1713                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1714                 if (!array[i].sum_blk)
1715                         return -ENOMEM;
1716                 array[i].segno = NULL_SEGNO;
1717                 array[i].next_blkoff = 0;
1718         }
1719         return restore_curseg_summaries(sbi);
1720 }
1721
1722 static void build_sit_entries(struct f2fs_sb_info *sbi)
1723 {
1724         struct sit_info *sit_i = SIT_I(sbi);
1725         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1726         struct f2fs_summary_block *sum = curseg->sum_blk;
1727         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1728         unsigned int i, start, end;
1729         unsigned int readed, start_blk = 0;
1730         int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1731
1732         do {
1733                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1734
1735                 start = start_blk * sit_i->sents_per_block;
1736                 end = (start_blk + readed) * sit_i->sents_per_block;
1737
1738                 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1739                         struct seg_entry *se = &sit_i->sentries[start];
1740                         struct f2fs_sit_block *sit_blk;
1741                         struct f2fs_sit_entry sit;
1742                         struct page *page;
1743
1744                         mutex_lock(&curseg->curseg_mutex);
1745                         for (i = 0; i < sits_in_cursum(sum); i++) {
1746                                 if (le32_to_cpu(segno_in_journal(sum, i))
1747                                                                 == start) {
1748                                         sit = sit_in_journal(sum, i);
1749                                         mutex_unlock(&curseg->curseg_mutex);
1750                                         goto got_it;
1751                                 }
1752                         }
1753                         mutex_unlock(&curseg->curseg_mutex);
1754
1755                         page = get_current_sit_page(sbi, start);
1756                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1757                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1758                         f2fs_put_page(page, 1);
1759 got_it:
1760                         check_block_count(sbi, start, &sit);
1761                         seg_info_from_raw_sit(se, &sit);
1762                         if (sbi->segs_per_sec > 1) {
1763                                 struct sec_entry *e = get_sec_entry(sbi, start);
1764                                 e->valid_blocks += se->valid_blocks;
1765                         }
1766                 }
1767                 start_blk += readed;
1768         } while (start_blk < sit_blk_cnt);
1769 }
1770
1771 static void init_free_segmap(struct f2fs_sb_info *sbi)
1772 {
1773         unsigned int start;
1774         int type;
1775
1776         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1777                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1778                 if (!sentry->valid_blocks)
1779                         __set_free(sbi, start);
1780         }
1781
1782         /* set use the current segments */
1783         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1784                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1785                 __set_test_and_inuse(sbi, curseg_t->segno);
1786         }
1787 }
1788
1789 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1790 {
1791         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1792         struct free_segmap_info *free_i = FREE_I(sbi);
1793         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1794         unsigned short valid_blocks;
1795
1796         while (1) {
1797                 /* find dirty segment based on free segmap */
1798                 segno = find_next_inuse(free_i, total_segs, offset);
1799                 if (segno >= total_segs)
1800                         break;
1801                 offset = segno + 1;
1802                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1803                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1804                         continue;
1805                 mutex_lock(&dirty_i->seglist_lock);
1806                 __locate_dirty_segment(sbi, segno, DIRTY);
1807                 mutex_unlock(&dirty_i->seglist_lock);
1808         }
1809 }
1810
1811 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1812 {
1813         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1814         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1815
1816         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1817         if (!dirty_i->victim_secmap)
1818                 return -ENOMEM;
1819         return 0;
1820 }
1821
1822 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1823 {
1824         struct dirty_seglist_info *dirty_i;
1825         unsigned int bitmap_size, i;
1826
1827         /* allocate memory for dirty segments list information */
1828         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1829         if (!dirty_i)
1830                 return -ENOMEM;
1831
1832         SM_I(sbi)->dirty_info = dirty_i;
1833         mutex_init(&dirty_i->seglist_lock);
1834
1835         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1836
1837         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1838                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1839                 if (!dirty_i->dirty_segmap[i])
1840                         return -ENOMEM;
1841         }
1842
1843         init_dirty_segmap(sbi);
1844         return init_victim_secmap(sbi);
1845 }
1846
1847 /*
1848  * Update min, max modified time for cost-benefit GC algorithm
1849  */
1850 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1851 {
1852         struct sit_info *sit_i = SIT_I(sbi);
1853         unsigned int segno;
1854
1855         mutex_lock(&sit_i->sentry_lock);
1856
1857         sit_i->min_mtime = LLONG_MAX;
1858
1859         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1860                 unsigned int i;
