proc: don't use FOLL_FORCE for reading cmdline and environment
[cascardo/linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_PAGE_ALLOC]      = "page alloc",
47         [FAULT_ALLOC_NID]       = "alloc nid",
48         [FAULT_ORPHAN]          = "orphan",
49         [FAULT_BLOCK]           = "no more block",
50         [FAULT_DIR_DEPTH]       = "too big dir depth",
51         [FAULT_EVICT_INODE]     = "evict_inode fail",
52         [FAULT_IO]              = "IO error",
53         [FAULT_CHECKPOINT]      = "checkpoint error",
54 };
55
56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
57                                                 unsigned int rate)
58 {
59         struct f2fs_fault_info *ffi = &sbi->fault_info;
60
61         if (rate) {
62                 atomic_set(&ffi->inject_ops, 0);
63                 ffi->inject_rate = rate;
64                 ffi->inject_type = (1 << FAULT_MAX) - 1;
65         } else {
66                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
67         }
68 }
69 #endif
70
71 /* f2fs-wide shrinker description */
72 static struct shrinker f2fs_shrinker_info = {
73         .scan_objects = f2fs_shrink_scan,
74         .count_objects = f2fs_shrink_count,
75         .seeks = DEFAULT_SEEKS,
76 };
77
78 enum {
79         Opt_gc_background,
80         Opt_disable_roll_forward,
81         Opt_norecovery,
82         Opt_discard,
83         Opt_nodiscard,
84         Opt_noheap,
85         Opt_user_xattr,
86         Opt_nouser_xattr,
87         Opt_acl,
88         Opt_noacl,
89         Opt_active_logs,
90         Opt_disable_ext_identify,
91         Opt_inline_xattr,
92         Opt_inline_data,
93         Opt_inline_dentry,
94         Opt_noinline_dentry,
95         Opt_flush_merge,
96         Opt_noflush_merge,
97         Opt_nobarrier,
98         Opt_fastboot,
99         Opt_extent_cache,
100         Opt_noextent_cache,
101         Opt_noinline_data,
102         Opt_data_flush,
103         Opt_mode,
104         Opt_fault_injection,
105         Opt_lazytime,
106         Opt_nolazytime,
107         Opt_err,
108 };
109
110 static match_table_t f2fs_tokens = {
111         {Opt_gc_background, "background_gc=%s"},
112         {Opt_disable_roll_forward, "disable_roll_forward"},
113         {Opt_norecovery, "norecovery"},
114         {Opt_discard, "discard"},
115         {Opt_nodiscard, "nodiscard"},
116         {Opt_noheap, "no_heap"},
117         {Opt_user_xattr, "user_xattr"},
118         {Opt_nouser_xattr, "nouser_xattr"},
119         {Opt_acl, "acl"},
120         {Opt_noacl, "noacl"},
121         {Opt_active_logs, "active_logs=%u"},
122         {Opt_disable_ext_identify, "disable_ext_identify"},
123         {Opt_inline_xattr, "inline_xattr"},
124         {Opt_inline_data, "inline_data"},
125         {Opt_inline_dentry, "inline_dentry"},
126         {Opt_noinline_dentry, "noinline_dentry"},
127         {Opt_flush_merge, "flush_merge"},
128         {Opt_noflush_merge, "noflush_merge"},
129         {Opt_nobarrier, "nobarrier"},
130         {Opt_fastboot, "fastboot"},
131         {Opt_extent_cache, "extent_cache"},
132         {Opt_noextent_cache, "noextent_cache"},
133         {Opt_noinline_data, "noinline_data"},
134         {Opt_data_flush, "data_flush"},
135         {Opt_mode, "mode=%s"},
136         {Opt_fault_injection, "fault_injection=%u"},
137         {Opt_lazytime, "lazytime"},
138         {Opt_nolazytime, "nolazytime"},
139         {Opt_err, NULL},
140 };
141
142 /* Sysfs support for f2fs */
143 enum {
144         GC_THREAD,      /* struct f2fs_gc_thread */
145         SM_INFO,        /* struct f2fs_sm_info */
146         NM_INFO,        /* struct f2fs_nm_info */
147         F2FS_SBI,       /* struct f2fs_sb_info */
148 #ifdef CONFIG_F2FS_FAULT_INJECTION
149         FAULT_INFO_RATE,        /* struct f2fs_fault_info */
150         FAULT_INFO_TYPE,        /* struct f2fs_fault_info */
151 #endif
152 };
153
154 struct f2fs_attr {
155         struct attribute attr;
156         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
157         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
158                          const char *, size_t);
159         int struct_type;
160         int offset;
161 };
162
163 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
164 {
165         if (struct_type == GC_THREAD)
166                 return (unsigned char *)sbi->gc_thread;
167         else if (struct_type == SM_INFO)
168                 return (unsigned char *)SM_I(sbi);
169         else if (struct_type == NM_INFO)
170                 return (unsigned char *)NM_I(sbi);
171         else if (struct_type == F2FS_SBI)
172                 return (unsigned char *)sbi;
173 #ifdef CONFIG_F2FS_FAULT_INJECTION
174         else if (struct_type == FAULT_INFO_RATE ||
175                                         struct_type == FAULT_INFO_TYPE)
176                 return (unsigned char *)&sbi->fault_info;
177 #endif
178         return NULL;
179 }
180
181 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
182                 struct f2fs_sb_info *sbi, char *buf)
183 {
184         struct super_block *sb = sbi->sb;
185
186         if (!sb->s_bdev->bd_part)
187                 return snprintf(buf, PAGE_SIZE, "0\n");
188
189         return snprintf(buf, PAGE_SIZE, "%llu\n",
190                 (unsigned long long)(sbi->kbytes_written +
191                         BD_PART_WRITTEN(sbi)));
192 }
193
194 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
195                         struct f2fs_sb_info *sbi, char *buf)
196 {
197         unsigned char *ptr = NULL;
198         unsigned int *ui;
199
200         ptr = __struct_ptr(sbi, a->struct_type);
201         if (!ptr)
202                 return -EINVAL;
203
204         ui = (unsigned int *)(ptr + a->offset);
205
206         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
207 }
208
209 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
210                         struct f2fs_sb_info *sbi,
211                         const char *buf, size_t count)
212 {
213         unsigned char *ptr;
214         unsigned long t;
215         unsigned int *ui;
216         ssize_t ret;
217
218         ptr = __struct_ptr(sbi, a->struct_type);
219         if (!ptr)
220                 return -EINVAL;
221
222         ui = (unsigned int *)(ptr + a->offset);
223
224         ret = kstrtoul(skip_spaces(buf), 0, &t);
225         if (ret < 0)
226                 return ret;
227 #ifdef CONFIG_F2FS_FAULT_INJECTION
228         if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
229                 return -EINVAL;
230 #endif
231         *ui = t;
232         return count;
233 }
234
235 static ssize_t f2fs_attr_show(struct kobject *kobj,
236                                 struct attribute *attr, char *buf)
237 {
238         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
239                                                                 s_kobj);
240         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
241
242         return a->show ? a->show(a, sbi, buf) : 0;
243 }
244
245 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
246                                                 const char *buf, size_t len)
247 {
248         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
249                                                                         s_kobj);
250         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
251
252         return a->store ? a->store(a, sbi, buf, len) : 0;
253 }
254
255 static void f2fs_sb_release(struct kobject *kobj)
256 {
257         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
258                                                                 s_kobj);
259         complete(&sbi->s_kobj_unregister);
260 }
261
262 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
263 static struct f2fs_attr f2fs_attr_##_name = {                   \
264         .attr = {.name = __stringify(_name), .mode = _mode },   \
265         .show   = _show,                                        \
266         .store  = _store,                                       \
267         .struct_type = _struct_type,                            \
268         .offset = _offset                                       \
269 }
270
271 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
272         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
273                 f2fs_sbi_show, f2fs_sbi_store,                  \
274                 offsetof(struct struct_name, elname))
275
276 #define F2FS_GENERAL_RO_ATTR(name) \
277 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
278
279 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
280 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
281 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
282 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
283 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
284 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
285 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
286 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
287 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
288 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
289 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
290 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
291 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
292 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
293 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
294 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
295 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
296 #ifdef CONFIG_F2FS_FAULT_INJECTION
297 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
298 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
299 #endif
300 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
301
302 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
303 static struct attribute *f2fs_attrs[] = {
304         ATTR_LIST(gc_min_sleep_time),
305         ATTR_LIST(gc_max_sleep_time),
306         ATTR_LIST(gc_no_gc_sleep_time),
307         ATTR_LIST(gc_idle),
308         ATTR_LIST(reclaim_segments),
309         ATTR_LIST(max_small_discards),
310         ATTR_LIST(batched_trim_sections),
311         ATTR_LIST(ipu_policy),
312         ATTR_LIST(min_ipu_util),
313         ATTR_LIST(min_fsync_blocks),
314         ATTR_LIST(max_victim_search),
315         ATTR_LIST(dir_level),
316         ATTR_LIST(ram_thresh),
317         ATTR_LIST(ra_nid_pages),
318         ATTR_LIST(dirty_nats_ratio),
319         ATTR_LIST(cp_interval),
320         ATTR_LIST(idle_interval),
321 #ifdef CONFIG_F2FS_FAULT_INJECTION
322         ATTR_LIST(inject_rate),
323         ATTR_LIST(inject_type),
324 #endif
325         ATTR_LIST(lifetime_write_kbytes),
326         NULL,
327 };
328
329 static const struct sysfs_ops f2fs_attr_ops = {
330         .show   = f2fs_attr_show,
331         .store  = f2fs_attr_store,
332 };
333
334 static struct kobj_type f2fs_ktype = {
335         .default_attrs  = f2fs_attrs,
336         .sysfs_ops      = &f2fs_attr_ops,
337         .release        = f2fs_sb_release,
338 };
339
340 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
341 {
342         struct va_format vaf;
343         va_list args;
344
345         va_start(args, fmt);
346         vaf.fmt = fmt;
347         vaf.va = &args;
348         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
349         va_end(args);
350 }
351
352 static void init_once(void *foo)
353 {
354         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
355
356         inode_init_once(&fi->vfs_inode);
357 }
358
359 static int parse_options(struct super_block *sb, char *options)
360 {
361         struct f2fs_sb_info *sbi = F2FS_SB(sb);
362         struct request_queue *q;
363         substring_t args[MAX_OPT_ARGS];
364         char *p, *name;
365         int arg = 0;
366
367         if (!options)
368                 return 0;
369
370         while ((p = strsep(&options, ",")) != NULL) {
371                 int token;
372                 if (!*p)
373                         continue;
374                 /*
375                  * Initialize args struct so we know whether arg was
376                  * found; some options take optional arguments.
377                  */
378                 args[0].to = args[0].from = NULL;
379                 token = match_token(p, f2fs_tokens, args);
380
381                 switch (token) {
382                 case Opt_gc_background:
383                         name = match_strdup(&args[0]);
384
385                         if (!name)
386                                 return -ENOMEM;
387                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
388                                 set_opt(sbi, BG_GC);
389                                 clear_opt(sbi, FORCE_FG_GC);
390                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
391                                 clear_opt(sbi, BG_GC);
392                                 clear_opt(sbi, FORCE_FG_GC);
393                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
394                                 set_opt(sbi, BG_GC);
395                                 set_opt(sbi, FORCE_FG_GC);
396                         } else {
397                                 kfree(name);
398                                 return -EINVAL;
399                         }
400                         kfree(name);
401                         break;
402                 case Opt_disable_roll_forward:
403                         set_opt(sbi, DISABLE_ROLL_FORWARD);
404                         break;
405                 case Opt_norecovery:
406                         /* this option mounts f2fs with ro */
407                         set_opt(sbi, DISABLE_ROLL_FORWARD);
408                         if (!f2fs_readonly(sb))
409                                 return -EINVAL;
410                         break;
411                 case Opt_discard:
412                         q = bdev_get_queue(sb->s_bdev);
413                         if (blk_queue_discard(q)) {
414                                 set_opt(sbi, DISCARD);
415                         } else {
416                                 f2fs_msg(sb, KERN_WARNING,
417                                         "mounting with \"discard\" option, but "
418                                         "the device does not support discard");
419                         }
420                         break;
421                 case Opt_nodiscard:
422                         clear_opt(sbi, DISCARD);
423                 case Opt_noheap:
424                         set_opt(sbi, NOHEAP);
425                         break;
426 #ifdef CONFIG_F2FS_FS_XATTR
427                 case Opt_user_xattr:
428                         set_opt(sbi, XATTR_USER);
429                         break;
430                 case Opt_nouser_xattr:
431                         clear_opt(sbi, XATTR_USER);
432                         break;
433                 case Opt_inline_xattr:
434                         set_opt(sbi, INLINE_XATTR);
435                         break;
436 #else
437                 case Opt_user_xattr:
438                         f2fs_msg(sb, KERN_INFO,
439                                 "user_xattr options not supported");
440                         break;
441                 case Opt_nouser_xattr:
442                         f2fs_msg(sb, KERN_INFO,
443                                 "nouser_xattr options not supported");
444                         break;
445                 case Opt_inline_xattr:
446                         f2fs_msg(sb, KERN_INFO,
447                                 "inline_xattr options not supported");
448                         break;
449 #endif
450 #ifdef CONFIG_F2FS_FS_POSIX_ACL
451                 case Opt_acl:
452                         set_opt(sbi, POSIX_ACL);
453                         break;
454                 case Opt_noacl:
455                         clear_opt(sbi, POSIX_ACL);
456                         break;
457 #else
458                 case Opt_acl:
459                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
460                         break;
461                 case Opt_noacl:
462                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
463                         break;
464 #endif
465                 case Opt_active_logs:
466                         if (args->from && match_int(args, &arg))
467                                 return -EINVAL;
468                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
469                                 return -EINVAL;
470                         sbi->active_logs = arg;
471                         break;
472                 case Opt_disable_ext_identify:
473                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
474                         break;
475                 case Opt_inline_data:
476                         set_opt(sbi, INLINE_DATA);
477                         break;
478                 case Opt_inline_dentry:
479                         set_opt(sbi, INLINE_DENTRY);
480                         break;
481                 case Opt_noinline_dentry:
482                         clear_opt(sbi, INLINE_DENTRY);
483                         break;
484                 case Opt_flush_merge:
485                         set_opt(sbi, FLUSH_MERGE);
486                         break;
487                 case Opt_noflush_merge:
488                         clear_opt(sbi, FLUSH_MERGE);
489                         break;
490                 case Opt_nobarrier:
491                         set_opt(sbi, NOBARRIER);
492                         break;
493                 case Opt_fastboot:
494                         set_opt(sbi, FASTBOOT);
495                         break;
496                 case Opt_extent_cache:
497                         set_opt(sbi, EXTENT_CACHE);
498                         break;
499                 case Opt_noextent_cache:
500                         clear_opt(sbi, EXTENT_CACHE);
501                         break;
502                 case Opt_noinline_data:
503                         clear_opt(sbi, INLINE_DATA);
504                         break;
505                 case Opt_data_flush:
506                         set_opt(sbi, DATA_FLUSH);
507                         break;
508                 case Opt_mode:
509                         name = match_strdup(&args[0]);
510
511                         if (!name)
512                                 return -ENOMEM;
513                         if (strlen(name) == 8 &&
514                                         !strncmp(name, "adaptive", 8)) {
515                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
516                         } else if (strlen(name) == 3 &&
517                                         !strncmp(name, "lfs", 3)) {
518                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
519                         } else {
520                                 kfree(name);
521                                 return -EINVAL;
522                         }
523                         kfree(name);
524                         break;
525                 case Opt_fault_injection:
526                         if (args->from && match_int(args, &arg))
527                                 return -EINVAL;
528 #ifdef CONFIG_F2FS_FAULT_INJECTION
529                         f2fs_build_fault_attr(sbi, arg);
530 #else
531                         f2fs_msg(sb, KERN_INFO,
532                                 "FAULT_INJECTION was not selected");
533 #endif
534                         break;
535                 case Opt_lazytime:
536                         sb->s_flags |= MS_LAZYTIME;
537                         break;
538                 case Opt_nolazytime:
539                         sb->s_flags &= ~MS_LAZYTIME;
540                         break;
541                 default:
542                         f2fs_msg(sb, KERN_ERR,
543                                 "Unrecognized mount option \"%s\" or missing value",
544                                 p);
545                         return -EINVAL;
546                 }
547         }
548         return 0;
549 }
550
551 static struct inode *f2fs_alloc_inode(struct super_block *sb)
552 {
553         struct f2fs_inode_info *fi;
554
555         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
556         if (!fi)
557                 return NULL;
558
559         init_once((void *) fi);
560
561         if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
562                 kmem_cache_free(f2fs_inode_cachep, fi);
563                 return NULL;
564         }
565
566         /* Initialize f2fs-specific inode info */
567         fi->vfs_inode.i_version = 1;
568         fi->i_current_depth = 1;
569         fi->i_advise = 0;
570         init_rwsem(&fi->i_sem);
571         INIT_LIST_HEAD(&fi->dirty_list);
572         INIT_LIST_HEAD(&fi->gdirty_list);
573         INIT_LIST_HEAD(&fi->inmem_pages);
574         mutex_init(&fi->inmem_lock);
575         init_rwsem(&fi->dio_rwsem[READ]);
576         init_rwsem(&fi->dio_rwsem[WRITE]);
577
578         /* Will be used by directory only */
579         fi->i_dir_level = F2FS_SB(sb)->dir_level;
580         return &fi->vfs_inode;
581 }
582
583 static int f2fs_drop_inode(struct inode *inode)
584 {
585         /*
586          * This is to avoid a deadlock condition like below.