1861                 unsigned long long mtime = 0;
1862
1863                 for (i = 0; i < sbi->segs_per_sec; i++)
1864                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1865
1866                 mtime = div_u64(mtime, sbi->segs_per_sec);
1867
1868                 if (sit_i->min_mtime > mtime)
1869                         sit_i->min_mtime = mtime;
1870         }
1871         sit_i->max_mtime = get_mtime(sbi);
1872         mutex_unlock(&sit_i->sentry_lock);
1873 }
1874
1875 int build_segment_manager(struct f2fs_sb_info *sbi)
1876 {
1877         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1878         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1879         struct f2fs_sm_info *sm_info;
1880         int err;
1881
1882         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1883         if (!sm_info)
1884                 return -ENOMEM;
1885
1886         /* init sm info */
1887         sbi->sm_info = sm_info;
1888         INIT_LIST_HEAD(&sm_info->wblist_head);
1889         spin_lock_init(&sm_info->wblist_lock);
1890         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1891         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1892         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1893         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1894         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1895         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1896         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1897         sm_info->rec_prefree_segments = sm_info->main_segments *
1898                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1899         sm_info->ipu_policy = F2FS_IPU_DISABLE;
1900         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1901
1902         INIT_LIST_HEAD(&sm_info->discard_list);
1903         sm_info->nr_discards = 0;
1904         sm_info->max_discards = 0;
1905
1906         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
1907                 err = create_flush_cmd_control(sbi);
1908                 if (err)
1909                         return err;
1910         }
1911
1912         err = build_sit_info(sbi);
1913         if (err)
1914                 return err;
1915         err = build_free_segmap(sbi);
1916         if (err)
1917                 return err;
1918         err = build_curseg(sbi);
1919         if (err)
1920                 return err;
1921
1922         /* reinit free segmap based on SIT */
1923         build_sit_entries(sbi);
1924
1925         init_free_segmap(sbi);
1926         err = build_dirty_segmap(sbi);
1927         if (err)
1928                 return err;
1929
1930         init_min_max_mtime(sbi);
1931         return 0;
1932 }
1933
1934 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1935                 enum dirty_type dirty_type)
1936 {
1937         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1938
1939         mutex_lock(&dirty_i->seglist_lock);
1940         kfree(dirty_i->dirty_segmap[dirty_type]);
1941         dirty_i->nr_dirty[dirty_type] = 0;
1942         mutex_unlock(&dirty_i->seglist_lock);
1943 }
1944
1945 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1946 {
1947         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1948         kfree(dirty_i->victim_secmap);
1949 }
1950
1951 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1952 {
1953         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1954         int i;
1955
1956         if (!dirty_i)
1957                 return;
1958
1959         /* discard pre-free/dirty segments list */
1960         for (i = 0; i < NR_DIRTY_TYPE; i++)
1961                 discard_dirty_segmap(sbi, i);
1962
1963         destroy_victim_secmap(sbi);
1964         SM_I(sbi)->dirty_info = NULL;
1965         kfree(dirty_i);
1966 }
1967
1968 static void destroy_curseg(struct f2fs_sb_info *sbi)
1969 {
1970         struct curseg_info *array = SM_I(sbi)->curseg_array;
1971         int i;
1972
1973         if (!array)
1974                 return;
1975         SM_I(sbi)->curseg_array = NULL;
1976         for (i = 0; i < NR_CURSEG_TYPE; i++)
1977                 kfree(array[i].sum_blk);
1978         kfree(array);
1979 }
1980
1981 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1982 {
1983         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1984         if (!free_i)
1985                 return;
1986         SM_I(sbi)->free_info = NULL;
1987         kfree(free_i->free_segmap);
1988         kfree(free_i->free_secmap);
1989         kfree(free_i);
1990 }
1991
1992 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1993 {
1994         struct sit_info *sit_i = SIT_I(sbi);
1995         unsigned int start;
1996
1997         if (!sit_i)
1998                 return;
1999
2000         if (sit_i->sentries) {
2001                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
2002                         kfree(sit_i->sentries[start].cur_valid_map);
2003                         kfree(sit_i->sentries[start].ckpt_valid_map);
2004                 }
2005         }
2006         vfree(sit_i->sentries);
2007         vfree(sit_i->sec_entries);
2008         kfree(sit_i->dirty_sentries_bitmap);
2009
2010         SM_I(sbi)->sit_info = NULL;
2011         kfree(sit_i->sit_bitmap);
2012         kfree(sit_i);
2013 }
2014
2015 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2016 {
2017         struct f2fs_sm_info *sm_info = SM_I(sbi);
2018
2019         if (!sm_info)
2020                 return;
2021         destroy_flush_cmd_control(sbi);
2022         destroy_dirty_segmap(sbi);
2023         destroy_curseg(sbi);
2024         destroy_free_segmap(sbi);
2025         destroy_sit_info(sbi);
2026         sbi->sm_info = NULL;
2027         kfree(sm_info);
2028 }
2029
2030 int __init create_segment_manager_caches(void)
2031 {
2032         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2033                         sizeof(struct discard_entry));
2034         if (!discard_entry_slab)
2035                 return -ENOMEM;
2036         return 0;
2037 }
2038
2039 void destroy_segment_manager_caches(void)
2040 {
2041         kmem_cache_destroy(discard_entry_slab);
2042 }