587          * writeback_single_inode(inode)
588          *  - f2fs_write_data_page
589          *    - f2fs_gc -> iput -> evict
590          *       - inode_wait_for_writeback(inode)
591          */
592         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
593                 if (!inode->i_nlink && !is_bad_inode(inode)) {
594                         /* to avoid evict_inode call simultaneously */
595                         atomic_inc(&inode->i_count);
596                         spin_unlock(&inode->i_lock);
597
598                         /* some remained atomic pages should discarded */
599                         if (f2fs_is_atomic_file(inode))
600                                 drop_inmem_pages(inode);
601
602                         /* should remain fi->extent_tree for writepage */
603                         f2fs_destroy_extent_node(inode);
604
605                         sb_start_intwrite(inode->i_sb);
606                         f2fs_i_size_write(inode, 0);
607
608                         if (F2FS_HAS_BLOCKS(inode))
609                                 f2fs_truncate(inode);
610
611                         sb_end_intwrite(inode->i_sb);
612
613                         fscrypt_put_encryption_info(inode, NULL);
614                         spin_lock(&inode->i_lock);
615                         atomic_dec(&inode->i_count);
616                 }
617                 return 0;
618         }
619
620         return generic_drop_inode(inode);
621 }
622
623 int f2fs_inode_dirtied(struct inode *inode)
624 {
625         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
626
627         spin_lock(&sbi->inode_lock[DIRTY_META]);
628         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
629                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
630                 return 1;
631         }
632
633         set_inode_flag(inode, FI_DIRTY_INODE);
634         list_add_tail(&F2FS_I(inode)->gdirty_list,
635                                 &sbi->inode_list[DIRTY_META]);
636         inc_page_count(sbi, F2FS_DIRTY_IMETA);
637         stat_inc_dirty_inode(sbi, DIRTY_META);
638         spin_unlock(&sbi->inode_lock[DIRTY_META]);
639
640         return 0;
641 }
642
643 void f2fs_inode_synced(struct inode *inode)
644 {
645         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
646
647         spin_lock(&sbi->inode_lock[DIRTY_META]);
648         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
649                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
650                 return;
651         }
652         list_del_init(&F2FS_I(inode)->gdirty_list);
653         clear_inode_flag(inode, FI_DIRTY_INODE);
654         clear_inode_flag(inode, FI_AUTO_RECOVER);
655         dec_page_count(sbi, F2FS_DIRTY_IMETA);
656         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
657         spin_unlock(&sbi->inode_lock[DIRTY_META]);
658 }
659
660 /*
661  * f2fs_dirty_inode() is called from __mark_inode_dirty()
662  *
663  * We should call set_dirty_inode to write the dirty inode through write_inode.
664  */
665 static void f2fs_dirty_inode(struct inode *inode, int flags)
666 {
667         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
668
669         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
670                         inode->i_ino == F2FS_META_INO(sbi))
671                 return;
672
673         if (flags == I_DIRTY_TIME)
674                 return;
675
676         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
677                 clear_inode_flag(inode, FI_AUTO_RECOVER);
678
679         f2fs_inode_dirtied(inode);
680 }
681
682 static void f2fs_i_callback(struct rcu_head *head)
683 {
684         struct inode *inode = container_of(head, struct inode, i_rcu);
685         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
686 }
687
688 static void f2fs_destroy_inode(struct inode *inode)
689 {
690         percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
691         call_rcu(&inode->i_rcu, f2fs_i_callback);
692 }
693
694 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
695 {
696         int i;
697
698         for (i = 0; i < NR_COUNT_TYPE; i++)
699                 percpu_counter_destroy(&sbi->nr_pages[i]);
700         percpu_counter_destroy(&sbi->alloc_valid_block_count);
701         percpu_counter_destroy(&sbi->total_valid_inode_count);
702 }
703
704 static void f2fs_put_super(struct super_block *sb)
705 {
706         struct f2fs_sb_info *sbi = F2FS_SB(sb);
707
708         if (sbi->s_proc) {
709                 remove_proc_entry("segment_info", sbi->s_proc);
710                 remove_proc_entry("segment_bits", sbi->s_proc);
711                 remove_proc_entry(sb->s_id, f2fs_proc_root);
712         }
713         kobject_del(&sbi->s_kobj);
714
715         stop_gc_thread(sbi);
716
717         /* prevent remaining shrinker jobs */
718         mutex_lock(&sbi->umount_mutex);
719
720         /*
721          * We don't need to do checkpoint when superblock is clean.
722          * But, the previous checkpoint was not done by umount, it needs to do
723          * clean checkpoint again.
724          */
725         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
726                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
727                 struct cp_control cpc = {
728                         .reason = CP_UMOUNT,
729                 };
730                 write_checkpoint(sbi, &cpc);
731         }
732
733         /* write_checkpoint can update stat informaion */
734         f2fs_destroy_stats(sbi);
735
736         /*
737          * normally superblock is clean, so we need to release this.
738          * In addition, EIO will skip do checkpoint, we need this as well.
739          */
740         release_ino_entry(sbi, true);
741         release_discard_addrs(sbi);
742
743         f2fs_leave_shrinker(sbi);
744         mutex_unlock(&sbi->umount_mutex);
745
746         /* our cp_error case, we can wait for any writeback page */
747         f2fs_flush_merged_bios(sbi);
748
749         iput(sbi->node_inode);
750         iput(sbi->meta_inode);
751
752         /* destroy f2fs internal modules */
753         destroy_node_manager(sbi);
754         destroy_segment_manager(sbi);
755
756         kfree(sbi->ckpt);
757         kobject_put(&sbi->s_kobj);
758         wait_for_completion(&sbi->s_kobj_unregister);
759
760         sb->s_fs_info = NULL;
761         if (sbi->s_chksum_driver)
762                 crypto_free_shash(sbi->s_chksum_driver);
763         kfree(sbi->raw_super);
764
765         destroy_percpu_info(sbi);
766         kfree(sbi);
767 }
768
769 int f2fs_sync_fs(struct super_block *sb, int sync)
770 {
771         struct f2fs_sb_info *sbi = F2FS_SB(sb);
772         int err = 0;
773
774         trace_f2fs_sync_fs(sb, sync);
775
776         if (sync) {
777                 struct cp_control cpc;
778
779                 cpc.reason = __get_cp_reason(sbi);
780
781                 mutex_lock(&sbi->gc_mutex);
782                 err = write_checkpoint(sbi, &cpc);
783                 mutex_unlock(&sbi->gc_mutex);
784         }
785         f2fs_trace_ios(NULL, 1);
786
787         return err;
788 }
789
790 static int f2fs_freeze(struct super_block *sb)
791 {
792         int err;
793
794         if (f2fs_readonly(sb))
795                 return 0;
796
797         err = f2fs_sync_fs(sb, 1);
798         return err;
799 }
800
801 static int f2fs_unfreeze(struct super_block *sb)
802 {
803         return 0;
804 }
805
806 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
807 {
808         struct super_block *sb = dentry->d_sb;
809         struct f2fs_sb_info *sbi = F2FS_SB(sb);
810         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
811         block_t total_count, user_block_count, start_count, ovp_count;
812
813         total_count = le64_to_cpu(sbi->raw_super->block_count);
814         user_block_count = sbi->user_block_count;
815         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
816         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
817         buf->f_type = F2FS_SUPER_MAGIC;
818         buf->f_bsize = sbi->blocksize;
819
820         buf->f_blocks = total_count - start_count;
821         buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
822         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
823
824         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
825         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
826
827         buf->f_namelen = F2FS_NAME_LEN;
828         buf->f_fsid.val[0] = (u32)id;
829         buf->f_fsid.val[1] = (u32)(id >> 32);
830
831         return 0;
832 }
833
834 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
835 {
836         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
837
838         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
839                 if (test_opt(sbi, FORCE_FG_GC))
840                         seq_printf(seq, ",background_gc=%s", "sync");
841                 else
842                         seq_printf(seq, ",background_gc=%s", "on");
843         } else {
844                 seq_printf(seq, ",background_gc=%s", "off");
845         }
846         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
847                 seq_puts(seq, ",disable_roll_forward");
848         if (test_opt(sbi, DISCARD))
849                 seq_puts(seq, ",discard");
850         if (test_opt(sbi, NOHEAP))
851                 seq_puts(seq, ",no_heap_alloc");
852 #ifdef CONFIG_F2FS_FS_XATTR
853         if (test_opt(sbi, XATTR_USER))
854                 seq_puts(seq, ",user_xattr");
855         else
856                 seq_puts(seq, ",nouser_xattr");
857         if (test_opt(sbi, INLINE_XATTR))
858                 seq_puts(seq, ",inline_xattr");
859 #endif
860 #ifdef CONFIG_F2FS_FS_POSIX_ACL
861         if (test_opt(sbi, POSIX_ACL))
862                 seq_puts(seq, ",acl");
863         else
864                 seq_puts(seq, ",noacl");
865 #endif
866         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
867                 seq_puts(seq, ",disable_ext_identify");
868         if (test_opt(sbi, INLINE_DATA))
869                 seq_puts(seq, ",inline_data");
870         else
871                 seq_puts(seq, ",noinline_data");
872         if (test_opt(sbi, INLINE_DENTRY))
873                 seq_puts(seq, ",inline_dentry");
874         else
875                 seq_puts(seq, ",noinline_dentry");
876         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
877                 seq_puts(seq, ",flush_merge");
878         if (test_opt(sbi, NOBARRIER))
879                 seq_puts(seq, ",nobarrier");
880         if (test_opt(sbi, FASTBOOT))
881                 seq_puts(seq, ",fastboot");
882         if (test_opt(sbi, EXTENT_CACHE))
883                 seq_puts(seq, ",extent_cache");
884         else
885                 seq_puts(seq, ",noextent_cache");
886         if (test_opt(sbi, DATA_FLUSH))
887                 seq_puts(seq, ",data_flush");
888
889         seq_puts(seq, ",mode=");
890         if (test_opt(sbi, ADAPTIVE))
891                 seq_puts(seq, "adaptive");
892         else if (test_opt(sbi, LFS))
893                 seq_puts(seq, "lfs");
894         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
895
896         return 0;
897 }
898
899 static int segment_info_seq_show(struct seq_file *seq, void *offset)
900 {
901         struct super_block *sb = seq->private;
902         struct f2fs_sb_info *sbi = F2FS_SB(sb);
903         unsigned int total_segs =
904                         le32_to_cpu(sbi->raw_super->segment_count_main);
905         int i;
906
907         seq_puts(seq, "format: segment_type|valid_blocks\n"
908                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
909
910         for (i = 0; i < total_segs; i++) {
911                 struct seg_entry *se = get_seg_entry(sbi, i);
912
913                 if ((i % 10) == 0)
914                         seq_printf(seq, "%-10d", i);
915                 seq_printf(seq, "%d|%-3u", se->type,
916                                         get_valid_blocks(sbi, i, 1));
917                 if ((i % 10) == 9 || i == (total_segs - 1))
918                         seq_putc(seq, '\n');
919                 else
920                         seq_putc(seq, ' ');
921         }
922
923         return 0;
924 }
925
926 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
927 {
928         struct super_block *sb = seq->private;
929         struct f2fs_sb_info *sbi = F2FS_SB(sb);
930         unsigned int total_segs =
931                         le32_to_cpu(sbi->raw_super->segment_count_main);
932         int i, j;
933
934         seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
935                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
936
937         for (i = 0; i < total_segs; i++) {
938                 struct seg_entry *se = get_seg_entry(sbi, i);
939
940                 seq_printf(seq, "%-10d", i);
941                 seq_printf(seq, "%d|%-3u|", se->type,
942                                         get_valid_blocks(sbi, i, 1));
943                 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
944                         seq_printf(seq, " %.2x", se->cur_valid_map[j]);
945                 seq_putc(seq, '\n');
946         }
947         return 0;
948 }
949
950 #define F2FS_PROC_FILE_DEF(_name)                                       \
951 static int _name##_open_fs(struct inode *inode, struct file *file)      \
952 {                                                                       \
953         return single_open(file, _name##_seq_show, PDE_DATA(inode));    \
954 }                                                                       \
955                                                                         \
956 static const struct file_operations f2fs_seq_##_name##_fops = {         \
957         .open = _name##_open_fs,                                        \
958         .read = seq_read,                                               \
959         .llseek = seq_lseek,                                            \
960         .release = single_release,                                      \
961 };
962
963 F2FS_PROC_FILE_DEF(segment_info);
964 F2FS_PROC_FILE_DEF(segment_bits);
965
966 static void default_options(struct f2fs_sb_info *sbi)
967 {
968         /* init some FS parameters */
969         sbi->active_logs = NR_CURSEG_TYPE;
970
971         set_opt(sbi, BG_GC);
972         set_opt(sbi, INLINE_DATA);
973         set_opt(sbi, INLINE_DENTRY);
974         set_opt(sbi, EXTENT_CACHE);
975         sbi->sb->s_flags |= MS_LAZYTIME;
976         set_opt(sbi, FLUSH_MERGE);
977         if (f2fs_sb_mounted_hmsmr(sbi->sb)) {
978                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
979                 set_opt(sbi, DISCARD);
980         } else {
981                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
982         }
983
984 #ifdef CONFIG_F2FS_FS_XATTR
985         set_opt(sbi, XATTR_USER);
986 #endif
987 #ifdef CONFIG_F2FS_FS_POSIX_ACL
988         set_opt(sbi, POSIX_ACL);
989 #endif
990
991 #ifdef CONFIG_F2FS_FAULT_INJECTION
992         f2fs_build_fault_attr(sbi, 0);
993 #endif
994 }
995
996 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
997 {
998         struct f2fs_sb_info *sbi = F2FS_SB(sb);
999         struct f2fs_mount_info org_mount_opt;
1000         int err, active_logs;
1001         bool need_restart_gc = false;
1002         bool need_stop_gc = false;
1003         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1004 #ifdef CONFIG_F2FS_FAULT_INJECTION
1005         struct f2fs_fault_info ffi = sbi->fault_info;
1006 #endif
1007
1008         /*
1009          * Save the old mount options in case we
1010          * need to restore them.
1011          */
1012         org_mount_opt = sbi->mount_opt;
1013         active_logs = sbi->active_logs;
1014
1015         /* recover superblocks we couldn't write due to previous RO mount */
1016         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1017                 err = f2fs_commit_super(sbi, false);
1018                 f2fs_msg(sb, KERN_INFO,
1019                         "Try to recover all the superblocks, ret: %d", err);
1020                 if (!err)
1021                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1022         }
1023
1024         sbi->mount_opt.opt = 0;
1025         default_options(sbi);
1026
1027         /* parse mount options */
1028         err = parse_options(sb, data);
1029         if (err)
1030                 goto restore_opts;
1031
1032         /*
1033          * Previous and new state of filesystem is RO,
1034          * so skip checking GC and FLUSH_MERGE conditions.
1035          */
1036         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1037                 goto skip;
1038
1039         /* disallow enable/disable extent_cache dynamically */
1040         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1041                 err = -EINVAL;
1042                 f2fs_msg(sbi->sb, KERN_WARNING,
1043                                 "switch extent_cache option is not allowed");
1044                 goto restore_opts;
1045         }
1046
1047         /*
1048          * We stop the GC thread if FS is mounted as RO
1049          * or if background_gc = off is passed in mount
1050          * option. Also sync the filesystem.
1051          */
1052         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1053                 if (sbi->gc_thread) {
1054                         stop_gc_thread(sbi);
1055                         need_restart_gc = true;
1056                 }
1057         } else if (!sbi->gc_thread) {
1058                 err = start_gc_thread(sbi);
1059                 if (err)
1060                         goto restore_opts;
1061                 need_stop_gc = true;
1062         }
1063
1064         if (*flags & MS_RDONLY) {
1065                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1066                 sync_inodes_sb(sb);
1067
1068                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1069                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1070                 f2fs_sync_fs(sb, 1);
1071                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1072         }
1073
1074         /*
1075          * We stop issue flush thread if FS is mounted as RO
1076          * or if flush_merge is not passed in mount option.
1077          */
1078         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1079                 destroy_flush_cmd_control(sbi);
1080         } else if (!SM_I(sbi)->cmd_control_info) {
1081                 err = create_flush_cmd_control(sbi);
1082                 if (err)
1083                         goto restore_gc;
1084         }
1085 skip:
1086         /* Update the POSIXACL Flag */
1087         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1088                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1089
1090         return 0;
1091 restore_gc:
1092         if (need_restart_gc) {
1093                 if (start_gc_thread(sbi))
1094                         f2fs_msg(sbi->sb, KERN_WARNING,
1095                                 "background gc thread has stopped");
1096         } else if (need_stop_gc) {
1097                 stop_gc_thread(sbi);
1098         }
1099 restore_opts:
1100         sbi->mount_opt = org_mount_opt;
1101         sbi->active_logs = active_logs;
1102 #ifdef CONFIG_F2FS_FAULT_INJECTION
1103         sbi->fault_info = ffi;
1104 #endif
1105         return err;
1106 }
1107
1108 static struct super_operations f2fs_sops = {
1109         .alloc_inode    = f2fs_alloc_inode,
1110         .drop_inode     = f2fs_drop_inode,
1111         .destroy_inode  = f2fs_destroy_inode,
1112         .write_inode    = f2fs_write_inode,
1113         .dirty_inode    = f2fs_dirty_inode,
1114         .show_options   = f2fs_show_options,
1115         .evict_inode    = f2fs_evict_inode,
1116         .put_super      = f2fs_put_super,
1117         .sync_fs        = f2fs_sync_fs,
1118         .freeze_fs      = f2fs_freeze,
1119         .unfreeze_fs    = f2fs_unfreeze,
1120         .statfs         = f2fs_statfs,
1121         .remount_fs     = f2fs_remount,
1122 };
1123
1124 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1125 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1126 {
1127         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1128                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1129                                 ctx, len, NULL);
1130 }
1131
1132 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1133 {
1134         *key = F2FS_I_SB(inode)->key_prefix;
1135         return F2FS_I_SB(inode)->key_prefix_size;
1136 }
1137
1138 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1139                                                         void *fs_data)
1140 {
1141         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1142                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1143                                 ctx, len, fs_data, XATTR_CREATE);
1144 }
1145
1146 static unsigned f2fs_max_namelen(struct inode *inode)
1147 {
1148         return S_ISLNK(inode->i_mode) ?
1149                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1150 }
1151
1152 static struct fscrypt_operations f2fs_cryptops = {
1153         .get_context    = f2fs_get_context,
1154         .key_prefix     = f2fs_key_prefix,
1155         .set_context    = f2fs_set_context,
1156         .is_encrypted   = f2fs_encrypted_inode,
1157         .empty_dir      = f2fs_empty_dir,
1158         .max_namelen    = f2fs_max_namelen,
1159 };
1160 #else
1161 static struct fscrypt_operations f2fs_cryptops = {
1162         .is_encrypted   = f2fs_encrypted_inode,
1163 };
1164 #endif
1165
1166 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1167                 u64 ino, u32 generation)
1168 {
1169         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1170         struct inode *inode;
1171
1172         if (check_nid_range(sbi, ino))
1173                 return ERR_PTR(-ESTALE);
1174
1175         /*
1176          * f2fs_iget isn't quite right if the inode is currently unallocated!
1177          * However f2fs_iget currently does appropriate checks to handle stale
1178          * inodes so everything is OK.
1179          */
1180         inode = f2fs_iget(sb, ino);
1181         if (IS_ERR(inode))
1182                 return ERR_CAST(inode);
1183         if (unlikely(generation && inode->i_generation != generation)) {
1184                 /* we didn't find the right inode.. */
1185                 iput(inode);
1186                 return ERR_PTR(-ESTALE);
1187         }
1188         return inode;
1189 }
1190
1191 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1192                 int fh_len, int fh_type)
1193 {
1194         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1195                                     f2fs_nfs_get_inode);
1196 }
1197
1198 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1199                 int fh_len, int fh_type)
1200 {
1201         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1202                                     f2fs_nfs_get_inode);
1203 }
1204
1205 static const struct export_operations f2fs_export_ops = {
1206         .fh_to_dentry = f2fs_fh_to_dentry,
1207         .fh_to_parent = f2fs_fh_to_parent,
1208         .get_parent = f2fs_get_parent,
1209 };
1210
1211 static loff_t max_file_blocks(void)
1212 {
1213         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1214         loff_t leaf_count = ADDRS_PER_BLOCK;
1215
1216         /* two direct node blocks */
1217         result += (leaf_count * 2);
1218
1219         /* two indirect node blocks */
1220         leaf_count *= NIDS_PER_BLOCK;
1221         result += (leaf_count * 2);
1222
1223         /* one double indirect node block */
1224         leaf_count *= NIDS_PER_BLOCK;
1225         result += leaf_count;
1226
1227         return result;
1228 }
1229
1230 static int __f2fs_commit_super(struct buffer_head *bh,
1231                         struct f2fs_super_block *super)
1232 {
1233         lock_buffer(bh);
1234         if (super)
1235                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1236         set_buffer_uptodate(bh);
1237         set_buffer_dirty(bh);
1238         unlock_buffer(bh);
1239
1240         /* it's rare case, we can do fua all the time */
1241         return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1242 }
1243
1244 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1245                                         struct buffer_head *bh)
1246 {
1247         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1248                                         (bh->b_data + F2FS_SUPER_OFFSET);
1249         struct super_block *sb = sbi->sb;
1250         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1251         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1252         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1253         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1254         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1255         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1256         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1257         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1258         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1259         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1260         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1261         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1262         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1263         u64 main_end_blkaddr = main_blkaddr +
1264                                 (segment_count_main << log_blocks_per_seg);
1265         u64 seg_end_blkaddr = segment0_blkaddr +
1266                                 (segment_count << log_blocks_per_seg);
1267
1268         if (segment0_blkaddr != cp_blkaddr) {
1269                 f2fs_msg(sb, KERN_INFO,
1270                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1271                         segment0_blkaddr, cp_blkaddr);
1272                 return true;
1273         }
1274
1275         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1276                                                         sit_blkaddr) {
1277                 f2fs_msg(sb, KERN_INFO,
1278                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1279                         cp_blkaddr, sit_blkaddr,
1280                         segment_count_ckpt << log_blocks_per_seg);
1281                 return true;
1282         }
1283
1284         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1285                                                         nat_blkaddr) {
1286                 f2fs_msg(sb, KERN_INFO,
1287                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1288                         sit_blkaddr, nat_blkaddr,
1289                         segment_count_sit << log_blocks_per_seg);
1290                 return true;
1291         }
1292
1293         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1294                                                         ssa_blkaddr) {
1295                 f2fs_msg(sb, KERN_INFO,
1296                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1297                         nat_blkaddr, ssa_blkaddr,
1298                         segment_count_nat << log_blocks_per_seg);
1299                 return true;
1300         }
1301
1302         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1303                                                         main_blkaddr) {
1304                 f2fs_msg(sb, KERN_INFO,
1305                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1306                         ssa_blkaddr, main_blkaddr,
1307                         segment_count_ssa << log_blocks_per_seg);
1308                 return true;
1309         }
1310
1311         if (main_end_blkaddr > seg_end_blkaddr) {
1312                 f2fs_msg(sb, KERN_INFO,
1313                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1314                         main_blkaddr,
1315                         segment0_blkaddr +
1316                                 (segment_count << log_blocks_per_seg),
1317                         segment_count_main << log_blocks_per_seg);
1318                 return true;
1319         } else if (main_end_blkaddr < seg_end_blkaddr) {
1320                 int err = 0;
1321                 char *res;
1322
1323                 /* fix in-memory information all the time */
1324                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1325                                 segment0_blkaddr) >> log_blocks_per_seg);
1326
1327                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1328                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1329                         res = "internally";
1330                 } else {
1331                         err = __f2fs_commit_super(bh, NULL);
1332                         res = err ? "failed" : "done";
1333                 }
1334                 f2fs_msg(sb, KERN_INFO,
1335                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1336                         res, main_blkaddr,
1337                         segment0_blkaddr +
1338                                 (segment_count << log_blocks_per_seg),
1339                         segment_count_main << log_blocks_per_seg);
1340                 if (err)
1341                         return true;
1342         }
1343         return false;
1344 }
1345
1346 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1347                                 struct buffer_head *bh)
1348 {
1349         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1350                                         (bh->b_data + F2FS_SUPER_OFFSET);
1351         struct super_block *sb = sbi->sb;
1352         unsigned int blocksize;
1353
1354         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1355                 f2fs_msg(sb, KERN_INFO,
1356                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1357                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1358                 return 1;
1359         }
1360
1361         /* Currently, support only 4KB page cache size */
1362         if (F2FS_BLKSIZE != PAGE_SIZE) {
1363                 f2fs_msg(sb, KERN_INFO,
1364                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1365                         PAGE_SIZE);
1366                 return 1;
1367         }
1368
1369         /* Currently, support only 4KB block size */
1370         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1371         if (blocksize != F2FS_BLKSIZE) {
1372                 f2fs_msg(sb, KERN_INFO,
1373                         "Invalid blocksize (%u), supports only 4KB\n",
1374                         blocksize);
1375                 return 1;
1376         }
1377
1378         /* check log blocks per segment */
1379         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1380                 f2fs_msg(sb, KERN_INFO,
1381                         "Invalid log blocks per segment (%u)\n",
1382                         le32_to_cpu(raw_super->log_blocks_per_seg));
1383                 return 1;
1384         }
1385
1386         /* Currently, support 512/1024/2048/4096 bytes sector size */
1387         if (le32_to_cpu(raw_super->log_sectorsize) >
1388                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1389                 le32_to_cpu(raw_super->log_sectorsize) <
1390                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1391                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1392                         le32_to_cpu(raw_super->log_sectorsize));
1393                 return 1;
1394         }
1395         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1396                 le32_to_cpu(raw_super->log_sectorsize) !=
1397                         F2FS_MAX_LOG_SECTOR_SIZE) {
1398                 f2fs_msg(sb, KERN_INFO,
1399                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1400                         le32_to_cpu(raw_super->log_sectors_per_block),
1401                         le32_to_cpu(raw_super->log_sectorsize));
1402                 return 1;
1403         }
1404
1405         /* check reserved ino info */
1406         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1407                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1408                 le32_to_cpu(raw_super->root_ino) != 3) {
1409                 f2fs_msg(sb, KERN_INFO,
1410                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1411                         le32_to_cpu(raw_super->node_ino),
1412                         le32_to_cpu(raw_super->meta_ino),
1413                         le32_to_cpu(raw_super->root_ino));
1414                 return 1;
1415         }
1416
1417         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1418         if (sanity_check_area_boundary(sbi, bh))
1419                 return 1;
1420
1421         return 0;
1422 }
1423
1424 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1425 {
1426         unsigned int total, fsmeta;
1427         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1428         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1429
1430         total = le32_to_cpu(raw_super->segment_count);
1431         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1432         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1433         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1434         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1435         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1436
1437         if (unlikely(fsmeta >= total))
1438                 return 1;
1439
1440         if (unlikely(f2fs_cp_error(sbi))) {
1441                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1442                 return 1;
1443         }
1444         return 0;
1445 }
1446
1447 static void init_sb_info(struct f2fs_sb_info *sbi)
1448 {
1449         struct f2fs_super_block *raw_super = sbi->raw_super;
1450
1451         sbi->log_sectors_per_block =
1452                 le32_to_cpu(raw_super->log_sectors_per_block);
1453         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1454         sbi->blocksize = 1 << sbi->log_blocksize;
1455         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1456         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1457         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1458         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1459         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1460         sbi->total_node_count =
1461                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1462                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1463         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1464         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1465         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1466         sbi->cur_victim_sec = NULL_SECNO;
1467         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1468
1469         sbi->dir_level = DEF_DIR_LEVEL;
1470         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1471         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1472         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1473
1474         INIT_LIST_HEAD(&sbi->s_list);
1475         mutex_init(&sbi->umount_mutex);
1476         mutex_init(&sbi->wio_mutex[NODE]);
1477         mutex_init(&sbi->wio_mutex[DATA]);
1478         spin_lock_init(&sbi->cp_lock);
1479
1480 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1481         memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1482                                 F2FS_KEY_DESC_PREFIX_SIZE);
1483         sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1484 #endif
1485 }
1486
1487 static int init_percpu_info(struct f2fs_sb_info *sbi)
1488 {
1489         int i, err;
1490
1491         for (i = 0; i < NR_COUNT_TYPE; i++) {
1492                 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1493                 if (err)
1494                         return err;
1495         }
1496
1497         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1498         if (err)
1499                 return err;
1500
1501         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1502                                                                 GFP_KERNEL);
1503 }
1504
1505 /*
1506  * Read f2fs raw super block.
1507  * Because we have two copies of super block, so read both of them
1508  * to get the first valid one. If any one of them is broken, we pass
1509  * them recovery flag back to the caller.
1510  */
1511 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1512                         struct f2fs_super_block **raw_super,
1513                         int *valid_super_block, int *recovery)
1514 {
1515         struct super_block *sb = sbi->sb;
1516         int block;
1517         struct buffer_head *bh;
1518         struct f2fs_super_block *super;
1519         int err = 0;
1520
1521         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1522         if (!super)
1523                 return -ENOMEM;
1524
1525         for (block = 0; block < 2; block++) {
1526                 bh = sb_bread(sb, block);
1527                 if (!bh) {
1528                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1529                                 block + 1);
1530                         err = -EIO;
1531                         continue;
1532                 }
1533
1534                 /* sanity checking of raw super */
1535                 if (sanity_check_raw_super(sbi, bh)) {
1536                         f2fs_msg(sb, KERN_ERR,
1537                                 "Can't find valid F2FS filesystem in %dth superblock",
1538                                 block + 1);
1539                         err = -EINVAL;
1540                         brelse(bh);
1541                         continue;
1542                 }
1543
1544                 if (!*raw_super) {
1545                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1546                                                         sizeof(*super));
1547                         *valid_super_block = block;
1548                         *raw_super = super;
1549                 }
1550                 brelse(bh);
1551         }
1552
1553         /* Fail to read any one of the superblocks*/
1554         if (err < 0)
1555                 *recovery = 1;
1556
1557         /* No valid superblock */
1558         if (!*raw_super)
1559                 kfree(super);
1560         else
1561                 err = 0;
1562
1563         return err;
1564 }
1565
1566 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1567 {
1568         struct buffer_head *bh;
1569         int err;
1570
1571         if ((recover && f2fs_readonly(sbi->sb)) ||
1572                                 bdev_read_only(sbi->sb->s_bdev)) {
1573                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1574                 return -EROFS;
1575         }
1576
1577         /* write back-up superblock first */
1578         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1579         if (!bh)
1580                 return -EIO;
1581         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1582         brelse(bh);
1583
1584         /* if we are in recovery path, skip writing valid superblock */
1585         if (recover || err)
1586                 return err;
1587
1588         /* write current valid superblock */
1589         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1590         if (!bh)
1591                 return -EIO;
1592         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1593         brelse(bh);
1594         return err;
1595 }
1596
1597 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1598 {
1599         struct f2fs_sb_info *sbi;
1600         struct f2fs_super_block *raw_super;
1601         struct inode *root;
1602         int err;
1603         bool retry = true, need_fsck = false;
1604         char *options = NULL;
1605         int recovery, i, valid_super_block;
1606         struct curseg_info *seg_i;
1607
1608 try_onemore:
1609         err = -EINVAL;
1610         raw_super = NULL;
1611         valid_super_block = -1;
1612         recovery = 0;
1613
1614         /* allocate memory for f2fs-specific super block info */
1615         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1616         if (!sbi)
1617                 return -ENOMEM;
1618
1619         sbi->sb = sb;
1620
1621         /* Load the checksum driver */
1622         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1623         if (IS_ERR(sbi->s_chksum_driver)) {
1624                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1625                 err = PTR_ERR(sbi->s_chksum_driver);
1626                 sbi->s_chksum_driver = NULL;
1627                 goto free_sbi;
1628         }
1629
1630         /* set a block size */
1631         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1632                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1633                 goto free_sbi;
1634         }
1635
1636         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1637                                                                 &recovery);
1638         if (err)
1639                 goto free_sbi;
1640
1641         sb->s_fs_info = sbi;
1642         sbi->raw_super = raw_super;
1643
1644         default_options(sbi);
1645         /* parse mount options */
1646         options = kstrdup((const char *)data, GFP_KERNEL);
1647         if (data && !options) {
1648                 err = -ENOMEM;
1649                 goto free_sb_buf;
1650         }
1651
1652         err = parse_options(sb, options);
1653         if (err)
1654                 goto free_options;
1655
1656         sbi->max_file_blocks = max_file_blocks();
1657         sb->s_maxbytes = sbi->max_file_blocks <<
1658                                 le32_to_cpu(raw_super->log_blocksize);
1659         sb->s_max_links = F2FS_LINK_MAX;
1660         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1661
1662         sb->s_op = &f2fs_sops;
1663         sb->s_cop = &f2fs_cryptops;
1664         sb->s_xattr = f2fs_xattr_handlers;
1665         sb->s_export_op = &f2fs_export_ops;
1666         sb->s_magic = F2FS_SUPER_MAGIC;
1667         sb->s_time_gran = 1;
1668         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1669                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1670         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1671
1672         /* init f2fs-specific super block info */
1673         sbi->valid_super_block = valid_super_block;
1674         mutex_init(&sbi->gc_mutex);
1675         mutex_init(&sbi->cp_mutex);
1676         init_rwsem(&sbi->node_write);
1677
1678         /* disallow all the data/node/meta page writes */
1679         set_sbi_flag(sbi, SBI_POR_DOING);
1680         spin_lock_init(&sbi->stat_lock);
1681
1682         init_rwsem(&sbi->read_io.io_rwsem);
1683         sbi->read_io.sbi = sbi;
1684         sbi->read_io.bio = NULL;
1685         for (i = 0; i < NR_PAGE_TYPE; i++) {
1686                 init_rwsem(&sbi->write_io[i].io_rwsem);
1687                 sbi->write_io[i].sbi = sbi;
1688                 sbi->write_io[i].bio = NULL;
1689         }
1690
1691         init_rwsem(&sbi->cp_rwsem);
1692         init_waitqueue_head(&sbi->cp_wait);
1693         init_sb_info(sbi);
1694
1695         err = init_percpu_info(sbi);
1696         if (err)
1697                 goto free_options;
1698
1699         /* get an inode for meta space */
1700         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1701         if (IS_ERR(sbi->meta_inode)) {
1702                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1703                 err = PTR_ERR(sbi->meta_inode);
1704                 goto free_options;
1705         }
1706
1707         err = get_valid_checkpoint(sbi);
1708         if (err) {
1709                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1710                 goto free_meta_inode;
1711         }
1712
1713         sbi->total_valid_node_count =
1714                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1715         percpu_counter_set(&sbi->total_valid_inode_count,
1716                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
1717         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1718         sbi->total_valid_block_count =
1719                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1720         sbi->last_valid_block_count = sbi->total_valid_block_count;
1721
1722         for (i = 0; i < NR_INODE_TYPE; i++) {
1723                 INIT_LIST_HEAD(&sbi->inode_list[i]);
1724                 spin_lock_init(&sbi->inode_lock[i]);
1725         }
1726
1727         init_extent_cache_info(sbi);
1728
1729         init_ino_entry_info(sbi);
1730
1731         /* setup f2fs internal modules */
1732         err = build_segment_manager(sbi);
1733         if (err) {
1734                 f2fs_msg(sb, KERN_ERR,
1735                         "Failed to initialize F2FS segment manager");
1736                 goto free_sm;
1737         }
1738         err = build_node_manager(sbi);
1739         if (err) {
1740                 f2fs_msg(sb, KERN_ERR,
1741                         "Failed to initialize F2FS node manager");
1742                 goto free_nm;
1743         }
1744
1745         /* For write statistics */
1746         if (sb->s_bdev->bd_part)
1747                 sbi->sectors_written_start =
1748                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1749
1750         /* Read accumulated write IO statistics if exists */
1751         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1752         if (__exist_node_summaries(sbi))
1753                 sbi->kbytes_written =
1754                         le64_to_cpu(seg_i->journal->info.kbytes_written);
1755
1756         build_gc_manager(sbi);
1757
1758         /* get an inode for node space */
1759         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1760         if (IS_ERR(sbi->node_inode)) {
1761                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1762                 err = PTR_ERR(sbi->node_inode);
1763                 goto free_nm;
1764         }
1765
1766         f2fs_join_shrinker(sbi);
1767
1768         /* if there are nt orphan nodes free them */
1769         err = recover_orphan_inodes(sbi);
1770         if (err)
1771                 goto free_node_inode;
1772
1773         /* read root inode and dentry */
1774         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1775         if (IS_ERR(root)) {
1776                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1777                 err = PTR_ERR(root);
1778                 goto free_node_inode;
1779         }
1780         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1781                 iput(root);
1782                 err = -EINVAL;
1783                 goto free_node_inode;
1784         }
1785
1786         sb->s_root = d_make_root(root); /* allocate root dentry */
1787         if (!sb->s_root) {
1788                 err = -ENOMEM;
1789                 goto free_root_inode;
1790         }
1791
1792         err = f2fs_build_stats(sbi);
1793         if (err)
1794                 goto free_root_inode;
1795
1796         if (f2fs_proc_root)
1797                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1798
1799         if (sbi->s_proc) {
1800                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1801                                  &f2fs_seq_segment_info_fops, sb);
1802                 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1803                                  &f2fs_seq_segment_bits_fops, sb);
1804         }
1805
1806         sbi->s_kobj.kset = f2fs_kset;
1807         init_completion(&sbi->s_kobj_unregister);
1808         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1809                                                         "%s", sb->s_id);
1810         if (err)
1811                 goto free_proc;
1812
1813         /* recover fsynced data */
1814         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1815                 /*
1816                  * mount should be failed, when device has readonly mode, and
1817                  * previous checkpoint was not done by clean system shutdown.
1818                  */
1819                 if (bdev_read_only(sb->s_bdev) &&
1820                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1821                         err = -EROFS;
1822                         goto free_kobj;
1823                 }
1824
1825                 if (need_fsck)
1826                         set_sbi_flag(sbi, SBI_NEED_FSCK);
1827
1828                 if (!retry)
1829                         goto skip_recovery;
1830
1831                 err = recover_fsync_data(sbi, false);
1832                 if (err < 0) {
1833                         need_fsck = true;
1834                         f2fs_msg(sb, KERN_ERR,
1835                                 "Cannot recover all fsync data errno=%d", err);
1836                         goto free_kobj;
1837                 }
1838         } else {
1839                 err = recover_fsync_data(sbi, true);
1840
1841                 if (!f2fs_readonly(sb) && err > 0) {
1842                         err = -EINVAL;
1843                         f2fs_msg(sb, KERN_ERR,
1844                                 "Need to recover fsync data");
1845                         goto free_kobj;
1846                 }
1847         }
1848 skip_recovery:
1849         /* recover_fsync_data() cleared this already */
1850         clear_sbi_flag(sbi, SBI_POR_DOING);
1851
1852         /*
1853          * If filesystem is not mounted as read-only then
1854          * do start the gc_thread.
1855          */
1856         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1857                 /* After POR, we can run background GC thread.*/
1858                 err = start_gc_thread(sbi);
1859                 if (err)
1860                         goto free_kobj;
1861         }
1862         kfree(options);
1863
1864         /* recover broken superblock */
1865         if (recovery) {
1866                 err = f2fs_commit_super(sbi, true);
1867                 f2fs_msg(sb, KERN_INFO,
1868                         "Try to recover %dth superblock, ret: %d",
1869                         sbi->valid_super_block ? 1 : 2, err);
1870         }
1871
1872         f2fs_update_time(sbi, CP_TIME);
1873         f2fs_update_time(sbi, REQ_TIME);
1874         return 0;
1875
1876 free_kobj:
1877         f2fs_sync_inode_meta(sbi);
1878         kobject_del(&sbi->s_kobj);
1879         kobject_put(&sbi->s_kobj);
1880         wait_for_completion(&sbi->s_kobj_unregister);
1881 free_proc:
1882         if (sbi->s_proc) {
1883                 remove_proc_entry("segment_info", sbi->s_proc);
1884                 remove_proc_entry("segment_bits", sbi->s_proc);
1885                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1886         }
1887         f2fs_destroy_stats(sbi);
1888 free_root_inode:
1889         dput(sb->s_root);
1890         sb->s_root = NULL;
1891 free_node_inode:
1892         truncate_inode_pages_final(NODE_MAPPING(sbi));
1893         mutex_lock(&sbi->umount_mutex);
1894         release_ino_entry(sbi, true);
1895         f2fs_leave_shrinker(sbi);
1896         iput(sbi->node_inode);
1897         mutex_unlock(&sbi->umount_mutex);
1898 free_nm:
1899         destroy_node_manager(sbi);
1900 free_sm:
1901         destroy_segment_manager(sbi);
1902         kfree(sbi->ckpt);
1903 free_meta_inode:
1904         make_bad_inode(sbi->meta_inode);
1905         iput(sbi->meta_inode);
1906 free_options:
1907         destroy_percpu_info(sbi);
1908         kfree(options);
1909 free_sb_buf:
1910         kfree(raw_super);
1911 free_sbi:
1912         if (sbi->s_chksum_driver)
1913                 crypto_free_shash(sbi->s_chksum_driver);
1914         kfree(sbi);
1915
1916         /* give only one another chance */
1917         if (retry) {
1918                 retry = false;
1919                 shrink_dcache_sb(sb);
1920                 goto try_onemore;
1921         }
1922         return err;
1923 }
1924
1925 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1926                         const char *dev_name, void *data)
1927 {
1928         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1929 }
1930
1931 static void kill_f2fs_super(struct super_block *sb)
1932 {
1933         if (sb->s_root)
1934                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1935         kill_block_super(sb);
1936 }
1937
1938 static struct file_system_type f2fs_fs_type = {
1939         .owner          = THIS_MODULE,
1940         .name           = "f2fs",
1941         .mount          = f2fs_mount,
1942         .kill_sb        = kill_f2fs_super,
1943         .fs_flags       = FS_REQUIRES_DEV,
1944 };
1945 MODULE_ALIAS_FS("f2fs");
1946
1947 static int __init init_inodecache(void)
1948 {
1949         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1950                         sizeof(struct f2fs_inode_info), 0,
1951                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1952         if (!f2fs_inode_cachep)
1953                 return -ENOMEM;
1954         return 0;
1955 }
1956
1957 static void destroy_inodecache(void)
1958 {
1959         /*
1960          * Make sure all delayed rcu free inodes are flushed before we
1961          * destroy cache.
1962          */
1963         rcu_barrier();
1964         kmem_cache_destroy(f2fs_inode_cachep);
1965 }
1966
1967 static int __init init_f2fs_fs(void)
1968 {
1969         int err;
1970
1971         f2fs_build_trace_ios();
1972
1973         err = init_inodecache();
1974         if (err)
1975                 goto fail;
1976         err = create_node_manager_caches();
1977         if (err)
1978                 goto free_inodecache;
1979         err = create_segment_manager_caches();
1980         if (err)
1981                 goto free_node_manager_caches;
1982         err = create_checkpoint_caches();
1983         if (err)
1984                 goto free_segment_manager_caches;
1985         err = create_extent_cache();
1986         if (err)
1987                 goto free_checkpoint_caches;
1988         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1989         if (!f2fs_kset) {
1990                 err = -ENOMEM;
1991                 goto free_extent_cache;
1992         }
1993         err = register_shrinker(&f2fs_shrinker_info);
1994         if (err)
1995                 goto free_kset;
1996
1997         err = register_filesystem(&f2fs_fs_type);
1998         if (err)
1999                 goto free_shrinker;
2000         err = f2fs_create_root_stats();
2001         if (err)
2002                 goto free_filesystem;
2003         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2004         return 0;
2005
2006 free_filesystem:
2007         unregister_filesystem(&f2fs_fs_type);
2008 free_shrinker:
2009         unregister_shrinker(&f2fs_shrinker_info);
2010 free_kset:
2011         kset_unregister(f2fs_kset);
2012 free_extent_cache:
2013         destroy_extent_cache();
2014 free_checkpoint_caches:
2015         destroy_checkpoint_caches();
2016 free_segment_manager_caches:
2017         destroy_segment_manager_caches();
2018 free_node_manager_caches:
2019         destroy_node_manager_caches();
2020 free_inodecache:
2021         destroy_inodecache();
2022 fail:
2023         return err;
2024 }
2025
2026 static void __exit exit_f2fs_fs(void)
2027 {
2028         remove_proc_entry("fs/f2fs", NULL);
2029         f2fs_destroy_root_stats();
2030         unregister_filesystem(&f2fs_fs_type);
2031         unregister_shrinker(&f2fs_shrinker_info);
2032         kset_unregister(f2fs_kset);
2033         destroy_extent_cache();
2034         destroy_checkpoint_caches();
2035         destroy_segment_manager_caches();
2036         destroy_node_manager_caches();
2037         destroy_inodecache();
2038         f2fs_destroy_trace_ios();
2039 }
2040
2041 module_init(init_f2fs_fs)
2042 module_exit(exit_f2fs_fs)
2043
2044 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2045 MODULE_DESCRIPTION("Flash Friendly File System");
2046 MODULE_LICENSE("GPL");